
Complex Matrix ROM Manual

(c) Ángel M. Martin January 2021 Page 1 of 59

HP-41 Complex Matrix ROM

Extending the HP-41 SandMatrix – part II

Ángel M. Martin Cañas.

Complex Matrix ROM Manual

(c) Ángel M. Martin January 2021 Page 2 of 59

This compilation revision 2.2.7

Copyright © 2018-21 Ángel Martin

Published under the GNU software license agreement.

Original authors retain all copyrights and should be mentioned in writing by any part utilizing this
material. No commercial usage of any kind is allowed.

Front cover image taken from: https://www.dreamstime.com/royalty-free-stock-photography-

mathematics-background-image20849947

Screen captures taken from V41, Windows-based emulator developed by Warren Furlow.
See www.hp41.org

https://www.dreamstime.com/royalty-free-stock-photography-mathematics-background-image20849947
https://www.dreamstime.com/royalty-free-stock-photography-mathematics-background-image20849947
http://www.hp41.org/

Complex Matrix ROM Manual

(c) Ángel M. Martin January 2021 Page 3 of 59





Table of Contents

1. Introduction

a. SandMatrix Complex Chapter . 5
b. Table of Functions. 6

2. SandMatrix Extensions

a. Complex matrix Input/Output . 10
b. Complex Pointer positioning . 12
c. Example: Matrix Product . 14
d. Complex Transposed Matrix . 16
e. Conjugate-Transposed Matrix . 18
f. Complex Matrix Determinants . 19
g. Complex Matrix Minors . 21
h. Submatrices and Minors/Cofactors Matrix. 24
i. Complex Matrix Trace . 26
j. ZXY Decomposition. 27

3. Further Complex Matrix Operations

a. Addition and Multiplication by complex values 29
b. Frobenius Norm . 31
c. Row & Column swapping. Equal Test . 32
d. Eigenvalues revisited . 33
e. Characteristic Polynomial, Determinant & Inverse 37
f. Matrix Mappings . 40
g. 90-degree Rotations. Mirror Images . 43
h. Matrix Layer rotations . 45
i. Matrix Spiral Input/Output 49
j. Element Rotations – take #2 . 52
k. Appendix: Matrix Scrolling . 54
l. Data Splicing & Splitting. 55

Complex Matrix ROM Manual

(c) Ángel M. Martin January 2021 Page 4 of 59

Function Launcher interdependencies.

 Main Launcher

 Input group

 Output group

 Rotation group

 Pointer group

 Major Ops group

 Extra Group

Complex Matrix ROM Manual

(c) Ángel M. Martin January 2021 Page 5 of 59

Introduction: A Complex Chapter for the SandMatrix.

The SandMatrix module first and later the Advantage Math ROM have brought the state of the art to

a further place, and now this module picks up where they left off extending the functionality to the

Complex Matrices case. It is therefore another complementary extension to the SandMatrix,

independent from the Advantage Math but that can be used in conjunction with it if so desired. As it

can be expected it requires the 41Z to be plugged in the calculator to deal with the complex number

math involved in many of the program included in the module – not only for the lower-level complex

arithmetic but also using general-purpose utilities like ZSOLVE and others.

In this module you’ll find:

• More flexible Complex Matrix Editors that replace HP’s CMEDIT, new pointer positioning and

complex element storage & recall routines, as well as row/column exchange – all analogous

to the real matrix case, but that will facilitate the writing of more complex programs.

• Missing functionality like Determinants and Matrix Transpose is also addressed in this ROM,

with a couple of approaches to choose from depending on your preferences. Matrix Minors,

Cofactors and Sub-matrices round off this part.

• A short update on Eigenvalues plus new sections on Matrix Element Rotation and other

mappings.

• A Function Launcher grouping functions in logical groups

Module Dependencies.

As mentioned, you should have the 41Z and the SandMatrix plugged in the calculator. It is also

recommended to have the SandMath plugged in as well, as several programs within the SandMatrix

make use of its functions. If you plug those three, they will take 6 pages in the I/O bus, to add to the

single page required by this ROM. This means that only one page will remain available in the external

ports of the calculator, so use it judiciously – and what a better choice than the ‘Advantage Math”

ROM for a powerhouse Math configuration.

I strongly suggest the OS/X Module to be plugged as well, and if possible (i.e. without a printer) in

page #6. The WARP_Core Module in page#7 will round up the perfect set.

It comes without saying that the Library#4 is needed as well, as a pre-requisite for all the modules

mentioned before. And lest we forget, the HP-41 CX is required (the X-Functions won’t cut it, sorry).

Library #4

41-Z

SandMath

SandMatrix

Complex Matrix

ROM

Complex Matrix ROM Manual

(c) Ángel M. Martin January 2021 Page 6 of 59

ROM Function Tables.

Without further ado, let’s see the functions included in the module. Refer to the individual function

descriptions later on for details on the syntax and use instructions.

XROM Function Description Input Author

13,00 -CPX MTRX Section Header n/a n/a

13,01 “CGTRP Matrix Conjugate Transpose Name in ALPHA Ángel Martin

13,02 "CMINOR Complex Matrix Minor iii,jii in X , Name in ALPHA Ángel Martin

13,03 CMDTM Complex DET w/ Minors Name in ALPHA Ángel Martin

13,04 "CMTRP Complex Matrix Transpose Name in ALPHA Ángel Martin

13,05 “SUBZM Reduces Matrix by index iii,jjj in X, Name in ALPHA Ángel Martin

13,06 “^C33 Creates 3x3 Cpx. Mat. Example n/a Ángel Martin

13,07 “^C44 Creates 4x4 Cpx. Mat. Example n/a Ángel Martin

13,08 ZM _ Function Launcher “I:O:R:P:M;X” Ángel Martin

13,09 ZIJ? Recalls Complex Pointer Name in ALPHA Ángel Martin

13,10 ZIJ= Sets Complex Pointer iii,jii in X , Name in ALPHA Ángel Martin

13,11 ZI+ Advances pointer one row Name in ALPHA Ángel Martin

13,12 ZJ+ Advances pointer one column Name in ALPHA Ángel Martin

13,13 ZIMC Input Complex MAT by Cols Name in ALPHA Ángel Martin

13,14 ZIMR Input Complex MAT by Rows Name in ALPHA Ángel Martin

13,15 ZOMC Output Complex MAT by Cols Name in ALPHA Ángel Martin

136,16 ZOMR Output Complex MAT by Rows Name in ALPHA Ángel Martin

13,17 ZOUT Output Complex Z in Y,X, Ángel Martin

13,18 >ZIJ Append Cpx. Element iii,jjj in X Ángel Martin

13,19 “?CM Complex Matrix Test Name in ALPHA Ángel Martin

13,20 -Z MATRX II Section Header n/a n/a

13,21 ASWAP ALPHA Swap around comma A,B in ALPHA Ángel Martin

13,22 E3/E+ Builds pointer 1.00x Ángel Martin

13,23 “M=M? Equal Matrices Test “M1,M2” in ALPHA Ángel Martin

13,24 “XZ>ZM Merges Matrix Components “RE,IM,ZM“ in ALPHA Ángel Martin

13,25 “Z+M Adds complex to Matrix Z in {X,Y}, Name in ALPHA Ángel Martin

13,26 “Z*M Multiplies Matrix by Complex Z in {X,Y}, Name in ALPHA Ángel Martin

13,27 “ZC<>C Swaps Complex Columns iii,jjj in X, Name in ALPHA Ángel Martin

13,28 “ZEV22 Eigenvalues of 2x2 Matrix Name in ALPHA Ángel Martin

13,29 “ZEV33 Eigenvalues of 3x3 Matrix Name in ALPHA Ángel Martin

13,30 “ZEIGEN Eigenvalues using ZSOLVE Name in ALPHA, zo in Z Ángel Martin

13,31 “ZIJJI Crossed-Elements products Name in ALPHA Ángel Martin

13,32 “ZMDPS Diagonal Products Sum Name in Alpha Ángel Martin

13,33 “ZM>XY Separates Matrix Components “ZM,RE,IM” in ALPHA Ángel Martin

13,34 “ZMAT* Element Products “M1,M2,M3” in ALPHA Ángel Martin

13,35 “ZFNRM Frobenius Norm Name in ALPHA Ángel Martin

13,36 “ZR<>R Swaps Complex Rows iii,jjj in X, Name in ALPHA Ángel Martin

Complex Matrix ROM Manual

(c) Ángel M. Martin January 2021 Page 7 of 59

13,37 “ZCFTS Generates Cofactors Matrix Name in ALPHA Ángel Martin

13,38 “ZMNRS Generates Minors Matrix Name in ALPHA Ángel Martin

13,39 “ZMINV Inverse Matrix V2 Name in ALPHA Ángel Martin

13,40 “ZPCHR Characteristic Polynomial Name in ALPHA Ángel Martin

13,41 -M-ROTATE Section header Checks if X is Odd n/a

13,42 “?1X1 Matrix Dimension Test 1,2 in X, Name in ALPHA Ángel Martin

13,43 “a<>b Swaps Real Elements iii,jjj in X, “M1,M2“ ALPHA Ángel Martin

13,44 “a>b Real Element Copy iii,jjj in X, “M1,M2“ ALPHA Ángel Martin

13,45 “Ca>b Complex Element Copy iii,jjj in X, “M1,M2“ ALPHA Ángel Martin

13,46 “M<)R Matrix Element Right Rotation Name in ALPHA Ángel Martin

13,47 “MROT+ Driver for “MROT Prompts for data Ángel Martin

13,48 “MROT Matrix Elements Rotation Data in XYZ, Name ALPHA JM Baillard

13,49 “ZM<)R Cpx. Mat. Element Right Rot Name in ALPHA Ángel Martin

13,50 “ZMIRR Complex Matrix Mirror Image Type in X, Name in ALPHA Ángel Martin

13,51 “ZMR90R Cpx. Mat. 90 deg Right Rot. Name in ALPHA Ángel Martin

13,52 “ZMR90L Cpx. Mat. 90 deg Left Rot Name in ALPHA Ángel Martin

13,53 “ZMROT+ Driver for ZMROT Prompts for Data Ángel Martin

13,54 “MSCRL$ Matrix Scrolling “MNAME,$” in ALPHA Ángel Martin

13,55 “SPLICE Data Registers Splicing Register Range in X Ángel Martin

13,56 “SPLIT Data Registers Splitting Register range in X Ángel Martin

13,57 “IMS” Input Matrix in Spiral Name in ALPHA Ángel Martin

13,58 “OMS” Output Matrix in Spiral Name in ALPHA Ángel Martin

13,59 “ZIMS” Input Cpx. Mtrx.inSpiral Name in ALPHA Ángel Martin

13,60 “ZOMS” Output CCpx. Mtrx. In Spiral Name in ALPHA Ángel Martin

13,61 “*ZEV Auxiliary for ZEIGEN n/a Ángel Martin

13,62 “ZTRCE Alternative CMTRCE Ángel Martin

13,63 “ZTRNP Alternative CMTRP Ángel Martin

Complex Matrix ROM Manual

(c) Ángel M. Martin January 2021 Page 8 of 59

1. SandMatrix Extensions for Complex Matrices

Although some of the SandMatrix functions support Complex Matrices, there’s not a thorough
coverage for these due to a justifiable lack of functionality. This module aims to closing that gap by
providing a set of routines that can also be used in bigger programs to provide the missing features.

Working with Complex Matrices.

When working with complex matrices it is most important to remember that, in the calculator, a

complex matrix is simply a real matrix with four times as many elements. In the SandMatrix only the

MATRX program and the complex-matrix editor (CMEDlT) “recognize” a matrix as complex and treat

its elements accordingly. All other functions treat the real and imaginary parts of the complex

elements as separate real elements.

How Complex Elements are represented

In its internal representation a complex matrix has twice as many columns and twice as many rows

as it "normally' would.

The complex number 100 + 200i is stored as:

The 2 x 1 complex matrix

Storage Space in Memory.- Since the dimensions required for a complex matrix are four times

greater than the actual number of complex elements (an m X n complex matrix being dimensioned as

2m x 2n), realize that the number of registers a complex matrix occupies in memory is

correspondingly four times greater than a real matrix with the same number of elements. In other

words, think of a complex matrix's storage size in terms of its MATDlM or DIM? dimensions, not its

number of complex elements.

Using Functions with Complex Matrices

Most matrix functions do not operate meaningfully on complex matrices: since they don't recognize

the different parts of a complex number as a single number, the results returned are not what you

would expect for complex entries.

Valid Complex Operations. Certain matrix functions work equally well with real and complex

functions. Both the input and result matrices must be complex. These functions are:

• MSYS Solving simultaneous equations
• MINV Matrix inverse
• MAT+ Matrix add
• MAT- Matrix subtract
• MAT* Matrix scalar multiply, but only by a real scalar in X-reg.
• M*M Matrix multiplication

Besides these there are a few other SandMatrix functions that work equally right on either type of
matrices, real and complex, provided that you follow the “double up” rule for the matrix dimension -

Complex Matrix ROM Manual

(c) Ángel M. Martin January 2021 Page 9 of 59

These functions are:

• MIDN Builds an Identity Matrix (Dimension 2m x 2n for complex)
• MZERO Clears all elements of a matrix
• MZDG Matrix Zero Diagonal
• AIM Anti-Identity Matrix
• M^2 Multiplies a matrix by itself
• MPWR Matrix integer power

Notably the last two are a direct benefit for the complex matrix support included in M*M, and will
play an important role in the complex matrix determinants programs described later on.

New Functions added for the Complex case

The table below shows most of the new functions added in this ROM, comparing the to the real-
matrix analogous ones. You’ll see some of them deal with the complex-pointer management, while
others work as complete utilities for complex matrices.

Complex Matrix ROM SandMatrixModule Description

ZI+, ZJ+ I+, J+ Pointer advance

ZIJ?, ZIJ= MRIJA, MSIJA Pointer Store / Recall

CMR, CMS MR, MS Element Store / Recall

ZC<>C, ZR<>R C<>C, R<>R Column/Row Exchange

ZMNRM FNRM Frobenius Norm

Z+M MAT+ (w/ “X,A,B” in ALPHA) Addition of Complex

Z*M MAT* (w/ “X,A,B” in ALPHA) Product by Complex

ZMAT* MAT* (w/ “A,B,C” in ALPHA) Element Product

M=M? n/a Equal Matrices Test

ZIMC, ZIMR, ZOMC, ZOMR IMC,IMR,OMC,OMR Complex Matrix Editor(s)

ZTRCE CTRCE, MTRACE Matrix Trace

CMDET, CMDTM MDET Determinant

CMTRP, CGTRP TRNPS Matrix Transpose

ZEIGEN EIGEN Eigenvalues by (Z)SOLVE

ZEV2 EV2x2 Eigenvalues of 2x2 Matrix

ZEV33 EV3X3 Eigenvalues of 3x3 Matrix

ZMDPS MDPS Diagonal products sum

ZIJJI IJJI Crossed-els. Prods. sum

ZPCHR PCHAR Characteristic Polynomial

Complex Matrix ROM Advantage Math ROM Description

CMINOR, SUBZM MINOR, SUBM Minor and Submatrix

ZMROT, ZM<)R MROT, M<)R Matrix Element Rotation

ZM90R, ZM90L M90R, M90L Matrix 90 deg. Rotations

ZMIRR MMIRR Matrix Mirror Image

?CM n/a Matrix Complex Test

XY>ZM, ZM>XY n/a Complex Mat to Real, Imag

Note that some of the real matrix routines are not in the SandMatrix but in the “Advantage Math”
ROM. This is the case for the element rotation and mirror image routines, as well as the
minor/submatrix routines.

