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Introduction: A Complex Chapter for the SandMatrix.  

The SandMatrix module first and later the Advantage Math ROM have brought the state of the art to 

a further place, and now this module picks up where they left off extending the functionality to the 

Complex Matrices case. It is therefore another complementary extension to the SandMatrix, 

independent from the Advantage Math but that can be used in conjunction with it if so desired. As it 

can be expected it requires the 41Z to be plugged in the calculator to deal with the complex number 

math involved in many of the program included in the module – not only for the lower-level complex 

arithmetic but also using general-purpose utilities like ZSOLVE and others. 

In this module you’ll find: 

• More flexible Complex Matrix Editors that replace HP’s CMEDIT, new pointer positioning and 

complex element storage & recall routines, as well as row/column exchange – all analogous 

to the real matrix case, but that will facilitate the writing of more complex programs. 

• Missing functionality like Determinants and Matrix Transpose is also addressed in this ROM, 

with a couple of approaches to choose from depending on your preferences. Matrix Minors, 

Cofactors and Sub-matrices round off this part. 

• A short update on Eigenvalues plus new sections on Matrix Element Rotation and other 

mappings. 

• A Function Launcher grouping functions in logical groups 

 

Module Dependencies. 

As mentioned, you should have the 41Z and the SandMatrix plugged in the calculator. It is also 

recommended to have the SandMath plugged in as well, as several programs within the SandMatrix 

make use of its functions. If you plug those three, they will take 6 pages in the I/O bus, to add to the 

single page required by this ROM. This means that only one page will remain available in the external 

ports of the calculator, so use it judiciously – and what a better choice than the ‘Advantage Math” 

ROM for a powerhouse Math configuration. 

I strongly suggest the OS/X Module to be plugged as well, and if possible (i.e. without a printer) in 

page #6. The WARP_Core Module in page#7 will round up the perfect set. 

It comes without saying that the Library#4 is needed as well, as a pre-requisite for all the modules 

mentioned before. And lest we forget, the HP-41 CX is required (the X-Functions won’t cut it, sorry). 

 

  

Library #4 

41-Z 

SandMath 

SandMatrix 
 

Complex Matrix 

ROM 



Complex Matrix ROM Manual  

(c) Ángel M. Martin                                   January 2021 Page 6 of 59 
 

ROM Function Tables.  

Without further ado, let’s see the functions included in the module. Refer to the individual function 

descriptions later on for details on the syntax and use instructions. 

XROM  Function  Description Input Author 

13,00 -CPX MTRX Section Header n/a  n/a 

13,01 “CGTRP Matrix Conjugate Transpose Name in ALPHA Ángel Martin 

13,02 "CMINOR Complex Matrix Minor iii,jii in X , Name in ALPHA Ángel Martin 

13,03 CMDTM Complex DET w/ Minors Name in ALPHA Ángel Martin 

13,04 "CMTRP Complex Matrix Transpose Name in ALPHA Ángel Martin 

13,05 “SUBZM Reduces Matrix by index iii,jjj in X, Name in ALPHA Ángel Martin 

13,06 “^C33 Creates 3x3 Cpx. Mat. Example n/a Ángel Martin 

13,07 “^C44 Creates 4x4 Cpx. Mat. Example n/a Ángel Martin 

13,08 ZM _ Function Launcher “I:O:R:P:M;X” Ángel Martin 

13,09 ZIJ? Recalls Complex Pointer Name in ALPHA Ángel Martin 

13,10 ZIJ= Sets Complex Pointer iii,jii in X , Name in ALPHA Ángel Martin 

13,11 ZI+ Advances pointer one row Name in ALPHA Ángel Martin 

13,12 ZJ+ Advances pointer one column Name in ALPHA Ángel Martin 

13,13 ZIMC Input Complex MAT by Cols Name in ALPHA Ángel Martin 

13,14 ZIMR Input Complex MAT by Rows Name in ALPHA Ángel Martin 

13,15 ZOMC Output Complex MAT by Cols Name in ALPHA Ángel Martin 

136,16 ZOMR Output Complex MAT by Rows Name in ALPHA Ángel Martin 

13,17 ZOUT Output Complex Z in Y,X,  Ángel Martin 

13,18 >ZIJ Append Cpx. Element iii,jjj in X Ángel Martin 

13,19 “?CM Complex Matrix Test Name in ALPHA Ángel Martin 

13,20 -Z MATRX II Section Header  n/a  n/a 

13,21 ASWAP ALPHA Swap around comma A,B in ALPHA Ángel Martin 

13,22 E3/E+ Builds pointer 1.00x Ángel Martin 

13,23 “M=M? Equal Matrices Test “M1,M2” in ALPHA Ángel Martin 

13,24 “XZ>ZM Merges Matrix Components “RE,IM,ZM“ in ALPHA Ángel Martin 

13,25 “Z+M Adds complex to Matrix Z in {X,Y}, Name in ALPHA Ángel Martin 

13,26 “Z*M Multiplies Matrix by Complex Z in {X,Y}, Name in ALPHA Ángel Martin 

13,27 “ZC<>C Swaps Complex Columns iii,jjj in X, Name in ALPHA  Ángel Martin 

13,28 “ZEV22 Eigenvalues of 2x2 Matrix Name in ALPHA Ángel Martin 

13,29 “ZEV33 Eigenvalues of 3x3 Matrix Name in ALPHA Ángel Martin 

13,30 “ZEIGEN Eigenvalues using ZSOLVE Name in ALPHA, zo in Z  Ángel Martin 

13,31 “ZIJJI Crossed-Elements products Name in ALPHA Ángel Martin 

13,32 “ZMDPS Diagonal Products Sum Name in Alpha Ángel Martin 

13,33 “ZM>XY Separates Matrix Components “ZM,RE,IM” in ALPHA Ángel Martin 

13,34 “ZMAT* Element Products “M1,M2,M3” in ALPHA Ángel Martin 

13,35 “ZFNRM Frobenius Norm Name in ALPHA Ángel Martin 

13,36 “ZR<>R Swaps Complex Rows iii,jjj in X, Name in ALPHA Ángel Martin 
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13,37 “ZCFTS Generates Cofactors Matrix Name in ALPHA Ángel Martin 

13,38 “ZMNRS Generates Minors Matrix Name in ALPHA Ángel Martin 

13,39 “ZMINV Inverse Matrix V2 Name in ALPHA Ángel Martin 

13,40 “ZPCHR Characteristic Polynomial Name in ALPHA Ángel Martin 

13,41 -M-ROTATE Section header Checks if X is Odd n/a 

13,42 “?1X1 Matrix Dimension Test 1,2 in X, Name in ALPHA Ángel Martin 

13,43 “a<>b Swaps Real Elements iii,jjj in X, “M1,M2“  ALPHA Ángel Martin 

13,44 “a>b Real Element Copy iii,jjj in X, “M1,M2“  ALPHA Ángel Martin 

13,45 “Ca>b Complex Element Copy iii,jjj in X, “M1,M2“  ALPHA Ángel Martin 

13,46 “M<)R Matrix Element Right Rotation Name in ALPHA Ángel Martin 

13,47 “MROT+ Driver for “MROT Prompts for data Ángel Martin 

13,48 “MROT Matrix Elements Rotation Data in XYZ, Name ALPHA JM Baillard 

13,49 “ZM<)R Cpx. Mat.  Element  Right Rot Name in ALPHA Ángel Martin 

13,50 “ZMIRR Complex Matrix Mirror Image Type in X, Name in ALPHA Ángel Martin 

13,51 “ZMR90R Cpx. Mat. 90 deg Right Rot. Name in ALPHA Ángel Martin 

13,52 “ZMR90L Cpx. Mat. 90 deg Left Rot Name in ALPHA Ángel Martin 

13,53 “ZMROT+ Driver for ZMROT Prompts for Data Ángel Martin 

13,54 “MSCRL$ Matrix Scrolling “MNAME,$”  in ALPHA Ángel Martin 

13,55 “SPLICE Data Registers Splicing Register Range in X Ángel Martin 

13,56 “SPLIT Data Registers Splitting Register range in X Ángel Martin 

13,57 “IMS” Input Matrix in Spiral Name in ALPHA Ángel Martin 

13,58 “OMS” Output Matrix in Spiral Name in ALPHA Ángel Martin 

13,59 “ZIMS” Input Cpx. Mtrx.inSpiral Name in ALPHA Ángel Martin 

13,60 “ZOMS” Output CCpx. Mtrx. In Spiral Name in ALPHA Ángel Martin 

13,61 “*ZEV Auxiliary for ZEIGEN n/a Ángel Martin 

13,62 “ZTRCE Alternative CMTRCE   Ángel Martin 

13,63 “ZTRNP Alternative CMTRP  Ángel Martin 
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1. SandMatrix Extensions for Complex Matrices 
 

Although some of the SandMatrix functions support Complex Matrices, there’s not a thorough 
coverage for these due to a justifiable lack of functionality. This module aims to closing that gap by 
providing a set of routines that can also be used in bigger programs to provide the missing features. 
 

Working with Complex Matrices. 

When working with complex matrices it is most important to remember that, in the calculator, a 

complex matrix is simply a real matrix with four times as many elements. In the SandMatrix only the 

MATRX program and the complex-matrix editor (CMEDlT) “recognize” a matrix as complex and treat 

its elements accordingly. All other functions treat the real and imaginary parts of the complex 

elements as separate real elements. 

How Complex Elements are represented 

In its internal representation a complex matrix has twice as many columns and twice as many rows 

as it "normally' would. 

The complex number 100 + 200i is stored as: 

 

 

The 2 x 1 complex matrix  

 

 
Storage Space in Memory.- Since the dimensions required for a complex matrix are four times 

greater than the actual number of complex elements (an m X n complex matrix being dimensioned as 

2m x 2n), realize that the number of registers a complex matrix occupies in memory is 

correspondingly four times greater than a real matrix with the same number of elements. In other 

words, think of a complex matrix's storage size in terms of its MATDlM or DIM? dimensions, not its 

number of complex elements. 

 

Using Functions with Complex Matrices 

Most matrix functions do not operate meaningfully on complex matrices: since they don't recognize 

the different parts of a complex number as a single number, the results returned are not what you 

would expect for complex entries. 

Valid Complex Operations. Certain matrix functions work equally well with real and complex 

functions. Both the input and result matrices must be complex. These functions are: 

• MSYS  Solving simultaneous equations 
• MINV  Matrix inverse 
• MAT+  Matrix add 
• MAT-  Matrix subtract 
• MAT*  Matrix scalar multiply, but only by a real scalar in X-reg. 
• M*M  Matrix multiplication  

 

Besides these there are a few other SandMatrix functions that work equally right on either type of 
matrices, real and complex, provided that you follow the “double up” rule for the matrix dimension - 

 

 



Complex Matrix ROM Manual  

(c) Ángel M. Martin                                   January 2021 Page 9 of 59 
 

These functions are: 
 

• MIDN  Builds an Identity Matrix (Dimension 2m x 2n for complex) 
• MZERO Clears all elements of a matrix 
• MZDG  Matrix Zero Diagonal 
• AIM  Anti-Identity Matrix 
• M^2  Multiplies a matrix by itself 
• MPWR  Matrix integer power  

 
Notably the last two are a direct benefit for the complex matrix support included in M*M, and will 
play an important role in the complex matrix determinants programs described later on. 
 

 

New Functions added for the Complex case 

 
The table below shows most of the new functions added in this ROM, comparing the to the real-
matrix analogous ones. You’ll see some of them deal with the complex-pointer management, while 
others work as complete utilities for complex matrices.  
 

Complex Matrix ROM SandMatrixModule Description 

ZI+, ZJ+ I+, J+ Pointer advance 

ZIJ?, ZIJ= MRIJA, MSIJA Pointer Store / Recall 

CMR, CMS MR, MS Element Store / Recall 

ZC<>C, ZR<>R C<>C, R<>R Column/Row Exchange 

ZMNRM FNRM Frobenius Norm 

Z+M MAT+ (w/ “X,A,B” in ALPHA) Addition of Complex 

Z*M MAT* (w/ “X,A,B” in ALPHA) Product by Complex 

ZMAT* MAT* (w/ “A,B,C” in ALPHA) Element Product 

M=M? n/a Equal Matrices Test 

ZIMC, ZIMR, ZOMC, ZOMR IMC,IMR,OMC,OMR Complex Matrix Editor(s) 

ZTRCE CTRCE, MTRACE Matrix Trace 

CMDET, CMDTM MDET Determinant 

CMTRP, CGTRP TRNPS Matrix Transpose 

ZEIGEN EIGEN Eigenvalues by (Z)SOLVE 

ZEV2 EV2x2 Eigenvalues of 2x2 Matrix 

ZEV33 EV3X3 Eigenvalues of 3x3 Matrix 

ZMDPS MDPS Diagonal products sum 

ZIJJI IJJI Crossed-els. Prods. sum 

ZPCHR PCHAR Characteristic Polynomial 

   

Complex Matrix ROM Advantage Math ROM Description 

CMINOR, SUBZM MINOR, SUBM Minor and Submatrix 

ZMROT, ZM<)R MROT, M<)R Matrix Element Rotation 

ZM90R, ZM90L M90R, M90L Matrix 90 deg. Rotations 

ZMIRR MMIRR Matrix Mirror Image 

?CM n/a Matrix Complex Test 

XY>ZM, ZM>XY n/a Complex Mat to Real, Imag 

 
Note that some of the real matrix routines are not in the SandMatrix but in the “Advantage Math” 
ROM. This is the case for the element rotation and mirror image routines, as well as the 
minor/submatrix routines. 
 

Note also that a couple of the new functions are included in the SandMatrix as well, either as main 
functions or as sub-functions – but are kept here as well to facilitate their usage and for consistency 
sake. 
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Complex Matrix Input / Output by Columns / Rows. 

 
Analogous to the real counterparts IMR, OMR, IMC, OMC, you can use these routines to input and 
output the complex elements of an existing matrix, starting at the first element and sequentially 
either by rows or by columns. The display will show the complex index followed by the complex 
element value: 
 

...  ,  , 
etc... 
 
With one exception, this set of routines replaces the CMEDIT program in the SandMatrix. The 
exception being cases where a complex column-matrix is used for linear systems with complex 
matrices; see the SandMatrix manual for details.
 
 

Routines for Element Storage and Recall. 
 
These routines will use the complex pointer iii,jjj  in register X to define the complex element position 
in the complex matrix. Note that the complex-pointer is always twice the real-pointer - which is the 
only one understood by the SandMatrix functions of course. The routines use auxiliary functions 
ODD? and DIMERR to halt the execution in case of not-even dimensions. 
 
Program listing and Stack usage:
   

1     *LBL "CMR" 

2     ST+ X 
3     MSIJA 
4     RDN 
5     MRR- 
6     MRR+ 
7     X<>Y 
8     RTN 

9     *LBL "CMS" 

10     ST+ X 
11     MSIJA 
12     RDN 

13     MS 
14     J- 
15     I- 
16     MSC+ 
17     X<>Y 
18     MSR+ 
19     CHS 
20     I- 
21     MS 
22     CHS 
23     X<>Y 
24     RTN 

25     *LBL "?CM" 

26     DIM? 
27     ODD? 
28     DIMERR 
29     FRC 
30     I<>J 
31     ODD? 
32     DIMERR 
33     RDN 
34     END

 
 
 

Routine 
Stack 

CMR CMS 

Input Output Input Output 

T: T: Z: T: scratch 

Z: Z: Y: Im(Zij) T: 

Y: Y: Im(Zij) Re(Zij) Im(Zij) 

X: Complex iii,jjj Re(Zij) Complex iii,jjj Re(Zij) 

L: n/a scratch n/a scratch 

Matrix Pointer n/a iii,jjj n/a iii,jjj 

 
Note that in the CMR case the complex pointer will be reset to the desired value, and that register T: 
will be lost – whereas for CMS the contents of stack register X: will be lost – so you’ll need to use 
ZIJ? described later to recall the current pointer value. 
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Aided by the routines above the main Input/Output Programs are a simple affair managed by the 
flags 9 and 10 to control the out-of-bounds conditions.  
 
