
AMC_OS/X Module - Revision “4M”

(c) Ángel M. Martin Page 1 of 53 July 2014

System Extensions for the HP-41CX
Revision – 4M

User’s Manual and QRG.

Written and Programmed by Ángel M. Martin

July 2014

AMC_OS/X Module - Revision “4M”

(c) Ángel M. Martin Page 2 of 53 July 2014

This compilation revision 4.W.6.6

Copyright © 2012 -2014 Ángel Martin

Published under the GNU software licence agreement.

Original authors retain all copyrights, and should be mentioned in writing by any part utilizing this

material. No commercial usage of any kind is allowed.

Screen captures taken from V41, Windows-based emulator developed by Warren Furlow.
See www.hp41.org

Acknowledgments.- This manual and the AMC_OS/X module would obviously not exist without the

CCD Module. Thanks to Raymond del Tondo for the initial OS/X 4k-footprint version with much of the
OS extensions extracted from the CCD. Also thanks to Håkan Thörngren, Fritz Ferwerda and Nelson F.

Crowle for their powerful functions, examples of solid MCODE programming incorporated to this
module.

Everlasting thanks to the original developers of the HEPAX and CCD Modules – real landmark and
seminal references for the serious MCODER and the 41 system overall. With their products they

pushed the design limits beyond the conventionally accepted, making many other contributions pale
by comparison.

http://www.hp41.org/

AMC_OS/X Module - Revision “4M”

(c) Ángel M. Martin Page 3 of 53 July 2014

Table of Contents.

1. Introduction

1.1. Introduction. 5
1.2. Page#4 Library and Bank-Switching 5

1.3. The Functions at a glance 6

2. System Extensions

2.1 Enhanced Catalogs 9
2.2 Extended XEQ/ASN 13
2.3 Direct Memory functions 15
2.4 Alpha characters input 16
2.5 Prompt Lengthener 17
2.6 Buffer Catalog 18
2.7 I/O Page Catalogs 20

3. RAM Editor

3.1. Editing RAM with RAMED. 21

4. System & I/O Pages

4.1. The system as a whole 23
4.2. The I/O Pages within. 24

5. Alpha & Display Utilities

5.1. ALPHA Strings and Display 26

6. Hex Functions

6.1. The hexadecimal number system 28
6.2. Managing Word size and Sign mode 30
6.3. Input and Output Hex functions 31
6.4. Random numbers revisited 32

AMC_OS/X Module - Revision “4M”

(c) Ángel M. Martin Page 4 of 53 July 2014

7. System Advanced Utilities

7.1. Main and X-Memory functions 33
7.2. Buffer Management 36
7.3. Key Assignment Revisited 38
7.4. Flags and Program Branching 39
7.5. Other Miscellaneous utils. 42

8. AECROM Program Generator

8.1. Intro and quick Example 44
8.2. A general description 45
8.3. Keying in Formulas: the Overlay 46
8.4. Details of PROG 48

Appendices.

1. Function Index 49
2. Overlap with the AMC_OS/X Module 50
3. X-Memory File Headers 51
4. X-Memory Structure 52
5. HP-41 Byte Table 53

AMC_OS/X Module - Revision “4M”

(c) Ángel M. Martin Page 5 of 53 July 2014

OS Extension for the HP-41CX

1. Introduction.

Of the several modules that included extensions for the operation system, the CCD Module was no

doubt the most daring in the implementation and useful in the results. The original module featured

numerous enhancements that made using the powerful features of the 41 a much easier affair; plus
added a few more on its own to round out the functionality. Only the ZENROM came close to a similar

set of capabilities, although to this author not quite as well thought out and lacking some finesse in
the integration.

Even as groundbreaking as the CCD Module was, yet further usability came from a reduced footprint

version that removed other functions not directly related to the OS extensions. Raymond del Tondo

produced the first of these 4k modules, the CCD_OS/X that added a couple of functions to read/write
module images to the HP-IL mass storage.

That was the perfect basis to extend using the Library#4 – moving sections of the code to the library

space, making more room for additional features and a few more FAT entries to allocate additional

functions. The first AMC_OS/X was just that, a 4k-module adding on the CCD_OS/X the following:

 Complete implementation of the CCD Catalogs

 Added 5 new XM File types (to be described later on)

 Prompt Lengthener from the ML ROM

 Multi-byte assign (ASG) from the ML ROM

 Direct GTO to ROM Address

 Plus 15+ more utility functions

Page#4 Library and Bank-Switching.

A subsequent version of the module added bank-switching support, which allowed for a substantial

increase in the number of functions. Several utilities from the ToolBox and Rampage ROMs were
added to the set, so at this stage the module was fulfilling its goal of being a permanent fixture in all

systems, with only minimal footprint requirements. It was also modified to be compatible with pages

#6 and #7, assuming of course that no printer or HL-IL module are plugged in.

Amongst the added functions you’ll find the usual suspects: Buffer and Page Catalogs, Buffer and KA
Save/Write to X-Mem; Focal program compiler, X-Mem write-to / read-from HP-IL disk file, Checksum

Page summing and other X-Mem file utilities.

The last touch was the addition of a third bank, including the AECROM Program Generator – arguably

the first CAS-like approach even if in proto-embryonic shape. You may not find it very useful
nowadays but it remains a world-class example of MCODE programming. Consider that it takes more

than 3k of ROM space, the third bank is pretty full. Porting the original code from the AECROM to a
bank-switched implementation was a challenge but also a very rewarding project - and certainly a lot

of fun.

Remember: The AMC_OS/X extensively uses routines and functions from the Page#4 Library. Make

sure the Library#4 revision “K” (or higher) is installed on your system or things can go south. Refer to
the Page#4 Library documentation to properly configure the Library#4 before you start using it.

AMC_OS/X Module - Revision “4M”

(c) Ángel M. Martin Page 6 of 53 July 2014

Function index at a glance.

Without further ado, here are all AMC_OS/X functions: a full-house FAT with the best tools in town.

Function Description Input Output Author

-AMC"OS/X Section Headar None Splash Screen Nelson F. Crowle

ABSP Alpha Back Space Text in Alpha Deletes Rightmost chr W&W GmbH

ARCLH ARCL Hex number in X-reg added to Alpha in HEX W&W GmbH

ARCLI ARCL Integer number in X-reg integer part to ALPHA W&W GmbH

ASG _ Multi-byte Assign Prompts for data Asisgns function Fritz Ferwerda

ASWAP Alpha Swap A,B in Alpha B,A in Alpha Ángel Martin

B? Buffer presence test buffer id# in X-reg YES/NO, skips if false W&W GmbH

CDE Code string in ALPHA NNN in X-reg Ken Emery

CLA- CLA from blank String in ALPHA Deletes chars after blank W&W GmbH

CLB Clear Buffer buffer id# in X-reg Deletes buffer from I/O W&W GmbH

CLEM Clear X-Mem None Deletes all X-Memory Håkan Thörngren

DCD Decode NNN in X-reg String in ALPHA Ken Emery

DTOA Display to ALPHA text in display Text copied to ALPHA Ángel Martin

DTST Display Test none Shows all LCD chars Chris Dennis

F/E Fix/Eng mode none sets both flags W&W GmbH

GTADR _ _ _ _ Go to ROM Address address as NNN execution transferred W&W GmbH

LKAX Suspends/Restores KA zero/non-zero in X-reg suspends/activates Local KA Ross Cooling

MNF _ _ _ Mainframe prompts for fcn id# executes function Clifford Stern

MSGE _ _ _ Shows OS Message prompts for msg id# shows OS message Raymond del Tondo

PC<>RTN Exchanges PC and RTN values in PC and RTN stack values exchanged W&W GmbH

PLNG _ Program Length Prompts for Name length in bytes W&W GmbH

PMTA _ prompts in ALPHA prompts for text adds text to ALPHA W&W GmbH

PMTH _ _ Prompts for HEX # prompts for digits Decimal number in X-reg W&W GmbH

PMTK _ Key Prompt Prompts for key branches execution W&W GmbH

RNDM Random Number SEED in buffer random number in X W&W GmbH

SEED Generates SEED number in X-reg creates SEED in buffer W&W GmbH

TAS Toggles Auto-start none Toglles autostart flag - c(16) W&W GmbH

TF _ _ Toggle flag prompts for flag# toggles flag status Ken Emery

TGLC Toggle Lower Case none Toggles ALPHA LC mode Ángel Martin

VIEWH View HEX number in X-reg shows HEX in display W&W GmbH

VRG _ _ View Register prompts for RG# decodes its contents Fritz Ferwerda

WSIZE _ _ Sets Word size prompts for size changes setting W&W GmbH

WSIZE? Gets Word Size none recalls WS to X Sebastian Toelg

XTOAH X-reg to ALPHA chr# in X-rg adds HEX to Alpha W&W GmbH

Y/N? _ Yex/No? prompts Y/N branches execution PANAME ROM

PROG _ Program Generator Prompts formula Writes FOCAL program Nelson F. Crowle

-OSX BANK2 ROM List None shows XROM's plugged in Ángel Martin

BFCAT Buffer Catalog none Enumerates Buffers Ángel Martin

CHKROM _ _ Checks ROM prompt for ROM id# Tests OK/BAD chksum HP Co.

CHKSYS Checks System none Tests XROM conflicts Ángel Martin

CMP _ 1/2's complement 0,1,2 in prompt sets complement W&W GmbH

COMPILE Compiles FOCAL prg Prog. Name in ALPHA Compiles GTO/XEQ Fritz Ferwerda

GETBF Get Buffer buf. id# in X, FileName in ALPHA Buffer loaded from X-Mem Håkan Thörngren

GETKA Get Key Assignments File Name in ALPHA KA loaded from X-Mem Håkan Thörngren

HEXIN _ HEX input prompts for digits NNN in X-reg Håkan Thörngren

PGSIG _ _ Page Signature PG# in Prompt Traininlg Text Ángel Martin

MRGKA Merge Key Assignments File Name in ALPHA Merges keys w/ existing Håkan Thörngren

PEEKR Peeks Register absolute adr in X reg contents to X W&W GmbH

PG? _ _ Page Info prompts for page# XROM, #fcns in X W&W GmbH

PGCAT Page Catalog none Enumerates page contents VM Electronics

AMC_OS/X Module - Revision “4M”

(c) Ángel M. Martin Page 7 of 53 July 2014

Function Description Input Output Author

POKER Pokes Register adr in Y, content in X writes data to register W&W GmbH

RAMED _ RAM Editor RAM addr in X or current PC Editor mode activated Håkan Thörngren

READPG Read Page FileName in Alpha, pg# in X-reg reads ROM image from HP-IL Raymond del Tondo

READXM Read All X-Memory FileName in Alpha reads X-Mem from HP-IL Skwid

RENMFL Rename X-Mem file "OldName,NewName" in Alpha file renamed Ángel Martin

RETPFL Retype X-Mem file FileName in Alpha, type in X file type changed Ángel Martin

ROM? _ _ ROM Info Prompts for XROM id# pag# in X, #fcns. In Y W&W GmbH

SAVEBF Save Buffer FileName in ALPHA, buff# in X Saves buffer to X-Mem file Håkan Thörngren

SAVEKA Save Key-assignments FileName in ALPHA Saves KA to X-Mem file Håkan Thörngren

SUMPG _ Sum Page prompts for page# Calculates & writes Chksum George Ioannou

TGPRV _ Toggle Provate status Prompts for prg name status changed Sebastian Toelg

WRTPG Write Page FileName in Alpha, pg# in X-reg Rom image written to HP-IL Raymond del Tondo

WRTXM Write All X-Memory FileName in Alpha X-Memory written to HP-IL Skwid

XQ>XR XEQ to XROM Program name in Alpha Converts XEQ to XROM W&W GmbH

Original authors are listed (to the best of my knowledge). W&W is credited for the CCD functions; let

me know if you know the names of the actual programmers, which should include Holger Adelmann

and W. Baltes according to the introduction in the CCD Module manual. With 22 functions from the
CCD (in addition to the other system extensions) the initial spirit is preserved as a genuine derivative

of the original masterpiece.

No doubt you’ve also noticed some redundancy with the TOOLBOX and RAMPAGE modules – it’s true
that several functions are “repeated” amongst these three, but as a general theme the OS/X should

provide access to the most frequently used functions, whilst the other two would extend the toolsets

with more specialized functions on the subjects that they cover.

The last remark is regarding the CX dependency: the AMC_OS/X is designed for the CX version of the

41 OS, as it profusely uses subroutines from the CX OS code. This was a compromise to maximize the

functionality and the economy of ROM space - avoided having to replicate large code streams already
available on the CX.

Note: Make sure that revision “L” (or higher) of the Library#4 is installed.

AMC_OS/X Module - Revision “4M”

(c) Ángel M. Martin Page 8 of 53 July 2014

Note: Make sure that revision “L” (or higher) of the Library#4 is installed.

AMC_OS/X Module - Revision “4M”

(c) Ángel M. Martin Page 9 of 53 July 2014

2. System Extensions.

The functionality described below is always available: no functions need to be executed and USER

mode is not required. The implementation is based on Polling-point interrupts, no doubt the most

appropriate approach to modify the standard behavior of the OS (akin to a sub-classing scheme).

Without a doubt, one of the most useful enhancements from the CCD was the extended CATalogs.
Not only they preceded the CX implementation of EMDIR and ALMCAT, but also provided real system-

wide extensions to enumerate HP-IL Peripherals [CAT-0], or files on a Mass Storage device [CAT-7] to
mention just those two. Also useful to the point of addiction are the shortcuts for page catalogs 8-F –

I for one can’t use a 41 without them!

