
Total_Rekall – Dare to Compare - QRG

© Ángel Martin – April 2017 Page 1

“Dare to Compare” Revision
The Total_Rekall 2017 Module

RCL Math and Full Stack Tests for the HP-41

Including FixALL mode for accurate number display
& Auto-Complete Advanced XEQ Mode

Written and programmed by Ángel Martin
April 29, 2017

Total_Rekall – Dare to Compare - QRG

© Ángel Martin – April 2017 Page 2

This compilation revision 3.2.2

Copyright © 2014 -2017 Ángel Martin

Published under the GNU software license agreement.

Original authors retain all copyrights, and should be mentioned in writing by any part utilizing this
material. No commercial usage of any kind is allowed.

Screen captures taken from V41, Windows-based emulator developed by Warren Furlow.
See www.hp41.org

Acknowledgments.- Thanks to the MCODE pioneers and grand masters who published their work
in PPC Journal and other sources, such as Ken Emery (and alter-ego Skiwd), Clifford Stern, Doug
Wilder, Håkan Thörngren, Frits Ferwerda and Nelson F. Crowle amongst others for their powerful
functions, real examples of solid MCODE programming.

Many thanks to Greg J. McClure and Poul Kaarup for their contributed functions in the auxiliary FAT.

Everlasting thanks to the original developers of the HEPAX and CCD Modules – real landmark and
seminal references for the serious MCODER and the 41 system overall. With their products they
pushed the design limits beyond the conventionally accepted, making many other contributions pale
by comparison.

http://www.hp41.org/�

Total_Rekall – Dare to Compare - QRG

© Ángel Martin – April 2017 Page 3

Summary Function Table.
 # Function Description Input Dependency Type Author

0 -TTL REKALL Lib#4 Check & Splash none Lib#4 MCODE Ángel Martin
1 A<>RG _ _ Alpha Exchange RG# in prompt / Next Line Lib#4 MCODE Ken Emery
2 XEQ+ Auto-Complete Model Initial letter, hot keys Lib#4 MCODE Ángel Martin
3 ?CASE _ _ is case value Value in prompt / Next Line Lib#4 MCODE Ángel Martin
4 RKL _ _ Enhanced RCL function Prompts for RG#. Lib#4 MCODE Ángel Martin
5 RC- _ _ RCL Subtraction RG# in prompt / Next Line Lib#4 MCODE Ángel Martin
6 RC+ _ _ RCL Addition RG# in prompt / Next Line Lib#4 MCODE Ángel Martin
7 RC* _ _ RCL Multiply RG# in prompt / Next Line Lib#4 MCODE Ángel Martin
8 RC/ _ _ RCL Divide RG# in prompt / Next Line Lib#4 MCODE Ángel Martin
9 RC^ _ _ RCL Power RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

10 RIND2 _ _ RCL IND IND (IND …) RG# in prompt / Next Line Lib#4 MCODE Ángel Martin
11 S<> _ _ Swap Selected & Target Regs Target Reg in prompt Lib#4 MCODE Ángel Martin
12 SELCT _ selects variable RG# in prompt / Next Line Lib#4 MCODE Ángel Martin
13 SHFL _ _ _ _ _ Stack Shuffle five stack regs in prompt Lib#4 MCODE Ángel Martin
14 SIND2 _ _ STO IND IND (IND …) RG# in prompt / Next Line Lib#4 MCODE Ángel Martin
15 ST<>RG _ _ Stack Exchange RG# in prompt / Next Line Lib#4 MCODE Ángel Martin
16 XF# _ _ _ Sub-function Launcher by index Index at the prompt Lib#4 MCODE Ángel Martin
17 XF$ _ Sub-function Launcher by Name Name in prompt Lib#4 MCODE Ángel Martin
18 Y<> _ _ Swap Y and Register RG# in prompt / Next Line Lib#4 MCODE Greg McClure
19 Z<> _ _ Swap Z and register RG# in prompt / Next Line Lib#4 MCODE Ángel Martin
20 T<> _ _ Swap T and register RG# in prompt / Next Line Lib#4 MCODE Ángel Martin
21 L<> _ _ Swap L and register RG# in prompt / Next Line Lib#4 MCODE Ángel Martin
22 M<> _ _ Swap M and register RG# in prompt / Next Line Lib#4 MCODE Ángel Martin
23 N<> _ _ Swap N and register RG# in prompt / Next Line Lib#4 MCODE Ángel Martin
24 O<> _ _ Swap O and register RG# in prompt / Next Line Lib#4 MCODE Ángel Martin
25 P<> _ _ Swap P and register RG# in prompt / Next Line Lib#4 MCODE Ángel Martin
26 Q<> _ _ Swap Q and register RG# in prompt / Next Line Lib#4 MCODE Ángel Martin
27 -STKTST Function Builder Prompts for Reg and operation Lib#4 MCODE Ángel Martin
28 ?0= _ _ Equal to Zero Test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin
29 ?0# _ _ Different from Zero Test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin
30 ?0< _ _ Less than Zero test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin
31 ?0<= _ _ Less than or Equal to Zero Test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin
32 ?0> _ _ Greater than Zero Test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin
33 ?0>= _ _ Greater than/ Equal to Zero Test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin
34 ?X= _ _ Equal to X test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin
35 ?X# _ _ Different from X test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin
36 ?X< _ _ Less than X test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin
37 ?X<= _ _ Less than or equal to X test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin
38 ?X> _ _ Greater than X Test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin
39 ?X>= _ _ Greater than or equal to X test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin
40 ?Y= _ _ Equal to Y test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin
41 ?Y# _ _ Different from Y test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin
42 ?Y< _ _ Less than Y test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin
43 ?Y<= _ _ Less than or equal to Y test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin
44 ?Y> _ _ Greater than Y Test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin
45 ?Y>= _ _ Greater than or equal to Y test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin
46 ?Z= _ _ Equal to Z test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin
47 ?Z# _ _ Different from Z test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin
48 ?Z< _ _ Less than Z test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin
49 ?Z<= _ _ Less than or equal to Z test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin
50 ?Z> _ _ Greater than Z Test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin
51 ?Z>= _ _ Greater than or equal to Z test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin
52 ?T= _ _ Equal to T test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin
53 ?T# _ _ Different from T test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

Total_Rekall – Dare to Compare - QRG

© Ángel Martin – April 2017 Page 4

 # Function Description Input Dependency Type Author
54 ?T< _ _ Less than T test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin
55 ?T<= _ _ Less than or equal to T test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin
56 ?T> _ _ Greater than T Test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin
57 ?T>= _ _ Greater than or equal to T test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin
58 ?L= _ _ Equal to L test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin
59 ?L# _ _ Different from L test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin
60 ?L< _ _ Less than L test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin
61 ?L<= _ _ Less than or equal to T test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin
62 ?L> _ _ Greater than L Test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin
63 ?L>= _ _ Greater than or equal to L test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

This module also includes a set of sub-functions arranged in an Auxiliary FAT, as follows:

0 -STK SWAPS Section Header Lib#4 MCODE Ángel Martin
1 a<> _ _ Swap a and register RG# in prompt / Next Line Lib#4 MCODE Ángel Martin
2 b<> _ _ Swap b and register RG# in prompt / Next Line Lib#4 MCODE Ángel Martin
3 c<> _ _ Swap c and register RG# in prompt / Next Line Lib#4 MCODE Ángel Martin
4 d<> _ _ Swap d and register RG# in prompt / Next Line Lib#4 MCODE Ángel Martin
5 e<> _ _ Swap e and register RG# in prompt / Next Line Lib#4 MCODE Ángel Martin
6 }-<> _ _ Swap |- and register RG# in prompt / Next Line Lib#4 MCODE Ángel Martin
7 ?M= _ _ Equal to M test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin
8 ?M# _ _ Different from M test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin
9 ?M< _ _ Less than M test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

10 ?M<= _ _ Less than or equal to M test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin
11 ?M> _ _ Greater than M Test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin
12 ?M>= _ _ Greater than/equal to M test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin
13 ?N= _ _ Equal to N test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin
14 ?N# _ _ Different from N test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin
15 ?N< _ _ Less than N test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin
16 ?N<= _ _ Less than or equal to N test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin
17 ?N> _ _ Greater than N Test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin
18 ?N>= _ _ Greater than or equal to N test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin
19 ?O= _ _ Equal to O test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin
20 ?O# _ _ Different from O test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin
21 ?O< _ _ Less than 0 test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin
22 ?O<= _ _ Less than or equal to 0 test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin
23 ?O> _ _ Greater than 0 Test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin
24 ?O>= _ _ Greater than or equal to 0 test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin
25 ?P= _ _ Equal to P test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin
26 ?P# _ _ Different from P test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin
27 ?P< _ _ Less than P test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin
28 ?P<= _ _ Less than or equal to P test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin
29 ?P> _ _ Greater thanP Test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin
30 ?P>= _ _ Greater than or equal to P test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin
31 ?Q= _ _ Equal to Q test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin
32 ?Q# _ _ Different from Q test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin
33 ?Q< _ _ Less than Q test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin
34 ?Q<= _ _ Less than or equal to Q test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin
35 ?Q> _ _ Greater than Q Test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin
36 ?Q>= _ _ Greater than or equal to Q test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin
37 -XTRA FNS Shows Revision date none Lib#4 MCODE Ángel Martin
38 A<>ST Exchange Alpha & Stack Values in ALPHA and stack Lib#4 MCODE Ángel Martin
39 bRCL _ Buffer reg recall buffer reg# (1-5) Lib#4 MCODE Ángel Martin
40 bSTO _ Buffer reg Storage buffer reg# (1-5) Lib#4 MCODE Ángel Martin

