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Introduction.  

 

This collection includes most of the programs written by the author while attending engineering 

school, many moons ago. The subjects comprise diverse areas in mechanical and electrical 

engineering, ranging from very simple code snippets to more sophisticated structures and algorithms. 

 

The collection is spread across four plug-in modules, each 8k in size. The modules also include a few 

programs from the European Userôs Library and other sources, dealing with similar or complementary 

topics.  Some of these programs (but not all) are also documented in this manual.  A top-level rough 

categorization of the collection sections follows: 

 

¶ ETSII-3A ï General Thermodynamics and Steam properties 

¶ ETSII-3B ï Steam properties and Liquefaction Cycles 

¶ ETSII-4A ï Fluid Dynamics and Water Pumps 

¶ ETSII-4B ï Dynamic Balancing, Mechanical methods and Heat Transfer 

¶ ETSII-5A ï Electrical Engineering (mostly power systems) 

¶ ETSII-5B ï Circuit and Ladder Analysis 

¶ ETSII-6A ï Control Systems and Numerical Methods 

¶ FORFEE  ï Air Conditioning Loads and Water Well Profiling 

 

Back then documentation wasnôt something I spent much time on , so now (30 years later) itôs been a 

bit challenging remembering all the intricacies of the programs. Iôve tried to include the most relevant 

points of each program, as well as provide application examples to guide the users. Still, there are a 

few programs I donôt have a real inkling of their exact purpose, let alone how to use them.  

 

 

Module Dependencies. 

 

Each module is independent from the others, and contains most of the resources needed; such as 

dedicated MCODE functions and subroutines. The programs make profuse utilization of extended 

functions; thus you need the X-Functions  module or (better yet) a CX. Obviously youôll benefit 

immensely using the 41CL or an emulator in turbo speed, in particular for those programs requiring 

more number-crunching resources. 

 

Besides that, some programs use routines from the ñUnit Conversionò module, a stand-alone ROM 

based on HPôs Unit Management Facility (UMF) although strongly enhanced with electrical units and 

user-friendly catalogs and routines. This is especially useful for subjects involving thermal 

magnitudes, where the units frequently get in the way of the solution and are a source of errors.  

 

Another common thread is the use of utility function s from the AMC_OS/X module ï I simply 

couldnôt resist enhancing the U/I and data entry routines. The benefit is not only cosmetic, as the 

numerous byte savings have been instrumental to add more programs in the modules.  

 

Finally, the SandMath  module is also required for a few cases, like the Bessel functions used in the 

Heat transfer section. Note however that  the ETSII modules have built-in FOCAL root-finding and 

integration routines , which (with few exceptions) are used  instead of SOLVE/INTEG from the 

advantage (or FROOT/FINTG from the SandMath). 
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Orbital Trajectories. [GRVTY ] 

From the authorôs Engineering Collection, included in the ETSII3 module. 

 

 

These short routines calculate a few parameters 

of orbital trajectories when the radius ñRoò, 

gravity constant ñgo ñand distance from earth 

ñrò values are known.  

 

In addition to the planetôs radius Ro and 

surface gravity (go), for elliptical orbits 

typically the known values include the perigee 

(p) and apogee (h) of the orbit  - therefore the 

ellipsis major axis can be  determined with the 

expression:  a=  2Ro + p + h 

 

The initial choice is for the type of unknown, either the orbit eccentricity, the period or the 

velocities ï each one of them also requiring additional data input values as per the table 

below.  

9ŎŎŜƴǘǊƛŎƛǘȅ άeέ tŜǊƛƻŘ ά¢έ VelocƛǘƛŜǎ ά/Υ9ΥIΥtέ 

Initial angle Major semi-axis Major axis -> Ve 

Initial velocity  Eccentricity -> Vh 

 

Let ñrò the distance to the surface of the planet and  άa" the angle of the launch velocity 

vector and the tangent to the orbit (or horizon from earth). The formulas used are as follows: 

 

Eccentricity: e = sqrt { 1 + [ Vo
2 ï 2go.(Ro

2/r) ].[ r Vo cos a / go.Ro]
2 }  

Elliptic orbit: Ve = sqrt {2(2a - r).[go. Ro
2] / r}  

Hyperbolic: Vh = sqrt{(1+e).[go. Ro
2] / r}  

Parabolic: Vp = sqrt{2 go. Ro
2 / r}  

Circular: Vc = sqrt {go. Ro
2 / r}  

Period:  T = (2p/ Ro) sqrt[a3 / go] 

 

Example. 

A satellite is orbiting earth in an elliptic orbit with 1,120 km apogee and 120 km  perigee. 

Using Ro=6.380 km determine the new eccentricity if its velocity changes to 9,596 m/s 

forming an angle or 4.1 deg over the horizontal, when the distance from earth is r = 6,964.43 

km  

 

The solutions are: 
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Planar Movement Study. [ MVPLN ] 

From the authorôs Engineering Collection, included in the ETSII3 module. 

 

 

For rigid bodies experiencing general plane 

motion (in two-dimensions), the concept of 

instant center allows one to conveniently 

calculate the unknown angular velocity of the 

rigid body, or unknown linear velocities of points 

on the rigid body. The instant center is an 

imaginary point that allows for a mathematical 

ñshortcutò in calculating these unknowns. 

 

The program characterizes the acceleration pole for a two-body configuration, when the 

kinematic properties are known. The first distinction is whether both the fixed and moving 

centrodes (i.e. locus of the instant centers of rotation) are on the same side of the common 

tangent. Other known data values are the rotation speed and the radius of each curve, as well 

as the acceleration of the instant center. 

 

The results include the succession velocity of the instant center of rotation, Vs, the inversion 

and inflexion diameters, and the position of the rotation pole (magnitude and angle). The 

equations used as shown below: 

 

Let Ro and R be the radius of the fixed and moving centrodes, w the angular velocity of the 

body, wô the acceleration at the instant. The formulas used are as follows: 

Vs = w Ro.R / (Ro+R) 

|pole| = w.Vs / sqrt{(wô)^2 + ŵ4 } 

Pole<) = atan [ ŵ2 / wô ] 

Dinver  = 2 (w Vs/wô) cos q 

DInflex = 2 (Vs/w) sin q 

 

 
Example.  

Characterize the motion parameters for a planar mechanism with centrodes at different 

sides, rotation at an angular velocity of 24 rad/s, and an angular acceleration of 139.36 

rad./s^2 if the radius of the fixed and moving centrodes are 12 and  6 m respectively. 