The following paragraphs are taken from the CCD Module manual – added here for completeness and

your convenience. The additional functionality from the AMC_OS/X is also marked appropriately within
each section.

The Catalogs

The original catalogs in the standard machine (six on the CX) are expanded to 16, and their
functionality is considerably enhanced. All of the new catalogs may be halted during execution by R/S,

and subsequently stepped through in either direction using SST or BST. In contrast to the operation of
the native catalogs of the HP-41, the SHIFT annunciator remains lit during the use of BST (or SST).

The key sequence SHIFT, R/S will even cause the catalog listing to be run in reverse. A running

catalog may be speeded up by pressing any key other than R/S or ON. Pressing the back arrow key
terminates the stopped catalog. The catalogs will now be individually described.

 CAT“0 shows the ID or AID of all devices in the HP-Interface Loop if any are present. When

the catalog is stopped the displayed device can be selected by pressing ENTER. If you press

[C] and the selected device is selected, a Selected Device Clear (SDC) message will be sent to

that device. When there is no HP-IL module in the calculator, the message ‘NO HPIL” is
displayed.

 CAT”1 is a back-door entry for three different catalogs related to RAM and ROM areas. It

presents a second menu of choices, as shown in the screen below:

, where:

New functionality:-

o “B” executes BFCAT, the I/O Buffer Catalog – explained later in the manual
o “G” executes PGCAT, the I/O Port Catalog, explained in section 2.6
o “K” executes CHKSYS, the system check function (see section 4.1)
o “R” executes ROMLST, showing all plugged XROM id’s as alpha string
o “1” executes the normal CAT 1 function, with no enhancements in the manner of

execution. More information can be found in the HP-41 Handbook.

AMC_OS/X Module - Revision “4M”

(c) Ángel M. Martin Page 10 of 53 July 2014

 CAT”2.- This catalog is greatly enhanced in its operation in comparison to the standard CAT 2

of the HP-41. When it is first executed only the “headers” of each ROM are displayed (like the
HP-41CX). If the catalog is halted with R/S the user may press ENTER to view the function

block of the currently displayed “header”. When the desired function is located, it may be
executed directly from the catalog by pressing XEQ (the function will be inserted in program

mode), or the function may be assigned to a key by pushing the [A] key. A second press of

the ENTER key returns you to the catalog listing of only ROM “headers”.

Another difference with the CX implementation is that the enumeration of the CX-Functions
and Time Module follow the actual page order, thus the very first ROM listed is always the

extended functions – not the last one as it’s done on the “native” CAT 2.

 CAT”3 has been extended with a 3-digit prompt. Use it to define the function to start from;

choices are from 0 to 115 (in decimal). I adapted this feature from Poul Kaarup’s CAT3

function.

 CAT”4.- Like the function EMDIR of the Extended functions module and CAT 4 of the HP-

41CX, CAT”4 displays the names, lengths and types of all files in extended memory. It has the
additional feature of displaying the three additional file types used by the CCD Module. The

three file types are: I/O Buffers (displayed as “B”), Matrices (“M’”), and key assignments files

(“K”). If no extended memory is present the error message “NO XF/M” is displayed.

New functionality:-

The AMC_OS/X had added new tricks to CAT”4, the Extended Memory Catalog – namely completing

the information about non-standard files (Matrix, Buffer and KA, missing on the CCD_OS/X version),
plus adding five new file types to the list. The new file types are as follows:

File type Mnemonic File Type Id# Used by In Modules

Status Registers “T” 07 SAVEST / GETST RAMPAGE / POWERCL

Complex Stack “Z” 08 SAVEZS / GETZS RAMPAGE / POWERCL

Unassigned “Y” 09 Future use n/a

Unassigned “X” 09 Future use n/a

Hepax Data “H” 10 Future use n/a

Obviously the usefulness of additional file types is determined by actual functions that make use of
them. This is the case for the Status registers and the Complex Stack types, with dedicated functions

to save and restore the corresponding memory areas from/to X-Memory.

Note that the other types can still be used by means of the RETPFL function described elsewhere in

this manual. While its argument can be any number between 1 and 99, having recognizable
mnemonics in the catalog enumeration is a very useful feature.

 CAT”5.- Executes the function ALMCAT of the TIME module. When there is no TIME module

in the calculator the message “NO TIMER” is displayed.

 CAT”6.- This catalog shows all key assignments in keycode order, starting at the + key and

working its way horizontally and then dropping down to the next row. On the right side you

will see the keycode and on the left side the function name will be displayed. Even synthetic
key assignments (like “RCL M”, or “TEXT 7”) are shown correctly and not as an XROM

number. Pressing [C] deletes the shown key assignment when the catalog is stopped. When
there are no key assignments the message “NO KEYS” is generated.

 CAT”7.- Executes the function DIR of the HP-IL module. For a detailed description of this

function see the owner’s handbook for the HP-IL module. When this is not present in the
calculator the message “NO HPIL” is shown.

AMC_OS/X Module - Revision “4M”

(c) Ángel M. Martin Page 11 of 53 July 2014

 CAT”8 to CAT”F.- These catalogs operate in a manner similar to the enhanced CAT”2

function of the module, except that each of these addresses a single page of the I/O ports of
the HP-41. Both the catalogs and the ROM pages are numbered from 8 to F. As one might

therefore expect, each of the catalogs in this group has a number identical to the ROM page
whose content it examines.

Each port of the HP-41 can be occupied by up to 8 Kbytes of program material (in non- bank
switched configuration; or up to 32k if bank-switching is used to its max). Since most application

modules address the lower 4K of the port they’re plugged into, then the upper page of that I/O
port is inaccessible under normal circumstances, and the corresponding catalog will display the

message “NO ROM” for that address block. Some modules use both pages but have only one

Function Address Table (FAT). In those cases the message “NO FAT” is shown as appropriate.

Note that there are no direct shortcuts to list the ROMs plugged in the “internal” pages of the I/O
bus (pages 1 to 7). Pages 0 to 5 are used by the operating system, CX-Functions and TIME

module code, therefore in practical terms only pages 6 and 7 are not covered. They have to be
listed using the general CAT”2, stopping the listing at the corresponding ROM header.

Related functionality:-

Another function in the OS/X Module is PGCAT, taken from the HEPAX Module and written by Steen

Petersen. PGCAT enumerates the first function of each page, starting with page 3. The enumeration

can be stalled pressing any key other than R/S or ON, but the individual functions won’t be listed.

The picture below (taken from the HEPAX manual) provides the relationship between ports and pages,
also showing the physical addresses in the bus and those reserved for special uses (like OS, Timer,

Printer, HP-IL, etc). Note that some pages (also called 4k-blocks or simply “blocks”) are bank-

switched. As always, a picture is worth 1,024 words:

AMC_OS/X Module - Revision “4M”

(c) Ángel M. Martin Page 12 of 53 July 2014

Lastly but by no means least, the Buffer Catalog BFCAT completes the enhanced catalogs set –
providing a simple and convenient way to list those buffers configured in the system. BFCAT behaves

in every way identical to the other catalogs, with automated or manual enumeration using SST/BST,
and with hot keys to delete and decode the buffer header. It’ll be described later on in the manual.

Full House Configuration of the I/O Pages.-:

A full-house configuration like the one shown in the figure below can have up to 132 kB; quite an
impressive feat considering we’re talking about a hand-held calculator design from 1979 – which

although extended, expanded, and stretched to the limit really shows the versatility and solid

engineering of the design.

Port Page Addresses Primary Bank Secondary Bank Bank #3 Bank #4

FFFF

F000

EFFF

E000

DFFF

D000

CFFF

C000

BFFF

B000

AFFF

A000

9FFF
9000

8FFF

8000

7FFF

7000

6FFF

6000

5FFF

5000

4FFF

4000

3FFF

3000

2FFF

2000

1FFF

1000

0FFF

0000

CL Library

SandMath - B1

POWERCL-B1

Solve & Integ

AEC Solvers

SandMatrix - B1

HL_Math - B1

CX FNS - Bank 2

AMCOSX4 - B2

HL_Math - B2

Vector Calc- B2

Hepax RAM

HEPAX_1D- b1

ADV Matrix - B1

YFNP_1C

HEPAX_1D- b4

ADV Matrix - B2

POWERCL-B3 POWERCL-B4POWERCL-B2

HEPAX_1D- b3HEPAX_1D- b2

SandMath - B2

3 CX FNS- Bank 1

Library #4 4

9

5

7 AMCOSX-4

PRINTER

TIMER

8

D

C

2

F

E

4

3

B

A

1

hpi l

0

6

AECPROG - B3

OS - ROM 0

2

1 OS - ROM 1

OS - ROM 2

IR Printer - b2

AMC_OS/X Module - Revision “4M”

(c) Ángel M. Martin Page 13 of 53 July 2014

To understand the following you should have at least a basic knowledge about synthetic

programming, or be familiar with the concepts involved in advanced programming.-

ASN

The enhanced ASN function permits the following keyboard entries:

a) The normal ASN function: if the user presses ASN followed by ALPHA, the standard ASN
function of the HP-41 will be run.

b) The assignment of any two-byte function: when you press the ASN key with the OS/X Module
present you will see the following prompt: “ASN: _ _: _ _”. The calculator is prompting for

two decimal byte values. When you key in two bytes and press any key after that the two-
byte function is assigned to that key. If you first press the [H] key the operating system will

prompt for hexadecimal values. With ENTER or the radix key [;] you return to the decimal
prompt.

c) Assigning an XROM number: the ASN function of the OS/X Module allows the assignment of
XROM numbers without the module with that XROM plugged in the calculator. After you have

pressed ASN you simply press XEQ and you’ll see “ASN XROM:_ _”. This prompt initially
requests input of the ROM id# number (i.e. the portion of the XROM number that precedes

the comma, such as 05 for the OS/X module). After the entry of these digits, the prompt
becomes “ASN XROM:05:_ _”, which indicates that input of the function id# - that is to say

the portion of the XROM number that follows the comma - is now expected (e.g. 01 for the

function ABSP of the OS/X Module). The prompt becomes “XROM:05:01 _”, which requests
input of the code for the key this function is to be assigned to.

Note that pressing back arrow at this point does not cancel the action, but assigns the
function to the back arrow key instead. You should manually un-assign it if that was

unintentionally made, using the key sequence: ASN, ALPHA, ALPHA, key.

Related functionality:-

Note that here we’ve used the function XROM id# to make the assignment, and that it is
restricted to two-byte functions. Another function in the OS/X module is ASG, which features a

more capable approach using the function names instead, for additional convenience and ease of

use. ASG was taken from the ML ROM, compiled by Fritz Ferwerda from the Dutch PPC Chapter.

AMC_OS/X Module - Revision “4M”

(c) Ángel M. Martin Page 14 of 53 July 2014

XEQ

The enhanced XEQ function allows the following keyboard entries:

a) The normal XEQ function: If ALPHA or a number is pressed after XEQ, we obtain the normal
XEQ function. It is the same as the standard XEQ on the HP-41.

b) The execution of any two-byte function: When you press XEQ and then ENTER you will see

the prompt “XEQ:_ _:_ _”. The calculator is prompting for two decimal values. When you key

in two values the function is executed or inserted into a program. If you press [H] before
keying in any value you’ll see “XEQ”_ _”_ _” and the calculator prompts for a hexadecimal

input. By pressing ENTER or the radix key [;] you are returned to the decimal prompt.

c) The execution of an XROM number: the expanded XEQ function provided by the OS/X Module

also permits the execution of function or application programs by their XROM number, even if
the module is not present in the HP-41. The key sequence XEQ, ENTER, XEQ generates the

prompt “XEQ XROM:_ ” This initially prompts to input the ROM id# number (the portion of the

XROM number that precedes the comma, such as 05 in the OS/X module). After the entry of
these digits, the prompt becomes ‘XEQ XROM:05:_ _” , which indicates that the input of the

function id# - that is to say the portion of the XROM number that follows the comma – is now
expected (e.g. 01 for the function ABSP of the OS/X Module). If the calculator is in RUN

mode and the appropriate module is plugged in, the function is immediately executed;
otherwise the error message “NONEXISTENT” is displayed. If the HP-41 is in PRGM mode

then the instruction is inserted as a program line.

Note: to avoid confusion, throughout this manual the appearance of the colon (:) preceding an input

prompt indicates that the number to be input is of the decimal form; whereas if the colon is replaced

by quotes (“) the input is expected in hexadecimal form.

Example:- Assign the synthetic function ‘RCL IND e” to the LN key.

A quick look into the byte table determines that the byte values required are in Hex 90,FF and the key

code is 15. Armed with that information it’s easy to just fill the prompts in the OX/S ASN function:

ASN, [H], 90, FF, 15

Alternatively you can execute the ASG function and spell out the function name. Note that the ALPHA

mode is turned on automatically for this:

ASG, R, C, L, space, I, e (lower case)

In either case executing CAT”6 will show the function assigned with its correct name:

 and in PRGM:

AMC_OS/X Module - Revision “4M”

(c) Ángel M. Martin Page 15 of 53 July 2014

To simplify the insertion of synthetic program lines, the OS/X Module provides the capability for the

direct entry of synthetic instructions. All memory access functions (RCL, STO, X<>) can now be

accessed directly from the keyboard and use to address all of the status registers of the HP-41. Thus
access to and manipulation of the contents of registers {M, N, O, P, Q, a, b, c, d, e, +} is now no

more complex than working with {X, Y, Z, T, L}.