Note also that a couple of the new functions are included in the SandMatrix as well, either as main
functions or as sub-functions – but are kept here as well to facilitate their usage and for consistency
sake.

Complex Matrix ROM Manual

(c) Ángel M. Martin January 2021 Page 10 of 59

Complex Matrix Input / Output by Columns / Rows.

Analogous to the real counterparts IMR, OMR, IMC, OMC, you can use these routines to input and
output the complex elements of an existing matrix, starting at the first element and sequentially
either by rows or by columns. The display will show the complex index followed by the complex
element value:

... , ,
etc...

With one exception, this set of routines replaces the CMEDIT program in the SandMatrix. The
exception being cases where a complex column-matrix is used for linear systems with complex
matrices; see the SandMatrix manual for details.

Routines for Element Storage and Recall.

These routines will use the complex pointer iii,jjj in register X to define the complex element position
in the complex matrix. Note that the complex-pointer is always twice the real-pointer - which is the
only one understood by the SandMatrix functions of course. The routines use auxiliary functions
ODD? and DIMERR to halt the execution in case of not-even dimensions.

Program listing and Stack usage:

1 *LBL "CMR"

2 ST+ X
3 MSIJA
4 RDN
5 MRR-
6 MRR+
7 X<>Y
8 RTN

9 *LBL "CMS"

10 ST+ X
11 MSIJA
12 RDN

13 MS
14 J-
15 I-
16 MSC+
17 X<>Y
18 MSR+
19 CHS
20 I-
21 MS
22 CHS
23 X<>Y
24 RTN

25 *LBL "?CM"

26 DIM?
27 ODD?
28 DIMERR
29 FRC
30 I<>J
31 ODD?
32 DIMERR
33 RDN
34 END

Routine
Stack

CMR CMS

Input Output Input Output

T: T: Z: T: scratch

Z: Z: Y: Im(Zij) T:

Y: Y: Im(Zij) Re(Zij) Im(Zij)

X: Complex iii,jjj Re(Zij) Complex iii,jjj Re(Zij)

L: n/a scratch n/a scratch

Matrix Pointer n/a iii,jjj n/a iii,jjj

Note that in the CMR case the complex pointer will be reset to the desired value, and that register T:
will be lost – whereas for CMS the contents of stack register X: will be lost – so you’ll need to use
ZIJ? described later to recall the current pointer value.

Complex Matrix ROM Manual

(c) Ángel M. Martin January 2020 Page 11 of 59

Aided by the routines above the main Input/Output Programs are a simple affair managed by the
flags 9 and 10 to control the out-of-bounds conditions.

As always, with flag 21 set the execution stops with every element display (function ZOUT takes care
of that). This is a good resource to use for ZOMR and ZOMC with high TURBO settings on the 41CL.

For ZIMR and ZIMC the current element complex value will be shown in the prompt. Press R/S if
you want to use it as is, or if you need to change it remember to enter the imaginary part first, then
the real part separated by ENTER^ (same 41Z convention) – terminating the entry with R/S .

The program listing is shown below:

1 LBL “ZIMR”

2 E
3 GTO 03

4 LBL “ZIMC”

5 3
6 GTO 03

7 LBL “ZOMR”

8 0
9 GTO 03

10 LBL “ZOMC”

11 2
12 *LBL 03

13 X<>F
14 XROM “?CM”
15 E
16 E3/3+
17 *LBL 00

18 CMR
19 MRIJ
20 2

21 /
22 CLA
23 MPT
24 RDN
25 FS> 00
26 >”?”
27 ZOUT
28 MNAME?
29 FC? 00
30 GTO 01
31 STOP
32 MRIJ
33 2
34 /
35 CMS
36 I+
37 *LBL 01

38 FC? 01
39 J+
40 FS? 01
41 I+

42 FS? 10
43 GTO 01
44 FC? 09
45 GTO 02
46 FC? 01
47 I+
48 FS? 01
49 J+
50 *LBL 02

51 FC? 01
52 J+
53 FS? 01
54 I+
55 MRIJ
56 2
57 /
58 GTO 00
59 *LBL 01

60 CLD
61 END

Note that unlike the real pointer functions in the SandMatrix, the complex pointer positions for the

first column and first row must be explicitly given, thus 1,001 is required in step 16 and cannot be

replaced with “0”. This holds true for any other combination that involves said first Column/row such

as 1.003. 2.001, etc.

Lastly, the “?CM” routine is the “is matrix Complex?” check to discard non-complex matrices. You
should be aware that said test is a necessary but not sufficient check, i.e. it checks that the matrix
dimensions are even values, but it doesn’t do any further testing re. the structure of the elements,
such as ensuring that the real and imaginary parts of each complex element follow the proper rules.
See below an example for such routine:

01 *LBL “?ZM”

02 XROM “?CM”
03 ,
04 MSIJA
05 *LBL 00

06 ZIJ?
07 VIEW X
08 ST+ X
09 MSIJ

10 MRR-
11 I-
12 MRC+
13 X#Y?
14 DIMERR
15 MRR+
16 I-
17 MRR+
18 CHS

19 X#Y?
20 DIMERR
21 FS? 09
22 I+
23 FC? 09
24 GTO 00
25 CLD
26 END

Complex Matrix ROM Manual

(c) Ángel M. Martin January 2020 Page 12 of 59

Routines for Complex Pointer positioning.

The routines below are the complex-case equivalent of functions MRIJA, MSIJA, I+ and J+ in the
SandMatrix. Use them to retrieve the current complex-pointer, to advance it one position in either
direction, or to reset it to a different value.

• The current complex-pointer retrieved by ZIJ? is always a valid pointer, regardless of the
initial real-pointer of the matrix. This means that if needed ZIJ? will “nudge” the real pointer
appropriately to always point at the proper complex counterpart.

• On the other hand, ZIJ= will check that the desired new complex pointer in X is within the

bounds of the matrix, showing a DIM ERROR message if the input parameter is outside of it.

• Use ZI+ and ZJ+ to advance the complex pointer one position column-wise or row-wise
respectively., i.e. ZI+ increases the row value within the column and ZJ+ increases the
column value within the row. Note that like it’s the case for the real-pointer functions I+ and
J+, these functions don’t return the current pointer to X; you’ll need to use ZIJ? for that.

• Advancing the complex-row or the complex-column really means moving two rows or two
columns in the real matrix, and this is also done within the confines of the matrix dimensions.
For example ZJ+ will move the pointer to the first element in the following row if the last
column had been reached - and conversely, ZI+ will move the pointer to the first element in
the following column if the last row had been exceeded, setting user flags 09 and 10
according to the same rules used for real matrices.

• To avoid straddled pointer settings (i.e. not-even real pointers), the first thing done by ZI+
and ZJ+ is to ensure that the initial complex pointer has a valid position using ZIJ?

Program listing:

1 LBL”ZJ+”

2 XROM “ZIJ?”
3 J+
4 FC? 09 ; within?
5 J+ ; yes, next
6 GTO 00 ; merge

7 LBL “ZI+”

8 XROM “ZIJ?”
9 I+
10 FC? 09 ; within?
11 I+ ; yes, next
12 *LBL 00

13 FC? 09 ; within?
14 RTN ; yes, done.
15 FS? 10 ; outside?
16 RTN ; yes
17 I+ ; no, nexti
18 J+ ; and next j
19 SF 09 ; set it up!
20 RTN ; done.

21 LBL “ZIJ?

22 MRIJA
23 ODD?
24 I+
25 FRC
26 I<>J
27 ODD?
28 J+
29 RDN
30 MRIJ
31 2
32 /
33 RTN

34 LBL “ZIJ=”

35 ST+ X
36 MSIJA
37 2
38 /
39 END

Complex Matrix ROM Manual

(c) Ángel M. Martin January 2020 Page 13 of 59

The table below shows the stack usage for the pointer routines:

Routine
Stack

ZI+, ZJ+, ZIJ? ZIJ=

Input Output Input Output

T: T: Lost T: Lost

Z: Z: Z: Z: Z:

Y: Y: Y: Y: Y:

X: X: X: Complex iii,jjj Complex iii,jjj

L: n/a scratch n/a scratch

Matrix Pointer n/a (iii+1),(jjj+1) n/a iii,jjj

Example Matrices C3X3 and C4X4

These routines simply load two example complex matrices in X-Memory – just a convenient and easy

way to get you started with the examples included in the following sections of the manual. All you

need to do is type the routine name and the corresponding matrix will be created.

 and:

Note how the complex pointer is managed by the dedicated functions described before – no need to
worry about the real and imaginary parts separately.

Program listing:

LBL “^C33” 1
“C3X3” 2
6,006 3
MATDIM 4
3 5
ENTER^ 6
E 7
ENTER^ 8
0 9
CMS 10
-5 11
ENTER^ 12
2 13
XEQ 00 14
-1 15
ENTER^ 16

7 17
XEQ 00 18
-2 19
ENTER^ 20
4 21
XEQ 00 22
9 23
ENTER^ 24
6 25
XEQ 00 26
4 27
ENTER^ 28
-8 29
XEQ 00 30
-7 31
ENTER^ 32

-3 33
XEQ 00 34
2 35
ENTER^ 36
3 37
XEQ 00 38
6 39
ENTER^ 40
-1 41
*LBL 00 42

XROM “ZJ+” 43
XROM “ZIJ?” 44
VIEW X 45
CMS 46
END 47

Complex Matrix ROM Manual

(c) Ángel M. Martin January 2020 Page 14 of 59

Totally Unnecessary Examples. ;-)

The routines below are an alternative implementation of the MCODE function M*M and the focal

routine M^2 included in the SandMatrix. They don’t really improve on the original ones (and certainly

are much slower!) but have been included as academic examples of utilization for the pointer and

element storage & recall functions.

The matrix multiplication definition is well known, and can be summarized by the expression below: If

A is an m × n matrix and B is an n × p matrix, the matrix product C = AB (denoted without

multiplication signs or dots) is defined to be the m × p matrix such that

Program Listing:

Complex Matrix ROM Manual

(c) Ángel M. Martin January 2020 Page 15 of 59

Program remarks:

The initial part of the program creates the result matrix and resets all its elements to zero. It then

prepares the ranges for each of the three counters used for index and repeats the three loops

accordingly. LBL 01 is the lowest-level loop, used to compute each element of the result matrix.

Nothing sophisticated here; we use CMR twice to recall the appropriate factors from the input matrix

and CMS to store the resulting element in the result matrix. Note the use of the complex stack to

hold the partial results of the intermediate multiplications and sums, very convenient as it doesn’t

interfere with the data registers in memory or the real stack.

The program uses data registers R00 – R03, and expects the matrix names in ALPHA separated by

commas: “M1, M2, M3”. Note that M3 cannot be any of the operator matrices (so it’s not an in-place

implementation). R01 holds the value of index k, R02 the value of index j, and R3 the value of index

i. The routine needs to prepare their ranges based on the matrix dimensions, and then proceeds with

the algorithm as defined above.

Corollary: Matrix Square product.

The routine below is an almost-trivial driver for ZM*M that computes the square power of a given

squared matrix. Note the use of scratch matrix “#” to temporarily hold the result matrix, before it is

copied back to the source matrix – and eventually purged from memory.

Example: calculate the square of matrix [C3X3]. The result is given below:

1,1=-38-J64
1,2= 97
1,3= 13+J111

2,1= 104+J78
2,2=-79+J80
2,3=-74-J118

3,1= 79-J25
3,2=-56+J56
3,3=-95-J62

If nothing else these examples should have increased your appreciation for the MCODE function

M*M, whose only caveat is not supporting in-place operation but certainly works much faster and

without any data registers requirements – and not needing the 41Z either for the complex arithmetic.

Complex Matrix ROM Manual

(c) Ángel M. Martin January 2020 Page 16 of 59

Complex Transposed Matrix. { CMTRP , ZTRNP }

Missing from the original Advantage was a way to transpose a complex matrix; a fact that is duly

corrected here with the routines below. Two solutions are offered, one following an element-based

approach to illustrate the concept, and another using a block approach – faster and with fewer

program steps / byte count.

For a complex element pointer (i,j) the relationship with the individual matrix pointers holding the

four real and imaginary parts are as follows:

C(i,j) = [(2i-1, 2j-1) ; (2i-1, 2j)
 (2i, 2j-1) ; (2i, 2j)]

• The element-based approach will simply do a cursory scan of the matrix, swapping the
complex element with pointer (i.j) with its transposed one, (j,i), letting the real matrix
pointers be determined by the relationships above. It also includes the two subroutines for
complex element recall and storage, CMR and CMS that can be used independently, entering
with the complex pointer in X and the matrix name in ALPHA.

• The block-based approach takes advantage of the MMOVE function, applied to the four-
element block as per the complex values storage convention. This requires just n x m
iterations, whereas the previous approach needs 2n x 2m repeats of the single-element
copying. Also no need to worry about the matrix pointers, MMOVE will take care of that for
us.

• In either case one auxiliary matrix is required to perform the task, which will be purged on
completion - leaving the (now transposed) matrix name in ALPHA. Neither of the two
approaches requires data registers, but the first one uses flags 00 and 01.

Program listing – Block approach.

1 LBL "ZTRNP" FROM 21 MMOVE

2 "|-,#" FROM,TO 22 X<>Y 2i,2j

3 DIM? 23 MSIJA position element in from matrix

4 I<>J transpose dimension 24 R^ complex pointer (i,j)

5 ASWAP TO,FROM 25 J+ test the location for bounds

6 MATDIM 26 FS? 10 out of matrix?

7 ASWAP FROM,TO 27 GTO 02 yes, exit

8 1,001 complex pointer 28 FS? 09 out of rows?

9 LBL 01 prepare prameters 29 INT yes, integer

10 ENTER^ i,j 30 1.001 offset factor

11 ST+ X 2i,2j 31 FC? 09 within rows?

12 ENTER^ 32 FRC yes, fractional

13 I<>J 2j,2i 33 + update complex pointer

14 1,001 34 GTO 01 do next block

15 ST- Z (2i-1),(2j-1) in Z 35 LBL 02

16 - (2j-1),(2I-1) 36 ASWAP

17 X<>Y 37 MAT= copies result & redims matrix

18 R^ i,j 38 PURFL purges TO

19 ST+ X 2i,2j 39 MNAME? FROM

20 X<>Y 40 END 85 bytes

Complex Matrix ROM Manual

(c) Ángel M. Martin January 2020 Page 17 of 59

Program listing - Element-based approach

This method can be of further use if the Conjugate Transpose needs to be calculated. To that effect

all that would be needed are the instructions { X<>Y, CHS, X<>Y } right after step 12 to negate the

imaginary parts – with no impact to the CMR and CMS subroutines.

Example.- Transpose the 3x3 complex matrix shown below (you can use ‘^C33” to create it), and

use ZOMR to review the result.

