
HP-41 Advanced Developer Notes

© Ángel Martin - January 2018

HP-41 Advanced Modules

Developer Notes

 Advanced Modules Architectural Details

Module Name XROM# Lib#4 Sub-Fncs Banked SVC_IO Buffers

16C Emulator 16 - #9; #11

41Z Deluxe 01, 04 - #8; #9
41Z Standard 01,04 - - - #8; #9

ALPHA_44 06 - - - -

AMC_OS/X_XL 05 #5, #9
AMC_OS/X 05 - #5

CL_XMEM (Y-Regs) 20 - - #9
Cryptography 10 - - - #9
Elliptics 17 - - - -
GJM ROM 31 - #9
HEPAX 4H 06 - #9
Metro Paths 30 - - - -
PowerCL 12 - #9
PWCL_EXT 12 - #9
RAMPage 17 - - -
SandMath 02, 03 #5; #9; #14
SandMatrix & Vector Calc 22, 24 - #5; #9
Series & Sums 18 - - - -
ToolBox 13 - - - -

TotalRekall / DTC 21 - #7; #9
TotalRekall / UMS 21 - - -

Unit Conversion ROM 10 - - - -
Warp_Core 30 - #9
XROM ROM 31 - - - -

AECROM 18 - - - -
ZENROM 05 - - - -
HEPAX 1D 06 - - - -
CCD MODULE 09, 11 - - - #5
HP41 Advantage 22, 24 - - #5, #14

HP-41 Advanced Developer Notes

© Ángel Martin - January 2018

LASTF: The “Last Function” – At Long last!

The latest releases of the PowerCL, 41Z, SandMath, SandMatrix and other advanced modules all

include support for the “LASTF” functionality. This is a handy choice for repeat executions of the

same function (i.e. to execute again the last-executed function), without having to type its name or

navigate the different launchers to access it.

The implementation is not universal – it only covers functions invoked using the dedicated launchers,

but not those called using the mainframe XEQ function. It does however support three scenarios:

• Main Functions in the module main FATs

• Main Functions from any other module called using the launchers

• Sub-functions from the auxiliary FATs.

Because functions from the latter group cannot be assigned to a key in the user keyboard, the LASTF

solution is especially useful in this case. See the table below summarizing all launchers that include

this feature.

Main and Secondary Launchers

For consistency sake, the main launchers (CL, FL, ML, 16C, YMEM, ZL) connect to their

corresponding Alphabetical launchers (‘$’) using the ALPHA key, and with the Numeric launchers (‘#’)

using the PRGM key.

Note that the Alphabetical launchers (XQ$, F$, V$, 16$, WF$, YF$, ZF$) will switch to ALPHA

mode automatically. Spelling the function name is terminated pressing ALPHA, which will either

execute the function (in RUN mode) or enter it using two program steps in PRGM mode by means of

the associated numeric launcher (XQ#, XFAT, F#, V#, 16#, YF#, ZF#) plus the corresponding

index (using the so-called non-merged approach). These conversions are done automatically.

And rounding it all up, the LASTF operation is also supported by the CAT+ functions when the

execution is triggered during the sub-function enumeration – using the [XEQ’] hot key. This was

added to the implementation with revision “M” of the Library#4. And speaking of the XEQ’

functionality – note that it can also be used while editing a program to select a sub-function and

enter it automatically into program memory on demand.

Another new enhancement is the displaying of the sub-function names (up to six characters only)

when using the index-based launchers XFAT, F#, V#, 16C, SF#, WF#, and ZF# - which

provides visual feedback that the chosen function is the intended one (or not). This feature is active

in RUN mode and when entering it into a program.

For ultimate convenience, the display of sub-function names also occurs when single-stepping a

program – but obviously not so during the program execution. This is the closest it gets to managing

sub-functions as close as possible to standard functions in the main FATs.