As always, with flag 21 set the execution stops with every element display (function ZOUT takes care 
of that). This is a good resource to use for ZOMR and ZOMC with high TURBO settings on the 41CL. 
 
For ZIMR and ZIMC the current element complex value will be shown in the prompt. Press R/S if 
you want to use it as is, or if you need to change it remember to enter the imaginary part first, then 
the real part separated by ENTER^ (same 41Z convention) – terminating the entry with R/S . 
 
The program listing is shown below:  
 

1     LBL “ZIMR” 

2     E 
3     GTO 03 

4     LBL  “ZIMC” 

5     3 
6     GTO 03 

7     LBL  “ZOMR” 

8     0 
9     GTO 03 

10     LBL  “ZOMC” 

11     2 
12     *LBL 03 

13     X<>F 
14     XROM “?CM” 
15     E 
16     E3/3+ 
17     *LBL 00 

18     CMR 
19     MRIJ 
20     2 

21     / 
22     CLA 
23     MPT 
24     RDN 
25     FS> 00 
26     >”?” 
27     ZOUT 
28     MNAME? 
29     FC? 00 
30     GTO 01 
31     STOP 
32     MRIJ 
33     2 
34     / 
35     CMS 
36     I+ 
37     *LBL 01 

38     FC? 01 
39     J+ 
40     FS? 01 
41     I+ 

42     FS? 10 
43     GTO 01 
44     FC? 09 
45     GTO 02 
46     FC? 01 
47     I+ 
48     FS? 01 
49     J+ 
50     *LBL 02 

51     FC? 01 
52     J+ 
53     FS? 01 
54     I+ 
55     MRIJ 
56     2 
57     / 
58     GTO 00 
59     *LBL 01 

60     CLD 
61     END 

 
Note that unlike the real pointer functions in the SandMatrix, the complex pointer positions for the 

first column and first row must be explicitly given, thus 1,001 is required in step 16 and cannot be 

replaced with “0”. This holds true for any other combination that involves said first Column/row such 

as 1.003. 2.001, etc. 

 
Lastly, the “?CM” routine is the “is matrix Complex?” check to discard non-complex matrices. You 
should be aware that said test is a necessary but not sufficient check, i.e. it checks that the matrix 
dimensions are even values, but it doesn’t do any further testing re. the structure of the elements, 
such as ensuring that the real and imaginary parts of each complex element follow the proper rules. 
See below an example for such routine: 
 

01 *LBL “?ZM” 

02  XROM “?CM” 
03  , 
04  MSIJA 
05 *LBL 00 

06  ZIJ? 
07  VIEW X 
08  ST+ X 
09  MSIJ 

10 MRR- 
11 I- 
12 MRC+ 
13 X#Y? 
14 DIMERR 
15 MRR+ 
16 I- 
17 MRR+ 
18 CHS 

19 X#Y? 
20 DIMERR 
21 FS? 09 
22 I+ 
23 FC? 09 
24 GTO 00 
25 CLD 
26 END 
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Routines for Complex Pointer positioning. 
 
The routines below are the complex-case equivalent of functions MRIJA, MSIJA, I+ and J+ in the 
SandMatrix. Use them to retrieve the current complex-pointer, to advance it one position in either 
direction, or to reset it to a different value.  
 

• The current complex-pointer retrieved by ZIJ? is always a valid pointer, regardless of the 
initial real-pointer of the matrix. This means that if needed ZIJ? will “nudge” the real pointer 
appropriately to always point at the proper complex counterpart. 

 
• On the other hand, ZIJ= will check that the desired new complex pointer in X is within the 

bounds of the matrix, showing a DIM ERROR message if the input parameter is outside of it. 
 

• Use ZI+ and ZJ+ to advance the complex pointer one position column-wise or row-wise 
respectively., i.e. ZI+ increases the row value within the column and ZJ+ increases the 
column value within the row. Note that like it’s the case for the real-pointer functions I+ and 
J+, these functions don’t return the current pointer to X; you’ll need to use ZIJ? for that. 
 

• Advancing the complex-row or the complex-column really means moving two rows or two 
columns in the real matrix, and this is also done within the confines of the matrix dimensions. 
For example ZJ+ will move the pointer to the first element in the following row if the last 
column had been reached - and conversely, ZI+ will move the pointer to the first element in 
the following column if the last row had been exceeded, setting user flags 09 and 10 
according to the same rules used for real matrices. 
 

• To avoid straddled pointer settings (i.e. not-even real pointers), the first thing done by ZI+ 
and ZJ+ is to ensure that the initial complex pointer has a valid position using ZIJ? 

 
 
Program listing: 

 

1     LBL”ZJ+” 

2     XROM “ZIJ?” 
3     J+ 
4     FC? 09 ; within? 
5     J+  ; yes, next 
6     GTO 00 ; merge 

7     LBL “ZI+” 

8     XROM “ZIJ?” 
9     I+ 
10     FC? 09 ; within? 
11     I+   ; yes, next 
12     *LBL 00 

13     FC? 09 ; within? 
14     RTN  ; yes, done. 
15     FS? 10  ; outside? 
16     RTN  ; yes 
17     I+  ; no, nexti 
18     J+  ; and next j 
19     SF 09  ; set it up! 
20     RTN  ; done. 

 
 

21     LBL “ZIJ? 

22     MRIJA 
23     ODD? 
24     I+ 
25     FRC 
26     I<>J 
27     ODD? 
28     J+ 
29     RDN 
30     MRIJ 
31     2 
32     / 
33     RTN 

34     LBL “ZIJ=” 

35     ST+ X 
36     MSIJA 
37     2 
38     / 
39     END 
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The table below shows the stack usage for the pointer routines: 
 

Routine 
Stack 

ZI+, ZJ+, ZIJ?  ZIJ= 

Input Output Input Output 

T: T: Lost T: Lost 

Z: Z: Z: Z: Z: 

Y: Y: Y: Y: Y: 

X: X: X: Complex iii,jjj Complex iii,jjj 

L: n/a scratch n/a scratch 

Matrix Pointer n/a (iii+1),(jjj+1) n/a iii,jjj 

 

 

Example Matrices C3X3 and C4X4 

These routines simply load two example complex matrices in X-Memory – just a convenient and easy 

way to get you started with the examples included in the following sections of the manual. All you 

need to do is type the routine name and the corresponding matrix will be created. 

 and:          
 
Note how the complex pointer is managed by the dedicated functions described before – no need to 
worry about the real and imaginary parts separately. 
 
Program listing: 

 
LBL “^C33” 1 
“C3X3” 2 
6,006 3 
MATDIM 4 
3 5 
ENTER^ 6 
E 7 
ENTER^ 8 
0 9 
CMS 10 
-5 11 
ENTER^ 12 
2 13 
XEQ 00 14 
-1 15 
ENTER^ 16 

7 17 
XEQ 00 18 
-2 19 
ENTER^ 20 
4 21 
XEQ 00 22 
9 23 
ENTER^ 24 
6 25 
XEQ 00 26 
4 27 
ENTER^ 28 
-8 29 
XEQ 00 30 
-7 31 
ENTER^ 32 

-3 33 
XEQ 00 34 
2 35 
ENTER^ 36 
3 37 
XEQ 00 38 
6 39 
ENTER^ 40 
-1 41 
*LBL 00 42 

XROM “ZJ+” 43 
XROM “ZIJ?” 44 
VIEW X 45 
CMS 46 
END 47 
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Totally Unnecessary Examples. ;-) 

The routines below are an alternative implementation of the MCODE function M*M and the focal 

routine M^2 included in the SandMatrix. They don’t really improve on the original ones (and certainly 

are much slower!) but have been included as academic examples of utilization for the pointer and 

element storage & recall functions. 

The matrix multiplication definition is well known, and can be summarized by the expression below: If 

A is an m × n matrix and B is an n × p matrix, the matrix product C = AB (denoted without 

multiplication signs or dots) is defined to be the m × p matrix such that

 
Program Listing: 
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Program remarks: 

The initial part of the program creates the result matrix and resets all its elements to zero. It then 

prepares the ranges for each of the three counters used for index and repeats the three loops 

accordingly. LBL 01 is the lowest-level loop, used to compute each element of the result matrix. 

Nothing sophisticated here; we use CMR twice to recall the appropriate factors from the input matrix 

and CMS to store the resulting element in the result matrix. Note the use of the complex stack to 

hold the partial results of the intermediate multiplications and sums, very convenient as it doesn’t 

interfere with the data registers in memory or the real stack. 

The program uses data registers R00 – R03, and expects the matrix names in ALPHA separated by 

commas: “M1, M2, M3”. Note that M3 cannot be any of the operator matrices ( so it’s not an in-place 

implementation). R01 holds the value of index k, R02 the value of index j, and R3 the value of index 

i. The routine needs to prepare their ranges based on the matrix dimensions, and then proceeds with 

the algorithm as defined above. 

 

Corollary:  Matrix Square product. 

The routine below is an almost-trivial driver for ZM*M that computes the square power of a given 

squared matrix. Note the use of scratch matrix “#” to temporarily hold the result matrix, before it is 

copied back to the source matrix – and eventually purged from memory. 

 

 

Example: calculate the square of matrix [C3X3]. The result is given below: 

1,1=-38-J64 
1,2= 97 
1,3= 13+J111 

2,1= 104+J78 
2,2=-79+J80 
2,3=-74-J118 

3,1= 79-J25 
3,2=-56+J56 
3,3=-95-J62 

 

If nothing else these examples should have increased your appreciation for the MCODE function 

M*M, whose only caveat is not supporting in-place operation but certainly works much faster and 

without any data registers requirements – and not needing the 41Z either for the complex arithmetic. 
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Complex Transposed Matrix.   { CMTRP  ,  ZTRNP  } 

 
Missing from the original Advantage was a way to transpose a complex matrix; a fact that is duly 

corrected here with the routines below. Two solutions are offered, one following an element-based 

approach to illustrate the concept, and another using a block approach – faster and with fewer 

program steps / byte count. 

For a complex element pointer (i,j) the relationship with the individual matrix pointers holding the 

four real and imaginary parts are as follows: 

C(i,j)  = [(2i-1, 2j-1) ; (2i-1, 2j) 
   (2i, 2j-1)   ;  (2i, 2j) ] 
 

• The element-based approach will simply do a cursory scan of the matrix, swapping the 
complex element with pointer (i.j) with its transposed one, (j,i), letting the real matrix 
pointers be determined by the relationships above.  It also includes the two subroutines for 
complex element recall and storage, CMR and CMS that can be used independently, entering 
with the complex pointer in X and the matrix name in ALPHA. 

 

• The block-based approach takes advantage of the MMOVE function, applied to the four-
element block as per the complex values storage convention. This requires just n x m 
iterations, whereas the previous approach needs 2n x 2m repeats of the single-element 
copying. Also no need to worry about the matrix pointers, MMOVE will take care of that for 
us. 
 

• In either case one auxiliary matrix is required to perform the task, which will be purged on 
completion - leaving the (now transposed) matrix name in ALPHA. Neither of the two 
approaches requires data registers, but the first one uses flags 00 and 01. 

 

Program listing – Block approach. 

 

  

1 LBL "ZTRNP" FROM 21 MMOVE

2 "|-,#" FROM,TO 22 X<>Y 2i,2j

3 DIM? 23 MSIJA position element in from matrix

4 I<>J transpose dimension 24 R^ complex pointer (i,j)

5 ASWAP TO,FROM 25 J+ test the location for bounds

6 MATDIM 26 FS? 10 out of matrix?

7 ASWAP FROM,TO 27 GTO 02 yes, exit

8 1,001 complex pointer 28 FS? 09 out of rows?

9 LBL 01 prepare prameters 29 INT yes, integer

10 ENTER^ i,j 30 1.001 offset factor

11 ST+ X 2i,2j 31 FC? 09 within rows?

12 ENTER^ 32 FRC yes, fractional

13 I<>J 2j,2i 33 + update complex pointer

14 1,001 34 GTO 01 do next block

15 ST-  Z (2i-1),(2j-1)  in Z 35 LBL 02

16 - (2j-1),(2I-1) 36 ASWAP

17 X<>Y 37 MAT= copies result & redims matrix

18 R^ i,j 38 PURFL purges TO

19 ST+ X 2i,2j 39 MNAME? FROM

20 X<>Y 40 END 85 bytes



Complex Matrix ROM Manual  

(c) Ángel M. Martin                                  January 2020 Page 17 of 59 
 

Program listing - Element-based approach 

 

 

 

This method can be of further use if the Conjugate Transpose needs to be calculated. To that effect 

all that would be needed are the instructions { X<>Y, CHS, X<>Y } right after step 12 to negate the 

imaginary parts – with no impact to the CMR and CMS subroutines. 

Example.- Transpose the 3x3 complex matrix shown below (you can use ‘^C33” to create it), and 

use ZOMR to review the result. 

 

 

  

1 LBL "CTRNP" FROM 32 GTO 01 next complex element

2 "|-,#" FROM,TO 33 LBL "CMR" X holds (i,j)

3 DIM? 34 ENTER^ complex (i,j)

4 I<>J transpose dimension 35 ST+ X 2i,2j

5 ASWAP TO,FROM 36 MSIJA

6 MATDIM 37 RDN

7 ASWAP FROM,TO 38 MRR- Re(a i j)

8 1,001 complex pointer 39 MRR+ Im(a i j)

9 CF  00 40 X<>Y leaves pointer at (2i,2j)
10 LBL 01 41 RTN

11 CF  01 42 LBL "CMS" X holds (j,i)

12 XEQ "CMR" 43 ST+ X 2j,2i

13 J+ 44 MSIJA

14 FS? 09 45 RDN

15 SF  01 46 MS Re(aij)

16 FS? 10 47 J-

17 SF 00 48 I-

18 ASWAP FROM,TO 49 MSC+

19 RCL  Z i,j 50 X<>Y Im(aij)

20 I<>J j,i 51 MSR+

21 XEQ "CMS" 52 CHS -Im(aij)

22 ASWAP TO,FROM 53 I-

23 FS? 00 54 MS
24 GTO 02 55 RTN

25 RCL  Z 56 LBL 02

26 FS? 01 57 ASWAP TO,FROM

27 INT next complex row 58 MAT=

28 1,001 59 PURFL purges TO

29 FC? 01 ran out of columns? 60 MNAME? FROM

30 FRC next complex column 61 END 142 bytes

31 + update complex pointer
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Corollary: Conjugate-Transposed Matrix.   {  CGTRP   ,  CMS  ,  CMR  } 

 
In mathematics, the conjugate transpose or Hermitian transpose of an m-by-n matrix [A ] with 

complex entries is the n-by-m matrix [A]H obtained from [A] by taking the transpose and then taking 

the complex conjugate of each entry. Thus, the conjugate transpose of an m × n matrix [A] is 

formally defined by: 

 

The routine does a direct utilization of the element-based method shown before; so there’s not earth-

shattering math involved in it. It does, however, provided the basis for a pair of sub-routines to save 

and recall a complex element in the matrix using the complex index of the element. These 

subroutines will be used by other, more complex programs described later on. 