 

The solutions are: 

 

Vs = 96  

D. Inversion = 16.5327 m 

D Inflexion = 4 m 

Acceleration Pole located at:  3.8878 <)76.3990 
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Holzer method for natural vibrations.  [ HOLZER ] 

From the authorôs Engineering Collection, included in the ETSII4 module.  

 

 

This program calculates the natural vibration 

frequencies of a semi-definite mechanical 

system with N degrees of freedom using the 

Holzer method.  

 

The vibration can be linear (lineal 

displacements in the springs) or torsional 

(angular displacements in the shaft). The vibration modes are also obtained for each natural 

frequency. 

 

The natural frequencies w are the roots of the frequency function, defined as follows: 

 

g(w) = w^2 S { Ij Dj(w) } ; j= 1, 2,é N 

 

Where Dj is also a function of w and of the previous displacements, according to the 

expression: 

 

Dj = Dj-1 ï [ w^2/Kj-1] S {  In Dn }  ; n= 1, 2,.. j  and D1 =1 

 

The terms Kj represent the stiffness constants (elastic or torsional) in the unions between the 

element masses ï typically springs or the shaft depending on the case. 

 

The program offers an initial approximation for the main natural frequency that can be used 

as guess for the root-finding routine ï which is included in the module as well. 

 

 

Examples. 

 

Calculate the first three natural frequencies and modes of oscillation for a system of 5 rotors 

connected by a shaft, knowing that the angular momentum is I = 1 kg.m^2 for all of them. 

The torsional stiffness of the shaft is k = 2 N.m 

 

The solutions are shown on the table below: 

 

w m1 m2 m3 m4 m5 

w1 = 0.8740 1 0.618 0 -0.618 -1 

w2 = 2.2882 1 -1.618 0 1.618. -1 

w3 = 2.6900 1 -2.618 3.2361 -2.61 1 
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Sag and Tension in Overhead Lines. [ CAMELA ] 

From the authorôs Engineering Collection, included in the ETSII5 module. 

 

 

This program calculates the sag and tensions at 

the supports of overhead line cables, with or 

without equileveled conditions. The conductor 

adopts a catenary shape in either case, but the 

different geometric conditions require different 

methods to resolve the unknowns. 

 

Besides the slope, posts height and span length 

the input data includes the minimum 

(perpendicular) distance to the ground, which 

occurs at the point of maximum deflection of the cable, thus limiting the maximum sag. 

 

Let V = span length;  H = posts height;  m = tanq = inclination slope; d = minimum distance 

(safety) 

 

For level spans the maximum sag occurs at its middle point, with a symmetric catenary curve 

centred there (xf = 0). Thus the coordinates of posts are Xa = -L/2 and Xb = L/2. The curve 

equation in that case is: 

 

(H ï d)  = a [1 +  cosh(-V/2a) ]  

 

For unlevel spans, the following two equations are used to calculate the values Xa and Xf, 

the coordinates of the post at lower slope and the point of maximum sag: 

 

(1) V m = (xf /asinh m) { cosh (A). cosh (B-1) + sinh(B) sinh(A) }  

(2)  f = m(xf - xa) + (xf / asinh(m) [cosh(A) ï cosh(asinh(m))] 

Where:  A = Xa asinh(m) /Xf  ;  B = V asinh m /Xf ;  and   

   f = H ï d/cosq is the maximum sag. 

 

Solving this system for Xa and Xf determines the rest of unknowns, such as Xb = L ï|Xa|;   

The resolution is done numerically using ñSLV2ò, a built-in routine to solve non-linear 

systems of two equations.  

 

The program output includes both geometry and stress results. The geometry results are the 

X-coordinates of each post referred to the point of maximum deflection (x=0), and the alpha 

parameter of the catenary curve. 

 

The stress results require the unitary weight of the cable (q) , returning the horizontal tension 

in the supports (Ta, Tb) and maximum sag point (T0), as well as  the total length of the cable 

(L). The expressions used are derived from the basic catenary, as follows:  

 

T = q a cosh x/a;   and:    L = [sinh xb / a - sinh xa / a ] 
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Example.  

 

Calculate the tensions in the supports for an overhead power line with 100 m span length, 

with 42 m height posts and a minimum perpendicular distance to ground of 10 m. Do both 

cases of level span and 20 deg inclined span to compare the results. The unitary weigh is 10 

kg/m. 

 

Level span xa = -50 xb = 50 a=43.5470  

q = 10 kg/m TA=755,4702 TB=755,4702 T0=435,4702 L=123,4667 

Inclined 20 deg XA=-42,8106 XF=8,7983 a = 44.2816  

q = 10/kg/m TA=666,3870 TB=866,3870 T0=442,8156 L=124,2657 

 

 

 

Hyperbolic Functions. [ SINH, COSH ] 

 
Included in the module are stand-alone MCODE routines to calculate the hyperbolic sine and 

cosine. They use 13-digit math subroutines from the OS for enhanced accuracy. Just enter the 

argument in X, execute the function and the result is placed in X (stack is lifted) and the 

original argument is saved in LastX. 
 

Header AFD0 088 "H"

Header AFD1 00E "N" sh(x)=1/2[e^x-e^-x]

Header AFD2 009 "I"

Header AFD3 013 "S" Ángel Martin

SINH AFD4 248 SETF 9

AFD5 033 JNC +06 [MAIN]

Header AFD6 088 "H"

Header AFD7 013 "S" ch(x)=1/2[e^x+e^-x]

Header AFD8 00F "O"

Header AFD9 003 "C" Ángel Martin

COSH AFDA 244 CLRF 9

MAIN AFDB 0F8 READ 3(X) Go noisy!

AFDC 361 ?NC XQ (this includes SETDEC)

AFDD 050 ->14D8 [CHK_NO_S]

AFDE 044 CLRF 4

AFDF 029 ?NC XQ

AFE0 068 ->1A0A [EXP10]

AFE1 089 ?NC XQ e^x

AFE2 064 ->1922 [STSCR]

AFE3 239 ?NC XQ e^-x

AFE4 060 ->188E [ON/X13

AFE5 24C ?FSET 9 true if SINH

AFE6 01B JNC +03

AFE7 2BE C=-C-1 MS Sign change

AFE8 11E A=C MS ditto in A

AFE9 0D1 ?NC XQ e^x

AFEA 064 ->1934 [RCSCR]

AFEB 031 ?NC XQ

AFEC 060 ->180C [AD2-13]

AFED 04E C=0 ALL

AFEE 35C PT=12 build "2" in C

AFEF 090 LD@PT- 2

AFF0 269 ?NC XQ

AFF1 060 ->189A [DV1-10]

AFF2 331 ?NC GO Overflow, DropST, FillXL & Exit

AFF3 002 ->00CC [NFRX]  
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RPM-Torque-Power. [ RPMTP ] 

From the authorôs Engineering Collection, included in the ETSII4 module. 