This is valid for both the direct and INDirect modes of the functions. For instance, the keystroke

sequences used to apply these functions to the status register “d” would be:

RCL, [.], [D]
 RCL, SHIFT, [.], [D]

Exercise caution in manipulating status

register contents: Altering the contents of
registers “+” and “a” though “e” can lead

to a MEMORY LOST condition or to a
system crash if the register contents are

improperly altered.

Alteration of the “cold start constant” 169

in register “c” will always result in MEMORY
LOST. Before experimenting with these

registers the user should thoroughly

familiarize himself with the theory and
practical applications of synthetic

programming.

Even more interesting considerations apply
to the utilization of status registers during

program execution. Remember that register

“b” holds the current program pointer, i.e.
it’s a powerful way to jump to other

programs, or even ROM space without any
global label.

Related functionality:-

The functions SAVEST and GETST in the RAMPAGE Module can be used to save/restore the complete

set of status registers in extended memory. Make sure you understand the implications of a “hot-
swap” of the status registers set before doing it!

AMC_OS/X Module - Revision “4M”

(c) Ángel M. Martin Page 16 of 53 July 2014

The OS/X Module enables the user to place in the ALPHA register, or to enter directly into a program

line, any of the 256 character bytes available on the HP-41 (see byte table below). This was only

available previously using the X-Functions module or synthetic programming techniques. Exploiting
the use of direct entry of lower case and special characters presents lots of possibilities, especially to

programmers making extensive use of printers and HP-IL peripherals. It is readily apparent that the
direct entry of lower case and special characters greatly facilities the ease of use and “byte economy”

in programming.

The lower case and special character entry mode of the OS/X Module is available in ALPHA mode

when USER mode is off. The special keyboard overlay companion to the CCD Module has the printer-

control and other special characters listed according to the color code described in the table below:

 USER Mode ON Normal Alpha keyboard

 Blue Letters on key faces Capital letters A-Z and some special chars

 Blue Letters on Overlay Special chars available by pressing SHIFT

 USER Mode OFF Lower case mode active

 Blue Letters on key faces Lower-case letters A-Z

 Red letters on overlay Special chars for un-shifted keys

 Green letters on Overlay Special chars available by pressing SHIFT

If the desired character is not available on the keyboard you can key it in using its decimal or
hexadecimal value by pressing SHIFT ENTER for the decimal, or press SHIFT ENTER, [H] if you want

to enter it in hex. Note that it is not possible to cancel this byte prompt. If you see the prompt, just
key in any non-zero character and delete it afterwards.

When a special char is also a printer or IL device control code it is shown on the overlay on the right
side of the key with its control code function name. If the lower case mode is not desired it can be

suspended using the function TGLC – which toggles its status ON/OFF upon each repeated execution.

AMC_OS/X Module - Revision “4M”

(c) Ángel M. Martin Page 17 of 53 July 2014

This functionality is borrowed from the ML ROM – also using the polling points technique although in a

simpler implementation.

While executing a prompting function, pressing the [ON] key will lengthen the prompt to enter more

digits. This can be used for arguments exceeding the standard prompt length, such as RCL 101
(shown as RCL 01) to RCL 111 (shown as RCL J), or as a handy shortcut for synthetic ones.

To enter RCL M for example: RCL [ON], the display shows “RCL _ _ _”, enter 117 and the function will
be executed or inserted in the current program (in PRGM mode).

The table below shows the correspondence between the extended arguments and the actual registers

used. Note that:

 In the range 102-111 the display is showing the conventions used for the LBL instructions, but

the actual registers are correct.

 In the range 112-127 the registers used are the status registers instead of memory data

registers. This is what we take advantage of to key in status registers as arguments.

 From 128 and up the instruction changes to indirect indexing. This is due to the way indirect

addresses are built by the OS; adding hex 0x80 to the register number. As a consequence of

this and the previous point, for registers 112 and up only the standard indirect addressing is

available to store and recall their contents.

The prompt lengthener is meant to be used with the following functions: STO, RCL, X<>, LBL, XEQ,
and GTO. It will however also be triggered during other prompts (like SF, CF, FS?, CAT) which

obviously have no practical application for it, and that will typically generate the NONEXISTENT error
message.

 Argument Shown: Argument Shown: Argument Shown:

 100 00 112 T 124 b

 101 01 113 Z 125 c

 102 A 114 Y 126 d

 103 B 115 X 127 e

 104 C 116 L 128 IND 00

 105 D 117 M 129 IND 01

 106 E 118 N 130 IND 02

 107 F 119 O 131 IND 03

 108 G 120 P 132 IND 04

 109 H 121 Q 133 IND 05

 110 I 122 |- 134 IND 06

 111 J 123 a 135 IND 07

AMC_OS/X Module - Revision “4M”

(c) Ángel M. Martin Page 18 of 53 July 2014

CATalog functions are notoriously complex and take up a significant amount of space – but if you’re

like me you’ll like to have good visibility into your machine’s configuration. Therefore you’d hopefully

agree with me that the usability enhancements they provide make them worthwhile the admission
price.

2.6.1. Buffer Catalog.

BFCAT Buffer CATalog Hot keys: R/S, SST, SHIFT, D, H

[D] Deletes Buffer In manual mode Asks Y/N?

[H] Decodes Header register In manual mode

This function is very close to my heart, both because it was a bear to put together and because the

final result is very useful and informative. It doesn’t require any input parameter, and runs
sequentially through all buffers present in the calculator, providing information with buffer id# and

size.

HP-41 buffers are an elusive construct that is mainly used for I/O purposes. Some modules reserve a

memory area right above the KA registers for their own use, not part of the data registers or program
memory either. The OS will recognize those buffers and allow them to exist and be managed by the

“owner” module – which is responsible to claim for it every time the calculator is switched on.

Each buffer has an id# number, ranging from 1 to 14. Only one buffer of a given id# can exist, thus

the maximum number present at a given time is 14 buffers – assuming such hoarding modules would
exit – which thankfully they don’t.

For instance, plug the OS/X module into any available port. Then type PI, SEED, followed by BFCAT

to see that a 2-register buffer now exists in the HP-41 I/O area – created by the SEED function.

 id#=5, buffer at address 194, size=2, properly allocated.

Suppose you also change the default word size to 12 bits, by typing: 12, WSIZE. This has the effect

of increasing the buffer size in one more register, thus repeating BFCAT will show:

 id#=5, buffer at address 194, size=3, properly allocated.

Say now that you also plug the 41Z module into a full port of your CL. Just doing that won’t create the

buffer, but switching the calculator OFF and ON will – or alternatively execute the -HP 41Z function.
After doing that execute BFCAT again, then immediately hit R/S to stop the listing of the buffers and

move your way up and down the list using SST and BST. You should also see the line for the 41Z
buffer, as follows:

 id#=8, buffer at address 197, size=12, properly allocated.

If the module is not present during the CALC_ON event (that’s to say it won’t re-brand the buffer id#)

the 41 OS will mark the buffer space as “reclaimable”, which will occur at the moment that PACKING

or PACK is performed. So it’s possible to have temporary “orphan” buffers, which will show a question

AMC_OS/X Module - Revision “4M”

(c) Ángel M. Martin Page 19 of 53 July 2014

mark next to the id# in the display. This is a rather strange occurrence, so most likely won’t be shown
– but it’s there just in case.

Perhaps the best example is the Time module, which uses a dedicated buffer to store the alarms data.

The table below lists the well-known buffers that can be found on the system:

Buffer id# Module / EPROM Reason

1 David Assembler MCODE Labels already existing

2 David Assembler MCODE Labels referred to

3 Eramco RSU-1B ASCII data pointers

4 Eramco RSU-1A Data File pointers

5 CCD Module, Advantage Seed, Word Size, Matrix Name

6 Extended IL (Skwid) Accessory ID of current device

7 Extended IL (Skwid) Printing column number & Width

8 41Z Module Complex Stack and Mode

9 SandMath, PowerCL Seed, Last Function data

10 Time Module Alarms Information

11 Plotter Module Data and Barcode parameters

12 IL-Development; CMT-200 IL Buffer and Monitoring

13 CMT-300; FORTH Module Status Info; FORTH Buffer

14 Advantage, SandMath INTEG & SOLVE scratch

15 Mainframe Key Assignments

The id# 15 is not really a buffer type, but reserved for the key assignment registers.

BFCAT has a few hot keys to perform the following actions in manual mode:

[R/S] stops the automated listing and toggles with the manual mode upon repeat pressings.

[D] for instant buffer deletion – there’s no way back, so handle with care!
[H] decodes the buffer header register. Its structure contains the buffer ID#, as well as

some other relevant information in the specific fields - all buffer dependent.
[V] Views the contents of the buffer, sequentially showing its registers in the display

[SHIFT] flags the listing to go backwards – both in manual and auto modes.
[SST]/[BST] moves the listing in manual mode, until the end/beginning is reached

[<-] Back Arrow to cancel out the process and return to the OS.

Like it’s the case with the standard Catalogues, the buffer listing in Auto mode will terminate

automatically when the last buffer (or first if running backwards) has been shown. In manual mode
the last/first entry will remain shown until you press BackArrow or R/S.

Should buffers not be present, the message ”NO BUFFERS” will be shown and the catalog will
terminate. Note also that the catalogue will be printed if in NORM/TRACE mode, producing a record of

all buffers present in the system.

AMC_OS/X Module - Revision “4M”

(c) Ángel M. Martin Page 20 of 53 July 2014

2.6.2. I/O Page Catalog.

Note that although these functions are not accessed using the system
extensions described before, given their system scope it only feels

appropriate to include them in this section of the manual.

PGCAT Page Catalog

VM Electronics Source: HEPAX Module

PGCAT Lists the first function of every ROM block (i.e. Page), starting with Page 3 in the 41 CX or

Page 5 in the other models (C/CV). The listing will be printed if a printer is connected and user flag 15
is enabled.

- Non-empty pages will show the first function in the FAT, or “NO FAT” if such is the case

- Empty pages will show the “NO ROM” message next to their number.

- Blank RAM pages will also show “NO FAT”, indicating their RAM-in-ROM character.

No input values are necessary. This function doesn’t have a “manual mode” (using [R/S]) but the
displaying sequence will be halted while any key (other than [R/S] or [ON]) is being depressed,

resuming its normal speed when it’s released again.

See below the printout outputs from both BFCAT and PGCAT using J-F Garnier’s PIL-Box and the

ILPER PC program, showing a nice traceability of the pressed keys:

AMC_OS/X Module - Revision “4M”

(c) Ángel M. Martin Page 21 of 53 July 2014

Adding a second bank to the OS/X Module provided a large amount of space for additional functions
to be included. The choice of functions added over previous incarnations was clearly meant to have a

comprehensive and self-contained function set that included some of the best examples ever written

for the HP-41 system. RAM editors are no doubt amongst these, and as such one is included in the
bank-switched version of the module.

RAMED

RAM Editor Uses GETKEY [KEYFNC] Håkan Thörngren

Editing RAM memory with RAMED.

Written by MCODE master Håkan Thörngren, this powerful RAM editor rivals with (and exceeds it in

several aspects) the ZENROM implementation. It was first published in PPCJ V13 N4 p26.-, you’re
encouraged to check his original contribution for a complete description of the functionality and

usage.

The starting address is taken from the X register in RUN mode (as decimal value between 0 and 999),

or from the program pointer in PRGM mode. The display shows two distinct fields, with the nybble &
byte section shown on the left side and the actual register content shown on the right – as a 7-digit

scrollable field controlled by the USER and PRGM keys – very much like the CX’s ASCII file editor ED.

Nybble D (the 13th within the register) is selected upon start-up, with the cursor centered in the

middle of the field and its value blinking on the display. At this point you can use the control
characters to move between both areas and within the fields, or the digit keys plus A-F to input the

nybble HEX values being edited. Scrolling includes a tone to signal the wrap-around condition within
the register, as the nybble being edited is updated in the address field on the left. A real tour-de-force

and a masterful implementation without any doubt.

The screens below show a couple of examples, editing the leftmost nybble of the Y register (address:

D002) and the rightmost digit of the X register (address 0003). The screenshots don’t capture its
magic, you really need to use it to appreciate its simple and powerful functionality.

The control keys for RAMED are as follows:

[USER]: moves down to the previous nybble or position within the field

[PRGM]: moves up to the next nybble or position within the field
[+]: moves up to the next register

[-]: moves down to the previous register

[.]: the Radix key moves between both fields, used to change the register address

[1]-[9],[A]-[F] the nybble value being edited

[<-] back-arrow cancels out and exits the editing
[ON]: turns the calculator OFF

A few last remarks are in order:

AMC_OS/X Module - Revision “4M”

(c) Ángel M. Martin Page 22 of 53 July 2014

 RAMED is a very powerful tool: the contents of all memory can be edited, including the

Status Registers, I/O Buffers, KA registers, and of course X-Memory files (see memory map
below). Be very careful not to alter the contents of those system registers inappropriately to

avoid MEMORY LOST or system crashes.

 RAMED uses a key-detection technique more power demanding than the Partial Key

Sequence, thus will drain on the battery life if used extensively. Do not leave it run idle for a

prolonged time.

 RAMED is completely located in bank-2, with only the function name and a small code

snippet in the first bank to transfer the execution. I have only minimally altered the source
code to take advantage of the CX- and Library#4 routines.

 RAMED is also included in the RAMPAGE module, named RAMEDIT there – because the

ZENROM function RAMED is also included in the module.

(*) Correct addresses should be 201-2EF and 301-3EF for the first and second EM modules.