1 LBL "CTRNP" FROM 32 GTO 01 next complex element

2 "|-,#" FROM,TO 33 LBL "CMR" X holds (i,j)

3 DIM? 34 ENTER^ complex (i,j)

4 I<>J transpose dimension 35 ST+ X 2i,2j

5 ASWAP TO,FROM 36 MSIJA

6 MATDIM 37 RDN

7 ASWAP FROM,TO 38 MRR- Re(a i j)

8 1,001 complex pointer 39 MRR+ Im(a i j)

9 CF 00 40 X<>Y leaves pointer at (2i,2j)
10 LBL 01 41 RTN

11 CF 01 42 LBL "CMS" X holds (j,i)

12 XEQ "CMR" 43 ST+ X 2j,2i

13 J+ 44 MSIJA

14 FS? 09 45 RDN

15 SF 01 46 MS Re(aij)

16 FS? 10 47 J-

17 SF 00 48 I-

18 ASWAP FROM,TO 49 MSC+

19 RCL Z i,j 50 X<>Y Im(aij)

20 I<>J j,i 51 MSR+

21 XEQ "CMS" 52 CHS -Im(aij)

22 ASWAP TO,FROM 53 I-

23 FS? 00 54 MS
24 GTO 02 55 RTN

25 RCL Z 56 LBL 02

26 FS? 01 57 ASWAP TO,FROM

27 INT next complex row 58 MAT=

28 1,001 59 PURFL purges TO

29 FC? 01 ran out of columns? 60 MNAME? FROM

30 FRC next complex column 61 END 142 bytes

31 + update complex pointer

Complex Matrix ROM Manual

(c) Ángel M. Martin January 2020 Page 18 of 59

Corollary: Conjugate-Transposed Matrix. { CGTRP , CMS , CMR }

In mathematics, the conjugate transpose or Hermitian transpose of an m-by-n matrix [A] with

complex entries is the n-by-m matrix [A]H obtained from [A] by taking the transpose and then taking

the complex conjugate of each entry. Thus, the conjugate transpose of an m × n matrix [A] is

formally defined by:

The routine does a direct utilization of the element-based method shown before; so there’s not earth-

shattering math involved in it. It does, however, provided the basis for a pair of sub-routines to save

and recall a complex element in the matrix using the complex index of the element. These

subroutines will be used by other, more complex programs described later on.

01 *LBL "CGTRP"

02 "|-,#"
03 DIM?
04 I<>J
05 ASWAP
06 MATDIM
07 ASWAP
08 E
09 E3/E+
10 CF 00
11 *LBL 01

12 CF 01
13 ENTER^
14 CMR

15 X<>Y
16 CHS
17 X<>Y

18 J+
19 FS? 09
20 SF 01
21 FS? 10
22 SF 00
23 ASWAP

24 RCL Z
25 I<>J
26 CMS
27 ASWAP
28 FS? 00
29 GTO 02
30 RCL Z
31 FS? 01
32 INT
33 E
34 E3/E+
35 FC? 01
36 FRC
37 +
38 GTO 01
39 *LBL 02

40 ASWAP
41 CLST
42 MMOVE
43 PURFL
44 MNAME?
45 RTN

46 *LBL "CMR"

47 ST+ X

48 MSIJA
49 RDN
50 MRR-
51 MRR+
52 X<>Y
53 RTN

54 *LBL "CMS"

55 ST+ X
56 MSIJA
57 RDN
58 MS
59 J-
60 I-
61 MSC+
62 X<>Y
63 MSR+
64 CHS
65 I-
66 MS
67 CHS
68 X<>Y
69 END

An alternative version using the pointer routines is also listed below. It’s simpler but slower

(two sweeps are needed), it requires data registers R00 & R01, plus the 41Z module as well:

LBL “ZHRMT” 1
XROM “CTRNP” 2
E 3
E3/E+ 4
ZIJ= 5
*LBL 00 6
ZIJ? 7
STO 00 8

 CMR 9
 ZCONJ 10
 RCL 00 11
 CMS 12
 ZJ+ 13
 FC? 10 14
 GTO 00 15
 END 16

Complex Matrix ROM Manual

(c) Ángel M. Martin November 2020 Page 19 of 59

Complex Matrix Determinants. { CMTRC , CMDET }

Note: Superseded by the ZPCHR method described in section 3.e

The programs below are a first-pass successful attempt at calculating Complex Matrix determinants

up to order 4. The Complex Matrix is to be stored using the SandMatrix convention - which is identical

to the HP-41 Advantage's. With this convention each complex number is represented by four

elements in the complex matrix - refer to the manuals for details.

example for 3x3 case

The SandMatrix comes well-equipped with routines to calculate the trace and integer powers of a

matrix (MTRACE, M^2 and MPWR), therefore it lends itself rather nicely to the direct formulas for

orders 2, 3, and 4 - using those elements, as described at:

https://en.wikipedia.org/wiki/Determinant

The complex matrix won't be altered in any way, as all operations are made on a scratch copy. It can

be stored in X-Mem, CL_Y-Mem, or standard data registers area. The easiest way to enter the matrix

is by using the ZIMR routine - which expects the matrix name in ALPHA. It also expects the matrix

already created, using 2n x 2n as dimension - with "n" being the complex order.

If you place it in the standard registers area, be aware that data registers R00, R01 are used by the

routine MPWR for scratch. Additionally, data register R02 is used to store the Matrix Name (thus

such can't exceed 6 characters).

As you can see there are numerous 41Z functions –needed for the complex arithmetic using the

Complex Stack. This has the additional advantage that doesn't require additional data registers, be

that standard or CL Y-RAM.

Example.- Calculate the determinant of the 4x4 Complex Matrix (you can use “C4X4” to create it):

 Solution: det = -62-8i

https://www.wolframalpha.com/input/?i=det(%7B%7B1%2Bi,+2%2B2i,+3%2B3i,+4%2B4i%7D,+%7B

0,+1,+-3-3i,+-4-4i%7D,+%7B-1%2Bi,+1-i,+1,+i%7D,+%7B-i,+-1%2Bi,+1,+0%7D%7D)

The program is very slow in non-turbo settings- there are lots of moving pars behind the scene,

despite the straight-forward program listing. Using TURBO_50 the 4x4 determinant is obtained in 5

seconds approx. The accuracy for integer matrices holds up nicely, giving exact integer real and

imaginary parts in the solution.

https://en.wikipedia.org/wiki/Determinant
https://www.wolframalpha.com/input/?i=det(%7B%7B1%2Bi,+2%2B2i,+3%2B3i,+4%2B4i%7D,+%7B0,+1,+-3-3i,+-4-4i%7D,+%7B-1%2Bi,+1-i,+1,+i%7D,+%7B-i,+-1%2Bi,+1,+0%7D%7D)
https://www.wolframalpha.com/input/?i=det(%7B%7B1%2Bi,+2%2B2i,+3%2B3i,+4%2B4i%7D,+%7B0,+1,+-3-3i,+-4-4i%7D,+%7B-1%2Bi,+1-i,+1,+i%7D,+%7B-i,+-1%2Bi,+1,+0%7D%7D)

Complex Matrix ROM Manual

(c) Ángel M. Martin November 2020 Page 20 of 59

Program Listing.

Complex Matrix ROM Manual

(c) Ángel M. Martin November 2020 Page 21 of 59

Matrix Minors. { MINOR , CMINOR }

In linear algebra, a minor of a matrix [A] is the determinant of some smaller square matrix, cut down
from [A] by removing one or more of its rows or columns. Minors obtained by removing just one row
and one column from square matrices (first minors) are required for calculating matrix cofactors,
which in turn are useful for computing both the determinant and inverse of square matrices.

If [A] is a square matrix, then the minor of the entry in the i-th row and j-th column (also called the
(i,j) minor, or a first minor[1]) is the determinant of the sub-matrix formed by deleting the i-th row
and j-th column. This number is often denoted Mi,j. The (i,j) cofactor is obtained by multiplying the
minor by: (-1)^{i+j}.

Two programs are included, one for Real matrices (not limited in order, courtesy of MDET) and
another for Complex Matrices – only up to degree 5, due to the restriction imposed by CMDET. The
programs are a good example of use of the matrix utility functions C<>C, R<>R, and MMOVE.

Program listing.- Real Matrix Minors

1 LBL "MINOR" 28 MNAME?

2 LBL 01 29 RTN

3 ASTO 01 MNAME 30 GTO 01

4 STO 00 i,j pointer 31 LBL 02

5 "|-,#1" 32 INT j

6 MAT= scratch copy 33 ENTER^
7 DIM? 34 DSE X j-1

8 1,001 35 X=0?

9 - one order less 36 RTN don’t bother if j=1

10 "#2" 37 X<>Y

11 MATDIM scratch sub-array 38 ENTER^
12 MZERO clear it 39 ENTER^

13 "#1" 40 I<>J 0,00(j-1)

14 RCL 00 41 E

15 I<>J i,j pointer 42 -

16 SF 00 43 + j,00(j-1)

17 XEQ 02 44 LBL 00

18 RCL 00 45 FS? 00

19 CF 00 46 C<>C bubble left column

20 XEQ 02 47 FC? 00

21 CLST 48 R<>R bubble up row

22 2,002 49 1.001 offset

23 "#1,#2" 50 - k,00(k-1)

24 MMOVE 51 DSE Y j=j-1

25 PURFL 52 GTO 00

26 CLA 53 END

27 MDET

Complex Matrix ROM Manual

(c) Ángel M. Martin November 2020 Page 22 of 59

Program listing: Complex Matrix Minors.

Example: Calculate all element minors for the example matrix used in the Complex Transposed
example:

You need to provide the matrix name in ALPHA and the complex pointer value in X -i.e. from 1,001 to
3,003 in this example. Remember also that the 41Z Module needs to be plugged for the complex
determinant calculation.

The solutions are:

1 LBL "CMINOR" 33 ST+ X 2i,2j

2 LBL 01 34 STO 02

3 STO 00 35 XEQ 03

4 ASTO 01 36 RCL 02 2i,2j

5 "|-,#1" 37 1,001

6 MAT= scratch copy 38 - (2i-1),(2j-1)

7 DIM? 39 LBL 03

8 2,002 40 RCL 00 i,j

9 - one order less 41 FS? 00

10 "#2" 42 I<>J

11 MATDIM scratch sub-array 43 INT

12 MZERO clear it 44 DSE X discard first column

13 "#1" 45 X=0?

14 RCL 00 46 RTN don’t bother if j=1

15 CF 00 do the rows 47 X<>Y

16 XEQ 02 48 INT

17 RCL 00 49 ENTER^

18 I<>J i,j pointer 50 ENTER^

19 SF 00 do the columns 51 2

20 XEQ 02 52 -

21 CLST 53 I<>J

22 3,003 54 + k,00(k-2)

23 "#1,#2" 55 LBL 00

24 MMOVE 56 FS? 00

25 PURFL 57 C<>C bubble left column

26 CLA 58 FC? 00

27 XROM "CMDET" 59 R<>R bubble up row

28 CLA 60 2.002 offset

29 ARCL 01 61 - k,00(k-2)

30 RTN 62 DSE Y j=j-1

31 GTO 01 63 GTO 00

32 LBL 02 64 END

 -28+J31 -44-J18 -29+J71
Minors: 5+J6 9+J49 38+J10

 -47-J9 -46-J2 -19+J51

Complex Matrix ROM Manual

(c) Ángel M. Martin November 2020 Page 23 of 59

Corollary: Complex Determinant of order Five. { CMDTM }

An extension for 5x5 complex matrix determinants is included in the Complex Matrix ROM. It uses the
complex minors (available up to order 4) to obtain the result. Note that since CMINOR uses CMDET
in turn, therefore is not practical at all for orders 4 and below – which they’d better use a direct call
to CMDET. You *can* do it of course, but it’ll definitely be much slower.

LBL "CMDTM" 1
DIM? 2
2 3
/ 4
FRC 5
E 6
+ 7
STO 03 8
CLST 9
*LBL 00 10
ZSTO 11
2 12
RCL 03 13
XROM "CMINOR" 14
ZENTER^ 15

RCL 03 16
CMR 17
RCL 03 18
INT 19
LASTX 20
I<>J 21
 + 22
 ZCHSX 23
 Z* 24
 ZRC+ 25
 2 26
 ISG 03 27
 GTO 00 28
 ZAVIEW 29
 END 30

The determinant is obtained as the sum of the elements multiplied by the corresponding co-factors (a
sign-modified version of each minor). For the example matrix shown below (C3X3) these are as
follows:

Minors: -28+J31 -44-J18 -29+J71
 5+J6 9+J49 38+J10
 -47-J9 -46-J2 -19+J51

Cofactors: -28+J31 44+J18 -29+J71
 -5-J6 9+J49 38-J10
 -47-J9 46+J2 -19+J51

Determinant: (1+3i).(-28+31i) + (2-5i).(44+18i) + (7-i).(-29+71i)= -75 + 289i

Complex Matrix ROM Manual

(c) Ángel M. Martin November 2020 Page 24 of 59

Sub-Matrices, Minors & Cofactor Matrices. { SUBZM , ZMNRS , ZCFTS }

Three other routines are also included to reduces Sub-matrix from a given one – replacing the original
- and to build the minors and cofactors matrices of a given matrix - creating a new matrix of the
same dimension where all elements will be the corresponding minor or cofactor for its position, like it
was shown in the example below.

• Sub-matrices will replace the original matrix. Make sure you make a copy of it prior to
the execution of SUBZM if you need the original matrix to be available for other purposes

• The minors and cofactors matrices are named “ZMNRS” to differentiate it from the real-case
equivalent function in the Advantage Math ROM, which is named “MINORS”

• They are not to be confused with the routines available in the Advantage Math ROM, which

are intended for the real-matrix case. Refer to the table below for details:

Complex Case (CPX MTRX ROM) Function Matrix Name

Element Minor (iii,jjj) CMINOR Result in {X,Y}

Sub-Matrix (iii,jjj) SUBZM Replaces original matrix

Minors Matrix ZMNRS ZMNRS

Cofactors Matrix ZCFTS ZMNRS

Real Case (Advtg Math ROM) Function Matrix Name

Element Minor (iii,jjj) MINOR Result in X

Sub-Matrix (iii,jjj) SUBM Replaces original Matrix

Minors Matrix MINORS MINORS

Cofactors Matrix CFACTS MINORS

Program Listing and data requirements:

Uses User flags 00-02 and data Registers {R00 – R04}. Matrix name is stored in R03.

LBL “ZMNRS” 1
CF 02 ; flags case 2
GTO 02 3
LBL “ZCFTS” 4
SF 02 ; flags case 5
*LBL 02 6
XROM “?CM” 7
ASTO 03 8
DIM? 9
“ZMNRS” 10
MATDIM 11
CLA 12
ARCL 03 13

E 14
E3/E+ 15
ZIJ= 16
*LBL 04 17
ZIJ? 18
STO 04 19
XROM “CMINOR” 20
FC? 02 21
GTO 04 22
RCL 04 23
INT 24
LASTX 25
FRC 26

 I<>J 27

+ 28
ZCHSX 29
*LBL 04 30
“ZMNRS” 31
RCL 04 32
CMS 33
CLA 34
ARCL 03 35
ZJ+ 36
FC? 10 37
GTO 04 38
END 39

Note the usage of ZJ+ to sweep all elements in the original matrix (whose name is saved in R03),
and the successive calculation of the minor or cofactor depending on the status of user flag 00.

The program below shows the current version for CMINOR and SUBZM – slightly tweaked revision
of the original program listed before thanks to the utilization of some of the new routines.