 

 

HP-41 version of the program first available for HP-

29/19C solutions. A classic mini-equation solver for 

one of the three variables with the other two known.     

 

P = w M, with:   

w=  rpm*2p/60 in rad/s  and 

 M = torque in N.m 

 

Two unit systems are possible: SI and British. Answer 

Y/N to the ñS.I.?ò Prompt to select.  

 

     
 

     
 

Not much to add here, just follow the prompts to select the choices provided by the 

calculator. The calculation can be repeated for multiple values of the variables and different 

choices of the unknown. 

 

S.I. British 

rpm rpm 

N.m ft.lb 

W hp 

 

 

Example: 

 

Calculate the power in watts for a torque of 20 Nm and angular speed of 50 rpm 

 

The solution is P = 11 kW 

 

Note. Using the ñUnit Management Systemò included in the Unit Conversion Module is a 

vast superior approach to perform unit conversions like this one. 
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Simple beams: Reactions in Supports. [ R2SP ] 

From the authorôs Engineering Collection, included in the ETSII4 module. 

 

 

This program calculates the reactions in the supports 

of a simple beam subjected to any combination of the 

following efforts: point, uniform, triangular loads and 

external moments. Trapezoidal loads can be expressed 

as a combination of a uniform load plus a triangular 

one. 

 

     
 

The program will prompt for the load type to enter next, with the following message 

ñLOAD? P:U:T:M:Rò. Press the corresponding key for each load type and use it as many 

times as loads exist, then press ñRò to calculate the reactions. 

 

The supports can be placed at any two points along the beamôs distance - xa, xb - taking the 

left end as origin of coordinates. 

 

The expressions used by the program are a straight application of statics. Let Ra and Rb be 

the reaction in the supports; Pj and Mj the different point loads and external moments, 

applied at a distance xj.(j=1,2én). Let q be the load per unit length of uniform and triangular 

loads applied between distances (x1,x2), and ñmò the slope of the triangular load. Then we 

have: 

 

(1)   S F  = Ra + Rb + S q (x2-x1) + S q/2 (x2 - x1)^2  
 

(2)   S Mj  = xa Ra + xb Rb + S x Fj + S q/2 (x2^2 ï x1^2) +   

             + S {[ m (x2^3 ï x1^3)/3 ï (m x1 /2) (x2^2 ï x1^2) ] }   

 

 

Example. 

 

Calculate the reactions in the supports of a simple bean with the following configuration: 

 

Xa = 2 m, Xb = 6m;    

External moment M1 = 200 N.m (clockwise is positive) 

Uniform loads q1=120 N/m between x1=1 and x2=3 

Uniform load q2 = 300 N/m between x1=3 and x2=4 

Triangular load between x1=6 and x2=7, with final value of q3=100 N/m 

 

The results are: 

R1 = 485, 84 N 

R2 = 4, 1667 N 
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Dynamic Balancing in 1 and 2 planes. [ by Eugenio Úbeda ] 

From the authorôs Engineering Collection, included in the ETSII4 module. 

 

 

These programs can be used to 

characterize the rotating vibrations in trial 

tests (vector coefficients in g/s) and to 

calculate the corrective weights to 

compensate for torsional vibrations in 

stationary regimes. The programs allow 

for single or two-plane corrections, where 

typically the single plane is restricted to 

systems with shafts not longer than their 

diameters. 

 

For Single-plane balancing the required data are the initial vibration (mm), the trial weight  (g  

<) deg) and the resulting trial vibration.  

 

For 2-plane balancing, the required data are the initial vibrations on each plane, but the trial 

tests are only needed if the system coefficients are not already known. The results obtained 

from the trial tests can be saved in an X-Memory file and reused repeatedly in successive 

iterations of the corrective weight calculations (magnitude and position). These iterations can 

be repeated as often as required until the final vibration is within the accepted limits. The 

program also offers the possibility to enter the characteristic coefficients matrix manually ï 

should their values are known but not currently in the X-Mem file.  

 

Data entry is expected with the magnitude first, and then the position - separated by 

ENTER^. The angles are referred to the chosen origin and must follow a consistent 

convention as per their orientation. This applies equally to the vibrations (initial and actual) 

and weights (total and correcting). 
 

 

Example1.  

 

Using the 1-plane balancing method, calculate the corrective weight and its position to 

compensate for an initial vibration measured like 155 mm at 30 degrees. The trial test was 

made using a weight of 200 mm at 0 deg position, which caused the trial vibration to be 35 

mm and 120 deg. 
 

The results are shown below: 
 

Vector coeff :  S1 = 1.258634 <) 342.724356 

Correcting weight: W1 = 44 <) 103 

 

If the measured residual vibration is still V = 12 <)130. 

Running a second iteration results in the additional results below: 

 

Vector coeff :  S2 = 1.892619 <) 347.860674 

Correcting weight: W2 = 23 <) 118 

Total weight:  Wt = 190 <) 19 
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Example2.  

 

Using the 2-plane balancing technique calculate the corrective weights and their positions to 

compensate for initial vibrations measured on each plane as: 7 mm at 80 degrees and 5 mm at 

130 deg.  The trial tests were made using weights of 375 mm at 1800 deg position on each 

plane, which caused the trial vibrations to be as shown below: 

 

Trial weights Plane-1 vibration Plane-2 vibration 

375 <) 180 in Plane 1 10.2 <) 25 8.5 <)15 

275 <) 180 in Plane 2 13 <) 50 9.5 <) 10 

 

Results. The program calculates the system vector coefficients, which get stored in an X-

memory file named ñCOEFFSò. This file can be used later instead of the trial tests, as it 

characterizes the unbalance behavior of the system. 