AMC_OS/X Module - Revision “4M”

(c) Ángel M. Martin Page 23 of 53 July 2014

Even if these functions aren’t strictly new, they have been improved to make them more usable and
work in combination with one another.

4.1. The system as a whole.

CHKSYS Checks ROMS plugged in Ángel Martin

ROMLST Lists ROMS plugged in Ángel Martin

OSREV Shows OS Revisions Under PGSIG Nelson F. Crowle

 CHKSYS is a very useful routine to check for incompatibilities in the system configuration, as

may occur when two ROMs with the same XROM id# are plugged. The function will scan all
the ROM blocks looking for repeat values, showing a confirmation or a warning message

depending on the case.

It will also report all and every offending id# in case of conflicts, as many as there may exist.
Use it as frequently as you need, it’s the best way to ensure that things are fine after plugging

any of the many modules available on the CL library – a match made in heaven.

 or

 plus:

 OSREV is now “hidden” under PGSIG, used with any argument larger than 15 (the highest

page number on the I/O Bus). OSREV shows the revisions for the three first pages, containing
the core Operating System code (in ROMS 1/2/3) / which for an unmodified HP-41CX are as

follows:

 ROMLST has somewhat of a similar purpose: it will produce a list in Alpha with the XROM

id#’s of the plugged modules on the system, so you can check for dups. Because of the 24-

char limit in the Alpha string, only the last 8 modules will be shown – sufficient in the majority
of cases, specially considering that pages 3, 4, and 5 are most likely unique because of being

dedicated to the X-Functions, the Library#4, and the Time Module.

 Example: winning Lotto combination or ROM list?

Note that due to the limited number of FAT entries available, on the OS/X Module this function

is “hidden” under the section header “-OS/X BANK2”. You can use its XROM id# to assign it,
execute it or to insert it as a program line: XROM 05,36

AMC_OS/X Module - Revision “4M”

(c) Ángel M. Martin Page 24 of 53 July 2014

4.2 The Pages within.

SUMPG _ Sums Page checksum Page# in prompt/X George Ioannou

PG? _ Page vital constants Page# in prompt/X W&W GmbH

PGSIG _ _ Page Signature Page# in prompt Ángel Martin

ROM? _ _ Rom vital constants XROM id# in X W&W GmbH

CHKROM _ _ Verifies ROM checksum XROM id# in prompt HP Co.

READPG Reads page from HP-IL Page# and FileName R. del Tondo (?)

WRTPG Writes page to HP-IL Page# and FileName R. del Tondo (?)

 PG? returns miscellaneous information corresponding to the page number input in the prompt

in RUN mode, or in X as decimal value if run in a program. The information is as follows:
o Header function name in ALPHA, and:

o [XROM id#] ; [# of functions] in X. (in integer and fractional parts)

Note that when used on the OS/X page it’ll return the vital constants for bank-2 (where its

code resides), which strangely enough are 05,10 in X (as it was explained at the beginning of
the manual)

Considerable trickery has been used modifying this function to be prompting – despite being

located in a secondary bank. This makes for a more consistent and usable user interface,

common with other page functions. If there’s nothing plugged in the page the message “NO
ROM” will be shown.

,

Input prompt Page is not used (Free).

 ROM? is also a prompting function. It returns the ROM vital constants for the XROM id#

value input in the prompt, as follows:

o Page# where is plugged in X, and
o number of functions in Y.

The ROM header (first function name) is also displayed (but not saved in Alpha). Note that

this is very similar to PG?, only that the input is not the page number but the XROM id#

instead. If the ROM is not found the display will simply show “NO” – indicating that this
functions doubles as a test function as well, and therefore it’ll skip one line in a program in

this case.

 PGSIG will retrieve the signature string of the ROM plugged in the page entered at the

prompt (in decimal format) – or in the X register if used in a program. If no ROM is plugged

it’ll return four “@” characters.

input prompt represents a “blank” signature value.

Entering any value greater than 15 will trigger the OSREV function instead, as described

before.

AMC_OS/X Module - Revision “4M”

(c) Ángel M. Martin Page 25 of 53 July 2014

 CHKROM will check the ROM which XROM id# is input at the prompt (or in X when run in

PRGM mode) for the correct checksum byte value. The display shows information message
while the test takes place, followed by a confirmation or a warning depending on the case.

,

Incidentally it’s more than likely that if you run CHKROM on the OS/X itself the result is
“BAD”. This is not because of an error; I just usually don’t bother to update the checksum

values, as the code is updated very frequently.

 SUMPG prompts for the page number in Hex in a fancy manner, with alternating texts as

shown below (that alone covered its admission price). Its mission is to calculate the Checksum
byte and to write it in the last word of the page – and that it’ll do very nicely.

 READPG and WRTPG are the mandatory read/write entire blocks (a.k.a. pages) to the HP-IL

disk drive. Very much equivalent to the HEPAX’ READROM and WRTROM, where the

destination page is expected to be in X. It works on any page, RAM or ROM, and OS
included. Note: for bank-switched modules only the first bank is copied!

Their code is entirely contained in the Library#4, so this is another example of the “free-

riders” only needing the FAT entry and the calling stub footprint. They are taken from the

CCD OS/X, thus I attributed authorship to R. del Tondo – which to this date is unconfirmed.

Note that the file formats on disk will be compatible with the HEPAX functions that perform
the same tasks, but not so with equivalent functions from the ML ROM, Eramco MLDL or other

EPROMS from the Dutch PPC Chapters. There are thus two “standards” that cannot be

intermixed.

AMC_OS/X Module - Revision “4M”

(c) Ángel M. Martin Page 26 of 53 July 2014

The OS/X Module has a small set of ALPHA functions, chosen for being in the original CCD Module –
also complemented by a few others of general applicability. For a comprehensive list of Alpha and

Display related functions you should use the ALPHA_ROM (or the POWER_CL), which contains pretty

much all you would ever need.

ABSP Swap Alpha and Regs. 1st. RG# in prompt Ken Emery (original)

ARCLI Append Integer part Takes absolute value W&W GmbH

ASWAP Alpha Swap A,B in ALPHA Ángel Martin

CLA- Clear chrs after blank Text string in ALPHA W&W GmbH

DTOA Display to Alpha Opposite to AVIEW Ángel Martin

DTST Display Test Source: PPCJ V18 N8 p14 Chris L. Dennis

PMTA _ Alpha Prompt Prompts for ALPHA text W&W GmbH

TGLC Toggle Lower Case Toggles the LC mode flag Ángel Martin

MSGE Displays OS Message Msg. id# in prompt Nelson F. Crowle

 ARCLI appends the integer part of the number in X to ALPHA. Perfect to append indexes and

counter values without having to change the display settings (FIX 0, CF 29). Very similar to
AIP in the Advantage Pac, or AINT in the SandMath and Alpha ROM.

 ABSP removes the rightmost character from the ALPHA register. It is equivalent to switching

ALPHA on, pressing the back arrow, and switching it off again.

 ASWAP swaps the strings at the left and right of the comma character. Very handy for X-

Functions data input. Does nothing if comma is not there. For example:

 CLA- deletes all characters in ALPHA from the right, until it finds a blank space. The blank

space is not erased. If the ALPHA register is empty or contains only blank spaces or letters,
the whole contents will be erased.

 DTOA captures the display content and writes it into ALPHA. This is an elusive concept, as

there are no standard ways to just write text in the display not using ALPHA or other RAM
registers – but it’s used frequently in MCODE to transfer the display contents to ALPHA.

 DTST Simultaneously lights up all LCD segments and indicators of the calculator display, pre-

ceded by all the comma characters (which BTW will be totally unnoticed if your CL is running

at 50x Turbo!). Use it to check and diagnose whether your display is fully functional. No input
parameters are required.

, and

AMC_OS/X Module - Revision “4M”

(c) Ángel M. Martin Page 27 of 53 July 2014

 PMTA is one of the trademark functions of the original CCD Module. It prompts for ALPHA

text, using the existing content in ALPHA as prompt cue – or adding ‘TEXT: “ if ALPHA is
blank. Like the mainframe function PROMPT, it stops the program execution when used in a

program. But let’s read the original description from the CCD Manual:

Description.- The function PMTA gives the possibility of a comfortable ALPHA input. It

consists of two parts:- If executed in a running program, the program ruin will be interrupted
and the program pointer will be set back by one program line to the function PMTA. Now the

OX/S Module input flag (bit 5 of byte 4 in register c(13) is set, the ALPHA register is switched
on and a underscore sign is placed into the display. Using R/S and ON the function can be

terminated, without the loss of the original ALPHA contents.

If a different key is pressed, all of the previous contents of the ALPHA register are erased,

which has no influence on the shown indication. If the depressed key is a letter key, the
ALPHA register will be overwritten with the corresponding letter and will be appended to the

display. After pressing the R/S key, PMTA is executed for the second time. The function
recognizes this by the fact that the input flag is still set. The flag is now cleared, ALPHA is

turned off and flag 23 is ser if there was any input into ALPHA.

Further hints.- If during execution of PMTA the ALPHA register is empty, the string “TEXT: “ is

shown. Like all prompt functions in the module, PMTA executes BST once during the
execution of the program. If BST is executed at the end of a a large program it will take quite

a long time – therefore it is advisable to put all prompt functions at the beginning of the

program (possibly in a subroutine), or shortly behind a global label.

 TGLC toggles the status of the lower-case mode flag (bit 16 in status register c). Use it when

you want the lower-case to be disabled during ALPHA input, even in USER mode. Note that

the OS/X Module intentionally uses the reversed convention for activation of the lower case

mode: USER must be ON, not OFF as it is the case in the original CCD Module.

Remember that most of the lower case characters will be shown as starburst in the HP-41
display, but will be properly interpreted by the printers or other HP-IL peripherals.

 MSGE is a nice little routine that piggybacks on the OS routine [MSGE]. Use it to display

standard OS messages - totally or partially – by appropriately choosing the message index.

This provides an obvious byte count reduction in a FOCAL program. The table below shows
the arguments for the complete messages.

MSGE# TEXT

10 A:

11 A:K

14 A,Z.

24 ALPHA DATA

34 DATA ERROR

45 MEMORY LOST

56 NONEXISTENT

59 NULL

67 PRIVATE

79 OUT OF RANGE

86 PACKING

95 TRY AGAIN

98 YES

100 NO

103 RAM

106 ROM

AMC_OS/X Module - Revision “4M”

(c) Ángel M. Martin Page 28 of 53 July 2014

This section includes several of the Binary/Hex functions from the original CCD – but not the
complete set. Here again a compromise had to be made in order to make it all fit in a single FAT.

Besides de CCD, the DIGITPAC is another module that has a more complete set of Binary/Hex

functions, including the HEX, Oct, Bin conversions and viewers from the HP-IL Devel Module and
Advantage Pac.

6.1 The Hexadecimal Number System

The base of this number system is 16(d). The numbers 0-9 as well as

the letters A to F are used to represent 11(d) to 15(d). The carry over
to the next place occurs at 16(d). The table below shows the

correspondence between binary, decimal and hexadecimal numbers
up to 15(d):

As you can see on the table, Hex numbers are the natural choice to
represent four binary digits (4 bits); therefore the hexadecimal

number system uses the 4 bits of a nibble in the full value range. Each
nibble can represent values from bin 0000 to 1111, of in hex from 0 to

F. This number system is often used in computer science.

Representation of negative Numbers

When using a limited count of digits m to represent numbers, the

value range to the numbers to be represented n is 0 < n < 2^m,
meaning that the greatest number will be 2^m – 1. Note that no

negative numbers are included in this system of notation. To remove this deficiency, the concept of
“complement” is introduced.

The Complement (from a reference K)

The K-complement of a number x is defined as the difference from K of that number: Com(x) = K–x
for which k is fixed by the chosen complement. Since in the binary number system the usual values

of K are 2^m, and (2^m – 1), we usually speak of “one’s complement” or the “two’s complement” –
representing the difference from either the greatest number represented or the one after it. In

general, for any base system “b” there will be a “b” and a “b-1” complement – like the 9’s and 10’s

complement in the decimal system where b=10.

Distribution of ranges of values.

If there seems no reason yet for the existence of complement notation, remember that to this point
we haven’t dealt with negative numbers. We shall include these by adopting an arbitrary distribution

of value ranges in our number systems. For instance in the binary system, we’ll define a negative

number as one which most significant (leftmost) bit is set (has a value of 1). Arranging number
distributions and using complements change the ranges of values as follows:

 No Complement 0 < x <= (b^m – 1)

 b-Complement - b^(m-1) <= x <= b^(m-1) -1

(b-1) Complement - b^(m-1) -1 <= x <= b^(m-1) -1

Basically in the signed modes (with complement) we divide the original total value range b^m-1 in

two half sections, allocating one of them for negative numbers and the left over for positive.

Hex Binary Decimal

 0 0000 0

1 0001 1

2 0010 2

3 0011 3

4 0100 4

5 0101 5

6 0110 6

7 0111 7

8 1000 8

9 1001 9

A 1010 10

B 1011 11

C 1100 12

D 1101 13

E 1110 14

F 1111 15

AMC_OS/X Module - Revision “4M”

(c) Ángel M. Martin Page 29 of 53 July 2014

Complement (Signed) Modes.