Complex Matrix ROM Manual

(c) Ángel M. Martin November 2020 Page
25 of 59

LBL “SUBZM” 1

SF 01 ; flags case 2
GTO 01 3

LBL “CMINOR” 4

CF 01 ; flags case 5
*LBL 01 6

STO 00 ; iii,jjj 7
ASTO 03 8
>”,#” ; aux matrix 9
MAT= 10
DIM? 11
2,002 12
- 13
“=” ; minor mat 14
MATDIM 15
MZERO 16
“#” ; minor mat 17
RCL 00 ; iii,jjj 18
I<>J ; jjj,iii 19
SF 00 ; do columns 20
XEQ 02 21
RCL 00 ; iii,jjj 22
CF 00 ; do rows 23
XEQ O2 24
CLST ; prepare pts 25
3,003 ; real anchor 26
“#,=” ;from, to 27

MMOVE 28
PURFL ; kills “#” 29
FS? 01 ; sub-mat? 30
GTO 01 ; yes, skip 31
MNAME? 32
XROM “CMDET” 33
PURFL ; purge 34
“#” 35
CLA 36
ARCL 03 37
RTN 38
*LBL 01 ; submatrix 39

“=,” 40
ARCL 03 ; “=,A” 41
MAT= ; override it 42
PURFL ; kills “=” 43
MNAME? 44
RTN 45
*LBL 02 ; subroutine 46

ST+ X ; complex pt 47
STO 02 ; save in R02 48
XEQ 03 ; swap one 49
RCL 02 ; pointer 50
E 51
E3/E+ ; 1,001 52

- ; previous 53
*LBL 03 ; swap two 54

RCL 00 ;iii,jjj 55
FS? 00 ;cols? 56
I<>J ; yes 57
INT 58
DSE X ; one less 59
X=0? ; first one? 60
RTN ; yes, done. 61
X<>Y ; no, go on 62
INT 63
ENTER^ 64
ENTER^ 65
2 66
- 67
I<>J 68
+ 69
*LBL 00 70

FS? 00 ; cols? 71
C<>C ; bubble up 72
FC? 00 ; rows? 73
R<>R ; bubble left 74
2,002 ; next pair 75
- 76
DSE Y ; next? 77
GTO 00 ; yes, repeat 78
END ; all done79

Program remarks:

• It uses user flags 00 and 01, and data registers R00 – R03 for the matrix name

• The program uses two scratch matrices named “#”and “=”. The first one is a direct copy

of the given matrix to perform the alterations on it without modifying the original. The
second one is a reduced matrix (one order smaller) that will hold the minor to calculate
the determinant.

• The main subroutine LBL 02 does a “bubble” swap of the corresponding columns and rows –

as per the complex pointer iii,jjj input value. The complex matrix requires two real columns
and rows to be swapped, moving them to the upper-left corner of the matrix. Once
completed the arrangement is ready for a clean “extraction” starting at real pointer 3,003
and into the destination minor matrix “=” (MMOVE in line 28)

• Note that SUBZM copies the resulting sub-matrix into the original, therefore it is replaced
by it.

• Both auxiliary matrices are purged by the program on completion, and the original matrix

(or sub-matrix) is left as the selected one.

Complex Matrix ROM Manual

(c) Ángel M. Martin November 2020 Page 26 of 59

Complex Matrix Trace. { CMTRC , ZMTRC }

The Complex Matrix ROM includes two routines to calculate the matrix trace:

The CMTRC routine uses a direct approach, summing the imaginary parts of the elements in the
diagonal and using MTRACE to obtain the double of the sum of the real parts – as consequence of
the particular way the data elements are arranged.

The ZMTRC uses an indirect approach, significantly slower than the previous one but interesting
from the academic point of view because it can also be used for other needs. The idea is to separate
the real and imaginary parts into two independent matrices, [Re(Z)] and [Im(z)]so that it verifies:

[Z] = [Re(Z)] + j [Im(Z)]

Interestingly enough this alternative method is less demanding on data storage requirements (half
the size of the “standard” method), as each of the auxiliary matrices are of dimension (m x n) for a
total of (2.m.n) elements instead of (2m.2n) = (4.m.n)

Obviously using the separate approach, the MTRACE function can be used on both the real and
imaginary component matrices, and the trace is given by:

trace([Z]) = trace ([Re(Z)]) + j trace([Im(Z)])

The downside is of course that we need a routine to separate the matrix first, which is going to take
time to execute and code space in the ROM. Nevertheless, it’s well worth the cost, as we’ll be using
it for other purposes besides the trace, such up matrix transposition and element rotations.

Program Listings.-

LBL “CMTRC” 1
MTRACE ; 2x Real part 2
2 3
/ ; real part 4
, 5
MSIJA ;first element 6
I+ ; next row 7
MRC+ ;get Im(z11) 8
*LBL 00 9
I+ ;move down 10
J+ ; move left 11
J+ ; and left again 12
MRC- ; get Im(zij) 13
+ ; add to partial 14
FC? 09 ; end of matrix? 15
GTO 00 ; no, do next 16
RCL Z ; yes, real part 17
ZAVIEW ; show result 18

MNAME? ; recall MNAME 19
RTN ; done. 20
LBL “ ZTRCE” 21
ASTO 04 ; saves MNAME 22
>”,#,=” ; scratch matx 23
XROM “ZM>XY” 24
ASWAP “#,MNAME,=” 25
MTRACE 26
ASWAP “=,#,”MNAME” 27
MTRACE 28
X<>Y 29
PURFL ; kills “=” 30
“#” 31
PURFL ; kills “#” 32
ZAVIEW ; show result 33
CLA 34
ARCL 04 ; recall MNAME 35
END ; done.36

It must be said that separating real and imaginary components doesn’t save any room when the
original matrix is left around – and for a while the three always exist at once of course.

Complex Matrix ROM Manual

(c) Ángel M. Martin November 2020 Page 27 of 59

Separation into Real and Imaginary Components. { ZM>XY , XY>ZM }

Here are the routines for the separation into the real & imaginary parts, and the reverse operation
to re-assembly the complex matrix from its two components. The routine will create the separate
components if they didn’t already exist.

Input: Names of the three matrices in the ALPHA register, “ZM, REAL,IMAG” for the separation
routine and “REAL,IMAG,ZM” for the reverse. There are several calls to ASWAP to re-arrange
ALPHA as needed – let the swap dance begin!

LBL “ZM>XY”; ZM,RE,IM 1
DIM? ; 2m x 2n 2
2 3
/ ; m x n 4
STO 02 5
ASWAP ; RE,IM,ZM 6
MATDIM 7
ASWAP ; IM,ZM,RE 8
MATDIM 9
ASWAP ; ZM,RE,IM 10
XROM “?CM” 11
RCL 02 ; m x n 12
E3/E+ ; 1,00m(00n) 13
STO 02 ; r,00m 14
LASTX ; m x n 15
*LBL 10 ; do columns 16
FRC ; 0,00n 17
E 18
+ ; 1,00n 19
STO 01 20
*LBL 00 ; do rows 21
RCL 02 ; r,00m 22
INT ; r 23
RCL 01 ; c,00m 24
INT ; c 25

I<>J ; o,ooc 26
+ ; r,00c 27
STO 00 ; current pt 28
CMR ; recalls Zcr 29
XEQ 04 ; do the trick 30
ISG 01 ; next col 31
GTO 00 ; do next 32
RCL 01 ; reset counter 33
ISG 02 ; next row 34
GTO 10 ; do next 35
RTN ; done. 36
*LBL 04 37
ASWAP ; RE,IM,ZM 38
RCL 00 ; r,00c 39
MSIJA 40
X<>Y ; Re(z) 41
MS 42
X<>Y ; r,00c 43
ASWAP ; IM,ZM,RE 44
MSIJA 45
RCL Z ; Im(z) 46
MS 47
ASWAP ; ZM,RE,IM 48
END 49

LBL "XY>ZM" ; RE,IM,ZM 1
DIM? ; m x n 2
ASWAP ; IM,ZM,RE 3
DIM? ; m x n 4
ASWAP ; ZM,RE,IM 5
ST+ X ; 2m x 2n 6
MATDIM 7
ASWAP ; RE,IM,AM 8
, 9
MSIJA 10
*LBL 00 11
MRIJA ; get current pt 12
MR ; Re(z) to X 13
ASWAP ; IM,ZM,RE 14

X<>Y ; i,00j 15
MSIJA 16
MR ; Im(z) 17
X<> Z ; Re(z) to X 18
ASWAP ; ZM,RE,IM 19
RCL Z ; i,00j 20
CMS ; save cpx. elmt. 21
ASWAP ; RE,IM,ZM 22
MRIJA ; re-focus matrix! 23
J+ ; next column 24
FC? 10 ; ouside? 25
GTO 00 ; no, do next 26
END ; yes, done!27

Complex Matrix ROM Manual

(c) Ángel M. Martin November 2020 Page 28 of 59

Program remarks:

Note how in the separation routine ZM>XY we haven’t used the pointer routines (ZIJ?,ZJ+, etc.) to
navigate the matrix, rather the implementation uses two counters to move along the columns (in
R01) and the rows (in R02). This requires prepping the ISG values in advance but it’s faster than the
complex pointer-based alternative. The other advantage is that ALPHA is not touched up at all, which
becomes critical in these cases holding three matrix names at once.

The reverse action in XY>ZM (merging real and imaginary parts into a complex matrix) is simpler
because here the pointer functions work on the real matrices, and not on the complex one. Thus
there’s no need for row and column counters since we use user flag 10 as termination criteria. Note
however the careful use of MSIJA and MRIJA (with the “A”) every time we need to recall an
element from the two source matrices. Finally, the complex pointer value for [ZM] equals the real one
in [RE] and [IM], given the doubled-up dimensions of the complex matrix compared to the real ones.

Corollary: Matrix Transpose revisited.

The example below is an alternative to the CMTRP program that also uses the matrix separation
routine to apply the standard TRNPS function to each of the components, rebuilding the complex
matrix at the end. It’s probably slower than the routines described already for the transposition, but it
may be interesting for large sizes.

Program Listing:

01 *LBL “ZTRNP” “ MNAME in ALPHA

02 ASTO 04 ; saves MNAME
03 >”,#,=” ; scratch matrix
04 XROM “ZM>XY”
05 ASWAP ; “#,=,MNAME,=”
06 TRNPS
07 ASWAP` ; “=,MNAME,#”
08 TRNPS
09 ASWAP ; “MNAME,#,=”
10 ASWAP
11 XROM “XY>ZM” ; rebuild the matrix
12 PURFL ; get rid of components
13 “#”
14 PURFL
15 CLA ; recall name
16 ARCL 04
17 END

Complex Matrix ROM Manual

(c) Ángel M. Martin November 2020 Page 29 of 59

2. Further Operations with Complex Matrices

This section deepens on the applications included in the SandMatrix, properly extended to support
complex matrices. It is heavily reliant on the 41Z so don’t forget to have it plugged in as well.

Addition and multiplication by complex values.

Completing the original matrix function set, you can use this pair of routines to:

• add one complex value to all elements of a complex matrix , and
• multiply all elements of a complex matrix by a complex value
• Compute the Hadamard product (element-wise) of two matrices

The first two Z+M and Z*M are particular examples of the real-matrix counterpart functions MAT+
and MAT* when they’re used with “X” in ALPHA to denote the X-register. The complex value is
expected in {Y,X} and the matrix name should be in ALPHA.

The third one ZMAT* is the complex counterpart of the SandMatrix function MAT*, which
computes the element-wise multiplication of two matrices of equal dimensions. Like in the real
function the three matrix names are expected in ALPHA, separated by commas. “A,B,C” – where C
may also be one of the A,B factors.

Simple enough but having them available facilitates the writing of more complex routines, therefore
their inclusion as separate entries in the FAT.

Example. Multiply the example matrix C3X3 by the imaginary unit j - i.e. do a 90 degree counter-
clockwise rotation of the original complex elements.

Assuming C3X3 is already loaded in X-memory (if not just call “^C33”) , we type:

1, ENTER^, 0, ALPHA, “C3X3”, ALPHA, XEQ “Z*M”
Then SF 21, XEQ “ZOMR” to review the results, which should look as follows:

[-3+j1 5+j2 1+j7]
i.[A] = [2+j4 -9+j6 -4-j8]

[7-j3 -2+j3 -6-j1]

Complex Matrix ROM Manual

(c) Ángel M. Martin November 2020 Page 30 of 59

Registers, flags, etc.

These routines share common core block to sweep thru all matrix elements. The navigation does not
use the new pointer functions, but a more direct, faster method instead. This requires using indexes
in data registers R01 and R02, plus another register (R00) to hold the current pointer for the
elements being processed. Data register R03 holds the subroutine index value, used by XEQ IND 03
in program step #57. Finally, user flag 01 is used for the Z+M and Z*M routines, but no scratch
matrices are needed.

Program listing:

01 LBL “ZNRM“ ;MNAME in ALPHA

02 CLSTZ ; clear Z=stack
03 5 ; subroutine index
04 XEQ 02 ; needs to return
05 ZRDN ; drop result
06 SQRT ; square root
07 MNAME? ; select matrix
08 RTN ; done.

09 LBL 05 ; does F-Norm

10 ZMOD ; modulus
11 X^2
12 Z+ ; partial result
13 ZENTER^ ; push in Z-stack
14 RTN

15 LBL “ZMAT*” “M1,M2,M3“

16 DIM? ; M1 dimension
17 ASWAP ; M2,M3,M1
18 DIM? ; M2 dimension
19 X#Y? ; different?
20 DIMERR ; show error
21 ASWAP ; M3,M1,M2
22 MATDIM ; créate matrix
23 ASWAP ; M1, M2,M3
24 3 ; subroutine index
25 GTO 02 ; merge with core

26 LBL “Z*M”

27 SF 01 ; flag case
28 GTO 01 ; merge case

29 LBL “Z+M”

30 CF 01 ; flag case
31 LBL 01 ; common
32 ZRPL^ ; fill complex stack
33 2 ; subroutine index

34 LBL 02 ; core block

35 STO 03 ; save index
36 DIM? ; m,00n
37 XROM “?CM” ; check if complex
38 2
39 / ; complex dim
40 E3/E+
41 STO 02 ; 1,00m00n

42 LASTX ; m,00n
43 LBL 10 ; row loop
44 FRC ; 0,00n
45 E
46 + ; 1,00n
47 STO 01
48 LBL 00 ; column loop
49 RCL 02 ; r,00m
50 INT ; r
51 RCL 01 ; j,00n
52 INT ; j
53 I<>J ; 0,00j
54 + ; r,00j
55 STO 00 ; complex pointer
56 CMR ; recall element
57 XEQ IND 03 ; call subroutine
58 ISG 01 ; next column
59 GTO 00
60 RCL 01 ; recall pointer
61 ISG 02 ; next row
62 GTO 10
63 RTN ; all done

64 LBL 02 ; does Z+M or Z*M

65 FC? 01 ; addition?
66 Z+ ; yes
67 FS? 01 ; product?
68 Z* ; yes
69 RCL 00 ; recall pointer
70 CMS ; save in result matrix
71 RTN ; done.

72 LBL 03 ; does MAT*

73 ZENTER^ ; pushes M(k,j)
74 ASWAP
75 RCL 00 ; current pointer
76 CMR ; recall element
77 Z* ; complex multiply
78 ASWAP ; rotate string
79 RCL 00 ; current pointer
80 CMS ; store element
81 ASWAP
82 END

Complex Matrix ROM Manual

(c) Ángel M. Martin November 2020 Page 31 of 59

Corollary: Frobenius Norm. { ZMNRM }

Using the same definition as for real matrices the ZNRM routine is part of the same core routines,
and therefore is included i this section.

where A∗ denotes the conjugate-transpose of A , and interestingly enough the expression above

shows that the trace of such matrix product must be a real number!

Note that the Frobenius norm is obviously a real value also for complex matrices, by virtue of the
modulus function.

Example: obtain the norms of our beloved example matrices C3X3 and C4X4:

||C3X3|| = 20.34698995
||C4X4|| = 11.00000000

Program remarks:

Note how the ZMNRM routine is also listed in the previous page, from program step #01 to #14 .
It shares the same central core used by the Hadamard multiplication and element sum/product
routines described just before, and therefore it is placed in this section even if strictly speaking it’s
not related to the same functionality.

