HP16C Emulator Module for the HP-41CX

HP16C EMULATOR
HP- 41 Modul e

User s Manual and QRG.

l!lln MASX I.

0
- |
‘- g
wic e SR Cn | nn]
S8 {
—_— =
£ BlN 4 5 | :
p—— - s —
“E » - ‘
s n -
1'S 5 et ™ il

TPREFIX' WINDGW

16 %%

o 34

¥ HP-

1SER

PREM = ALPHA

Written and Programmed by Greg J. McClure and Angel M. Martin

September 4, 2015

(c) Martin-McClure Page 1 of 63 Septembe015

HP16C Emulator Module for the HP-41CX

This compilation revision 1.5.3

Copyright © 2015 Angel M. Martin and GregJ. McClure

[- [
USER 1 24

r
G

s ™ v KA T R4] :r]

Publish ed under the GNU software licence agreement.

Original authors retain all copyrights, and should be mentioned in writing by any part utilizing this
material. No commercial usage of any kind is allowed.

Screen captures taken from V41, Windows-based emulator developed by Warren Furlow.
See www.hp41.org

Acknowledgments. -

Special thanks go to Greg McClure for his tremendous work on the 16C Emulator module i his 16C
Buffer design and handling routines, together with the fi b matho algorithms are the heart and soul of
this module.

Thanks to Monte Dalrymple for his feedback on the overlay and this manual, and for his thorough
testing of the beta software and release candidates.

Thanks to Michael Fehlhammer for making the 16C overlay a reality in such a short time even before
the module release.

(c) Martin-McClure Page 2 of 63 Septembe015

http://www.hp41.org/

HP16C Emulator Module for the HP-41CX

HP16C Emul at or Modul e

Table of Contents.

1. [Introduction

1.1. Introduction. 5

1.2. Page#4 Library and Bank-Switching 5

1.3. Organization of the Manual and Remarks 6

1.4. Function Index at a glance 7

1.5. New/Original Function Table 10

2. [The 16C Data Structure
2.1 The Martin-McClure Buffer 11
2.1.1 16C Stack Operation 11
2.1.2 Stack and memory Functions 12
2.2. Data Input with 16NPT 13
2.2.1 The 16C Keyboard and Overlay 16
2.3. Data Output with SHOW and WINDOW 17
2.3.1 The true meaning of GRAD 18
2.3.2 Data Formats Summary 18
3. Wh a tNévs& Different
3.1 Differences from the Original 19
3.1.1 Number Entry and FLOAT mode 20
3.1.2 Flags as Semaphores CY and OOR 21
3.1.3 Status and Flashing messages 23
3.1.4 Prompting Functions 24
3.1.5 Test functions launchers 25
3.1.6 1SZ/DSZ and function Parameters 26
3.1.7 Square Root and Square power 27
3.1.8 A few examples: Gray code, bit extraction, add w/ CY 28
3.2 New Functionality added 29
3.2.1 Rotations Launcher 29
3.2.2 Shifting and Bit operations Launcher 29
3.2.3 Bases and Signed Modes Launcher 30
3.2.4 Left and Right Launchers 31
3.2.5 Launcher Shortcuts Map 32
3.3. Remaining Functions not on Launchers 33
3.3.1 Last Function and Programmability 34
(c) Martin-McClure Page 3 of 63 Septembe015

HP16C Emulator Module for the HP-41CX

3.4. Individual Function descriptions 35
3.4.1 Negative Logic Functions 35
3.4.2 Word size related functions 35
3.4.3 Left and Right Justification 36
3.4.4 Bit Reversal 36
3.4.5 Multi-Position Shifting 37
3.4.6 Storage and Retrieval in XMemory 38
4. |Diagnostics Functions
4.0 Silent and Loud Modes 39
4.1. An alternative to the 16C keyboard 40
4.2 A few Development Aids 41
4.2.1. Buffer Redgisters handling 41
4.2.2. Buffer Data Types 42
4.2.3. Doubling and Halving 42
4.2.4. Diqit Justification, Reversal and Decimal Sum 43
4.2.5 Test for Maximum Negative Value 44
4.2.7. Recalling the current Base value 45
4.2.8. Quick Hex<>Dec 45
ppendices.
a.l Maximum values as function of word size 46
a.2 The Hexadecimal Number system 47
a.3 Program Examples 50
a.4 Buffer Technical Details 52

RL n RAN MA!

- i
-

PREFIX VAN

¢

MASKRA

B
[" ASR

X (

[%
: .
/S

ﬂﬂa;ﬁ

HEX JEI
oSz | s
J REG

%
X<

ﬁ
0
0
3
-

w

.
”w

2
=
=
w
-
>
=
]

i
"
Hiow
o c

WSIZE

| 9 SIO
NEr

FLOAT

-

‘NLETT PAC KARD

T

(c) Martin-McClure Page 4 of 63

SeptembeR015

HP16C Emulator Module for the HP-41CX

HP16C Emul at or Modul e

Computer Science for the HP-41CX

1. Introduction.

At long last, a complete solution for the Computer Scientist on the HP-41 platform is finally available
in the form of th e HP-16C Emuhktor module.

This module provides a comprehensive feature set that includes all the functionality from the original
HP-16C, plus a few new surprises and extensions added to the design. Support for up to 64 -bit word
size is provided in all functions i beyond any previous attempt implemented on the 41 system ever
before.

The design takes full advantage of the alphanumeric capabilities of the 41, in particular the 24 -
character LCD for more convenient number entry and display. Prompting functions and X-Memory
backup enhance the usability and go beyond the original machine. Use them in manual operation or in
a program, all functions are completely programmable.

Auxiliary FAT, Bankswitching and Page#4 Library.

The 16C Emulator module comes loaded with functions and a rich feature set i yet it only takes a
single page (i.e. half port) on the 41 ROM module bus. Its structure consists of four bank-switched 4k
blocks, with functions arranged in two Function Address tables i the main one filled-up with 64
functions plus an auxiliary one containing additional sub-functions. All are programmable, and easily
accessed using dedicated function launchers. Plus a complete 16C Keyboard overlay isavailable for
instant plug-and play functionality.

The 16C Emulator is a Lbrary#4 -aware module: it makes extensive usage of the library routines for
more efficient execution as well as management of the auxiliary FAT and sub-function launchers -
which relies on the presence of the Library#4 installed on the system. The Library#4 has been
updated for the 16C Emulator,thus e ns ur e y ou h a v with M@Dfile slatecAugust 20150 ,

The last remark is regarding the CX dependency: designed for the CX version of the 41 OS, the code
occasionally uses subroutines from the CX OS wde. This was a compromise to enhance the
functionality at the economy of ROM spacei as it avoided having to replicate large code streams

already available on the CX. Doni use this module ona plan41C or CV ma c hsuraye ,

unexpected and probably unwanted results.

The module checks for the presence of the dependencies, i.e. the Library#4 and the CX.-- If the
Library#4 is missing or the machine is not a CX the errors will halt it to avoid likely problems. Note
also that this module is not compatible with pages#6 and 7 i avoid plugging it in those locations.

wo L IIBNARY NDO CX/705

UZER UZER

Remember: The HP16C Emulator module extensively uses routines and functions from the Page#4
Library. Make sure ©OIe (loirbrharmy#4)r e wi s inrghingsican god
south. Refer to the Page#4 Library documentation to properly configure the Library#4 before use.

(c) Martin-McClure Page 5 of 63 Septembe015

itol

y O

HP16C Emulator Module for the HP-41CX

Organization of this manual.

We have no intention to duplicate the HP-16C Computer Scientist Manual i which is the best

reference to learn about the functions and concepts behind this module. Thi s manual wondt te
the intricacies of the Car ry and Out of Range fl ags, or the binar
compl ement signed modes for instance6Cnmamaliineedede ncour ag

It is however important to document the main design criteria applied to the 16C Emulator module and
the derived consequences for its use. Special attention has been put to the new and additional
functions, as well as documenting the small differences that may exist in a few functions when
compared to their original implementation on the 16C calculator.

Itis expected that the reader be already familiar with the H P-41 environment, so as to be comfortable
keying instructions and operating the machine. A basic knowledge of the 41 system memory structure
and programming will be very useful if you also want to use the 16C module functions in your own
programs.

This module employs several powerful concepts also present in other advanced maodules, such us a
secondary FAT to hold auxiliary sub-functions; several function launchers that group functions and
sub-functions by related functionality; and the LAST Function facility to re-execute the last function
(or sub-function) called - to mention just the most important ones. You may be familiar with all these

had you already used the SandMat h, SandMACltomn or
this module but obviously its tremendous speed advantage makes it the best possible choice of
hardware.

Some remarks about the implementation.

Emulating the complete capabilities of the original 16C machine has been a tall order, only possible
thanks to a fortuitous combination of dedication and skills from bothco -aut hor s . Gregbs
ski |l 1l s have been put to a good wuse in t hevhidhaverle ¢

seamlessly integrated into the module completely behind the scenes.

The double precision multiplication and division in particular are highlights of the module , taking up
the third bank in its entirety by themselves i which speaks volumes about their intricate design and
complex implementation.

From my part this module brings it all together home in many ways; starting with the advanced
concepts borrowed from the 41Z Complex module (dealing with auxiliary buffers for data storage and
abstraction data layers above the native real numbers support on the 41 OS); from the SandMath and
PowerCL modules (pioneering the function Launchers) and of course the heavy reuse of Auxiliary
FATS and subfunction management leveraging the Library#4 design way beyond its initial design
scope.

All in all, this module is nothing short of an improbable amazing feat if you ask me, and | think |

Powe

speak on both Gr ego0tso asnaly myt doswnarb eihmddr t ant contri but

been a very rewarding project, and a great learning opportunity for me as well i thank goodness Greg
was on watch to keep all those whimsical components of the 16C intricacies at bay many times
during the development, when | was getting completely confused!

PS. The t Mamhd/Glrekis dresult of a virtual coin toss and some consideration as to the
firi ngi ngo ©lbutundereno circumstasice denotes any priority in the order of the names.

(c) Martin-McClure Page 6 of 63 Septembe015

HP16C Emulator Module for the HP-41CX

Function index at a glance. -

Without further ado, here are all 125 functions included in the main and auxiliary FATSs.

Function Description Input Result
| 1 -HR16C+ Shows Library#4 Splash none Flashes splash msg

2 16C_ Main 16C Keyboard Launcher see 16C keyboard overlay 2xecutes function

3 16# WEX Subfunction by index Prompts for index executes function

4 16% _ XEQ sulfunction by Name Prompts for name executes function

5 16+ Integer mode addition values in 16X and 16Y Result in 16X, stack drsp

6 16 Integer mode subtraction values in 16X and 16Y Result in 16X, stack drops

7 16* Integer mode multiplication values in 16X and 16Y Result in 16X, stack drops

8 16/ Integer mode Division values in 16X and 16Y Result in 16X, stack drops

9 16SQRT Square Root value in 16X result in 16X, argument to 16L
10 16WSZ_ _ Sets Word Size prompts for word size flashes size on LCD

11 1CMP Sets 1's Complement Mode none changes mode, sets flag 1

12 2CMP Sets 2's Complement mode none changes mode, sets flag 2

13 AND Logical Intersection values in 16X and 16Y Result in 16X, stack drops

14 ASR Arihtmetic Shift Right value in 16X result in 16X, argument to 16L
15 b?_ _ Bit Set testing value in 16X, bit# in prompt YES/NO, skips line if false

16 BINM Binary Base display none changes displayed base

17 Cbh_ _ Clears bit value in 16X, bit# in prompt result in 16X, argument to 16L
18 DBL* Double precision 16* values in 16X and 16Y Result in 16X 16Y, stack drops
19 DBL/ Double Precision 16/ values in 16X1L6Y, 16Z pushes value into 16C stack
20 DBLR Double Prec. Reamder values in 16XL6Y, 16Z pushes value into 16C stack
21 DECM Decimal base display none changes displayed base

22 FLOAT Floating Point mode none supresses displaying mode!
23 HEXM Hexacimd Base display none changes displayed base

24 LIY Left Justify value in 16X Result in 16X, #pos in 16Y

25 MASKL Builds a.eft-justified Mask # of bits in prompt pushes value into 16C stack
26 MASKR_ _ Builds a Righjustified Mask # of bits inprompt pushes value into 16C stack
27 NOT Logical Inversion value in 16X result in 16X, argument to 16L
28 OCTM Octal Base display none changes displayed base

29 OR Logical Addition values in 16X and 16Y Result in 16X, stack drops

30 RL Rotate Left (oe pos.) value in 16X result in 16X, argument to 16L
31 RLC Rotate Left thru Carry value in 16X result in 16X, argument to 16L
32 RLCN__ RLC fpositions value in 16X and prompt result in 16X, argument to 16L
33 RLN_ Rotate Left ppositions value in16X and prompt result in 16X, argument to 16L
34 RMD Division Remainder values in 16X and 16Y pushes value into 16C stack
35 RR Rotate Right (one pos.) value in 16X result in 16X, argument to 16L
36 RRC Rotate Right thru Carry value in 16X result in 16, argument to 16L
37 RRCN__ RRC #positions value in 16X and prompt result in 16X, argument to 16L
38 RRN_ _ Rotae Right Apositions value in 16X and prompt resultin 16X, argument to 16L
39 Sb_ _ Set bit value in 16X, bit# in prompt result in 16Xargument to 16L
40 SHOW Shows value in 16X value in 16X Puts value chars in ALPHA
41 SIN _ Shift Leftn-positions value in 16>and prompt result in 16X, argument to 16L
42 SAN _ Shift Righh-positions value in 16Xand prompt result in 16X, argunre to 16L
43 STATUS Shows Status Info base and complement data Shows machine status msg
44 UCMP Sets Unsigned mode none changes mode, sets flag 0

45 WINDOW_ Shows the Window registers values in FX buffer regs shows FX registers on LCD
46 XOR ExclusiveOR values in 16X and 16Y Result in 16X, stack drops

47 SLEFT_ Left Launcher prompts for function executes function

48 SMOD _ Modes Launcher prompts for function executes function

49 SROT _ Rotations Launcher prompts for function executes function

(c) Martin-McClure

Page 7 of 63

Septembe015

HP-16C_BS%202015%2005%2012b.xls#RANGE!D1130
HP-16C_BS%202015%2005%2012b.xls#RANGE!D2151
HP-16C_BS%202015%2005%2012b.xls#RANGE!D2204
HP-16C_BS%202015%2005%2012b.xls#RANGE!D804
HP-16C_BS%202015%2005%2012b.xls#RANGE!D809
HP-16C_BS%202015%2005%2012b.xls#RANGE!D693
HP-16C_BS%202015%2005%2012b.xls#RANGE!D154
HP-16C_BS%202015%2005%2012b.xls#RANGE!D161
HP-16C_BS%202015%2005%2012b.xls#RANGE!D2546
HP-16C_BS%202015%2005%2012b.xls#RANGE!D3076
HP-16C_BS%202015%2005%2012b.xls#RANGE!D2724
HP-16C_BS%202015%2005%2012b.xls#RANGE!D181
HP-16C_BS%202015%2005%2012b.xls#RANGE!D2732

HP16C Emulator Module for the HP-41CX

|50 -16C STACK Shows Copyright & Sound n/a Flashes messade sounds
51 16ABS Absolute value value in 16X result in 16X, argument to 16L
52 16CHS Changes 16X sign value in 16X and compl modresult in 16X, argument to 16L
53 16ENT# Pushes 16X orlevelup values in 16C stack 16X in entered to 16Y
54 16NPT Main Data Input function Characters in ALPHA nextvalue entered in 16X
55 16RCL_ _ Recalls value from memory values in data registers value from memory into 16X
56 16RDN Rolls the 16C stack down values in 16C stack 16C stack rolled down
57 16RUP Rdls the16C stack Up values in 16C stack 16C stack rolled up
58 16STO_ _ Stores 16X in memory value in 16X and prompt 16X stored in data registers
59 16X<>_ Exchanges the 16X and mem values in 16X and data regs 16X and data regs exchanges
60 16X<>Y Swapsl6X and 16Y values in 16X and 16Y 16X and 16Y exchanged
61 CL16X Clears the 16X register anything in 16X 16X is zeroed
62 CL16ST Clears al the 16C stack anything in 16C stack the 16C stack is zeroed
63 LST16X Recalls last value used value in 16L reg pushes 16L into 16X
64 X?Y _ XY Tests launcher XY tests launcher executes function
| 0 -16C FAT2 Section header section header n/a
1 SBIT _ Bit Functions Launcher prompts for function executes function
2 SSHF_ Shift/Bist Launcher prompts for function executes function
3 SRIGHT_ Right Launcher prompts for function executes function
4 16APN Append String to Value Partial String in Alpha Appends to Exisiting Value
5 16x"2 Squares 16X value in 16X result in 16X, argument to 16L
6 16X=07? tests 16X equal to zero value in 16X YES/NO, skips line if false
7 16X#07? tests 16X not equal to zero value in 16X YES/NO, skips line if false
8 16X<07? tests 16X less than zero value in 16X YES/NO, skips line if false
9 16X<=07? tests 16X less or equal to 0 value in 16X YES/NO, skips line if false
10 16X>07? tests 16X greater than zero value in 16X YES/NO, skips line if false
11 16X>=07? tests 16X greater or equal 0 value in 16X YES/NO, skips line if false
12 16X=Y? tests 16X equal to 16T values in 16X and 16Y YES/NO, skips line if false
13 16X#Y? tests 16X not equal to 16Y values in 16X and 16Y YES/NO, skips line if false
14 16X<Y? tests 16X lesthan 16Y values in 16X and 16Y YES/NO, skips line if false
15 16X<=Y? tests 16X less/equal to 16Y values in 16X and 16Y YES/NO, skips line if false
16 16X>Y? tests 16X greater than 16Y values in X and 16Y YES/NO, skips line if false
17 16X>=Y? tests 16X great/equal to 16Y values in 16X and 16Y YES/NO, skips line if false
18 16X MA enters 16X in all stack levels value in 16X 16X is repliated
19 DSZ Decrement and skip if Zero content of ROO data reg ROO decrements, skip iz aero
20 GET16 Gets 16C buffer from-Klem X-mem filename in ALPHA new 16C buffer is in place
21 1SZ Increment and skip if zero content of ROO data reg ROO increments, skip iz aero
22 LOW16" Enters x into 16X register real number value in x new value in 16X
23 NAND Negative AND values in 16X and 16Y Result in 16X, stack drops
24 NOR Negative OR values in 16X and 16Y Result in 16X, stack drops
25 REV Reverses bits in word value in 16X result in 16X, argument to 16L
26 RJY Right Justifies the value value in 16X Result in 16X, #pos in 16Y
27 SAVE16 Saves 16C buffer inMem X-mem file name in ALPHA buffer saved in Mem file
28 SL Original Shift Left funatin value in 16X result in 16X, argument to 16L
29 SR Original Shift Right function value in 16X result in 16X, argument to 16L
30 WSFIT Fits the word size to 16X value value in 16X ws changed
31 X?0 _ Tests to zero Launcher XO0 tests launcher executes function
32 XNOR Negative XOR values in 16X and 16Y Result in 16X, stack drops
33 #BITS Gets sum of selected bits value in 16X Returnssum of bitsto 16X
34 FCAT_ Subfunction Catalog has hotkeys enumerates sulfunctions
35 -TESTING Section header section header n/a
36 16KEYS MassKey Assignments (*) Prompts Y/N? Makes / Removes KA
37 16WSZ? Retrievecurrent word size set ws data from buffer Shows ws and pastit in 16X
38 2DIV Halves the content of 16X value in 16X result in 16X, argument to 16L
(c) Martin-McClure Page 8 of 63 Septembe015