 

01  *LBL "CGTRP" 

02  "|-,#" 
03  DIM? 
04  I<>J 
05  ASWAP 
06  MATDIM 
07  ASWAP 
08  E 
09  E3/E+ 
10  CF 00 
11  *LBL 01 

12  CF 01 
13  ENTER^ 
14  CMR 

15  X<>Y 
16  CHS 
17  X<>Y 

18  J+ 
19  FS? 09 
20  SF 01 
21  FS? 10 
22  SF 00 
23  ASWAP 

24  RCL Z 
25  I<>J 
26  CMS 
27  ASWAP 
28  FS? 00 
29  GTO 02 
30  RCL Z 
31  FS? 01 
32  INT 
33  E 
34  E3/E+ 
35  FC? 01 
36  FRC 
37  + 
38  GTO 01 
39  *LBL 02 

40  ASWAP 
41  CLST 
42  MMOVE 
43  PURFL 
44  MNAME? 
45  RTN 

46  *LBL "CMR" 

47  ST+ X 

48  MSIJA 
49  RDN 
50  MRR- 
51  MRR+ 
52  X<>Y 
53  RTN 

54  *LBL "CMS" 

55  ST+ X 
56  MSIJA 
57  RDN 
58  MS 
59  J- 
60  I- 
61  MSC+ 
62  X<>Y 
63  MSR+ 
64  CHS 
65  I- 
66  MS 
67  CHS 
68  X<>Y 
69  END

 

An alternative version using the pointer routines is also listed below. It’s simpler but slower 

(two sweeps are needed), it requires data registers R00 & R01, plus the 41Z module as well: 

 

LBL “ZHRMT” 1 
XROM “CTRNP” 2 
E 3 
E3/E+ 4 
ZIJ= 5 
*LBL 00 6 
ZIJ? 7 
STO 00 8 

 CMR 9 
 ZCONJ 10 
 RCL 00  11 
 CMS 12 
 ZJ+ 13 
 FC? 10 14 
 GTO 00 15 
 END 16 
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Complex Matrix Determinants.          {  CMTRC  ,  CMDET  } 

Note: Superseded by the ZPCHR method described in section 3.e 
 

The programs below are a first-pass successful attempt at calculating Complex Matrix determinants 

up to order 4. The Complex Matrix is to be stored using the SandMatrix convention - which is identical 

to the HP-41 Advantage's. With this convention each complex number is represented by four 

elements in the complex matrix - refer to the manuals for details. 

example for 3x3 case 

The SandMatrix comes well-equipped with routines to calculate the trace and integer powers of a 

matrix (MTRACE, M^2 and MPWR), therefore it lends itself rather nicely to the direct formulas for 

orders 2, 3, and 4 - using those elements, as described at:  

https://en.wikipedia.org/wiki/Determinant 

 

The complex matrix won't be altered in any way, as all operations are made on a scratch copy. It can 

be stored in X-Mem, CL_Y-Mem, or standard data registers area. The easiest way to enter the matrix 

is by using the ZIMR routine - which expects the matrix name in ALPHA. It also expects the matrix 

already created, using 2n x 2n as dimension - with "n" being the complex order. 

If you place it in the standard registers area, be aware that data registers R00, R01 are used by the 

routine MPWR for scratch. Additionally, data register R02 is used to store the Matrix Name (thus 

such can't exceed 6 characters). 

As you can see there are numerous 41Z functions –needed for the complex arithmetic using the 

Complex Stack. This has the additional advantage that doesn't require additional data registers, be 

that standard or CL Y-RAM. 

Example.- Calculate the determinant of the 4x4 Complex Matrix (you can use “C4X4” to create it): 

     Solution:  det = -62-8i 

https://www.wolframalpha.com/input/?i=det(%7B%7B1%2Bi,+2%2B2i,+3%2B3i,+4%2B4i%7D,+%7B

0,+1,+-3-3i,+-4-4i%7D,+%7B-1%2Bi,+1-i,+1,+i%7D,+%7B-i,+-1%2Bi,+1,+0%7D%7D) 

The program is very slow in non-turbo settings- there are lots of moving pars behind the scene, 

despite the straight-forward program listing. Using TURBO_50 the 4x4 determinant is obtained in 5 

seconds approx. The accuracy for integer matrices holds up nicely, giving exact integer real and 

imaginary parts in the solution. 

  

https://en.wikipedia.org/wiki/Determinant
https://www.wolframalpha.com/input/?i=det(%7B%7B1%2Bi,+2%2B2i,+3%2B3i,+4%2B4i%7D,+%7B0,+1,+-3-3i,+-4-4i%7D,+%7B-1%2Bi,+1-i,+1,+i%7D,+%7B-i,+-1%2Bi,+1,+0%7D%7D)
https://www.wolframalpha.com/input/?i=det(%7B%7B1%2Bi,+2%2B2i,+3%2B3i,+4%2B4i%7D,+%7B0,+1,+-3-3i,+-4-4i%7D,+%7B-1%2Bi,+1-i,+1,+i%7D,+%7B-i,+-1%2Bi,+1,+0%7D%7D)
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Program Listing. 
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Matrix Minors.      { MINOR  ,  CMINOR  } 

 
In linear algebra, a minor of a matrix [A] is the determinant of some smaller square matrix, cut down 
from [A] by removing one or more of its rows or columns. Minors obtained by removing just one row 
and one column from square matrices (first minors) are required for calculating matrix cofactors, 
which in turn are useful for computing both the determinant and inverse of square matrices.  
 
If [A] is a square matrix, then the minor of the entry in the i-th row and j-th column (also called the 
(i,j) minor, or a first minor[1]) is the determinant of the sub-matrix formed by deleting the i-th row 
and j-th column. This number is often denoted Mi,j. The (i,j) cofactor is obtained by multiplying the 
minor by:   (-1)^{i+j}.  

 
Two programs are included, one for Real matrices (not limited in order, courtesy of MDET) and 
another for Complex Matrices – only up to degree 5, due to the restriction imposed by CMDET. The 
programs are a good example of use of the matrix utility functions C<>C, R<>R, and MMOVE. 
 
Program listing.- Real Matrix Minors 
 

 
  

1 LBL "MINOR" 28 MNAME?

2 LBL 01 29 RTN

3 ASTO 01 MNAME 30 GTO 01

4 STO 00 i,j pointer 31 LBL 02

5 "|-,#1" 32 INT j 

6 MAT= scratch copy 33 ENTER^
7 DIM? 34 DSE X j-1

8 1,001 35 X=0?

9 - one order less 36 RTN don’t bother if j=1

10 "#2" 37 X<>Y

11 MATDIM scratch sub-array 38 ENTER^
12 MZERO clear it 39 ENTER^

13 "#1" 40 I<>J 0,00(j-1)

14 RCL 00 41 E

15 I<>J i,j pointer 42 -

16 SF 00 43 + j,00(j-1)

17 XEQ 02 44 LBL 00

18 RCL 00 45 FS? 00

19 CF 00 46 C<>C bubble left column

20 XEQ 02 47 FC? 00

21 CLST 48 R<>R bubble up row

22 2,002 49 1.001 offset

23 "#1,#2" 50 - k,00(k-1)

24 MMOVE 51 DSE Y j=j-1

25 PURFL 52 GTO 00

26 CLA 53 END

27 MDET
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Program listing: Complex Matrix Minors. 
 

 
 

Example: Calculate all element minors for the example matrix used in the Complex Transposed 
example: 

 
You need to provide the matrix name in ALPHA and the complex pointer value in X -i.e. from 1,001 to 
3,003 in this example. Remember also that the 41Z Module needs to be plugged for the complex 
determinant calculation. 
 
The solutions are: 

 
 
 
 

 
 

  

1 LBL "CMINOR" 33 ST+ X 2i,2j

2 LBL 01 34 STO 02

3 STO 00 35 XEQ 03

4 ASTO 01 36 RCL 02 2i,2j

5 "|-,#1" 37 1,001

6 MAT= scratch copy 38 - (2i-1),(2j-1)

7 DIM? 39 LBL 03

8 2,002 40 RCL 00 i,j

9 - one order less 41 FS? 00

10 "#2" 42 I<>J

11 MATDIM scratch sub-array 43 INT

12 MZERO clear it 44 DSE X discard first column

13 "#1" 45 X=0?

14 RCL 00 46 RTN don’t bother if j=1

15 CF 00 do the rows 47 X<>Y

16 XEQ 02 48 INT

17 RCL 00 49 ENTER^

18 I<>J i,j pointer 50 ENTER^

19 SF 00 do the columns 51 2

20 XEQ 02 52 -

21 CLST 53 I<>J

22 3,003 54 + k,00(k-2)

23 "#1,#2" 55 LBL 00

24 MMOVE 56 FS? 00

25 PURFL 57 C<>C bubble left column

26 CLA 58 FC? 00

27 XROM "CMDET" 59 R<>R bubble up row

28 CLA 60 2.002 offset

29 ARCL 01 61 - k,00(k-2)

30 RTN 62 DSE Y j=j-1

31 GTO 01 63 GTO 00

32 LBL 02 64 END

 -28+J31 -44-J18 -29+J71 
Minors: 5+J6 9+J49 38+J10 

 -47-J9 -46-J2 -19+J51 
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Corollary: Complex Determinant of order Five.     { CMDTM } 

 
An extension for 5x5 complex matrix determinants is included in the Complex Matrix ROM. It uses the 
complex minors (available up to order 4) to obtain the result. Note that since CMINOR uses CMDET 
in turn, therefore is not practical at all for orders 4 and below – which they’d better use a direct call 
to CMDET. You *can* do it of course, but it’ll definitely be much slower. 
 

LBL "CMDTM" 1 
DIM? 2 
2 3 
/ 4 
FRC 5 
E 6 
+ 7 
STO 03 8 
CLST 9 
*LBL 00 10 
ZSTO 11 
2 12 
RCL 03 13 
XROM "CMINOR" 14 
ZENTER^ 15 

RCL 03 16 
CMR 17 
RCL 03 18 
INT 19 
LASTX 20 
I<>J 21 
 + 22 
 ZCHSX 23 
 Z* 24 
 ZRC+ 25 
 2 26 
 ISG 03 27 
 GTO 00 28 
 ZAVIEW 29 
 END 30 

 
The determinant is obtained as the sum of the elements multiplied by the corresponding co-factors (a 
sign-modified version of each minor). For the example matrix shown below (C3X3) these are as 
follows: 
 

 
Minors:  -28+J31 -44-J18  -29+J71 
  5+J6  9+J49  38+J10 
  -47-J9  -46-J2  -19+J51 
    
Cofactors: -28+J31 44+J18  -29+J71 
  -5-J6  9+J49  38-J10 
  -47-J9  46+J2  -19+J51 
    
Determinant: (1+3i).(-28+31i) + (2-5i).(44+18i) + (7-i).(-29+71i)= -75 + 289i 
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Sub-Matrices, Minors & Cofactor Matrices.  { SUBZM  ,  ZMNRS   ,  ZCFTS  } 

 
Three other routines are also included to reduces Sub-matrix from a given one – replacing the original 
- and to build the minors and cofactors matrices of a given matrix - creating a new matrix of the 
same dimension where all elements will be the corresponding minor or cofactor for its position, like it 
was shown in the example below. 
 

• Sub-matrices will replace the original matrix. Make sure you make a copy of it prior to 
the execution of SUBZM if you need the original matrix to be available for other purposes 
 

• The minors and cofactors matrices are named “ZMNRS” to differentiate it from the real-case 
equivalent function in the Advantage Math ROM, which is named “MINORS” 

 
• They are not to be confused with the routines available in the Advantage Math ROM, which 

are intended for the real-matrix case. Refer to the table below for details: 
 

Complex Case (CPX MTRX ROM) Function Matrix Name 

Element Minor (iii,jjj) CMINOR Result in {X,Y} 

Sub-Matrix (iii,jjj) SUBZM Replaces original matrix 

Minors Matrix  ZMNRS ZMNRS 

Cofactors Matrix ZCFTS ZMNRS 

   

Real Case (Advtg Math ROM) Function Matrix Name 

Element Minor (iii,jjj) MINOR Result in X 

Sub-Matrix (iii,jjj) SUBM Replaces original Matrix 

Minors Matrix MINORS MINORS 

Cofactors Matrix CFACTS MINORS 

 
 
Program Listing and data requirements: 
 
Uses User flags 00-02 and data Registers {R00 – R04}. Matrix name is stored in R03. 
 

LBL “ZMNRS” 1 
CF 02 ; flags case 2 
GTO 02 3 
LBL “ZCFTS” 4 
SF 02       ; flags case 5 
*LBL 02 6 
XROM “?CM” 7 
ASTO 03 8 
DIM? 9 
“ZMNRS” 10 
MATDIM 11 
CLA 12 
ARCL 03 13 

E 14 
E3/E+ 15 
ZIJ= 16 
*LBL 04 17 
ZIJ? 18 
STO 04 19 
XROM “CMINOR” 20 
FC? 02 21 
GTO 04 22 
RCL 04 23 
INT 24 
LASTX 25 
FRC 26 

 I<>J 27 

+ 28 
ZCHSX 29 
*LBL 04 30 
“ZMNRS” 31 
RCL 04 32 
CMS 33 
CLA 34 
ARCL 03 35 
ZJ+ 36 
FC? 10 37 
GTO 04 38 
END 39 

 
 
Note the usage of ZJ+ to sweep all elements in the original matrix (whose name is saved in R03), 
and the successive calculation of the minor or cofactor depending on the status of user flag 00. 
 
The program below shows the current version for CMINOR and SUBZM – slightly tweaked revision 
of the original program listed before thanks to the utilization of some of the new routines. 
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LBL “SUBZM” 1 

SF 01 ; flags case 2 
GTO 01 3 

LBL “CMINOR” 4 

CF 01 ; flags case 5 
*LBL 01   6 

STO 00 ; iii,jjj 7 
ASTO 03 8 
>”,#” ; aux matrix 9 
MAT=  10 
DIM? 11 
2,002 12 
- 13 
“=” ; minor mat 14 
MATDIM 15 
MZERO 16 
“#” ; minor mat 17 
RCL 00 ; iii,jjj 18 
I<>J ; jjj,iii 19 
SF 00 ; do columns 20 
XEQ 02 21 
RCL 00 ; iii,jjj 22 
CF 00 ; do rows 23 
XEQ O2 24 
CLST ; prepare pts 25 
3,003 ; real anchor  26 
“#,=” ;from, to 27 

MMOVE 28 
PURFL   ; kills “#” 29 
FS? 01   ; sub-mat? 30 
GTO 01   ; yes, skip 31 
MNAME?  32 
XROM “CMDET” 33 
PURFL   ; purge 34 
“#” 35 
CLA  36 
ARCL 03 37 
RTN 38 
*LBL 01 ; submatrix 39 

“=,” 40 
ARCL 03 ; “=,A” 41 
MAT= ; override it 42 
PURFL ; kills  “=” 43 
MNAME? 44 
RTN 45 
*LBL 02 ; subroutine 46 

ST+ X ; complex pt 47 
STO 02 ; save in R02 48 
XEQ 03 ; swap one 49 
RCL 02 ; pointer 50 
E  51 
E3/E+ ; 1,001 52 

-        ; previous 53 
*LBL 03 ; swap two 54 

RCL 00 ;iii,jjj 55 
FS? 00 ;cols? 56 
I<>J ; yes 57 
INT 58 
DSE X ; one less 59 
X=0? ; first one? 60 
RTN ; yes, done. 61 
X<>Y ; no, go on 62 
INT 63 
ENTER^ 64 
ENTER^ 65 
2 66 
- 67 
I<>J 68 
+ 69 
*LBL 00   70 

FS? 00 ; cols? 71 
C<>C ; bubble up 72 
FC? 00 ; rows? 73 
R<>R ; bubble left 74 
2,002 ; next pair 75 
-  76 
DSE Y ; next? 77 
GTO 00 ; yes, repeat 78 
END ; all done79 

 
Program remarks:   

 
• It uses user flags 00 and 01, and data registers R00 – R03 for the matrix name 

 
• The program uses two scratch matrices named “#”and “=”. The first one is a direct copy 

of the given matrix to perform the alterations on it without modifying the original. The 
second one is a reduced matrix (one order smaller) that will hold the minor to calculate 
the determinant. 

 
• The main subroutine LBL 02 does a “bubble” swap of the corresponding columns and rows – 

as per the complex pointer iii,jjj input value. The complex matrix requires two real columns 
and rows to be swapped, moving them to the upper-left corner of the matrix. Once 
completed the arrangement is ready for a clean “extraction” starting at real pointer 3,003 
and into the destination minor matrix “=” (MMOVE in line 28) 
 

• Note that SUBZM copies the resulting sub-matrix into the original, therefore it is replaced 
by it. 

