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Introduction.Elliptic Applications Module 
 
This HP-41 Module includes a collection of MCODE functions and short driver FOCAL programs on the 

subject of ‘Elliptic Applications”. Despite the section labelled “Orbital Mechanics”, this is not for the 
most part an astronomy related module – as the subjects are mostly approached from a geometry 

point of view. 
 

It could be said that the module was prepared while learning about the subjects, as an instrument to 

verify assumptions and experiment. Therefore, don’t expect to find advanced treatment of the 
subjects. Yet it’s possible that you’ll enjoy the way the material is put together, sometimes an un-

biased approach is a more refreshing way to proceed. 
 

Without further ado, here’s the function index for your reference: 

 

XROM  Function  Description Input / Output Author 

16,00 -ELLIP APPS Section Header n/a n/a 

16,01 BRHM Area of Cyclic Quadrilateral Data in R01-R04 JM Baillard 

16,02 CIRCLE Circle through three points P1, P2, P3 in Registers R01-R06 Ángel Martin 

16,03 "ECS+" Driver for ECS Prompts for values Poul Kaarup 

16,04 ECS Elliptical Central Sector {a,b,e} in R00-R02,  in X Ángel Martin 

16,05 EFS- Ellliptical Left Focal Sector {a,b,e} in R00-R02,  in R03-04 Ángel Martin 

16,06 “EFS+“ Elliptical Right Focal Sector {a,b,e} in R00-R02,  in R03-04 Ángel Martin 

16,07 HERON Area of Triangle from sides Data in X,Y,Z Ángel Martin 

16,08 "K2-“ Kepler 2nd. Law – Left Sector Prompts for values Ángel Martin 

16,09 "K2+“ Kepler 2nd. Law – Right Sector Prompts for values Ángel Martin 

16,10 "LCS" Central sector Arc Length Prompts for values Ángel Martin 

16,11 "LF+" Right Focal sector Arc Length Prompts for values Ángel Martin 

16,12 RAMA2 Ramanujan’s 2nd. Approx. a,b, in Y,X Ángel Martin 

16,13 TOF Time of Flight (T, e, ) in  { Z,Y,X} Angel Martin 

16,14 ZELIP1 Complex Elliptic Intg. 1st. kind z in (Z,Y), m in X Ángel Martin 

16,15 ZELIP2 Complex Elliptic Intg. 2nd. kind z in (Z,Y), m in X Ángel Martin 

16,16 -ORBITS 101 Section Header n/a n/a 

16,17 E>M Eccentric to Mean anomaly (e, E) in Y,X Ángel Martin 

16,18 E>T Eccentric to True Anomaly (e, E) in Y, X Ángel Martin 

16,19 M>E Mean to Eccentric anomaly (e, M) in Y,X JM Baillard 

16,20 T>E True to Eccentric Anomaly (e, T) in Y,X Ángel Martin 

16,21 “ORBIT“ Delta-V Orbit Simulator Under program control hp Co. 

16,22 “TA<T>“ True Anomaly via Kepler New Position w/Kepler equation Ángel Martin 

16.23 “TA+“ True Anomaly Direct Mode (+) New Position using Right sectors Ángel Martin 

16.24 “TA-“ True Anomaly Direct Mode (-) New Position using Left sectors Ángel Martin 

16.25 “<)T“ Subroutine for Solve Under program control Ángel Martin 

16.26 “V<R>“ Velocity “Vis Vivas“ Velocity at distance – Left focus Ángel Martin 

16.27 “VR+“ Velocity at Position R+ Velocity at distance - right focus Ángel Martin 

16.28 “VR-“ Velocity at Position R- Velocity at distance - Left focus Ángel Martin 

16.29 T() Period from Gravitational data Mass in Y, semi-major axis in X Ángel Martin 

16.30 1/2 Gravitational Parameter Period in Y, semi-major in X Ángel Martin 
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XROM  Function  Description Input / Output Author 

16.31 -AUX FNS Section Header Doubles as QROUT n/a 

16.32 <)C-R Central angle to Radius {a,b,e} in R00-R02,  in X Ángel Martin 

16.33 <)C-XY Central angle to coordinates {a,b,e} in R00-R02,  in X Ángel Martin 

16.34 <)C0+ Central angle for Focal 90° (a b,e) in R00-R02. Lifts stack Ángel Martin 

16.35 <)C>F Central to Focal angle {a,b,e} in R00-R02,  in X Ángel Martin 

16.36 <)F>C Focal to Central angle {a,b,e} in R00-R02,  in X Ángel Martin 

16.37 <)F0+ Right focal angle at x=0 (a,b,e) in R00-R02. Lifts stack Ángel Martin 