HP-16C_BS%202015%2005%2012b.xls#RANGE!D1040
HP-16C_BS%202015%2005%2012b.xls#RANGE!D1259
HP-16C_BS%202015%2005%2012b.xls#RANGE!D1825
HP-16C_BS%202015%2005%2012b.xls#RANGE!D1833
HP-16C_BS%202015%2005%2012b.xls#RANGE!D647
HP-16C_BS%202015%2005%2012b.xls#RANGE!D616
HP-16C_BS%202015%2005%2012b.xls#RANGE!D639
HP-16C_BS%202015%2005%2012b.xls#RANGE!D607
HP-16C_BS%202015%2005%2012b.xls#RANGE!D1978
HP-16C_BS%202015%2005%2012b.xls#RANGE!D1986
HP-16C_BS%202015%2005%2012b.xls#RANGE!D2276
HP-16C_BS%202015%2005%2012b.xls#RANGE!D2284
HP-16C_BS%202015%2005%2012b.xls#RANGE!D3371
HP-16C_BS%202015%2005%2012b.xls#RANGE!D3425
HP-16C_BS%202015%2005%2012b.xls#RANGE!D3899
HP-16C_BS%202015%2005%2012b.xls#RANGE!D3431
HP-16C_BS%202015%2005%2012b.xls#RANGE!D1062
HP-16C_BS%202015%2005%2012b.xls#RANGE!D2434
HP-16C_BS%202015%2005%2012b.xls#RANGE!D2439
HP-16C_BS%202015%2005%2012b.xls#RANGE!D2943
HP-16C_BS%202015%2005%2012b.xls#RANGE!D3190
HP-16C_BS%202015%2005%2012b.xls#RANGE!D3910
HP-16C_BS%202015%2005%2012b.xls#RANGE!D3256
HP-16C_BS%202015%2005%2012b.xls#RANGE!D991
HP-16C_BS%202015%2005%2012b.xls#RANGE!D2467
HP-16C_BS%202015%2005%2012b.xls#RANGE!D3511
HP-16C_BS%202015%2005%2012b.xls#RANGE!D2039
HP-16C_BS%202015%2005%2012b.xls#RANGE!D2422

HP16C Emulator Module for the HP-41CX

39 2MLT Doubles the content of 16X value in 16X result in 16X, argument to 16L
40 A2FX Alpha to FX registers String in ALPHA Chars transferred to FX regs
41 BASE Recalls base to 16X none Base value in 16X

42 CHKBB Checks & Builds the 16C buffer ~ none 16C Buffer in Memory

43 CLRFX Clears FX buffer registers none FX regs cleared (reset)

44 D>H Decimal to Hex Value in Xeg Hex string in Alpha

45 DGLB Decimal Dig Sum Value in 16X Shows sum and enters it

46 DGLJ Digit Leftjustify Value in Xeg Digits leftJustified

47 DGRV Digit Reversal Value in 16X Reversed digits in 16X

48 EX2FX Copies the EX regs to the FX regs Binary Data in EX regs Chars written irFXRegs

49 FX2EX Copies the FX regs to the EX regs Chars Data in FX regs BinaryDatain EX regs

50 FXSz? Shows number of nomero chrs in Fxnone Number of characters in X
51 H>D Hex to Decimal Hex String in Alpha Result in Xegister

52 H=L Copies the aw bits into the High bitsData in 16X Copies X to b13

53 L-H Moves the Low bits to theligh bits Data in 16X Moved X to b13

54 L<>H Swaps Low anHigh 16X bits Data in 16X Xreg and b13 swapped

55 LDZER Shows Leading Zeros Data in 16X Leading Zeros acdl

56 MNV? Test for Maximum Negative Value Value in 16X YES/NO, skips line if false
57 TS/L Toggles Silent/Loud Mode none Active mode toggled

58 WSMAX Shows maximum value for ws ws data in buffer shows value in x

59 X-LA Appends chr(X) to laflpha Crh value in X Appended to left Alpha

60 (c) Shows Copyright Message none Shows message

I f youdre familiar with the 16C calculatorintheuol | n c

main FAT 1 as such as been the criteria for function FAT allocation. Their functionality and operation
should be pretty much identical to their original counterparts, but there are a few differences that will
be covered later in the manual.

Hopef ul | alsoiptigued abeut the new additions to the function set (located in the auxiliary
FAT), and can probably guess their scope and intention i that will be the subject of dedicated sections
as well, as they are likely to add some surprises to the digital mix. Refer to the table in next page for
a quick comparison between new, modified and original functions in the emulator.

RMD=0 +C
RMD#0+C

10[Y=0. F3L

[1 [FLOAT>9,GTO>9,WINDOW>7.F>5
WMASK.B.RLRR>WSIZE WSIZE>64
3[Rp>MEM

| 4 [LBL?.GTO>MEM,PRGM>203
>4[RTN

RZFLOAT

[Y&Z) =X+ X ;RMDx0+C

Always ensure that Revision fi O 1ay higher of the Library#4 is installed on the system. |

(c) Martin-McClure Page 9 of 63 Septembe015

HP-16C_BS%202015%2005%2012b.xls#RANGE!D3338

HP16C Emulator Module for the HP-41CX

Original Functions

Modified Functions

Mew Functions

L= - = R I = R B

mm.b.b.b.h.hﬁ.h.h.h.hI.IJI.IJI.IJUJUJUJUJUJUJUJMMMMMMMMMMHHHHHHHHHH
[l =TRALY =N = = BN B = RN | L S = B = B - = B T 5 B o I e o R = N = T L I = TR =T = - B (= R B Ry AE R B T |

RBITS
16-

16

16/

16+
16ABS5
16CHS
16ENTH™
16RDM
16RUP
1650RT
16X#0?
L16XAY?
16X<=0?
16X<=Y?
1eX<=Y
16K=<07?
16K=Y?
16X=07
16X=Y7
16M=07
16X>Y?
1CmMP
2CMP
AND
ASR
BIMM
CL16X
DeL*
DBLf
DEBLR
DECM
D52
FLOAT
HEXM
152
LST16X
MOT
OCTM
OR

RL

RLC
RMD

RRC
SHOW
5L

5R
STATUS
UCMP
XOR

L= R = R B R

[o T S EE =
S IR = R = B o - BN R = TR N o B R ¥ R S R g -]

-16C FAT2
-16C STCK
-HP 16C+
-TESTING
16APN
16MPT _
16RCL _ _
165TO _ _
16WSZ _ _
b?

Ch

Ly

LDZER
LOW16A
MASKL _ _
MASKR _
RLCN _
RLN _ _
RRCN _ _
RRN

Sh

WINDOW _

L=« - R = VR R R R

mmmhhhhhﬁhhhhwmmmmmUJUJUJUJMMMMMMMMMMHHHI—\I—\HHHHH
RO @ W 8) ohon L R e Y R - R L R o N N — T I = R R - S R e e T N R - LT R S Ty Ny ey =

TBIT_
FLEFT _
TMOD _
TRIGHT _
TROT _
FTSHF _
168
165 _
16C _
16KEYS _
16WSZ?
16XAAR
16Xn2
16M<>
16X>=0?
16X>=Y?
201V
IMLT
AZFX
BASE?
CHKBB
CL165T
CLRFX
D>H
DGDE
DGL
DGRV
EX2FX
FCAT _
FX2EX
FXSZ?
GET16
H=L

H>D
L<xH

L-H
MNY?
NAND
NOR
REV

RIY
SAVE16
SLN
SRN _
TS/L
WSFIT
WSMAX
X?0

X2 _
X-LA
XNOR

(c)

(c) Martin-McClure

Page 10 of 63

SeptembeR015

HP16C Emulator Module for the HP-41CX

2. .26C DATA STRUCTURE

2.1. The Martin -McClure Buffer

Without doubt the 16C-Buffer is the cornerstone of the 16C Emulator module. Designed to fulfill the
storage requirements for 64-bit data values and provide available scratch registers for data
management and auxiliary calculations, this buffer is automatically created and maintained by the
calculator behind the scenes - all transparent to the user.

Even if you can use the module completely unaware of the 16C buffer, knowing the fundamentals on
its structure and operation will largely increase you understanding of the mod ule - significantly
smoothing the learning curve. Those wanting to know more should refer to appendix B for a more
detailed description of the buffer registers and design.

Data Size and Registers: the problem at hand.

Because the data values can be as large as 64bit, the 56-bit standard 41C registers are not sufficient
to hold the valuesin all cases even if we were to use up all of them in a custom data format .

The solution implemented uses two standard hp-41 registers for each 16C value, with each register

holding 32-bi t s worth of information. Wedl| call those reg
registers. This is so regardless of the selected word size, thus the higher bits register will be empty

when the value can be expressed by 32- or less number of bits.

The 16C Stack i s t he first abstraction | ayer you need to b
counterpart {X,Y,Z,T,L}, the 16C Stack consists of 5 logical 64-bit registers, named 16X, 16Y, 16Z,

16T, and 16L (or Last16X). Physically each one of these is made as the logical combination of the

standard stack register of the same name plus another register f r om t he 16C Data Buffe
expect,thestandar d stack contains the fwhistthe buffebredistercholcsal f o f
the Ahigher bitso.

Register | Lower Bits | + | Upper Bits
16X X b13
16Y Y b12
16Z Z bl1
16T T b10
16L L bl14

2.1.1 16C Stack Operation functions.

A set of functions is provided to operate on the 16C registers as whole unit i including both the lower
and upper bits halves simultaneously. It is important that you remember that the standard functions
of the calculator will only accessthe lower bits halves, and thus you should use the 16C functions
insteadi unl ess youdr e al-mastertbyel andrbegin haeking arcumdd

These functions include the 16C stack handling (usual suspects here: 16ENT” , 16X<>Y , 16RDN,
16RUP, CL16X, CL16ST) as well as exchange with the other data registers in the calculator
memory: 16STO, 16RCL, and 16X<> . The | ast three are also-prograr
mer ged o0 aipvperebyahe barget register number is entered as a follow -up line in the program.

(c) Martin-McClure Page 11 of 63 Septembe015

HP16C Emulator Module for the HP-41CX

2.1.2. Stack and Memory Furctions.

The table below summarizes all functions and sub functions related to stack and memory handling.

Function

Description

Comment

16ENT"

Pushes 16X into the 16C stack

Lifts 16C Stack

LOW16”

Pushes x into 16X level

Lifts 16C stack

16X<>Y

Swaps 16Xand 16Y levels

16RDN

Rolls down the 16C stack

16RUP

Rolls up the 16C stack

16X/\/\/\

Copies 16X into all 16C levels

LST16X

Recalls the last valueto 16X

Lifts 16C stack

CL16X

Clears the 16X level

CL16ST

Clears all 16C stack

16STO _ _

Stores 16Xin memory

Uses two data regs

16RCL

Recalls value from memory

Lifts 16C Stack

16X<>

Exchanges 16X and memory

Uses two data regs

SAVE16

Writes 16C stack to X-Mem

Cr e at etyefileH

GET16

Reads 16C stack from X-mem Only one buf allowed

Data registers Usage and Required SIZE

Max 16RG# Size
n/a 1
16R00 2
i 3
16ROL |} g
6
16R02 | ©
8
16R03 | .
10
16R04 |
12
16R05 | -
14
16R06 | ¢
16
16R07 |
18
16R08 |
20
16R09 | 2
22
16R10 | 2
24
16R11 | o
X X

Note that 16STO, 16RCL and 16X<> are prompting functions.
As explained before, two data registers are used to store the 16X
values in memory. Refer to the table on the left for a
correspondence between the register# used in the prompt and the
actual SIZE required in the calculator to allow for the range of 16C
data registers needed.

Note that ROO is used by the ISZ and DSZ sub-functions as the
ii ndi r ec tiothemeferg ansl tte avoid conflicts the actual
registers usage in the 16C registers scheme begins with {R01 &
R0Z for the 16C-v er s i o RO @ dhis makés them compatible

with each other so you doné6ét have to

Remember that you can also use the 41-native functions ISG and
DSE instead for a more powerful implementation that allows you to
choose the indirect register used. In that case you need to mind
the potential register conflicts!

Now t hat we 6 v ereqgrenents ancedesib@a domssideratonsout of t he way
go about introducing and reviewing actual 16C values in the calculator.

(c) Martin-McClure

Page 12 of 63 Septembe015

HP16C Emulator Module for the HP-41CX

2.2. Datalnput. - {[16NPT | [LOW16" |, |16APN }

If the 16C buffer is the invisible heart of the module then the 16NP T function is its visible
counterpart. Thi s i s t he fba using maostnof tiyeotimé o lenter the data values and
arguments for your calculations 7 regardless of the selected base and complement mode set.

When invoked, the function prompts for the digit values to input, showing the selected base on the
left side of the display. The data is input as alphanumerical digits on the LCD display during the
process. Only the appropriate digits for each base will be allowed.

HY3RbL d. 1458 bt id 18 1 1_

UZER 1 UZER 1 U=EFR 1

You can enter up to 24 digits at a single time, or split the entry in th ree different sub-sections (called
fpartial so0) i f so preferred. Obviously for |l arge val
necessary, but for all other bases a single partial is enough to hold the maximum numbers allowed

even for a 64-bit word size.

The digit entry can be completed only partially by pressing the key i this will commit the digits
to the 16C buffer and will present the base prompt anew, ready for the next partial entry. The second
partial is then appended to the first one, and this can be repeated again for the third (and last) partial
T so even a 64-bit value in binary can be entered using three segments of data.

The flag annunciators arléNPRTdmp acrhamwi lyy ui whri rcdiwedd thyal
on at any time. Thus youd Isde 1@, 120, WwBO0 Adependi ng oohthewhrae pdrtialo n e
screensyoudre in at any given ti me. Once compl eted, t he
values prior to executing 16NPT.

=i 4fA (A i i0(A it = i
h-lll‘.lll'.llll‘.l_ LI-L{I.‘IE_
USER 123 WZER 12

Note that the back-arrow key will either delete the current digit, or cancel the function if there are no
more digits left on the display. This will show the value in 16X previous to the execution of 16NPT, or
enter the current partials already committed to if a partial entry had a Iready happened.

Note as well that only 12 characters are displayed on the LCD at a given time. If you enter more the
previous will be scrolled to the left and removed from view (but not lost, not to worry about that). The

back arrow removes the rightmost di gi t but wonét scroll the string bac

The digit entry is terminated pressing | ENTER"| or | R/S| indistinctly, upon which the information is
shown as alphanumeric string in ALPHA (scrolling if larger than 12) and transferred to the 16CX
register. The 16C Stackis liffed a s y comé w expect, same as with the standard stack. At that

point youbre done and ready to move on to the next ac

There are several usability features built into the 16NPT function that make it easy to use and as
closer to the original 16C as reasonably possiblei balancing the code requirements and the general
performance considerations. They are described in the following paragraphs.

(c) Martin-McClure Page 13 of 63 Septembe015

HP16C Emulator Module for the HP-41CX

Maximum values will be observed.

Not only does 16NPT know which digits are allowed for the current base, but it also /imits the entry
values according to the currently selected word size and complement mode i so the maximum value
is not exceeded. This however has an exception in decimal mode for word sizes of 34 and up, where
in some circumstances valuesslightly larger than the maximum can be keyed in. They however will
be normalized upon data entry completion, by applying the current mask to the digits in ALPHA

Examples: in DEC mode and 2CMP, select word size =34 and attempt to enter the following two
values: 8,589,934,595 and 8,589,934,999. Are the results what you had expected?

3,4,5,9, 5 ENTER? => d: -8,589,934,589
16NPT, 8,5,8,9,9,3,4,9,9,9 , ENTER" => d: -8,589,934,185

Direct Math and Negative Valuesentry. { | 16NPT | | CHS| : D : , , }

A special way to terminate the digit entry is by pressing one of the four arithmetic keys for a direct
(chained) operation; or the key to directly enter the negative value of the nu mber typed in. This
not only saves three keystrokes but also provides a convenient way to introduce negative numbers
not worrying about the current complement mode.

Exampl e: enter the negative value of H: 25, with a wo
16N PT, 2, 5, => H: FFFFFFDB

On-the-fly Base Rotation during Input. { | 16NPT |, [SHIFT] }

Another usability feature of 16NPT allows you to change the selected base mode on the fly, directly

from the 16NPT prompt. Pressing the [SHIFT] key will toggle the selected base amongst the four

possible ones, in the sequence {HEX-> OCT -> DEC -> BIN}, repeated cyclically.