 
• Both auxiliary matrices are purged by the program on completion, and the original matrix 

(or sub-matrix) is left as the selected one. 
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Complex Matrix Trace.    { CMTRC  ,  ZMTRC  } 

 
The Complex Matrix ROM includes two routines to calculate the matrix trace: 
 
The CMTRC routine uses a direct approach, summing the imaginary parts of the elements in the 
diagonal and using MTRACE to obtain the double of the sum of the real parts – as consequence of 
the particular way the data elements are arranged. 
 
The ZMTRC uses an indirect approach, significantly slower than the previous one but interesting 
from the academic point of view because it can also be used for other needs. The idea is to separate 
the real and imaginary parts into two independent matrices, [Re(Z)] and [Im(z)]so that it verifies: 
 

[Z] = [Re(Z)] + j [Im(Z)] 
 
Interestingly enough this alternative method is less demanding on data storage requirements (half 
the size of the “standard” method), as each of the auxiliary matrices are of dimension (m x n) for a 
total of (2.m.n) elements instead of (2m.2n) = (4.m.n) 
 
Obviously using the separate approach, the MTRACE function can be used on both the real and 
imaginary component matrices, and the trace is given by: 
 

trace([Z]) = trace ([Re(Z)]) + j trace([Im(Z)]) 
 
The downside is of course that we need a routine to separate the matrix first, which is going to take 
time to execute and code space in the ROM. Nevertheless, it’s well worth the cost, as we’ll be using 
it for other purposes besides the trace, such up matrix transposition and element rotations. 
 
Program Listings.- 
 

LBL “CMTRC” 1 
MTRACE ; 2x Real part 2 
2 3 
/  ; real part 4 
, 5 
MSIJA  ;first element 6 
I+  ; next row 7 
MRC+  ;get Im(z11) 8 
*LBL 00 9 
I+  ;move down 10 
J+  ; move left 11 
J+  ; and left again 12 
MRC-  ; get Im(zij) 13 
+  ; add to partial 14 
FC? 09  ; end of matrix? 15 
GTO 00  ; no, do next 16 
RCL Z  ; yes, real part 17 
ZAVIEW ; show result 18 

MNAME?  ; recall MNAME 19 
RTN  ; done. 20 
LBL “ ZTRCE” 21 
ASTO 04  ; saves MNAME 22 
>”,#,=”  ; scratch matx 23 
XROM “ZM>XY” 24 
ASWAP  “#,MNAME,=” 25 
MTRACE 26 
ASWAP  “=,#,”MNAME” 27 
MTRACE   28 
X<>Y   29 
PURFL  ; kills “=” 30 
“#” 31 
PURFL  ; kills “#” 32 
ZAVIEW  ; show result 33 
CLA 34 
ARCL 04  ; recall MNAME 35 
END  ; done.36 

 
 
It must be said that separating real and imaginary components doesn’t save any room when the 
original matrix is left around – and for a while the three always exist at once of course. 
 

  



Complex Matrix ROM Manual  

(c) Ángel M. Martin                              November 2020                                                  Page 27 of 59 
 

Separation into Real and Imaginary Components.   { ZM>XY  ,  XY>ZM  } 

 
Here are the routines for the separation into the real & imaginary parts, and the reverse operation 
to re-assembly the complex matrix from its two components. The routine will create the separate 
components if they didn’t already exist. 
 
Input: Names of the three matrices in the ALPHA register, “ZM, REAL,IMAG” for the separation 
routine and “REAL,IMAG,ZM” for the reverse. There are several calls to ASWAP to re-arrange 
ALPHA as needed – let the swap dance begin! 
 
 

LBL “ZM>XY”; ZM,RE,IM 1 
DIM?  ; 2m x 2n 2 
2 3 
/  ; m x n 4 
STO 02 5 
ASWAP ; RE,IM,ZM 6 
MATDIM 7 
ASWAP ; IM,ZM,RE 8 
MATDIM 9 
ASWAP ; ZM,RE,IM 10 
XROM “?CM” 11 
RCL 02  ; m x n 12 
E3/E+  ; 1,00m(00n) 13 
STO 02  ; r,00m 14 
LASTX  ; m x n 15 
*LBL 10  ; do columns 16 
FRC  ; 0,00n 17 
E 18 
+  ; 1,00n 19 
STO 01 20 
*LBL 00  ; do rows 21 
RCL 02  ; r,00m 22 
INT  ; r 23 
RCL 01  ; c,00m 24 
INT  ; c 25 

I<>J  ; o,ooc 26 
+  ; r,00c 27 
STO 00  ; current pt 28 
CMR  ; recalls Zcr 29 
XEQ 04  ; do the trick 30 
ISG 01  ; next col 31 
GTO 00  ; do next 32 
RCL 01  ; reset counter 33 
ISG 02  ; next row 34 
GTO 10  ; do next 35 
RTN  ; done. 36 
*LBL 04 37 
ASWAP ; RE,IM,ZM 38 
RCL 00  ; r,00c 39 
MSIJA 40 
X<>Y  ; Re(z) 41 
MS 42 
X<>Y  ; r,00c 43 
ASWAP ; IM,ZM,RE 44 
MSIJA 45 
RCL Z  ; Im(z) 46 
MS 47 
ASWAP ; ZM,RE,IM 48 
END 49 

___________________________________________________________________________
___ 
 
 

LBL "XY>ZM" ; RE,IM,ZM 1 
DIM?  ; m x n 2 
ASWAP ; IM,ZM,RE 3 
DIM?  ; m x n 4 
ASWAP ; ZM,RE,IM 5 
ST+ X  ; 2m x 2n 6 
MATDIM  7 
ASWAP ; RE,IM,AM 8 
,  9 
MSIJA  10 
*LBL 00 11 
MRIJA  ; get current pt 12 
MR  ; Re(z) to X 13 
ASWAP ; IM,ZM,RE 14 

X<>Y  ; i,00j 15 
MSIJA  16 
MR  ; Im(z) 17 
X<> Z  ; Re(z) to X 18 
ASWAP ; ZM,RE,IM 19 
RCL  Z  ; i,00j 20 
CMS  ; save cpx. elmt. 21 
ASWAP ; RE,IM,ZM 22 
MRIJA  ; re-focus matrix! 23 
J+  ; next column 24 
FC? 10  ; ouside? 25 
GTO 00  ; no, do next 26 
END  ; yes, done!27 
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Program remarks: 
 
Note how in the separation routine ZM>XY we haven’t used the pointer routines (ZIJ?,ZJ+, etc.) to 
navigate the matrix, rather the implementation uses two counters to move along the columns (in 
R01) and the rows (in R02). This requires prepping the ISG values in advance but it’s faster than the 
complex pointer-based alternative. The other advantage is that ALPHA is not touched up at all, which 
becomes critical in these cases holding three matrix names at once. 
 
The reverse action in XY>ZM (merging real and imaginary parts into a complex matrix) is simpler 
because here the pointer functions work on the real matrices, and not on the complex one. Thus 
there’s no need for row and column counters since we use user flag 10 as termination criteria. Note 
however the careful use of MSIJA and MRIJA (with the “A”) every time we need to recall an 
element from the two source matrices. Finally, the complex pointer value for [ZM] equals the real one 
in [RE] and [IM], given the doubled-up dimensions of the complex matrix compared to the real ones. 
 
 

 

Corollary:  Matrix Transpose revisited. 
 
The example below is an alternative to the CMTRP program that also uses the matrix separation 
routine to apply the standard TRNPS function to each of the components, rebuilding the complex 
matrix at the end. It’s probably slower than the routines described already for the transposition, but it 
may be interesting for large sizes. 
 
Program Listing: 
 

01 *LBL “ZTRNP” “  MNAME in ALPHA 

02 ASTO 04  ;  saves MNAME 
03 >”,#,=”   ;  scratch matrix 
04 XROM “ZM>XY” 
05 ASWAP  ; “#,=,MNAME,=” 
06 TRNPS 
07 ASWAP`  ; “=,MNAME,#” 
08 TRNPS 
09 ASWAP  ; “MNAME,#,=” 
10 ASWAP 
11 XROM “XY>ZM” ; rebuild the matrix 
12 PURFL   ; get rid of components 
13 “#” 
14 PURFL 
15 CLA   ; recall name 
16 ARCL 04 
17 END 
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2. Further Operations with Complex Matrices  

 
This section deepens on the applications included in the SandMatrix, properly extended to support 
complex matrices. It is heavily reliant on the 41Z so don’t forget to have it plugged in as well. 
 
 

Addition and multiplication by complex values. 
 
Completing the original matrix function set, you can use this pair of routines to: 
 

• add one complex value to all elements of a complex matrix , and 
• multiply all elements of a complex matrix by a complex value  
• Compute the Hadamard product (element-wise) of two matrices 

 
The first two Z+M and Z*M are particular examples of the real-matrix counterpart functions MAT+ 
and MAT* when they’re used with “X” in ALPHA to denote the X-register. The complex value is 
expected in {Y,X} and the matrix name should be in ALPHA. 
 
The third one ZMAT* is the complex counterpart of the SandMatrix function MAT*, which 
computes the element-wise multiplication of two matrices of equal dimensions. Like in the real 
function the three matrix names are expected in ALPHA, separated by commas. “A,B,C” – where C 
may also be one of the  A,B factors. 

 
 
Simple enough but having them available facilitates the writing of more complex routines, therefore 
their inclusion as separate entries in the FAT. 
 
Example. Multiply the example matrix C3X3 by the imaginary unit j - i.e. do a 90 degree counter-
clockwise rotation of the original complex elements. 
 
Assuming C3X3 is already loaded in X-memory (if not just call “^C33”) , we type: 

 
 
1, ENTER^, 0, ALPHA, “C3X3”, ALPHA, XEQ “Z*M” 
Then SF 21, XEQ “ZOMR” to review the results, which should look as follows: 
 

[-3+j1 5+j2 1+j7] 
i.[A] =  [ 2+j4 -9+j6 -4-j8 ] 

[ 7-j3 -2+j3 -6-j1 ]  
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Registers, flags, etc. 
 
These routines share common core block to sweep thru all matrix elements. The navigation does not 
use the new pointer functions, but a more direct, faster method instead. This requires using indexes 
in data registers R01 and R02, plus another register (R00) to hold the current pointer for the 
elements being processed. Data register R03 holds the subroutine index value, used by XEQ IND 03 
in program step #57. Finally, user flag 01 is used for the Z+M and Z*M routines, but no scratch 
matrices are needed. 
 
Program listing: 
 

01  LBL “ZNRM“ ;MNAME in ALPHA 

02  CLSTZ  ; clear Z=stack 
03  5  ; subroutine index 
04  XEQ 02  ; needs to return 
05  ZRDN  ; drop result 
06  SQRT  ; square root 
07  MNAME? ; select matrix 
08  RTN  ; done. 

09  LBL 05  ; does F-Norm 

10  ZMOD  ; modulus 
11  X^2   
12  Z+  ; partial result 
13  ZENTER^ ; push in Z-stack 
14  RTN 

15  LBL  “ZMAT*” “M1,M2,M3“ 

16  DIM?  ; M1 dimension 
17  ASWAP ; M2,M3,M1 
18  DIM?  ; M2 dimension 
19  X#Y?  ; different? 
20  DIMERR ; show error 
21  ASWAP ; M3,M1,M2 
22  MATDIM ; créate matrix 
23  ASWAP ; M1, M2,M3 
24  3  ; subroutine index 
25  GTO 02 ; merge with core 

26  LBL “Z*M” 

27  SF 01  ; flag case 
28  GTO 01 ; merge case 

29  LBL “Z+M” 

30  CF 01  ; flag case 
31  LBL 01  ; common 
32  ZRPL^ ; fill complex stack 
33  2  ; subroutine index 

34  LBL 02  ; core block 

35  STO 03  ; save index 
36  DIM?  ; m,00n  
37  XROM “?CM” ; check if complex 
38  2 
39  /  ; complex dim 
40  E3/E+ 
41  STO 02  ; 1,00m00n 

42  LASTX  ; m,00n 
43  LBL 10  ; row loop 
44  FRC  ; 0,00n 
45  E 
46  +  ; 1,00n 
47  STO 01 
48  LBL 00  ; column loop 
49  RCL 02  ; r,00m 
50  INT  ; r 
51  RCL 01  ; j,00n 
52  INT  ; j 
53  I<>J  ; 0,00j 
54  +  ; r,00j 
55  STO 00  ; complex pointer 
56  CMR  ; recall element 
57  XEQ IND 03 ; call subroutine 
58  ISG 01  ; next column 
59  GTO 00   
60  RCL 01  ; recall pointer 
61  ISG 02  ; next row 
62  GTO 10 
63  RTN  ; all done 

64  LBL 02  ; does Z+M or Z*M 

65  FC? 01  ; addition? 
66  Z+  ; yes 
67  FS? 01  ; product? 
68  Z*  ; yes  
69  RCL 00  ; recall pointer 
70  CMS  ; save in result matrix 
71  RTN  ; done. 

72  LBL 03  ; does MAT* 

73  ZENTER^ ; pushes M(k,j) 
74  ASWAP   
75  RCL 00  ; current pointer 
76  CMR  ; recall element 
77  Z*  ; complex multiply 
78  ASWAP ; rotate string 
79  RCL 00  ; current pointer 
80  CMS  ; store element 
81  ASWAP 
82  END 
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Corollary: Frobenius Norm.            { ZMNRM } 

 
Using the same definition as for real matrices the ZNRM routine is part of the same core routines, 
and therefore is included i this section. 
 

 

where A∗ denotes the conjugate-transpose of A , and interestingly enough the expression above 

shows that the trace of such matrix product must be a real number! 
 
Note that the Frobenius norm is obviously a real value also for complex matrices, by virtue of the 
modulus function. 
 
Example: obtain the norms of our beloved example matrices C3X3 and C4X4: 
 
||C3X3|| = 20.34698995 
||C4X4|| = 11.00000000 
 
 
Program remarks: 
 
Note how the ZMNRM routine is also listed in the previous page, from program step #01 to #14 . 
It shares the same central core used by the Hadamard multiplication and element sum/product 
routines described just before, and therefore it is placed in this section even if strictly speaking it’s 
not related to the same functionality. 
 
The routine uses the complex arithmetic function Z+ in step #12 because it’s more convenient to 
take advantage of the complex stack, but it’s really not necessary since the module is a real number, 
so the “real” addition would suffice. 
 
Here’s an alternative routine using the trace expression; shorter but probably slower, and besides it 

requires two scratch matrices for the matrix product. 

 

 

LBL “FRB2” 1 
ASTO 01 2 
DIM?  ; m x n 3 
INT  ; m 4 
STO 00 5 
>”,*” 6 
MAT=  ; scratch #1 7 
“*” 8 
XROM “CGTRP” 9 
DIM?  ; n x m 10 
FRC  ; 0,00n 11 
RCL 00  ; m 12 
+  ; m,00n 13 
“**”  ; scratch #2 14 

MATDIM  15 
CLA  16 
ARCL 01 ; MNAME 17 
>”,*,**” ; “A,*,**” 18 
M*M  ; does the work 19 
MNAME? ; MNAME 20 
CMTRC  ; trace of AA* 21 
SQRT 22 
PURFL  ; clean house 23 
“*” 24 
PURFL 25 
CLA 26 
ARCL 01 ; MNAME 27 
END28 
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Row & Column Swapping and Equal Matrix Test. 
 
 
A few more routines complete the utility set for complex matrices, more or less bringing it to parity 
with the real case. They are the column & Row swapping and the Matrix equal test. 
 
Like C<>C and R<>R in the SandMatrix, you need to write the matrix name in ALPHA and the 
“from,to” format for the columns or rows to swap, then call the appropriate routine ZC<>C or 
ZR<>R. They’ll exchange the selected targets in the complex matrix, which in reality will be making 
a double-swap if you regard this as a real matrix with double number of columns and rows. 
 
These utilities are pivotal in the Matrix Mirror image and 90 degrees rotation routines covered in the 
next section. In fact they’re all in the same FOCAL group; therefore the program listing is deferred. 
 
 
The other routine included here is M=M?, a simple matrix equal test implemented as an element-
based sequential comparison. Nothing earth-shattering but it comes handy when you need to do a 
quick check on to matrices to verify results after some operations – say to check if a matrix rotation 
matches the expected result. 
 