16.38 <)F0- Left Focal angle at x=0 (a,b,e) in R00-R02. Lifts stack Ángel Martin 

16.39 <)F>R- Left Focal angle to radius {a,b,e} in R00-R02,  in X Ángel Martin 

16,40 <)F>R+ Right focal angle to radius {a,b,e} in R00-R02,  in X Ángel Martin 

16,41 “?ab“ Prompts for semi-axis New value or R/S for current Ángel Martin 

16,42 “?<)-“ Prompts for left-angles New value or R/S for current Ángel Martin 

16,43 “?<)+“ Prompts for right-angles New value or R/S for current Ángel Martin 

16,44 “?P“ Prompts for Period New value or R/S for current Ángel Martin 

15,45 QROOT Quadratic Eq. Roots c2, c1, c0 in Z,Y,X Ángel Martin 

15.46 V(X) Velocity at abscissa X Period in Y, abccissa in X Ángel Martin 

15.47 -SOLAR SYS Section Header Doubles as ZOUT n/a 

15.48 EARTH Planet orbital data Puts data in R00-R02 & R06 Ángel Martin 

15.49 JUPITER Planet orbital data Puts data in R00-R02 & R06 Ángel Martin 

15.50 MARS Planet orbital data Puts data in R00-R02 & R06 Ángel Martin 

15.51 MERCURY Planet orbital data Puts data in R00-R02 & R06 Ángel Martin 

15.52 MOON Satellite orbital data Puts data in R00-R02 & R06 Ángel Martin 

15.53 NEPTUNE Planet orbital data Puts data in R00-R02 & R06 Ángel Martin 

15.54 PLUTO Planet orbital data Puts data in R00-R02 & R06 Ángel Martin 

15.55 SATURN Planet orbital data Puts data in R00-R02 & R06 Ángel Martin 

15.56 URANUS Planet orbital data Puts data in R00-R02 & R06 Ángel Martin 

15.57 VENUS Planet orbital data Puts data in R00-R02 & R06 Ángel Martin 

15.58 +VH12 Hohmann Transfers v1 & v2 M, R1, R2 in (Z,Y,X) Ángel Martin 

15.59 +VB123 Bi-Elliptic Transfer V1, V2. V3 (M, r1, r2, rb) in  {T,Z,Y,X} Angel Martin 

15.60 +VEa12 Elliptic Apogee Transfers V12 (r1, r2, r3, r4,M) in Stack & LastX Ángel Martin 

15,61 +VEb12 Elliptic Perigee Transfers V12 (r1, r2, r3, r4,M) in Stack & LastX Ángel Martin 

15,62 “CORV“ Co-Orbital Rendezvous Prompts for Data Ángel Martin 

16,63 “CPRV“ Co-Planar Rendezvous Prompts for Data Ángel Martin 

 

Module Dependencies. 

The functionality included in this applications module builds on the ELLIPTIC module, and expands the 

examples included there, like the ellipse eccentricity and perimeter. It requires the ELLIPTIC module 
plugged in the calculator. 

 
In addition to that, some MCODE functions use routines from the Library#4, which therefore also 

needs to be plugged to ensure proper operation and correct results. 
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Elliptic Sector Areas and Arc Lengths. 

This section describes a set of functions to calculate sector areas and arc lengths of an ellipse. As it is, 

the Ellipse is an unassuming conic that presents more difficulty than intuitively expected when first 

approached. 

Let’s consider an ellipse with major and minor semi-axis “a” and “b” respectively. Then its eccentricity 

is given by the expression: e = sqrt(1-b^2) / a^2.  We also know that the distance from the foci to 

the origin is given by:  OF = a.e 

 

1.1. Central Sector Areas. 

By Central sector we define the area comprised between the arc of the ellipse and the segments that 

link two points in the ellipse with its center, situated at the origin of coordinates x=y=0. 

The origin of angles is the horizontal axis, measured counter-clockwise. Thus a null angle (  = 0 ) 

corresponds to the point x=a, y=0, and an angle of 90° (  = 90 ) will represent the point  x=0, y=b  

where {a, b} are the major and minor semi-axis of the ellipse respectively. 

With this convention, the formula that gives the areas is 

shown below, where: <1, and  0<=<= 90° 

 

 

 

Examples. Obtain the area of the central sector between the angles 0 = 45° and 1 =90 °, for an 

ellipse with semi-axis values a=3 and b=2. 

The central sector area is calculated by the MCODE function ECS. It expects the ellipse data already 

stored in the data registers R00 to R02, and the delimiting angles in the stack - as follows: 

 

 

 

 

So for this example we type: 

RAD 

3, STO 01, 2, STO 02, XEQ “ECC” =>0.745355993  , the eccentricity 

STO 00, PI, 4, /, PI, 2, / , XEQ “ECS” =>1.764007811  , the sector area. 

  

Value Symbol Register 

Eccentricity e R00 

Major Semi-axis a R01 

Minor semi-axis b R02 

Lower angle 1 Y 

Upper angle 2 X 
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The driver program ECS+ makes the data input/output a much simpler affair; just enter the values at 

the corresponding prompts. If you want to re-use the existing data in the registers just press R/S to 

bypass the input. The input order is not critical, as the program will ensure that a>b and 1 >0 

 

Here’s the program listing, a simple application of the auxiliary functions included in the ROM: 

01 LBL “ECS+” 

02 XROM “?ab”  semi-axis 

03 LBL 00 

04 XROM “<)+”  sector angles 

05 ECS   does the math 

06 “A(c)=”  

07 ARCL X 

08 PROMPT  shows the result 

09 GTO 00  other angles 

10 END 

 

1.2. Central Sector Arc Length 

Also from the same reference, the formula for the arc length is given by the expression: 

 

Where the radius “r” is the distance from the origin to the point: 

     

The arc length is calculated using the incomplete Elliptic Integral of second kind, which as always, is 

going to require careful attention to the conventions used - in order to use the functions from the 

Elliptic Module. Function LEI2 can be used once we change the parameters to a suitable form, as 

follows: 

E (x, k ) = LEI2 (asin(x) ; e^2)      ; with e the eccentricity of the ellipse. 

In order to apply LEI2 directly we also need to free the data registers R00-R04, which are used by the 

program. This is achieved using REGMOVE twice, right before calling LEI2 and after it completes. 

Example.- Calculate the arc length for the sector used in the previous example, defined by 45 and 90 

degrees.  The solution is 1.709841 

XEQ “LCS”   ? 

2, ENTER^, 3, R/S   

PI, 4, /, PI, 2, /, R/S  ” 

    
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The program LCS  (“Length of Central Sector”) is listed below. Note that it’s also prepared to calculate 

arc lengths for focal sectors, which will be the subject of another section later on… 

 

 

The auxiliary function <)C-XY  calculates the coordinates (x,y) of the point in the ellipse situated at 

the central angle  In turn, it also uses  1/R^2 , another auxiliary routine to obtain the radius at that 

point, i.e. the segment connecting it with the origin of coordinates.  