Total_Rekall – Dare to Compare - QRG

© Ángel Martin – April 2017 Page 5

41 bVIEW Buffer Reg View Buffer reg# (1-5) Lib#4 MCODE Ángel Martin
42 bX<> _ Buffer Reg Exchange buffer reg# (1-5) Lib#4 MCODE Ángel Martin
43 FIXALL Activates Fix ALL mode none Lib#4 MCODE Ángel Martin
44 KYFLP _ Flips Key assignments Pressed key Lib#4 MCODE Ángel Martin
45 ^LASTF _ Prompts for FName to add Buffer #9 Lib#4 MCODE Ángel Martin
46 LASTF^ Starts LastF review Hot keys, Buffer #9 Lib#4 MCODE Ángel Martin
47 RTN? Tests for pending RTNs YES/NO, skips if False Lib#4 MCODE Doug Wilder
48 RTNS Number of pending RTNs Pust in X, Lifts Stack Lib#4 MCODE Ángel Martin
49 SVIEW Shows S register contents None Lib#4 MCODE Ángel Martin
50 STVIEW Full Stack View None Lib#4 MCODE Ángel Martin
51 X<I>Y Exchange IND(X) & IND(Y) Values in X, Y Lib#4 MCODE Nelson F. Crowle
52 DSNEX Decrement and Skip if not Equal Value in X Lib#4 MCODE Ángel Martin
53 ISLEX Increment and Skip if Equal Value in X Lib#4 MCODE Ángel Martin
54 FINDX Find register containing X Value in X Lib#4 MCODE Ángel Martin
55 NEXT increment selection SEL variable Lib#4 MCODE Ángel Martin
56 PREV decrement selection SEL variable Lib#4 MCODE Ángel Martin
57 SEL? Shows the selected variable SEL variable Lib#4 MCODE Ángel Martin
58 SVIEW Shows Selected var contents Value in sel var. Lib#4 MCODE Ángel Martin
59 ?S= Equal to S test Data in sel and target Lib#4 MCODE Ángel Martin
60 ?S# Different from S test Data in sel and target Lib#4 MCODE Ángel Martin
61 ?S< Less than S test Data in sel and target Lib#4 MCODE Ángel Martin
62 ?S< _ _ Less than or equal to S test Data in sel and target Lib#4 MCODE Ángel Martin
63 ?S> _ _ Greater than S Test Data in sel and target Lib#4 MCODE Ángel Martin
64 ?S>= _ _ Greater than or equal to S test Data in sel and target Lib#4 MCODE Ángel Martin
65 FCAT _ Sub-function CATALOG has HOT keys Lib#4 MCODE Ángel Martin

Figure 0: Interaction between the different function launchers.

Total_Rekall – Dare to Compare - QRG

© Ángel Martin – April 2017 Page 6

What’s new in the 2017 edition? The Auto-complete mode.

If you’ve been following the evolution of the “Total_Rekall“ module you’d no doubt expect grand and
important new things of a major revision like this one – and you won’t be disappointed, because this
edition includes the all-new, long-awaited, Auto-Complete mode for XEQ functions.

When you call the XEQ+ function a new mode of execution opens up to the user; one where instead
of spelling the complete function name at the alpha prompt, just the first initial letter is entered and
calculator does the rest for you – with a few control hot-keys to navigate the complete bus, from
page #3 up to the top in page #F.

This is akin to the “auto-complete” functionality popular on other systems, very useful to assist in the
selection of those available functions in the current ROM configuration. Because of the finite number
of possible options (with an absolute total maximum of 630 functions when all pages are filled up
with modules each having 64 entries in their FATs), limiting the auto-completion to the first character
is not a shortcoming, but a practical design criteria to keep the code size and execution times within
reasonable parameters.

In short: the function XEQ+ starts a new mode by prompting for an initial character letter or number,
A-Z, a-e, 0-9. After that selection is made, after a short search time (negligible on the CL for sure) it
presents all functions currently available in the bus that begin with that letter - commencing the
search in page#3 up until page #F. The listing can be done manually (SST) or continuous (R/S),
and several navigation keys are included: jump page, back-up page, next function, previous function,
next letter, previous letter. Both MCODE functions and FOCAL programs will be shown:

 ;

Once you've locked up your target function simply press XEQ to execute it, or ASN to assign it to
the key of your choice. Or if you’re not sure this is your choice (say duplicates or similarly spelled
ones), pressing RCL will show you some vital signs of the function, such page# and XROM id#

 ->

The operation will also add the executed function automatically to the enhanced LASTF facility, which
now will hold up to five entries (say, LastF now stands for “last-five”? ;-). Two new functions allow
the user to review and execute these (LASTF^), plus a manual mode to enter functions into the list
if so desired (^LASTF).

Lower case characters (a-e), numbers and all other key-able special chars are accessed using the
shifted keys in the standard ALPHA keyboard. Another option is provided to use special characters –
even if not key-able but allowed in function names. This makes it possible to search for function
names staring with “µ”, the forwards or backwards goose, or all the little men just to name a few.

 ‘2E” =>

Total_Rekall – Dare to Compare - QRG

© Ángel Martin – April 2017 Page 7

Note that the functions are not listed in alphabetical order, but in sequential order as they’re found in
the respective FAT’s of the modules plugged in the calculator. The only restriction is that they all start
with the letter chosen at the initial prompt.

If you’d rather see an automatic enumeration of the options then pressing R/S will show all
functions meeting those criteria up until the end of the bus. You can quit the listing at any time
pressing any key, and then press XEQ or ASN to perform the action once halted.

If no function starting with the selected letter exists the initial prompt will be shown again for a news
selection. The same applies when there are no target functions in a forced page location, using the
+ or - control keys for pages jumping, or the EEX key for a forced destination:

In case you wonder, page#4 is simply skipped over, while pages 0-1-2 when chosen default to
page#3 – so this functionality does *not* include the standard functions of the calculator (such as
BEEP, SDEV, etc.)

Overlays and Underlays.

The XEQ+ mode is a new way to navigate the variable environment of the calculator that does not
require you know the exact function spelling, nor that you do the actually typing of the letters – but
it’s much more than an alternative for machines with defective ALPHA key ;-)

The picture on the right shows the available hot keys
at different stages of the operation. Some are active at
the initial “A:Z” prompt – like ^:_ _ for special
character input; whilst others are applicable to the
shown selection – such INFO, XEQ, and ASN.

Use the back arrow key to restart the process or to
cancel out to the OS.

The ALPHA key is also active as a hot key to revert to
the original XEQ function. Use it if you want to revert
to the standard OQ method to spell the function name
in ALPHA mode, simply press ALPHA twice and then
spell the name as usual.

Seeing is believing: try it out and chances are soon it’ll become one of your favorites. A real keeper!

Total_Rekall – Dare to Compare - QRG

© Ángel Martin – April 2017 Page 8

Introduction – ‘Dare to Compare”.

Welcome to unexplored territories, a journey taking the venerable hp-41 platform to places it
probably hasn't been before: meet the "Dare 2 Compare" version of the Total_Rekall module, with
the following new bells & whistles:

• Enhanced launchers and function prompts that interact with one another and are "aware" of
previous choices. Refer to the sketch in previous page for details.

• Added a secondary FAT with 64 new sub-functions, amongst them all test functions on the
stack registers {M-Q} – to complement {T to L} which were already there implemented as
main functions).

• Automatic entering for main functions of non-merged arguments as second program lines.
For instance: Z<=T? . This feature was a must, after I learned how to do it in the CLXPREGS
module.

• For sub-functions, a triple-non-merged argument scheme using three program steps. For
instance: M>= IND Z?, whereby only the third parameter is entered manually.

• Added functions SELCT and ?CASE – a pseudo SLECT-CASE implementation that allows
comparison of any “variable” (i.e. register, including the stack and indirect) defined by SELCT
and stored in the buffer - with a hard value (integer) entered at the ?CASE prompt.

• New direct register exchange (not using the stack) between the register selected by SELCT
and the target chosen by S<>, also supporting indirect, stack and combination of both.
Features housekeeping utilities like NEXT, PREV, and SEL? to show, increment and
decrement the selected register variable. Useful for program algorithms to save explicit re-
selections.

• Direct comparison to zero for any register (direct, indirect, stack), with the "Zero-group"
functions. For instance: ?0# 23

• Implements the "emergency storage buffer" with five data registers in case you run out of
regular ones. You can store, recall, view and Exchange the buffer registers with the X register
at any time. Also you can use this buffer with functions PUSHRTN and POPRTN to extend
the RTN stack length.

• An all-new stack shuffle function SHFL, that allows altering the five main stack registers
XYZTL according to a register pattern entered as a five-field prompt in manual mode, or in an
ALPHA string during program execution. Selective register clearing also included using zero as
description in the strings.