Note that each time you change the base the contents of ALPHA and FX registers will be reset,
includingthe e x i st i n g if firpvmusly énereds-0s o youo6l | start the digit en
scratch. This ensures that only appropriate characters for the new base are in the FX buffer, rejecting

previously entered ones before the base change.

If you cancel the data entry the current value in the 16X register will be shown again - in the last base

mode selected during the cyclic rotation.

Quick-Entry Shortcut for lower-bit values. { | 16NPT |, [RADIX] }

Besides the normal procedure explained before, there is a quick-entry mode also available for values

below the 32-bit limit, i . e. only impacting the Al ower bitso half
Simply type the (floating point) BCD value using the standard X-register, then call 16NPT and hit the

radix key (decimal point). This will call the LOW16” function, effectively terminating the entry

appending the number in X as data input, clearing the higher bits and lifting the 16C stack

appropriately.

The entered value wil/| be shown in the curroghetl y sel

BCD input in decimal mode. For example the sequence 12345, LOW16”" will return H: 3039

(c) Martin-McClure Page 14 of 63 Septembe015

HP16C Emulator Module for the HP-41CX

Program Mode Operation { |16APN |}

Youdbre no doubt wondering how the data is input wunde
shortcuts are not available. The first thing to say is that 16NPT is indeed programmable, and that in
a running program it takes its input (digits) from the ALPHA register.

Therefore this is already good enough to enter any values in Octal, Decimal and Hexadecimal modes
regardless of the word size selected. For binary mode you may need to append more data after the
first 24 digits are dealt with this way if the word size is larger than 24 bits i as in binary each bit is a
full ASCI | di gi t 16APNoauldfunktiont fdr that putpese, eftedtively performing the
same trick as with the key in manual mode to enter partials.

As an example letbds see two possi blP3dAB@G A Y si t busthpati ny
usage of 16NPT and 16APN choices at your disposal.

#1 Choice: only two program lines required, #2 Choice: it takes four lines to do the same:
01 A1234ABCDO 01 A 1 2 3 4fiest part (break at will)
02 16NPT 02 16NPT
03 fi A Bé&x@nd part
04 16APN

Note that because 16APN is a sub-function, the last line in the second choice is really two program
lines, as you need function 16# and the corresponding index. Refer to the sub-function launchers
section for further details on 16# and 16$).

As a last remark, it comes without saying that the characters in ALPHA should conform to the selected

base and word size restrictions. There wonobét be any e
function will always normalize the input, applying the current mask against it in program mode i thus

possibly changing the input (but wrong) entry into allowed values.

Summary of 16NPT hotkeys:

1 ENTER? terminates the digit entry.
1 RIS terminates the digit entry
1 SST appends digits to buffer and moves to next partial
1 CHS terminates digit entry and changes the sign
T [-] terminates digit entry and does subtraction
T [+] terminates digit entry and does addition
T [*] terminates digit entry and multiplies by 16Y value
T [/1 terminates digit entry and divides by 16Y value
1 [SHIFT] discards digits and changes base mode on the fly
1 [RADIX] discards digits and enters low-bits value from X register
1 [BackArrow] deletes last digit or cancels out if last one.
1 [ALPHA] launches the 16$ function
Note: characters fAbo andforcldriy i eeveeifttedbLED is betterthanthee y c as e

original on the 16C this implementation gives the emulator a feeling closer to the real machine.

(c) Martin-McClure Page 15 of 63 Septembe015

HP16C Emulator Module for the HP-41CX

The 16C Digit Pad and 16C Keyboard Overlay

Related to the quick entry modes, you can also use the digit-pad to directly enter 1-9 single

digits as values. This is done from the 16C prompt, no need to call 16NPT at all i so even if its

applicability is limited to single-d i g i t integers it doesnodt get any weas
functionality in clude quick arithmetic (double, half, triple, etc.) and integer values used as parameters

for other functions. The picture below shows the 16C Keyboard Overlay in all its glory, where the

options for 16NPT, LOW16”" and the digit pad are shown in red color.

2.BITIS 16SQR REV ASR

= = = =
‘ = [o X<
< O | ! wi
o o a T

16x<> 16RUP RL/N RRI/N SL/R

SLFT/R MASKL MASKR L/RJY

.11. . -

16ENTT FCAT 16ABS x?y x?0 CL16x

LSTF/16x WINDOW

= .f - .

HP-16C Emulator Martin - McClure

All functions shown on this overlay require pressing the main launcher first.

Note: You can assign the 16C function to any location on the keyboard. Because it is used very
frequently itds r ec oatrioeatichdram tijne 0 timenta avgié thet associated
hardware wear & tear on the key domes.

Always ensure that Revision fi O 1dr higher of the Library#4 is installed on the system. |

(c) Martin-McClure Page 16 of 63 Septerber2015

HP16C Emulator Module for the HP-41CX

2.3. Data Output i { [SHOW |, [wINDOW |}

When executed in manual mode (RUN), every function in the 16C Emulator module terminates the
execution by calling the data output routines - also directly available in function SHOW. This presents
the result value as a (possibly scrolling) string of digits in the ALPHA registers, preceded by the base
indicator on the left. For a more effective presentation SHOW will leave out the padding zero
characters to the left of the first significat digit, regardless of the selected word size.

This includes the 16C stack and memory handling function like 16X<>Y or 16R CL; so the user can
always expect to see a proper integer A d i g Vvaluesab r@sult of the operation.

This presentation will be omitted when the functions are executed in a program, with the exception of
SHOW itself which will put the result in ALPHA and stop the program if the user flag 21 is set - as it
is the case for the native function AVIEW.

Another possible option to visualize the value in the 16X register is the function WINDOW . Like in the
original 16C, it presents the value across a variable number of 8-character windows, as many as
needed to cover the actual length of the value. For instance in binary base with a word size of 56 it

may take up to 7 windows to review the complete result (maybe less since here too padding zeros on
t he | etbashowm).n 6

Contrary to the original 16C however the listing starts with the MSBin window 0 (the first one), and
this will always be shown when you call the function. The succesive characters will be placed in the
following windows 1 until the LSBis placed in window 6 for the example mentioned above.

The user can navigate sequentially through the windows pressing the and D keys, or randomly
get into any specific window by presing its corresponding number (from 0 to 7) on the number pad.
Y o u 6eh use thenback arrow key to leave the show, so to speak.

The windows are numbered from AW0: 0 to AW7:0
character is also shown the the right of the LCD in all cases .

When used in a program, WINDOW will take the argument# from the next program line as a non -
merged design i similar to other prompting functions like 16STOand 16RCL.

The True Meaning of GRAD revealed.

If you always thought that it stood for a so -called centesimal angular mode seldom-used (except by
surveyors webre told) then)youbre in for a nic

GRAD r eal | y GRetter thdnsAlphaoDisplaffo - The GRAD annunciator will be lit when the
value to display exceeds the 24-character limit of the ALPHA registers, as a visual clue that you need
to use WINDOW to see the complete value.

This will only occur in binary base mode, with word sizes larger than 24 bits, and when the significant
bits exceed that number (remember the | eadiwely
served by SHOW using the ALPHA register- even if it is exercising its scrolling capacity.

(c) Martin-McClure Page 17 of 63 Septerber2015

pl aced
e revel
zeroes

HP16C Emulator Module for the HP-41CX

Letds see an example using a | arge word size (say WwWs:
show it in binary using the WINDOW function screens:
d. 12IH567T78Y
USER 1}
Exceute BINM (this sets GRAD), and WINDOW . Then use the hot keys to access all the relevant
screens as follows: - Note the storage order of the bits, with the MSB in the leftmost position of WO
and the LSB at the rightmost position of W 3
1L ra e] l'l'll'll'l"b 1 (I ™ A lﬂlll‘lﬂ'b
L bOEr ES PEF EF P OF. LS | Ay A PEF " P OER ES.
USER GRAD 0 USER GRAD 0
Wl 28dgd 182 W 5 R I
USER GRAD 0 USER GRAD]
Therefore the binary bit stream is as follows:
B: 1001001 100 101 100 000 001 001 101 101
Summary of Data formats used throughout the registers.
Data is stored in different formats depending on the registers they are in.

- The lower bits registers in the standard stack are stored in BCD (Binary-Coded Decimal)
format, thus you can see them like regular decimal values if you exit the display ed prompt
from the 16NPT output (say for instance pressing the back arrow).

- The higher bits registers in the 16C buffer are stored in binary format, i.e. Non -normalized
numbers or NNNO&s. Real i ze t h aibitsfirst will b&e nopvertedito h o per a
binary, and only then the operation will be applied.

- The visual repr es e nt lauffer mgisters is stdreu es chavdicter dligites
ASCll code. It mayt ake up to 64 characters; therefore ther

the original 16C machine. Realize that whilst the ALPHA register is the repository for SHOW,
the information shown in the WINDOW screens uses the LCD as a vehicle instead.

16T | 16z | 16z | 1eX EX, Binary (MMN) FX, ASCII

upper hits , Binary (INNIN) — F7

A E4 F6
r 1 E3 F5 %
b10 b1l b12 b13 E2 | F4 o
T z ¥ X E1 F3 =

l. J F2

I F1

lower bits, Decimal {BED) ~ FO

¢) Martin-McClure Septerber2015
p

Page 18 of 63

HP16C Emulator Module for the HP-41CX

3. -WHAT'" SNEW & DI FFERENT

3. 1. - Differen ces from the original 16C.

The obvious differences are the dedicated hardware - like the keyboard layout and the LCD. These
account for the most dramatic changes in utilization, since on the 41 the 16C Emulator is just one of
the many other modules that can be used simultaneously, and it needs to co -exist with the 41 native
OsS.

But far from being a disadvantage that makes it much more interesting, as you benefit from the
power and capability offered on the 41 like extendend capacity in data registers and program space,
larger LCD with automatic scrolling functionality, and of course the ability to compbine the 16C
functions with any other from the 41 OS at the same time.

Is it a better 16C than the original 16C? Well that depends on your previous experience and bias i so
if you live and breathe by the original machine this module will make you do things a little different i
butifyoudbre just a casual user or start anew the
convenient tool, with a more sophisticated user interface and rounder function set - not lacking any
functionality from the original machine.

Automated Base Conversiors: the four modes.

There are five base modes on the 16C Emulator. Binary, Octal, Decimal, Hexadecimal and Floating
Point. By default the floating point mode is pre -selected upon initialization, i.e. the first time the
calculator is started with the 16C Module plugged in. There will be no value displayed while the
machine is in FLOAT mode.

The number conversion between the different bases is performed automatically as you select the base
mode of choice. There is therefore no need to exceute any function f or visualization i just change to
the base of choice using one of the four base mode functions: BINM , OCTM, DECM, and HEXM.
These are located in the top row on the 16C keyboard, assigned to the [B], [C], [D], and [E]
respectivelly.

Note: Another way to change the base mode is using the SMOD launcher i which will be described
later in this section.

The display always shows the base digit on the left, so you can tell which based it is expressed on.
Note that the values in the 16C stach will not change when you modify the base mode: they are in
binary and BCD as explained before, and the value display routine will represent them in the
appropriate base as per the current selection.

o (23IYsgsE These three numbers are indeed very different from
: T5EE 5 each other i the base identifier gives them away.
- q o -3 Dondét forget to changligitalt he
== US;HE 345 DE ! base; no display will occur in FLOAT mode.
H iZd3H56 T
UZER 0

(c) Martin-McClure Page 19 of 63 Septerber2015

16C Er

def au

HP16C Emulator Module for the HP-41CX

3.1.1. Number Entry on the 16C Stack

By default the 41 keyboard knows nothing about the 16C module. The standard functions are always
available for real-number operation (call it the FLOAT mode if you wish). This is important to
remember, as it imposes some discipline on the user to differentiate them from the 16C -version of the
same functions 1 for instance for number entry and stack handling .

For exampl e, pressing 12340 , ENTE R"registersolit @ doest he r e al
nothing good to the 16C stack at all T just the opposite!

For a proper 16C value entry you must use 16NPT at all times i even in its quick-entry and shortcut
modes. Thus the right keystroke sequence will be: 16NPT, 12340, ENTERAM.

Not much more elaborate, as it only requires the 16NPT as a prefix. This function will lift the 16C
stack automatically so no need for a final 16ENT” at the end in this example.

Similarly other stack manipulation and memory exchanges need to use the 16C-versions instead of the
finativedo standard on . keyHaanmd eomésgo thve resaues astit has most of
them pre-assigned to their logical positions (like 16STO in the key, 16RD N in the key,
etc). All you need to remember is always press the 16C launcher key first then the 16C function to
complete the action.

Using the launcher is a more convenient method than populating the 41 keyboard with m ultiple
standard key-assignments for three reasons:

- It doesndét prevent the standard functions from be
- It allows direct access to both main functions and sub -functions equally
- I't doesnd6t take extra mesemanykeyrassignmerttser s t o hol d al
However if those points are not an issue you can always re-configure the entire 41C keyboard using
ASNt o map the mai n f un c t-functioss)as yoa fnmd it more appropridteo r s u b

Entering lower-bit values with LOW16 »

As an alternative to 16NPT you can also use sub-funtion LOW16 ~ for a quick-entry mode of values
in the lower-bits half-register. With this method you enter the number directly in the X -register
instead of the ALPHA registers to hold the characters.

Obviously this only allows introducing digits 0-9 since the standard X- stack register is used. Besides
that, the value entered will be normalized to the base and word size conditions in effect by the
function, so that the end result will comply with the sta tus of the machine.

Examples.: with word size = 16 and HEX mode selected

12345, 16$ ALOW16" 0 =fH: 30390
1234, LASTF => i H: C

But with word size ws=8 and BIN mode selected instead:

12345, 16$ AL OW1 6~ 0 i bi4B0010 , chwdrréespondsto 57 in decimal i i.e. the value has
been truncated to 8 bits

Not e: pressipragl ot hem fpd ioepln$ numbet key) (s the best shortcut to enter
LOW16”" in program mode; just make sure the number is already input in the prev ious program line.

(c) Martin-McClure Page 20 of 63 Septerber2015

HP16C Emulator Module for the HP-41CX

3.1.2. Flags as Mode Semaphores.

Personally | always thought that one of the shortcomings on the original machine is that it offers no

visual information for the currently selected si gned mode. Whet her it i s un
complement thereds no indicat i iterpretnhe tedules 1 dviich peliexeymet o hel p
there will be differences depending on the current setting. As a consequence | need to use the

STATUS function very frequently just to see the mode, not very eff icient in my mind.

On the 16C Emulator this is always sho®@n,1dbfy aothde i i r st
At all times one of those three will be set to show you the current complement mode, where zero

means unsigned mode. They act as semaphores more than programming flags, and while you can
manually changed them using the 41 SF/ CF functions i
Some functions rely on their status during inter medi
back by the 16C Emulator at the first opportunity to syncronize with the complement mode set.

In other words, flags 0,1, and 2 are reserved as they are taken over by the 16C Emulator in ther role
of signed/unsiged mode semaphores.

The example below shows the decimal representation of H: 9000 in 1CMP and 2CMP modes for a
word wsize of 16 bits. Can you tell at a glance which one is which?

d. -cd867¢c d. -286 7 ¢

USER 2 USER 1

Carry and Out of Range flags. (CY & OOR)

The original machine uses flags 4 and 5 for the Carry and Out of Range conditions respectively. The
di spl ayCds foows Clar &y fsocert QORI sfiet, which therefore are n

On the 16C module however the flags used are 3 for Carry and 4 for OOR i obviously those are also
shown in the annunciators area of the 41 display so they were the logical choice. As to why carry is 3
and not 4 as in the original machine, well we went with the rhyme as opposed to the reason this time.

CY and OOR will be set and cleared during the execution of numerous functions, summarized on the

table below. In general the CY management is identical to the original machine but t he Emulator

applies a more extensive rule for OOR, in that there are additional instances besides the math

functions that also modify OOR This preventsconfusi ng i nter pr e tODRI sred afowdwlhays
left-over from several operations before.

In other words the OOR flag is triggered more frequently on the emulator than it is on the original

machine, like for instance when recalling a number from memory using 16RCL or another 16C stack
function (16RDN or similar), in the event that the value being placed in the 16X register is too large

for the current word size 1 i.e. the ws had changed since that number was first stored in the other

register.

Note: For more on the CY and OOR flags, you should also refer to the Diagnostics section for
flashing messages on Carry and Outof-Range conditions, userselectable in a configurable optional
mode.

The table in next page summarizes all functions impacting the status of CY and OOR flags:

(c) Martin-McClure Page 21 of 63 Septerber2015

HP16C Emulator Module for the HP-41CX

Function | Carry
16+, 16- yes
16* no
16/ yes
16SQRT yes
16X"2 no
16CHS, 16ABS no
DBL* no
DBL/ yes
SL(N), SR(N), ASR yes
RL(N), RR(N), yes
RLGN), RRGN) yes
16X<>Y, 16X<>, no
16RCL, LST16X no
16RDN, 16RUP no
CL16X, CL16ST no
16WSZ no

\ Out of Range |

Remark s

yes
yes
yes
no
yes
yes
cleared
cleared
no
no
no
yes
yes
yes
cleared
yes

|Resul] > |max(ws)|
Result > max(ws) => OOR
RMD#0, => CY

RMD#0, => CY

Uses 16Y and 16X regs
very CMP-dependent
y*x ->(X&Y)
(Yy&2z)/x

may push msb/lsb => CY
may push msb/lsb => CY
may push msb/Isb => CY

16X > max(ws) => OOR

16X > max(ws) => OOR
16X > max(ws) => OOR
16X > max(ws) => OOR

-> X; RMD#0 =>CY

Table 3.1. Functions affecting the status of CY and OOR flags

1 Blue font functions denotes additional OOR conditions beyond the original 16C machine

1 SLN and SRN are new additions in the emulator. They behave like the rotation counterparts

and only set/clear CY on the last position shifting.

1 max(ws) is the maximum value that can be represented with in the selected ws, max(ms) =

2’"ws -1. See appendix Al for a complete table, and sub-function WSMAX for their calculated

values.