The transformation of decimal numbers represented in the binary system (and vice-versa) varies

with the signed mode used. The three modes are:

- Unsigned mode (no complement, only positive numbers)

- 1’s complement mode
- 2’s complement mode

The 1’s Complement of a number is calculated by subtracting this number from the greatest
representable number in the chosen word size (number of bits). For instance, say the word size is 5

bits – then the 1’s complement of a number “a” is (11111 – a). The computer simply inverts all bits of
the original number, i.e. executes the logical function “NOT”. Through this segmentation of the initial

value range (arbitrary but specific), all negative numbers have their highmost bit set, which plays the
role of the minus sign. In the q’s complement mode the number of positive and negative numbers

represented are the same, i.e. even zero has two possible representations: +0 and –0, which in binary

would be 0000 and 1111 (always assuming a word size of 5 bits).

The 2’s Complement of a number is calculated by adding one to its 1’s Complement. Using the
same example of word size 5 bits, the 2’s Complement of a number “a” would be (11111 – a) + 1,

The 2’s complement of bin 10001 is the number bin 01111. Notice how also in this segmentation the

leftmost bit is set for all negative numbers, and therefore takes over the role of the minus sign. In the
2’s complement mode there is one more negative number than in the positive number range, since

zero only has the representation +0

The Unsigned Mode (no complement). Since the Complement mode employs one bit as the
negative sign, the range of values for a word size of 8 bits in the 1’s complement is from –127 (d) to

+127(d), and in the 2’s complement from –128(d) to +127(d). Note that in both cases those are 256

values. For cases when only the positive number range is needed, the precedence sign bit is not
necessary (unsigned mode) and the value range is used for all cases from 0 to 255(d) - assuming the

same word size of 8 bits.

In the table below you can see the correspondence between the three sign modes for decimal

numbers 0-15 represented in binary, using a four-bit word size:

Dec Hex Binary Unsigned 1’s Compl. 2’s Compl.

0 0 0000 0 0 0

1 1 0001 1 1 1

2 2 0010 2 2 2

3 3 0011 3 3 3

4 4 0100 4 4 4

5 5 0101 5 5 5

6 6 0110 6 6 6

7 7 0111 7 7 7

8 8 1000 8 -7 -8

9 9 1001 9 -6 -7

10 A 1010 10 -5 -6

11 B 1011 11 -4 -5

12 C 1100 12 -3 -4

13 D 1101 13 -2 -3

14 E 1110 14 -1 -2

15 F 1111 15 -0 -1

AMC_OS/X Module - Revision “4M”

(c) Ángel M. Martin Page 30 of 53 July 2014

General Conventions used for Hex Functions

All Hex functions in the OS/X Module follow the same conventions, as follows:

1. The current word size is defined with the function WSIZE. Its value is stored in a dedicated

Buffer (with id#-5), from where it’s read in every required instance. The default setup (and the
one after a MEMORY LOST condition) is word size = 8

2. The current sign mode. The decimal and the internal hex representations are linked by the

complement, or sign mode employed. Before executing a certain arithmetic function the displays

always shows the number in decimal – after having been converted to binary using the signed
mode and back to decimal again. The default setup is unsigned mode.

3. The functions only use the integer part of the number in the X register.

6.2 Functions to manage Word size and Signed Mode.

WSIZE _ _ Sets word size Value in Prompt W&W GmbH

WSIZE? Recalls current word size Wsize to X-reg Sebastian Toelg

CMP _ Sets sign mode 0,1,2 in prompt W&W GmbH

The word size is set using function WSIZE. It sets the word size “bb” used by all hex functions in

the OS/X Module. The allowed range is 1 to 32 bits, and its value is stored in the dedicated CCD
buffer id#5. A value of zero clears the word size input in the I/O buffer, and sets the word size to its

default value of 8 bits

WSIZE is now a prompting function; simply input the value using the numeric keys or the 2 top

keys as shortcut for 0-9. When used in a program, the function’s argument will be taken from the X
register instead.

The argument (number in X) may be negative as well as contain digits after the decimal point, but
only the absolute integer value is used. “DATA ERROR” will be shown when numbers outside the

range –32 to 32 are used. “NONEXISTENT” will be displayed when numbers over 1,000 are used.

The selected word size has no influence on the contents of the stack or memory data registers.
Sometimes when executing WSIZE, the error message “NO ROOM” may occur, indicating there are

no available memory registers to allocate the I/O buffer. In these cases more memory space needs
to be made available before selecting the word size.

To find out the current word size set you can use function WSIZE?, It returns the value to the X-
register, lifting the stack. The value is read from the I/O buffer, or defaulted to 8 if no buffer exists.

The signed mode is set using function CMP – which in the OS/X Module is also a prompting function,
with valid arguments being 0, 1, and 2 only. Any other input will simply be ignored: no error

message will shown, and the prompt will be maintained – which is a more efficient way to handle
the error conditions. When used in a program the argument will be taken from the program line

following CMP - a technique called “non-merged” functions, extensively used in other advanced

modules like the HEPAX, SandMath, etc.

AMC_OS/X Module - Revision “4M”

(c) Ángel M. Martin Page 31 of 53 July 2014

Note that CMP in the OS/X Module consolidates three functions from the original CCD Module into a
single one (UNS, 1CMP, 2CMP). This has the advantage of freeing up two FAT entries, the most

limiting factor in this case where ROM space is not at a premium anymore thanks to the bank-
switching design. Note also that the current sign mode information is not saved in the CCD I/O

Buffer, but instead it is stored in the scratch area of status register c(13). More about this later in the

manual.

Selecting a sign mode replaces the previous one if set. The contents of the X register are put in the
LASTX register and then replaced by the new representation of the hex number, i.e. the number in X

is first converted to binary using the old sign mode and after switching to the new mode is converted

back into a decimal number.

If the number in X cannot be represented in the new mode, (i.e. if it lays outside of the value range
defined by the current word size) the error message “DATA ERROR” will occur and the mode will

NOT be changed.

6.3 Input and Output Hex functions.

PMTH Hex Prompt Input in prompt W&W GmbH

ARCLH ARCL X in Hex Appends value in X W&W GmbH

VIEWH Views Hex equivalent Shows Hex value W&W GmbH

XTOAH Appends hex-characters Appends hex bytes W&W Gmbh

The function PMTH allows for the input if hex numbers. It writes the equivalent decimal value into
the X register, and the stack is lifted before the value is copied to X. The number of digits ion the

prompt is dependent on the current word size – taking one prompt per each 4-bits.

The function rejects input values too large for the current word size. Only keys 0-9 and A-F are

active. The function can be terminated by pressing the back arrow or ON.

In program mode, text can be shown during the execution of PMTH to specify the data wanted for

the prompt. For example, with “ADR” in ALPHA, and a current word size of 16, executing PMTH in a
program will prompt for:

 The function VIEWH shows (views) the hexadecimal equivalent of the number in X – in
accordance to the current sign mode and word size. The value must lie within the allowed

range or otherwise a “DATA ERROR” message will be put up. Alpha data in X generates the
“ALPHA DATA” error condition. For numbers with a hex representation with fewer digits than

the current word size is set for, leading zeros are placed in the most significant digits.

 ARCLH is the ALPHA counterpart to the same functionality: it appends the hex equivalent of

the number in the X register to the contents of the ALPHA register. The same considerations
as above apply as to the allowed number range and error conditions.

 XTOAH appends one or more characters with the value of the X register converted to Hex to

the contents of the ALPHA register. The value of the characters to be appended depends on

the current word size and sign mode. It is therefore very similar to XTOA but in hex mode.

Example: set the word size to 10, input 340 in X and execute XTOAH – Since 340(d) =
154(h), this will append two characters to ALPHA, byte 01 and byte 54

AMC_OS/X Module - Revision “4M”

(c) Ángel M. Martin Page 32 of 53 July 2014

6.4 Random numbers revisited.

Not strictly related to the topic but included in this section nonetheless – as a surrogate for a

dedicated Math coverage. The random number functions also use the CCD Buffer to store an initial

seed, from which all random numbers are generated using the function RNDM.

 SEED furnishes an initial value for the computation of a random number using the function

RNDM. The seed value is stored in the I/O buffer of the CCD Module. Only the fractional part
of the X register is used for the starting value.

Note that with CLX, SEED you can clear the random number register from the buffer, thus freeing
one more register for program storage. Furthermore, if the buffer only contains the seed information

it will be removed altogether from the RAM I/O area. As a remainder, the buffer can also have the
current word size, as well as possibly the current Matrix file name if you’re also using array or Matrix

functions from the CCD Module, the Advantage Pac or the SandMatrix Module.

 RNDM calculates the next random number, and replaces the seed with itself to be used in

the next execution of the function. The random number has a value between 0 and 1. If there
is not enough memory for the I/O buffer the message “NO ROOM” is displayed.

Note that the initial choice of seed is determinant of the sequence of subsequent random values, as

they all follow the same expression:

RNDM = FRC(SEED * 9,821 + 0.211327)

So it all depends on the initial seed, so to speak. In this regard this implementation falls short of a

true random character, which would require another system like the TIME module to pick up the
beginning of the sequence in a truly random way – based on the current date and time, as an

example.

Examples:- with a starting value of 0.1, the following random numbers are generated:

0.1, SEED

RNDM -> 0.311327

RNDM -> 0.753794
RNDM -> 0.222201

RNDM -> 0.447348 etc.

In case you wonder:- Word size format in the CCD I/O Buffer.

The word size format is stored in any of the three registers that buffer#5 can possibly have,

regardless of which one – depending on when it’s set and what was already configured. The module
recognizes it by its first two nibbles, which are “F0” – as if it were a normal KA register. Then the

actual word size is stored both in binary and hex formats; using nibbles 3 to 8 for the binary form
and the S&X field for the hex equivalent.

The examples in the table below should clarify:

Word Size Buffer Register

2 F0.000000003.002

4 F0.00000000F.004

8 F0.0000000FF.008

16 F0.00000FFFF.010

32 F0.0FFFFFFFF.020

AMC_OS/X Module - Revision “4M”

(c) Ángel M. Martin Page 33 of 53 July 2014

7.1. Main- and X-Memory Utilities.

The table below shows the advanced Main- and X-Memory utilities, complementing and enhancing
the standard capabilities of the native system. Usual suspects, you’ll surely recognize the names.

CLEM Clear Extended Memory No inputs Håkan Thörngren

RENMFL Rename File OLDName , NEWName Ángel Martin

RETPFL Retype File NAME in Alpha, type in X Ángel Martin

READXM Read X-Mem from Disk FNAME in Alpha Skwid

WRITXM Write X-Mem to Disk Disk FNAME in Alpha Skwid

PEEKR Reads register content Absolute address in X W&W GmbH

POKER Writes register content Adr. In Y, NNN in X W&W GmbH

PC<>RTN Exchanges PC and RTN Values exchanged W&W GmbH

VRG _ _ _ Decodes Register RG# address in X Fritz Ferwerda

The following short descriptions summarize the most important points for each function:

 CLEM is an expeditious Extended Memory eraser – all files will be irreversibly gone in the

blink of an eye, just by deleting the content of the X-Mem main status register, at address

0x040. In RUN mode the function will show the message “DIR EMPTY” for confirmation.

 RENMFL is a handy utility that renames an X-Mem file. The syntax is the same used by

RENAME for the HPIL Disks, that is the string “OLDNAME,NEWNAME” must be in ALPHA. The

function will check that the OLDNAME file exists (“FL NOT FOUND” condition otherwise), and
that there isn’t any other filed named NEWNAME already (“DUP FL” error message).

 RETPFL is a bit of a hacker trick: it modifies the file type information for the file named in

ALPHA, changing it to the value in X. This is actually useful in a number of circumstances, like

sorting a Matrix file using SORTFL (which only works for DATA files): just change the type to
“2”, sort its contents with SORTFL, and change it back to “4”. You can use any value from 1

to 14 in X, other values will cause “FL TYPE ERR” conditions

Valid file types are shown in the table below, note the five custom extensions supported by

the AMC_OS/X module:

File PRGM DATA ASCII Matrix Buffer Keys “T” “Z” “Y” “X” “H”

Type 1 2 3 4 5 6 7 8 9 10 11

 WRTXM and READXM are used to write/read the complete contents of the X-Memory

to/from a disk drive over HPIL. The file name must be in ALPHA. These functions exercise the

full capability of the system, and provide a nice permanent backup for your XMEM files.

Note that only the non-zero content will be copied, thus the resulting disk file size will not be
larger than required - in other words, it won’t always copy all XMEM even if zero, like other

FOCAL implementations of the same functionality can only do. These functions are taken from

the Extended-IL ROM, written by Ken Emery’s alter ego Skwid.

AMC_OS/X Module - Revision “4M”

(c) Ángel M. Martin Page 34 of 53 July 2014

 PC<>RTN is a program-pointer manipulation function. Use it to exchange it with the (last)

subroutine return address. To be used with a solid understanding of their capabilities (and
possible consequences).

 VRG reads and decodes in ALPHA the contents of the register which absolute address is in X

(in program mode) or given at the prompt (in RUN mode). No stack drop is performed.
Register address is checked for existence. VRG can be thought as the combination of PEEKR

and DCD together in the same function.

 Last in this section are well known amongst all HP41 users, PEEKR and POKER. PEEKR can

be compared to the RCL function, however it is now possible to read the contents of any

register, and without normalization, into the X register. This removed one of the main

problems of synthetic programming. The address of the register to be read is entered as
absolute address in to X. As when using RCL IND X, the stack registers are lifted. PEEKR

works for every existing register address from zero to 1,023. If we want to use relative data
register numbers with PEEKR, the absolute address of the data registers must be first

obtained.