Very tricky stuff, and not simple to make it all tick at unison but the results are nothing short of
amazing if I may say it. Reading this manual should help you digest the new functionality and
apply it to practical examples as well.

Notes: To make all these additions and enhancements possible it was needed to remove the UMS
(Unit Management System) from the previous version of the Total_Rekall module. The UMS with
Constants Library is available in the PowerCL and PowerCl_Extreme modules. The UMS without
the constants library is also available in the dedicated “UMS Module” for those of you without a
41CL (say what? a temporary situation hopefully…)

Total_Rekall – Dare to Compare - QRG

© Ángel Martin – April 2017 Page 9

The Sub-Function Catalog. { FCAT }

FCAT provides usability enhancements for admin and housekeeping. It invokes the sub-function
CATALOG; with hot-keys for individual function launch and general navigation. Users of the POWERCL
Module will already be familiar with its features, as it’s exactly the same code – which in fact resides
in the Library#4 and it’s reused by other modules, like the SandMath and SandMatrix as well.

The hot-keys and their actions are listed below:

[R/S]: halts the enumeration
[SST/BST]: moves the listing one function up/down
[SHIFT]: sets the direction of the listing forwards/backwards
[XEQ]: direct execution of the listed function – or entered in a program line
[ENTER^]: moves to the next/previous section depending on SHIFT status
[<-]: back-arrow cancels the catalog

One limitation of the sub-functions scheme that you’ll soon realize is that, contrary to the main
functions, they cannot be assigned to a key for the USER keyboard. Typing the full name (or entering
its index at the XF# prompt) is always required. This can become annoying if you want to repeatedly
execute a given sub- function. The LAST Function implementation certainly minimizes this issue for
repeat executions of the last sub-function called, without a dedicated key assignment required.

Launchers and Last Function functionality. { XF# , XF$ }

This module includes full support for the “LASTF” functionality. This is a handy choice for repeat
executions of the same function (i.e. to execute again the last-executed function), without having to
type its name or navigate the different launchers to access it. The implementation is not universal – it
only covers functions invoked using the dedicated launchers, but not those called using the
mainframe XEQ function. The following table summarizes the launchers that include this feature:

Module Launchers LASTF Method
Dare2Compare -STKT _ Captures (sub)fnc id#
 RKL _ _ Captures (sub)fnc id#
 XF$ _ Captures fnc NAME
 XF# _ _ _ Captures (sub)fnc id#
 FCAT (XEQ’) Captures (sub)fnc id#

LASTF Operating Instructions

The Last Function feature is triggered by pressing the radix key (decimal point - the same key used
by LastX) at the “ST: ” prompt. When this feature is invoked, it first shows “LASTF” briefly in the
display, quickly followed by the last-function name. Keeping the key depressed for a while shows
“NULL” and cancels the action. In RUN mode the function is executed, and in PRGM mode it’s added
as a program step if programmable, or directly executed if not programmable.

If no last-function record yet exists, the error message “NO LASTF” is shown. If the buffer #9 (used
to store the last function id# code) is not present, the error message is “NO BUF” instead.

Total_Rekall – Dare to Compare - QRG

© Ángel Martin – April 2017 Page 10

The “Total_Rekall” Dilemma. { RKL }

One of the obvious shortcomings of the HP-41 OS is the lack of RCL math functions: even if they are
less necessary than the STO math and perhaps easily replaced by combination of other standard
functions, it is a sore omission that has been the previous subject of different implementation
attempts to close that gap.

The first component is naturally the addition of individual RCL math functions, like RC+, RC-, RC*
and RC/. These can be written without much difficulty, even supporting INDirect register addressing,
but with two major restrictions:

1. Operating in manual mode only, and
2. Excluding the Stack registers from the register sources.

The first limitation can be overcome using the non-merged function approach, whereby the argument
of the function in a program is given in the next program line following it. This is stack-neutral so
doesn’t interfere with the intermediate calculations.

To solve the stack addressing one needs to resort to heavier wizardry, basically writing extra code to
replace the OS handling of the prompting in these functions – which is based on the PTEMP bits of
the function name. The custom prompting is therefore completely under the control of the function,
and not facilitated by the OS. It is arguably a small net benefit compared to the required effort, but
as the only remaining challenge it was well worth tackling down.

Once the technique was developed it was relatively easy to apply to other functions, like the stack
exchange and comparison tests – if you can you envision instructions like: “Y<> IND M”, or “Z<=N?”
to give just two examples. Unfortunately, the Library#4 was already full, so the subroutines are only
available on this module.

RCL Math on steroids: The Extended RKL Launcher.

In addition to the four “standard” arithmetic operations this module includes RC^, for the Recall
Power function – which will calculate the REG-th. power of the value in X, i.e. X= e^(RG# * ln X).

All RCL functions feature a prompt lengthener to directly access registers in the 100-111 range. You
can activate this by pressing the EEX key at any of their prompts. Note that from 112 and up you’ll
be either accessing Stack registers or INDirect addresses, as shown in the next pages (see table 1.1)

In terms of usability, note that you can switch amongst the five RCL math functions pressing the
corresponding arithmetic key at their prompt. You can also revert back to the RKL function simply
pressing the [SST] key twice during any of their prompts (this toggles between the RKL group and
the main launcher described in the following section).

Lastly, you can revert to the native RCL pressing the [XEQ] key again at its prompt. When you do this
in program mode the standard OS is used for efficient line entering of the standard cases, i.e. RCL 27
in a single program step as opposed to using the non-merged approach. More on this subject later on.

Total_Rekall – Dare to Compare - QRG

© Ángel Martin – April 2017 Page 11

The main Function Launcher { –STKT }

Considering the number and nature of the functions included in this module it isn’t surprising that the
launcher method has been once again the chosen approach. You can access any of the stack swaps
and test functions with a few keystrokes using a single function, the “Function Builder” -.

The driving parameter for the function is the stack register, thus the expected input at the ”ST _”
main prompt is to be the corresponding stack register letter {X, Y, Z, T, L, M, N, O, P, Q,} – which will
be placed on the left side of the display in a second prompt to chose the specific action to perform.

Once the stack register is chosen, the second prompt offers a selection of options in a menu-like
fashion with two screens toggled by the SHIFT key to fit the seven choices available:

 -

Once the individual register is selected, a common feature in all functions is that the prompt accepts
IND _ _ , and ST _ arguments using the SHIFT and RADIX keys as with the native OS implementation.
The combined IND ST _ is also allowed of course.

Dynamic Register Update: the “NEXT” choice.

Pressing the [SST] key will update the function builder main prompt; changing the source register
sequentially in a cyclic sequence each time is pressed. This saves time and keystrokes, making it
easier to use in spite of its comprehensive functionality. Note also that pressing the back-arrow will
revert back to the main prompt, requesting a register to start the process.

Where are the upper status registers? {“a” to “e”}

All 16 stack register swaps are available, either as main functions or in the auxiliary FAT as sub-
functions. This is the case of the upper stack registers {a-e}, that can be accessed directly from the
main launcher pressing the corresponding top-row key. Just be careful with these!!

Because of their relative small practical application, the tests of the upper status registers were
replaced by the Zero-testing set, You can still use them as the second argument at the stack
addressing prompt, for instance you could do: T<> a, or: Z<> c if wanted.

Special Guest “Zero”

In addition to the 10 stack registers mentioned before you can also enter “0” at the main
“ST_“ prompt to invoke the Zero-comparison test function – so considered it to be the invited guest
to the stack for these purposes. Note this is not Data Register R00, but the value “0” for the
comparison.

Reversed Logic RPN?

Contrary to the standard native functions on the 41 OS, all the individual test comparison functions
feature the question mark at the beginning of its name. This is just a nomenclature choice but has no
bearing on the actual operation of the functions. In a program the same “Skip line if False” rule
applies if the test result is not true, whereas in manual mode the “YES’/’NO” messages will be
triggered for the True/False cases as usual.

Total_Rekall – Dare to Compare - QRG

© Ángel Martin – April 2017 Page 12

Programmability: arguments Look-up Table

All functions and sub-functions are fully programmable. When entered into a program the argument
will be automatically entered as a second program line after the main function. This line will not be
executed; rather the function will read the value during the program execution. Note also that this
works seamlessly for direct data registers up to R111, with no need for manual adjustment for
extended range, INDirect and Stack register arguments (refer to the table below for details).

For INDirect registers 80 Hex (or 128 dec) is automatically added to the register number.

Examples: Z<> IND 25 => Z<> followed by 152
 RC/ IND 16 => RC/ followed by 144

For Stack arguments 70 Hex (or 112 dec) is automatically added to the “Stack index” number.

Examples: Z<> T => Z<> followed by 112 (T index = 0)
 RC+ Y => RC+ followed by 114 (Y index = 2)

For combined INDirect Stack arguments, F0 hex (or 240 dec) is automatically added to the stack
index, or 240 decimal

Examples: Z<> IND Z -> Z<> followed by 241
 RC* IND M => RC* followed by 243

The table below shows the transition zones graphically:

Table 1: Register index mapping.

A few exceptions to the rule.