HP-41 Advanced Developer Notes

© Ángel Martin - January 2018

Table 1. Summary of Advanced Launchers

Module Launchers Fnc. Id# LASTF Method

AMC_OS/X
Revision XL

-CAT1 n/a

XQ$ _ A1:52 Captures (sub)fnc NAME

XQ# _ _ _ A1:51 Captures (sub)fnc id#

CAT+ (XEQ’) #017 Captures (sub)fnc id#

PWRCL_EXT
revision “O”

CL, XCAT, TURBO, BAUD,
MMU,
IMDB, HEPX, YBUF, XXEQ, PLUG

A3:01 Captures (sub)fnc id#

IOBUS, IOPG#, STR$, ALP$ Captures (sub)fnc id#

XQ1$ _ , XQ2$ _ A3:36 , A3:37 Captures (sub)fnc NAME

XFAT _ _:_ _ A3:35 Captures (sub)fnc id#

CAT+/CAT++ (XEQ’) #086 , #089 Captures (sub)fnc id#

SandMath 4x4
revision “M”

FL , HYP, FRC, RCL# A0:82 Captures (sub)fnc id#

F$ _ A0:83 Captures (sub)fnc NAME

F# _ _ _ A0:84 Captures (sub)fnc id#

CAT+ (XEQ’) #116 Captures (sub)fnc id#

SandMatrix 4 ML, (M: / V: / P:), DST/PRT A5:81, A5:82 Captures (sub)fnc id#

revision “M” V$ _ A5:83 Captures (sub)fnc NAME

V# _ _ _ A5:84 Captures (sub)fnc id#

CAT+ (XEQ’) #054 Captures (sub)fnc id#

16C Emulator

16C ,

LEFT /RGHT, MOD, BIT

A4:01 Captures (sub)fnc id#

16$ _ A4:03 Captures (sub)fnc NAME

16# _ _ _ A4:02 Captures (sub)fnc id#

CAT+ (XEQ’) #034 Captures (sub)fnc id#

CL-XMem YMEM, -STKSWP A5:21 Captures (sub)fnc id#

 YF$ _ A5:2C Captures (sub)fnc NAME

 YF# _ _ _ A5:2B Captures (sub)fnc id#

 CAT+ (XEQ’) #022 Captures (sub)fnc id#

41Z “Deluxe” ZL _ A1:0A Captures (sub)fnc id#

 ZHGF, ZPRT, ZNEXT, ZBSL, ZHYP Captures fnc id#

 ZF$ _ A0:44 Captures (sub)fnc NAME

 ZF# _ _ _ A0:43 Captures (sub)fnc id#

 CAT+ (XEQ’) #060 Captures (sub)fnc id#

Warp Core; -STKT ; RKL , XEQ+ A5:5B, A5:44 Captures (sub)fnc id#

Dare2Compare WF$ _ A5:51 Captures (sub)fnc NAME

TotalRekall WF# _ _ _ A5:50 Captures (sub)fnc id#

 CAT+ (XEQ’) #64 Captures (sub)fnc id#

Formula Eval EVL _ A7:8E Captures (sub)fnc id#

Revision 3K SF$ _ A7:8C Captures (sub)fnc NAME

 SF# _ _ _ A7:8B Captures (sub)fnc id#

 CAT+ (XEQ ‘) #24 Captures (sub)fnc id#

HEPAX 4H XF$ _ , HEPAX$ _ A1:F6, A1:EF Captures (sub)fnc NAME

Custom Ver. XF _ _ _ , HEPAX _ _ _ A1:F5, A1:EE Captures (sub)fnc id#

 HPCAT/XFCAT (XEQ‘) #16, #26 Captures (sub)fnc id#

HP-41 Advanced Developer Notes

© Ángel Martin - January 2018

Sub-Functions Index Table

The numeric launcher (ending with “#”) always refers to a sub-function, and expects the indexes

numbered from zero to the end of the Aux-FAT. If the ROM doesn’t have a function launcher then

we’re done, there’s no need to have the index scheme valid for both launchers. The tricky part comes

when the ROM also has a function launcher, which can include both main and sub-functions alike: in

that case the index scheme must be capable to accommodate both kinds.

The scheme uses the [XS] nybble to signal the type of index, depending on whether it’s meant to be

used as a main-function id# by the function launcher, or as a sub-function index by the numeric

launcher. The issue here is that MAIN functions indexes depend on the XROM id#, and the Sub-

function index needs to be the opposite to the MAIN fnc digit. Therefore, there’s not a consistent

approach across all modules. This makes it difficult to consolidate in a subroutine in LIB#4.