 POKER writes over the absolute register, which address is specified in the Y register, with the

contents of the X register. POKER works for the entire existing register range of the

calculator. The stack registers remain unchanged, as long as they are not specified by the

absolute address in Y. Since POKER can change any register, this function should only be
employed if the calculator structure is well understood. Otherwise it may result in unwanted

changes in programs, data registers, status registers, etc. or even a MEMORY LOST condition.

41CL Example: Creating second sets of Main and Extended Memory.

A nice utilization of these functions on the 41CL are the examples shown below to create backups of
your complete Main memory and Extended memory sets – located in RAM block 0x801 (that is,

above the standard calculator RAM space located at 0x800).

Because PEEKR and POKER accept input addresses higher than the standard calculator range,

they’re well suited for the task. Basically all we need to do is copy the contents of the
Main/Extended memory from its current addresses (refer to figure in page 23) to addresses located

1k above them. In fact, one can have an alternate set of memory and “swap” between both as
needed, duplicating so the calculator’s on-line capacity. An additional benefit is that the secondary
set will not be affected in case of a MEMORY LOST, thus you can use it as a safety backup as well.

Main memory is trickier than extended in that the status registers should also be included in the

backup to ensure a properly configured FOCAL chain and memory configuration. These must
include register 13(c), and ideally also 10(+), 14(d) & 15(e) for compatible flags and key

assignments definition (together with the KA registers in the I/O area).

The program below copies the main memory to the higher location for a backup, or to prepare the

destination for successive main memory swapping (needs to “prime the pump” to make sure the
second set is compatible with the OS).

Note: you could also do the initial step copying the complete 4k block using YMCPY, with the
following string in ALPHA: “800>801”. This would be faster than MMCOPY but will not discriminate
Main Memory from Extended one, so both will be backed up.

AMC_OS/X Module - Revision “4M”

(c) Ángel M. Martin Page 35 of 53 July 2014

And below are the programs to swap the sets of Main and Extended memory at your convenience,

MMSWAP and XMSWAP respectively:

Stating the obvious, MMCOPY cannot be run from main memory! – or you’ll get nice pyrotechnics

and a guaranteed ML event. Make sure you run it from ROM (HEPAX or similar), or even from X-
Memory if you are up to those tricks.

AMC_OS/X Module - Revision “4M”

(c) Ángel M. Martin Page 36 of 53 July 2014

7.2. Buffer Utilities

Fascinating things these Buffers, so challenging and elusive they are that prompted the development

of the BUFFERLAND Module. Some of its functions are incorporated in here as well, as follows:

B? Buffer Existence Buffer id# in X W&W GmbH

CLB Deletes Buffer Buffer id# in X W&W GmbH

BFCAT Buffer Catalog Enumerates all buffers Angel Martin

GETBF Gets Buffer from file FileName in Alpha, id in X Håkan Thörngren

SAVEBF Save Buffer to File FileName in Alpha, id in X Håkan Thörngren

Not described here is the “queen” buffer function, BFCAT – which was included in the “CATALOGS”
section covered before. A quick summary recap on “buffer theory” will help understand this section

better:-

1. Buffers reside in the I/O area of RAM, which starts at address 0x0C0 and extends up until the

.END. register is found. Typically they are located right above the Key Assignments registers,
the only exception being buffer-14, used by the Advantage Pac to hold the SOLVE and INTEG

data (expected to be in fixed addresses by the code). Note that this implies that the actual
location of a buffer will be dynamically changed when Key assignments are made or removed;

when timer alarms are set or run, and possibly also when other buffers are removed - either by

the OS housekeeping tasks or using the buffer functions.

2. Each buffer has a header register (at the bottom) that holds its control data. The structure of

the header varies slightly for each buffer, but all must have the buffer type (a digit between 1
and E) repeated twice in nybbles 13 and 12, as well as the buffer size in nybbles 11-10

(maximum 0xFF = 255 registers). The rest are buffer-dependent; for example the 41Z buffer
holds the data format (RECT or POLAR) in nybble 9, and the LastFunction id# in nibbles 5-3.

The HP-IL Devel buffer uses nybbles 9-7 to store the pointer value, and nybble 3 to hold the

pointer increment type (MAN or AUTO).

T T S Z A D R

13 12 11 10 9 8 7 6 5 4 3 2 1 0

3. Some buffers write the initial address location in the [S&X] field (nybbles 2-0) but this is of
relative use at best, since the buffer can get re-allocated as mentioned above. In fact, BFCAT

uses that field to record the distance to the previous buffer in the I/O area, necessary to keep

tabs with the RAM structure in SST/BST operation mode.

4. When the calculator awakens from Deep Sleep the OS erases nybble 13 from all buffer headers

found. The execution is transferred to the Polling Points of those modules present, which
should re-write the buffer type in that nybble for those buffers directly under their

responsibility. At the end of this process (when all Modules have done their stuff) the OS
performs a packing of the I/O area, deleting all buffers not preserved” – i.e. with nybble 14 still

holding zero.

5. Under some rare circumstances a given buffer can exist in memory as a “left-over” not linked
to any module (i.e. nybble 13 in the Header register is cleared). The OS upon the next

PACKING operation will reclaim these orphan buffers, so their life span is very short – get what
you need from it before it’s gone! Note that to denote this contingency, BFCAT will add a

question mark to the buffer id# in the display.

For example, see the screen below showing an “orphan” buffer id#5 on V41:

AMC_OS/X Module - Revision “4M”

(c) Ángel M. Martin Page 37 of 53 July 2014

With these preambles made let’s delve into the description of buffer functions. The following general

remarks and individual comments apply:-

When the function operates on a given buffer its id# is expected to be in the X register. This is the
case for B? and CLB. The X-MEM Save/Get functions SAVEBF and GETBF also expect the File

Name in Alpha.

B? will check for the existence of a buffer with id# in the X register. When executed in RUN mode

the result will be YES/NO shown in the display – and if run in a program it’ll follow the “do if true”
rule, skipping the next program line if the buffer is not present in the system.

CLB will remove the buffer with id# in X. It works simply by clearing the nybble 14 in the buffer

header register, and then calling the OS routine [PKIOAS] to reclaim the registers previously used

by it – so no “uncommitted” buffers are left behind.

SAVEBF and GETBF are used for saving and Getting buffers in/from Extended memory. They

follow the same convention used for other file types, with the buffer id# in X and the FileName in

Alpha. Error handling includes checking for duplicate buffer (“DUP BF”), buffer existence (“NO
BUF”), as well as previous File existence (“DUP FL”).

Note that while it is possible to have multiple files with different (or the same) contents of one

specific buffer id#, only one buffer id# can exists in the I/O RAM area at a time.

GETBF will check for available memory, showing “NO ROOM” when there isn’t enough room in

main RAM to proceed.

These functions are new versions of those in the CCD Module -
using routines in the CX OS code and a novel design with the

same functionality but shorter than the original ones , and
possibly a tad faster in execution.

Many other functions are available in the RAMPAGE and POWERCL

modules for buffer management - you’re encouraged to check

those as well if you want to create, resize, retype buffers, or
simply view buffer contents. The list also includes Data registers

and stack exchange with buffers, and much more!

b3 B3 Header

b2 B2 Header

b1 B1 Header

KA regs

0C0

B3

B2

B1

RAM

AMC_OS/X Module - Revision “4M”

(c) Ángel M. Martin Page 38 of 53 July 2014

7.3. Key Assignment Utilities

The table below shows the Key Assignments related functions. Typically no inputs are required

(no need to identify the “buffer type” in this case), with a few of exceptions:

ASG _ Multi-byte ASN Supports synthetics Frits Ferwerda

GETKA Gets KA from File FileName in Alpha Håkan Thörngren

LKAX Turns Local KA On/Off Zero/Non-Zero in X Gordon Pegue

MRGKA Merge KA to File FileName in Alpha Håkan Thörngren

SAVEKA Save KA to File FileNAme in Alpha Håkan Thörngren

The diagram below shows that each KA register can hold up to two key assignments, structured as
two nybbles for the key code and four for the function id#. It also shows that they always have 0xF0

in nybbles 13 and 12 – which explains why the value 15 is not available as buffer id#.

F 0 C O D E K Y C O D E K Y

13 12 11 10 9 8 7 6 5 4 3 2 1 0

 ASG is another example of first-class MCODE programming: imagine being able to directly

input multi-byte functions (even with synthetics support) into the ASN prompt, so to assign

“LBL IND e”, or “RCL M” to a key - not using key codes or byte tables? Well no need to
imagine it, just use ASG instead. This function is taken from the MLROM, and it resides

completely in the Page#4 Library, with only the FAT entry in the OS/X calling it. You’re
encouraged to refer to the MLROM documentation for further details. Note that ASG turns on

the ALPHA mode automatically upon execution, so there’s no need to press it twice – this is

an improvement over the standard HP-41 OS behavior.

 Saving and getting KA in/from Extended Memory with SAVEKA, GETKA and MRGKA also
expects the FileName in Alpha. GETKA will completely replace the existing key assignments

with those contained in the file, whilst MRGKA will merge them – respecting the unused keys
so only the overlapping ones will be replaced. Same error handing is active to avoid file

duplication or overwrites. Like their Buffer counterparts they will check for available memory,

showing “NO ROOM” when there isn’t enough for the retrieval.

These functions are new versions of those in the CCD Module - using routines in the CX OS
code and a novel design with the same functionality but shorter and possibly faster execution.

 LKAX is meant to be used in two ways, to temporarily suspend first and later activate the

local key assignments (on keys A-J) so that they don’t interfere with local program labels used
in FOCAL programs. In program mode the action to perform is determined by the value in the

X-register: zero will suspend the local KA, whereas any non-zero value will re-activate them.

These functions only modify the key mappings in status registers 10(”|-“) and 15(“e”), not
altering the actual KA registers.

In manual (RUN) mode the prompt will accept values 0 to de-activate them and 1 to activate
them – any other will be ignored, persistently showing the prompt until a valid entry is made.

AMC_OS/X Module - Revision “4M”

(c) Ángel M. Martin Page 39 of 53 July 2014

7.4. Program Branching and Flag Handling Utilities.

-AMC”OS/X Keycode of pressed key Prompts for Key W&W GmbH

F/E Sets the Fix/Eng Mode Hybrid mode set W&W GmbH

TF _ _ Toggle Flag Allows ANY flag# Ken Emery

TAS Toggles Autostart Toggles status Angel Martin

GTADR _ _ _ Goes To ROM address Address in Prompt / Xreg W&W GmbH

PMTK _ Prompts from Menu Choices in ALPHA W&W GmbH

Y/N? Prompts for Yes/No Input Y/N PANAME ROM

Menu Prompting and Program Branching.

 The function PMTK makes it possible to use a menu function for the HP-41. The ALPHA

register is displayed and program execution is interrupted. Now the calculator is waiting for
the user to press a key, and for this there are four different possibilities:

1. The ON key turns off the calculator. The program pointer is still set to the same line, so
that when starting the program again the function is executed again.

2. A wrong key is pressed. The calculator answers this with a short sound (only when flag 26

is set).

3. A correct key is pressed. Correct meaning that its ALPHA character is in the display.

Additionally, extra text can be placed in the ALPHA register without influence on the menu
control. This text must be placed in ALPHA followed by at least one blank space, and then

the characters for “correct” choices. PMTK will distinguish between the initial informative
text and the choice characters by looking at the space character separating both groups

from each other. If a key whose ALPHA character is displayed is pressed, the digit value

of the character is written into the X register (the leftmost character taking the value 1,
and so sequentially). The stack is lifted, and this number, being position dependent, can

now be used for program branching. The ALPHA register is erased, except for the
commentary text and one blank space.

4. If the ALPHA register is empty, the message “KEY?” is displayed and the key code for the
next key pressed will be entered into the X register. The stack is lifted.

 The header function –AMC”OS/X (with XROM id# 05,00) can be used to get the keycode of

a pressed key. This code is used in PMTK as a subroutine (see step#4 above) but it can also
be used independently. The returned code will be shown in the display while the key is being

depressed, and left in the X register when the key is released. If you hold the key down until
the action is NULLed, the “KEY?” prompt will remain in the display, available for repeated

execution; a nice way to see multiple key codes with a single initial execution of the function.

 Y/N? is a poor-man version that only accepts Yes/No for an answer. Back arrow cancels the

function, while any other key (including ON) will simply be ignored. Answering “N” will skip

the next program line, which would be used to place a GTO statement to branch the
execution.

 GTADR sets the program pointer to the specified address: either as a two-character string in

ALPHA if run in a program (i.e. “@A” = 4041 hex), or directly in the prompt (in hexadecimal).

Note that the prompt length will always have four fields – irrespective of the current word

size, which is therefore, unrelated to this function. This function was available in the original
CCD Module under the section header “-XF/M FNS”

AMC_OS/X Module - Revision “4M”

(c) Ángel M. Martin Page 40 of 53 July 2014

Standard and Dedicated Flag handling.