 

S11 = 64.768616  <) 73.384289 S12 =39.451436  <) 286.455879 

S21 = 58.588379 <) 255.104623 S22 = 42.819398 <) 65.392443 

 

And the correcting weights are shown below: 

 

P1ô = 472 <) 129 

P2ô = 283 <) 306 

 

If the measured residual vibrations are still V1 = 1 <)85  and:  V2 = 2.5 <) 110 

Running a second iteration results in the additional results below: 

 

P1ò = 85 <) 77 

P2ò = 53 <) 192 

  

For an equivalent total corrective weight of: 

 

Pt1 = 529 <) 122 

Pt2 = 266 <) 295 

  

 

Note: The program includes 4 functions to perform arithmetic operations in polar mode, with 

the complex numbers entered in the stack registers as two pairs of {argument, ENTER^, 

module};  like in the standard P-R convention of the calculator. Their names are ñW+ò, ñW-ñ 

ñW*ò, and ñW/ò.
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2D Temperature Distribution in vertical plates. [ TXY ] 

From the authorôs Engineering Collection, included in the ETSII4 module. 

 

 

This program calculates the temperature distribution T,(x,y) within 

a rectangular vertical plate with dimensions (b x h); with three 

sides maintained at a constant temperature T0, and with a known 

temperature distribution on its upper side - either constant T2 or 

varying with x -  T(x,h).  

 

Therefore itôs said that the plate is immersed in a uniform ambient 

temperature T0, while the fourth side is maintained at another 

constant temperature or temperature distribution. 

 

The expression used is based on an infinite sum as follows: 

 

T(x,y) = T0 + 2/b S T(n,x)  ; n= 1,2,.... 

 

with the following general term, where ln = p n / b 

 

Tn(x,y) = sh (ln.y). sin (ln.x) / sh (ln.h)  INTG  { T(x,b) ï T0] sin ln t} dt ;  between [0, b] 

 

The numerical integration is done using the ITG routine also included in the module. 

 

 

Example:  

 

Calculate the temperature in the points P(1, 2) and Q(2, 3) within a flat plate of dimensions 

(2 x 5) m, with a temperature distribution on its top side given by the function: t(x,5) = x^2 + 

10 deg C. The ambient temperature is t0 = 10 deg C. Compare the result with the case of a 

constant temperature on the top side t(x, 5) = 100 deg C. 

 

The solutions are shown below. 

 

Point T(x,5)=100 T(x, 5) = x^2 + 10 

P(1, 2) T(1, 2) = 10.0239 C T(1, 2) = 10,01357914 

Q(2, 3) T(2, 3) = 10 T(2, 3) = 10,00 
 

The temperature function for the second case can be easily programmed: 

 

01  LBL ñTXò 
02  X^2  
03  10 
04  +  
05 END 
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Transients in wide plate with step temperature change [ TXT ] 

From the authorôs Engineering Collection, included in the ETSII4 module. 

 

 

This program calculates the temperature 

T(x) in points x of an infinite flat plate 

with finite thickness (2L), after 

experiencing a thermal shock - or 

sudden change of ambient temperature, 

from T0 initial to Tf final.  

 

The Biot number is provided indirectly, 

by means of the heat transfer (or film) 

coefficient: h= Bi.K/L. The thermal conductivity (K) and thermal diffusivity (a) must also be 

known, where: a = K / r.Cp  - i.e. thermal conductivity over the density and specific heat 

capacity. 

 

The resulting temperature is expressed as an infinite sum as follows: 
 

T(x,t) = Tf + 2 (T0-Tf) S { f(x, n) exp[-at.(ln/L)^2 ]}  ;   n = 1,2,... 

 

With:  f(x,n) = sin (ln) .cos (ln.x/L)] / [ ln + sin (ln) cos (ln)  
 

And (ln) are the n roots of the equation defined by:   tan (ln) = Bi /(ln) 

 

Which in the program has been replaced by its equivalent form: 
 

(-1)^n  cos(ln) + ln/[sqrt(ln)^2+Bi^2] = 0 

 

Solved using the SLV routine, using the truncation of the tangent to its first two terms and 

using as initial guess:  (ln)init = p(n-1) + sqr{ (3/2) [ sqr (1+4h/3) ï 1] }  
 

 

Example. 

 

A 20 cm thick wide plate has a uniform temperature of 1,000 deg C. It is suddenly immersed 

into a cooling fluid stream at 50 deg C. Calculate the temperature in its center and outer 

boundary one. two and three hours after the sudden step temperature change. The physical 

properties of the material are given below: 

 

a = 1.66 E-6 m^2/s 

h = 20,000 kcal/H.m^2.C = 23,260.0 W/m^2 K   

K = 100 kcal/h.m.C =  116.30 W/m.K  

 

The results are shown in the table below: (warning: very slow convergence!) 

 

Point t = 1 hour t = 2 hours t = 3 hours 

center (x=0 cm) 366.5400 133.0300 71.8500 

Outer edge (x=0.1 m) 73.5600 56.2700 51.7100 
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Transients in long cylinder with step temperature change [ TRT ] 

 

 

This program calculates the temperature T(r) in points r of an infinite cylinder of radius R, 

after experiencing a thermal shock ï or sudden change of ambient temperature, from To 

initial to Tf final. 

 

Similar to the previous case, the Biot number is calculated from its constituent factors. The 

same data entry process is used like in the infinite plate, only now it is cylindrical symmetry 

instead. 

 

The resulting temperature is expressed as an infinite sum as follows: 

 

T(x,t) = Tf + (T0-Tf) S (2/ln) { f(n, r) exp[-a.t.(ln/R)^2 ]} ;   n = 1,2,... 

 

With: f(n,r) = J1(ln). J0(ln.r/R) / [ J1
2 (ln) + J0

2(ln)] 

 

And (ln) are the n roots of the equation defined by:   (ln) J1(ln)  = Bi J0(ln) 

 

Which, leaving the Biot number alone in 

the second term, can be expressed as the 

intersection of the Biot number with the 

function x.J1(x)/J0(x), shown in the 

graphic on the right, where the asymptotic 

boundaries will provide a reasonable 

criteria for the estimations needed by the 

root-finding routine, as follows: 

 

(l1) is between ]2, 4] 

(ln+1) is between ](ln)+1, (ln)+4] 

 

 

Example. 

 

A very long metal rod of radius R=0.14 has a uniform temperature of 1,000 dec C. It is 

suddenly immersed into a cooling fluid stream at 50 deg C. Calculate the temperature in its 

center and outer boundary 15, 30 and 60 minutes after the sudden step temperature change. 

The physical properties of the material are given below: 

 

a = 1.66 E-6 m^2/s 

h = 20,000 kcal/H.m^2.C = 23,260.0 W/m^2 K   

K = 100 kcal/h.m.C =  116.30 W/m.K  

 

The results are shown in the table below: (warning: very slow convergence!) 