The routine uses the complex arithmetic function Z+ in step #12 because it’s more convenient to
take advantage of the complex stack, but it’s really not necessary since the module is a real number,
so the “real” addition would suffice.

Here’s an alternative routine using the trace expression; shorter but probably slower, and besides it

requires two scratch matrices for the matrix product.

LBL “FRB2” 1
ASTO 01 2
DIM? ; m x n 3
INT ; m 4
STO 00 5
>”,*” 6
MAT= ; scratch #1 7
“*” 8
XROM “CGTRP” 9
DIM? ; n x m 10
FRC ; 0,00n 11
RCL 00 ; m 12
+ ; m,00n 13
“**” ; scratch #2 14

MATDIM 15
CLA 16
ARCL 01 ; MNAME 17
>”,*,**” ; “A,*,**” 18
M*M ; does the work 19
MNAME? ; MNAME 20
CMTRC ; trace of AA* 21
SQRT 22
PURFL ; clean house 23
“*” 24
PURFL 25
CLA 26
ARCL 01 ; MNAME 27
END28

Complex Matrix ROM Manual

(c) Ángel M. Martin November 2020 Page 32 of 59

Row & Column Swapping and Equal Matrix Test.

A few more routines complete the utility set for complex matrices, more or less bringing it to parity
with the real case. They are the column & Row swapping and the Matrix equal test.

Like C<>C and R<>R in the SandMatrix, you need to write the matrix name in ALPHA and the
“from,to” format for the columns or rows to swap, then call the appropriate routine ZC<>C or
ZR<>R. They’ll exchange the selected targets in the complex matrix, which in reality will be making
a double-swap if you regard this as a real matrix with double number of columns and rows.

These utilities are pivotal in the Matrix Mirror image and 90 degrees rotation routines covered in the
next section. In fact they’re all in the same FOCAL group; therefore the program listing is deferred.

The other routine included here is M=M?, a simple matrix equal test implemented as an element-
based sequential comparison. Nothing earth-shattering but it comes handy when you need to do a
quick check on to matrices to verify results after some operations – say to check if a matrix rotation
matches the expected result.

Obviously, this routine works for real and complex matrices indistinctly, given that it operates at the
element level. As usual, the routine uses ASWAP profusely to move the focus between the two
matrices. It also sets user flag 4 if the result is positive and clears it otherwise – so you can branch
programmatically in your own routines.

Program Listing:

01 LBL “M=M?” ; “A,B”

02 DIM? ; dim A
03 ASWAP ; swap names
04 DIM? ; dim B
05 ASWAP ; swap back
06 X#Y? ; different?
07 GTO 01 ; yes, no cigar
08 , ; pt = 1,001
09 MSIJA ; sets A-pointer
10 *LBL 00 ; mainloop

11 MRIJA ; A-pointer
12 MRR+ ; aij to X, incr,A-pt
13 X<>Y ; A-pointer
14 ASWAP ; swap names
15 MSIJA ; sets B-pointer
16 X<>Y ; aij to X

17 MRR+ ; bij, increases B-pt
18 ASWAP ; swap back
19 X#Y? ; different?
20 GTO 01 ; yep, no cigar
21 FC? 10 ; out of bounds?
22 GTO 00 ; nope, do next
23 SF 04 ; yes, it’s equal!
24 “YES”
25 AVIEW ; visual feedback
26 RTN ; done
27 *LBL 01

28 CF 04 ; flags failure
29 “NO” ; visual feedback
30 AVIEW
31 END ; done

Complex Matrix ROM Manual

(c) Ángel M. Martin November 2020 Page 33 of 59

Eigenvalues Revisited.

The module includes three short routines that deal with finding the Eigenvalues of complex
matrices.

• The first one, ZEV22, is for the simplest case, i.e. the 2x2 dimension matrix – where the
results are obtained simply by solving a quadratic equation with the matrix trace and
determinant with coefficients,^2 – .tr(A) + det(A) = 0derived from the two relationships

below:

 ;

The program listing shortness is a tribute to the 41Z function set:

01 LBL “ZEV22”

02 XROM “CMDET”
03 ZENTER^
04 XROM “CMTRC“
05 ZNEG
06 E

07 ZREAL^
08 Z<>ST 03
09 ZQRT
10 ZAVIEW
11 MNAME?
12 END

• The second one, ZEV33 is for the case of a 3x3 matrix. Here too we’ll use the 41Z functions
to solve the characteristic polynomial, a cubic equation with the following terms:

where c2 is the sum of the principal minors of the matrix =

If the 2x2 case was simple this one is not far away from it –

again thanks to the 41Z powerful and comprehensive function set, it’s done with a

minimalistic program shown below:

1. LBL "ZEV33"

2. XROM "?CM"

3. XROM "CMDET"

4. ZNEG

5. ZENTER^

6. XROM "CMTRC"

7. ZNEG

8. ZENTER^

9. Z^2

10. ZENTER^

11. ASTO 06

12. >",#"

13. MAT=

14. MNAME?

15. M^2

16. XROM "CMTRC"

17. Z-

18. 2

19. ST/ Z

20. /

21. ZENTER^

22. 0

23. 1

24. Z<>ST 4

25. ZCRT

26. CLA

27. ARCL 06

28. END

The three roots will be placed in the complex stack. The first one will be displayed, and you

can use ZRDN twice to see the other two.

Complex Matrix ROM Manual

(c) Ángel M. Martin November 2020 Page 34 of 59

• The third one, ZEIGEN, is an iterative approach that uses the general-purpose ZSOLVE
routine in the 41Z module. It is therefore rather slow and very dependent on the initial
guesses supplied – but on the other hand is valid for any matrix dimension. Only one
Eigenvalue is found per each pair of initial guesses, so you’ll need to repeat the execution to
obtain the others.

Let [I] be the identity matrix of the same dimension as [A]. The equation to solve is:

The program listing is also deceptively short. Note the subroutine LBL 05 used to perform the
element product I on the diagonal only – faster than using the general-purpose ZM* routine.

01 LBL “ZEIGEN”

02 ASTO 05
03 DIM?
04 “I”
05 MATDIM
06 “Z1=?“
07 PROMPT
08 ZENTER^
09 “Z2=?“
10 PROMPT
11 “*ZEV“
12 ZSOLVE
13 ZAVIEW
14 RTN

15 LBL “*ZEV“

16 “I“
17 MIDN
18 XEQ 05
19 “I,”
20 ARCL 05
21 >”,I”
22 MAT-
23 MNAME?
24 XROM “CMDET”
25 RTN
26 *LBL 05
27 DIM?
28 2

29 /
30 E3/E+
31 STO 03
32 RDN
33 *LBL 00

34 RCL 03
35 INT
36 ENTER^
37 I<>J
38 +
39 CMS
40 ISG 03
41 GTO 00
42 END

R00–R05 are used by ZEIGEN / CMDET, and ZSOLVE is data register hungry, needing R08–R12.

Example1:

Find the three Eigenvalues of the matrix given below:

Tricky enough they happen to be the real values 0, 2, and -2, but assuming we don’t know that
beforehand let’s use the guess valuesaround{ 1+i , 1-i } and { -1, 1}.

Using ZEV33 is as simple as entering the matrix name in ALPHA and calling the program. The three
eigenvalues are in the complex stack, as follows:

z1 = 0+J0
z2 = 2-J1.22E-6
z3 = -2.00+J1.22E-6 - unfortunately not a brilliant precision ...

Complex Matrix ROM Manual

(c) Ángel M. Martin November 2020 Page 35 of 59

With ZEIGEN it’s a bit trickier. Notice how the successive values of det(A-I) are being displayed,

and how they should be converging to zero in a few iterations. Remember to adjust your display
settings to reach the desired accuracy.

Example 2.-

Obtain one Eigenvalue for our example matrix C3X3, also starting with guesses { 1+i , 1-i }

 or in FIX6: 2.500538 - j 1.063949

To verify this, we can use ZEV33 again, which yields the following results:

z1 = -2.540+J15.790
z2 = 2.501-J1.064
z3 = 6.040+J3.274

PS. This web page is a very good resource to check your results:
https://www.arndt-bruenner.de/mathe/scripts/engl_eigenwert2.htm

https://www.arndt-bruenner.de/mathe/scripts/engl_eigenwert2.htm

Complex Matrix ROM Manual

(c) Ángel M. Martin November 2020 Page 36 of 59

The path not taken: using diagonal & cross-elements product sums.

Another alternative for ZEV33 that does not require calculating the square matrix is described

before. The advantage is that it doesn’t need the additional memory for the scratch matrix needed

in the square matrix operation, but it’s a longer program and it takes much longer to complete.

Characteristic polynomial equation:

The calculation for c2 is done as ZIJJI – ZMDPS, with the routines listed below:

Complex Matrix ROM Manual

(c) Ángel M. Martin November 2020 Page 37 of 59

Characteristic Polynomial, Determinant & Inverse

This section finally tackles the general-purpose case for the three main subjects covered previously

in the manual: Eigenvalues, Determinant and Inverse of a square matrix.

As we know, the Eigenvalues are calculated as the roots of the characteristic polynomial. In the 41Z

module there are programs to calculate the roots of complex polynomials of any degree, therefore

we’ll address the calculation of the coefficients of the characteristic polynomial here, using the

Faddevv-Leverrier method as we did in the SandMatrix for the case of real matrices

The beauty of this approach is that we’ll put those coefficients to work bigtime to obtain the matrix

determinant (independent tern), and also the matrix inverse using the corollary of the Cayley-

Hamilton theorem. So, we’ll kill three birds with a single stone (well, maybe with a single stone plus

one extra pebble ;-)

1. ZPCHR calculates the coefficients of the characteristic polynomial of the square matrix

whose name is in ALPHA. The program will enumerate them and will return the control word

bbb.eee in X, denoting the complex registers holding the coefficients. The original matrix is

not altered, and its name is left in ALPHA upon completion.

2. CMDET (in the SandMatrix) also uses this approach, whereby the determinant is the last

coefficient of said characteristic polynomial with changed sign:

 𝑃(ℎ) = ∑ 𝑐𝑛−𝑘 ℎ𝑘𝑛
𝑘=0 , and: det(𝐴) = (−1)𝑛. 𝑐𝑛 ,

i.e. the coefficient of the independent term. The program will leave the original matrix

unchanged and its name in ALPHA upon completion.

3. Lastly, ZMINV calculates the inverse matrix (*), using the expression:

𝐴−1 =
−1

𝑐𝑛
 (𝐴𝑛−1 + 𝑐1 𝐴𝑛−2 + ⋯ + 𝑐𝑛−2𝐴 + 𝑐𝑛−1 𝐼).

Note that this expression can be re-written using the Honer form,

𝐴−1 =
−1

𝑐𝑛
 (𝑐𝑛−1 𝐼 + 𝐴(𝑐𝑛−2𝐼 + 𝐴(𝑐𝑛−3𝐼 + ⋯ + 𝐴(𝑐1𝐼 + 𝐴 𝑐0)

Which is much more convenient to use the powerful MCODE matrix functions available in

the SandMatrix, MAT+ and M*M, plus the routine Z*M needed to do the final bit, i.e. the

division by det(A).

Note that the program does not replace the original matrix with its inverse, instead the

inverse matrix is left in X-Mem with the name “P”.

(*) Remember that the MCODE function MINV does support complex matrices, and therefore will

always be the preferred method for the matrix inversion calculation- however ZMINV is added to

the module for comparison purposes.

References:

https://en.wikipedia.org/wiki/Faddeev%E2%80%93LeVerrier_algorithm

https://en.wikipedia.org/wiki/Cayley%E2%80%93Hamilton_theorem

https://en.wikipedia.org/wiki/Faddeev%E2%80%93LeVerrier_algorithm
https://en.wikipedia.org/wiki/Cayley%E2%80%93Hamilton_theorem

Complex Matrix ROM Manual

(c) Ángel M. Martin November 2020 Page 38 of 59

Example.- Calculate the characteristic polynomial, determinant and inverse for the C3x3 matrix:

First off, ensure the matrix is loaded using XEQ “^C33” if still not in X-Mem.

Then with the matrix name in ALPHA we do:

“C3X3”, XEQ “ZPCHR”, => shows iterations and then:

C0 = 1+J0 R/S

c1 = -6-J18 R/S

c2 = -38+J131 R/S

c3 = -75+J289 thus: det = 75-J289

And now:

XEQ “ZMINV” (shows counters…) SF 21, XEQ “ZOMR”

1,1= 0.1241+J0.0647 1,2=-0.0152+J0.0213 1,3= 0.0104+J0.1599

2,1= 0.0213-J0.1578 2,2= 0.1513-J0.0704 2,3=-0.0322-J0.1508

3,1= 0.2546+J0.0343 3,2=-0.0004+J0.1316 3,3= 0.1813+J0.0187

In order to test the accuracy, let’s invert the inverse to compare it with the original – calculating the

norm of the difference:

ZMNRM [C3X3 – Inv(Inv(C3X3))] = 2.2289235 E-08

The accuracy loss happens due to the FOCAL subroutines called by the program, despite the other

MCODE functions used. Still it’s a pretty decent performance considering the inherent platform

limitations and the nature of the iterative process.

Register, Flags, etc.

Data registers {R00 – R03} are used in main memory.

Only user flag 4 is used to differentiate between the main routines.

Two auxiliary matrices are needed, each of the same size of the original one – therefore the

maximum complex matrix size is n= 14, for a total of 588 X-mem registers. This requirement stems

from the MCODE function M*M, which cannot have the result matrix equal to any of the operands

(i.e. it’s not an in-place multiplication). But I’m not complaining, since it does support complex

matrices as well as real ones!

LBL “Z*ID” - This subroutine does the equivalent to MAT* in the case “X,I,I”, with a complex value

in {Y,X} and the identity matrix [I]. This is faster than using Z*M, since only the diagonal

elements need doing:

 𝑧. [I] = [
𝑧 (0)

(0) 𝑧
]

Complex Matrix ROM Manual

(c) Ángel M. Martin November 2020 Page 39 of 59

Program Listing.