1 LBL "LF+" 1 LBL "<)C-XY"

2 SF 04 2 XROM "1/R^2"

3 GTO 04 3 1/X

4 LBL "LCS" 4 SQRT r1

5 CF 04 5 ENTER^

6 LBL 04 6 ENTER^

7 XROM "?ab" 7 RCL N s in E1

8 LBL 01 8 * r1 . s in E1

9 XROM "?<)+" 9 X<>Y

10 RCL 04  1 10 RCL M cos  E1

11 ?FS 04 11 * r1 . cos  E1

12 XROM "F2C" E1 12 RTN

13 STO 11 13 LBL "1/R^2"

14 RCL 03  2 14 ENTER^

15 FS? 04 15 COS cos  E1

16 XROM "F2C" 16 STO M

17 STO 10 E2 17 RCL 01 a

18 XEQ 03 18  /

19 STO 12 19 X^2

20 STO 12 20 X<>Y

21 RCL 11 E1 21 SIN s in E1

22 XEQ 03 22 STO N

23 ST- 12 23 RCL 02 b

24 RCL 12 24  /

25 RCL 01 a 25 X^2

26 * 26 +

27 "L=" 27 END

28 ARCL X

29 PROMPT

30 GTO 01

31 LBL 03

32 XROM "<)C-XY" x = r.cos  

33 RCL 01 a

34  /

35 ASIN as in (x/a)

36 RCL 00 e

37 X^2 e^2

38 X<>Y

39 5,000005

40 REGMOVE

41 RDN

42 XROM "LEI2'

43 0,005005

44 REGMOVE

45 RDN

46 END
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2.1. Focal Sector Areas. 

By Focal sector we define the area comprised between the arc of the ellipse and the segments that link 

two points in the ellipse with one of its foci.  This type is very relevant in areas of orbital mechanics and 

the Kepler laws – as we’ll see later in the examples. 

From this definition we see that there are two different focal sectors, depending on which focus is used 

as its “vertex”, either F- or F+. Therefore, we’ll call 

• Left Focal sector to the one using the left focus as vertex, situated at  F- = ( -a.e  ; 0) , and 

• Right Focal sector to the one with the right focus as vertex, at  F+ = ( a.e ; 0 ). 

 

For either case we’ll use the horizontal  

axis y=0 as origin for angles, with the  

counter-clockwise convention as positive,  

i.e. the same one used for the central  

sectors. 

 

The angle  = 90 represents the points  

P’ and P” in figure 2 (next page) and left sectors  

respectively; i.e. totally different on each case and different  

as well from the central case, as shown above as P. 

 

The formulas for the focal sector areas for each case are given below: 

a) Right Focal Sector Area 

(formula from: http://bado-shanai.net/Platonic%20Dream/pdAreaofEllipticSector.htm ) 

    

Where the parametric angle  is calculated from the azimuth angles as follows:        

 

b) Left Focal Sector Area  (formula by David Cantrell).- 

S = a.b/2 . [F(1) – F(0)] 

F() =  + e.Sqrt(1-e^2).sin  / (1-e.cos  ) + 2.Arctan(e.sin / (1-e.cos  + Sqrt(1-e^2) ) ) 

 

Note that the relationships between left and right focal sectors are obviously given by the symmetrical 

nature of the ellipse. After all, each case is the mirror reflection of the other – or in terms of the Sun-

Earth system, it all depends on the observer’s point of view at either side of the solar system plane 

(from the top or from below), swapping the perihelion and the aphelion.  

 

F+ F- 

 

0 

b 

a 

X 

Y 

P (x,y) 

  

http://bado-shanai.net/Platonic%20Dream/pdAreaofEllipticSector.htm
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Figure 2. Relevant Central and Focal angles. 

Examples. Let the semi-axis be a=3 m. and b=2 m.  Calculate the right and left focal sector areas 

between 0 = 0 and 1 = /2 . Is there any relationship between them? 

XEQ “K2+   

2, ENTER^, 3   

0, PI, 2, / ,R/S      m^2 

Note that you can also enter the semi-axis and the angles in the reverse order, the program will sort 

them appropriately before saving them in the data registers so that a>b and 2  >1.  Note as well 

that you can just press R/S at the prompts to reuse the existing values in the data registers  

XEQ “K2-“   

R/S  (uses current)  

R/S  (uses current)     m^2 

The observant reader would notice that A(-) = ab/2 – (A+) =9.4248 – 0.6985 = 8.7263.  

The general form expresses that the Left focal sector is the complementary to the semi-ellipse and the 

Right focal sector. This is just one of the many interdependencies, which will be covered in the next 

sections. 

 

Assuming 0 =0, see the table below with the specific relationships (some of them trivial) for the 

different values of the 1 angle, between 0 and 2: 

   '  '  2
A+ 0 Ao A’ ab/2 ab – A’ ab – Ao ab     

       

  ”    ” 2
A- 0 A"ab/2 – A’ ab/2 – Ao ab/2 ab + Ao ab – A” ab       

        

  ' "    2
Ac 0 Ao + ’ ab/2 - ” ab/4 ab/2 ab/4 ab      

 

 

  

F+ F- 0 

b 

a 
’ ’ 

P’ (ae, y’) 

” 

P” (-ae, y’) 
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Sector Delimiting angles. 

There are a couple of important border angles in these cases, because they determine a change of the 

criteria for the calculations – delimiting a sign change in the expressions of the {x,y} coordinates. 

• For right Focal sectors, let ’ the angle between the X-axis and the segment F(+) to P(0, b).  