 

Point t = 15 min t = 30 min t = 1 hour 

center (x=0 cm) 945.7185485 704.2922460 343.4690201 

Outer edge (x=0.14 m) 102.5288706 80.51769740 63.05841690 
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A few remarks about the implementation. 

 

By direct inspection of the plot in previous page itôs clear that this case is much more 

demanding on the root-finder algorithm than the previous one. As the Biot number value 

increases, the intersection with the graphic will occur in zones with a very steep slope, 

making the identification of the root very tricky ï so much so that the FOCAL routine ñSLVò 

is not adequate and misses the roots, even if very fine-tuned search intervals are provided ï 

which is also a difficult affair. 

 

To search for each of the ln roots, the program uses the symmetric intervals centered at the 

initial estimation and with distance ñoneò:  

 

[ n*(ln)init - 0.5 ;  n*(ln)init + 0.5]   

 

With: (ln)init = sqr{ (3/2) [ sqr (1+4Bi/3) ï 1] 

 

In this version weôve used FROOT instead, also included in the SandMath - which was 

already required for the Bessel functions, so no new dependencies are added. The estimation 

for the initial guesses becomes very important for the successful root identification, and the 

execution time ï which is going to be very long regardless, better crank up your turbo 

emulator for this one! 

 

Another important remark is that repeating the calculations for different values of (t, r) 

(analysis time and distance to the cylinder axis) has been expedited dramatically for 

subsequent times (i.e. longer than a previous execution). In that case thereôs no need to find 

additional ln roots beyond those already identified, as the contribution of the series terms to 

the infinite sum will be smaller due to the larger argument in the inverse exponential 

function: 

f(n, r)  . exp[-a.t.(ln/R)^2 ]} 

 

This of course is not so straight-forward as one may think, because the series is alternating 

the sign of its terms so the contributions are not always in the same direction. The program 

stores the successive roots found in an X-memory file, to be reused when the analysis is 

repeated with longer values of cooling time. 

 

The program listing is given below. Note that the ALPHA registers are used by the infinite 

sum routine to calculate the partials and to store the current term. Because the MCODE 

function JBS also uses the ALPHA registers for scratch, weôll use the function A<>RG to 

preserve ALPHA in {R17-R20} while the general term is being calculated. 

 

XROM ñ?ò is a simple data-entry utility functions to save bytes. 

 
1 LBL "?" 
2 RCL IND X 
3 "|="  
4 ARCL X 
5 "| -?" 

6 CF 22 
7 PROMPT 
8 FS?C 22 
9 STO IND X 
10 END

 

Be careful if you use arithmetic functions with the value in X ï that would alter the expected 

stack configuration and may be disruptive to the program. 
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Stationary Heat flow through Fins. [ ANULAR, TRIANG, TRAPEZ ] 

From the authorôs Engineering Collection, included in the ETSII4 module. 

 

 

Annular Fi ns, with thickness w and r1, r2 the 

internal & external radius respectively. 

 

Let n = sqrt( 2h / Kw ),  

 

with h the heat transfer (film) coefficient and K 

the thermal conductivity. 

 

Let T0 be the temperature difference between the 

base (r = r1) and the surrounding cooling fluid. 

 

Assuming thereôs no heat transfer at the finôs tip, the expression for the temperature at a 

distance r, (r1<= r <= r2) is given below: 

 

T(r)/T0 = [ I0(n r). K1(n r2) + K0(n r). I1(n r2)] / [ I0(n r1). K1(n r2) + I1(n r2). K0(n r1)] 

 

where I, K are the modified Bessel functions of first and second kind. 

 

The expression for the dissipated heat is in this case: 

 

Q = 2p nKw r1 T0 [ I1(n r2). K1(n r1) - K1(n r2). I1(n r1)] / [ I0(n r1). K1(n r2) ï K0(n r1). I1(n r2)] 

 

 

 
 

Straight Fins with trapezoidal or triangular section profiles, with base thickness w and 

distance ñdò to its (fictitious) triangular end point. Taking that end point as origin of 

coordinates, let xe be distance to the end of the fin, and the base xb = d 

 

¶ For a trapezoidal fin the actual length is:  L = (d -Xe). 

¶ For a triangular fin Xe =0 ; and its length is L = d 

 

 

Let f = sqrt[ 1 + (w/2d)2 );  and:  p = 2 sqrt( 2f .h .d / K.w) 
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Let T0 be the temperature difference between the base and the surrounding fluid (air). 

 

The expression for the corrected temperature (or difference) T(x) at a distance x >= xe is 

given below, denoting x* = sqrt(x) 

 

T(x)/T0= [ I0(p.x* ).K1(p.xe*) + I1(p.xe*).K0(p.x* )] / [ I0(p.d*).K1(p.xe*)+ I1(p.xe*).K0(p.d*)] 

 

Assuming thereôs no heat transfer at the finôs tip, the expression for the dissipated heat (per 

unit of depth) is in this case: 

 

Q= -(A)[ I1(p.d*).K1(p.xe*) - I1(p.xe*).K1(p.d*)] / [ I0(p.d*).K1(p.xe*)+ I1(p.xe*).K0(p.d*)] 

 

with A = K.w.p (Tb-T0) / sqrt(d) 

 

Note: if you prefer using the base as origin of coordinates, simply replace x by (d ï x) in the 

above expressions. 

 

These programs use the Modified Bessel functions from the SandMath module, which needs 

to be plugged in the calculator as well. 

 

 

Examples. 

 

Calculate the temperature at the edge and the total dissipated heat for the following 

conditions: surrounding temperature Tinf = 30 deg C, base temperature Tb = 200 deg C. 

Physical properties: h = 34.89 [W/K.m^2] ;   K = 53.498 [W/K.m]  

 

a) an annular fin with r1=8 cm, r2=14 cm; w= 1 cm  

b) a trapezoidal fin with w= 1cm, d = 14 cm; xe = 4 cm  

c) a triangular fin with w= 1cm; d = 14 cm  

 

 

The results for the corrected temperature (T(x)-Tinf) are given in the table below: 

 

Fin type Tc (deg C) Q [J/s] 

Annular, r = 0.14 m 131.1090 409.3259 

Trapezoidal (x=4 cm) 81.5435 799.7711 

Triangular    (x=0) 29.6077 855.8098 
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Natural Convection Nusselt numbers.  [ NATCNV ] 

From the authorôs Engineering Collection, included in the ETSII4 module  

 

 

This program calculates the Nusselt dimensionless number and 

the film coefficient (h) in a natural convection situation for the 

following three cases: 

¶ Vertical plate or cylinder 

¶ Horizontal plate 

¶ Horizontal Cylinder or Sphere. 