No Leading Zeros flag. { |[LDZER |}

Since flag 3 is reserved for Carry that meansthe iLeadi ng

Zer o dram theul@Ccis noonal i ty

available on the emulator in the same way 1 zeros are always omitted by default as it was described

in the data input & ouptut section s of this manual.

LCDsotdi dnobt

Space is at a premium on both ALPHAand the

s a good ideato use it with non -relevant zeros. The only logical and needed
exception is during the digit input process in 16NPT , which allows for the first digit to be a zero.

You can however use the subfunction LDZER to shows the value in 16X including the leading zeros;
as a function of the base and the word size. Like it is the case in the original machine this functionality
is not available in Decimal mode (where the actual number of digits depends on the entered values) .

It is also somewhat limited by the maximum length of the ALPHA registers,soi t 6 s not r ecommen
you use it for long binary values (all other cases will fit).
Examples: show the leading zeros for the OCT value 13 with ws=13, then changed to HEX:
O, ddeg i 3 H 2déb
UZER 2 UZER 2
(c) Martin-McClure Page 22 of 63 Septerber2015

HP16C Emulator Module for the HP-41CX

333. What 6s the Status?

The STATUS function is meant to show the current configuration of the emulator settings. Like in
the original machine the display includes the complement mode and the word size, but contrary to it
the flags information is replaced with the currently selected base. This should not be a shortcoming
considering that the status of the relevant system flags 0 -4 is always shown in the annunciators
section of the LCD display, thus they are visible at all times.

Taking advantage ofthea |l phanumeric capabilities the compl ement
fi2co. Likewise the selected base i s spel.Thettxtout as
is right justified and will stay in the display for a short while before the curre nt value in the 16X

register is shown again.

Be-5Y-HEX le~-32-0C7

USER o 24 UZER 1 24

k Fl

-

The examples above both show the machine recently had both Carry (user flag 3) and Out -of-Range
(user flag 4) conditions. You can see that the complement mode matches the status of flags 0-1-2.

Flashing Functions.

Some functions will flash the result for a while and then revert to showing the current value in the 16C
register. For STATUS this is also the case on the original 16C, and like on it you can hold the flashing

n
n

display by holding any key -after you have allowed it to be present

the ANULLO message from the 41 OS.

Besides STATUS the other flashing functions are #BITS , WSFIT and 16WSZ? i the last two being
new additions to the function set, which will be de scribed later on.

New (Flashing) Error Conditions.

The Division functions may show the error conditions to denote a math error condition 7 either a
division by zero in 16/ or a quotient result too large for the selected word size in DBL/

DIy By ZERO PARAM ERR

USER 2 USER 2

[| 4

These error messages will briefly show in the display, but the original arguments will remain in the

16C stack. I f this occurs during a progbAMIAMERRDR execut

message.

(c) Martin-McClure Page 23 of 63 Septerber2015

HP16C Emulator Module for the HP-41CX

3.1.4. Prompting Functions.

The HP-41 features a user interface design more advanced than what the original 16C has. One of the

ni cer
manual mode.

featur es

i s t

he

prompting

functi

ons,

Whenever possible we have favored this implementation over the usage of the 16X register for
function parameter, saving so keystrokes and simplifying the data entry sequence i as this approach
keypad or 16NPT to enter the parameters.

removes the need to use the

This is only applicable to the operation in manual (RUN) mode. In Program mode the functions
behave in the same way they do on the original 16C machine.

The new prompting functions are shown in the table below:

Function Parameter Function Parameter
MASKL 1tows RRN 1tows
MASKR 1tows RRCN 1tows+1
Sbh Otows-1 RLN 1tows
Cbh_ Otows-1 RLCN 1to ws+1
b? 0tows-1 16WSZE | 0< ws <65
SLN _ 1tows WINDOW _ O<=w#<8
SRN 1tows

Common implementation features to all these functions are as follows:

- Parameter entry requires two digits, always assumed to be decimal numbers irrespective of
the selected base mode.Y o u

10.

can

use t he

fisofto

keys

on

- The prompts will stay put (i.e. the func tion will ignore the input) for parameters larger than
the maximum word size (64).

- A warning message reminding of the current word size i WS = 0 wilh be shown if the
parameter entered is larger 1 In a running program the message shown will be &®UT OF
RANGEDIn those instances, and the execution will halt at the current program line.

- Ent er iOmgwiilol

toggl e

bet ween

compl ementary

MASKR, RRN into RRCN, RLN into RLCISLN into SRN,and vice-versa. This does not impact
the bit selection functions Cb, Sbh, and b? i for which zero is a valid input value.

- Pressing [SHIFT] will activate the INDirect facility T i.e. the parameter is retrieved from the
standard data register entered at the prompt. No support for ST ack registers is provided, so
do not use IND ST_ even if you can bring that option to the display.

- When you enter the functions in a program the prompt will be discarded by the OS T so you
can fill it with any values.

- In_a running program

the parameters are taken from the 16X register i the same as in the

original machine. Just fill the prompt with any values when you enter the function

ignored by the OS at that point. Note that in program mode a zero or values larger than the

current word size will also trigger an out of range condition.

(c) Martin-McClure

Page 24 of 63

Septerber2015

t

itheyoll

whereby th

he two
functi
be

HP16C Emulator Module for the HP-41CX

3.1.5. Test Functions Launchers.

You may have noticed the conspicuous absence of the test conditional functions from the 16C overlay
i or almost, since there above the key are to be found the two test launchers , X?Y and X?0 i
very much following the design used by other calculators, like the HP-32S.

All individual test functions are in the auxiliary FAT, thus they 6 rimeplemented as sub-functions. In fact

that 6s al so

on the overlay.

tXPOdaurclesiteelf f even if thdt fact is totally transparent to the user and

There are six different tests for XY conditions, plus another six for zero conditions. Each group is split
into two screens, with three choices on each of them as shown in the pictures bel ow. You can use the

[SHIFT] key to move between the screen choices within each launche r , and the
change the launcher type back and forth:
X2y = £ = il X2y i hoo N
SER 2 J SER SHIFT 2
And pressi ng t Wehafgastatieaarodteskgeoyps: [
x2a = £z < —] x2a # 3=z i
WSER 2 WSER SHIFT 2

In all cases the selection is made using the top row keys [C], [D], and [E] T You can also hit the
fi a nc horAjtotoggk petween the X?Y and X?0 launchers right from within them !

Being subfunctions adds no restriction to the testing functionality, e ven if an index line number is
required in a program to identify which one is to be used. As it is known, the non -merged functions
cannot be located *after* a test conditional (or otherwise the skip -if-false rule will jump into the

middle of both lines) T b u t

thereobs

not hi

ng pr evenitadnorgal préqgeam

line. The non-merged functions take care of updating the program counter to always ignore the
index# line, so the YES/NO, do-if-true rule is perfectly applicable in this case.

Examples:
a. Correct utilization b. Incorrect utilization
01 16# 01 FS?25
02 6 02 16#
03 GTOO01 03 6
04 GTO 02 03 GTOO01
04 GTO 02
Tha t thesreason why the tests have all six cases, including =0 ,whichwoul dnét be
using a chained double conditional like it is done for the standard OS functions.
The table below shows the sub-function indexes (in decimal) used for the test conditionals:
Test Criteria Xvs. 0 Xvs. Y
= 6 12
7 13
> 8 14
>= 9 15
< 10 16
<= 11 17
(c) Martin-McClure Page 25 of 63 Septerber2015

flanchor o

possi bl

HP16C Emulator Module for the HP-41CX

3.1.6. 1SZ/DSZ and Function Parameters.

The HP-41 has its own implementation of the index -controlled functions 1ISG and DSE, more flexible
than those in the HP-16C and HR15C i which use the HP-67 model with 1SZ and DSZ instead,
whereby a unique indirect register is used and the inde x value is always made with zero.

For convenience the emulator includesDSZ and ISZ, whi ch use the ROO0O register
vari dbil.e Thherefore you wonot need to worry about con
compatibility using 1ISG and DSE. Notice however that this implementation still uses a standard

register (RO0) and not a 64-bit logical register like it is the case for the 16C stack or the other

registers as accessed byl6STO and 16RCL.

While it is safe to assume that loop counter s and ot her par amet ebitlémittwaundt e x c .
can al ways #fconver thibformatsing LOWESX in case that ia reduived.

Similarly, the parameter for 16WSZE can only go up t ooweriltsalocate6dlsits a bi t o
for that one too ; therefore you can just use a standard value in X and 16WSZ will accept it as a valid
input. Remember however not to disturb the 16C stack by doing so!.

Contrary to this situation, the masking, bit shifting and rotation functions expect 16C-formatted values
when used in a program for the number of positions (or number of bits in the MASKL/R case) i thus
y o u s h wselthd stalhdard X-reg workaround with them. As a reminder, the three proper ways to
do it are:

- astring value in ALPHA dus 16NPT (and optionally 16APN), or

- adecimal value in real-stack X register plus LOW16" , or
- avalue from 16RCL, 16 X<> , or any other 16C stack operation.

Reqisters and Word Size changes.

There is no effect of a word size change in the data stored in t he data registers. This is different from
the real 16C machine, which adjusts the values in memory to fit the currently selected word size i
spilling over adjacent registers in case of a wordsize decrease and splitting across registers in case of
a wordsize increase.

Put in another words, the size of the storage registers in the HP -41 is fixed, always 56 bits whereas on
the 16C it is a variable number defined by the smallest multiple of 4 bits (half-bytes) equal to or
greater than the current word size.

Depending on your programs and needs that may be a fundamental difference or just a negligible
detail T but nevertheless it is important to be aware of if for the cases where this becomes a relevant
consideration. Suffice it to say that the memory allocatio n is a very particular affair on the 16C, much
more intricate than on any other HP calculator to say the least.

(c) Martin-McClure Page 26 of 63 Septerber2015

HP16C Emulator Module for the HP-41CX

3.1.7. Square Root and Square Power { | 16SQRT |, [16x"2]}

The Square root function is a bit of a hybrid in that is uses the native OS r outines to calculate the
result. This is clearly a way-around approach that works just fine for input values lower than 2733 but
that needs to be adjusted for larger values of the input parameter.

The adjustment is done in a short FOCAL code stub triggered by the function itself when required. It

simply checks if the square power of the result matc
perfect square that needs no adj subtraotiiagnone to thefresult,t doe s n
and it will always have to set carry.

The only caveat to this approach is that the original input value is not left in the LST16X register i but
in the 16Y level of the 16C stack. In any case the final result will only be shown in manual mode, not
if the function is executed in a program

The program below illustrates the method used for the adjustment of the result calculated by the
16SQRT function. The actual implementation is more clever and splits the execution between an intial
MCODE part and a final FOCAL adjstment only done when needed.

[1 LBL "64SQRT" |
2 CF 05
3 CF 06
4 32SQRT 32-bit square root
5 LOw1ie” replicate result in 16C stack
6 LST16X recall input x
7 16RDN place it in 16T level
8 16* calculates sqrt(x)"2
9 16RUP recall x to 16X
10 16X#Y? is X # sqr(x)"2?
11 SF 05 yes, set flag 5
12 16X>Y? is X > sqgr(x)"2?
13 SF 06 yes, set flag 6
14 LST16X recall sgrt(x) to 16X
15 FC? 05 were they different?
16 GTOO05 —— no, the result was ok
17 FS? 06 was it greater?
18 GTO 06 — no, skip adjustment
19 1 yes, subtract one
20 - (always < 2°32)

[21 LBLOG <«—
22 SF 03 sets carry

[23 LBLO5 <«— |
24 SHOW show result
25 END done.

The square power 16X"2 is a subfunction available for keytroke convenience, as it is assigned to the
X2 key on the 16C keyboard. It uses the main 16* code with 16Y equal to 16X, thus it is completely
equivlent to the sequence { 16ENT” , 16* }. There is no byte savings in a program using either of
those approaches 4 bytes will be used.

Therefore you need to keep in mind that two levels of the 16C stack will be used. Note that following
the standard conventions the input parameter is left in the LST16X register.

(c) Martin-McClure Page 27 of 63 Septerber2015

HP16C Emulator Module for the HP-41CX

3.1.8. A few Examples Gray Code, Bit Extraction, Add w/ Carry

The following examples are taken from the HP-16C article published in the May 1983 HR-Journal
issue. With them you should get familiar with the w ay the emulator functions are used to prepare
16C-like programs on your HP-4 1 .
opposed to their keycodes on the original machine - and enjoy seeing the goose flying.

a. Binary-to-Gray and Grayto-Binary conversions

Wedr e

appreciate lyaving ¢hé function names shown as

| Note that the test function 16X#0?

Really corresponds to the combination of

the two program lines:

| 1 LBL "GRAY" 7 LBL "BIN"
2 16ENTA 8 16ENTA
3 SR 9 LBL 02
4 XOR 10 SR
5 SHOW 11 XOR 16# and
6 RTN 12 LAST16 7
13 16X#07?
14 GTO 02
15 16RDN
16 SHOW
17 RTN

Example: convert b: 11010 to Gray code and back to binary.

Keystrokes Result Comment

BINM b: xxxxx current 16X content
16NPT, 1,1, 0,1,0, R/S b: 11010 enters binary value in 16X
XEQ AGRAYDO b: 10111 Gray equivalent

XEQ oBI No b: 11010 Original value

b. Bit Extraction and Addition with Carry

back

[1 LBL "bXT" 1 LBL"16+C" | Note the usage of 16NPT to enter values
2 16RDN 2 CFO03 to the 16C register, as shown in lines
3 RRN 3 "0 7/ 8 of AbXTO and | ines
4 16RUP 4 16NPT
5 LAST16X 5 RLC Note also the carry f
6 16- 6 16+ emul ator , not 40 as
7 " 7 CFO05 machine.
8 16NPT 8 FS? 03
9 16+ 9 SFO05 Apart from that the programs are
10 MASKR 10 16+ practically identical to the original ones
11 AND 11 FS?05 on the real 16C machine.
12 HEXM 12 SF 03
13 SHOW 13 SHOW
14 RTN 14 RTN

Examples: Extract bits 2-5 from the value H: 39 (or b: 111001)

Keystrokes Result Comment

HEXM H: XXXX current 16X contents

16NPT, 3,9, R/S H: 39 enters 39 in 16X

, 2 H: 2 lifts 16C stack

16CHS) H:5 lists 16C stack

XEQ AbXTOo H: E or b: 1110

(c) Martin-McClure Page 28 of 63 Septerber2015

3/

ag

n

-

HP16C Emulator Module for the HP-41CX

3.2.- New functions not present on the

original 16C.

This section needs to start describing the other function launchers 7 one of the more relevant
additions to the functionality of the emulator not available in the real 16C machine.

There are two kinds of launchers: those that group functions by complementary operation (like SROT
and SSHF), and those that do it according to a functional criteria, (such as SMOD, SBIT, SLEFT and
SRGHT). Note the consistent use of the sigma letter in their names to denote a launcher funtion.

3.2.1. Rotations Launcheri { SROT }

This launcher groups the 8 rotation functions into two screens, one for operation excluding the Carry
bit and another for the operation including it. Once it is up on the display you will use the [SHIFT] key
to toggle between each screen, as shown below:

. L LN RN R £t L LN RN R
USER 2 USER SHIFT 2
Where the only visible clues are the SHIFT
left. The function table is below:
RL Rotate Left RLC Rotate Left thru CY
RLN | Rotate Left n positions RLCN _ RLC n positions
RRN | Rotate Right n positions RRCN RRC n positions
RR Rotate Right RRC Rotate Right thru CY

3.2.2. Shiftings Launcheri { SSHF }

This launcher groups 4 bit shifting functions in the first screen, plus another 4 bit-manipulation
functions in the second. Once it is up on the display you will use the [SHIFT] key to toggle between

each screen, as shown below:

=3 L LN RN R S I Ltd FRdJd R
USER 0 USER SHIFT 2
SL Shift Left DGLJ Digit Left Justify
LN Shift Left n positions LJY Left Justify
RN Shift Right n positions RJY Right Justify
SR Shift Right ASR Arithmetic Shift Right
Remarks:

row keys [B] to [E] as per the screen layout.

Hitting

Both the Rotations and the Shifting launchers expect you to choose the option using the top

t he A @mtleelnonr-shifted scyeen)[will move back and forth between

these two launchers, the Rotation and the Shifting screens.

register again.

Pressing the back arrow keys cancels the function and displays the current value in the 16C

(c) Martin-McClure

Page 29 of 63

Septerber2015

annunci at

HP16C Emulator Module for the HP-41CX

3.2.3. System Modes Launches i { | SMOD |and |SBIT |}

Moving on now to the #Afunctional
the different choices as a string of letters separated by colons, and the selection is made using the
initial letter of the function chosen.

The first two group the signed modes, the base modes, and other system configuration controls i
very fundamental part of the system indeed. SMOD is assigned to the | USER| key on the 16C
keyboard, and shows the following teo screen when called i toggled with the [SHIFT] key as usual:

j ‘B:v:T:Z - DRI 4LS7

UEZEFR SHIFT 2g

OIIHIE - 80 P aSIT
USER 2

Unshifted screen.

Roughly speaking the left half of the LCD is for the base modes (Binary, Octal, Decimal, Hex and
Floating Point Mode) whereas the right half of the LCD is for the signed mode (UCMP, 1CMP and
2CMP) plus the word size setting (16WSZE, 16WSZ?). The question mark is for STATUS.

an that the promatdncludésa unc her

SMOD
BINM Binary Display UCMP () Unsigned Mode
OCT™ Octal Display 1CMP 16s Compl emer
DECM Decimal Display 2CMP 26s Coml pemer
HEXM Hexadecimal display 16WSZE _ | Sets word size
FLOAT Floating Point mode 16WSZ? Shows Current ws
- Separator - shows © STATUS @) Shows the Status
Shifted sscreen:

Here too the left part is for general configuration and information functions, whilst the right part
includes bit and digit reversal and sums - plus the three general bit manipulation functions.