A few functions in the module do not allow stack arguments in their prompts. These functions are
ARCLI, A<>RG and ST<>RG. You can use any register number and INDirect addressing but not
Stack registers as the destination – neither the combination IND ST even if it is possible to invoke it.
These functions use the standard method provided by the OS to build the prompts, which as it was
mentioned before lacks the complete flexibility offered by the newer functions.

Be aware that the merged lined will not be automatically created for these cases. If you enter these
functions in a program, you must add the argument manually as an additional step.

Argument Shown as: Argument Shown as: Argument Shown as:
100 00 112 T 124 b
101 01 113 Z 125 c
102 A 114 Y 126 d
103 B 115 X 127 e
104 C 116 L 128 IND 00
105 D 117 M 129 IND 01
106 E 118 N 130 IND 02
107 F 119 O 131 IND 03
108 G 120 P 132 IND 04
109 H 121 Q 133 IND 05
110 I 122 |- 134 IND 06
111 J 123 a 135 IND 07

Total_Rekall – Dare to Compare - QRG

© Ángel Martin – April 2017 Page 13

Direct Register Comparisons.

A fact that may be easily overlooked is that besides doing intra-stack register comparisons, these
functions also allow direct comparison of any of the main stack registers with any data register in
RAM. Furthermore, the Zero group allows direct comparison with zero on any data register as well,
not just the stack.

This provides more flexible programming choices, saving programming steps and keeping the stack
unaltered as there’s no need to bring the register content to X/Y in order to make the comparisons.

Some examples:

?X< 13 => is R13 > X? ?0# 05 => is R05 different from zero?
?T>= 16 => is R16 <= T? ?0> 11 => is R11 less than zero?

Example: Armed with these new functions bubble-sorting the stack is a fairly simple task:

01 LBL “STSRT
02 X>Y?
03 X<>Y
04 ?Y> (Z)
05 Y<> (Z)

06 ?Z> (T)
07 Z<> (T)
08 X>Y?
09 X<>Y
10 ?Y> (Z)

11 Y<> (Z)
12 X>Y?
13 X<>Y
14 END

Be aware that in program mode the function arguments will be automatically added as non-merged
steps –this will be described in the following pages.

Stack Exchange vs. Test Functions

There is no fundamental difference in the eligible stack registers for exchange functionality vs. direct
comparisons. All the status registers except the “lazy-T” }-(10) have the same set, although some
functions are in the main FAT, and some others are in the Auxiliary FAT. This is again due to the
limited number of entries in the FAT, which imposed some selection between registers, based on
likely importance and usability.

In terms of the functionality, the table below shows the available choices for a direct approach, and
which ones are only available indirectly, as a second argument of the particular function.

Register Exchange Tests Register Exchange Tests
X Main Main Q Main Sub-fcn
Y Main Main |- Sub-fcn Indirect
Z Main Main a Sub-fcn Indirect
T Main Main b Sub-fcn Indirect
L Main Main c Sub-fcn Indirect
M Main Sub-fcn d Sub-fcn Indirect
N Main Sub-fcn e Sub-fcn Indirect
O Main Sub-fcn “0” n/a Main
P Main Sub-fcn Rnn Main Indirect

Lastly, non-stack Data Register swapping is missing from this set, but it’s not forgotten - it’s the
subject of the next sections.

Total_Rekall – Dare to Compare - QRG

© Ángel Martin – April 2017 Page 14

General-Purpose Comparison with SELCT / ?CASE

Perhaps the most versatile approach for register comparison is provided by the combination of
functions SLCT and ?CASE. With them you can test any register (chosen using SELCT) against a
fixed integer value – which is provided as the argument for ?CASE.

The variable chosen by SELCT is stored in the header of buffer id#7 (the same one used for the
“emergency storage” information). This may be a direct data register number, a stack register (adds
70 Hex), an indirect register (adds 80 Hex), or the combination of both (adds F0 Hex). Refer to the
table in previous section for details. This is done automatically by the function, totally transparent to
the user.

In program mode the variable for SELCT and the comparison value for ?CASE will be introduced as
non-merged lines in program step following the main function – which is consistent with the other
functions seen before that use the same schema. Note that comparison values are positive integers
only.

If no variable has been selected previously, ?CASE will default to the X register (i.e. id# 73 Hex or
115 decimal – again no need for you to be concerned with that detail). Pressing [VIEW] at the SLCT
prompt will show you the current variable stored in the buffer.

The variable will therefore continue to be in effect until another SELCT statement is used. This will
allow you to make repeat comparisons without the need to have to recall the reference in every
instance – and also without the need to have both the reference and the variable in the stack.

For example, to compare the value of data register R05 with the values 1,2,3 you’ll use these
instructions, which can be interspersed amongst all your program code (note that there’s no need for
an “END SELECT”-like instruction):

SELCT 05 loads the reference in buffer
?CASE 1 tests if R05=1?
Yes
No
…
?CASE 2 tests if R05=2?
Yes
No
….
?CASE 3 tests if R05=3?
Yes
No
…

Note that the comparison value is directly provided in the prompt, and that a “by reference”
comparison is not allowed (i.e. using a data register instead).

As the question mark would suggest, ?CASE is a typical test function that will follow the “do if true /
skip if false” rules when running in a program – or show the familiar “YES/NO” in manual mode.

Remember not to place a non-merged function directly *after* a test function – doing so will create a

problem as the OS does not recognize the non-merged steps as part of a single function!

Total_Rekall – Dare to Compare - QRG

© Ángel Martin – April 2017 Page 15

General-Purpose Exchange with SELCT / S<>

In a parallel implementation to the previous subject, you can also use the SELCT schema combined
with the main function S<> to perform a data register exchange directly, i.e. with no need to bring
either of their contents to the stack – which is so left undisturbed.

The advantages are clearly seen: the stack is not altered, and the same selected variable-register can
be used for both case-equal comparison and register-exchanges. Both together offer possibilities to
the smart FOCAL programmers, never too late to learn new tricks ;-)

 Defines the selected variable-register Defines the target register to exchange.

Like SELCT itself, S<> also supports indirect addresses, Stack addresses and combination of both –
thus you could do flexible register exchanges, such as: IND ST M <> IND 34.

Here too the same table of parameters shown in figure-1 applies – refer to that table for details.
Remember that the indirect reference will change if you alter the content of the register that holds
the register pointer.

Showing the selected variable.

If you’re not sure of which is the selected variable you can press [R/S] at either of these function’s
prompts to invoke the SEL? Function – which recalls its number to the display (but not to the X-
register).

• SEL? shows the value currently selected. If no selection has been mede the value shown is
4,095. Note that the selection of a variable does not require that the register exists at that
point – the existence checks will be done when trying to access the contents of said register.

Note that, like ?CASE described before, if no register variable has been previously selecter then the
exchange will use the X register as a default – and in that instance the number returned if you press
[R/S] at the prompt will be 4,095.

Increasing and Decreasing the selected variable.

These sub-functions are related to the variable selected by SELCT, as follows:

• NEXT and PREV increment and decrement the selected variable by one. No decrement will
occur if the selection is R00. No changes will be made if no selection exists (which defaults to
Stack “X”). These functions are very useful during program control for sequential access to
different registers as selected variables.

Remark that NEXT/PREV have effect on the register number stored in the buffer header (i.e. the “S”
variable), but not on the register contents. Also that if an indirect or stack register is selected then
the next/previous value is dictated by the “natural” register sequence, i.e. Stack_L comes after
Stack_X, etc.

Total_Rekall – Dare to Compare - QRG

© Ángel Martin – April 2017 Page 16

Value Comparison tests with selected variable.

Similarly, using the provided sub-functions you can compare the contents of the selected variable
with any “target” register of your choice entered at the prompt. Like all tests functions in manual
mode “YES/NO” is shown depending on the true/false condition; and in a running program one
program line will be skipped when false, or when true it will continue with the line following the sub-
function merged lines (which there’ll be three of them as these are sub-functions!).

Note that the equal-to comparison ?S= is different from ?CASE; in both instances it is the content of
the selected register what gets used as first value, but the second value differs: in the equal-to case it
is the content of the target register being compared, whereas for ?CASE the comparison is against
the value provided at the prompt.

Let’s for example compare the contents of data registers R04 and R05. If we choose R05 as the
selected variable, then R04 becomes the “target” to compare against, i.e. showing all the parameters
as non-merged program steps:

01 SELCT (05) 01 SELCT (05)
02 5 02 5
03 XF# 03 XF#
04 58 04 60
05 4 ?S< 04 05 4 ?S> 04
06 Yes 06 yes
07 No 07 no

The surrogate Stack Register “S”.

All the variable comparison functions, as well as the exchange and ?CASE have been grouped under
its own section within the main launcher –STKT. Either by pressing ‘S” or moving about the stack
registers letters using SST, the surrogate S-register screens offer the same functionality as the
standard stack registers, as shown in the pictures below:

 -

Note how this U/I has the same look & feel as the other stack registers. The fact that all the choices
are sub-functions is completely transparent to the user – with the only exception of the need to
manually add the parameter line in a program as described before in the manual.