Obviously, this routine works for real and complex matrices indistinctly, given that it operates at the 
element level. As usual, the routine uses ASWAP profusely to move the focus between the two 
matrices. It also sets user flag 4 if the result is positive and clears it otherwise – so you can branch 
programmatically in your own routines. 
 
 
Program Listing: 
 

01   LBL “M=M?” ; “A,B” 

02   DIM?  ; dim A 
03   ASWAP ; swap names 
04   DIM?  ; dim B 
05   ASWAP ; swap back 
06   X#Y?  ; different? 
07   GTO 01  ; yes, no cigar 
08   ,  ; pt = 1,001 
09   MSIJA  ; sets A-pointer 
10   *LBL 00  ; mainloop 

11   MRIJA  ; A-pointer 
12   MRR+  ; aij to X, incr,A-pt 
13   X<>Y  ; A-pointer 
14   ASWAP ; swap names 
15   MSIJA  ; sets B-pointer 
16   X<>Y  ; aij to X 

17   MRR+  ; bij, increases B-pt 
18   ASWAP ; swap back 
19   X#Y?  ; different? 
20   GTO 01  ; yep, no cigar 
21   FC? 10  ; out of bounds? 
22   GTO 00  ; nope, do next 
23   SF 04  ; yes, it’s equal! 
24   “YES” 
25   AVIEW   ; visual feedback 
26   RTN  ; done 
27   *LBL 01 

28   CF 04  ; flags failure 
29   “NO”  ; visual feedback 
30   AVIEW  
31   END  ; done 
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Eigenvalues Revisited. 
 
The module includes three short routines that deal with finding the Eigenvalues of complex 
matrices.  
 

• The first one, ZEV22, is for the simplest case, i.e. the 2x2 dimension matrix – where the 
results are obtained simply by solving a quadratic equation  with the matrix trace and 
determinant with coefficients,^2 – .tr(A) + det(A) = 0derived from the two relationships 

below: 
 

    ;  

The program listing shortness is a tribute to the 41Z function set: 

 

01   LBL “ZEV22” 

02   XROM “CMDET” 
03   ZENTER^ 
04   XROM “CMTRC“ 
05   ZNEG 
06   E 

07   ZREAL^ 
08   Z<>ST 03 
09   ZQRT 
10   ZAVIEW 
11   MNAME? 
12   END 

 
 

• The second one, ZEV33 is for the case of a 3x3 matrix. Here too we’ll use the 41Z functions 
to solve the characteristic polynomial, a cubic equation with the following terms: 
 

         
 

where c2 is the sum of the principal minors of the matrix  = 

 

If the 2x2 case was simple this one is not far away from it – 

again thanks to the 41Z powerful and comprehensive function set, it’s done with a 

minimalistic program shown below: 

 

1. LBL "ZEV33" 

2. XROM "?CM" 

3. XROM "CMDET" 

4. ZNEG 

5. ZENTER^ 

6. XROM "CMTRC" 

7. ZNEG 

8. ZENTER^ 

9. Z^2 

10. ZENTER^ 

11. ASTO 06 

12. >",#" 

13. MAT= 

14. MNAME? 

15. M^2 

16. XROM "CMTRC" 

17. Z- 

18. 2 

19. ST/  Z 

20. / 

21. ZENTER^ 

22. 0 

23. 1 

24. Z<>ST  4 

25. ZCRT 

26. CLA 

27. ARCL 06 

28. END

 

The three roots will be placed in the complex stack. The first one will be displayed, and you 

can use ZRDN twice to see the other two. 
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• The third one, ZEIGEN, is an iterative approach that uses the general-purpose ZSOLVE 
routine in the 41Z module. It is therefore rather slow and very dependent on the initial 
guesses supplied – but on the other hand is valid for any matrix dimension. Only one 
Eigenvalue is found per each pair of initial guesses, so you’ll need to repeat the execution to 
obtain the others. 

 
Let [I] be the identity matrix of the same dimension as [A]. The equation to solve is: 

 

 
 

The program listing is also deceptively short. Note the subroutine LBL 05 used to perform the 
element product I on the diagonal only – faster than using the general-purpose ZM* routine. 

 

01  LBL “ZEIGEN” 

02  ASTO 05 
03  DIM? 
04  “I” 
05  MATDIM 
06  “Z1=?“ 
07  PROMPT 
08  ZENTER^ 
09  “Z2=?“ 
10  PROMPT 
11  “*ZEV“ 
12  ZSOLVE 
13  ZAVIEW 
14  RTN 

15  LBL “*ZEV“ 

16  “I“ 
17  MIDN 
18  XEQ 05 
19  “I,” 
20  ARCL 05 
21  >”,I” 
22  MAT- 
23  MNAME? 
24  XROM “CMDET” 
25  RTN 
26  *LBL 05 
27  DIM? 
28  2 

29  / 
30  E3/E+ 
31  STO 03 
32  RDN 
33  *LBL 00 

34  RCL 03 
35  INT 
36  ENTER^ 
37  I<>J 
38  + 
39  CMS 
40  ISG 03 
41  GTO 00 
42  END 

 
R00–R05 are used by ZEIGEN / CMDET, and ZSOLVE is data register hungry, needing R08–R12.  
 

 

Example1:  

Find the three Eigenvalues of the matrix given below: 

 

 
 
Tricky enough they happen to be the real values 0, 2, and -2, but assuming we don’t know that 
beforehand let’s use the guess valuesaround{ 1+i , 1-i } and { -1, 1}.  
 
Using ZEV33 is as simple as entering the matrix name in ALPHA and calling the program. The three 
eigenvalues are in the complex stack, as follows: 
 

z1 = 0+J0 
z2 = 2-J1.22E-6 
z3 = -2.00+J1.22E-6 - unfortunately not a brilliant precision ... 
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With ZEIGEN it’s a bit trickier. Notice how the successive values of det(A-I) are being displayed, 

and how they should be converging to zero in a few iterations. Remember to adjust your display 
settings to reach the desired accuracy. 
 
 
Example 2.-  
 
Obtain one Eigenvalue for our example matrix C3X3, also starting with guesses { 1+i , 1-i }  
 

  or in FIX6: 2.500538 - j 1.063949 
 
 
To verify this, we can use ZEV33 again, which yields the following results: 
 

z1 = -2.540+J15.790 
z2 = 2.501-J1.064 
z3 = 6.040+J3.274 

 
 
 
PS. This web page is a very good resource to check your results:  
https://www.arndt-bruenner.de/mathe/scripts/engl_eigenwert2.htm 
 

 
 

 
 
 
 
 

  

https://www.arndt-bruenner.de/mathe/scripts/engl_eigenwert2.htm


Complex Matrix ROM Manual  

(c) Ángel M. Martin                                    November 2020 Page 36 of 59 

 
 

The path not taken: using diagonal & cross-elements product sums. 

Another alternative for ZEV33 that does not require calculating the square matrix is described 

before. The advantage is that it doesn’t need the additional memory for the scratch matrix needed 

in the square matrix operation, but it’s a longer program and it takes much longer to complete. 

Characteristic polynomial  equation: 

 

The calculation for c2 is done as ZIJJI – ZMDPS, with the routines listed below: 
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Characteristic Polynomial, Determinant & Inverse 
 

This section finally tackles the general-purpose case for the three main subjects covered previously 

in the manual: Eigenvalues, Determinant and Inverse of a square matrix.  

As we know, the Eigenvalues are calculated as the roots of the characteristic polynomial. In the 41Z 

module there are programs to calculate the roots of complex polynomials of any degree, therefore 

we’ll address the calculation of the coefficients of the characteristic polynomial here, using the 

Faddevv-Leverrier method as we did in the SandMatrix for the case of real matrices 

The beauty of this approach is that we’ll put those coefficients to work bigtime to obtain the matrix 

determinant (independent tern), and also the matrix inverse using the corollary of the Cayley-

Hamilton theorem. So, we’ll kill three birds with a single stone (well, maybe with a single stone plus 

one extra pebble ;-) 

1. ZPCHR calculates the coefficients of the characteristic polynomial of the square matrix 

whose name is in ALPHA. The program will enumerate them and will return the control word 

bbb.eee in X, denoting the complex registers holding the coefficients. The original matrix is 

not altered, and its name is left in ALPHA upon completion. 

 

2. CMDET (in the SandMatrix) also uses this approach, whereby the determinant is the last 

coefficient of said characteristic polynomial with changed sign: 

 𝑃(ℎ) =  ∑ 𝑐𝑛−𝑘 ℎ𝑘𝑛
𝑘=0   ,  and:   det(𝐴) = (−1)𝑛. 𝑐𝑛 ,  

i.e. the coefficient of the independent term. The program will leave the original matrix 

unchanged and its name in ALPHA upon completion. 
 

3. Lastly, ZMINV calculates the inverse matrix (*), using the expression: 

𝐴−1 =
−1

𝑐𝑛
 ( 𝐴𝑛−1 + 𝑐1 𝐴𝑛−2 + ⋯ + 𝑐𝑛−2𝐴 +  𝑐𝑛−1 𝐼 ). 

Note that this expression can be re-written using the Honer form,  

𝐴−1 =
−1

𝑐𝑛
 ( 𝑐𝑛−1 𝐼 + 𝐴(𝑐𝑛−2𝐼 +  𝐴(𝑐𝑛−3𝐼 + ⋯ + 𝐴(𝑐1𝐼 + 𝐴 𝑐0 ) 

Which is much more convenient to use the powerful MCODE matrix functions available in 

the SandMatrix, MAT+ and M*M, plus the routine Z*M needed to do the final bit, i.e. the 

division by det(A).  

Note that the program does not replace the original matrix with its inverse, instead the 

inverse matrix is left in X-Mem with the name “P”. 

(*) Remember that the MCODE function MINV does support complex matrices, and therefore will 

always be the preferred method for the matrix inversion calculation- however ZMINV is added to 

the module for comparison purposes. 

References:  

https://en.wikipedia.org/wiki/Faddeev%E2%80%93LeVerrier_algorithm 

https://en.wikipedia.org/wiki/Cayley%E2%80%93Hamilton_theorem 

https://en.wikipedia.org/wiki/Faddeev%E2%80%93LeVerrier_algorithm
https://en.wikipedia.org/wiki/Cayley%E2%80%93Hamilton_theorem
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Example.- Calculate the characteristic polynomial, determinant and inverse for the C3x3 matrix: 

 

First off, ensure the matrix is loaded using XEQ “^C33” if still not in X-Mem. 

Then with the matrix name in ALPHA we do: 

“C3X3”, XEQ “ZPCHR”,  => shows iterations and then: 

C0 =  1+J0  R/S 

c1 = -6-J18  R/S 

c2 = -38+J131  R/S 

c3 = -75+J289  thus: det = 75-J289 

And now: 

XEQ “ZMINV” (shows counters…) SF 21, XEQ “ZOMR” 

1,1= 0.1241+J0.0647 1,2=-0.0152+J0.0213 1,3= 0.0104+J0.1599 

2,1= 0.0213-J0.1578 2,2= 0.1513-J0.0704 2,3=-0.0322-J0.1508 

3,1= 0.2546+J0.0343 3,2=-0.0004+J0.1316 3,3= 0.1813+J0.0187 

 

In order to test the accuracy, let’s invert the inverse to compare it with the original – calculating the 

norm of the difference: 

ZMNRM [C3X3 – Inv(Inv(C3X3))] = 2.2289235 E-08 

The accuracy loss happens due to the FOCAL subroutines called by the program, despite the other 

MCODE functions used. Still it’s a pretty decent performance considering the inherent platform 

limitations and the nature of the iterative process. 

 

Register, Flags, etc. 

Data registers {R00 – R03}  are used in main memory. 

Only user flag 4 is used to differentiate between the main routines. 

Two auxiliary matrices are needed, each of the same size of the original one – therefore the 

maximum complex matrix size is n= 14, for a total of 588 X-mem registers. This requirement stems 

from the MCODE function M*M, which cannot have the result matrix equal to any of the operands 

(i.e. it’s not an in-place multiplication). But I’m not complaining, since it does support complex 

matrices as well as real ones! 

 

LBL “Z*ID” - This subroutine does the equivalent to MAT* in the case “X,I,I”, with a complex value 

in {Y,X} and the identity matrix [ I ]. This is faster than using Z*M, since only the diagonal 

elements need doing: 

    𝑧. [I]  =    [
𝑧 (0)

(0) 𝑧
]  
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Program Listing. 

 

*LBL "ZMINV" 1 
 SF 04 2 
 GTO 04 3 

*LBL "ZPCHR" 4 
 CF 04 5 

*LBL 04 6 
 XROM "?CM" 7 
 ASTO 00 8 
  >",P" 9 
 MAT= 10 
 DIM? 11 
 "#" 12 
 MATDIM ; 2n,002n 13 
 FRC  ; 0,002n 14 
 2   15 
 /  ; n,00n 16 
 LASTX   17 
 +  ; 2,00n 18 
 STO 01  ; counter 19 
 CF 21 20 

*LBL 00  ; loop1 21 
 VIEW 01 22 
 XEQ 01  ; Ck 23 
 XROM “Z*ID” ; [#]=Ck*[#] 24 
 "P,#,#" 25 
 MAT+ 26 
 CLA 27 
 ARCL 00 28 
 >",#,P" 29 
 M*M 30 
 ISG 01  ; next? 31 
 GTO 00  ; yes 32 
 XEQ 01 33 
 FS? 04  ; inverse? 34 
 GTO 04  ; yes, -> 35 
  E 36 
 STO 02 37 
 CLX 38 
 STO 03  ; c0 = 1 39 
 RCL 01 40 
 E3/E+ 41 
 SF 21 42 
 ZOUPT   (ZF# 52) 43 
 CLA 44 
 ARCL 00 45 
 PDEG   (F# 93) 46 

   INT 47 
   ENTER^ 48 

ST+  X 49 
2 50 
+ 51 
 E6 52 
/ 53 
6 54 
E3/E+ 55 
+ 56 
REGMOVE 57 
X<>Y 58 
XROM “ZPROOT” 59 
RTN 60 

LBL “Z*ID” ; z*[I] 61 
   “#” 62 

MIDN 63 
1.001 64 
XROM “CMS” 65 
 >”,” 66 
DIM? 67 
FRC 68 
3,00002 ; counter 69 
+    ; 3.00m02 70 
1.001 71 
ENTER^ 72 
ENTER^ 73 
ST+ Y  ; 2.002 74 

*LBL 02 ; loop2 75 
 X<>Y 76 
ST+ Z  ; k.00k 77 
X<>Y  ; 2.002 78 
MMOVE ; 1.001 79 
 ISG T 80 
 GTO 02 81 

       RTN 82 

 *LBL 01 83 
 "P" 84 
 CMTRC 85 
 RCL 01 86 
 INT 87 
  E 88 
 - 89 
 CHS 90 

       ST/  Z 91 
       / 92 

    ZSTO IND 01  (129) 93 
 RTN 94 

*LBL 04  ; inverse 95 
 CLA 96 
 ARCL 00 97 
 >",P" 98 
 MAT= 99 
 RCL 01  ; n+1,00n 100 
 FRC 101 
  E-3  ; 0,001 102 
-  103 
 2 104 
 +  ; 2,00(n-1) 105 
 STO 01 106 
 PDEG  (F# 93) 107 
 X<0? 108 
 GTO 04 109 

*LBL 05  ; loop3 110 
 ZRCL IND 01  (129) 111 
 XROM “Z*ID” ; [#]=Ck*[#] 112 
 "P,#,#" 113 
 MAT+ 114 
 CLA 115 
 ARCL 00 116 
 >",#,P" 117 
 M*M 118 
 ISG 01  ; next? 119 
 GTO 05  ; yes, -> 120 

LBL 04 121 
 ZRCL IND 01  (129) 122 
 XROM “Z*ID”    ; [#]=Cn*[#] 123 
 "P,#,P" 124 
 MAT+ 125 
 RCL 01  ; n,00(n-1) 126 
  E 127 
 +  ; n+1 128 
 ZRCL IND X  (243) 129 
 ZNEG 130 
 ZINV  131 
 “#” 132 
PURFL 133 
MNAME? 134 
 XROM "Z*M" 135 
ZOMR 136 
END 137 

  



Complex Matrix ROM Manual  

(c) Ángel M. Martin                                    November 2020 Page 40 of 59 

 
 

Real Matrix version of the same programs. 