This is probably not a bad moment for a quick flag recap, see the table below:

0-4 shown when set
5-8 general-purpose

9-10 matrix end of line/column
 11 auto execution

 12 print double width
 13 print lower case

 14 card reader allow overwrite

 15-16 HPIL printer mode:
 0) manual; 1) normal

2) trace; 3)trace w/stack print
 17 record incomplete

 18 IL interrupt enable

 19-20 General-Purpose
21 printer enabled

 22 numeric input available
 23 alpha input available

 24 ignore range errors

 25 ignore any errors & clear
 26 audio output is ignored

 27 user mode is active
 28 radix mark: 0). 1),

 29 digit groupings shown:
0) no; 1) yes

30 catalog set

31 date mode: 0)M.DY 1)D.MY
32 IL man I/O mode

33 can control IL
34 prevent IL auto address

35 disable auto start
36-39 number of digits, 0-15

40-41 display format: 0) sci; 1) eng

2) fix; 3) fix/eng mode)
42-43 angle mode: 0) deg; 1) rad

 2) grad; 3) rad
44 continuous on

45 system data entry

46 partial key sequence
47 shift key pressed

48 alpha keyboard active
49 low battery

50 set when message is displayed

51 single step mode
52 program mode

53 IL I/O request
54 set during pause

55 printer existence

 F/E sets the so called ‘Fix/Eng” hybrid display mode. Flag 40 and 41 are both set. The

calculator now displays all numbers as in the FIX format, but if it is so large that it needs t be
expressed with exponents (greater than 9,999,999,999), it is displayed in the ENG format

instead of the default SCI. Note that F/E does not change the number of decimal places

currently configured.

 TF is a toggle function, inverting the status of the flag which number is in X – in a program –

or entered in the prompt. It’s equivalent to IF, the Invert Flag routine in the PPC ROM. See
the PPC ROM manual pages 217 and 218 for a few useful and fun examples altering the

status of the system reserved flags.

Not to be confused with the standard HP-41 flags (all of them held in status register d(14) -, the OS/X

uses the scratch digits in the c(13) register (nibbles 10 and 9, between the REG location and the cold

start constant - see figure in next page) to host dedicated flags. The table below shows the intended

use for them:

Nibble Bit Set Clear

c(9) c<18,19> Unused / Undocumented

c<17> Enabled Autostart Disabled Autostart

c<16> Disabled Lower-Case mode Enabled LC mode

c(10) c<15> 1st. part of Prompt sequence 2nd. Part of prompt sequence

c<14> Unused / Undocumented

c<12,13> UNS, 1CMP, 2CMP modes

AMC_OS/X Module - Revision “4M”

(c) Ángel M. Martin Page 41 of 53 April 2014

Incidentally, this usage of the scratch nibbles in register c(13) is the reason why the CCD Module (and

now the OS/X Module) conflicted with other modules that also used them for other purposes, such as
the ZENROM or the AECROM. I always wondered why the original programmers didn’t use some digits

in Buffer#5 instead for the same purposes, despite the obvious additional code complexity and

relative speed penalty.

 R G Scratch 1 6 9 R 0 0 E N D

13 12 11 10 9 8 7 6 5 4 3 2 1 0

Two functions are available in the OS/X Module to manage some special flags:

 TAS toggles the Auto-start functionality, which is the same to say the status of bit 17 in the

status register c(13). This is similar to user flag 11, but the status is not changed with the
first-time execution as it occurs in that case.

 TGLC toggles the Lower-case mode for direct character input – as described in the first

section of this manual.

Note on the Lower-Case characters in ALPHA. These are not to be confused with the extended

set of characters available to the LCD display of Half-Nut machines. Contrary to those, the Alpha
characters will not be legible in program steps, or using AVIEW or when switching ALPHA on. A few

functions in the ALPHA_ROM may come handy to display the ALPHA characters in the LCD display as
“proper” lower-case characters, refer to that module’s QRG or the PowerCL Manual for more details.

AMC_OS/X Module - Revision “4M”

(c) Ángel M. Martin Page 42 of 53 April 2014

7.5. Other Miscellaneous Utilities.

The following group deals with other important functions, indispensable in every system.-

CDE HEX string to NNN Hex string in Alpha Ken Emery

DCD NNN to HEX string NNN in X W&W GmbH

HEXIN _ HEX Input 1-9, and A-F Håkan Thörngren

MNF Mainframe Launcher Fnc. id@ in prompt Clifford Stern

PLNG _ Program Length Calculates Program size W&W GmbH

TGPRV _ Toggle PRIVATE status Program Name in Alpha Sebastian Toelg

COMPILE Compiles jump distances Global LBL in ALPHA Frits Ferwerda

XQ>XR XEQ to XROM Converts instructions W&W GmbH

 Functions CDE and DCD are the ubiquitous NNN<>HEX functions present in every ROM

worth its name (ML ROM, HEPAX, TOOLBOX…). We can’t have enough of a good thing, or so

it seems… As an example to impress your friends: decode the contents of the Status “c”
register.

 HEXIN is another version of the well-known HEXNTRY function published in Ken Emery’s
book “MCODE for beginners”, and originally written by Clifford Stern. Pretty much identical to

it except that it uses the text in Alpha (if any) as prompt (useful in programs). For all

purposes it supersedes CDE, as there’s no need to first type the digits in ALPHA manually.

The prompt will only accept hex characters, A-F and 0-9. Use Back-Arrow to delete digits and

R/S to terminate the data entry. Upon termination, the corresponding NNN is placed in the X-
register. HEXIN was written by Håkan Thörngren, and published in PPCJ V13N4 p13

You may be wondering how come this is a prompting function, if it is located in a bank-

switched page – and the answer is that such is possible as long as the partial key entry
method is not employed. This is the case here, and also in SUMPG as well – both functions

use a key-pressed detection loop as alternative approach, more demanding on power

requirements as the CPU doesn’t get to Light Sleep - and therefore no switching back to bank-
1. The drawback of course is the higher battery consumption, not to be underestimated.

 TGPRV is the inevitable Set/Clear Private status functions – with a twist. To use it the

program name must be in ALPHA. This includes programs in RAM or in HEPAX RAM (seen as

ROM by the calculator). If Alpha is empty the program pointer must set to any line within the
program. TGPRV is also programmable.

 PLNG asks for the program name in the prompt and returns the program length in bytes.

This function is not programmable – and it’s extracted from the CCD ROM. As an
enhancement over the standard OS, the ALPHA mode will be switched on automatically for

you when the function is executed.

AMC_OS/X Module - Revision “4M”

(c) Ángel M. Martin Page 43 of 53 April 2014

 MNF is a trick of a function launcher – for mainframe functions, or should we say some of

them at least. The neat thing about it is that being programmable, this becomes an

unsupported and unusual way to add some of the non-programmable functions to FOCAL
programs – even if the behavior is not exactly as expected.

The table below shows some useful function id#’s to use with MNF. Note how in some cases
this provides a way to insert in a program functions that are not programmable –

circumventing the OS limitations.

MNFR # FNCT MNFR # FNCT

0 CAT 15 ASN

2 DEL 17 $T+N<IAg _ _ _

3 COPY 18 e _ _

4 CLP 24 mie2 _ _

6 SIZE 27 Hb _ _

10 PACKING 28 mie2 _ _

12 ALPHA 666 ASTO

13 mie2 _ _ 444 mie2 _ _

14 SHIFT 222 mie2 _ _

 COMPILE is a very powerful function that writes all the jump distances in the GOTO and XEQ

instructions within the program named in ALPHA. This is extremely useful when uploading a

program to a Q-RAM device, like the HEPAX RAM. Having all the jumping distances compiled

expedites the execution of the program (no need to search for the label), and also guarantees
that short-form GOTO’s are not used inappropriately.

o There are feedback messages shown during the execution, indicating which type of

instructions are being compiled: 2-Byte GOTO’s, and 3-Byte GOTO/XEQ’s.

,

o When the work is done, the message “READY” is shown to inform the user that the
execution is completed. Alternatively if a label is missing the execution stops with the

program pointer set at the GTO/XEQ statement, and a working message is shown:

 XQ>XR is without a doubt also a powerful function. It converts the XEQ instructions included

in a FOCAL program (saved in Q-RAM) into the appropriate XROM equivalents, assuming that

the calls were made to other programs residing in a plugged-in module. The need for this
arises when programs are loaded on Q-RAM devices, like the HEPAX RAM.

The net result is substantial byte savings, because any XROM instruction takes only two bytes,
regardless of the label length of the called program. XQ>XR is not strictly a “full-page”

function, but it only operates on RAM pages thus its inclusion here is justified.

 will be shown while the conversion occurs.

AMC_OS/X Module - Revision “4M”

(c) Ángel M. Martin Page 44 of 53 April 2014

This section of the manual is taken from the AECROM Manual, and describes the function PROG.

The OS/X Program Generator will translate your algebraic formulas into HP-41 programs. The
programs that it produces are normal programs that show up in your CAT 1 listing. You can write

them to cards, tape. Extended memory, or any other mass storage media; and you can use these
programs as subroutines m other programs. They are in every way, sense, and form a normal HP-41

program.

The only thing unique about the programs that PROG produces is that they are created by the OS/X

Module from algebraic formulas that YOU supply. With PROG, writing a program to solve an algebraic
formula is just a matter of keying in that formula, just like it's written! You don't even have to put

your HP-41 into program mode. The PROG function writes the program and stores it in memory for
you to use.

8.1. A quick example of PROG

Example: As a simple first example, use the PROG function to write a program called “FRUIT” to solve

the formula: FRUIT = APPLES + ORANGES

Solution: Keystrokes Display

XEQ “PROG” PROG _ (ALPHA is turned ON automatically)
F,R,U,I,T, ALPHA PACKING

 ENTER:FORMULA
A, [SHIFT], +, [SHIFT], O A+O

R/S ENTER:LBL,CONS.

A. .=
A,P,P,L,E,S A. .=APPLES

R/S O. .=
O,R,A,N,G,E,S O. .=ORANGES

R/S ANS. .=

F,R,U,I,T ANS. .=FRUIT
R/S PROGRAMMING..

 PACKING
 RUN SIZE>=02

If you get the message “TRY AGAIN”, you don’t have enough RAM memory space for this small

program. You need to either set your SIZE lower, or clear out one or more of the programs you have
in your CAT 1 listing.

Running the program: Say that for this problem you have 5 apples and 6 oranges and you want to

know the total amount of fruit you have. When “APPLES=?” comes up in the display, press 5, R/S. For
“ORANGES=?” press 6, R/S. The calculator will temporarily display “FRUIT=” and then show you the

answer: 11,000

8.2. A general description

The above formula was simple, to say the lest, but the procedure for using the PROG function will be

no different when you use it for translating more complicated formulas into programs. The four steps
for creating programs using the PROG function are as follows:

1. Execute PROG and, at the prompt “PROG _”, supply the name for the program that you wish

to appear in CAT 1. Note that ALPHA is turned ON automatically for you.

AMC_OS/X Module - Revision “4M”

(c) Ángel M. Martin Page 45 of 53 April 2014

2. Key in the formula correctly (only one side of an equation) using single letters to represent
variable names. (Keying in formulas is explained in greater detail below). Press R/S when

you’re finished.

3. Name the variables and assign values to constants. Press [R/S] after each completed input.

4. If you want the answer to be labeled. key in a name. Press [R/S], and the OS/X Module writes

the program.

The key step in the above four steps is number 2. You have to know a few things about how to

correctly key in a formula What functions are available and how do you key in functions? For example,
how do you key in SIN(A)? Well, here are the details of keying in a formula:

When the display shows “ENTER:FORMULA”, the keyboard on the HP-41 has been redefined as

follows:

At first glance this keyboard appears very similar to
the ALPHA keyboard. The letters are all each

assigned to a key. The digits and arithmetic signs are
available as shifted versions of the keys on which

they’re printed. But this keyboard is different from
the ALPHA keyboard!

The best way to learn this new keyboard is to work
with it. Execute PROG and, at the prompt “PROG _”

type: T,E,S,T, [ALPHA] or any other name that you
choose. The display will show: “ENTER:FORMULA”.

Press the [W] key. A “W” comes up in the display.
Now clear that away by pressing the back arrow key.

Now press [SHIFT][W]. A “5” comes up in the
display.

Press the [W] key again. Another “5” comes into the
display, Notice that the SHIFT in the display hasn’t

cancelled. If you want the SHIFT to cancel, you have
to press the shift key. This is different from the

standard ALPHA keyboard, but it allows you to key in
numbers like 5.775 without pressing the [SHIFT] key

5 times.

Press back arrow twice to clear those fives away, then with SHIFT on in the display press the [J] key.
The shifted J brings the TAN function into your formula.

Continue typing to complete the formula TAN(3A) + 0.75B + C. As you make mistakes (say what?),
you can clear them away using the back arrow key. Refer to the keyboard illustrated above to locate

the characters for the above formula. Remember to press the shift key when necessary.

Switching back and forth from the shifted to the un-shifted keyboard may seem a bit awkward at first,
but for keying in formulas you’ll find this design to be very efficient. Once you get the above formula

keyed in correctly, press the back arrow key repeatedly until you cancel the function completely.

This shows you that if you respond to the enter formula prompt by pressing the back arrow you exit

the PROG function. Do not however, press R/S at that prompt - or the calculator will crash (same
behavior as with the original AECROM, in case you wonder).

AMC_OS/X Module - Revision “4M”

(c) Ángel M. Martin Page 46 of 53 April 2014

8.3. Keying in formulas.

Here are a few things you should notice when you are working through the following example.

1. PROG accept implicit multiplication. That is, when you key in ABC it assumes you mean A x B
x C. this feature reduces the keystrokes required to key in most formulas.

2. After you finish keying in a valid formula, PROG will prompt you with “ENTER:LBL,CONS”;

which means you need to name your variables and assign values to any constants. At this

point, the keyboard is the same as above, except that any non-character keys (like TAN, SIN,
LOG) will be ignored.

3. Up to eight characters can be used to name a variable.

Example: Calculate the volume of a cylinder 4 meters in diameter by 12 meters height.