Total_Rekall – Dare to Compare - QRG

© Ángel Martin – April 2017 Page 17

Examples: Data Registers bubble-Sort

The programs below show two practical examples of the new functions for data register sorting. Note
the use of the non-merged program steps and the workaround required in the conditional tests to
avoid jumping in-between non-merged lines. The second main label uses the control word bbb.eee in
X to delimit the data registers range, whereas the first will use all the data registers currently
available in the calculator.

01 LBL “SRTALL” all registers
02 SIZE? Get current size
03 DSE X get last reg index
04 E3 format it
05 /
06 LBL “SRTRGX” bbb.eee in X
07 LBL 01 main loop
08 ENTER^ push cnt’l word to Y
09 ENTER^ push it one more
10 SELCT (IND Y) select ind(bbb)
11 242
12 ISG X bbb+1
13 GTO 00 skip until end is reached
14 RTN all done.
15 LBL 00 inner loop
16 XF# (?S>= IND X) use the reverse test and a
17 66 forced GTO to avoid jumping
18 243 in between non-merged steps:
19 GTO 00 true, jump over
20 S<> (IND X) false, swap registers
21 243
22 LBL 00
23 ISG Y
24 SELCT (IND Y) update selected register
25 242 (cannot use NEXT !)
26 ISG X update comparison register
27 GTO 00 repeat inner loop
28 X<> Z recall control word
29 E-3 decrease upper limit
30 -
31 GTO 01 repeat main loop
32 END end of program

Another approach for the all-registers case is shown below, using the NEXT instruction to update the
selected register directly – as opposed to the indirect way in the previous example.

01 LBL “SRTALL2”
02 SIZE?
03 DSE X
04 E3
05 /
06 LBL 01
07 SELCT (0)
08 ENTER^
09 ISG X
10 GTO 00

11 RTN
12 LBL 00
13 XF# (?S<= IND X)
14 64
15 243
16 GTO 00
17 S<> (IND X)
18 243
19 LBL 00
20 XF# (NEXT)

21 59
22 ISG X
23 GTO 00
24 X<>Y
25 E-3
26 -
27 GTO 01
28 END

Total_Rekall – Dare to Compare - QRG

© Ángel Martin – April 2017 Page 18

Tinkering with ISG and DSE: complement modes.

In the previous examples we have used the ISG function to increase the pointers to the data registers
being compared. The code is a bit inefficient because the termination conditions are the opposite to
the implemented in the standard ISG and DSE functions – i.e. here we loop while the condition is
FALSE, which requires an additional GTO step to skip the RTN.

The complement functions are defined as follows:

• ISLEX “Increment X and Skip if Less or Equal”, and
• DSNEX “Decrement X and Skip if Not Equal”.

In both cases they only work on the X register, which is expected to have a control word in the form
bbb.eeeii , like the standard ISG and DSE. If the increment is not given (zero) the default value used
is ii=1.

Using ISLEX instead of ISG X in the example programs will change the code to this:

06 LBL “SRTRGX” bbb.eee in X
07 LBL 01 main loop
08 ENTER^ push cnt’l word to Y
09 ENTER^ push it one more
10 SELCT (IND Y) select ind(bbb)
11 242
12 XF# (ISLEX) bbb+1
13 57
14 RTN all done if (bbb+1) > eee
15 LBL 00
16 …

And similarly in SRTALL2:

 06 LBL 01

07 SELCT (0)
08 ENTER^
09 XF# (ISLEX) bbb+1
10 57
11 RTN all done if (bbb+1) > eee
12 LBL 00
13 …

Another approach to deal with this contingency would have been using the SKIP function, available
in some extension modules. When placed in the TRUE position it basically defeats the “do if true” rule,
shifting the decision by one program step:

ISG X
True
False
…

ISG X
SKIP
False
…

ISLEX
(Un)True
(Not)False
…

Total_Rekall – Dare to Compare - QRG

© Ángel Martin – April 2017 Page 19

Have we re-invented these wheels?

Certainly there’s some overlap between the new functions and the set included in the CX X-Functions,
as shown in the table below:

CX-Function X=NN? X#NN? X<NN? X<=NN? X>NN? X>=NN?
TotalRekall ?X=IND Y ?X# IND Y ?X< IND Y ?X<= IND Y ?X> IND Y ?X>= IND Y

However, the similarities end there - as the new functions expand the number of choices beyond the
“IND Y” case, have a prompting U/I and perhaps most importantly they don’t require altering the
contents of the stack to perform the comparisons. Also in terms of byte usage both schemes are
comparable, as the CX functions require at least one byte in Y to be used for register argument.

In terms of the Data Register exchange, there are also a couple of alternatives within the standard CX
functions or other modules to perform equivalent actions, such as:

• Rnn <> Rkk can be done with: { nn.0kk, REGSWAP }
• Rnn <> Rkk is also possible with X<I>Y, with “nn” in Y and “kk” in X (or vice-versa).

Which depending on the data register numbers may be more or less favorable in terms of byte count;
see for example exchanging R10 and R25 below using the three approaches:

SELCT 10 10,025 10, ENTER^
S<> 25 REGSWAP 25, X<I>Y

8 bytes, no stack 8 bytes, X used 7 bytes, both X,Y used

Compatibility with other Prompt Lengthener alternatives.

A more interesting comparison can be made with the other implementation of the Extended Prompts,
like the ZENROM does using the EEX key, or even the Prompt Lengthener feature in the AMC_OS/X
Module using the ON key.

For these two implementations, the second byte of the RCL is added to the same instruction in a
program, i.e. RCL 111 will be displayed as “RCL J”, and similarly RCL 127 will show as “RCL e”. This
is clearly more efficient in byte usage; however it does not support the RCL arithmetic operations
allowed by this module.

Note that the OS/X Prompt lengthener is only triggered with the standard OS-provided functions, and
therefore won’t appear at the custom prompt offered by “RKL _ _” or “RIND2 _ _”; nor by the
ZENROM’s after you have pressed the EEX key, i.e. “RCL 1_ _”. Pressing the ON key in those
instances will just turn the machine off.

But you can have it both ways: if you have the OS/X Module plugged in (as every power user
should :-) you can take advantage of this method by pressing again the XEQ key at the RKL _ _
prompt: as mentioned before, this will revert to the standard RCL _ _, and then press ON to extend
the field to three digits and enter “1xx” directly.

Total_Rekall – Dare to Compare - QRG

© Ángel Martin – April 2017 Page 20

Say what, one-thousand registers?

It is also possible to press the EEX key while the OS/X extended prompt is up, which would add
another field to it and so appearing to allow choices of data registers above 999 – if it weren’t for the
fact that such a thing can’t physically exist on the normal machine (the 41CL is a different story). See
for example the examples below, calling for a data register above 1,900:

If you did that in PRGM mode, say entering 1900 in the prompt, surprisingly the end result turns out
to be “RCL G” – which equals RCL 108. This can be explained by the (apparently unrelated) fact that
MOD(1900, 128) = 108, i.e. we’ve gone full circle in data registers parlance.

Program Example – Congruence Equation

The program below is a direct translation of the original written by Thomas Klemm for the HP-42.
See http://www.hpmuseum.org/forum/thread-1116.html

It solves for x in the equation: A * x = B mod N

The only changes pertain to the RCL math steps located at lines 14, 19, 22, and 68: simply add the
register number as a second line after the RCL function as detailed in the table shown in page 7. (You
can omit it on the case of zero).

Example: 5 * x = 3 mod 17

Solution: 5, ENTER, 3, ENTER, 17, XEQ "CONG" => 4

http://www.hpmuseum.org/forum/thread-1116.html�

Total_Rekall – Dare to Compare - QRG

© Ángel Martin – April 2017 Page 21

The Double Indirection: A solution in search of a problem?

Arguably a double indirection capability may be seen more as an extravaganza than as a useful
feature. After all, how many times have you encountered a situation where the indirect index was
itself depending on another variable, and doing so in a counter-like fashion?

Well those situations do exist, more often than none and with increased likelihood as you get into
advanced algorithms and matrix applications – but I won’t tire you with examples; rather here are
functions SIND2 and RIND2, which perform a double STO/RCL IND IND _ _

Enough to make your head spin a little? – Then you should try the TRIPLE indirection, available when
you hit the shift key at that stage, ie:

SIND2 IND _ _ = STO IND IND IND _ _
RIND2 IND _ _ = RCL IND IND IND _ _

These functions use two (or three if SHIFTED) standard data registers to hold the arguments of the
data register where the value is to be recalled from (RIND2) or stored into (SIND2). Better keep your
register maps handy!

Going over the top: Multiple Indirection

Interesting things happen if you keep pressing the [SHIFT] key - as these functions support a
multiple indirection pattern that allows redirecting the target registers as many as 10 levels (and
beyond). The function prompt will change to reflect the current level, with a combination of even
values and their IND options. For example, pressing [SHIFT] at the RIND2 IND _ _ prompt will bump
the counter to:

, and then: ,
Followed by the screens shown below in a continuous sequence:

, and then:

Example: assuming the following registers contain the values shown below:

R10 = 0;
R00 = 3;
R03 = 5;
R05 = 7;
R07 = π

Then we have:

RCL 10 = 0
RCL IND 10 = 3
RIND2 10 = 5
RIND2 IND 10 = 7
RIND4 10 = π
RIND4 IND 10 = 5
RIND6 10 = 7 , etc…

Note that this functionality is restricted to manual mode only, and when this function is used in a
running program it’ll be limited to a double indirection (or triple in the IND case).