SBIT

BASE? Recalls current base REV Bit reversal
16KEYS 16C key assignments DGDS Decimal Digit Sum
TS/L Toggle Silent/Loud # BIT #Bits set (*)
LDZER Shows Leading Zeros Cb_ Clears bit
- Separator - shows © Sh Sets bit
DGRV Digit Reversal b? Is bit set?

(*) Use t he 7 Hohashipeundswmb@®@r# f or t he

One of the main advantages of these launchers is that they provide direct access to both main and
sub-functions in their choices. You should also note that the functions 16# and 16$ are also included
in the choices even if not shown in the LCD i just by pressing the | USER and | ALPHA keys as well.

So there you have it, perhaps a bit of repetition but you have it both ways so no excuse for not being
able to accessthe functions or subfunctions in a split second anymore.

Septerber2015

(c) Martin-McClure Page 30 of 63

HP16C Emulator Module for the HP-41CX

3.2.4. Left and Right Launchersi { |SLEFT| andISRGHT\}

The last two group many shifting and rotation functions together using the geometric position as a
criteria i as opposed to the specifit bit manipulation action as in the previous cases. You can think of
these two launchers as the two personalities of the same function, and as you surely have guessed
already youo6ll wuse the [SHIFT] key to toggle between

USER 1] PRGM USER SHIFT 2

LL Y MSRNTHT j LR JHMSRNC YD

There are 9 functions on each screen, as shown on the function tables below:

SLEFT _ SRGHT _
LJYy Left Justify RJY Right Justify
REV Reverse Bits ASR Arithmetic Shift Right
MASKL Mask Left MASKR | Mask Right
SLN Shift Left n-positions SRN Shift Right n-positions
RL Rotate Left RR Rotate Right
RLN Rotate Left n-positions RRN Rotate Right n-positions
RLC Rotate Left thru CY RRC Rotate Right thru CY
RLGt RLC npositions RRGt RRC npositions (*)
STATUS(?) Shows the Status STATUS(?) | Shows the Status

(*) Use t he #AHOohashpeundsebd+# for t he

SLEFT is a main function but SRGHT is located in the Auxiliary FAT, with index# = 2

Note also that the main four launchers are interconnected and can be navigated sequentially using the
XEQ key. Refer to the chart in next page for a complete representation of the options.

Launchers as subfunctions.

There are four launcher functions located in the auxiliary FAT, thus implemented as sub-functions in
the 16C Emulator module: SSHF, SBIT, SRGHT, and X?0.

Because subfunctions are always programmable (i.e. cannot be declared as non-programmable),
when you execute them in program mode the function itself will be entered into the program. This
means you cannot use them this way in program mode to directly access their menu choices as it
happens in manual mode.

To work-around this limitation you can use their i p direal 0 | a-uwhichhas main functions are
properly declared as non-programmable - and toggle their functionallity using either the SHIFT key
and/or the anchor key [A], as follows:

1 UseX?Y, [SHFT] -> for X?0 options

1 Use SLEFT, [SHIFT] -> for SRGHT options
1 UseSROT, [A], [SHIFT] -> for SSHF options
1 UseSMOD, [SHIFT] -> for SBIT options

Naturally you can also access any of ther menu choices by calling them individually, using its index or
name within the auxiliary FAT 1 as describedin the next pages.

(c) Martin-McClure Page 31 of 63 Septerber2015

HP16C Emulator Module for the HP-41CX

3.2.5 Launcher Mapsi Navigating the Function Shortcuts

A picture is worthten-t housand wor dsé

B

o

(c) Martin-McClure Page 32 of 63 Septerber2015

HP16C Emulator Module for the HP-41CX

3.3. Remaining functions not on Launchers.

As there are several other functions not included into any launcher, one would assume that there
must be some other way to access them. After all they can also be very useful either in manual mode
or included in your program, and who knows, some of them can even become your very next favorite
one.

Those amongst you familiar with the SandMath or PowerCL modules would already know the answer
is in the sub-function execute functions, which for the 16C Emulator are 16# and 16$.

There are three ways to execute any sub-function:

- by name, spellingdg6$ad | fdréarwrpoursoneeniende the ALRHA mode
is activated by 16% so you can start spelling the function directly, saving another pressing of
the ALPHA keyi (like it is needed for COPY for exampe).

- by its index, ent er ilé#g_ toh ep rrounmh e r(i ghe sdibvénaiomi |)
name is briefly shown in the display when it is entered using its index at this prompt , as well
as during a single-step execution in a program. This provides visual feedback to the user as to
whether the function was that intended to use.

- by direct enumeration using FCAT, hitting when the sub-function name is shown and
the enumeration is paused (single-stepped).

In terms of the 16C keyboard, you can access 16# pressing| PRGM and 16$ pressing | ALPHA| keys
respectively at the prompt (and some other launchers as well) i all conveniently layed out for
you.

6% tbd - -

UZER 23 ALPHA U=ER 23

Note: Evenifthe si gma Sharcaat érdurifigyhp 465 prompt, it however wo n 6 t be
recognized by the name search routines due to some conflicts in the character value assignment. You
need t o NoOsec htalrea cfi iear tha 164 fuechod followed by the sub -function index. This

only impacts the sub-function DGDS and the three sub-function launchers covered before.

(c) Martin-McClure Page 33 of 63 Septerber2015

HP16C Emulator Module for the HP-41CX

3.3.1. Last Function functionallity and Programability.

Also common to the other modules (not surprisingly since the same routines in the Library#4 are
used), the function is either executed in manual mode, or automagically entered as two program
lines in PROGRAM mode. Furthermore the subfunctioncode is stored in the LastFunction buffer so it
can be re-executed pressing LASTF on the 16C keyboard (Radix key at the 16C__ prompt).

Note that 16$ can also be used to execute functions in the main FAT, or even functions located in
other plug-in modules: if the function name is not found in the auxiliary FAT the search continues
automatically through all the m odules plugged on the 41 system; and only if no match is found the
ONONEXISTEN® error message is displayed.

Obviously

unpercieved on the 41-CL set in TURBOL0 or higher in case you wonder.

LASTF Operating Instructons

The Last Function feature is triggered by pressing the radix key (decimal point - the same key used by
LastX) while the launcher prompt is up. This is consistently implemented across all launchers
supporting the functionality in all four modules i they all work the same way.

When this featur

function name. Keeping the keélyLod emrde scsaendc efl csr

mode the function is execut e d ,
or directly executed if not programmable.

Ifnolast-f uncti on yet

the error

e | sLABTev obkreide, f liyt ifni rtshte sdhioswpsl afly ,

and in PRGM mode itéos

added as t

exi stNO,LASTBei ersbbpwmessbagehé buff

NeeBUBa dge sit € aid

Ki i
re

USER

L HS T F

ND BUF

USER

The LastF buffer is maintained automatically by the modules (created if not present when the
calculator is switched ON), and its contents are
No user interaction is required.

The buffer reserves one register for each of the four modules that have sub -functions, plus the header
also stores the 417 last-function - which is always in its main FAT. Therefore up to five last-functions
can be simultaneously available at any given time. A total of five registers are used, as follows :

Register | Used for:
b4 SandMatrix fcn id#
b3 SandMath fcn id#
b2 PowerCL fcn id#
bl 16C Emulatog Timebased Seed (RND)
b0 Headerc w/41Z fcn id#
Not bad for a single-line, 12-chars LCD machine fom 197 9, wonot

proves

you agree?

t hiet &g ama to thh e vghat matters But tite BKE/ oftha wizhrd who uses it 0

(c) Martin-McClure

Page 34 of 63

Septerber2015

thereos a noti ceablakthist-imet pemel t hatass bbb a

qui c
tah ewhaiclt e

wWo |

er

pre:

Wh

HP16C Emulator Module for the HP-41CX

3.4.- Individual Description of the new functions.

The remaining sections provide a succint description of the added functions not included in the
original 16C calculator and not covered already in previous chapters of this manual. Some are little
embellishments of standard 16C functions, or natural extensions of the same ideas that probably
wer eno6t 0 thedrigindlendchine due to space constraints. They are located in the auxiliary
FAT and therefore you need to use the 16# or 16$ launchers to execute them.

3.4.1 Negative Logic Functions { [NAND |, [NOR |, and [XNOR |}

Not needing much as description, these three round up the set of logical functions and save y ou from
having to NOT the result of their positive counterparts.

Exampl es. Herebs a tabl eandi6x=d,il6YeOct results wit
Value NAND NOR XNOR
Unsigned | d: 4294967295 | d: 4294967294 | d: 4294967294
1CMP d: -0 d: -1 d: -1
2CPM d -1 d: -2 d: -2

3.4.2. New Word Size related functions. i { |WSFIT |, | WSMAX |, [16Wwsz? |}

1 16Wsz? is a flashing function that in manual mode shows the current word size briefly on
the display, and then enters that value in the 16X register - peforming a stack lift. You can
maintain the flashed message up holding any key once it has been showni or i t 61 |
itself out.

1 WSMAX simply returns to the real X-register the maximum value that can be represented
with the currently selected word size. In math terms, this is calculated by the formula:

Wsmax = [eMws*Ln 2)] T 1

1 WSFIT will change the selected word size to the needed number of bits to represent the
current value in the 16X register. This has two possible uses, one to downsize the word size in
case the value in 16X is smaller than the maximum one (i.e. eliminating thos bits used by the
leading zeroes), but another one is to increase its size as per the binary value exisiting in the
16X register i which in some instances may be a superset of its visual representation made
by SHOW and WINDOW.

Example. With ws=32 calculate the square of H: 123456.

16NPT A 1 2 3 41%%"d , returns H: 66CBOCE4 and sets the OOR flag.
PressingWSFIT showsthe me s s aWSe=41é f ol | oHwlelBE6CGBYCE4S

(c) Martin-McClure Page 35 of 63 Septerber2015

j ust

HP16C Emulator Module for the HP-41CX

3.4.3. Bit Reversal functioni { |REV|}

Often itds needed to rever §de thahleecalse of incompatible datae o f a
transfer protocol conventions or for another legit reason. This is no surprisingly the subject of applied

math and sophisticated algorithms exist i but this implementation follows a sequential alteration of

the bits to build a mirror -image of the initial word.

Note that the reversion is made on the complete word size, i.e. taking into account the leading -zeros
as well. There are two ways to circumvent that if not desired:

1. Execute WSFIT first to adjust the word size to the number of relevant bits, then call REV.
Realize that the word size has been changed and may need charging back.

2. CallREV and then use RJY on the result to get rid of those reversed leading zeros after
theydre reversed into the LSB positions.

Example: set ws = 12, HEX mode. Get the bit reversal of 9

16NPT, 9, =>H:9 (or b: 00001001)
REV => H: 90 (or b: 10010000)
RJY => H: 9 since 0x9 is a Apolindromedo value, ¢

Example: Verify that the bit reversal of 0xD9 with a word size ws=8 is 0x9B

h' i 4 FA i yTAVTA i h' {A A @ (A 0 i
- PoorEr P " EF EF X B PoEr EF T P EF OFOF
UZER 23 UZER 23

Which is easy enough to check in binary base, but pretty challenging in decimalwit h 286s compl e me
set, as a manner of example:

d. -39 d. - g8

USER 2 USER 2

3.4.4. Right and Left Justification. - { |LJY |, |[RLY |}

There is no Right Justify function on the original 16C but somehow it felt just natural to include that
function to complete the set,ifonl y f or symmetry sake. But thereds al s
way LJY the Left Justify function works.

The 16C Emulator versions return the left- and right-justified values to the 16X register, and the
number of positions needed to do the justific ation in the 16Y register i exactly opposite to the original
LJ function on the machine.

Not much of a difference, as executing 16X<>Y will bring things back to the original shape 1 but
nevertheless important for you bgramboepied fromithe origifal i n c a s ¢
machine.

(c) Martin-McClure Page 36 of 63 Septerber2015

HP16C Emulator Module for the HP-41CX

3.4.5. Shifting multiple Positions i { [SLN|,|SRN |}

The original 16C includes one-position shifting functions SL and SR, which on the emulator have been
moved to the Auxiliary FAT as subfunctions. Their place in the main FAT has been taken by n-position
versions of the same functiions, which as a particular case can also perform the single-position. With
n=1.

The number of positions is entered in the function prompt in manual mode, or taken from the 16X
register when running a program.

SLN __ SRN __
USER o3 USER 0oz
In a program any value larger than the current word size o r zero wi |l DATA ERRORB t in a

condition, but in manual mode:

1 Entering a number larger than 64 will be ignored and the prompt will stay put.

1 Enteringa number | arger then the woWSnnéi aedwéhhcehow

1 Entering zero at the prompt will toggle between these two functions.

Obviously right-shifting more positions than the current number of bits will result in a zero result. Not
so obvious perhaps is the case of left-shifting a number of positions beyond the current word size,
which will eventually also result in zero once all bits have been moved off the field.

Notice that when shifting multiple positions the carry flag will refle ct the circumstances on the last bit
shiting action, and thus not a cumulative effect. This is consistent with the behavior of the n -position
rotation functions RLN and RRN.
Bacause the shifted bits are fAl ost 6, tdanhotoneandthero
This is different from the bit rotation functions, where the rotated bits are kept within the word and/or
CY bitT just in different positions.

Note that when entered in a program it is more byte -efficent to use the n-positions version with the
value fA10 in the 16X register (three bytes) i
fuction index (four bytes). The 16C stack conditions however are different in those two cases, so you
should choose the better one for your case.

(c) Martin-McClure Page 37 of 63 Septerber2015

functi

nstead

HP16C Emulator Module for the HP-41CX

3.4.6. Storing the 16C Stack in Extended Memory. { | SAVE16 | | GET16 |}

You can use sub-functions SAVE16 and GET16 to store and retrieve the complete 16C stack plus the
auxiliary buffer registers to / from an extended memory file. Note that even if yo u can have multiple
X-Mem files with different 16C stack sets (obviously with different file names) , there can only be one
on-line at any time.

When you execute GET16 t her e 6 s pr@mptng ®rcchnfirmation. Realize that this action will
override the existing 16C buffer, replacing it with the data from the X-Mem f i | e. Y/@n |l ke ywshe n
are active at this prompt.
OK? Y/N
USER o 4 ALFHA

Upon termination the function will show the current value in the 16X registers in RUN (manual) mode;
either the current one for SAVE16 or the newly retrieved one in the GET16 case. Also the mode
annunciators 0-1-2 will be changed appropriately if different.

| f youbre wusing the OS/ X extension module youbl|l no:
char aEHd edurii ng t hmeratoi Rlsodnotethat 16C stack files are always 25 registers
long 1 20 for the buffer plus 5 for the {X,Y,Z,T L} stack.

IECGSTH MR35 # X-Mem File Buffer-11
USER 0 4 1 File End marker
- 3 2 L
3 X
4 Y
Notice how the X-Mem file really occupies 28 5 7
register in X-Mem, as there are three 6 T .
additional registers needed by the OS to 7 F7 7
manage it within the X -Mem file system. g F6 F6
g F5 F5
The file header register is the second one 10 Fa Fa
starting from the bottom. This address can 11 F3 F3
be retrieved using the function FLHD, 12 Fa F2
available in RAMPAGE module amongst 13 F1 F1
others. 14 FO FO
15 E3 E3
The buffer address can be obtained using 16 E2 E7
function BUFHD, available in the RAMPAGE 17 E1 E1
module as well i with several others for 18 E0 E0
buffer management in ca g B14 B14
20 B13 B13
21 B12 B12
22 B11 B11
23 B10 B10
24 BO1 BO1
25 BOO BOD
26 bHeader bHeader
27 File Header
28 File Name
3

(c) Martin-McClure Page 38 of 63 Septerber2015

HP16C Emulator Module for the HP-41CX

4. -DI AGNOSTI CS

4.0 Silent and Loud Modes {

Without a doubt the Carry and Out of Range flags are a vital component of the information displayed

during the execution of the calculations. However ités not laiodcudrréencewof t t o mi
these situations, or you may find yourself paying extra attention just to catch possible changes of

these flags.

The 16C Emul aframing whde/fde rrso dee it o0 make those situations
time the Carry or Out of Range flags are set a corresponding message is shown briefly in the display.

Besides the visual message also a short tone sounds to alert the user, with a higher pitch for CY and a

lower one for OOR.

CTARRY SET ' OVERFLOW
4

USER o2 UZER 1]

Note that contrary to the standard 41-OS t hese messages will flash in the
go away to show the result of the fQVERFLOW nf ®&x etchud e@ut
of Range warning as it is easier to read during the brief flashing time, and to differen tiate it from the
floating point error from the native 41 OS. We 6| | ref
the 16C conventions.

Activating the LOUD mode.

The SILENT/LOUD modes areuser-selectable executing the sub-function TS/L to toggle the active
mode. Of course you can also use the numeric launcher 16# , with index =0 54. When you do the
mode selected is also briefly shown inthe displayi p| us a dual toggingdéo LOUD mpdeu 6r e

T ki T [o T O]
S;LE"" P LF o

USER 2 USER 2

The CY/OORme s sages Al e vatiableyea® it depends on the subsequent operations
performed during the execution of the function. For 41CL users the implementation is compatible with
the current turbo setting so you wono6t be eds ss

ng the

Independently form whether you are a casual user or a seasoned digital design engineer, you may
find this functionality useful, neutral, or plain hid eous 7 in which case all you need to do is ignore this
section altogether as the factory-default setting is SILENT mode. Go ahead and try it out to get the
feeling and decide for yourself.

It comes without saying that the flags annunciators will continue to be displayed as well in Loud
mode. Lastly, and as you can expect, the messages will not be displayed when the functions are
executed in a runnng program.

(c) Martin-McClure Page 39 of 63 Septerber2015

HP16C Emulator Module for the HP-41CX

4. 1.- An alternative to the 16C keyboard. { [16KEYS |}

If you prefer a more direct approach to access the 16C Emulator functions in an automated way, the
sub-function 16KEYS will prepare a standard key assignment-based complete keyboard re-definition
for all those (main) funcions from the 16C keyboard to be assigned to their corresponding keys.

When executed it prompts f ownN/Ndehhertoado thé assignnients opter f or m,
clear them. You can also cancel at this point pressign the back arrow key. Once the action is
completed the function will display the current value in 16X.