It’s easier to handle real matrices with the SandMatrix functions – especially MAT* which was the 

trouble child in the complex case. I’ve used the same subroutines *LBL 01 and *LBL 03 (for “Z*ID), 

so it’s easier to establish the comparisons between both cases. Note that this version does not 

calculate the Eigenvalues – you can use PROOT for that purpose. 

So what’s the additional benefit of these over MDET and MINV ? Nothing much to be honest, 

supposedly the accuracy should hold better using the Faddeev-Leverrier algorithm but the difficult 

examples it was tried on proved otherwise. 

 

*LBL "DET" 1 
 CF 04 2 
 GTO 04 3 

*LBL "INV" 4 
 SF 04 5 

*LBL 04 6 
 ASTO 00 7 
 >",P" 8 
 MAT= 9 
 DIM? 10 
 "#" 11 
 MATDIM 12 
 FRC 13 
 2 14 
 + 15 
 STO 01 16 
 CF 21 17 

*LBL 00 18 
 VIEW 01 19 
 XEQ 01  ; nth. Coef. 20 
 XEQ 03  ; x*[#] 21 
 "P,#,#" 22 
 MAT+ 23 
 CLA 24 
 ARCL 00 25 
 >",#,P" 26 
 M*M 27 
 ISG 01 28 
 GTO 00 29 
 XEQ 01 30 
 CLD 31 
 CLA 32 
 ARCL 00 33 

 FS? 04 34 
 GTO 04 35 
  E 36 
  X<> 01  ; n+1 37 
  CHSYX   38 
  CHS  ; (-1)^n 39 
  RTN 40 

 *LBL 01  ; n-th coef. 41 
 "P" 42 
 MTRACE 43 
 RCL 01 44 
 INT 45 
  E 46 
 - 47 
 / 48 
 CHS 49 
 STO IND 01 50 
 RTN 51 

 *LBL 03  ; x*[#] 52 
 "#" 53 
 MIDN 54 
 "X,#,#" 55 
 MAT* 56 
 RTN 57 

 *LBL 04  ; inverse 58 
 >",P" 59 
 MAT= 60 
 RCL 01 61 
 FRC 62 
  E-3 63 
 - 64 
 2 65 
 + 66 

 STO 01 67 
 PDEG 68 
X<0? 69 
GTO 04 70 

*LBL 05 71 
 RCL IND 01 ; Cn 72 
 XEQ 03  ; x*[#] 73 
 "P,#,#" 74 
 MAT+ 75 
 CLA 76 
 ARCL 00 77 
 >",#,P" 78 
 M*M 79 
 ISG 01 80 
 GTO 05 81 

*LBL 04 82 
 RCL IND 01 83 
 XEQ 03 84 
 "P,#,P" 85 
 MAT+ 86 
 RCL 01 87 
  E 88 
 +  ; (n+1) 89 
 RCL IND X ; Cn 90 
 CHS  ; -Cn 91 
 1/X  ; -1/Cn 92 
 "X,P,P" 93 
 MAT* 94 
 MNAME? ; “P” 95 
 SF 21 96 
 OMR 97 
 END98 

 
 
Acknowledgment- Many thanks to Valentín Albillo for piquing my curiosity with his powerful and 
elegant implementation of the same algorithms on the HP-71, described with numerous examples 
and insights in the article posted here: 
 

HP Article VA047 - Boldly Going -Eigenvalues and Friends  

https://albillo.hpcalc.org/articles/HP%20Article%20VA047%20-%20Boldly%20Going%20-%20Eigenvalues%20and%20Friends.pdf
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Element Rotations – Matrix Mappings. 
 
The concept of in-matrix mapping refers to the different operations made to the elements of the 
matrix according to given rules. One such mapping very commonly used is the matrix transposition, 
whereby each element aij is swapped with its “counterpart” one, aji. Another type of mapping deals 
with element “rotations”, where there’s a shifting or rotation of all elements by one of several 
positions (steps) in either clockwise (right) or counter-clockwise (left) directions. Let’s see them 
individually. 
 
 

Matrix 90-degree Rotations. Mirror Images. 
 
A 90-degree clockwise rotation pivots the complete matrix around its bottom-right element, i.e the 
last element in the last column works as the rotation “axis” - whilst a counter-clockwise  90-deg turn 
uses the bottom-left element, i.e. the last element in the first column 
 
This type of rotations is the simplest one to implement, thanks to the row or column swapping 
functions (depending of the direction of the rotation), applied on the transposed matrix. The 
algorithm consists of successive row or column switches done on the transposed matrix,  and thus 
it’s faster than using an individual element mapping for each of the layers (or “rings”) in the matrix 
– which is also dependent on the matrix dimensions. 
 
 
For example, rotating the 4x4 matrix below 90 degrees clockwise; see how the rotated matrix is the 
vertical-mirror image of the original transposed? 
 

 
 
 
Similarly, a counter-clockwise 90-deg rotation is the horizontal-mirror image of the original 
transposed. 
 
Our routines will simply transpose the matrix first, and then call the mirror image routine – 
consisting of a row or column swapping repeated as many times as columns are in the transposed 
matrix.  
 
For real matrices it’s an in-place algorithm by virtue of the TRNPS MCODE function, but for complex 
matrices such is not the case, as using the CMTRP FOCAL routine the transposed coexists in 
memory with the original during the operation. 
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Program usage:  
 
Just type the matrix name in ALPHA and execute ZM90R or ZM90L depending on the desired 
direction of rotation.  For ZMIRR you need to clear or set user flag manually to indicate vertical or 
horizontal mirror image respectively. Note that the utilities ZC<>C and ZR<>R do not use the user 
flag, as they can be also called from other programs/ 
 
 
Program Listing:  (includes ZC<>C and ZR<>R) 
 

01   LBL “ZM90R” ; right 

02   CF 00  ; flag case 
03   GTO 00  ; merge 

04   LBL “ZM90L” ; left 

05   SF 00  ; flag case 
06   *LBL 00  ; common 

07   XROM “CMTRP” ; transpose 

08   LBL “ZMIRR” ; mirror  

09   DIM?  ;2n x 2m 
10   2 
11   /   ; n x m 
12   FRC   ; 0,00m 
13   E 
14   +   ; 1,00m 
15   *LBL 01 

16   FC? 00  ; right? 
17   XROM “ZC<>C” 
18   FS? 00  ; left? 
19   XROM “ZR<>R” 
20   E-3   ; next col? 
21   - 
22   ISG X  ; next row 

23   GTO 01  ; repeat  

24   RTN   ; done. 

25   LBL “ZC<>C” ; iii,jjj 

26   ST+ X  ; realpt 
27   C<>C  ; swap  
28   E   ; next col 
29   E3/E+  ; next col 
30   + 
31   C<>C  ; swap 
32   GTO 00  ; merge 

33   LBL “ZR<>R” ; iii,jjj 

34   ST+ X  ; real pt. 
35   R<>R  ; swap 
36   E   ; next row 
37   E3/E+  ; next row 
38   + 
39   R<>R  ; swap 
40   *LBL 00  ; common 

41   LASTX  ; 1,001 
42   -   ; undo   
43   2   ; cpx pt. 
44   / 
45   END   ; done

 
 
With this one already safely under our belt let’s move on to the next section that deals with Layer 
Rotations in steps of a single element. 
 
 
Terminology alert: 
 
“Reflection” is the analogous term to mirror image, 
although the horizontal and vertical reflections can 
be confusing since they use vertical and horizontal 
”mirrors”, which is intuitively the opposite. 
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Matrix Layer Rotations.  
 
Rotating the matrix elements by one step needs to be done for all layers (or rings) in the matrix, from 
the outermost to the innermost – which depending on the dimensions will remain unmodified when the 
number of rows is odd.   
 
For example, the counter-clockwise rotation of a 4 x 5 matrix is represented by the figure below. Note 
that in one rotation, you only have to shift elements by one “step”. 
 
For a counter-clockwise (left) rotation we need to shift 
each layer elements as follows:  
 
1. one position to the left within the upper part 
2. one position downwards within the left part  
3. one position to the right within the bottom par 
4. one position upwards within the right part 

 
Then such should be repeated for all inner layers, until 
completing the whole matrix. 
 
 
 
A clockwise rotation follows the same process with the shifting done in opposite directions as stated 
above.  
 
Let’s denote the original (m x n) matrix as [A] = ( ai,j ), and the rotated matrix [B] = ( bij ), also m x 
n.The following general expressions describe the algorithm required to perform one single step, 
clockwise rotation: 
 

 
 FOR k = 0 TO int[min(m,n)/2]  ; current layer   
   
  FOR j = k+1 TO (n-1-k)     ; top row rightwards 
      b(1+k),(j+1) = a(1+k),j   
  NEXT j   
   
  FOR i = (1+k) TO (m-1-k)  ; rightmost column downwards 
      b(i+1),(n-k) = a i,(n-k)   
  NEXT i   
   
  FOR j = (n-k) TO (2+k) STEP -1   ; bottom row leftwards 
      b(m-k),(j-1) = a(m-k),j   
  NEXT j   
   
  FOR i = (m-k) TO (2+k) STEP -1  ;leftmost column upwards 
      b(i-1),(1+k) = a i,(1+k)   
  NEXT i   
   
 NEXT k     ; next layer 
 

 
All we need to do is figure out a way to implement this simple BASIC-like approach as an RPN routine, 
which as everybody knows is far from being the RPN’s forte. 
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The routines included require an auxiliary matrix to hold the rotated elements, therefore they don’t 
offer an in-place solution to the problem. Solutions for both real and complex matrices are provided.  
 
Note as well that to do a counter-clockwise rotation we can apply the same algorithm  on the 
transposed matrix, therefore we only need to implement the clockwise case. 
 
 

Copying and Swapping Elements 
 
These ad-hoc utilities should facilitate the task, copying elements from a source matrix to a destination 
one, using their pointers in the stack registers X (destination) and Y (source).  As always, source and 
destination matrix names are expected in ALPHA separated by comma. 
 
 

1. LBL "a<>b" 

2. X<>Y 
3. MSIJA 
4. MR 
5. X<> Z 
6. ASWAP 
7. MSIJA 
8. MR 
9. X<> Z 
10. MS  
11. R^ 
12. ASWAP 
13. MSIJA 

14. R^ 
15. MS 
16. X<> T 
17. RTN 

18. LBL "a>b" 

19. X<>Y 
20. MSIJA 
21. MR 
22. RCL  Z 
23. ASWAP 
24. MSIJA 
25. X<>  Z 
26. MS 

27. ASWAP 
28. RDN 
29. RTN 

30. LBL "Ca>b" 

31. X<>Y 
32. CMR 
33. ASWAP 
34. RCL  Z 
35. CMS 
36. ASWAP 
37. END 

 
 
All in all, nothing more than the usual ASWAP dance to set the focus on the target matrix, spiked out 
with calls to MR and MS here and there to move the elements between the matrices. Notably the 
complex case Ca>b turns out to be shorter due to the help from the CMR and CMS utilities of course. 

 
 

Discarding trivial cases. 
 
The other auxiliary routine is ?1x1, used to discard the trivial case where there’s only one column or 
one row in the matrix. This routine uses an input parameter in the X-register  (a.k.a the “threshold“), 
that must be equal to 1 for real matrices or 2 for complex ones. 
 

1. LBL "?1X1" 

2. DIM? 
3. X<>Y  ; eiether 1/2 
4. E3/E+ 
5. - 
6. INT  ; rows 
7. X=0? 

8. DIMERR 
9. LASTX 
10. FRC   ; cols 
11. X=0? 
12. DIMERR 
13. END 

 
Equipped with our shiny new utilities, here’s the complete Matrix Layer Clockwise Rotation routines for 
the real and complex cases combined into a single program.- 
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Program listing: 
 

1  LBL “M<)R“ 

2  CF 02  ; flag case 
3  E  ; single 
4  GTO 10  ; merge 

5  LBL “ZM<)R“ 

6  XROM “?CM“ ; complex? 
7  2  ; dual 
8  SF 02  ; flag case 
9  *LBL 10    ; common 
10  XROM “?1X1“ ; threshold? 
11  >“,#“  ; scratch 
12  MAT=  ; copy over  
13  DIM?  ; 2m x 2n 
14  STO 04 
15  2    
16  /  ; m x n 
17  FS? 02  ; complex? 
18  STO 04 
19  RCL 04  ; m x n 
20  2 
21  /  ; (m/2),00(n/2) 
22  INT  ; m/2 
23  E 
24  - 
25  I<>J  ; 0,00(1-m/2) 
26  STO 00  ; range for k 
27  *LBL 00  ; current layer 
28  RCL 04 
29  FRC  ; 0,00n 
30  RCL 00   
31  INT  ; k 
32  E   
33  +  ; 1+k  
34  STO 02 
35  I<>J  ; 0,00(1+k) 
36  - 
37  RCL 02  ; 1+k 
38  +   
39  STO 01  ; (k+1),00(n-k-1) 

40  *LBL 01  ; current row 
41  E  ; increase column 
42  XEQ 05  ; shift row 
43  ISG 01  ; NEXT i 
44  GTO 01  ; do next row 

45  RCL 04 
46  INT  ; m 
47  RCL 02  ; k+1 
48  - 
49  I<>J  ; 0,00(m-k-1) 
50  RCL 02  ; 1+k 
51  + 
52  STO 01  ; (k+1),00(m-k-1) 
53  RCL 04   

54  RCL 00 
55  I<>J  ; x,00k 
56  - 
57  FRC  ; 0,00(n-k) 
58  STO 02 

59  *LBL 02  ; current column 
60  E  ; increase row 
61  XEQ 06  ; shift column 
62  ISG 01  ; next J 
63  GTO 02  ; do next column 

64  RCL 04 
65  FRC  ; 0,00n 
66  I<>J  ; n 
67  RCL 00 
68  INT  ; k 
69  - 
70  E 
71  LASTX  ; k 
72  +  ; 2+k-1 
73  I<>J  ; 0,00(2-k-1) 
74  STO 03 
75  +  ;(n-k),00(2-k-1) 
76  STO 01 
77  RCL 04 
78  RCL 00  ; k,00s 
79  -   
80  INT  ; m-k 
81  STO 02 

82  *LBL 03  ; current row 
83  -E  ; decrease column 
84  XEQ 05  ; shift row 
85  DSE 01  ; NEXT i 
86  GTO 03  ; do next row 

87  RCL 02  ; m-k 
88  RCL 03  ; 0,00(2-k-1) 
89  + 
90  STO 01  ; ;(m-k),00(2+k-1)  
91  RCL 00 
92  INT  ; k 
93  E 
94  +  ; 1+k 
95  I<>J  ; 0,00(1+k) 
96  STO 00 

97  *LBL 04  ; current row 
98  -E  ; decrease row 
99  XEQ 06  ; shift column 
100  DSE 01  ; NEXT j 
101  GTO 04 

102  ISG 00  ; NEXT k 
103  GTO 00  ; do next layer 
104  ASWAP 
105  MAT=  ; final copy 
106  PURFL  ; kill scratch 
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107  MNAME?  ; recall name 
108  RTN  ; all done 

109  *LBL 05  ; shift row 

110  I<>J 
111  RCL 01 
112  INT 
113  I<>J 
114  GTO 07  ; merge 

115  *LBL 06  ; shift column 

116  RCL 01 
117  INT   ; row pointer 

118  *LBL 07  ; common 
119  RCL 02  ; cpx. pointer 
120  +   ; row,col 
121  +   ; adds offset 
122  LASTX  ; source pt. 
123  X<>Y  ; destination Pt. 
124  FC? 02  ; real? 
125  XROM “a>b“ 
126  FS? 02  ; complex? 
127  XROM “Ca>b“ 
128  END 

 
 
Program remarks: 
 
The program uses user flag 02 and data registers R00 – R04, plus a scratch matrix “#“ of the same 
size as the original. The data registers hold the following parameters: 
 

R00 – layer index   
R01 – row or column index 
R02 – scratch 
R03 – scratch 
R04 – matrix dimension 

 
The routine is not difficult in nature but prepping the ranges for all loops is sticky and error-prone. 
Especially tricky is the descending counter in the DSE loops, which requires subtracting one to the final 
value to be equivalent to the FOR/NEXT structure with negative steps. 
 