The solution is – as always – reached by adding some extra code to separate the different cases. In

the first place the use of CPU flag 0 for the SandMath (the single case where the table is one page

higher than the code. In second place is the use of CPU flag 1 for the location of the sub-functions

FAT, either atop the page (PowerCL and HEPAX) or at the beginning of Q3. Finally, the decision

whether to use the MAIN or SUB-function launchers varies depending on the module (due to the main

XROM id# as stated above).

Module Function
Launcher

XROM id# Main Fnc
index

Numeric
Launcher(s)

Sub-
fnc
index

Other /
Specials

41Z ZL _ 01/04 (A0/A1) 0/1 xx ZF# _ _ _ 3 xx -

SandMath FL _ 02/03 (A0) 0 xx SF# _ _ _ 3 xx 1 xx / 2 xx

SandMatrix ML _ 22/24 (A5/A6) 1xx / 2xx SV# _ _ _ 3 xx 0 xx SandMath

WARP -STKT _ 21 (A5:40) 3xx WF# _ _ _ 0 xx 1 xx

16C 16C _ 16 (A4) 1xx 16C# _ _ _ 0 xx -

Formula_Eval EVL _ 30 (A7:80) 3 xx SF# _ _ _ 0 xx -

AMC_OS/X (LASTF) 05 (A1:40) 1 xx XF# _ _ _ 0 xx -

Power_CL CL _ 12 (A3:00) 3 xx XQ1# _ _ _ 0 xx 2 xx YFNX

 XQ2# _ _ _ 1 xx 1CA/1F0 HEPAX

CL_XPMM (LASTF) 20 (A5:00) 3 xx YF# _ _ _ 0 xx 1 xx

HEPAX_4H (LASTF)

06 (A1:C0) 1 xx HEPAX _ _

_

0 xx -

 XF _ _ _ 1 xx

Where xx = Index within the AUX FAT for sub-functions, or

The remaining digits of the function code for MAIN functions

HP-41 Advanced Developer Notes

© Ángel Martin - January 2018

LASTF Operating Instructions

The Last Function feature is triggered by pressing the radix key (decimal point - the same key used

by LastX) while the launcher prompt is up. This is consistently implemented across all launchers

supporting the functionality in the three modules – they all work the same way.

When this feature is invoked, it first shows “LASTF” briefly in the display, quickly followed by the last-

function name. Keeping the key depressed for a while shows “NULL” and cancels the action. In RUN

mode the function is executed, and in PRGM mode it’s added as two program steps if programmable,

or directly executed if not programmable.

If no last-function yet exists, the error message “NO LASTF” is shown. If the buffer #9 is not present,

the error message is “NO BUF” instead.

HP-41 Advanced Developer Notes

© Ángel Martin - January 2018

LASTF Implementation details.

The functionality is a two-step process: a first one to capture the function id#, and a second that

retrieves it, shows the function name, and finally parses it. All launchers have been enhanced to

store the appropriate function information (either index codes or full names) in registers within a

dedicated buffer, with id# = 9.

The buffer is maintained automatically by the modules (created if not present when the calculator is

switched ON), and its contents are preserved while it is turned off (during “deep sleep”). No user

interaction is required.

The buffer reserves one register for each of the modules that have sub-functions, plus the header

also stores the standard-41Z last-function - which is always in its main FAT. Therefore, up to five last-

functions can be simultaneously available at any given time. A total of five registers are used, as

follows:

Register Used for:

b5 CL-XMem; WarpCore; GJM ROM

b4 SandMatrix fcn.id#

b3 SandMath fcn.id#

b2 PowerCL; AMC_OS/X fnc.id#

b1 41Z Deluxe / 16C Emulator fnc.id#

b0 Header – Standard 41Z Module

For modules other than the Standard 41Z, the function id# format can be either a string of alpha

characters (stored in reversed order) representing the sub-function name, or a three-digit hex value

in the [S&X] field representing the main/sub-function index. In the latter case, the [MS] field is

marked with an “F” to tell the cases apart.