(IEKEYS? v/N
UZER 3 HLPHA
=y
itE-KEYS ON iE-KEYS DOFF
ooz ooz
or: &

This method removes the need to press the Aprefixo key eachexetuterthe you ne
emulator functions, thus from that perspective is a faster one and perhaps the closest to the original

machine. The only requirement is to have mod e on, and conversely youol|l
when you need to access any of the standard HP-41 functions. Another disadvantage is that no other

key assignments are compatible with this mode since all keys have a function assigned.

It however has two important shortcomings.

1 No support for the LASTF facility or the 16# and 16$ launchersi si nce 1t &8s not poSsSs
assign functions to the PRGM, USER or ALPHA keysNote that you can also use the
16C_STACKO function 7 or XROM 16,4971t o trigger the LASTF function
with the XROM function in the OS/X module. Also to overcome this deficiency the 16#
function will be assigned to the [RADIX] key.

1 No support for sub-functions from the auxiliary FAT - which have been replaced with
itself, so you have a way to invoke them: simple repeat the same action, which the second
time will trigger the 16C-variant on that sequence of keystrokes.

Remember that executing a function directly via XEQ (or assigned to a key) does not store the
functionbds i d# i hsoteverif yoltAcamdeceds thé EASTF functionallity the buffer
contents will only be updated when you use or other launcher to execute the function.

Both the 16C-prefix Keyboard and the 16KEYS approachuse the same 16C overlay shown in page 15
of this manual. Since both are available on the emulator you can choose the one that suits you better
- the choice is yours.

(c) Martin-McClure Page 40 of 63 Septerber2015

HP16C Emulator Module for the HP-41CX

4. 2.- A few development aids.

The remaining section of the manual describes a handful of utility functions that were using during the
development of the module for testing purposes. Some may be of interest to you if you feel
adventurous and decide to explore the 16C Buffer or other more technical aspect of the
implementation.

4.2.1. FX_ Buffer registers handling. { | A2FX|, | CLRFX [EX2EX, | EX2EX, [FXSz9}

As the repository of the digits shown in the displaying of the results, the buffer FX registers have a

pivotal role in the emulator design. Nor mal |l y you wonét have towhelorry abc
wi || be updated by t he cesseddby SHOB sandf WINDOW i; buh should yod a c

feel intrigued here are the functions available for the tasks. -

Note that the output of these functions is d oes not util i ze fachitg bunpustul eds d
standard real numbers or even no changes to the display at all.

1 A2FX T Alphato FX Registers

This function writes the current content of the ALPHA registers {M, N, O, P} into the buffer FX
registers, starting at the first available position within the FX set (as per the [S&X] field
information). Up to 24 characters can be written using this function, but there is no action on
the GRAD annunciator in case of overload.

1 CLRFXT Clears FX registers.

A complete clear of all eight FX registers, whichresetst hei r fiactived contents t
labels will be respected, from FO to F7 in nybbles <13,12>.

1 EX2FX and FX2EX i Moving data between EX and FX registers.

This pair of functions move the data back and forth between the {EO, E1} registers (in binary
form T NNN) and the {FO i F7} registers. The ASCII digit values in FX are dependent on the
current base mode selected.

Note that even afer executing FX2EX the result will *not* be placed in the 16C stack i that is
the buffer register b13 and stack X-register.

1 FXSZ?71 FX Registers size.

This function returns the number of digits currenly used in the FX registers. A maximum of 64
digits is returned (for BIN mode only), sinc each FX register can hold up to eight characters.
The status of the GRAD annunciator will be lit if greater than 24. In fact t his function is like
ALENG for ALPHA, but excluding the base id# and leading blank character.

The result will be pushed in the 16C stack, #FX -85
and brefly shown in a flashing message: | USEF 0

Advanced :uNsthingdike a tomprehensive RAM editor like RAMED in the OS/X module for
cursory inspections of all the buffer registers in all their g(l)ory details 1 even editable if you decide to
takeawalkont he wil d si deé

(c) Martin-McClure Page 41 of 63 Septerber2015

HP16C Emulator Module for the HP-41CX

4.2.2. Buffer Creation and Data Types. { [CHKBB, [L<>H|, [L-H|, [H=L]}

1 CHKBB i Check(and create) Buffer.

Seminal routine accessed by *every* single one of the module functions: use it to create the
16C Data buffer when needed i as it is done automatically during the CALC_ON event (polling
point).

1 L<>H 7 Swap Lower and Higher bits.

You can use this function to swap the low and high bits parts of the 16X register. In other
words, the contents of the stack - X and buffer b13 registers will be exchanged, doing the
required conversions as appropriate: b13 = BIN(X), and X = BCD(b13).

Example using a word size of 56, enter the hex value 12300000000000

Type: 16NPT, A 113840 ,=> H:12300000000000

I f you execute it again youdll get the original fi
T H=L andL-H i Copy and Move Lower bits

These two complement the swapping functionality, and provide ways to copy and move the

lower bits art of the 16X register into the higher bits. In both cases the previous content of
b13 will be overwritten, and in the move case (L -H) the X register will be cleared after the

copy.
A pre-requisite for these functions is that the current word size needs to to be larger than 32
in order for the higher bits register to be shown during the masking process. If this is not the
case the rerwWSetmdo meislbla wlee DATAERROR i n a program exec.l

The schematic below graphically shows the actions performed by these three functions:

16X Register

4.2.3. Doubling and Halving the 16X value. { ,[2DIV]}

1 2DIV and 2MLT

Handy shortcuts to divide or multiply the contents of the 16X register by two. It saves bytes in
a program and keystrokes during manual mode. It does not lift the 16C stack but saves the
original number in LST16X. Note however that the CY and OOR flags are not always set by
these functions.

(c) Martin-McClure Page 42 of 63 Septerber2015

HP16C Emulator Module for the HP-41CX

4.2.4. Digit Justification, Reversaland Decimal Sum. { [DGLJ|, |DGRV|, | DGDS]| }

These functions can be considered an extension of the bit-based conterparts, LJY, REV, and #BITS .
The concepts are analogous to the original set, but these are digit-based instead of bit-based. The
results may be sometimes similar or even the same, but in general thay are totally different.

1 DGLJ does a digit-based left justification of the value in 16X, which in general is not the same
as the bit-based function LJY available in the main FAT (and in the original 16C). Only when
the bit density of the leftmost character (i.e. the number of bits per character) is complete
then both functions will yield the same result.

Example: with ws=32, left -justify the value H: 123 using bits and digits as criteria:

_, VS: _

1 DGRV does a full-digit reversal (i.e. mirror image) based on the information contained in the
ALPHA register. This should normally be based on
return a digit -reversed version of the number. The result will be normalized to fit within the
current ws and complement mode selected. The original value is saved in 16L, the last-16C
register.

Note that contrary to the bit -reversal situation, the result here is completely base-dependent.
Also note that Zero chars on the left (after reversion) will ultimately be ignored. Obviously this
function is completely equivalent to REV for binary mode, since in that case each bit
corresponds to one digit as well.

Examples: with ws=32, any complement mode:

_ DGRV _

but say now you have ws=8

_ DGRV _

1 DGDS does a decimal digit sum based on the bcd values from 16X i independently from the
base mode set. The decimal result is briefly shown as a flashing message in the display, and
then it is input in the 16X level (in the configured based) replacing the orig inal value i which
goes to the 16L register as well.

_, then: _

(Note: remember that the sigma character in a sub -function name cannot be directly entered via
t he&d ikey -pSHALAHAmMode;t hus you need to usef otdiDEdTOO NO ¢ h a
instead.)

(c) Martin-McClure Page 43 of 63 Septerber2015

HP16C Emulator Module for the HP-41CX

4.2.5. Test for Maximum Negative (signed) Value. { [MNV?]}

1 MNV? is atest function to check whether the number in 16X is the M aximum Negative signed
Value (MNV) for the currently selected word size. The result will be YES/NO, skipping a
program line if false i as with any standard tests.

Of all the conventions used on the 16C calculator one of the trickiest to grasp is that of the maximum
negative value for signed complements. Even if the definition is clear enough, some of the particular
function results when the operand is such a maximum negative value may be unexpected or even
disconcerting to the untrained eye i and it accounts for many numerous singularities in the general
algorithms to properly emulate the real machine.

For starters, this is the only value that equals its own 16CHS in 2CMP i This is not the only

remarkable thing about it, but remember this one we 0
We define the maximum negative value as the largest absolute number with a negative sign - i.e. the

msb is set in either 1CMP or 2CMP.Given the arrangment of the negative values (see appendix 1B)

the maximum negative happens to be that such all other bits are zero, and therefore can easily be

generated callingLJY on t he ny orlereating & dingyle bit MSKL ; or also doing a left-shifting

of (ws-1) number of bits with SLN.

Corner casesinvolving the MNV.

Setting ws=32, 2CMP, |l etd6s do some math wusing the
arguments. (i.e. d: -2147483648)

Multiplying or dividing the MNV by -1 is perhaps an academic discussion but calculating the result

poses some challenges to the algorithms. The 16C responds the following in 2CMP:

Division: 16NPT, ALDYG 16NPT fi O NQT, 16/ =>H: 0, and OOR

Multiplication: 16NPT, ALDYG 16NPT @ O BQT, 16* =>H: 0, and OOR

Note that the last one yields a different result from a sign change of the MNV, i.e. both operations are

surprisingly not equivalent in this case.

Is that a picky behavior or is it justified? Mathematically speaking multiplying by -1 should be

equivalent to doing 16CHS, and for the MVN that result s in the same MVNT not zero/OOR. But this is

not how it works her e, where the rul mverf then add odgn aobdampd ias

multiplication by -1 . Such is life in th e digital world!

To Get in Mode Argument | w/ Operation and Arg.#2 w/ Op#2
-1 2CMP only 0 NOT
-1 1CMP only 0 NOT 1 16-
-1 Signed modes 1 16CHS
-0 1CMP only 0 NOT/16CHS
MNV Signed modes 1 LJY
MNV Signed modes ws-1 MASKL
MaxVal | Unsigned Mode 0 NOT
MaxVal | Signed modes 1 LJY result 16CHS

In1CMP: 07 1= -1/CY; adding 1 again returns -0 instead of the original 0.

(c) Martin-McClure Page 44 of 63 Septerber2015

HP16C Emulator Module for the HP-41CX

4.2.6. Quick Dec <-> Hex conversions. { [H>D]}

These two functions perform a quick & dirty conversion betwe en decimal and (unsigned) hex values
using the real X-register and ALPHA. Use then when you want to check results independently from the
selected base on the emulator.

The maximum number allowed is H: 2540BE3FF ord: 9,999,999,999 in decimal. Both functions are
mutually reversed, and H>D does (real) stack lift as well.

These functions were written by William Graham and published in PPCJ V12N6 p19, enhancing in turn
the initial versions first published by Derek Amos in PPCCJ V12N1 p3.

4.2.7. Recalling the current base value. { | BASP|}

I The function BASE? recalls the value of the current base to the 16X register i as an easy way
to find it out in a running program. The value is pushed into the 16C stack. Possible return
values (in decimal) are 2,8, 10,and 16 i alwaysshownas 06100 in their

This function is similar to 16WSZ? in that both return configuration data to 16X, and that in manual
mode an information message will also be displayed:
IHSE=- b
0

USER

4.2.8. Alpha Reverse andLeft append character. { . [AREV}

1 The function X-AL appends the character which ASCII code is in X to the left side of the
ALPHA string. It is therefore the symmetrical of XTOA. This function was written by Hakan
Thoérngren, and first published in PPCJ V13N7 p9. It is used as a subroutine by the Leading
Zeros functionality, within the function LDZER.

1 The function AREV does a mirror-image of the ALPHA register contents. It was written by
Frans de Vries and first published in DF V10 N8 p8.It is used as an internal subroutine by the
Digit Reversal, within the function DGRV.

Copyright Messagefi E a s t e{r}] go

So you can amuse Yyour friends, a copyright message with a fancy sound can be invoked using the (c)
function, with index# =060 in 16# - to access this message:

i~ KA T mA A
L tance Eu

i T
[
USER 1 z4

(c) Martin-McClure Page 45 of 63 Septerber2015

di gita

HP16C Emulator Module for the HP-41CX

5. - APPENDI CES
a.l Maximum values as function of word size 44
a.2 The Hexadecimal Number system 45
b.1 Program Examples 48
c.1l Buffer Technical Details 51

Buffer Registers Explained
Input/Output Routines
Multiplication Routines
Division Routines
Addition/Subtraction Routines

#B 2.BIT/S 16SQR

REV ASR
= 3 =
o 2 n
's} a T

16x<> 16RUP RL/N RR/N SL/R

2ZLFTIR MASKL MASKR L/RJY

16ENT® FCAT 16ABS x?7y x?0 CL16x

Ch b?
- - .1 .t

16WSZ WSFIT
2MOD STATUS
- .T r.1l -?
DBL/ LSTF/16x WINDOW

HP-16C Emulator Martin - McClure HP-16C Emulator Martin - McClure

HP-16C Emulator 16NPT Hot keys

(c) Martin-McClure Page 46 of 63 Septerber2015

HP16C Emulator Module for the HP-41CX

Appendix A1l. Maximum Values dependirg on the Word Size.

The table below shows the maximum possible values that can be represented as a function of the
selected word size. These values are also returned by the function WSMAX for the current selection
of ws (in floating point format, native t o the 41C OS).

ws max value ws max value
1 1 33 8,589,934,591
2 3 34 17,179,869,183
3 7 35 34,359,738,367
4 15 36 68,719,476,735
5 31 37 137,438,953,471
6 63 38 274,877,906,943
7 127 39 549,755,813,887
8 255 40 1,099,511,627,775
9 511 41 2,199,023,255,551
10 1,023 42 4,398,046,511,103
11 2,047 43 8,796,093,022,207
12 4,095 44 17,592,186,044,415
13 8,191 45 35,184,372,088,831
14 16,383 46 70,368,744,177,663
15 32,767 47 140,737,488,355,327
16 65,535 48 281,474,976,710,655
17 131,071 49 562,949,953,421,311
18 262,143 50 1,125,899,906,842,620
19 524,287 51 2,251,799,813,685,250
20 1,048,575 52 4,503,599,627,370,490
21 2,097,151 53 9,007,199,254,740,990
22 4,194,303 54 i 18,014,398,509,481,983
23 8,388,607 55 i 36,028,797,018,963,967
24 16,777,215 56 i 72,057,594,037,927,935
25 33,554,431 57 " 144,115,188,075,855,871
26 67,108,863 58 i 288,230,376,151,711,743
27 134,217,727 59 " 576,460,752,303,423,487
28 268,435,455 60 " 1,152,921,504,606,846,975
29 536,870,911 61 " 2,305,843,009,213,693,951
30 1,073,741,823 62 " 4,611,686,018,427,387,903
31 2,147,483,647 63 " 9,223,372,036,854,775,807
32 4,294,967,295 64 ¥ 18,446,744,073,709,551,615

Also shown in the graphic below using a logarithm scale:

1.E+20

1E+18

1E+16

1E+14

1E+12

1.E+10

1.E+08

1.EH06

1LE+D4

P ait

1E+02

1.E+00

1 4 7 1013 1619522 2528 31 34 37 40 43 46 49 52 55 58 61 64

(c) Martin-McClure

Page 47 of 63

Septerber2015

HP16C Emulator Module for the HP-41CX

Appendix A2. The Hexadecimal Number System

The base of this number system is 16(d). The numbers 0-9 as well as Hex | Binary | Decimal
the letters A to F are used to represent 11(d) to 15(d). The carry over 0 0000 0
to the next place occurs at 16(d). The table below shows the 1 0001 1
correspondence between binary, decimal and hexadecimal numbers 2 0010 2
up to 15(d): 3 0011 3
4 0100 4
As you can see on the table, Hex numbers are the natural choice to 5 0101 5
represent four binary digits (4 bits); therefore the hexadecimal 6 0110 6
number system uses the 4 bits of a nibble in the full value range. Each 7 0111 7
nibble can represent values from bin 0000 to 1111, of in hex from 0 to) 1000)
F. This number system is often used in computer science. 9 1001 9
A 1010 10
. . B 1011 11
Representation of negative Numbers C 1100 12
. - - D 1101 13
When using a limited count of digits m to represent number s, the E 1110 14
value range to the numbers to be represented nis 0 < n < 2"m, = 1111 15

meaning that the greatest number will be 2"m i 1. Note that no
negative numbers are included in this system of notation. To remove this deficiency, the concept of
ficompl emenuad.i s introd

The Complement (from a reference K)

The K-complement of a number x is defined as the difference from K of that number: Com(x) = K Tx
for which k is fixed by the chosen complement. Since in the binary humber system the usual values

ofKare2 m,and 2 m i 1), we wusually speak of Aoneds cobmpl emen
representing the difference from either the greatest number represented or the one after it. In
general, for any base systeml & bodo mphiekkeate mvéi 1916 sb ea nad ALKOC

complement in the decimal system where b=10.
Distribution of ranges of values.

If there seems no reason yet for the existence of complement notation, remember that to this point

we havenoét dealt with nega thésely adoptimglaearbitrary didgibutsoh a | | i nc
of wvalue ranges in our number systems. For i nstance
number as one which most significant (leftmost) bit is set (has a value of 1). Arranging number

distributions and using complements change the ranges of values as follows:

No Complement 0< x <=(b"m 11
b-Complement -b"m-1) <= x <= bMm -1)-1
(b-1) Complement -bMm-1)-1 <= x <= bMm -1)-1

Basically in the signed modes (with complement) we divide the original total value range b"m -1 in
two half sections, allocating one of them for negative numbers and the left over for positive.

(c) Martin-McClure Page 48 of 63 Septerber2015

HP16C Emulator Module for the HP-41CX

Complement (Signed) Modes.