*LBL "ZMINV" 1
 SF 04 2
 GTO 04 3

*LBL "ZPCHR" 4
 CF 04 5

*LBL 04 6
 XROM "?CM" 7
 ASTO 00 8
 >",P" 9
 MAT= 10
 DIM? 11
 "#" 12
 MATDIM ; 2n,002n 13
 FRC ; 0,002n 14
 2 15
 / ; n,00n 16
 LASTX 17
 + ; 2,00n 18
 STO 01 ; counter 19
 CF 21 20

*LBL 00 ; loop1 21
 VIEW 01 22
 XEQ 01 ; Ck 23
 XROM “Z*ID” ; [#]=Ck*[#] 24
 "P,#,#" 25
 MAT+ 26
 CLA 27
 ARCL 00 28
 >",#,P" 29
 M*M 30
 ISG 01 ; next? 31
 GTO 00 ; yes 32
 XEQ 01 33
 FS? 04 ; inverse? 34
 GTO 04 ; yes, -> 35
 E 36
 STO 02 37
 CLX 38
 STO 03 ; c0 = 1 39
 RCL 01 40
 E3/E+ 41
 SF 21 42
 ZOUPT (ZF# 52) 43
 CLA 44
 ARCL 00 45
 PDEG (F# 93) 46

 INT 47
 ENTER^ 48

ST+ X 49
2 50
+ 51
 E6 52
/ 53
6 54
E3/E+ 55
+ 56
REGMOVE 57
X<>Y 58
XROM “ZPROOT” 59
RTN 60

LBL “Z*ID” ; z*[I] 61
 “#” 62

MIDN 63
1.001 64
XROM “CMS” 65
 >”,” 66
DIM? 67
FRC 68
3,00002 ; counter 69
+ ; 3.00m02 70
1.001 71
ENTER^ 72
ENTER^ 73
ST+ Y ; 2.002 74

*LBL 02 ; loop2 75
 X<>Y 76
ST+ Z ; k.00k 77
X<>Y ; 2.002 78
MMOVE ; 1.001 79
 ISG T 80
 GTO 02 81

 RTN 82

 *LBL 01 83
 "P" 84
 CMTRC 85
 RCL 01 86
 INT 87
 E 88
 - 89
 CHS 90

 ST/ Z 91
 / 92

 ZSTO IND 01 (129) 93
 RTN 94

*LBL 04 ; inverse 95
 CLA 96
 ARCL 00 97
 >",P" 98
 MAT= 99
 RCL 01 ; n+1,00n 100
 FRC 101
 E-3 ; 0,001 102
- 103
 2 104
 + ; 2,00(n-1) 105
 STO 01 106
 PDEG (F# 93) 107
 X<0? 108
 GTO 04 109

*LBL 05 ; loop3 110
 ZRCL IND 01 (129) 111
 XROM “Z*ID” ; [#]=Ck*[#] 112
 "P,#,#" 113
 MAT+ 114
 CLA 115
 ARCL 00 116
 >",#,P" 117
 M*M 118
 ISG 01 ; next? 119
 GTO 05 ; yes, -> 120

LBL 04 121
 ZRCL IND 01 (129) 122
 XROM “Z*ID” ; [#]=Cn*[#] 123
 "P,#,P" 124
 MAT+ 125
 RCL 01 ; n,00(n-1) 126
 E 127
 + ; n+1 128
 ZRCL IND X (243) 129
 ZNEG 130
 ZINV 131
 “#” 132
PURFL 133
MNAME? 134
 XROM "Z*M" 135
ZOMR 136
END 137

Complex Matrix ROM Manual

(c) Ángel M. Martin November 2020 Page 40 of 59

Real Matrix version of the same programs.

It’s easier to handle real matrices with the SandMatrix functions – especially MAT* which was the

trouble child in the complex case. I’ve used the same subroutines *LBL 01 and *LBL 03 (for “Z*ID),

so it’s easier to establish the comparisons between both cases. Note that this version does not

calculate the Eigenvalues – you can use PROOT for that purpose.

So what’s the additional benefit of these over MDET and MINV ? Nothing much to be honest,

supposedly the accuracy should hold better using the Faddeev-Leverrier algorithm but the difficult

examples it was tried on proved otherwise.

*LBL "DET" 1
 CF 04 2
 GTO 04 3

*LBL "INV" 4
 SF 04 5

*LBL 04 6
 ASTO 00 7
 >",P" 8
 MAT= 9
 DIM? 10
 "#" 11
 MATDIM 12
 FRC 13
 2 14
 + 15
 STO 01 16
 CF 21 17

*LBL 00 18
 VIEW 01 19
 XEQ 01 ; nth. Coef. 20
 XEQ 03 ; x*[#] 21
 "P,#,#" 22
 MAT+ 23
 CLA 24
 ARCL 00 25
 >",#,P" 26
 M*M 27
 ISG 01 28
 GTO 00 29
 XEQ 01 30
 CLD 31
 CLA 32
 ARCL 00 33

 FS? 04 34
 GTO 04 35
 E 36
 X<> 01 ; n+1 37
 CHSYX 38
 CHS ; (-1)^n 39
 RTN 40

 *LBL 01 ; n-th coef. 41
 "P" 42
 MTRACE 43
 RCL 01 44
 INT 45
 E 46
 - 47
 / 48
 CHS 49
 STO IND 01 50
 RTN 51

 LBL 03 ; x[#] 52
 "#" 53
 MIDN 54
 "X,#,#" 55
 MAT* 56
 RTN 57

 *LBL 04 ; inverse 58
 >",P" 59
 MAT= 60
 RCL 01 61
 FRC 62
 E-3 63
 - 64
 2 65
 + 66

 STO 01 67
 PDEG 68
X<0? 69
GTO 04 70

*LBL 05 71
 RCL IND 01 ; Cn 72
 XEQ 03 ; x*[#] 73
 "P,#,#" 74
 MAT+ 75
 CLA 76
 ARCL 00 77
 >",#,P" 78
 M*M 79
 ISG 01 80
 GTO 05 81

*LBL 04 82
 RCL IND 01 83
 XEQ 03 84
 "P,#,P" 85
 MAT+ 86
 RCL 01 87
 E 88
 + ; (n+1) 89
 RCL IND X ; Cn 90
 CHS ; -Cn 91
 1/X ; -1/Cn 92
 "X,P,P" 93
 MAT* 94
 MNAME? ; “P” 95
 SF 21 96
 OMR 97
 END98

Acknowledgment- Many thanks to Valentín Albillo for piquing my curiosity with his powerful and
elegant implementation of the same algorithms on the HP-71, described with numerous examples
and insights in the article posted here:

HP Article VA047 - Boldly Going -Eigenvalues and Friends

https://albillo.hpcalc.org/articles/HP%20Article%20VA047%20-%20Boldly%20Going%20-%20Eigenvalues%20and%20Friends.pdf

Complex Matrix ROM Manual

(c) Ángel M. Martin November 2020 Page 41 of 59

Element Rotations – Matrix Mappings.

The concept of in-matrix mapping refers to the different operations made to the elements of the
matrix according to given rules. One such mapping very commonly used is the matrix transposition,
whereby each element aij is swapped with its “counterpart” one, aji. Another type of mapping deals
with element “rotations”, where there’s a shifting or rotation of all elements by one of several
positions (steps) in either clockwise (right) or counter-clockwise (left) directions. Let’s see them
individually.

Matrix 90-degree Rotations. Mirror Images.

A 90-degree clockwise rotation pivots the complete matrix around its bottom-right element, i.e the
last element in the last column works as the rotation “axis” - whilst a counter-clockwise 90-deg turn
uses the bottom-left element, i.e. the last element in the first column

This type of rotations is the simplest one to implement, thanks to the row or column swapping
functions (depending of the direction of the rotation), applied on the transposed matrix. The
algorithm consists of successive row or column switches done on the transposed matrix, and thus
it’s faster than using an individual element mapping for each of the layers (or “rings”) in the matrix
– which is also dependent on the matrix dimensions.

For example, rotating the 4x4 matrix below 90 degrees clockwise; see how the rotated matrix is the
vertical-mirror image of the original transposed?

Similarly, a counter-clockwise 90-deg rotation is the horizontal-mirror image of the original
transposed.

Our routines will simply transpose the matrix first, and then call the mirror image routine –
consisting of a row or column swapping repeated as many times as columns are in the transposed
matrix.

For real matrices it’s an in-place algorithm by virtue of the TRNPS MCODE function, but for complex
matrices such is not the case, as using the CMTRP FOCAL routine the transposed coexists in
memory with the original during the operation.

Complex Matrix ROM Manual

(c) Ángel M. Martin November 2020 Page 42 of 59

Program usage:

Just type the matrix name in ALPHA and execute ZM90R or ZM90L depending on the desired
direction of rotation. For ZMIRR you need to clear or set user flag manually to indicate vertical or
horizontal mirror image respectively. Note that the utilities ZC<>C and ZR<>R do not use the user
flag, as they can be also called from other programs/

Program Listing: (includes ZC<>C and ZR<>R)

01 LBL “ZM90R” ; right

02 CF 00 ; flag case
03 GTO 00 ; merge

04 LBL “ZM90L” ; left

05 SF 00 ; flag case
06 *LBL 00 ; common

07 XROM “CMTRP” ; transpose

08 LBL “ZMIRR” ; mirror

09 DIM? ;2n x 2m
10 2
11 / ; n x m
12 FRC ; 0,00m
13 E
14 + ; 1,00m
15 *LBL 01

16 FC? 00 ; right?
17 XROM “ZC<>C”
18 FS? 00 ; left?
19 XROM “ZR<>R”
20 E-3 ; next col?
21 -
22 ISG X ; next row

23 GTO 01 ; repeat

24 RTN ; done.

25 LBL “ZC<>C” ; iii,jjj

26 ST+ X ; realpt
27 C<>C ; swap
28 E ; next col
29 E3/E+ ; next col
30 +
31 C<>C ; swap
32 GTO 00 ; merge

33 LBL “ZR<>R” ; iii,jjj

34 ST+ X ; real pt.
35 R<>R ; swap
36 E ; next row
37 E3/E+ ; next row
38 +
39 R<>R ; swap
40 *LBL 00 ; common

41 LASTX ; 1,001
42 - ; undo
43 2 ; cpx pt.
44 /
45 END ; done

With this one already safely under our belt let’s move on to the next section that deals with Layer
Rotations in steps of a single element.

Terminology alert:

“Reflection” is the analogous term to mirror image,
although the horizontal and vertical reflections can
be confusing since they use vertical and horizontal
”mirrors”, which is intuitively the opposite.

Complex Matrix ROM Manual

(c) Ángel M. Martin November 2020 Page 43 of 59

Matrix Layer Rotations.

Rotating the matrix elements by one step needs to be done for all layers (or rings) in the matrix, from
the outermost to the innermost – which depending on the dimensions will remain unmodified when the
number of rows is odd.

For example, the counter-clockwise rotation of a 4 x 5 matrix is represented by the figure below. Note
that in one rotation, you only have to shift elements by one “step”.

For a counter-clockwise (left) rotation we need to shift
each layer elements as follows:

1. one position to the left within the upper part
2. one position downwards within the left part
3. one position to the right within the bottom par
4. one position upwards within the right part

Then such should be repeated for all inner layers, until
completing the whole matrix.

A clockwise rotation follows the same process with the shifting done in opposite directions as stated
above.

Let’s denote the original (m x n) matrix as [A] = (ai,j), and the rotated matrix [B] = (bij), also m x
n.The following general expressions describe the algorithm required to perform one single step,
clockwise rotation:

 FOR k = 0 TO int[min(m,n)/2] ; current layer

 FOR j = k+1 TO (n-1-k) ; top row rightwards
 b(1+k),(j+1) = a(1+k),j
 NEXT j

 FOR i = (1+k) TO (m-1-k) ; rightmost column downwards
 b(i+1),(n-k) = a i,(n-k)
 NEXT i

 FOR j = (n-k) TO (2+k) STEP -1 ; bottom row leftwards
 b(m-k),(j-1) = a(m-k),j
 NEXT j

 FOR i = (m-k) TO (2+k) STEP -1 ;leftmost column upwards
 b(i-1),(1+k) = a i,(1+k)
 NEXT i

 NEXT k ; next layer

All we need to do is figure out a way to implement this simple BASIC-like approach as an RPN routine,
which as everybody knows is far from being the RPN’s forte.

Complex Matrix ROM Manual

(c) Ángel M. Martin November 2020 Page 44 of 59

The routines included require an auxiliary matrix to hold the rotated elements, therefore they don’t
offer an in-place solution to the problem. Solutions for both real and complex matrices are provided.

Note as well that to do a counter-clockwise rotation we can apply the same algorithm on the
transposed matrix, therefore we only need to implement the clockwise case.

Copying and Swapping Elements

These ad-hoc utilities should facilitate the task, copying elements from a source matrix to a destination
one, using their pointers in the stack registers X (destination) and Y (source). As always, source and
destination matrix names are expected in ALPHA separated by comma.

1. LBL "a<>b"

2. X<>Y
3. MSIJA
4. MR
5. X<> Z
6. ASWAP
7. MSIJA
8. MR
9. X<> Z
10. MS
11. R^
12. ASWAP
13. MSIJA

14. R^
15. MS
16. X<> T
17. RTN

18. LBL "a>b"

19. X<>Y
20. MSIJA
21. MR
22. RCL Z
23. ASWAP
24. MSIJA
25. X<> Z
26. MS

27. ASWAP
28. RDN
29. RTN

30. LBL "Ca>b"

31. X<>Y
32. CMR
33. ASWAP
34. RCL Z
35. CMS
36. ASWAP
37. END

All in all, nothing more than the usual ASWAP dance to set the focus on the target matrix, spiked out
with calls to MR and MS here and there to move the elements between the matrices. Notably the
complex case Ca>b turns out to be shorter due to the help from the CMR and CMS utilities of course.

Discarding trivial cases.

The other auxiliary routine is ?1x1, used to discard the trivial case where there’s only one column or
one row in the matrix. This routine uses an input parameter in the X-register (a.k.a the “threshold“),
that must be equal to 1 for real matrices or 2 for complex ones.

1. LBL "?1X1"

2. DIM?
3. X<>Y ; eiether 1/2
4. E3/E+
5. -
6. INT ; rows
7. X=0?

8. DIMERR
9. LASTX
10. FRC ; cols
11. X=0?
12. DIMERR
13. END

Equipped with our shiny new utilities, here’s the complete Matrix Layer Clockwise Rotation routines for
the real and complex cases combined into a single program.-

Complex Matrix ROM Manual

(c) Ángel M. Martin November 2020 Page 45 of 59

Program listing:

1 LBL “M<)R“

2 CF 02 ; flag case
3 E ; single
4 GTO 10 ; merge

5 LBL “ZM<)R“

6 XROM “?CM“ ; complex?
7 2 ; dual
8 SF 02 ; flag case
9 *LBL 10 ; common
10 XROM “?1X1“ ; threshold?
11 >“,#“ ; scratch
12 MAT= ; copy over
13 DIM? ; 2m x 2n
14 STO 04
15 2
16 / ; m x n
17 FS? 02 ; complex?
18 STO 04
19 RCL 04 ; m x n
20 2
21 / ; (m/2),00(n/2)
22 INT ; m/2
23 E
24 -
25 I<>J ; 0,00(1-m/2)
26 STO 00 ; range for k
27 *LBL 00 ; current layer
28 RCL 04
29 FRC ; 0,00n
30 RCL 00
31 INT ; k
32 E
33 + ; 1+k
34 STO 02
35 I<>J ; 0,00(1+k)
36 -
37 RCL 02 ; 1+k
38 +
39 STO 01 ; (k+1),00(n-k-1)

40 *LBL 01 ; current row
41 E ; increase column
42 XEQ 05 ; shift row
43 ISG 01 ; NEXT i
44 GTO 01 ; do next row

45 RCL 04
46 INT ; m
47 RCL 02 ; k+1
48 -
49 I<>J ; 0,00(m-k-1)
50 RCL 02 ; 1+k
51 +
52 STO 01 ; (k+1),00(m-k-1)
53 RCL 04

54 RCL 00
55 I<>J ; x,00k
56 -
57 FRC ; 0,00(n-k)
58 STO 02

59 *LBL 02 ; current column
60 E ; increase row
61 XEQ 06 ; shift column
62 ISG 01 ; next J
63 GTO 02 ; do next column

64 RCL 04
65 FRC ; 0,00n
66 I<>J ; n
67 RCL 00
68 INT ; k
69 -
70 E
71 LASTX ; k
72 + ; 2+k-1
73 I<>J ; 0,00(2-k-1)
74 STO 03
75 + ;(n-k),00(2-k-1)
76 STO 01
77 RCL 04
78 RCL 00 ; k,00s
79 -
80 INT ; m-k
81 STO 02

82 *LBL 03 ; current row
83 -E ; decrease column
84 XEQ 05 ; shift row
85 DSE 01 ; NEXT i
86 GTO 03 ; do next row

87 RCL 02 ; m-k
88 RCL 03 ; 0,00(2-k-1)
89 +
90 STO 01 ; ;(m-k),00(2+k-1)
91 RCL 00
92 INT ; k
93 E
94 + ; 1+k
95 I<>J ; 0,00(1+k)
96 STO 00

97 *LBL 04 ; current row
98 -E ; decrease row
99 XEQ 06 ; shift column
100 DSE 01 ; NEXT j
101 GTO 04

102 ISG 00 ; NEXT k
103 GTO 00 ; do next layer
104 ASWAP
105 MAT= ; final copy
106 PURFL ; kill scratch

Complex Matrix ROM Manual

(c) Ángel M. Martin November 2020 Page 46 of 59

107 MNAME? ; recall name
108 RTN ; all done

109 *LBL 05 ; shift row

110 I<>J
111 RCL 01
112 INT
113 I<>J
114 GTO 07 ; merge

115 *LBL 06 ; shift column

116 RCL 01
117 INT ; row pointer

118 *LBL 07 ; common
119 RCL 02 ; cpx. pointer
120 + ; row,col
121 + ; adds offset
122 LASTX ; source pt.
123 X<>Y ; destination Pt.
124 FC? 02 ; real?
125 XROM “a>b“
126 FS? 02 ; complex?
127 XROM “Ca>b“
128 END

Program remarks:

The program uses user flag 02 and data registers R00 – R04, plus a scratch matrix “#“ of the same
size as the original. The data registers hold the following parameters:

R00 – layer index
R01 – row or column index
R02 – scratch
R03 – scratch
R04 – matrix dimension

The routine is not difficult in nature but prepping the ranges for all loops is sticky and error-prone.
Especially tricky is the descending counter in the DSE loops, which requires subtracting one to the final
value to be equivalent to the FOR/NEXT structure with negative steps.