When the LASTF action is triggered pressing the Radix key, the code seeks for the function data in

the relevant buffer register, depending on the module carrying the action. When found, it displays the

sub-function name (either by mirror-imaging the alpha id# or by looking it up in the corresponding

auxiliary FAT. Finally it’s parsed to the corresponding section responsible for the execution of the sub-

functions.

Dependencies

These modules do require the 41-CX OS and the Library#4 installed. Note that the Library#4 was

also updated to revision “M” – now including subroutines in support of this functionality. As always,

make sure that matching revisions are installed in your machine.

Note as well that some of the functions in the SandMatrix also require the SandMath present. This is

implemented as a non-halting warning as well.

HP-41 Advanced Developer Notes

© Ángel Martin - January 2018

Routines Documentation.

This section documents the routines in the Library#4 module and in the specific modules that provide

the LastF functionality. As it turns out, I realized I had forgotten most of the secret souce

ingredientes during the development of the 16C Emulator Module – writing the LASTF for that one

was an exercise of re-discovery all over again!

Phase 1.- Capturing the function info into the LastF buffer.

This is typically done just when the function code is issued to the sub-function launcher, even before

the tables search. This task is accomplished by routines [LASTF#] and [LASTF$] depending on the

case: either using the sub-function index stored in M[S&X] or its name mirror-imaged in regster Q.

Another input parameter is the buffer reg#, assumed to be in C[S&X] at the call.

Phase 2.- Executing the Last function from fcn code in LastF Buffer.

Routine [LASTF?] is usually inserted in the partial key sequence as triggered by the radix key. It first

selects RAM chip0 and the partial entry sequence with a call to [EXIT4], and then retrieves the

function code stored in the corresponding register of the LastF buffer using [LASTF4] and the buffer

reg# in C[S&X].

a. If it is a function index the execution is passed to [SUBXEQ] within the numeric subfunction

launcher, like it’s the case for every other sub-function triggered otherwise by a custom

keyboard assignment. This requires CPU flag 8 cleared.

Depending on the [XS] field the parser knows whether it’s a main function or a sub-function

from a secondary FAT. The convention here may be different for each module, but

conceptually it’s the same across all of them. In the former case, the function name is

displyed using the OS routine as 0x2F52 (unlabeled), a pause is introduced calling [WAIT4L]

in the library#4, anf the execution is transferred to [RESET2] - which does the housekeeping

chores and finally calls [RAK70] to execute the function.

If however it is a sub-function code then displaying the function name needs to use routine

[FNAME] in the Library#4 instead. Its input parameter is the address within the secondary

FAT, which is calculated by another subroutine in the Library#, [GETADR], as as a direct

function of its index number: adr = table top + 2x (1 + index#). [GETADR] will fetch the

address bytes from the sub-FAT structure much the same as the CATALOG routines do it on

the main FATs.

b. If it is a string with the function name, the string is put in the Q register and mirror-imaged in

C, in a format understood by [DSPCREG]. The name is shown in the display and after a

chance to null it using [NULTST] the execution goes to [EXECUTE] within the Alpha-

Subfunction launcher, which sets CPU flag 8.

Either way (by index or by name) the execution is sent to the library#4 routines [HEPXA4] or

[SPCFCA4] located at 0x4E25 and 0x4E28 respectively in the Library#4. The difference is whether

the auxiliary FAT is at the top of the page - for [HEPAXA4] - or starting at address 0X800 - for

[SPCFA4]).

HP-41 Advanced Developer Notes

© Ángel Martin - January 2018

These routines will triage the situation depending on whether the machine is in program mode,

running a program or in manual mode – so the sub-function will be entered as two program lines or

executed directly. (with the sub-function address in hand it’s easy to just send the program pointer to

the right place). Note that if program mode is on then the subfunction index is used instead of its

name in all instances – even when the input parameter was its name.

For this to work across modules from the Library#4 the routine needs to know the sub-function

launcher code, which is different for each module. This is entered as input parameter in the leftmost

4 digits of register 8(P).

The figure below sketches the routine flow. Note the fundamental role of the [SPFCA4] routine, final

step of all possible execution branches dealing with sub-functions. Note as well that there is a lot of

code reuse between LASTF and the sub-function launchers, as basically both perform the same thing.