The program structure reflects the general algorithm, so there are four small loops (one for each part 
of the layer) ran sequentially inside one larger one that does the layers. The small loops are LBL 01, 
LBL 02, LBL 03 and LBL 04, inscribed in rectangles on the listing above. 
 
Two routines - LBL 05 and LBL 06 - do the element shifting on the rows (upper and bottom parts of 
layer) and columns (right and left parts of layers) respectively. Each one is called multiple times within 
the loops (as many as elements need shifting), and the input parameters indicate whether it is an 
advance or a back-step (positive or negative sign).  
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Corollary: Matrix Spiral Input/Output.  { ZIMS ,  ZOMS } 
 
 
Adding a matrix “spiral“ input/output capability is not difficult with just a few modifications to the 
previous program. The idea is to navigate the source matrix following the same algorithm, simply 
showing the current element values and offering changing in the input case. Obviously we won’t be 
needing an auxiliary matrix for this task, thus the parts of the code dealing with that will be bypassed – 
controlled by user flag 01. 
 
Like we did in the Input/Output routines by rows and 
columns, user flag 00 will discriminate between the input 
(set) and output (clear) cases. User flag 02 will continue to 
flag the real vs. Complex cases as before, but we’re going 
to need two more flags to deal with the possible “left-over 
“elements, i.e. those not belonging to any rotation layer. 
 
In the example below there’s indeed a left-over element 
(a32= 13 ) but in general there may be more than one of 
course, all depending on the matrix dimensions. 
 
 

Left-Over elements. 

The first thing is to check if there are left-over elements. This is a consequence of the matrix 

dimensions, where the number of layers is:  L = int [ min(m,n) / 2 ]. As it happens, if min(m,n) is an 

odd number then we’ll have left-over elements. Moreover, these will be arranged in row order or in 

column order, depending on which one was the minimum. Therefore, we’ll need two user flags to mark 

the possible conditions, as described by the table below: 

User Flag F 00 F 01 F 02 F 03 F 04 

Clear Output Rotation Real Whole Layers Column order 

Set Input Spiral Print Matrix Left-over elms. Row order 

 

The last problem to tackle is determining how many left-over elements exist in the orphan row or 

column. This is also determined by the matrix dimensions of course, and the implementation uses a 

final loop using the following ranges:  

Let  r = min (m,n);   L = number of layers;     i/j = leftover row / column. 

FOR h = (L+1) TO (r-L) 

    Show element ai,h or ah,j depending on F04 

NEXT h 

Four global labels are provided to do the spiral printing: two for Input / Output plus IMS and OMS - 

another two for Real / Complex cases ZIMS and ZOMS. One additional global label is included “>ZIJ” 

to display the complex elements - which is shared with the “classic” matrix Input / Output by columns 

and rows, { ZIMC, ZOMC, ZIMR, and ZOMR}. That’s quite a set! 

 

Bearing all the above under consideration it results into a non-trivial modification of the rotations 

program, refer to the program listing in next page for the final implementation details. 
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 Program listing: 

 

*LBL "IMS" 1 
3 2 
GTO 11 3 

*LBL "OMS" 4 
2 5 
GTO 11 6 

*LBL "ZIMS" 7 
7 8 
GTO 11 9 

*LBL "ZOMS" 10 
 6 11 
*LBL 11 12 
 X<>F 13 
 FS? 02 14 
XROM "?CM" 15 
GTO 11 16 

*LBL "ZM<)R" 17 
XROM "?CM" 18 
2 19 
 ENTER^ 20 
 4 21 
 GTO 10 22 

*LBL "M<)R" 23 
E 24 
 0 25 
*LBL 10 26 
 X<>F 27 
 RDN 28 
XROM "?1X1" 29 
"`,#" 30 
MAT= 31 
*LBL 11 ; common 32 
DIM? 33 
 STO 04 34 
 2 35 
 / 36 
 FS? 02 37 
 STO 04 38 
 RCL 04 39 
 INT 40 
 LASTX 41 
FRC 42 
I<>J 43 
X<Y? 44 
SF 04 ; mark #1 45 
X>Y? 46 
X<>Y 47 
ODD? 48 
SF 03   ; mark #2 49 
  2 50 
  / 51 

  INT 52 
   E 53 
  - 54 
I<>J 55 
  STO 00 56 

*LBL 00 57 
  RCL 04 58 
FRC 59 
  RCL 00 60 
  INT 61 
E 62 
+ 63 
  STO 02 64 
I<>J 65 
  - 66 
  RCL 02 67 
  + 68 
  STO 01 69 

*LBL 01 70 
E 71 
XEQ 05 72 
  ISG 01 73 
GTO 01 74 
  RCL 04 75 
  INT 76 
RCL 02 77 
  - 78 
I<>J 79 
  RCL 02 80 
  + 81 
  STO 01 82 
  RCL 04 83 
  RCL 00 84 
  I<>J 85 
  - 86 
  FRC 87 
  STO 02 88 
*LBL 02 89 
   E 90 
  XEQ 06 91 
  ISG 01 92 
GTO 02 93 
RCL 04 94 
FRC 95 
I<>J 96 
RCL 00 97 
 INT 98 
 - 99 
 E 100 
LASTX 101 
 + 102 
 I<>J 103 

 STO 03 104 
 + 105 
 STO 01 106 
RCL 04 107 
 RCL 00 108 
- 109 
 INT 110 
 STO 02 111 
*LBL 03 112 
 - E 113 
XEQ 05 114 
DSE 01 115 
GTO 03 116 
 RCL 02 117 
 RCL 03 118 
 + 119 
 STO 01 120 
RCL 00 121 
 INT 122 
  E 123 
 + 124 
 I<>J 125 
 STO 02 126 

*LBL 04 127 
 - E 128 
 XEQ 06 129 
 DSE 01 130 
GTO 04 131 
 ISG 00 132 
GTO 00 133 
 FS? 01 134 
GTO 08 135 
ASWAP 136 
MAT= 137 
 PURFL 138 
MNAME? 139 
 RTN 140 
*LBL 08 141 
 FC? 03 142 
 RTN 143 
 RCL 04   144 
FS? 04 145 
I<>J 146 
FRC 147 
RCL 00 148 
 INT 149 
 STO 00 150 
E 151 
 + 152 
 + 153 
 RCL 00 154 
I<>J 155 
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 - 156 
 STO 00 157 
 FC? 02 158 
GTO 08 159 
ZJ+ 160 
*LBL 09 161 
ZIJ? 162 
>ZIJ 163 
 FC? 04 164 
ZJ+ 165 
 FS? 04 166 
 ZI+ 167 
 ISG 00 168 
GTO 09 169 
 RTN 170 
*LBL 08 171 
J+ 172 

*LBL 12 173 
XEQ 13 174 
FC? 04 175 
J+ 176 
 FS? 04 177 
I+ 178 

 ISG 00 179 
GTO 12 180 
 RTN 181 
*LBL 13 182 
 "a" 183 
MRIJ 184 

V# 185 
 64  ; >aIJ 186 
 AVIEW 187 
MNAME? 188 
 FS? 00 189 
 STOP 190 
MS 191 
 RTN 192 

*LBL 05 193 
I<>J 194 
 RCL 01 195 
 INT 196 
 I<>J 197 
GTO 07 198 

*LBL 06 199 
 RCL 01 200 

 INT 201 
*LBL 07 202 
 RCL 02 203 
+ 204 
 + 205 
 LASTX 206 
 FS? 01 207 
GTO 07 208 
 X<>Y 209 
 FC? 02 210 
XROM "a>b" 211 
 FS? 02 212 
XROM "Ca>b" 213 
 RTN 214 
*LBL 07 215 
 FC? 02 216 
 MSIJ 217 
 FC? 02 218 
GTO 13 219 
>ZIJ 220 
 END 221 

 

The central part of the program is practically unchanged from how it was in the matrix rotations. 

The new stuff starts after all rotation layers are done, see steps 134 to 195. The section dealing 

with left-over elements starts at step 142, see LBL 09 and LBL 12 for the complex and real cases 

respectively. Also notice how some of the routines have been modified, like LBL 07 starting at step 

205.  

 

There you have it, what started being a curiosity has evolved into a relatively complex program… 

certainly it wasn’t anticipated from the initial design.  



Complex Matrix ROM Manual  

(c) Ángel M. Martin                                    November 2020 Page 50 of 59 

 
 

Matrix Layer Rotations – Alternative Approach. 
 
Just in case you thought we were done with the rotation section, here’s a follow-up that uses an 
alternative approach with data registers instead. The core routines are contributed by Jean-Marc 
Baillard, and they follow a different element storage convention for the matrix, done by columns – not 
by rows – in sequential data registers.  
 
I’ve added “driver routines to “interface” with those core routines, using “standard” matrices as starting 
point – and leaving the result also in standard “SandMatrix” format. This is simple for the real case, 
where only a transposition is required to convert between formats (remember that the SandMatrix also 
supports storing matrices in main memory, using the “Rxxx” convention for the matric name) – but it 
was quite challenging for the complex case: JM’s convention places the real and real and imaginary 
parts also into  sequential data registers, which requires intermediate utilities dealing with data registers 
block “splicing” and “splitting”, for lack of better terms. Let’s see them next… 
 

Program Real Inputs Complex Inputs 

Driver MROT+ Matrix Name ZMROT+ Matrix Name 

Core MROT bbb, eee, #steps ZMROT bbb, eee, #steps 

 
• The driver programs only do one clockwise element rotation, but transposing it *twice* (i.e. 

doing nothing!) also reverses the direction of rotation- therefore it’s very easy to compare the 
results using M<)R and ZM<)R.  

 
• The core routines do a counter-clockwise rotation, of any number of steps- thus multiple steps 

can be done with just one execution of the routine, as opposed to M<)R and ZM<)R 
described before. 

 
• The core routine MROT uses four input parameters: as follows:   

o T = bbb  = address of the 1st coefficient > 8 
o Z = m   = Nb of rows > 1 
o Y = n  = Nb of columns > 1 
o X = k   = Nb of rotations > 0 

 
 
Real Matrices: here it’s not even needed to transpose the matrices: the combined effect (by columns 
+ counter-clockwise) = (by rows + clockwise) 
 
 

1   LBL "MROT+" ; MNAME 

2   E   ; threshold 
3   XROM "?1X1" 
4   "|-,R9"  ; starts at 

R10 
5   MAT=  ; copy matrix  
6   E1   ; first register 
7   DIM?  ; m x n 
8   INT   ; m 
9   LASTX   

10   FRC    ; 0,00n 
11   I<>J   ; n 
12   E   ; one rot. 

step 
13   XROM "MROT" 
14   ASWAP  ; “#,MNAME“ 
15   MAT= 
16   MNAME? 
17   RTN 
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Complex Matrices: Here we’ll use the same process twice, on the real and imaginary components of 
the given matrix - since each of those is a real matrix and therefore can be dealt with by the previous 
case. 
 

 
1. Separate the complex matrix into real and imaginary parts, both in X-Mem 
2. Copy them sequentially to main memory, starting in R10. This will use R09 for the matrix 

header. 
3. Do the rotation on each component and copy it back to X-mem 
4. Re-assemble the complex matrix from its (rotated) components. 

 
An additional complication in the Complex case occurs due to the lack of more scratch registers to save 
the original matrix name. We’ll circumvent this using the complex stack as an auxiliary memory area; 
for example the ALPHA string containing the matrix name  
 

• To store it we use:  RCL M,  RCL N,  ZENTER^ 
• And to restore it:  ZRDN,  STO N,  X<>Y,  STO M 

 
Note that this will not work in manual more or SST’íng a program because the functions will call 
ZAVIEW and it can’t cope with ALPHA DATA – but it’s perfectly safe in running program. Nice trick in 
my book, not quite the original design intent but very useful indeed. 
 

Example: let’s do some rotations using our trusted example matrix C3X3. The idea is to first use 

ZM<)R and compare the result with the output of ZMROT+, to check if they’re the same. 
 

“C3X3,ROT1”, MAT=, MNAME? , XEQ “ZM<)R”,  -> ROT1 is the rotated matrix 
“C3X3,ROT2”, MAT=, MNAME?, XEQ “ZMROT+” -> ROT2  is the rotated matrix 
“ROT1,ROT2”, M=M? -> “YES”  (hopefully ;-) 

 

Program listing: 

LBL “ZMROT+” 1 
2 2 
XROM “?1X1” 3 
>”,RE,IM” 4 
RCL M 5 
RCL N 6 
ZENTER^ 7 
XROM “ZM>XY“ 8 
“RE“ 9 
XEQ 00 10 
“IM“ 11 
XEQ 00 12 
CLA 13 
ZRDN 14 
STO N 15 
X<>Y 16 
STO M 17 
ASWAP 18 
XROM “XZ>ZM” 19 
PURFL 20 

ASWAP 21 
PURFL 22 
ASWAP 23 
DIM? 24 
MNAME? 25 
RTN 26 
*LBL 00 27 
>”,R9” 28 
MAT= 29 
E1 30 
DIM? 31 
INT 32 
LASTX 33 
FRC 34 
I<>J 35 
E 36 
XROM “MROT” 37 
ASWAP 38 
MAT= 39 
END 40 
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The path not taken - Complex Matrices: An alternative top-level process using ZMROT: 
 

1. Separate the complex matrix into real and imaginary parts, both in X-Mem 
2. Copy them to main memory, starting at R(m.n) for the imaginary part and R01 for the real 

part. Note how by copying first the imaginary parts and later the real parts we get around 
removing the status register placed in R(m.n) by the first copy operation – ending with a 
nice continuous pair of data blocks: [RE]-[IM] 

3. Splice the data blocks into a common one, so the coefficients are presented in the format 
expected by ZMROT, which now can be called to do the rotation. [RE-IM] 

4. Next Split the result matrix into two blocks, for the real and imaginary matrices 
5. Merge them into a common matrix in X-Mem – overwriting the original. 

 
For step #3 - storing the coefficients in sequential registers real part first and imaginary part following, 
poses an interesting challenge to the “interfacing” routine. For step #4after the rotation, we need to 
de-splice such an arrangement into two separate data register blocks, one for the real parts and 
another for the imaginary parts. Only once this is done we can call our trusted XY>ZM routine to build 
the complex matrix in “SandMatrix“ format. 
 
An additional complication in the Complex case occurs because ZMROT assumes that all data registers 
(starting with R01) are allocated to the matrix coefficients. This leaves us with just one scratch register 
in main memory, R00. This we’ll circumvent using the complex stack as an auxiliary memory area; for 
example, the ALPHA string containing the matrix name  
 

• To store it we use:  RCL M,  RCL N,  ZENTER^ 
• And to restore it:  ZRDN,  STO N,  X<>Y,  STO M 

 
Nice trick in my book, not quite the original design intent but very useful indeed. 
 