The program structure reflects the general algorithm, so there are four small loops (one for each part
of the layer) ran sequentially inside one larger one that does the layers. The small loops are LBL 01,
LBL 02, LBL 03 and LBL 04, inscribed in rectangles on the listing above.

Two routines - LBL 05 and LBL 06 - do the element shifting on the rows (upper and bottom parts of
layer) and columns (right and left parts of layers) respectively. Each one is called multiple times within
the loops (as many as elements need shifting), and the input parameters indicate whether it is an
advance or a back-step (positive or negative sign).

Complex Matrix ROM Manual

(c) Ángel M. Martin November 2020 Page 47 of 59

Corollary: Matrix Spiral Input/Output. { ZIMS , ZOMS }

Adding a matrix “spiral“ input/output capability is not difficult with just a few modifications to the
previous program. The idea is to navigate the source matrix following the same algorithm, simply
showing the current element values and offering changing in the input case. Obviously we won’t be
needing an auxiliary matrix for this task, thus the parts of the code dealing with that will be bypassed –
controlled by user flag 01.

Like we did in the Input/Output routines by rows and
columns, user flag 00 will discriminate between the input
(set) and output (clear) cases. User flag 02 will continue to
flag the real vs. Complex cases as before, but we’re going
to need two more flags to deal with the possible “left-over
“elements, i.e. those not belonging to any rotation layer.

In the example below there’s indeed a left-over element
(a32= 13) but in general there may be more than one of
course, all depending on the matrix dimensions.

Left-Over elements.

The first thing is to check if there are left-over elements. This is a consequence of the matrix

dimensions, where the number of layers is: L = int [min(m,n) / 2]. As it happens, if min(m,n) is an

odd number then we’ll have left-over elements. Moreover, these will be arranged in row order or in

column order, depending on which one was the minimum. Therefore, we’ll need two user flags to mark

the possible conditions, as described by the table below:

User Flag F 00 F 01 F 02 F 03 F 04

Clear Output Rotation Real Whole Layers Column order

Set Input Spiral Print Matrix Left-over elms. Row order

The last problem to tackle is determining how many left-over elements exist in the orphan row or

column. This is also determined by the matrix dimensions of course, and the implementation uses a

final loop using the following ranges:

Let r = min (m,n); L = number of layers; i/j = leftover row / column.

FOR h = (L+1) TO (r-L)

 Show element ai,h or ah,j depending on F04

NEXT h

Four global labels are provided to do the spiral printing: two for Input / Output plus IMS and OMS -

another two for Real / Complex cases ZIMS and ZOMS. One additional global label is included “>ZIJ”

to display the complex elements - which is shared with the “classic” matrix Input / Output by columns

and rows, { ZIMC, ZOMC, ZIMR, and ZOMR}. That’s quite a set!

Bearing all the above under consideration it results into a non-trivial modification of the rotations

program, refer to the program listing in next page for the final implementation details.

Complex Matrix ROM Manual

(c) Ángel M. Martin November 2020 Page 48 of 59

 Program listing:

*LBL "IMS" 1
3 2
GTO 11 3

*LBL "OMS" 4
2 5
GTO 11 6

*LBL "ZIMS" 7
7 8
GTO 11 9

*LBL "ZOMS" 10
 6 11
*LBL 11 12
 X<>F 13
 FS? 02 14
XROM "?CM" 15
GTO 11 16

*LBL "ZM<)R" 17
XROM "?CM" 18
2 19
 ENTER^ 20
 4 21
 GTO 10 22

*LBL "M<)R" 23
E 24
 0 25
*LBL 10 26
 X<>F 27
 RDN 28
XROM "?1X1" 29
"`,#" 30
MAT= 31
*LBL 11 ; common 32
DIM? 33
 STO 04 34
 2 35
 / 36
 FS? 02 37
 STO 04 38
 RCL 04 39
 INT 40
 LASTX 41
FRC 42
I<>J 43
X<Y? 44
SF 04 ; mark #1 45
X>Y? 46
X<>Y 47
ODD? 48
SF 03 ; mark #2 49
 2 50
 / 51

 INT 52
 E 53
 - 54
I<>J 55
 STO 00 56

*LBL 00 57
 RCL 04 58
FRC 59
 RCL 00 60
 INT 61
E 62
+ 63
 STO 02 64
I<>J 65
 - 66
 RCL 02 67
 + 68
 STO 01 69

*LBL 01 70
E 71
XEQ 05 72
 ISG 01 73
GTO 01 74
 RCL 04 75
 INT 76
RCL 02 77
 - 78
I<>J 79
 RCL 02 80
 + 81
 STO 01 82
 RCL 04 83
 RCL 00 84
 I<>J 85
 - 86
 FRC 87
 STO 02 88
*LBL 02 89
 E 90
 XEQ 06 91
 ISG 01 92
GTO 02 93
RCL 04 94
FRC 95
I<>J 96
RCL 00 97
 INT 98
 - 99
 E 100
LASTX 101
 + 102
 I<>J 103

 STO 03 104
 + 105
 STO 01 106
RCL 04 107
 RCL 00 108
- 109
 INT 110
 STO 02 111
*LBL 03 112
 - E 113
XEQ 05 114
DSE 01 115
GTO 03 116
 RCL 02 117
 RCL 03 118
 + 119
 STO 01 120
RCL 00 121
 INT 122
 E 123
 + 124
 I<>J 125
 STO 02 126

*LBL 04 127
 - E 128
 XEQ 06 129
 DSE 01 130
GTO 04 131
 ISG 00 132
GTO 00 133
 FS? 01 134
GTO 08 135
ASWAP 136
MAT= 137
 PURFL 138
MNAME? 139
 RTN 140
*LBL 08 141
 FC? 03 142
 RTN 143
 RCL 04 144
FS? 04 145
I<>J 146
FRC 147
RCL 00 148
 INT 149
 STO 00 150
E 151
 + 152
 + 153
 RCL 00 154
I<>J 155

Complex Matrix ROM Manual

(c) Ángel M. Martin November 2020 Page 49 of 59

 - 156
 STO 00 157
 FC? 02 158
GTO 08 159
ZJ+ 160
*LBL 09 161
ZIJ? 162
>ZIJ 163
 FC? 04 164
ZJ+ 165
 FS? 04 166
 ZI+ 167
 ISG 00 168
GTO 09 169
 RTN 170
*LBL 08 171
J+ 172

*LBL 12 173
XEQ 13 174
FC? 04 175
J+ 176
 FS? 04 177
I+ 178

 ISG 00 179
GTO 12 180
 RTN 181
*LBL 13 182
 "a" 183
MRIJ 184

V# 185
 64 ; >aIJ 186
 AVIEW 187
MNAME? 188
 FS? 00 189
 STOP 190
MS 191
 RTN 192

*LBL 05 193
I<>J 194
 RCL 01 195
 INT 196
 I<>J 197
GTO 07 198

*LBL 06 199
 RCL 01 200

 INT 201
*LBL 07 202
 RCL 02 203
+ 204
 + 205
 LASTX 206
 FS? 01 207
GTO 07 208
 X<>Y 209
 FC? 02 210
XROM "a>b" 211
 FS? 02 212
XROM "Ca>b" 213
 RTN 214
*LBL 07 215
 FC? 02 216
 MSIJ 217
 FC? 02 218
GTO 13 219
>ZIJ 220
 END 221

The central part of the program is practically unchanged from how it was in the matrix rotations.

The new stuff starts after all rotation layers are done, see steps 134 to 195. The section dealing

with left-over elements starts at step 142, see LBL 09 and LBL 12 for the complex and real cases

respectively. Also notice how some of the routines have been modified, like LBL 07 starting at step

205.

There you have it, what started being a curiosity has evolved into a relatively complex program…

certainly it wasn’t anticipated from the initial design.

Complex Matrix ROM Manual

(c) Ángel M. Martin November 2020 Page 50 of 59

Matrix Layer Rotations – Alternative Approach.

Just in case you thought we were done with the rotation section, here’s a follow-up that uses an
alternative approach with data registers instead. The core routines are contributed by Jean-Marc
Baillard, and they follow a different element storage convention for the matrix, done by columns – not
by rows – in sequential data registers.

I’ve added “driver routines to “interface” with those core routines, using “standard” matrices as starting
point – and leaving the result also in standard “SandMatrix” format. This is simple for the real case,
where only a transposition is required to convert between formats (remember that the SandMatrix also
supports storing matrices in main memory, using the “Rxxx” convention for the matric name) – but it
was quite challenging for the complex case: JM’s convention places the real and real and imaginary
parts also into sequential data registers, which requires intermediate utilities dealing with data registers
block “splicing” and “splitting”, for lack of better terms. Let’s see them next…

Program Real Inputs Complex Inputs

Driver MROT+ Matrix Name ZMROT+ Matrix Name

Core MROT bbb, eee, #steps ZMROT bbb, eee, #steps

• The driver programs only do one clockwise element rotation, but transposing it *twice* (i.e.

doing nothing!) also reverses the direction of rotation- therefore it’s very easy to compare the
results using M<)R and ZM<)R.

• The core routines do a counter-clockwise rotation, of any number of steps- thus multiple steps

can be done with just one execution of the routine, as opposed to M<)R and ZM<)R
described before.

• The core routine MROT uses four input parameters: as follows:

o T = bbb = address of the 1st coefficient > 8
o Z = m = Nb of rows > 1
o Y = n = Nb of columns > 1
o X = k = Nb of rotations > 0

Real Matrices: here it’s not even needed to transpose the matrices: the combined effect (by columns
+ counter-clockwise) = (by rows + clockwise)

1 LBL "MROT+" ; MNAME

2 E ; threshold
3 XROM "?1X1"
4 "|-,R9" ; starts at

R10
5 MAT= ; copy matrix
6 E1 ; first register
7 DIM? ; m x n
8 INT ; m
9 LASTX

10 FRC ; 0,00n
11 I<>J ; n
12 E ; one rot.

step
13 XROM "MROT"
14 ASWAP ; “#,MNAME“
15 MAT=
16 MNAME?
17 RTN

Complex Matrix ROM Manual

(c) Ángel M. Martin November 2020 Page 51 of 59

Complex Matrices: Here we’ll use the same process twice, on the real and imaginary components of
the given matrix - since each of those is a real matrix and therefore can be dealt with by the previous
case.

1. Separate the complex matrix into real and imaginary parts, both in X-Mem
2. Copy them sequentially to main memory, starting in R10. This will use R09 for the matrix

header.
3. Do the rotation on each component and copy it back to X-mem
4. Re-assemble the complex matrix from its (rotated) components.

An additional complication in the Complex case occurs due to the lack of more scratch registers to save
the original matrix name. We’ll circumvent this using the complex stack as an auxiliary memory area;
for example the ALPHA string containing the matrix name

• To store it we use: RCL M, RCL N, ZENTER^
• And to restore it: ZRDN, STO N, X<>Y, STO M

Note that this will not work in manual more or SST’íng a program because the functions will call
ZAVIEW and it can’t cope with ALPHA DATA – but it’s perfectly safe in running program. Nice trick in
my book, not quite the original design intent but very useful indeed.

Example: let’s do some rotations using our trusted example matrix C3X3. The idea is to first use

ZM<)R and compare the result with the output of ZMROT+, to check if they’re the same.

“C3X3,ROT1”, MAT=, MNAME? , XEQ “ZM<)R”, -> ROT1 is the rotated matrix
“C3X3,ROT2”, MAT=, MNAME?, XEQ “ZMROT+” -> ROT2 is the rotated matrix
“ROT1,ROT2”, M=M? -> “YES” (hopefully ;-)

Program listing:

LBL “ZMROT+” 1
2 2
XROM “?1X1” 3
>”,RE,IM” 4
RCL M 5
RCL N 6
ZENTER^ 7
XROM “ZM>XY“ 8
“RE“ 9
XEQ 00 10
“IM“ 11
XEQ 00 12
CLA 13
ZRDN 14
STO N 15
X<>Y 16
STO M 17
ASWAP 18
XROM “XZ>ZM” 19
PURFL 20

ASWAP 21
PURFL 22
ASWAP 23
DIM? 24
MNAME? 25
RTN 26
*LBL 00 27
>”,R9” 28
MAT= 29
E1 30
DIM? 31
INT 32
LASTX 33
FRC 34
I<>J 35
E 36
XROM “MROT” 37
ASWAP 38
MAT= 39
END 40

Complex Matrix ROM Manual

(c) Ángel M. Martin November 2020 Page 52 of 59

The path not taken - Complex Matrices: An alternative top-level process using ZMROT:

1. Separate the complex matrix into real and imaginary parts, both in X-Mem
2. Copy them to main memory, starting at R(m.n) for the imaginary part and R01 for the real

part. Note how by copying first the imaginary parts and later the real parts we get around
removing the status register placed in R(m.n) by the first copy operation – ending with a
nice continuous pair of data blocks: [RE]-[IM]

3. Splice the data blocks into a common one, so the coefficients are presented in the format
expected by ZMROT, which now can be called to do the rotation. [RE-IM]

4. Next Split the result matrix into two blocks, for the real and imaginary matrices
5. Merge them into a common matrix in X-Mem – overwriting the original.

For step #3 - storing the coefficients in sequential registers real part first and imaginary part following,
poses an interesting challenge to the “interfacing” routine. For step #4after the rotation, we need to
de-splice such an arrangement into two separate data register blocks, one for the real parts and
another for the imaginary parts. Only once this is done we can call our trusted XY>ZM routine to build
the complex matrix in “SandMatrix“ format.

An additional complication in the Complex case occurs because ZMROT assumes that all data registers
(starting with R01) are allocated to the matrix coefficients. This leaves us with just one scratch register
in main memory, R00. This we’ll circumvent using the complex stack as an auxiliary memory area; for
example, the ALPHA string containing the matrix name

• To store it we use: RCL M, RCL N, ZENTER^
• And to restore it: ZRDN, STO N, X<>Y, STO M

Nice trick in my book, not quite the original design intent but very useful indeed.