The transformation of decimal numbers represented in the binary system (and vice -versa) varies
with the signed mode used. The three modes are:

- Unsigned mode (no complement, only positive numbers)
- 106s compl ement mode
- 206s complement mode

The 106s Co mg laeumber tis calculated by subtracting this number from the greatest
representable number in the chosen word size (number of bits). For instance, say the word size is 5
bitsit hen the 18s compl ement 1 a)fTheacomputenbirply infieesall bitssof (11111

the original number, i . e. ex érough teisssegménttioh af the imitiall f unct |
value range (arbitrary but specific), all negative numbers have their highmost bit set, which plays the
rol e of the minus sign. In the qb6s compl ement mode t

represented are the same, i.e. even zero has two possible representations: +0 and i 0, which in binary
would be 00000 and 11111 (always assuming a word size of 5 bits).

The 26s Compfl ementmber is calculated by adding one t
same exampleof word size 5 bits, the 26s Compl eaedt of a
The 26s complement of bin 10001 is the number bin 01:
leftmost bit is set for all negative numbers, and therefore takes over th e role of the minus sign. In the

26s compl ement mode there is one more negative numbe
zero only has the representation +0

The Unsigned Mode (no complement). Since the Complement mode employs one bit as the

negatve si gn, the range of values for a worid27ddywe of 8
+127(d) , and i n t heil28dsto«€1d7(dp NoterthatrintbotH casesthose are 256

values. For cases when only the positive number range is needed, the precedence sign bit is not

necessary (unsigned mode) and the value range is used for all cases from 0 to 255(d) - assuming the

same word size of 8 bits.

In the table below you can see the correspondence between the three sign modes for decimal
numbers 0-15 represented in binary, using a four -bit word size:

Dec | Hex | Binary | Unsigned 16s Co 2086s Co
0 0 0000 0 0 0
1 1 0001 1 1 1
2 2 0010 2 2 2
3 3 0011 3 3 3
4 4 0100 4 4 4
5 5 0101 5 5 5
6 6 0110 6 6 6
7 7 0111 7 7 7
8 8 1000 8 -7 -8
9 9 1001 9 -6 -7
10 A 1010 10 -5 -6
11 B 1011 11 -4 -5
12 C 1100 12 -3 -4
13 D 1101 13 -2 -3
14 E 1110 14 -1 -2
15 F 1111 15 -0 -1

(c) Martin-McClure Page 49 of 63 Septerber2015

HP16C Emulator Module for the HP-41CX

Appendix B1.- Programming Examples

Letds see

an exampl e

Checksum Calculation example from the 16C manual, pages 90, 91 and 92.

The program assumes you have pre-loaded 4-bit hex values in registers R1 to R10, as follows:

RO1: A

RO3: B

RO5: 3

RO7: A

R09: D

RO2: 7

RO4: 1

RO06: D

RO8: 2

R10: 6

The table below shows both the original program and the equivalent using the Emulator functions for
a side-to-side comparison; not surprisingly very similar in concept but with some differences 1
especially in the 16C stack management.

hp-16c Program

16C Emulator Code

1 LBL D
2 UNSIGN
3 4

4 WSIZE
5 HEX

6 "A"

7 STO |
8 0

9 ENTER?
10 LBLO
11 RCL (1)
12 B#

13 +

14 X<>Y
15 0

16 RLC
17 +

18 X<>Y
19 DSz
20 GTOO0
21 RTN

1 LBL "CHKS"
2 UCMP
3 4

4 16WSZ
5 HEXM
6 10

7 STO 00
8 CLX16
9 16ENTA
10 LBLOO
11 16RCL
12 128

13 #BITS
14 16+

15 16X<>Y
16 O

17 16LOwWn
18 RLC

19 16+

20 16X<>Y
21 DSz

22 GTOO00
23 SHOW
24 END

1.

2.

Remarks:

I ndirect

Register fl o

RCL (i) uses the indirect capability of
16RCL, adding 128 to the 16C-register

number.

Note the non-merged arrangement in
lines 11 & 12 for 16RCL, with the rg# in

the next program line.

Note how the parameter for the word
sizeis in the 16X register i lines 3 & 4.

In fact here we use a n

insider 6s

using just the real-X register (only valid

for 16WSZE!)

Sub-functions (in brown color) really use
the 16C# launcher followed by an index

number

Entering 16C values requires either
16NPT or LOW16 ~ for numbers below
32 bits. This is how zero was input in

lines 16 and 17.

DSZ operates on standard valuesi as an
index very much like ISG and DSE do.

A final SHOW instruction has been
added to see the 16C result.

Note how all the stack lift and drop are performed in exactl y the same way as in the original machine
i pretty much following the same rules as in all RPN designs.

(c) Martin-McClure

Page 50 of 63

Septerber2015

howi ohme 46&€ Esned atorampdageart

corr

tric

HP16C Emulator Module for the HP-41CX

AppendixB2.- Squar e

Root us.i

ng

Newt onds

Met hod

The program below is an alternate (and very slow!) way to calculate the square root of a number ,

simply

usi

ng

an

iterative

approach

f ol

Finding x/§ is the same as solving the equation; f[::t) = :t:2 —S5S=10

| owi Newt onds

ng

Therefore, any general numerical root-finding algorithm can be used. Newton's method, for example,
reduces in this case to the so-called Babylonian method:

Tnt1 = Tn

f(xn)_ :1:,_,21—5_

Plaa) "~

The program uses the initial estimation: x0 =6 * log(S)

Data registers RO1 and R02 are used to store the successive approximations Xn.

1 LBL "64SQRT |

2 CF21

3 16XARA
4 LOG

5 6

5 -

7 LOWA16

8 165T0

9 LBL 00
10 16RUP
11 16XAn
12 16RCL
13 16/

14 LST16X
15 16+

16 2

17 LOWIEA
18 16/

19 16ENTA
20 16X<
21 16X<Y
22 16XEY?
23 GTOOD
24 SHOW
25 END

Example Calculate the square root of ABC,DEF,ABC,DEF

16NPT, ABCDEFABCDEF

XEQB4SQRD

=> H: ABCDEFABCDEF
=> H: D1B7FD

(c) Martin-McClure

Page 51 of 63

Septerber2015

HP16C Emulator Module for the HP-41CX

Appendix B3.- Showing leading zerosi A FOCALreprise.

The program below is a parallel version of the MCODE function available in the module 7 it basically
how i

uses the
the BASE? function.

same

1 LBL "LEAD"
2 165TO (00)
3 WSZE?

4 STO 00
5 0
6 He<oF
7 BASE?

g LN
9 2

10 LN

11 /

12 FIX 8

13 RND

14 SFINDX

15 FRC

16 X#0?

17 GTO 05

18 RCL 00

19 LASTX

20 /

21 ENTER®

22 INT

23 A#y?

24 I5G ¥

25 NOP

26 RDN

27 3

22 AROT

As you can see all action happens in the ALPHA registeri and therefore the usage of the standard X-
Functions AROT, ALENG i and ABSP from the OS/X module as well. Not only this program requires
the data registers 16R00 to preserve the original value, but it should also be said it will fail in 1/2CMP
due to the incompatible usage of user flags 1 and 2.

met hod

Ssave value
getword size
put in ROOD

reset flags
{2, &, 10, 16}

#hits/char

rounded

flag case
remainder

was itdecimal?
yes, do nothing
W5

#hits/char
#chars

make integer
was it round?
na, add one

#chars

rotate ALPHA

SO

you can see
29 ABSP
30 ABSP
31 ABSP
32 RDN
33 ALENG
34 STO 00
35 -
36 LBL 00
37 "-g
38 DSE X
39 GTO 00
40 RCL 00
41 AROT
42 FS? 04
43 " H
a4 FS? 03
45 "-0"
a5 FS? 01
a7 "
ag TR
49 3
50 AROT
51 AVIEW
52 16RCL (00)
53 RTN
54 LBL 05
55 16RCL (00)
56 SHOW
57 END

remove base id#

#chars
ALPHA length
save for later
of zeros

add one
decrease counter
do next

ALPHA length
rotate ALPHA
Hex?

Yes,

Oty

Yes,

Bin®

Yes,

append blank
rotate contents

show result
recall argument
done.

Decimal

recall argument
show current

t 6s

been

(c) Martin-McClure

Page 52 of 63

Septerber2015

mp

HP16C Emulator Module for the HP-41CX

Appendix C.- Data Buffer Technical Details.

This document is an attempt to descript the format of the B buffer used by the HP -16 MCODE
Emulator Module developed by Angel Martin and Greg McClure. The B buffer is used to allow full 64-
bit word size emulation (as implemented on the HP-16).

The buffer requires 20 free registers. Function CHKBB (check for buffer B) is used to check for, and
create if needed, buffer B. The format of the buffer (from highest absolute register to lowest absolute
register) is shown below, and individual sections will be discussed after.

F7 Obbbbbbbb 00l Input/ Outputsub -AOEAAOOt OEA 27ET Al xO0e 1 &£ O
F6 Obbbbbbbb 00l HR 16. It is used for input of digits (for bin,

F5 Obbbbbbbb 00I oct, dec, and hex modes) by user, and for output

F4 Obbbbbbbb 00I of results of function or view.

F3 Obbbbbbbb 00l In bin mode, b=0 or 1; oct mode, 0<=b<=7,

F2 Obbbbbbbb 00I dec mode, 0<=b<=9; hex mode, any hex digit.

F1 Obbbbbbbb 00l These digit s are store in reverse of display or inpu t.

FO Obbbbbbbb nOl b=bcd digit, I=number of digits used , N=negative

E3 Oaaaaaaaa 000 Temporary calculation registers. EO and E1 are used

E2 Oaaaaaaaa 000 several purposes, E2 and E3 are for double precision

E1 Oaaaaaaaa 000 functions DBL* and DBL/.

EO Oaaaaaaaa 000

14 Ol 000 These are the upper 32 bhits for the stack registers.

13 Oxxxxxxxx 000 The HP- 41 can only save 32 bits of info in its std

12 Oyyyyyyyy 000 stack, these hold the other 32 bits of simulated regs.

11 Ozzzzzzzz 000

10 Otttttt tt 000

01 Ommmmmmmm Ocdm represents the mask based on word size. Wordsize is

00 Ommmmmmmm 0bkO O1T OAA ET AA+ A EO AT i Bl AI AT ORO 11 AA4
BB 14f 000000 xxx Header with buffer id# , buffersize , and loud mode flag

BB buffer register (Header)

Letds start with the BB buffer header. -16 MCODE requi
Emulation module will refresh this header on power on (as all buffers are refreshed by the individual
modules that require their use). The 14 is the buffer size in hex (requires 20 registers). The #Af 0 i s t h

Silent/Loud mode flag used for message displaying. Nothing more is stored in this header. (Note that
the S&X field is used by function BFCAT and therefore is reserved).

Buffer registers 00 and 01

The 00 and 01 register hold a calculated mask that will help in making decisions (carry status, out -of-
bounds conditions, etc) on the status of arithmetic and logic functions. It is related to the word size
(bb) and is described below:

For word size <= 32: A Il 01 m fields will be 0, i.e. it will contain 01 000000000 Ocd. The 00 m fields
will represent the bits allowed in values to be saved and used. Some examples are: 00 OFFFFFFFF
020 (for 32 bits), 00 00000FFFF 010 (for 16 bits), etc.

For word size > 32: All 00 m fields will be F, i.e. it will contain 00 OFFFFFFFF Obb. The 01 m fields will
represent the upper bits allowed in values to be saved and used. Some examples are: 01 OFFFFFFFF
Ocd (for 64 bits, where bb would be 40), 01 00000FFFF Ocd (for 48 bits , where bb would be 30).

(c) Martin-McClure Page 53 of 63 Septerber2015

HP16C Emulator Module for the HP-41CX

The cd bits in buffer register 01 show the current complements mode, ¢, and binary mode, d. If c=0,
c=1 means 16s compl ement
These settings influence both display and calculation flag results. If d=0, floating point mode is set,
and the HP41 registers act as normal (no emulation is in effect). If d=1 then bin mode is in effect,
d=2 means oct mode, d=3 means dec mode, and d=4 means hex mode.

no compl ement

Buffer registers 10 thru 14

mo d e

i s set,

When bin, oct, dec, or oct mode is in effect and word size > 32, then these buffer registers contain
the upper bits (beyond the 32 stored in the standard stack). For example, ifthe HP -1 6 A X0
should contain the hex value 1234 5678 9ABC CEFO, then buffer 13 will contain 13 012345678 000
and actual HP41 register X will contain the floating point value corresponding to 9ABCDEFO, that is,
2,596,069,104. This is done to insure the registers can always been viewed in floating (not have
weird Non-Normalized contents). The same pairing of a buffer register and a stack register exists for
each of the stack registers, thus emulating the HP-16 64-bit binary stack. The pairing is as follows:

Buffer register | + HP41 stack register | = HP-16 emulated register
b10 Binary(T) 16T
bll Binary(2) 16Z
b12 Binary(Y) 16Y
b13 Binary(X) 16X
bl14 Binary(L) 16L

Buffer registers EO thru E3

These buffer registers are scratch registers

. They are used for holding partial results, for holding

the dividend when translating binary output to digital representation, and for construction of binary
values on user input. Their purpose changes based on the function being simulated. The masks of
buffers 00 and 01 are applied here to insure values are in range, and to det ermine the proper carry
and out-of-range flag settings. An example of their use for digit input and display output is show in
candét be counted on to ho
between functions, and can be overwritten by any function needing them.

the discussion of the FO thru F7 buffer registers.

Buffer registers FO thru F7

They

These buffer registers hold the digit representations of the binary values input from the keyboard, or

the digit representations of the binary values to output to the display. Sim ilar to the Q register on
entry of some kinds of alpha data, binary values are written in or read out in reverse order. For the
multiplication and division routines, some of these buffer registers are also used as scratch registers.

The input routine takes digits entered by the user and stuffs them into these registers from right to
left, starting at FO and continuing to F7. The number of digits entered in a particular register is placed
as the rightmost digit of the buffer, and up to eight digits can be entered into positions 3 thru 10 of
each register. This allows up to 64 digits (max possible for binary value with max word size) to be
entered. As an example: in oct mode 1234 1234 5656 is entered by keyboard. The contents of buffer

registers FO and FL will contain:

F1 000006565 004
FO 043214321 n08

(c) Martin-McClure

Page 54 of 63

Septerber2015

registe

HP16C Emulator Module for the HP-41CX

Notice that the digits are entered from right to left, starting at position 3 of each register until
finished. All other Fx buffer registers will contain O length and 0 bcd values. The negative indicator
would be 0, since octal values do not include a sign.

After input is completed, the bcd to bin translation routine would then create the binary
representation of this octal number and place these into the following Ex buffer registers:

E1 000000002 000
EO0 09C29CDAED00

representing binary 2 9C29 CDAE (in hex). The X register would receive decimal value of
9C29CDAE(hex) and buffer register 13 would receive the 2 (assuming word size >= 34).

The output routine will take a value placed in the EX buffer registers and translate them to digits in
the Fx buffer registers. Then control will be given to the display routines which will use these
registers as HR-16 Windows. For example, assume the binary value in EO/E1 buffer registers are:

E1 000000222 000
EO 0 33334444 000

The bin to bed translation routine would then take these values and translate them to the Fx buffer
registers based on mode (bin, oct, dec, hex). It will first clear all Fx buffer registers, then for oct
mode, the following will be placed into the Fx buffer registers specified:

F1 000360124 006
FO 040121341 n08

which represents 42 1063 1431 2104 octal. Window 1 on HP-16 would hold 421063 and Window O
would hold 14312104. Notice these values are read from right to left . Again, since this is octal, n is 0
to represent no sign.

Negative value flag for Decimal signed modes

The XS digt of the FO register has a special function to denote that a negative value is to be
presented in the LCD when a signed decimal base mode is the selected one. When the value is not
zero it will direct the [SHOW] routine to add a minus sign before the value, for the familiar
representation convention. This is also controlled by the complement mode, and built in the [EX2FX]
code.

[

UZER 1

Functions buffer usage outline S

The following sections will show how the buffers are used in various math / logic / programming
functions. One of the first things that will be noticed is tha t in addition to the auxiliary E2 and E3
buffer registers, for more complex cases buffers FO and F1 are here also used as temporary registers
for calculation purposes.

(c) Martin-McClure Page 55 of 63 Septerber2015

HP16C Emulator Module for the HP-41CX

Input/Output Routines

Input of various values for calculation is accomplished via several possible routines mentioned in this
manual (L6NPT, LOW16”" , 16APN). At the core of these functions are the [FX2EX] and [EX2FX]
routines (which are also available as subfunctions) that move the results of input back and forth
between the FX registers and buffers EO thru E2. The info in buffers FO thru F7 are ASCII values.

The FX2EX function translates the ASCII codes in buffers FO thru F7 into binary in buffers EO and E1.
It relies on the mode set in buffer register bO1 (BIN, OCT, DEG HEX. For BIN, OCT, and HEXmodes
this is easy. It takes the info from each ASCII code in the FO thru F7 buffers and shifting it into buffer

EO (overflow bumping into buffer E1). In decimal, a special multiply by 10 and add value routine is

required to perform the translation into binary (instead of shifting by 1 [BIN], 3 [OCT], or 4 [HEX).

Every math or logic routine will use the info in buffers E1/EO as the 16X argument. The result that
should be in the 16X argument at the end of the routine is placed into buffers E1/EO, and a routine is
called to move that into the 16X register and displayed. The in ternal routine EO1OUT is used to do
this. The EX2FX routine is at the core of this process.
reproduced with the SHOW function.

EX2FX is the mirror of the FX2EX routine.

The display functionality of EO1OUT is

It takes the info in EO and E1 and tra nslates it into

buffers FO thru F7. Again it relies on the mode set in buffer 01 (BIN, OCT, DEG HEX. For BIN, OCT,
and HEXmodes this is straightforward, bits are shifted into the buffers and changed into ASCII codes.

For DECmode, a special routine to divide by 10 also has to be implemented. The sign of the decimal
value has to be considered as well (it is the only mode we have to worry about the sign). As digits
are found, the contents of buffer FO thru F7 are shifted, and a proper count is maintained fo r each
buffer. Buffer register FO also contains the negative indicator if DECmode and the value represents a

negative value

(only

occur s

n

106s

or

26s compl ement

Similar to the previous one, there is also a sub function available to execute the i nternal routine for
diagnostic cases. It will assume the information is already in binary format in the EX registers to move
it up to the FX registers in ASCII form.