Total_Rekall – Dare to Compare - QRG

© Ángel Martin – April 2017 Page 22

Application Example: Bubble Sort without data movement. (By Greg McClure)

;
; FIXED SORT -- Gregory J. McClure
;
; Does a non-destructive bubble sort of registers specified in another
; set of consecutive pointer registers. The data to sort is not moved,
; but the pointer registers will be changed to reflect the numeric
; order (ascending) of the values indirectly pointed to by them.
; R00 thru R02 are used by the program.
;
; Example: R03-R06 contain 10, 12, 15, 18.
; R10, R12, R15, R18 contain the data to sort (4, 3, 2, 1).
; X contains 3.006 as descriptor of pointer register set, then SORT is run.
; When done, SORT will change R03-R06 to contain 18, 15, 12, 10.
; R10, R12, R15, R18 will be unchanged.
;

01 LBL "SORT"
02 LBL 10
03 STO 00 ; 1ST VALUE POINTER
04 STO 01 ; 2ND VALUE POINTER
05 ISG 01
06 STO 02 ; SAVE 1ST POINTER
07 LBL 00
08 RIND2 ; TTRKALL DOUBLE IND READS
08 RIND2
09 1
10 X>Y?
11 GTO 01 ; SKIP SWAP
12 RCL IND 00 ; RECALL POINTERS
13 RCL IND 01
14 STO IND 00 ; REVERSE POINTERS
15 X<>Y
16 STO IND 01
17 LBL 01
18 ISG 00 ; BUMP VALUE POINTERS
19 ISG 01
20 GTO 00 ; MORE TO COMPARE
21 RCL 02 ; GET CURRENT POINTERS SET
22 E-3
23 -
24 ENTER^
25 INT
26 1.001
27 *
28 X=Y?
29 GTO 02 ; DONE
30 RCL 02
31 GTO 10
32 LBL 02
33 "DONE"
34 AVIEW
35 END

Total_Rekall – Dare to Compare - QRG

© Ángel Martin – April 2017 Page 23

Appendix.- A trip down to Memory Lane.

From the HP-41 User’s Handbook.-

Total_Rekall – Dare to Compare - QRG

© Ángel Martin – April 2017 Page 24

Say what, a Dynamic Display? The FIX ALL functionality.

Much more than a cosmetic affair, the ability to present only the non-zero decimal digits of a number
has the value to provide additional information on the result: to the limit of the calculator resolution
there are no further meaningful digits after the shown ones.

The FIX all feature is activated when you execute FIXALL (no arguments needed), and remains
active until you change the display setting again using the standard FIX, SCI, or ENG functions.

Note that the representation will apply to the mantissa of the numbers, even if their exponents
exceed E9; obviously limited by the numeric range of the calculator – which for the HP-41 is:

] -1 E100, -1 E-100 [{+}] 1 E-100, 1 E100 [

In case you’re curious, the algorithms used by FIXALL are described below. You’re also encouraged
to check the SandMath Manual – an excellent reference for the design criteria for the RCL math
functions. Note also that contrary to the SandMath’s case, on this module the I/O_SVC interrupt
polling technique is not used to link the standard RCL function with its extensions or the RCL Math
sub-functions. No need for that, since a dedicated RKL replacement is used instead of the native one
and our code takes complete control of the keyboard actions.

Formulas used – A general algorithm.

Numbers on the 41 platform are represented by the following convention:

 " s | abcdefghij | xyz ",

with one digit for the mantissa sign, 10 digits for the mantissa, one for the exponent sign and two for
the exponent. This enables a numeric range between +/- 9,999999999 E99, with a "whole" around
zero defined by the interval:]-1E-99, 1 E99[

Let z# = number of mantissa digits equal to zero, starting from the most significant one (i.e. from
PT=3 to PT=12). Then the fix setting to use is a function of the number in X , represented as follows:

1. If number >=1 (or x="0") - Let XP = value of exponent (yz). Then we have:

 FIX = max { 0 , [(9-z#) + XP] }

2. If number < 1 (or x="9") - Let |XP| = (100 – xyz) . Then we have:

FIX = min { 9 , [(9-z#) + |XP|] }

Total_Rekall – Dare to Compare - QRG

© Ángel Martin – April 2017 Page 25

Stack Shuffling and selective clearing. { SHFL }

There are several functions in the native set to handle the stack registers, and certainly this module
adds its dose of extensions and additions to the set, with the swap functions in particular being the
best exponent. Many ways to skin this cat, but just in case you longed for more abstraction the
function SHFL provides a general-purpose way to perform bulk stack alterations in a very convenient
manner.

, i.e:

SHFL prompts for five stack register letters, including the main XYZTL registers, or the Alpha
registers MNOP, or even the Q register. Once the prompt is filled the contents of the main stack will
be changed to reflect the sequence defined in the prompt. A few examples will clarify:

SHFL: XYZTL leaves things unchanged – i.e. the “do nothing in 10 bytes” choice.
SHFL: YZTXL performs the equivalent to RDN
SHFL: TXYZL is equivalent to the standard R^
SHFL: XXXXL fills the stack (except L) with the value in X

Other combinations will require two or more standard instructions, or may not be easily possible
without adding several of them – especially if you include the ALPHA registers to the choices. In this
regard, the prompt allows Q(9) and the ALPHA registers as inputs, but a few considerations must be
made:

- Register M is always used by the master string itself.
- Registers N,O,P are widely available.
- Remark that you’ll be doing the equivalent to STO, but not to ASTO
- Register Q(9) is usually compromised, as it’s used as scratch by the OS

Finally, and continuing with the ‘ZERO” theme as surrogate stack option - you can also use the digit
zero “0” in the input prompts. This has the effect of clearing the corresponding stack register during
the execution of the function. For example:

SHFL: 00000 is equivalent to CLST, STO L
SHFL: YX00L is equivalent to X<>Y, RDN, RDN, CLX, RDN, CLX, RDN, RDN
SHFL: ZZT0P copies Z to X,Y, T to Z, clears T and puts P in the LastX

Entering this function in a program will follow the standard rule, i.e. the SHFL instruction will be
placed in a single program step. You need to remember to manually add the master string as ALPHA
step in the instruction *before* it. Note that a DATA ERROR message will come up (and the program
execution will stop) should that string contain any invalid character – but it will ignore characters
beyond the fifth one starting from the RIGHT of the ALPHA registers.

Checking the results.

For a quick check of the results you can use the sub-function STVIEW for an enumeration of the
stack registers in L-X-Y-Z-T sequence – a nice complement to help you keep your bearings at all
times. STVIEW is accessible pressing [R/S] at the main STK: launcher.

Total_Rekall – Dare to Compare - QRG

© Ángel Martin – April 2017 Page 26

The “Shadow Stack” concept.

The underpinnings of SHFL take full advantage of the “emergency storage” buffer – whereby the
stack registers are first copied to the buffer registers in the sequence defined by the master string,
and then they’re copied back to the stack in the “default” natural sequence X-Y-Z-T-L. This is the
most effective way (code-wise) to perform the shuffle, and speed-wise it adds no significant penalty
speed wise.

As a lateral thinking, you can use this design feature to intently make a “shadow” copy of the stack in
the buffer – in case you’d want to restore all the contents after some operation (like a UNDO
instruction would perform), or simply as a safety backup. To make this even more convenient, the
SHFL function has a hot-key that introduces the default sequence {XYZTL} for you, no need to type
it up. Simply press the [RADIX] key at the initial prompt (with the five fields shown) and enjoy the
show.

To restore the original values, just use bRCL on the buffer registers following this arrangement:

X – bR5 Z – bR3 L –bR1
Y – bR4 T – bR2

Example. The following example was provided by Didier Lachieze. A subroutine using only the stack
to calculate the sum of the proper divisors of the number in X, it returns this sum in X and the initial
number in Y.

 X Y Z T
01* LBL “DVSM n
02 1 1 n
03 “XYXX” 1 n 1 1
04 SHFL
05* LBL 05
06 NEXT T - n s d
07 “YYZT” n n s d
08 SHFL
09 RC/ T n/d n s d
10 ?x< T
11 GTO 10
12 FRC? n/d n s d
13 GTO 10
14 ?X# T n/d n s d
15 RC+ T
16 ST+ Z
17 GTO 05
18* LBL 10
19 x<> Z s n n/d d
20 END

The first occurrence at steps 03/04 is replacing the two instructions STO Z, STO T, and the second
occurrence at steps 07/08 is also replacing two instructions: CLX, RCL Y. Note that for step 12 you’d
need the function FRC?, available in the SandMath module - or an equivalent function from your own
sources.

Total_Rekall – Dare to Compare - QRG

© Ángel Martin – April 2017 Page 27

Emergency Buffer Registers Storage.

If you’ve ever run out of data registers and wished there was a “back-door” mechanism to use in
emergencies, then you should find this section interesting. These functions operate on a I/O buffer
(with id#7) located below the .END. and above the Key assignment area.

The buffer holds five extra registers for standard data storage, labeled bR1 to bR5 (therefore there’s
no bR0 to speak of). Just enter the index for the extended register in the prompt and the data will be
stored, recalled, or exchanged with the stack X-register – as if they were standard data registers.