Note that the implementation uses an auxiliary scratch area to hold the copied values temporarily, and
that area is moved en-masseonce the process is completed. - so it’s not an in-place solution. The data
blocks are each of m.n data registers, and the resulting spliced block is twice that size, i.e. 2.m.n

Routine listing:

LBL “ZMROT+“ 1
2 2
XROM “?1X1“ 3
>“, RE,IM“ 4
RCL N 5
RCL M 6
ZRPL^ 7
XROM “ZM>XY“ 8
“IM,R“ 9
DIM? 10
MSZE? 11
ZENTER^ 12
STO L(4) 13
AINT 14
MAT= 15
“RE,R0“ 16
MAT= 17

LASTX 18
XROM “SPLICE“ 19
ZRDN 20
ZENTER^ 21
X<>Y 22
INT 23
LASTX 24
FRC 25
I<>J 26
E 27
XROM “ZMROT“ 28
ZRDN 29
XROM “SPLIT“ 30
“RE,R0“ 31
DIM? 32
ASWAP 33
MATDIM 34
MAT= 35

“IM, R“ 36
MSZE? 37
AINT ; IM,Rxx 38
DIM? 39
ASWAP ; Rxx,IM 40
MATDIM 41
MAT= 42
CLA 43
ZRDN 44
X<>Y 45
STO N 46
X<>Y 47
STO M 48
ASWAP 49
XROM “XY>ZM“ 50
END 51

Complex Matrix ROM Manual

(c) Ángel M. Martin November 2020 Page 53 of 59

Appendix. Matrix Scrolling by ALPHA

These routines scroll the matrix whose name is in ALPHA by rows or by columns in the specified

direction. Rather than having four global labels (very taxing on the ROM FAT), the program uses the

rightmost character in ALPHA as the control character to determine the scrolling direction, as follows:

Char$ Direction Description

“^” Up moves the rows upwards, first row wraps to last

“D” Down moves rows downwards, last row wraps to first

“<” Left moves rows leftwards, first column wraps to last

“>” Right Right: moves columns rightwards, last column wraps to first

The control char is separated from the matric name by a comma character, for instance: “MNAME,<”

will scroll MNAME left. Note that these operations are not specific to complex matrices, and that any

other character different from those four will give the “NONEXISTENT” data error.

Program Listing:

01 LBL “MSCRL$” ; “MNAME,chr”

02 E ; real matrix

03 XROM “?1X1 ; test case

04 CF 00

05 DIM? ; m.00n

06 ASWAP

07 ATOX

08 RDN

09 GTO IND T

10 *LBL 94 “^”, upwards

11 INT ; m

12 2

13 – ; m-2

14 I<>J ; 0.00(m-2)

15 GTO 01

16 *LBL 68 ; “D”, downwards

17 INT ; m

18 RCL X

19 E

20 – ; m-1

21 ENTER^

22 I<>J ; 0.00(m-1)

23 GTO 02

24 *LBL 62 ; “>”, rightwards

25 SF 00

26 FRC ; 0.00n

27 2

28 I<>J ; 0.002

29 – ; 0.00(n-2)

30 *LBL 01

31 2 ; prepare rows:

32 E3/E+ ; 1.002

33 *LBL 03

34 XEQ 00

35 +

36 ISG Y

37 GTO 03

38 MNAME?

39 RTN

40 *LBL 60 “<”, leftwards

41 SF 00

42 FRC

43 ENTER^

44 I<>J

45 E

46 –

47 RCL X

48 *LBL 02

49 RCL Z

50 +

51 *LBL 04

52 XEQ 00

53 –

54 DSE Y

55 GTO 04

56 MNAME?

57 RTN

58 *LBL 00

59 FC? 00

60 R<>R

61 FS? 00

62 C<>C

63 E

64 E3/E+

65 END

Complex Matrix ROM Manual

(c) Ángel M. Martin November 2020 Page 54 of 59

You can use the alternative listings below If you prefer individual routine for each action.

01 LBL “M^” ; upwards

02 DIM? ; n.00m

03 INT ; n

04 2

05 – ; n-2

06 I<>J ; 0.00(n-2) - counter

07 1.002 ; initial pair

08 *LBL 00

09 R<>R ; swap rows

10 1.001 ; offset

11 + ; update pointers

12 ISG Y ; next row

13 GTO 00 ; loop back

14 RTN ; done.

15 LBL “M_” ; downwards

16 DIM? ; n.00m

17 INT

18 RCL X

19 1

20 – ; n-1 - counter

21 ENTER^

22 I<>J ; 0.00(n-1)

23 RCL Z ; n

24 + ; n.00(n-1)

25 *LBL 02

26 R<>R ; swap rows

27 1.001 ; offset

28 – ; update pointers

29 DSE Y ; next row

30 GTO 02 ; loop back

31 RTN ; done.

32 LBL “M>” ; rightwards

33 DIM? ; n.00m

34 FRC

35 ,002

36 – ; 0.00(m-2) - counter

37 1.002 ; initial pair

38 *LBL 01

39 C<>C ; swap columns

40 1,001 ; offset

41 + ; update pointers

42 ISG Y ; next column

43 GTO 01 ; loop back

44 RTN ; done.

45 LBL “M<” ; letfwards

46 DIM? ; n.00m

47 FRC ; 0.00m

48 ENTER^

49 I<>J ; m

50 1

51 – ; m-1 - counter

52 RCL X

53 RCL Z ; 0.00m

54 + ; (m-1).00m

55 *LBL 03

56 C<>C ; swap columns

57 1,001 ; offset

58 – ; update pointers

59 DSE Y ; next column

60 GTO 03 ; loop back

61 END ; done.

Note that like in the MSCRL$ case, the we could combine the termination of routines “M_” and “M<”

(LBL 02 and LBL 03) into a common one using a control flag to determine the row/column case, and

ditto with routines “M^” and “M>” (LBL 00 and LBL 01). That would shorten the program listing and

possibly also the byte count, at the expense of using a flag resource.

Complex Matrix ROM Manual

(c) Ángel M. Martin November 2020 Page 55 of 59

Appendix: Splicing and Splitting the data blocks.

The SPLICE and SPLIT routines expect the data block size in the X-register. For instancefor a m x n
complex matrix the real and imaginary parts have a size of m.n each, thus the data block size is m.n.
In terms of data registers needed, it is twice the size of both blocks together, i.e. 2x (2.m.n) = 4.m.n

See the example below with n=5 complex coefficients, with the real parts in white cells and the
imaginary parts in yellow cells. The arrangement on the left is split, and on the right is spliced. The
objective is to write routines to move the data between those arrangements.

The routines follow the pseudo-BASIC loop shown in the picture above, using REGMOVE for the single
register copy operation inside of the loop, repeated n-times. The final step is calling REGMOVE again to
do a block copy, replacing the original block with the spliced block. Granted this is not the most
sophisticated RPN algorithm but it does the job – at the cost of double number of data registers
consumption of course.

Complex Matrix ROM Manual

(c) Ángel M. Martin November 2020 Page 56 of 59

Program listing:

No matrix functions here, purely auxiliary routines to aid the driver programs:

1 LBL "SPLICE"

2 STO 00 ; n
3 E3/E+ ; 1,00n
4 *LBL 00 ;loop #1

5 ENTER^
6 ENTER^
7 ENTER^
8 INT ; k
9 RCL 00 ; n
10 + ; n+k
11 ST+ X ; 2n+2k
12 E
13 - ; 2n+2k-1
14 I<>J ; 0,00(2n+2k-1)
15 X<>Y ; k,00n
16 INT ; k
17 + ; k,00(2n+2k-1)
18 REGMOVE ; real part
19 RCL 00 ; n
20 + ;(n+k),00(2n+2k-1)
21 E-3 ; 0,001
22 + ; (n+k),00(2n+2k)
23 REGMOVE ; Imaginary
24 RDN ; k,00n
25 ISG X ; NEXT k
26 GTO 00 ; loop for next
27 GTO 01 ; all done

28 LBL"SPLIT"

29 STO 00
30 E3/E+ ; 1,00n
31 *LBL 02 ; loop #2

32 ENTER^
33 ENTER^

34 ENTER^
35 RCL 00 ; n
36 ST+ X ‚2n
37 X<>Y ; k,00n
38 INT ; k
39 + ; 2n+k
40 I<>J
41 X<>Y ; k,00n
42 INT ; k
43 ST+ X ; 2k
44 E
45 - ; 2k-1
46 + ; 2k-1,00(2n+k)
47 REGMOVE ; real part
48 RCL 00 ; n
49 E3/E+ ; 1,00n
50 + ; 2k,00(3n+k)
51 REGMOVE ; imaginary
52 RDN ; k,00n
53 ISG X ; NEXT k
54 GTO 02 ; loop for next
55 *LBL 01 ; common end

56 E
57 E3/E+ ; 1,001
58 RCL 00 ; n
59 ST+ X ; 2n
60 + ;2n+1,001
61 LASTX
62 E6
63 / ; 0,00|(2n)
64 + ; (2n+1),001|(2n)
65 REGMOVE ; block move
66 END

Lastly let’s also list the core routines that do the actual rotation job, MROT and ZMROT – courtesy of
Jean-Marc Baillard. Note how these indeed implement an in-place algorithm for the operation,
therefore have a much more efficient usage of memory than the M<)R and ZM<)R counterparts.

Complex Matrix ROM Manual

(c) Ángel M. Martin November 2020 Page 57 of 59

Real Matrix Rotation: Coefficients starting at R09, using R01-R08 for scratch

T = bbb = address of the 1st coefficient > 8
Z = m = Nb of rows > 1
Y = n = Nb of columns > 1
X = k = Nb of rotations > 0

For example, using the matrix below, starting in R09 and if k=2:

1 5 9 13 17 9, ENTER^ 9 13 17 18 19

2 6 10 14 18 4, ENTER^ 5 14 15 11 20

3 7 11 15 19 5, ENTER^ 1 10 6 7 16

4 8 12 16 20 2, XEQ "MROT" 2 3 4 8 12

*LBL "MROT" 1
STO 07 2
RDN 3
STO 02 4
RDN 5
STO 01 6
X<>Y 7
STO 08 8
*LBL 12 9
RCL 02 10
 E 11
 - 12
STO 05 13
RCL 01 14
LASTX 15
 - 16
STO 04 17
RCL 08 18
STO 00 19
STO 03 20
*LBL 10 21
RCL 04 22
STO 06 23
RCL IND 03 24
*LBL 01 25
ISG 03 26
CLX 27

X<> IND 03 28
DSE 06 29
GTO 01 30
RCL 05 31
STO 06 32
X<>Y 33
*LBL 02 34
RCL 01 35
ST+ 03 36
X<>Y 37
X<> IND 03 38
DSE 06 39
GTO 02 40
RCL 04 41
STO 06 42
X<>Y 43
*LBL 03 44
DSE 03 45
X<> IND 03 46
DSE 06 47
GTO 03 48
RCL 05 49
STO 06 50
X<>Y 51
*LBL 04 52
DSE 06 53
NOP 54

 GTO 00 55
 RCL 01 56
 ST- 03 57
 X<>Y 58
 X<> IND 03 59
 GTO 04 60
*LBL 00 61
 STO IND 00 62
 LASTX 63
 ST+ 03 64
 RCL 03 65
 STO 00 66
 2 67
 ST- 04 68
 ST- 05 69
 RCL 04 70
 X<=0? 71
 GTO 00 72
 RCL 05 73
 X>0? 74
 GTO 10 75
*LBL 00 76
 DSE 07 77
 GTO 12 78
 END 79

Complex Matrix Rotation: Coefficients starting at R01, using the status registers for scratch.

Z = m = Nb of rows > 1
Y = n = Nb of columns > 1
X = k = Nb of rotations > 0

172 bytes / SIZE 2.m.n+1

For example, with the matrix below stored in R01-R40 as follows:

Complex Matrix ROM Manual

(c) Ángel M. Martin November 2020 Page 58 of 59

R01-R02 R09-R10 R17-R18 R25-R26 R33-R34

R03-R04 R11-R12 R19-R20 R27-R28 R35-R36

R05-R06 R13-R14 R21-R22 R29-R30 R37-R38

R07-R08 R15-R16 R23-R24 R31-R32 R39-R40

1+2i9+10i17+18i 25+26i 33+34i

3+4i 11+12i 19+20i 27+28i 35+36i

5+6i 13+14i 21+22i 29+30i 37+38i

7+8i 15+16i 23+24i 31+32i 39+40i

 4, ENTER^, 5, ENTER^, 2, XEQ "ZMROT" returns in 20 seconds:

17+18i25+26i 33+34i 35+36i37+38i

 9+10i 27+28i 29+30i 21+22i 39+40i

 1+2i 19+20i 11+12i 13+14i31+32i

 3+4i 5+6i 7+8i 15+16i 23+24i

*LBL "ZMROT" 1
STO O 2
RDN 3
STO N 4
X<>Y 5
STO M 6
*LBL 12 7
RCL N 8
 E 9
STO 00 10
 - 11
STO Q 12
RCL M 13
LASTX 14
 - 15
STO P 16
*LBL 10 17
RCL P 18
SIGN 19
RCL 00 20
RCL IND X 21
ISG Y 22
CLX 23
RCL IND Y 24
*LBL 01 25
ISG Z 26
CLX 27
X<>Y 28
X<> IND Z 29
ISG Z 30
CLX 31
X<>Y 32
X<> IND Z 33
DSE L 34
GTO 01 35

RCL Q 36
SIGN 37
RDN 38
*LBL 02 39
RCL M 40
ST+ X 41
ST+ T 42
RDN 43
DSE Z 44
X<>Y 45
X<> IND Z 46
ISG Z 47
CLX 48
X<>Y 49
X<> IND Z 50
DSE L 51
GTO 02 52
RCL P 53
SIGN 54
RDN 55
*LBL 03 56
DSE Z 57
DSE Z 58
DSE Z 59
X<>Y 60
X<> IND Z 61
ISG Z 62
CLX 63
X<>Y 64
X<> IND Z 65
DSE L 66
GTO 03 67
RCL Q 68
SIGN 69
RDN 70

 *LBL 04 71
 RCL M 72
ST+ X 73
ST- T 74
RDN 75
DSE Z 76
X<>Y 77
X<> IND Z 78
ISG Z 79
CLX 80
X<>Y 81
X<> IND Z 82
DSE L 83
GTO 04 84
CLX 85
SIGN 86
ST+ X 87
ST- P 88
ST- Q 89
RCL M 90
ST+ X 91
 + 92
ST+ 00 93
RCL P 94
 RCL Q 95
X>Y? 96
X<>Y 97
X>0? 98
GTO 10 99
DSE O 100
GTO 12 101
CLA 102
END 103

Complex Matrix ROM Manual

(c) Ángel M. Martin November 2020 Page 59 of 59

Appendix. In-place Data splicing. (by Werner)

See: https://www.hpmuseum.org/forum/thread-14194.html

Here’s a clever approach to the data block splicing problem using an in-place algorithm

instead of the sequential method described in the previous pages. The routine only uses the

stack, no data registers. It is much shorter and doesn’t really take much longer to perform, so

a double-down bonus!

Input: data block size in X

1. LBL “SPLC”

2. E
3. X<>Y
4. X=Y?
5. RTN
6. ,1
7. %
8. 2
9. +
10. *LBL 02
11. RCL Y
12. RCL Y

13. *LBL 01
14. ISG T
15. X<>Y

16. X<> IND T
17. X<> IND Z IND T <>
18. X<> IND T IND Z

19. ISG Z
20. GTO 01
21. ISG X
22. GTO 02
23. END

Three exchanges per data point make it a beauty to behold in action… FOCAL at its best!

,

END. of this Manual

https://www.hpmuseum.org/forum/thread-14194.html