Create a program that takes the height and diameter of a cylinder and returns its volume. Don’t label
the answer, but name the program CYLVOL. Make use of the formula for the volume of a cylinder of a

known inner-diameter and height: VOLUME = HEIGHT(DIAM^2 /4)

Solution: Keytrokes Display

XEQ “PROG” PROG _

C,Y,L,V,O,L, ALPHA PACKING
 ENTER:FORMULA

[H], SHIFT, [(], SHIFT, [D], [^],

2, SHIFT, [], SHIFT, [/], 4, [)] H(D^2 /4)

R/S ENTER:LBL,CONS

 D. .=

D,I,A,M D. .=DIAM
R/S H. .=

H,E,I,G,H,T H. .=HEIGHT
R/S ANS. .=

R/S PROGRAMMING..

 PACKING
 RUN SIZE>=03

By pressing R/S when the prompt “ANS. .=” comes up in the display, you are telling PROG not to

label the answer. The “RUN SIZE>=” prompt tells you how many registers are required to run the
program. In this case you have to have at least three data registers available when you run this

program.

Applying now the numeric values for this example:

XEQ “CYLVOL” , 4, R/S, 12 R/S -> 150.7964 in FIX 4.

Below is the program listing as created by PROG. Note the usage of the power function for the square
power, more general than X^2. Each variable is internally associated with a data register which will be

used in the calculations (so not based in the stack).

Note also that the final output doesn’t combine the name of the answer with its value in the display –

granted there’s some finesse missing but the compromise is largely appropriate, and the methodology
used quite impressive to say the least.

AMC_OS/X Module - Revision “4M”

(c) Ángel M. Martin Page 47 of 53 April 2014

01 LBL “CYLVOL 07 STO 01 13 4
02 “DIAM=?” 08 RCL 00 14 /

03 PROMPT 09 2 15 STO 02
04 STO 00 10 Y^X 16 RCL 01

05 “HEIGHT=?” 11 PI 17 RCL 02

06 PROMPT 12 * 18 *

As the answer was left unnamed, the program doesn’t include any steps to announce the final output.
This would have been located at the end had a name been given to it at the “ANS. .=” step in data

entry.

Low priority multiply [/*/]

There is a function located on the radix key that looks like this: /*/. This function is called “low priority
multiply”. It does the same thing as the multiply function [*], but it is evaluated after the [+] and [-]

signs in your formula.

The purpose of low priority multiply is to reduce the number of parentheses in a formula that you key
in. it can also save you from having to start all over when you get to the end of keying in a formula

and realize that the whole expression needs to be multiplied by some value that otherwise would

require the formula to be enclosed in parentheses. The example in the following section shows the
use of the low priority multiply function.

Trigonometric and Hyperbolic functions.

The direct and inverse trigonometry functions are easy to locate on the keyboard and are just as easy
to use. You simply key them in as you would write them in your formula on paper. Only one keystroke

is necessary to key in a trigonometric function.

But, where are the hyperbolics? Yes, these functions (HSIN, HCOS, HTAN and their inverses) were

included in the list of SandMath functions. You should be able to use them in your formulas, right?
Certainly. Notice that the un-shifted version of the [3] key is the function [H.]- This key is used as a

prefix to turn a trigonometric function into a hyperbolic.

Example.- Execute PROG, name it “TEST”, and key in the formula: “x * (sinh2 a + cosh2 b)”

Solution: when the display reads ‘ENTER:FORMULA”, key in one of the following sets of keystrokes,

either will work. Notice how the low priority multiply function /*/ reduces the number of parentheses
in the resulting formula.

Set-1: [SHIFT], [(], [SIN], [SHIFT], [H.], [A], [SHIFT], [)], [^], [2], [+], [(], [COS], [SHIFT],
[H.], [B], [SHIFT], [)], [^], 2, [/*/], [X] ; 5 times SHIFT, 22 keystrokes in total

Resulting formula: (SINH A)^2 + (COSH B)^2 /*/ X

Set-2: [SHIFT], [(], [(], [SIN], [SHIFT], [H.], [A], [SHIFT], [)], [^], [2], [+], [(], [COS],

[SHIFT], [H.], [B], [SHIFT], [(], [^], 2, [)], [SHIFT], [X] ; 6 times SHIFT, 24 keystrokes in total

Resulting formula: ((SINH A)^2 + (COSH B)^2) * X
Finally, either press R/s to have PROG complete the program, or press the back arrow key repeatedly

until the function cancels. Obviously the SandMath needs to be plugged in to execute it properly.

AMC_OS/X Module - Revision “4M”

(c) Ángel M. Martin Page 48 of 53 April 2014

8.4. Details of PROG

PROG is non-programmable. When you key is a formula at the prompt, PRG insists that you follow

certain rules. These rules are listed below.

1. The first character in your formula cannot be a right parentheses, MOD, FACT (!), +, *, or /. A

minus sign can be used as the unary minus (for example negative 5 can be entered as –5).

2. Constants may be entered either as digits in your formula or during the ‘ENTER:LBL,CONS”

routine. If you wish to enter constants during the “ENTER:LBL,CONS” routine you need to
include them as single letters in the formula.

3. Several functions can be followed by anything except: { +, -, *, /, FACT(!), MOD, and “)” }.

Those functions are: { ”(“, SQRT, LOG, LN, MOD, FRC, INT, EEX, ^, +, -, *, /, SIGN, and
trigonometric and HYP functions}.

4. These functions (characters in your formula) can be followed by anything: the letters A

through Z, e, , low priority multiply /*/, right parentheses, factorial (!), decimal point, and

the digits 1 through 9.

When “ENTER:LBL,CONS” is displayed, up to eight characters can be keyed in to name a variable or to

specify the value of a constant. You can choose to leave the single letter as the prompt for the

variable (by just pressing R/s), key in a name for that variable, or key in a numeric constant.

If the first character in the name is a number or a plus or minus sign, PROG will take your input as a
numeric constant. In a numeric constant the character “E” is used to signify the exponent in scientific

notation (1.2E6 means 1,2 x 10^6 or 1,200,000). Also, both a comma and a dot are accepted as the

radix (1.2 is the same as 1,2, which is also the same as 1,2000 so don’t use commas for grouping).

When you execute PROG and get the prompt ‘PROG _” , you have to key in a name for the program
that is going to be created. You can key in any ALPHA name up to seven characters long. PROG

always uses this name as the global ALPHA label at the first line of the program.

If you use the single characters “A” through “J” or “a” through “e”, which are commonly used as local

ALPHA labels, you will find that PROG still makes them into global ALPHA labels. They show up in CAT
1, but because the HP-41 expects these single letters to be local ALPHA labels, you can’t access them

using GTO or XEQ except, perhaps, in a synthetic program line (if you’re into that sort of thing). In
short, don’t use those single letters as program names with PROG unless you enjoy the additional

hassle.

Clearing programs,

The programs created by PROG can be cleared by the same methods that you use to clear any

program. The HP-41 function CLP and the extended function PCLPS are dynamite when it comes to

clearing programs.

Excerpt taken from the AECROM Brochure:- don’t we all love the marketing department?

“Writes its own programs.- Artificial intelligence? Close to it! The AECROM, in conjunction with the
HP-41, creates its own programs to solve user-supplied equations… and fast! Simply key in the
desired program name and your equation. the AECROM will automatically write the program for you.
Efficient, user friendly, error free programs are written for virtually any size equation in seconds. Any
number and combination of most HP-41 match functions, in addition to new hyperbolic functions, may
be used in your equations”.

AMC_OS/X Module - Revision “4M”

(c) Ángel M. Martin Page 49 of 53 April 2014

That’s all folks, this concludes the AMC_OS/X manual. Hope you find it useful, or at least interesting to
have all these functions documented at last – from the historian of the archaeological SW department

to the global community with my best wishes.

Function Page Function Page

-AMC"OS/X 38 PGCAT 11, 20

-OSX BANK2 23 PGSIG _ _ 24

ABSP 26 PLNG _ 41

ARCLH 31 PMTA _ 27

ARCLI 26 PMTH _ _ 31

ASG _ 14, 37 PMTK _ 38

ASN 13 POKER 34

ASWAP 26 PROG _ 43-47

B? 36 RAMED _ 21

BFCAT 18 RCL, STO, X<> 15

CAT 0-3 3 READPG 25

CAT 5-F 4 READXM 33

CDE 41 RENMFL 33

CHKROM _ _ 25 RETPFL 33

CHKSYS 23 RNDM 32

CLA- 26 ROM? _ _ 24

CLB 36 ROMLST 23

CLEM 33 OSREV 23

CMP _ 30 Prompt Length 17

COMPILE 42 SAVEBF 36

DCD 41 SAVEKA 37

DTOA 26 SEED 32

DTST 26 SUMPG _ 25

F/E 39 TAS 40

GETBF 36 TF _ _ 39

GETKA 37 TGLC 27, 40

GTADR _ _ _ _ 38 TGPRV _ 41

HEXIN _ 41 VIEWH 31

LKAX _ 37 VRG _ _ 34

LowerCase ALPHA 16 WSIZE _ _ 30

MNF _ _ _ 42 WSIZE? 30

MRGKA 37 WRTPG 25

MSGE _ _ _ 27 WRTXM 33

PC<>RTN 34 XEQ 14

PEEKR 34 XQ>XR 42

PG? _ _ 24 XTOAH 31

Y/N? _ 38 _

AMC_OS/X Module - Revision “4M”

(c) Ángel M. Martin Page 50 of 53 April 2014

Appendix 1.-
Function Repeats.

The table on the right shows all functions

in the OS/X module, indicating in which
other modules they’re also available.

The table does not include the Power_CL

module, which pretty much has them all

included.

The stats are as follows:

38 unique functions,

13 dup fns in the TOOLBox,
13 dup fns in the RAMPAGE.

AMC_OS/X Module - Revision “4M”

(c) Ángel M. Martin Page 51 of 53 April 2014

Appendix 2.- X-Memory File Headers.

Generally speaking, all X-Mem files have a NAME register and a HEADER register. The Name
register obviously holds the file name, which is used as parameter in ALPHA for diverse file
functions. The Header register is a control and status register that holds key information
relevant to the file type & size, address in memory, and other auxiliary parameters – like the
pointers for some file types.

The following figures show the header layout for the different file types.- Note how the file
type and size (in registers) fields are common to all of them, and that those are the only
fields for the “simpler” files (like Buffer, Kay Assignments, STATUS and Complex-Stack).

1. PROGRAM Files:

T - - - - - - - B Y T S Z E

13 12 11 10 9 8 7 6 5 4 3 2 1 0

2. DATA Files:

T A D R - - - - R E G S Z E

13 12 11 10 9 8 7 6 5 4 3 2 1 0

3. ASCII Files:

T A D R - C H R R E C S Z E

13 12 11 10 9 8 7 6 5 4 3 2 1 0

4. MATRIX Files:

T A D R L/U C O L i j # S Z E

13 12 11 10 9 8 7 6 5 4 3 2 1 0

5. Buffer, Key-Assignment, Status-Regs, and Complex-Stack Files:

T - - - - - - - - - - S Z E

13 12 11 10 9 8 7 6 5 4 3 2 1 0

For Data and ASCII files, the address field is initially blank – and only filled in when the
pointer is set, either manually using SEEKPT(A) or automatically using some dedicated
function (like GETRGX, or APPREC/CHR).

To the author’s knowledge the PROGRAM Files never get the address field filled in.

AMC_OS/X Module - Revision “4M”

(c) Ángel M. Martin Page 52 of 53 April 2014

Appendix 3.- X-Memory Structure.

Extended memory is comprised of up to three disjoint memory ‘blocks”, depending on
whether only the X-Mem/Funct. module is present, or if other Extended Memory modules are
also plugged into the calculator.

Each of these blocks has a “linking” registers at the bottom, holding the pointers to the
previous and next block, as well as its own starting location. They are located at the bottom
of each block, that is addresses 0x040, 0x201, and 0x301.

The structure of the information contained in the linking registers is shown in the figure
below:

- - C U R P R V N X T T O P

13 12 11 10 9 8 7 6 5 4 3 2 1 0

CUR: number of files; only used in bottom linking register at 0x040
PRV: address of linking register of PREVIOUS module (or zero if first block)
NXT: address top register of NEXT module (or zero if last block)
TOP: address of top register within this module

The contents of the linking registers vary depending on the number of X-Mem modules
present and where they are plugged, so for instance for a full configuration (or the HP-41
CX) including 5 files in total they are as follows:

@ 0x301:

 2 0 1 0 0 0 3 E F

13 12 11 10 9 8 7 6 5 4 3 2 1 0

@ 0x201:

 0 4 0 3 E F 2 E F

13 12 11 10 9 8 7 6 5 4 3 2 1 0

@ 0x040

 0 0 5 0 0 0 2 E F 0 B F

13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: Some of the boundary values appear to be hard-coded in the file management
routines, like EMDIR, EMROOM, and file search utilities. This makes it impossible to add
more blocks above - even if the memory is available (like is the case for the 41CL machine) –
as shown below. Also it’s unfortunately not possible to change their locations to other pages
in RAM, say 1kB higher (for a second set of XM).

@ 0x401:

 3 0 1 0 0 0 4 E F

13 12 11 10 9 8 7 6 5 4 3 2 1 0

@ 0x301:

 2 0 1 4 E F 3 E F

13 12 11 10 9 8 7 6 5 4 3 2 1 0

AMC_OS/X Module - Revision “4M”

(c) Ángel M. Martin Page 53 of 53 April 2014

Apendix 4.- HP-41 Byte Table