• For Left focal sectors, let ” the angle between the X axis and the segment F(-) to P(0, b). 
 

In other words, these are the left and right focal angles corresponding to the point in the 

ellipse with abscissa zero, x=0. 

 

• We can also find the central angles called ’ and ” corresponding to points on the ellipse with 

abscissa equal to the foci, i.e.  x =a.e  and:  x= - a.e, 

Obviously, we have:  ” =  - ’. That and a couple of MCODE functions included in the module can 

be used to determine the significant angles ’ and ”, as follows: 

• Use  <)C0+  to calculate’, as given by the expression:  tan ’ = b. sqrt(1-e^2) / a.e 

• Use  <)F0+  to calculate ’, as given by the expression:  tan ( - ’ ) = b / a.e 

• Use  <)F0-  to calculate the left focal angle ” for x=0, determined by: tan ” = b / a.e 

 

Important remark: these functions expect the eccentricity and semi-major axis values  

to be already stored in data registers R00 and R01 respectively. 

 

Note:- The Focal angle  = /2 (i.e. the Central angle = ’ ) determines the point P’, also known as 

Gauss’  “half parameter” (H) – specifically its Y-value (ordinate). 

 

Example.  For the same ellipse with a=3 and b=2, calculate the values of the central and focal border 

angles.  Just in case  the contents of the data registers had been altered, we first set the calculator in 

RAD mode and input the parameters in the data registers (including the eccentricity as well). 

3, STO 01, 2, STO 02, XEQ ‘ECC” => m 

STO 00, RAD, XEQ “<)F0+”  => rad 

R-D     => ° 

XEQ “<)C0+”    => rad 

R-D     => ° 

Therefore, the left focal angle is: ” = –’ = 0.729727657 rad 

Using these as sector upper angles and zero the lower one, the respective areas are: 
 

A+(0, ') = 2.476321000  - for the right focal sector,  

A- (0, ”) =6.948456965  - for the left focal sector, and: 

Ac(0, ’) = 2.189182968   - for the central sector. 
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2.2. Focal Sector Arc Length. 

The approach followed has been to calculate the central angles corresponding to the points defining 

the focal sector, and then use the formula for the central arc length from the previous section. This 

allows for a reuse of the same code – namely the application of ELI2. 

In its initial FOCAL implementation it involved solving a quadratic equation on “d”, the focal segment 

linking the point in the ellipse with the focus (i.e. hypotenuse of the triangle with vertices P-F-0). The 

quadratic equation is derived from the Cartesian equation of the ellipse: (x/a)^2 + (y/b)^2 = 1 

A.d^2 + B.d + C =0,  with coefficients as follows: 

A = (cos  / a)^2 + (sin /b)^2 = 1/r^2 

B = 2.OF.cos / a^2 = 2.e.cos / a 

C = (OF/a)^2 = e^2 

The final expression for the central angle depends on the region, with four regions being considered as 

shown below: 

Focal angle Central angle Region 

  = atan [d.sin / (OF + d.cos)] 0 <<= ’ 

  =  - atan|d.sin / (OF + d.cos) | ’<<=  

  = +atan |d.sin / (OF + d.cos) | <<= ” 

  = 2 - atan |d.sin / (OF + d.cos) | ”<<= 2 

 

Although explicit, these expressions are not the best for an efficient algorithm implementation. That’s 

why on the current revision they were replaced for more concise approach, based on the parametric 

expressions linking the variables involved: 

|OF| + d cos   = r cos      

             d sin   = r sin  

Knowing the values o the central radius “r” and the focal segment “d”, we can use the R-P function on 

this pair of equations for the direct and inverse conversions, i.e. from focal to central angle - and back. 

Two MCODE functions are included in the module, they are inverse from each other and  the input 

angle can be in degrees or radians: 

• <)F>C  is used  to obtain the central angle from the (right) focal angle 

• <)C>F  is used to obtain the (right) Focal angle from the central angle 

 

Finally, the quadratic equation isn’t the best method to calculate the focal segment either. This has 

been further replaced by a direct calculation using the formula below; where is the right focal angle: 

d(+) = a.(1-e^2) / (1 + e. cos ) for the right segment, and 

d (-) = 2a – d(+)   for the left segment 
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Example. Calculate the central angle equivalent to ’  from the previous section. 

XEQ “<)F0+”   =>     rad 

XEQ “<)F>C”  =>    = /2 

Note that this is not the same as ’, even if both are central angles they certainly aren’t the same. 

Examples.- For our favorite ellipse with a=3 and b=2, obtain the central angles for the points defined 

by the focal angles between 0 and 2, at 15 degrees intervalsThe solutions are plotted in the chart 

below. 

 

 

Armed with this ammunition, calculating Focal arc lengths is reduced to the same case as Central arc 

lengths. Let’s see a couple of examples to demonstrate the applicability. - 

Example. Calculate the arc length of a focal sector with (focal) angles 1 = 45° and 2 = 90° 

XEQ “LF+”    

R/S     

PI, 4, /, PI, 2, / , R/S  

=>     

Example. Calculate the arc length of a Central sector with (central) angles 1 = 45° and 2 = 90° 

XEQ “LC0”    

R/S     

R/S     

=>     

Example. Calculate the semi-circumference of the ellipse using the Central or Focal sectors defined by 

the angles 1=1=0°  , and 2=2 = 180° 

XEQ “LF+”    

R/S     

0, PI, R/S     

=>     

ST+ X   =>     for the complete circumference 
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FOCAL Routine listing for the “Focal to Central” angle conversion. 

As you can see this version uses a couple of MCODE auxiliary functions from the module to reduce the 

program length and the execution time.  