HP-41 Advanced Developer Notes

© Ángel Martin - January 2018

Auxiliary FAT structure.

The Auxiliary FAT can be placed either in the main bank or in a secondary bank. If in the main bank,

it’s always located at the beginning of the third quad (0xp800). For secondary banks, it can be

located starting at the top of the page (0xp000) or at the beginning of the third quad (0xp800).

The first and last words are always 100, which serves as control for the CAT+ enumeration in

forwards or backwards mode. The second word on the table must be the number of sub-functions –

which unlike the standard main FATs, is not limited to 64. A practical limit of 99 exists, although it is

possible to exceed it and the sub-function names will display properly.

Sub-functions are entered in the Auxiliary FAT using two words per function, with the start address

coded in the same way it is arranged for the main FATs of a module. There is no provision made for

prompting functions, nor for non-programmable ones – so it’s up to the sub-function code to deal

with these contingencies.

The first sub-function should always have a hyphen as first character, denoting a section header. The

CAT+ function code needs that at least another section header function exists for the section Catalog

feature to work (pressing ENTER^ with the catalog enumeration stopped).

Sub-function Launcher design.

There are at least two sub-function launchers on each module: one uses the sub-function index as

parameter, while the other uses the sub-function name.

The by-index implementation takes the index from the prompt, and uses it to basically read the

function start address from the auxiliary FAT and parse the execution to that address if in RUN mode;

or to enter the sub-function in a program using two program lines – following the non-merged

approach design. When it is used with program mode on or SST’ing a program line it will show the

sub-function name briefly in the display to provide visual feedback to the user.

The by-name implementation takes the name string from the Q register and proceeds to do a search

by name on the auxiliary FAT. This alphabetical search is done in the library#4 routine [SPCFA4], and

thus it requires that the corresponding bank with the sub-function FAT is enabled. When a match is

found then the function start address is used as described above. Note that when program mode is

active the alphabetical launcher will use the sub-function index and the numeric launcher as well.

If the sub-function is not found in the auxiliary FATs (there are two of those in the Power CL module),

the code will attempt a standard function search in the module’s main FAT – or in any other module

currently plugged in. This is done by the library#4 routine [XEQFNC], which basically uses the OS

routines [ARSCH] and [RAK70] for that purpose.

The sub-function launchers are also responsible for adding the sub-function information in the LASTF

buffer – so it can be re-executed using the LastF functionality. This is typically done by calling

routines [LASTF#] or [LASTF$] for the numerical and alphabetical launchers respectively – using the

buffer register as input parameter.

HP-41 Advanced Developer Notes

© Ángel Martin - January 2018

The Sub-Function Catalogs. { CAT+ }

An important feature is the ability to enumerate all sub-functions within the auxiliary FATs. Similar to

the Catalog 2 in the OS, the listing can be stopped and resumed using the R/S key. CAT+ also allows

for a single-step enumeration and for a section listing – showing only functions with a hyphen in the

first character of their names.

In the SST mode the function shown can be executed pressing the XEQ key. This is accomplished by

back-calculating the sub-function index, getting the sub-function start address from it, and and

parsing the execution to that address in the same way as described above. The sub-function index is

also added to the LastF buffer during that process as well.

The code will also read the sub-function name and present it to the user as visual feedback while

pressing the XEQ control key. The message “XEQ ‘FNAME” is shown briefly before the function is

nulled if the key is kept depressed.

Note that the sub-function enumeration uses a continuous loop approach, even when stopped in

manual mode - detecting key pressings as opposed to the partial entry sequence technique. Even if

this is a less preferable option due to the battery usage associated with it, it is however necessary in

this case because the code will be accessing auxiliary banks – which is not compatible with the partial

entry sequence design.

Finding the Sub-function Launchers

If you’re not sure which function acts as the sub-function launcher for a given module you can call

the function SFLNCH to do the leg work for you it. Simply enter the hex page# at its prompt and the

appropriate launcher will be found out. The function will transfer the execution to it for additional

convenience.

Scanning the I/O Bus for Auxiliary FATs.

Another convenient function is AUXFAT. Use it to retrieve a list of pages where modules with

auxiliary FATs are plugged in. The enumeration shows the page letter, separated by colons if

smultiple exist.