Note that the implementation uses an auxiliary scratch area to hold the copied values temporarily, and 
that area is moved en-masseonce the process is completed. - so it’s not an in-place solution. The data 
blocks are each of m.n data registers, and the resulting spliced block is twice that size, i.e. 2.m.n 
 
Routine listing: 
 

LBL “ZMROT+“ 1 
2 2 
XROM “?1X1“ 3 
>“, RE,IM“ 4 
RCL N 5 
RCL M 6 
ZRPL^ 7 
XROM “ZM>XY“ 8 
“IM,R“ 9 
DIM? 10 
MSZE? 11 
ZENTER^ 12 
STO  L(4) 13 
AINT 14 
MAT= 15 
“RE,R0“ 16 
MAT= 17 

LASTX  18 
XROM “SPLICE“ 19 
ZRDN 20 
ZENTER^ 21 
X<>Y 22 
INT 23 
LASTX 24 
FRC 25 
I<>J 26 
E 27 
XROM “ZMROT“ 28 
ZRDN 29 
XROM “SPLIT“ 30 
“RE,R0“ 31 
DIM? 32 
ASWAP 33 
MATDIM 34 
MAT= 35 

“IM, R“ 36 
MSZE? 37 
AINT      ; IM,Rxx 38 
DIM? 39 
ASWAP ; Rxx,IM 40 
MATDIM 41 
MAT= 42 
CLA 43 
ZRDN 44 
X<>Y 45 
STO N 46 
X<>Y 47 
STO M 48 
ASWAP 49 
XROM “XY>ZM“ 50 
END 51 
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Appendix. Matrix Scrolling by ALPHA 

These routines scroll the matrix whose name is in ALPHA by rows or by columns in the specified 

direction. Rather than having four global labels (very taxing on the ROM FAT), the program uses the 

rightmost character in ALPHA as the control character to determine the scrolling direction, as follows: 

Char$ Direction Description 

“^” Up moves the rows upwards, first row wraps to last 

“D” Down moves rows downwards, last row wraps to first 

“<”  Left moves rows leftwards, first column wraps to last 

“>” Right Right:  moves columns rightwards, last column wraps to first 

 

The control char is separated from the matric name by a comma character, for instance: “MNAME,<”  

will scroll MNAME left. Note that these operations are not specific to complex matrices, and that any 

other character different from those four will give the “NONEXISTENT” data error. 

Program Listing: 
 

01 LBL “MSCRL$” ; “MNAME,chr” 

02  E  ; real matrix 

03  XROM “?1X1 ; test case 

04  CF 00 

05  DIM?  ; m.00n 

06  ASWAP 

07  ATOX 

08  RDN 

09  GTO IND T 

10 *LBL 94  “^”, upwards 

11  INT  ; m 

12  2 

13  –  ; m-2 

14  I<>J  ; 0.00(m-2) 

15  GTO 01 

16 *LBL 68  ; “D”, downwards 

17  INT  ; m 

18  RCL X 

19  E 

20  –  ; m-1 

21  ENTER^ 

22  I<>J  ; 0.00(m-1) 

23  GTO 02 

24 *LBL 62  ; “>”, rightwards 

25  SF 00 

26  FRC  ; 0.00n 

27  2   

28  I<>J  ; 0.002 

29  –  ; 0.00(n-2) 

30 *LBL 01 

31  2  ; prepare rows: 

32  E3/E+  ; 1.002 

33 *LBL 03 

34  XEQ 00 

35  + 

36  ISG Y 

37  GTO 03 

38  MNAME?  

39  RTN 

40 *LBL 60  “<”, leftwards 

41  SF 00 

42  FRC 

43  ENTER^ 

44  I<>J 

45  E 

46  – 

47  RCL X 

48 *LBL 02 

49  RCL Z 

50  + 

51 *LBL 04 

52  XEQ 00 

53  – 

54  DSE Y 

55  GTO 04 

56  MNAME? 

57  RTN 

58 *LBL 00 

59  FC? 00 

60  R<>R 

61  FS? 00 

62  C<>C 

63  E 

64  E3/E+ 

65  END 
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You can use the alternative listings below If you prefer individual routine for each action. 

 

01 LBL “M^” ; upwards 

02 DIM?  ; n.00m 

03 INT  ; n 

04 2 

05 –  ; n-2 

06 I<>J  ; 0.00(n-2) - counter 

07 1.002  ; initial pair 

08 *LBL 00 

09 R<>R  ; swap rows 

10 1.001  ; offset 

11 +  ; update pointers 

12 ISG Y  ; next row 

13 GTO 00  ; loop back 

14 RTN  ; done. 

15 LBL “M_” ; downwards 

16 DIM?  ; n.00m 

17 INT 

18 RCL X 

19 1 

20 –  ; n-1 - counter 

21 ENTER^ 

22 I<>J  ; 0.00(n-1) 

23 RCL Z  ; n 

24 +  ; n.00(n-1) 

25 *LBL 02 

26 R<>R  ; swap rows 

27 1.001  ; offset 

28 –  ; update pointers 

29 DSE Y  ; next row 

30 GTO 02  ; loop back 

31 RTN  ; done. 

32 LBL “M>” ; rightwards 

33 DIM?  ; n.00m 

34 FRC 

35 ,002 

36 –  ; 0.00(m-2) - counter 

37 1.002  ; initial pair 

38 *LBL 01 

39 C<>C  ; swap columns 

40 1,001  ; offset 

41 +  ; update pointers 

42 ISG Y  ; next column 

43 GTO 01  ; loop back 

44 RTN  ; done. 

45 LBL “M<” ; letfwards 

46 DIM?  ; n.00m 

47 FRC  ; 0.00m 

48 ENTER^ 

49 I<>J  ; m 

50 1 

51 –  ; m-1 - counter 

52 RCL X 

53 RCL Z  ; 0.00m 

54 +  ; (m-1).00m 

55 *LBL 03 

56 C<>C  ; swap columns 

57 1,001  ; offset 

58 –  ; update pointers 

59 DSE Y  ; next column 

60 GTO 03  ; loop back 

61 END  ; done.

 

Note that like in the MSCRL$ case, the we could combine the termination of routines “M_” and “M<” 

(LBL 02 and LBL 03) into a common one using a control flag to determine the row/column case, and 

ditto with routines “M^”  and “M>” (LBL 00 and LBL 01). That would shorten the program listing and 

possibly also the byte count, at the expense of using a flag resource. 
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Appendix: Splicing and Splitting the data blocks. 
 
The SPLICE and SPLIT routines expect the data block size in the X-register. For instancefor a m x n 
complex matrix the real and imaginary parts have a size of  m.n each, thus the data block size is m.n. 
In terms of data registers needed, it is twice the size of both blocks together, i.e. 2x (2.m.n) = 4.m.n 
 
See the example below with n=5 complex coefficients, with the real parts in white cells and the 
imaginary parts in yellow cells. The arrangement on the left is split, and on the right is spliced. The 
objective is to write routines to move the data between those arrangements.  
 

 
 
 
The routines follow the pseudo-BASIC loop shown in the picture above, using REGMOVE for the single 
register copy operation inside of the loop, repeated n-times. The final step is calling REGMOVE again to 
do a block copy, replacing the original block with the spliced block. Granted this is not the most 
sophisticated RPN algorithm but it does the job – at the cost of double number of data registers 
consumption of course. 
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Program listing: 
 
No matrix functions here, purely auxiliary routines to aid the driver programs: 

 
 

1     LBL "SPLICE"  

2     STO 00  ; n 
3     E3/E+  ; 1,00n 
4     *LBL 00  ;loop #1 

5     ENTER^  
6     ENTER^  
7     ENTER^  
8     INT  ; k 
9     RCL 00  ; n 
10     +   ; n+k 
11     ST+ X  ; 2n+2k 
12     E  
13     -   ; 2n+2k-1 
14     I<>J  ; 0,00(2n+2k-1) 
15     X<>Y  ; k,00n 
16     INT  ; k 
17     +   ; k,00(2n+2k-1) 
18     REGMOVE ; real part 
19     RCL 00  ; n 
20     +   ;(n+k),00(2n+2k-1) 
21     E-3  ; 0,001 
22     +   ; (n+k),00(2n+2k) 
23     REGMOVE ; Imaginary 
24     RDN  ; k,00n 
25     ISG X  ; NEXT k 
26     GTO 00  ; loop for next 
27     GTO 01  ; all done 

28     LBL"SPLIT" 

29     STO 00  
30     E3/E+  ; 1,00n 
31     *LBL 02  ; loop #2  

32     ENTER^  
33     ENTER^  

34     ENTER^  
35     RCL 00  ; n 
36     ST+ X  ‚2n 
37     X<>Y  ; k,00n 
38     INT  ; k 
39     +  ; 2n+k 
40     I<>J  
41     X<>Y  ; k,00n 
42     INT  ; k 
43     ST+ X  ; 2k 
44     E  
45     -  ; 2k-1 
46     +  ; 2k-1,00( 2n+k) 
47     REGMOVE ; real part 
48     RCL 00  ; n 
49     E3/E+  ; 1,00n 
50     +  ; 2k,00(3n+k) 
51     REGMOVE ; imaginary 
52     RDN  ; k,00n 
53     ISG X  ; NEXT k 
54     GTO 02  ; loop for next 
55     *LBL 01  ; common end 

56     E  
57     E3/E+  ; 1,001 
58     RCL 00  ; n 
59     ST+ X  ; 2n 
60     +  ;2n+1,001 
61     LASTX  
62     E6  
63      /   ; 0,00|(2n) 
64     +  ; (2n+1),001|(2n) 
65     REGMOVE ; block move 
66     END

  
 
 
 

Lastly let’s also list the core routines that do the actual rotation job, MROT and ZMROT – courtesy of 
Jean-Marc Baillard. Note how these indeed implement an in-place algorithm for the operation, 
therefore have a much more efficient usage of memory than the M<)R and ZM<)R counterparts. 
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Real Matrix Rotation:  Coefficients starting at R09, using R01-R08 for scratch 
 

T = bbb = address of the 1st coefficient > 8 
Z = m = Nb of rows > 1 
Y = n = Nb of columns > 1 
X = k = Nb of rotations > 0 

For example, using the matrix below, starting in R09 and if  k=2:  

1   5   9   13  17 9,  ENTER^   9  13  17  18  19 

2   6  10  14  18  4,  ENTER^   5  14  15  11  20 

3   7  11  15  19  5,  ENTER^   1  10    6   7   16 

4   8  12  16  20  2,  XEQ "MROT"   2    3    4   8   12 

*LBL "MROT" 1 
STO 07 2 
RDN 3 
STO 02 4 
RDN 5 
STO 01 6 
X<>Y 7 
STO 08 8 
*LBL 12 9 
RCL 02 10 
 E 11 
 - 12 
STO 05 13 
RCL 01 14 
LASTX 15 
 - 16 
STO 04 17 
RCL 08 18 
STO 00 19 
STO 03 20 
*LBL 10 21 
RCL 04 22 
STO 06 23 
RCL IND 03 24 
*LBL 01 25 
ISG 03 26 
CLX 27 

X<> IND 03 28 
DSE 06 29 
GTO 01 30 
RCL 05 31 
STO 06 32 
X<>Y 33 
*LBL 02 34 
RCL 01 35 
ST+ 03 36 
X<>Y 37 
X<> IND 03 38 
DSE 06 39 
GTO 02 40 
RCL 04 41 
STO 06 42 
X<>Y 43 
*LBL 03 44 
DSE 03 45 
X<> IND 03 46 
DSE 06 47 
GTO 03 48 
RCL 05 49 
STO 06 50 
X<>Y 51 
*LBL 04 52 
DSE 06 53 
NOP 54 

 GTO 00 55 
 RCL 01 56 
 ST- 03 57 
 X<>Y 58 
 X<> IND 03 59 
 GTO 04 60 
*LBL 00 61 
 STO IND 00 62 
 LASTX 63 
 ST+ 03 64 
 RCL 03 65 
 STO 00 66 
 2 67 
 ST- 04 68 
 ST- 05 69 
 RCL 04 70 
 X<=0? 71 
 GTO 00 72 
 RCL 05 73 
 X>0? 74 
 GTO 10 75 
*LBL 00 76 
 DSE 07 77 
 GTO 12 78 
 END 79 

 
 

Complex Matrix Rotation:  Coefficients starting at R01, using the status registers for scratch. 
 

Z = m =  Nb of rows > 1    
Y = n =   Nb of columns > 1 
X = k =  Nb of rotations > 0 

 

172 bytes / SIZE 2.m.n+1 

 

For example, with the matrix below stored in R01-R40 as follows: 
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R01-R02  R09-R10  R17-R18  R25-R26  R33-R34 

R03-R04  R11-R12  R19-R20  R27-R28  R35-R36 

R05-R06  R13-R14  R21-R22  R29-R30  R37-R38 

R07-R08  R15-R16  R23-R24  R31-R32  R39-R40 

 

1+2i9+10i17+18i     25+26i    33+34i     

3+4i 11+12i   19+20i     27+28i    35+36i    

5+6i 13+14i   21+22i     29+30i    37+38i       

7+8i 15+16i    23+24i     31+32i    39+40i    

 4, ENTER^,  5, ENTER^, 2, XEQ "ZMROT"  returns in 20 seconds: 

17+18i25+26i   33+34i   35+36i37+38i  

  9+10i   27+28i    29+30i    21+22i 39+40i 

  1+2i   19+20i   11+12i    13+14i31+32i 

  3+4i    5+6i     7+8i      15+16i 23+24i 

 

*LBL "ZMROT" 1 
STO O 2 
RDN 3 
STO N 4 
X<>Y 5 
STO M 6 
*LBL 12 7 
RCL N 8 
 E 9 
STO 00 10 
 - 11 
STO Q 12 
RCL M 13 
LASTX 14 
 - 15 
STO P 16 
*LBL 10 17 
RCL P 18 
SIGN 19 
RCL 00 20 
RCL IND X 21 
ISG Y 22 
CLX 23 
RCL IND Y 24 
*LBL 01 25 
ISG Z 26 
CLX 27 
X<>Y 28 
X<> IND Z 29 
ISG Z 30 
CLX 31 
X<>Y 32 
X<> IND Z 33 
DSE L 34 
GTO 01 35 

RCL Q 36 
SIGN 37 
RDN 38 
*LBL 02 39 
RCL M 40 
ST+ X 41 
ST+ T 42 
RDN 43 
DSE Z 44 
X<>Y 45 
X<> IND Z 46 
ISG Z 47 
CLX 48 
X<>Y 49 
X<> IND Z 50 
DSE L 51 
GTO 02 52 
RCL P 53 
SIGN 54 
RDN 55 
*LBL 03 56 
DSE Z 57 
DSE Z 58 
DSE Z 59 
X<>Y 60 
X<> IND Z 61 
ISG Z 62 
CLX 63 
X<>Y 64 
X<> IND Z 65 
DSE L 66 
GTO 03 67 
RCL Q 68 
SIGN 69 
RDN 70 

 *LBL 04 71 
 RCL M 72 
ST+ X 73 
ST- T 74 
RDN 75 
DSE Z 76 
X<>Y 77 
X<> IND Z 78 
ISG Z 79 
CLX 80 
X<>Y 81 
X<> IND Z 82 
DSE L 83 
GTO 04 84 
CLX 85 
SIGN 86 
ST+ X 87 
ST- P 88 
ST- Q 89 
RCL M 90 
ST+ X 91 
 + 92 
ST+ 00 93 
RCL P 94 
 RCL Q 95 
X>Y? 96 
X<>Y 97 
X>0? 98 
GTO 10 99 
DSE O 100 
GTO 12 101 
CLA 102 
END 103 
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Appendix. In-place Data splicing. (by Werner) 

See: https://www.hpmuseum.org/forum/thread-14194.html 

 

Here’s a clever approach to the data block splicing problem using an in-place algorithm 

instead of the sequential method described in the previous pages. The routine only uses the 

stack, no data registers. It is much shorter and doesn’t really take much longer to perform, so 

a double-down bonus! 

 

Input: data block size in X 

1. LBL “SPLC” 

2. E 
3. X<>Y 
4. X=Y? 
5. RTN 
6. ,1 
7. % 
8. 2 
9. + 
10. *LBL 02 
11. RCL Y 
12. RCL Y 

13. *LBL 01 
14. ISG T 
15. X<>Y 

16. X<> IND T 
17. X<> IND Z  IND T <> 
18. X<> IND T    IND Z 

19. ISG Z 
20. GTO 01 
21. ISG X 
22. GTO 02 
23. END 

 
 
Three exchanges per data point make it a beauty to behold in action… FOCAL at its best! 
 

 

 

 

 

 

 

 

, 
 

END. of this Manual 

https://www.hpmuseum.org/forum/thread-14194.html