• bRCL _ recalls to the X register the content of the extended reg. which index is provided in
the prompt, or in the next program line if used in a running program.

• bSTO _ stores the X-register in the extended reg. given in the prompt, or in the next
program line if used in a running program.

• bVIEW _ shows the contents of the buffer register with index given in the prompt.

• bX<> _ exchanges the contents of the X-register and the buffer reg. which index is
provided in the prompt, or in the next program line if used in a running program.

It you try to enter a non-valid index number (basically anything except 1,2,3,4,5) the prompt will be
maintained (without an error condition) until you either cancel the function or enter a valid value. In
program mode this would show a NONEXISTENT message and the execution will halt – so be careful
when you enter the parameter- which has to be done manually for all sub-functions, and therefore
should always be within valid range.

You can navigate amongst these four functions using the RCL, STO, CHS and R/S keys

A Triple-duty buffer.

Besides the emergency storage registers, this buffer is also used for other two important purposes
within this module as described below:

1. Buffer registers bR1 and bR2 are shared by the RTN stack functions PUSHRTN and
POPRTN, so be careful not to override their content if both features need to be used
together.

2. All five buffer registers are used as temporary storage place by the stack shuffle function
SHFL – as the most efficient way to re-arrange the stack registers on-the-fly (the “shadow
stack” as it’s been referred to sometimes).

Total_Rekall – Dare to Compare - QRG

© Ángel Martin – April 2017 Page 28

Buffer Header: warping around SELECT.

In a daring move, here’s where the emergency buffer and the Selected variable merge. As mentioned
before, the buffer header contains the information of the currently selected variable, i.e. the data
register index marking such selection.

It was said in the previous section that the only valid input parameters for the buffer storage
functions were 1 to 5; but even if that’s conceptually correct it isn’t entirely true: extending the
definition to also include the value zero in the prompts, we can use the four functions described
before to work on the selected register as well.

It’s not the contents of the buffer header register which gets invoked, but the data register currently
under the selection setup – as pointed to by the marker in the header. It is as if the register bR0 was
an automatic INDirect operator for the four basic action: STO, RCL, VIEW and Exchange.

 Therefore:

• bRCL 0 recalls the value of the selected register to the X register in the stack.
• bSTO 0 stores the value in the X register in the selected register,
• bVIEW 0 shows the content of the selected register, i.e. is equivalent to SVIEW,
• bX<> 0 exchanges the selected value contents with that in X, therefore it’s equivalent

to S<> ST_X - but coming the other way around.

In case you didn’t notice it, the value zero for any sub-function parameter doesn’t need to get
explicitly entered in the program – thus it’s sufficient to just enter the sub-function without a non-
merged second line. The only restriction is that the program step following it cannot be a number –
which would be interpreted as its parameter otherwise.

So there you have it, yet another way to skin this cat – an interesting twist to the scheme, in case
you wondered how much interconnectivity can we get between the different functionality areas of the
module.

Remember: the buffer will be created the first time you need it to save/retrieve data to/from the
extended registers, or call the RTN stack backup functions, or perform a stack shuffle or choose a
variable for SLCT/?CASE operation. This is the reason why you may notice a slighter longer execution
time the first time this is done.

Storage RTN Stack

Shadow
Stack

fifth bR5 - Shadow-X
fourth: bR4 - Shadow-Y
third: bR3 - Shadow-Z
second: bR3 reg 10(a) Shadow-T
first: bR1 reg 11(b) Shadow-L
header: SEL# pointer - -

Warning: This buffer is not automatically created by the module on start-up, so the data it contains
will not survive a power-on/off cycle. This also applies to the selected variable used by SLCT.

Total_Rekall – Dare to Compare - QRG

© Ángel Martin – April 2017 Page 29

Finding the X-needle in the haystack.

For those times when you’d like to know if a certain value is stored in the data register, the sub-
function FINDX (a.k.a. XF# 58) is available to do a cursory comparison looking for a match with the
value in the X-register. All data registers are checked, starting with R00 until the last one depending
on the current SIZE. The error message NONEXISTENT will be shown if the calculator SIZE is zero.

The function returns the number of the first data register found that contains the same value as the
X-Register. If none is found, the function puts -1 in X to signify a no-match situation. The stack is
lifted so the sought for value will be pushed to the Y-register upon completion.

Listed below are two FOCAL routines that do the same job as FINDX – albeit slower and using
auxiliary stack registers. It’s interesting to compare the standard approach with the alternate one
using the SELCT variable for indirect comparisons.

01 LBL “XFND”
02 SIZE?
03 E
04 –
05 E3
06 /
07 SELCT (IND X)
08 243
09 LBL 00
10 XF# (?S= Y)
11 62
12 114
13 GTO 02
14 ISG X
15 GTO 00
16 CLX
17 -1
18 RTN
19 LBL 02
20 INT
21 END

01 LBL “FNDX”
02 SIZE?
03 E
04 –
05 E3
06 /
07 LBL 00
08 ?Y= (IND X)
09 243
10 GTO 02
11 ISG X
12 GTO 00
13 CLX
14 -1
15 RTN
16 LBL 02
17 INT
18 END

Table 3 – Stack manipulation examples from “Calculator Tips & routines”, pg 26 – by John E. Dearing.

Total_Rekall – Dare to Compare - QRG

© Ángel Martin – April 2017 Page 30

Playing with Key Assignments.

This module includes a couple of brand-new KA-related routines that you may find interesting. Their
mission is to flip the key assignments on a given key or for the complete keyboard – so that the
shifted and un-shifted assignments are mutually toggled.

• KAFLP toggles all key assignments – turning shifted ones into non-shifted, and vice-versa.
This will only leave unassigned keys unchanged, but will reverse the assignments if only one
assignment exists for the keys.

• KYFLP_ prompts for a key to perform the same task on an individual key basis. The prompt
includes the back-arrow key but will ignore the toggle keys (ON/USER & PRGM/ALPHA)

In case you wonder why bother with this functionality, having the ability to toggle a key’s USER key
assignments becomes very handy if you have two function launchers assigned to that key.

A good example is with the SandMath, SandMatrix and 41Z modules – the three of them “competing”
for prime time on the [Σ+] key. Flipping the assignments will save you a lot of [SHIFT] key pressings
to access the functions within those launchers.

Total_Rekall – Dare to Compare - QRG

© Ángel Martin – April 2017 Page 31

Appendix. Changes from previous revisions.

In order to make room for the XEQ+ mode (about 800 bytes of code!), a few functions had to be
removed from the module, as listed below. Note that these are also available in other modules, so it’s
not an absolute loss but a relocation instead. The sections describing these functions are kept here as
an appendix of this manual for consistency and reference purposes; just be aware that they’re not
included anymore.

Function Available in: And also in:
GETST RAMPage ROM PowerCL
SAVEST RAMPage ROM PowerCL
KAFLP RAMPage ROM XROM ROM
PUSHRTN XROM ROM RECOURSE Module
POPRTN XROM ROM RECOURSE Module
ROM2HEX XROM ROM GJM ROM
HEX2ROM XROM ROM GJM ROM
AIRCL ALPHA ROM SandMath

 Saving Status Registers in X-Memory.

You can use sub-functions SAVEST and GETST to make backup copies of the status registers into X-
Memory files, and to restore their contents back to the status area. The functions prompt for the
number of status registers to include in those back-up files, which must be at least one and not more
than 16. In manual operation the function won’t allow you to enter values above 16 (first prompt
must be 0/1; second prompt 0-6). If you use “00” then the complete 16 registers will be used instead.

For example if you just want to save the stack registers {T,Z,Y,X, and L} then you’d enter “05” in the
prompt (since the count always starts with register T as the first one). The file name is expected to
be in ALPHA - thus register M (and possibly N) would be partially used by the function itself.

Exercise caution when the upper stack registers are included, which will have dramatic effect in your
program pointer and RTN stack in register a(11) and b(12); or stack assignments in registers |-(10)
and e(15). Also don’t underestimate the ability of a bad cold start in register c(12) to cause a
MEMORY LOST condition when treated roughly.

These functions are programmable. In a running program the file name is expected in ALPHA, and
the number of status registers is taken from the program line after the sub-function’s index (must be
added manually) – which won’t be entered into the X register but as the prompt value instead. Yes,
that’s right: a triple non-merged lines case!

Note: The Status files have a dedicated file type in X-Memory. If you’re using
the AMC_OS/X Module, then their entries will be marked with the ‘T” prefix
during the enumeration:

See the figure on the right showing the Stack register
allocation within the X-Mem Data file. This particular
example only goes up to 8(P), but in general you can
save all the status registers, until 15(e) inclusive.

File End Marker
Register P(8)
Register O(7)
Register N(6)
Register M(5)
Register L(4)
Register X(3)
Register Y(2)
Register Z(1)
Register T(0)

FL Header Reg
FL Name Reg

Total_Rekall – Dare to Compare - QRG

© Ángel Martin – April 2017 Page 32

XROM to and from HEX bytes. (by Greg McClure)

Sometimes it is needed to translate between XROM indents (##,##) and the FOCAL bytes that
represent the XROM function (Ax, xx). Function HEX2ROM prompts H”A_”_ _ and expects three
additional hex digits (of which the first can’t be > 7). On successful entry of the 3rd hex digit the
corresponding XROM value will be displayed in the form: “XROM_ _ , _ _” .