 

The program requires the Grashof (Gr) and Prandtl (Pr) numbers 

- or each of their constituent factors when theyôre not known to 

obtain the needed values.  Then its product (i.e. the Raileigh 

number Ra) is used as a criteria for the different sections of the 

boundary layer conditions, as follows: 
 

Gr = [ g b L^3 (Tp - Tinf) ] / n̂2    

Pr = m Cp / Kf 
Ra = Gr * Pr 

 
Case 1:  LowLimit < Ra < 1 E4   

 

Where the low limit being 0.1 for vertical plates/Cylinders, or 1 E-5 for horizontal 

Cylinder/Sphere. Here a fourth-degree polynomial approximation is used as follows: 

 

1.a. Vertical Plate / Cylinder: 
Nu = 0.161771563 + 0.127972027 Ra + 1.153845962 E-2 Ra^2 - 2.797201424 E-3 Ra^3 + 4.662002506 E-4 
 

1.b. Horizontal Cylinder / Sphere: 
Nu = 5.949883478 E-2 + 01274378392 Ra + 9.986887925 E-3 Ra^2 + 2.865190955 E-4 Ra^3 +  
         + 2.185315948 E-5Ra^4   
 

Case 2:  1 E4 < Ra < 1 E9 

  

Vertical Plate/Cylinder:  Nu = 0.59 / Ra^4 

Horizontal Cylinder / Sphere:  Nu = 0.525 / Ra^4 

 

Case 3:  1 E9 < Ra < 1 E12 

  

For all cases covered in the program:  Nu = 0.129 / Ra^3 

 
Finally the film coefficient is calculated using the definition expression as function of the 

thermal conductivity (K) and the characteristic dimension (length or diameter) of the body: 

 

 h = Nu K / L 

 



ETSII Engineering Collection                                                                                                  HP-41 Programs 

(c) Ángel M. Martin Page 26 of  107  January 2017 
 

Heat Exchangers Basic Equation.  [ HEATX ] 

From the Authorôs Engineering Collection, included in the PSYCHRO module. 

 

This program calculates the transferred heat and exit 

temperatures of the fluids in a heat exchanger when 

all the other parameters are known, including the total 

area of exchange ñAò, and the global heat conduction 

coefficient ñUò. Both cases concurrent (parallel) and 

counter flow configurations are possible ï the initial 

prompt will select the chosen configuration: 

 

 
 

The input data parameters include the following: 
 

- Mass flows for each fluid, m1ô and m1ô 

- Specific heat capacity for both fluids, Cp1 and Cp2 

- Input temperature for cold fluid -T1(I)  

- Either input or output temperature for hot fluid; T2(I) or T2(O) 

 

Note: If only the product { A.U}  is known you can enter U=1 and the value of U.A. at the 

respective prompts. Each time a new set of results will be obtained.  

 

Let k12 = mô1.Cp1/ mô2.Cp2. The equations used for the Temperatures at a distance ñxò from 

the inlet and the Total transferred heat Q(L) are as follows: 

 

1.  Parallel (concurrent) flow.  

T1(x) = 1/ (1+ k12) ) { T2(I) + k12.T1(I) + [T1(I)-T2(I)].exp[ - U.A(x).(1+k12) / mó1.Cp1 ]}  

T2(x) = T2(I) ï k12[T1(x) - T1(I)]  

Q(L) = mó1Cp1[T1(I)-T2(I)]  / (1+ k12).{exp[ ïU.A(L).(1+k12) / mó1.Cp1 ] ï 1 } 

 

2. Counter flow.  

T1(x) = 1/ (1ï k12) ) {T2(O) + k12.T1(I) + [T1(I)-T2(O)].exp[ ïU.A(x).(1ï k12) / mó1.Cp1 ] 

T2(x) = T2(O) ï k12[T1(x) - T1(I)]  

Q(L) = mó1Cp1 [T1(I)-T2(O)] / (1ï k12).{exp [ïU.A(L).(1ïk12) / mó1.Cp1 ] ï 1 } 

 
Example. 
 

Calculate the output temperature of the oil and the total transferred heat in a parallel flow 

water-oil heat exchanger with AU= 115.8185 kcal/h.oC, when the mass flows are mô(water) 

= 5 kg/min and mó(oil) = 8 kg/min. if the inlet temperatures are Twater(I) = 20 oC and  

Toil(I) = 90 oC. Use the following for the specific heat capacities:  Cp(water) = 1 kcal/kg.C; 

Cp(oil) = 0.9671 kcal/kg.C. 

 

The results are:  Q(L)= 5.999,998790 kcal/min 

T1(O) = 39,999996 oC ;  and T2(O) =77.0744 oC 



ETSII Engineering Collection                                                                                                  HP-41 Programs 

(c) Ángel M. Martin Page 27 of  107  January 2017 
 

Radiative View Factors.  [ FDD, FRR ] 

From the authorôs Engineering Collection, included in the ETSII4 module  

 

 

This program obtains the view factors used in radiative 

calculations. The driver programs prompt for the geometrical 

dimensions of the shapes (radius, base, height, and separation 

distances) returning the solution after a short calculation time. 

 

The formulas used are as follows: 

 

1. From a disc of radius R1 to a coaxial parallel disc of radius 

R2 at separation H, with r1=R1/H and r2=R2/H.    

 

   
2. Between parallel equal rectangular plates of size W1·W2 separated a distance H, with 

x=W1/H and y=W2/H.    

 
 

Examples. 

 

Calculate the view factors between two parallel coaxial disks of radius R1 = 2.25, and R2 = 

1.75 separated a distance d = 3. Do the same for two equal rectangular plates of dimensions 

2.25 x 1.75 separated the same distance. 

 
The results are shown below: 

 

Coaxial Discs,  F12 = 0.1894  

Rectangular plates F12 = 0.1088  
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Thermodynamics & Fluid Mechanics 
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Gas Liquefaction Cycles.  [ LINDE, CLAUDE, HEYLND ] 

From the authorôs Engineering Collection, included in the ETSII3 module  

 

 

This program calculates the enthalpy  at all the significant stages of the most common  

liquefaction cycles: Linde, Heylandt or Claude.  Program prompts for some input data such as 

the enthalpy of the saturated liquid and vapor and the entry conditions of the gas. In addition, 

the turbine isentropic efficiency is also required for the Heylandt and Claude cases. The 

program also calculates the liquefied fraction per circulating mol of gas. 