 

 

Figure 0 – Basic geometry parameters in the Ellipse 

 

1 LBL "F2C" Focal to Central 28 RCL N sin 

2 CF 00 29 *

3 CF 01 30 X<>Y d

4 CF 02 31 RCL M cos 

5 X=0? 32 *

6 RTN 33 RCL 00 e

7 <F0+   - atan(b/e.a) 34 RCL 01 a

8 X>Y? is   0 <  < ? 35 * OF

9 GTO 00 yes, skip over 36 + OF + d. cos 

10 SF 00 flag region 37  / tan E1

11 CLX 38 FS? 00

12 PI new boundary 39 ABS

13 X>Y? is   < ? 40 ATAN E1

14 GTO 00 yes, skip over 41 FC? 00

15 SF 01 flag region 42 RTN

16 PI 43 FS? 02

17 X=Y? 44 CHS

18 RTN < <=  45 FC? 01

19 RCL M is   =  ? 46 CHS

20 + 1 =  + atan (b/e.a) 47 PI

21 X<=Y? is > ? 48 +

22 SF 02 yes, flag it for later 49 FC? 02

23 LBL 00 50 RTN

24 RDN drop boundary 51 PI

25 <)F>R+ right focal angle to radius 52 +

26 ENTER^ d 53 END

27 ENTER^
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Polar form relative to center 
 

In polar coordinates, with the origin at the center of the 

ellipse and with the angular coordinate θ  theta measured 

from the major axis, the ellipse's equation is 

           

Polar form relative to focus 
 

If instead we use polar coordinates with the origin at one focus, 

with the angular coordinate θ = 0 theta =0 still measured from 

the major axis, the ellipse's equation is: 

                
where the sign is plus for RIGHT focal angles (subtended by right focus segments d1), and minus when 

using LEFT focal angles (subtended by left focus segments d2)  

 

The FOCAL program below makes the conversions between left and right focal angles, (-) and (+). 

It’s an easy application of the same method used in the Central-to-Focal routines, as per the equations: 

 r(-). sin (-) = r(+). sin (+) 

r(-). cos (-) = 2.e + r(+). cos (+) 

 

Note that the angle result is in the X register, and the left or right focal radius is left in the Y register. 

Example. Calculate the left focal angle corresponding to a right focal angle of 45 degrees. Check the 

result using <)F>R-   Assuming DEG is on, we type:  

45, XEQ “F+>F-“   deg 

XEQ “<)F>R-“    left-radius 

     difference 

 

https://en.wikipedia.org/wiki/File:Ellipse_Polar_center.svg
https://en.wikipedia.org/wiki/File:Ellipse_Polar.svg
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Digression 1: Circles, Triangles & Circumferences. 

 

A short digression on subjects unrelated to the geometry of the ellipses. 
H 
 
 

 

•  CIRCLE  calculates the radius of a circle passing thru three data points, using the point x,y 

coordinates. The values are expected to be stored in R01-R06.  Besides that, it’ll also return in 
the Y-register the area of the circumscribed triangle defined by the three points.  

 

Example: Calculate the radius of the circle passing thru P(5,1), Q(6,2), and R(5,3) 
 

The results are:  
 

XEQ “CIRCLE” => r=1,000000000, 
X<>Y   => A=1,000000000 

 

 
Note that you can use the routines IN or INPUT to 

populate the registers automatically. The input 
sequence starts with the abscissa of P1 in R01. 

 

 
 

 

•  HERON  calculates the area of a triangle knowing its three sides, using Heron’s formula. Just 

enter the sides values in the stack, and execute the function (located in the auxiliary FAT). The 

result is stored in X, with the original side saved in LastX. The rest of the stack is unchanged. 
 

Let the triangle ABC with 3 known sides { a , b , c } and  s = (a+b+c)/2  the semi-perimeter  

 

Heron's formula is:     Area = [ s(s-a)(s-b)(s-c) ]1/2     
 

U Example:U     a = 2,   b = 3,   c = 4  
Type:    2,  ENTER^,  3,  ENTER^,  4,   XEQ "HERON"   =>   Area = 2.904737510  

 

 Note: the function CIRCLE described above makes use of the HERON formula internally after it  
 first calculates the triangle sides from the point coordinates. 

 
 

•  BRHM  is related to it, but the calculation for the area of the cyclic quadrilateral - using 

Brhamagupta’s formula. Just enter the four values in the stack and execute the function (in the 
secondary FAT). The result is stored in X, with the original side saved in LastX. The rest of the 

stack is unchanged. 

 
Let  a, b, c, and d be its sides lengths, and the semi-perimeter  

s = ( a + b + c + d )/2 .The area A of the cyclic quadrilaterals: 
 

A = [(s-a).(s-b).(s-c).(s-d).]1/2    
 

U Example. Calculate the area for the values: 

a = 4 , b = 5 , c = 6 , d = 7  

 
 Type:  4,  ENTER^,  5,  ENTER^,  6,  ENTER^,  7,   

XEQ "BRHM"  =>  Area = 28.98275349 
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Circumference of the Ellipse. { RAMA2  } 

The ELLIPTIC module has the routine ELP  that calculates the accurate value for the perimeter of the 

ellipse. ELP uses the complete Elliptic integral of 2nd. kind, which is based on the AGM implementation 

– and therefore is relatively fast. 

The function RAMA2 uses Ramanujan’s 2nd approximation, which has the advantage of being even 

faster – albeit the accuracy may not be as good, as shown in the table below for a few examples. 

Let  h = (a-b)^2 / (a+b)^2,  then the formula used is: 

        

a b ELP RAMA2 Error % 

3 2 15.86543959 15.86543959 0 

4 1 17.15684355 17.15683926 -2.5005E-07 

5 3 25.52699886 25.52699886 0 

6 2 26.72978556 26.72978556 0 

10 2 42.02008908 42.02005330 8.5149820-09 

 

Note that RAMA2 expects the semi-axis values in the X, Y registers. The input order is indistinct but 

for ELP the order is important, with b in Y and a in X. 