The hierarchical levels amongst the input registers are shown again in the figure below, with the
sequence of routines needed to move the data up and down the different stages:

16X<-{EO,E1}; [FX2EX ; [A2FX; 16NPT

167 | 162 | 16z | 16X EX, Binary (NNM) FX, ASCII
upper bits . Binary (NNNJ — F7
E4 6
! 1 E3 F5 %
b10 b1l b12 b13 E2 _ F4 o
T z Y X F1 3 =
l J F2
f F1
lower bits, Decimal (BCD) ~ O
16X->{E0,E1}; [EX2FX ;: [SHOW
(c) Martin-McClure Page 56 of 63 Septerber2015

HP16C Emulator Module for the HP-41CX

Multiplication routine

The multiplication routine covers both 16* and DBL* in one routine. When the code needs to be
specific, it uses an internal system flag (specifically system flag 5) to perform the unique code for the
specific function. The beginning of the routine is basically the same:

1) 16LastX is performed to save the value of buffer 13 and stack register X into buffer 14 and
stack register L. The binary value of Y and contents of buffer 12 (16* multiplier) are moved
to buffers E2 and E3. The binary value of X and buffer 13 (multiplicand) are already in EO

and El.

2) | f i n 16s compl ement or 206s compl ement mode, t
multiplicand and the multiplier, saving the state of the combined signs in one of the CPU
internal registers (G in case youbre curious).

3) The high order of the absolute values of the multiplicand and multiplier are saved back to
buffers 13 and 12, the low order bits are saved to buffers FO and F1 respectively. Thus
multiplicand is now in buffers 13/F0, multiplier is now in buffers 12/F1.

4) Now a full cross multiply is performed (using 16 bits at a time, thus 16 total cross
multiplications) into buffers EO (low order) thru E3 (high order); this is the core part of the
multiplication routine. This routine is explained later in this section.

5) Notwithstanding a lot of weird code that checks for overflow or carry flag conditions, the
routine then divides into single precision (16*) and double precision (DBL*) result sections.
Here are the two possible paths:

a) For SINGLE PRECISION t he resul't may need a sign change
complement mode); then an extended stack drop is performed (including buffers 10 thru
12 dropping down to buffers 11 thru 13) and the contents of the result in buffers E1 and
the BCD expansion of EO are placed into buffer 13 and stack register X respectively

b) For DOUBLE PRECISIONhree steps are required:

1) The result needs to be shifted so that the proper bits are separated into E3/E2 for
high order and E1/EO for low order (based on word size); both buffer register pairs
need to contain values within the word size required .

2) The routine first checks to see if it may need a signchange (16s compl ement
complement mode); this check changes the order of the result to buffer order
E1/EO/E3/E2 (from high order to low order) .

3) The result in buffers E3 and the BCD expansion of E2 (low order) are placed into
buffer 12 and stack register Y respectively (since that is where the low order piece is
stored for DBL*) and buffers E1 and the BCD expansion of EO (high order) are placed
into buffer 13 and stack register X respectively.

6) The multiplication routine returns via a routine that transl ates the values in buffers EO/E1 into
buffers FO thru F7, and displays the result.

Some of the seemingly redundant moves of values are explained by the fact that the change sign
routine (described later) works on data in buffers E1 and EO. Routines exist for easy exchange of
buffers E1 and EO with E3 and E2, and for taking buffer 13 and the binary of stack X and putting it

back into buffers E1 and EO. Taking advantage of these routines dictated these moves. Also note
that for DBL* no stack drop is requi red at the end, since the multiplicand and multiplier are replaced

with the double precision result.

(c) Martin-McClure Page 57 of 63 Septerber2015

HP16C Emulator Module for the HP-41CX

The cross multiplication step is carried out by taking the multiplicand and multiplier and separating
them into 16 bit chunks. This is required because t here is no multiply instruction for the internal chip
of the 41C. The actual multiply workhorse routine takes a 16 bit multiplier and 16 bit multiplier and

yields a 32 bit result. This result is then moved or summed into the required locations in buffers EO
thru E3. The multiplicand saved in buffers FO/13 and multiplier saved in buffers F1/12 can be
represented as hex digit groups as follows:

FO: aaaa bbbb 13: cccc dddd
F1: eeee ffff 12: gggg hhhh

The 16 cross multiplications are:
1) dddd x hhhh into buffer EO (moved)

2) cccc x hhhh + dddd x gggg into low 16 bits of buffer E1 (moved) and high 16 bits of buffer EO
(summed)

3) bbbb x hhhh + cccec x gggg + dddd x ffff into buffer E1 (summed)

4) aaaa x hhhh + bbbb x gggg + cccc x ffff + dddd x eeee into low 16 bits of buffer E2 (moved)
and high 16 bits of buffer E1 (summed)

5) aaaa x gggg + bbbb x ffff + cccc x eeee into buffer E2 (summed)

6) aaaa x ffff + bbbb x eeee into low 16 bits of buffer E3 (moved) and high 16 bits of buffer E2
(summed)

7) and finally aaaa x eeee into buffer E3 (summed)
Thus 16 total cross multiplications are performed. The last section of the multiply core normalizes

buffers EO thru E3 (handles carries from EO to E1, E1 to E2, etc). Thus, when double multiply is
performed with the max word s ize of 64 bits, a full 128 bit result can be calculated.

Change Sign Routine

An i mportant part of both the multiplication and di vi
26s compl ement mode is the subr ol6CH &bakicaly &ké8the, al so
value in buffer E1/ EO and performs a 16s compl ement

copied to buffer 13 and the BCD of EOQ is copied to stack register X.

Such a seemingly simple task has however its quirks as a result o f the definition of
complement. The maximum negative signed value in particular is an interesting boundary that needed
to be single-cased for this routine to work correctly in 2CMP mode.

(c) Martin-McClure Page 58 of 63 Septerber2015

HP16C Emulator Module for the HP-41CX

Division routine

The division routine actually covers 16/ , RMD, DBL/ , and DBLR in one routine. Whether a divisor
or remainder is required, division must still be performed. When the code needs to be specific, it uses
two internal system flags (specifically system flags 0 and 5) to perform the unique code f or the
specific function.

Since there is no division instruction for the internal chip of the 41C, it was necessary to figure out
how to do division of values bigger than the max size of the 41C registers. This was accomplished by
the method of partial d ivision. The core routine used takes a dividend and divisor up to 40 bits, and
the result yields both a quotient and remainder.

Partial division takes progressive high order pieces of the dividend and a shortened divisor (usually 20
to 24 bits) and uses the core routine to yield a partial quotient. The full divisor is multiplied by the
partial quotient and subtracted from the dividend. Occasionally this results in a negative value of the
remaining dividend, so the partial quotient is adjusted to allow a positive difference. The final
dividend after subtraction is used for the next partial division.

The length of the partial divisor and piece of dividend depends on the length of the full divisor. For
divisors less than up to 24 bits the full divisor is used and no multiply and subtraction adjustment is
required.

Here is the division process in detail. In actual code, the process is divided into multiple sections
based on divisor length, and whether single or double dividend length.

1) 16LastX is performed to save the value of buffer 13 and stack register X into buffer 14 and
stack register L.

2) For 16/ and RMD, the binary value of Y and contents of buffer 12 (dividend) are moved to
buffers E2 and E3. The binary value of X and buffer 13 (divisor) are alre ady in EO and E1.

3) For DBL/ and DBLR, the binary value of Y and contents of buffer 12 (high order dividend) are
moved to buffers FO and F1. The binary value of Z and contents of buffer 11 (low order
dividend) are moved to buffers E2 and E3. The binary value of X and buffer 13 (divisor) are
already in EO and E1.

4) For DBL/ and DBLR, the values in buffers FO and F1 need to be shifted down into buffers E2
and E3 depending on word size. This allows the division process to basically be the same for
all word sizes.

5 I'f in 16s complement or 206s compl ement mode, t ak:¢
and the divisor, saving the state of the combined signs in one of the CPU internal registers (G
in case your curious). This process also involves using buffers F2 and F3.

6) The (partial) division process is performed until all of the dividend is used and a final
remainder is left in buffers EO and E1.

7) Notwithstanding a lot of weird code that checks for overflow or carry flag conditions (carry
always indicates a remainder is left, no carry means no remainder), the high order quotient
and BCD conversion of the low order quotient is put into either buffer 12 and stack register Y
for 16/ and RMD, or buffer 11 and stack register Z for DBL/ and DBLR. If the remainder was
desired (RMD or DBLR) then buffers E1 and BCD conversion of buffer EO replaces the
quotient.

8 I f 16s complement or 26s complement, the proper ¢

(c) Martin-McClure Page 59 of 63 Septerber2015

HP16C Emulator Module for the HP-41CX

9) For 16/ and RMD, one extended stack drop is performed (buffers 10 thru 12 are dropp ed to
buffers 11 thru 13 in addition to the standard stack drop). For DBL/ and DBLR, TWO extended
stack drops are performed. Thus the quotient or remainder is now in buffer 13 and stack
register X, as well as E1/EO.

10) The division routine returns via a routine that translates the values in buffers EO/E1 into
buffers FO thru F7, and displays the result.

Addition/Subtraction Routines

Addition and subtraction may be much simpler functions, but the complication for these functions
comes from the complement modes and their influence on the carry flag status, overflow flag status,
and adjustment of the final answer. One routine handles both 16+ and 16-, it uses an internal
system flag (specifically system flag 9) to perform the unique code for the specific fu nction. Here is
the addition/subtraction function in detail:

1) 16LastX is performed to save the value of buffer 13 and stack register X into buffer 14 and
stack register L.

2) The result of buffer 12 added/subtracted from buffer E1 replaces E1. The result o f the binary
value of Y added/subtracted from buffer EO replaces EQ. Carry/borrow from EO propagates to
E1, carry from E1 is left in E1.

3y I f 186s compl ement mode, a special internal flag
have to bump the result.

4) A special carry and overflow flag set routine is called to determine which flags to set. This is
described in more detail below.

5) An extended stack drop is performed and buffer E1 replaces buffer 13, and BCD of buffer EO
replaces register X.

6) The addition/subtraction routine returns via a routine that translates the values in buffers
EO/E1 into buffers FO thru F7, and displays the result.

The routine that handles carry and overflow (or out of range) flags uses the following algorithms:

Assume that w represents the word size in use (1 thru 64). Assume that the lowest bit of the result is

bit 0, thus the highest bit of the result is n (OV
n-1th bit signifies positive or negative value (CY bit). Z = X+Y f or addition, or X-Y for subtraction. So

we have three CY bits to consider, XCY, YCY, and ZCY, and one overflow bit, ZOV.

For no complement mode the carry and overflow bits are set identically, they represent the value of
the ZOV bhit.

For 16s c modeif@nseeatthen the resultis bumped (+1 for addition, -1 for subtraction)
For 16s and 26s complement modes the algorithms are:
a) Carry =ZCY

b) OOR = ((XCY xor YCY) and not (ZCY xor ZOV)) or (not (XCY xor YCY) and (ZCY xor ZOV))

(c) Martin-McClure Page 60 of 63 Septerber2015

HP16C Emulator Module for the HP-41CX

Creating a Carry -Mask (fi latthe WS position)

This routine prepares a "1" mask located at the ws bit, in the EO/E1 register depending on the ws
value. The mask is stored in B, and the pointer to EO/EL1 is left in C on exit. If the word size exceeds

32, the status of CPU Flwi |

be

set as a

mar ker

for the foll

the bE1 register (higher bits) - or conversely, in the bEO (lower bits) i f CPU F1 is clear.

Two entry points exist, so CPU flag 7 controls whether the mask is also AND-ed with the original value
for a quicker execution of the job. If done, the result is then transferred to CPU F8 status i which will
be clear if zero or set if not zero. This also allows for faster branching points in the code downstream.

RLRR |MWSPOS AL77 284 CLRF 7 simple version
RLRR Al78 013 JNC +02 —
RLRR MWSPS* A179 288 SETF 7 flag the AND action
RLRR ALl7A 198 C=M ALL<— buffer header
RLRR Al7B 226 C=C+1 S&X pointer to b00
A17Cc [270 RAMSLCT select b0O
This routine prepares a "1" mask [A17D f038 READATA b00 contents
located at the ws bit, in the EO/EL1 [A17E 106 A=C S&X ws in A[S&X]
register depending on the ws valug A17F @Q4_____C_:L_R_F_l _______________ assumes ws<33
The mask is stored in B, and the [A180 f130 LDI S&x 1
pointer to EO/E1 is left in C on exit|A181 tqgl_____(_:Ql\j:_3_3______________ low bits limit B
A182 306 ?A<C S&X is m# < 33?
RLRR A183 027 JC +04 — yes, -> [LOWERB]
RLRR A184 308 SETF 1 flag higher bits case
RLRR A185 266 C=C-1 S&X "032"
RLRR A186 1C6 A=A-C S&X count = (ws - 32)
RLRR |LOWERB A187 04E C=0 ALL <— blank slate
RLRR A188 23A C=C+1 M put "0001" in C<3> digit
RLRR |NXTBIT A189 1A6 A=A-1 S&X decrease counter
RLRR A18A 346 ?A#0 S&X
RLRR A18B 01B IJNC +03— exitif all done
RLRR A18C 1FA C=C+CM shifts the "1" one bit left
RLRR A18D "3E3 INC -04 do next
RLRR MASKOK Al18E OEE C<>B ALI<— mask Is "000.. 1.. 000"
RLRR WSRGPT A18F M98 C=M ALL buffer header
A9 106 A=CS&X _ _ _ _ _ _|putinAformath
gets pointer to reqwith ws bit Al91 30 LDI S&X B
either EO / E1 as per F1 A192 Toos8 8 ABOVEHEADER _|locationofbEO i
A193 30C ?FSET 1 higher bits?
RLRR Al94 'c’l?’____J_’\'S:_JEO_Z_T ________ no,skipline __ ____ _____
RLRR A195 226 C=C+1S&X locationof bEL]
RLRR A196 206 C=C+A S&X— pointer to bEO / bE1
RLRR A197 28C ?FSET 7 are we masking?
RLRR A198 3A0 ?NC RTN no, return here.
RLRR A199 270 RAMSLCT select bEO/bEL
A19A 04 CLRF 8 assume LSbh is a zero
this exits with CY status A19B 038 READATA read initial bEO/bE1
transferred to F8 - so it'll be A19C 19C PT=11 hot-field delimiter
possible to adjust later using A19D 06E A<>B ALL mask to A
the C<>ST instruction A19E 08E B=A ALL keep maskin B
A19F 3B0 C=C AND A AND the mask
RLRR A1AO0 2EA ?C#0 PT<-
RLRR A1A1 013 JNC +02 NO, skip process
RLRR A1A2 108 SETF 8 yes, set F8 for later check
RLRR A1A3 "3E0 RTN <

(c) Martin-McClure

Page 61 of 63

Septerber2015

HP16C Emulator Module for the HP-41CX

70 be continued...

(c) Martin-McClure Page 62 of 63 Septerber2015

HP16C Emulator Module for the HP-41CX

Original Functions

Modified Functions

Mew Functions

1= = R B = T B Y I

I.I'Il.l'l.b.b.b.b.bﬁ.b.b.b.bl.l.'ll.l.'ll.l.'ll.l.'ll.l.'ll.l.'ll.l.'lUJUJUJMMMMMMMMMMI—*I—*I—*I—*I—*I—\I—\I—\I—\I—\
[l =LY =R = = B B = R V) | L e T = U= B« - B B = N B R O N il TR =T - - B I = I ¥ e = T R RN o =R ¥ = B = - BN B = T B R T R X B Ty = |

#BITS
16-

16*
16/
16+
16ABS
16CHS
16ENTA
16RDN
16RUP
165QRT
16X#07
16XEY?
16X<=07?
16X<=Y?
16X<>Y
16X<0?
16X<Y?
16%=07
16X=Y?
16X>07
16X>Y?
1CMP
2CMP
AND
ASR
BINM
CL16X
DBL*
DBL/
DBLR
DECM
DSz
FLOAT
HEXM
152
LST16X
NOT
OCTMV
OR

RL

RLC
RMD

RRC
SHOW
5L

SR
STATUS
UChp
XOR

L=« = R R = T B Y

[T =
|5 I = R = B = - BN B = TN o R R ¥E R I = |

-16C FAT2
-16C STCK
-HP 16C+
-TESTING
16APM
16MPT _
16RCL _ _
165TO _ _
16WsZ _ _
b? _ _

Chr

Ly

LDZER
LOW16M
MASKL _ _
MASKR _ _
RLCM _ _
RLM _ _
RRCM _ _
RRM

Shr

WINDOW _

[T=TN - =R R = I I L = I

u-lu-lu-lJ::.J::.J::.J::.J::.:EJ::.J::.J::.J::.u.1u.1u.1u.1u.1u.1mmmmmmmmmmmmmml—rl—rl—rl—rl—rl—wl—wl—wl—wl—\
3 = 3 WD m =] houn L o T = T U B« B B = I B o L O I i TR Y= T = B I = I Wy (R U T Ry R T e B o R I T (RS Ol T R O B T e

EBIT _
ELEFT _
EMOD _
ERIGHT _
EROT _
ESHF _
168 __ _
165 _
16C _
16KEYS _
16WSZ?
1M Ann
16KA2
16¥<> _ _
16K>=07
16K>=Y?
2oV
2MLT
AZFX
BASE?
CHKBEB
CL165T
CLRFX
D=H
DGDE
DGU
DGRV
EX2FX
FCAT _
FX2ZEX
FX5L?
GET16
H=L

H=D

L<>H

L-H
MMZ
MAND
MOR

REV

RIY
SAVELG
5L
SRM _
TS/L
WSFIT
WSMAX
X0

XY _
X-LA
XNOR

(c)

(c) Martin-McClure

Page 63 of 63

Septerber2015