 

The enthalpies at the points of known conditions must be obtained using the tables 

corresponding to the gas used in the cycle. The compressors used in the cycle are assumed to 

be isothermal - or at least that the final temperature is the same as the initial if an association 

of several compressors in series is used. 

 

Linde Cycle. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

  The equations used are as follows:     

    

    y = (h2 ï h1) / (h5 ïh1) 

         h4 = y.h5 + (1-y). h6 

 

 

 

Example: 

 

Calculate the liquid fraction extracted per mol in a Linde cycle with the following input 

conditions {h1, h2, h5, h6}.= The results are also given in the table. 

 

H1 419.600 Results: 

H2 380.600 H3 183.5878 

H5 0.000 H4 183.5878 

H6 202.400 y 0.0929 
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Claude and Heylandt Cycles. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The equations used are as follows: 

 

x. h4 = y.h7 + (x-y). h9ò  

x. h6 = y. h7 + (x-y). h8 

     (1-y).h10 = h3 + h1 (1-y) ï h2 

 

And liquid fraction extracted per mol:       y .(h1 ï h7) = (h1-h2) + (1-x).h3 ï (1-x).h9ò 

 
 

Examples: 

 

Calculate the liquid fraction extracted per mol in a Claude cycle with the following input 

conditions {h1, h2, h5, h6}. The fraction thru the turbine is (1-a) = 0.55; and the isentropic 

efficiency of the turbine is r = 0.7. The results are also given in the table. 

 

Input Data Results: 

h1 423.9000 y 0.2971 

h2 384.9000 h3 77.0744 

h6 0.0000 h4 67.9579 

h7 200.000 h5 67.9579 

h8 174.140 Ƙуέ 226.8300 

 
More examples are shown in the next page ï taken from a printout using the thermal printer. 

They include a sketch with the cycle components and (more importantly) the numbered 

points within the cycle with the convention used in the data entry prompts. The components 

are labeled in Spanish ï a good opportunity to dust off your language skills ;-) 

 

Campana Saturación = Vapor Dome;     Intercambiador = Heat Exchanger 
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Ideal processes of Perfect Gases with Cp=Cp(T). [ T2, P2, DS ] 

From the authorôs Engineering Collection, included in the ETSII3 module  

 

 

For a perfect gas which specific heat at constant pressure (Cp) is 

a polynomial expression in the temperature (of any degree) -  

this program calculates the unknown T2, P2, DS final value after 

experiencing an ideal process of temperature change. The initial 

state is to be known, with {T1, P1} always known, and also 

either {T2, P2}, or {P2, DS}, or {T2, DS} depending on the 

case. 

 

Let Cp = S {Ak T
k }  ;  in [cal/mol.K]  ; with k = 1, 2,.. n.  

 

The main expression used is the following: 

 

DS = Ao Ln(T2 / T1)  ï R. Ln(P2 / P1) + S (Ak/k) [T2
k ï T1

k ] ; k= 1,2.. n 

 

Whereby the final pressure is directly obtained as well; and the final temperature requires an 

iterative process using a root-finding algorithm (routine ñSLVò within the Module). 

 

P2  = P1. exp { (1/R) [ Ao Ln(T2 / T1) ï DS +  S (Ak/k) [T2
k ï T1

k ] ;   k= 1,2.. n 

 

 

Examples. 

 

Characterize the complete final state of a perfect gas under ideal processes from T1= 300deg 

and P1= 1 atm, with partial final data known shown in the table below; if its Cp is given by 

the polynomial expressions:  

 

a) Cp = 5.183 + 0,028 T ï 0.000054 T^2  [Cal/mol.K] 
 

Case T2 (deg) P2 (atm) DS ( Cal/Mol.K ) 

·9v ά5{έ 654.03 deg 50.00 DS = 5.2788 

XEv άtнέ 654.03 deg P2 = 50.0158  5.2788 

·9v ά¢нέ T2 = 654.0071  50.00 5.2788 

 

 

b) Cp = 5  [Cal/mol.K] 
 

Case T2 (deg) P2 (atm) DS ( Cal/Mol.K ) 

·9v ά5{έ 654.03 deg 0.0954 DS = 8.5603 

XEv άtнέ 654.03 deg P2 = 0.0954  8.56 

·9v ά¢нέ T2 = 654.0578  0.0954 8.56 

 

 

Note; This program uses the ñUnit Management Systemñ, make sure you have the Unit 

Conversion module plugged into the calculator as well. 
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Non-isentropic expansion into Vapor Dome. [ ENIVH ] 

From the authorôs Engineering Collection, included in the ETSII3 module  

 

 

This short program calculates the final enthalpy in a no-

isentropic expansion of a gas with final conditions inside of 

the vapor dome, like itôs the case of steam turbines in power 

plants.  

 

Obviously the isentropic efficiency of the turbine will be 

needed. Other required input data include the initial {P,T} 

conditions, as well as one of these two in the final stage.  

With these weôll obtain the enthalpy and entropy using the 

substance charts, which will be used by the program. 

 

The results include the vapor quality at the exit of the 

turbine, as well as the corresponding enthalpy if the expansion was isentropic. 

 

Let x the fraction of vapor in the final condition, 2l and 2v the points corresponding to the 

liquid and vapor ends of the vapor dome at the T2 temperature. 

 

The formulas used are as follows: 

  

 x = (S1 ï S2,liq) / (S2,vap ï S2,liq) 
 

H2 =  x H2,vap + (1-x)  H2,liq 
 

H2ò = H1 + hT { H 2,liq + H1 + [ (S1 ï S2,liq) / .DS2,vap ]. DH2,vap }  

 

 

 

Example: 

 

Calculate the final enthalpy in a non-isentropic expansion of a gas from initial conditions 

H1= 3,240 kJ/kg;  S1= 6.939 kJ/kg.K into a final condition given by H2,v = 220.6867 kJ/kg; 

H2.liq = 2.307.5094kJ/kg ; entropy of S2,vap =  7.25 kJ/kg.K; S2,liq = 3.7564. Use the value 

0.75 for the turbine efficiency. 