 
The reason this formula  is called the 2nd. approximation is because – you guessed it – Ramanujan had 

already put forward another expression for the circumference of the ellipse, shown below. It was very 

accurate for near-circular cases, but as the ellipticity increases the accuracy was lost. 

The simplified expression for the circumference is:   

  

  C = 

Refer to the link below for a comprehensive discussion of the different approximations used 

historically on this subject. 

http://www.ebyte.it/library/docs/math05a/EllipsePerimeterApprox05.html 

  

http://www.ebyte.it/library/docs/math05a/EllipsePerimeterApprox05.html
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Digression 2: Complex Elliptic Integrals. 
 

The Complex Elliptic integrals are covered in several FOCAL programs, all included in the 41Z Deluxe 
module. For your convenience, the Incomplete types are also included in this module. Note that:  

 

• The amplitude can be a complex number but the modulus is expected to be a real value. This 
method uses dedicated formulas that apply the real expressions on a repeated basis according 

to changes of variable. Here the program  ZELIP1 corresponds to F(z; m) , andZELIP2 

corresponds to E(z; m).  
 

• No provision is made for the case where both amplitude and modulus are complex numbers. To 

check the results you can use the syntax “EllipticF”  and “EllipticE”  on WolframAlpha using two 
arguments for incomplete cases or just one argument  for complete cases. 

 

 
Let’s see an example next. Be aware that the execution time can range from long to very long 

depending on the case.  You can abort the execution pressing the R/S key at any time. 
 

 
Example. Calculate the incomplete Elliptic integrals for  a= 1-i,  m=0.5 

 

1, CHS, ENTER^, CHS, ENTER^, .5, XEQ “ZELIP1” =>   0.804+J1.163 
 

EllipticF(1-i, .5): http://www.wolframalpha.com/input/?i=EllipticF%281-i,+.5%29 
 

1, CHS, ENTER^, CHS, ENTER^, .5, XEQ “ZELIP2” =>   1.128+J0.789 
 

EllipticE(1-i, .5): http://www.wolframalpha.com/input/?i=EllipticE%281-i,+.5%29 

 

Formulas used (from Abramowitz-Stegun, Section 14.4) 

Writing z= (phi+ i psi) then we have for the first kind: 
 

 
 

Where cot^2 () is the positive root of the quadratic equation: 

 

 
 

And similarly for the second kind integral:  

 
where now: 

 

http://www.wolframalpha.com/input/?i=EllipticF%281-i,+.5%29
http://www.wolframalpha.com/input/?i=EllipticE%281-i,+.5%29
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as you can see an elaborate set of equations that requires a relatively long FOCAL program even if 

some auxiliary functions really expedite things significantly. Refer to next page for the FOCAL program 
listing as a reference. 

 
The solution is therefore expressed as a linear combination of the real-variable case for the Elliptic 

integrals, which are also included in the ELLIPTIC module as functions ELIPF and LEI1 and LEI2. 
 

 

Program Listing: Complex Incomplete Elliptic Integrals. 
 

 Data Registers: R00-R08 ;User flag: F1 
 

 
01 LBL  "ZELIP1" 
02 SF 01 
03 GTO 00 
04 LBL "ZELIP2" 
05 CF 01 
06 LBL 00 
07 RAD 
08 STO  00 
09 RDN 
10 STO  01 
11 RDN 
12 SINH 
13 X^2 
14  / 
15 RCL  00 
16 E  
17 - 
18 * 
19 E  
20 STO T(0) 
21 RDN 
22 QROOT 
23 X<Y? 
24 X<>Y 
25 STO 02 
26 RCL 01 
27 TAN 
28 X^2 
29 * 
30 E  
31 - 
32 RCL 00 
33  / 
34 SQRT 

35 ATAN 
36 STO 01 
37 E  
38 RCL 00 
39 - 
40 RCL 01 
41 ELIPF 
42 FS? 01 
43 GTO 00 
44 STO 01 
45 RCL 00 
46 RCL 02 
47 SQRT 
48 1/X 
49 ATAN 
50 ELIPF 
51 STO 00 
52 ZRCL 00 
53 ZOUT 
54 RTN 
55 LBL 00 
56 STO 08 
57 RCL 00 
58 RCL 02 
59 SQRT 
60 1/X 
61 ATAN 
62 STO 02 
63 SIN 
64 X^2 
65 * 
66 E 
67 - 
68 CHS 

69 STO 03 
70 SQRT 
71 RCL 00 
72 * 
73 RCL 02 
74 E 
75 P-R 
76 * 
77 * 
78 RCL 01 
79 SIN 
80 X^2 
81 * 
82 RCL 01 
83 SIN 
84 X^2 
85 STO 06 
86 RCL 00 
87 SQRT 
88 ASIN 
89 COS 
90 RCL 01 

91 SIN 
92 * 
93 X^2 
94 CHS 
95 E 
96 + 
97 SQRT 
98 RCL 03 
99 * 
100 RCL 01 
101 E 
102 P-R 

103 * 
104 * 
105 RCL 02 
106 STO 05 
107 SIN 
108 * 
109 X^2 
110 RCL 00 
111 * 
112 RCL 01 
113 COS 
114 X^2 
115 + 
116 ST/ 06 
117 ST/ 07 
118 RCL 08 
119 ST+ 07 
120 E 
121 RCL 00 
122 STO 08 
123 - 
124 RCL 01 
125 XROM “LEI2” 
126 ST- 07 
127 RCL 08 
128 RCL 05 
129 XROM “LEI2” 
130 ST+ 06 
131 RCL 07 
132 RCL 06 
132 ZOUT 
133 END 

 
Granted, this listing doesn’t have much of a complex flavor to it since it really operates on real 

variable functions. Pulling all stops with the aid of key functions we deflect the complex variable with 
linear combinations as per the formulas shown before. 
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Orbital Position using Kepler Equation.{ TA<T>} 

Disclaimer: If you’re reading this then chances are that you have already forgotten more astronomy 

than what I have ever learned – so bear that in mind, you’re likely going to be presented a 

newcomer’s perspective of otherwise well established stuff. 