Function ROM2HEX does the reverse. It prompts ROM: _ _ , _ _ and expects four decimal values
(of which max for the first pair is 31, and max for the second pair is 63). On successful entry of the
4th decimal digit the corresponding hex bytes will be displayed in the form: “HEX’_ _:_ _”

If at any time during entry for any of these function the opposite function is desired, pressing the “H”
key will switch to the opposite routine (ROM2HEX<>HEX2ROM) – going back to the beginning of
the data entry sequence.

<-->

Note that these functions are intelligent enough to discard illegal combinations of input values during
the parameter entry – so you can’t enter non-existing choices. This is of course non-withstanding the
synthetic two-byte OS functions, but that’s an entirely different subject.

Note that the result string is not placed in ALPHA – but you may use the function DTOA to move it
there. Once the resulting string is in ALPHA it can be further used for register storage or any other
string manipulation you require.

The table below shows the correspondences between the XROM id# and the HEX codes. Note that
the first 64 entries are used by some synthetic multi-byte mainframe functions.

XROM id#

Hex Code XROM id#

Hex Code XROM id#

Hex Code XROM id#

Hex Code
XROM 00 A0:00-:3F XROM 08 A2:00-:3F XROM 16 A4:00-:3F XROM 24 A6:00-:3F
XROM 01 A0:40-:7F XROM 09 A2:40-:7F XROM 17 A4:40-:7F XROM 25 A6:40-:7F
XROM 02 A0:80-:BF XROM 10 A2:80-:BF XROM 18 A4:80-:BF XROM 26 A6:80-:BF
XROM 03 A0:C0-:FF XROM 11 A2:C0-:FF XROM 19 A4:C0-:FF XROM 27 A6:C0-:FF
XROM 04 A1:00-:3F XROM 12 A3:00-:3F XROM 20 A5:00-:3F XROM 28 A7:00-:3F
XROM 05 A1:40-:7F XROM 13 A3:40-:7F XROM 21 A5:40-:7F XROM 29 A7:40-:7F
XROM 06 A1:80-:BF XROM 14 A3:80-:BF XROM 22 A5:80-:BF XROM 30 A7:80-:BF
XROM 07 A1:C0-:FF XROM 15 A3:C0-:FF XROM 23 A5:C0- :FF XROM 31 A7:C0-:FF

Total_Rekall – Dare to Compare - QRG

© Ángel Martin – April 2017 Page 33

Saving and Restoring the RTN Stack. (by Poul Kaarup)

The return stack can hold up to six addresses for subroutines, which is adequate for the vast majority
of user code programs. Should that not suffice, the pair of functions described below can be used to
extend that limit up to 12 addresses, effectively doubling he return capacity of the OS.

• PUSHRTN saves the current RTN stack into a memory buffer (with id#=7). Once saved, the
current RTN stack is cleared (reset anew) so you have six more levels for your program.

• POPRTN restores from the buffer the RTN stack saved previously, effectively overwriting the

current one at the moment of calling this call.

The program pointer (PC) and the first two pending return addresses are stored in status registers
b(12), the third is stored as two halves on each register, and the remaining three in status register
a(11). Note that these functions will not save the Program Pointer information.

This is shown in the figure below:

a(11):

A D R 6 A D R 5 A D R 4 A D
13 12 11 10 9 8 7 6 5 4 3 2 1 0 nibble

b(12):

R 3 A D R 2 A D R 1 P C N T
13 12 11 10 9 8 7 6 5 4 3 2 1 0 nibble

Obviously these two functions are meant to be used as a pair, in combination. Note also that because
buffer#7 is used for the Stack shuffling too, you should refrain from calling SHFL and the direct
buffer access while the extended return addresses are held in bR1 and bR2.

Because these functions use the first two registers in the “emergency buffer”, you can always use the
buffer recall function bRCL to inspect the contents of the *stored* RTN stack – and compare it with
the *current* one, for example:

bRCL 1
RCL b
X=Y?

bRCL 2
RCL a
X=Y?

Two other functions dealing with the RTN stack are also available in the secondary FAT, as follows:

• RTN? Is a test function that checks whether there are pending returns in the stack. The
result is YES/NO, skipping the next line in a program when false.

• RTNS recalls the number of pending subroutine levels to the X register, which by definition

is an integer between 0 to six.

Total_Rekall – Dare to Compare - QRG

© Ángel Martin – April 2017 Page 34

 Appendix. - Internal Data Field structure for Extended Prompts. -

There are four main groups of functions that support the extended prompting facility, as follows:
Register Swaps; RCL Math; Comparison Tests; and Double INDirection. All of them share the main
core code section to provide support for INDirect addressing, Stack registers or the combination of
both, thus it’s important to have the input data structured in such a way that is compatible with all
use cases. The different requirements for the function execution are summarized below:

• RCL Math needs descriptors for the type of arithmetic operation and source data register
• Reg Swaps needs descriptors for source and destination registers
• Comparison tests need descriptors for the operator and source and destination regs
• Double Indirection needs descriptors for RLC/STO, multiplicity order, and source register

To be able to use the same core code, all these must be arranged in a common scheme that is
compatible with all functions. Besides, it needs to survive calls to partial key entry sequences, and
cannot overwrite system flags 3 and 4 – used to signal running program and PRGM entry conditions.

The table below describes such arrangement. The fields are stored in the “Data Configuration
Register”, which is populated by the routines and saved in the stack register 9(Q) as temporary
repository.

Register Swaps RCL Math Comparison Tests Multiple INDirection
[MS] field is cleared [MS] field = 2, 4, 6…

 Hot-key Table address in [XP] field; Function Address in [ADR] field.
 All Flags configured in Q<7:8> field

Clears F0 Sets F0
n/a F1 set: Main RKL F1 set: “#” case

Clears F2 Sets F2 F2 set: “=” case
 F3 set: PRGM data entry
 F4 set: SST execution; (F13: program running)

n/a
F5 set: RCL+ F5 set: “>” case

n/a
F6 set: RCL^ F6 set: “<=” case
F7 set: RCL* F7 set: “0” tests F7 set: SIND2 case

F8 Used by [BCDBIN] F8 Used by
[BCDBIN]

F8 set: “<” case (*) F8 Used by [FNCTXT]

 [XS] holds Source Reg#
[XS] =0: T-Register

n/a

[XS] =0: T-Register

n/a

[XS] =1: Z-Register [XS] =1: Z-Register
[XS] =2: Y-Register [XS] =2: Y-Register
[XS] =3: X-Register [XS] =3: X-Register
[XS] =4: L-Register [XS] =4: L-Register
[XS] =5: M-Register [XS] =5: M-Register
[XS] =6: N=Register [XS] =6: N=Register
[XS] =7: O-Register [XS] =7: O-Register
[XS] =8: P-Register [XS] =8: P-Register
[XS] =9: Q-Register [XS] =9: Q-Register
(*) F8 status is transferred to F4 after SST condition check.

Total_Rekall – Dare to Compare - QRG

© Ángel Martin – April 2017 Page 35

Appendix.- Dare to Compare: 96 functions at your fingertips !

 -

 -

 -

 -

 -

 -

 -

 -

 -

 -

 -

 -

If “Zero” is the foster child, then the selected variable is the surrogate stack member!

	“Dare to Compare” Revision
	RCL Math and Full Stack Tests for the HP-41
	This compilation revision 3.2.2
	Copyright © 2014 -2017 Ángel Martin

	(-(
	Emergency Buffer Registers Storage.
	If you’ve ever run out of data registers and wished there was a “back-door” mechanism to use in emergencies, then you should find this section interesting. These functions operate on a I/O buffer (with id#7) located below the .END. and above the Key a...
	The buffer holds five extra registers for standard data storage, labeled bR1 to bR5 (therefore there’s no bR0 to speak of). Just enter the index for the extended register in the prompt and the data will be stored, recalled, or exchanged with the stack...
	bRCL _ recalls to the X register the content of the extended reg. which index is provided in the prompt, or in the next program line if used in a running program.
	bSTO _ stores the X-register in the extended reg. given in the prompt, or in the next program line if used in a running program.
	bX<> _ exchanges the contents of the X-register and the buffer reg. which index is provided in the prompt, or in the next program line if used in a running program.
	Buffer Header: warping around SELECT.
	In a daring move, here’s where the emergency buffer and the Selected variable merge. As mentioned before, the buffer header contains the information of the currently selected variable, i.e. the data register index marking such selection.
	It was said in the previous section that the only valid input parameters for the buffer storage functions were 1 to 5; but even if that’s conceptually correct it isn’t entirely true: extending the definition to also include the value zero in the promp...
	Table 3 – Stack manipulation examples from “Calculator Tips & routines”, pg 26 – by John E. Dearing.
	XROM to and from HEX bytes. (by Greg McClure)
	Saving and Restoring the RTN Stack. (by Poul Kaarup)

	(-(
	(-(
	(-(
	(-(
	(-(
	(-(
	(-(
	(-(
	(-(
	(-(