 

The results are:  x = 0.91 kg/mol;   vapor title 

H2 = 406.46 kJ/kg; and  isentropic value 

H2ò = 1,114.84 kJ/kg  non-isentropic result 
 



ETSII Engineering Collection                                                                                                  HP-41 Programs 

(c) Ángel M. Martin Page 36 of  107  January 2017 
 

Properties of Superheated & Saturated Steam. [ by Michel Le Mero ] 

From the Userôs Program Library Europe #10341, included in the ETSII3 module  

 

 

With a pair of properties being known {P,T} or { P,S}, or {P,H} ï this program first 

determines  if the point is in the dry or saturated region and outputs the superheat or the 

quality of steam. Then upon pressing the corresponding userôs keys any of the unknown 

properties are calculated. The program uses British units internally but the unit conversion 

module is required ï so that you can specify the input and output units with the UMS facility. 

 

 
 

Superheated region. The subroutine ñPTò uses the well-known formulation of Keenan and 

Keyes to derive H, S, and V. The higher order term has been omitted from the formulas for H 

and S. The Subroutines ñPHò and ñPSò use the following iterative procedure to compute T: 

 

a) Estimation of T and Cp, the specific heat 

b) Calculation of an approximate H or S 

c) Correction of estimated T as a function of Cp and H or S. 

d) The iteration stops when the correction factor for T is less that 1 degree F. 

e) All properties are then derived from the final P and T. 

 

Equations and variables: with P expressed in absolute atm, and T in degrees Kelvin 

 

V = 0.0160185 (4.55504 T/P + B) 

H = F + 0.043557 (F0.P + Bô(-B6 + B0(B2 - B3 + 2B7.Bô))) 

S = 0.809691 log(T) ï 0.253801 log(P) + a1.T ï b1/T - 0.355579 ï 0.0241983 b  

 

where: 

 B = B0( 1 +(B0.P/T̂ 2)(B2-B3+(B0.P/T^2)(B4-B5)B0.P)) 

 Bó = (1/2) B0(P/T)^2   B4 = 0.21828.T 

 B0 = 1.89 - B1;   B1 = (2641.62 / T). 10^(80870/T^2) 

 B2 = 82.546;    B3 = 162460 /T;  

 B5 = 126970 / T ;   B6 = b0.B3 ï 2.F0(B2-B3); 

 B7 = 2F0(B4 ïB5) - B0.B5;  F0 = 1.89 ïB1(2 + 372420 T^2) 

a1 = 1.8052 E-3 ;   b1 = 11.4276  

F = 775.596 + 0.63296 T + 1.62467E-3 T + 47.3635 log(T) 

b = (1/T)((B0-F0).P + Bô(B6 + Bô.B0(B0(B4-B5)-2B7)))  

 

In the superheated region the program will yield accurate results for S >= 1.4 BTU/lb.F 

 

 

Saturated Region. The gas properties Hg, Sg and Vg are computed using ñPTò, with P and T 

the saturation temperature, Tsat. The fluid properties Hf, Sf, and Vf are calculated as high 

order polynomial regressions of P. Knowing P and either H or S the steam quality is easily 

computed ï for instance with H being known: Q ï (H-Hf)/(Hg-Hf). The remaining properties 

can then be calculated using Q. In the example below S = Q.Sg + (1-Q).Sf 
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Polynomial regressions: Let p = log(P) 
 

In the saturated region, polynomial regressions have been made for 1024 psi >= P >= 1 psi 
 

Tsat =  S {tk.p^k}; k=0.1..4  -     Sf = S{sk.p^k};  k = 0,1..6    

Hf = S{hk.p^k}; k=0,1..5      -     Vf = S{vk/p^k}; k= 0,1..4 

 

With coefficients as follows: 

K tk sk hk vk 

0 101.6904213 0.1325214898 69.8248945 1.612664461 E-2 

1 22.99931254 0.04112950801 23.38590621 5.504415112 E-6 

2 1.307138044 1,332706491 E-3 0.5953773184 7.900287375 E-5 

3 -0.01038755447 1,055114953 E-4 0.2785143 -1.486233751 E-5 

4 9.537213359 E-3 4.068809803 E-5 -0.03427505869 1.236908782 E-6 

5  -4.357212264 E-6 2.468448779 E-3  

6  2.038138825 E-7   

 

All constants will be automatically loaded by the program the first time theyôre required for 

the calculations. 

 
 

Example.   

 

A steam turbine operates at the following conditions; Inlet: 650 psi, 790 deg F; exhaust: 2psi. 

Determine the inlet enthalpy and specific volume. Assuming a 10% pressure drop in the inlet 

valves, what is the available energy?   

 

Executing ñPTò with P = 650 psi and T = 790 F 

WAIT...  ñSELECT KEY:ò  ... ñP T  H S  Vò  

XEQ ñCò => ñUNITS H?ò, ñBTU/LBMò  

=>   ñH=1,349,5 BTU/LBMò 
 

R/S  => ñSELECT KEY:ò  ... ñP T  H S  Vò 

XEQ ñEò => ñUNITS V?ò,  ñFT3/LBMò 

R/S  =>   ñV=1,08 FT3/LBMò 

 

Executing ñPHò now with P = 0.9*650 = 580, and the same temperature: 

WAIT...  ñSELECT KEY:ò  ... ñP T  H S  Vò  

XEQ ñDò => ñUNITS S?ò, ñBTU/LBM*Kò 

R/S  => ñS=1.620 BTU/LBM*Fò 

 

With that value of the entropy known, and the exhaust pressure P = 2 we can execute ñPSò to 

obtain the exhaust enthalpy: 

 WAIT...  ñSELECT KEY:ò  ... ñP T  H S  Vò  

XEQ ñCò => ñUNITS H?ò, ñBTU/LBMò  

=>   ñH=946.8 BTU/LBMò 

 

Finally, the available energy is the difference between the inlet and exhaust enthalpy: 

U = Hout ï Hin = 1,349.5 -  946.8 = 402,72 BTU/lb 
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Example (conôt). 

 

Suppose the turbine having 80% efficiency. What are the exhaust quality, specific volume and 

temperature? 

 

Result:  the exhaust available energy is now reduced to the 80% of the value obtained before, 

i.e.: Uô= 0.8, U = 322.176 BTU/lb 

 

Subtracting it from the exhaust enthalpy obtained previously: 

H2ô= 1,349,5 ï 322.176 = 1.027,324 BTU/lbm 

 

Which can be used as input data for another iteration of ñPHò, using again P2= 2 psi: 

 

WAIT...   ñQ = 0.927ò 

ñSELECT KEY:ò  ... ñP T  H S  Vò  

 XEQ ñEò   ñUNITS H?ò 

 R/S    ñV = 161,07 FT3/Lñ 

 XEQ ñBñ   ñT=126,00 Fñ 

 

 

 

 

 














































































































