Because the velocity is not constant during the trajectory, determining the position of a satellite in its 

orbit at a given time was a daunting problem when Kepler embarked into the search for a solution. He 

devised ingenious methods and models to approach the task, using the tools known back then 

(obviously no powerful computers and numerical methods were available). They continue to be 

taught, although I’d imagine not likely used in real-life scenarios. 

 

Anomalies galore. 

Concepts like auxiliary circle and Mean & Eccentric 

anomalies originate from those days, and are 

profusely utilized today by astronomer and flight-path 

planners. Very likely today they use numerical 

methods and more complex models, bearing higher 

accuracy in the results. 

Transferring the problem to a fictitious planet that 

moves at constant angular velocity  in the auxiliary 

circle is no doubt a great trick; as in there the new 

position can be easily calculated using the mean 

velocity ( = 2 / Period ) and the elapsed time of 

passage, (t1 – to).  

Therefore:   M’ = Mo + . (t1 – t0)   -  Eq.(1) 

 

The question then is how to relate the real focal angle (a.k.a. the “true anomaly”) to the fictitious 

one “M”, also called ‘mean anomaly”. The answer is through an auxiliary, intermediate angle “E” - 

called the “eccentric anomaly”. A set of angle transformation MCODE functions are included in the 

module to perform the conversions, as described below. 

• T>E and  E>T  will convert between True and Eccentric anomaly back and forth, using the 

expression: 

  

 

• E>M and  M>E  will convert back and forth between Eccentric and mean anomaly, using 

Kepler’s equation:  M = E – e.sin(E) . Note that the indirect conversion E>M requires an 

iterative process, implemented as a custom formula for the successive approximations:  

En+1 = En -  2 f( En) / { f '(En) - [ f '(En)2  - 2 f( En) f ''(En) ] 1/2 }  , using E0 = M 

Note also that for accuracy reasons, the  E>M algorithm expects the inputs in degrees and 

returns the result also in degrees. 
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The complete process is rather simple: 

1. Initial True position => Eccentric Anomaly => Mean anomaly 

2. New position in the auxiliary circle given by Eq.(1) above 

3. Mean => Eccentric => True new position 

4. Finally, Once the new angle is known, the travelled distance can be quickly obtained from the 

elliptical arc length expressions from previous sections. 

Which has been implemented into the following driver program: 

 

Refer to the QRG in the intro section for the input parameters needed by the anomaly conversion 

functions. 

 

Example.- A point orbiting the ellipse with a=3, b=2, with a period of 24 hours, is known to be at 

the periapsis at t=0. What will be its position 2 hours later? 

We type: 

XEQ “TA<T>”    

3, ENTER^, 2, R/S   

24, R/S     

0, R/S     

2, R/S  =>   

Therefore, the new focal angle is 122.93 ° 

Plugging this result as upper angle in LF+, the travelled distance results: 

 

1 LBL "TA<T>" 19 RCL 06 P

2 XROM "?ab" semi-axis values 20  / (t1-t0)/P

3 "P=?" Period 21 PI

4 PROMPT 22 ST+ X 2

5 STO 06 23 *

6 "<)0=? (+)" initial position 24 +

7 PROMPT 25 R-D required by M>E

8 STO 03 26 M>E Mean to Eccentric 

9 LBL 00 27 D-R in rad

10 "dT=?" elapsed time 28 RCL 00 e

11 PROMPT 29 X<>Y needed by M>E

12 STO 05 30 E>T Eccentric to True

13 RCL 00 e 31 STO 04 final result

14 RCL 03 <)0 32 "<) ' ="

15 T>E True to Eccentric 33 ARCL X

16 E>M Eccentric to Mean 34 PROMPT

17 RCL 05 t1-t0 35 GTO 00 new position

18 - 36 END
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Orbital Position using Direct Approach. { TA+  ,  TA- } 

Kepler’s second law states that the focal areas swept by a satellite are proportional to the times taken 

to sweep them. Therefore, calculating areas is a great surrogate to determine times, and from there 

actual positions if we can also link them to the trajectories (arc lengths of the orbit). This is the basis 

of the direct approach, which puts together many components covered in this manual so far.  

 

Position and travelled distance at a given time. 

Say we want to find the position of the satellite at a certain time t1, knowing where it was at an 

earlier moment t0.  During that time interval the satellite has swept an area A(t1-t0), which can be 

expressed in terms of Kepler’s 2n law as: 

 A(t1-t0)=(t1-t0). .a.b / T     ; where T is the period of the movement. 

As it is, we have an expression for said area, as a function of the focal angles (known as “true 

anomalies”); in fact we have it both for the left and right focal sectors in case we need to choose. 

What’s the missing link? Obviously a relationship linking the time elapsed “t1” and the new true 

anomaly 1 – but this can be replaced by an iterative approach to solve the equation for , calculating 

different areas iteratively until it matches Kepler’s 2nd law expression: 

Guess  =>  A()  =>  matches known result?   If Yes => done  

                                                                      If NO, modify guess value and try again 

In other words, solve:   A(t1) – (t1-t0). .a.b / T = 0 . 

Here the tricky part is going to be the expression for the successive approximations of the true 

anomaly, which will be deferred to the numerical method (Newton, Secant, etc.). For initial guess 

value we can use a circular estimation based on a mean angular velocity,  o = 2/T; thus:  o = o. 

t1. Further refinement can be done to reduce the number of iterations, using some kind of correction 

through the orbit’s eccentricity “e” (not necessarily the eccentric anomaly). 

Important remark: The module includes two ways to calculate this, TA+ and TA- ,which internally 

use right or left focal sector areas respectively. The direct method assumes that the body orbited 

around (the Sun in the Earth’s case) is located in the RIGHT focus of the ellipse.  Consequently. Both 

programs expect the same input values, including the initial angle - as a right focal angle. 

 

Example.- Using the direct approach, calculate the true anomaly in the same new position given by 

the previous example. 

We type: 

 XEQ “TA+”    

3, ENTER^, 2, R/S    

24, R/S    

0, R/S    

2, R/S       

=>     
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Example 2.- Using the data from appendix 1, calculate the position of the earth 25 days after the 

perihelion. Do it first via the Kepler indirect method, and verify it using the direct approach. 

We type: 

XEQ “TA<T>”      

1.496 E8, ENTER^, 149579116.1 ,  

R/S      

365.25 , R/S     

0, R/S      

25, R/S    =>  

Alternatively: 

XEQ “TA-“     

R/S (will use current)    

365.25, R/S     

0, R/S      

25, R/S      

 

That’s to say the new position is at 25.472 degrees away from perihelion. 

Plugging this result as upper angle in LF+, the travelled distance results: 

  km 

 

The program uses a really simple initial guess for the interval, adding one radian for TA+ case, or 

subtracting it in TA- case. 

Note: This method requires a general-purpose solver. There are a few available in different modules: 

Function Module XROM Note 

FROOT SandMath XROM 02,15  

FROOT S&I ROM XROM 27,04 Used here 

SOLVE Advantage XROM 24,03  

 

Using the SIROM requires only 4k in the bus – and makes the operation independent from the 

SandMath. This is aligned with the ELLIPTIC module approach as well. 
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Program Listing.- 

 

 

 

  

1 LBL "TA+" Right Sectors 39 LBL "<)T" function to solve

2 CF 04 40 STO 04 current angle

3 GTO 04 41 FC? 04 right sectors?

4 LBL "TA-" Left Sectors 42 XROM "EFC+" yes, calculate it

5 SF 04 43 FC? 04 right sectors?

6 LBL 04 44 GTO 04 yes, skip

7 XROM "?ab" axis data 45 RCL 03 upper angle

8 "P=?" period 46 EFS- upper left sector

9 PROMPT 47 STO 07 temporary store

10 STO 06 48 RCL 04 lower angle

11 PI pre-loaded 49 EFS- lower left sector

12 "<)0+=?" initial angle 50 ST- 07 subtract from upper

13 PROMPT 51 RCL 07 sector area

14 FS? 04 left sectors? 52 RCL 01 a

15 - complementary! 53 RCL 02 b

16 STO 03 54 * a.b

17 LBL 00 55 * a.b.A

18 "dT=?" 56 2

19 PROMPT 57  / a.b.A/2

20 STO 05 58 LBL 04

21 "<)T" function name 59 RCL 05 dT

22 RCL 03 upper guess 60 RCL 06 P

23 RCL 03 61  / dT/P

24 1 62 PI 

25 FS? 04 63 *  .dT/P

26 CHS 64 RCL 01 a

27 + lower guess 65 *  .a.dT/P

28 FROOT in the SandMath 66 RCL 02 b

29 FC? 04 right sectors? 67 *  .a.b.dT/P

30 GTO 04 68 - a.b.A -  .a.b.dT/P

31 CHS 69 END done.

32 PI

33 +

34 LBL 04

35 "<)TA=

36 ARCLX

37 PROMPT

38 GTO 00 new position
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Time of Flight: Time to travel a given arc. 

To round up the options, here’s the inverse problem: we want to know the time taken to travel a 

certain distance (also known as Time of Flight) – measured by its new true anomaly.  

Here the easiest approach is to move in the auxiliary circle using the mean anomaly, from an initial 

location (t=0) to a final one (t=TOF).  Since the speed is constant in such circle the equation is a 

trivial one: 

TOF = M . To/2  = (E – e.sin E ). To/2 

The MCODE function TOF calculates the Time of Flight from the following input values in the stack: 

Register Input Output 

Z: To, period To – remains there 

Y: e, eccentricity e  - remains there 

X: , true anomaly delta TOF  - result 

L: n/a - previous TA delta

 

This stack arrangement facilitates repeated executions for different true anomalies: simply press RDN 

and input a new angle (or call LastX to retrieve the original one). 

 

Example. For our friendly test ellipse ( a=3, b=2) calculate the time it would take a fictitious body 

orbiting around the RIGHT focus with an orbital period of 24 hours to move from the point P1 (0, b) 

to the opposite point P2(0, -b) – that is, the “slow” half-ellipse. 

We type:   

 2, STO 02, 3, STO 03 XEQ “ECC” =>    

 STO 00,  24,  X<>Y , XEQ “<)F0+“ =>    

 XEQ “TOF”    =>     hours from perigee to x=0 

Therefore the time between o and the perigee is: 

 

t = 12 -3.152949823 = 8.847050177 hours 

And finally the requested time is twice that amount: 

ST+ X     =>     hours between P1-P2 

 

Example: Calculate the time taken by the Earth to move from apogee to (+)=/2. Use the data 

from appendix1: e=0.01671 and T = 365.25 days/ 

We type:   

XEQ “EARTH” (so we don’t need to type the numbers…;-) 

RCL 06, RCL 00, PI, 2 , /, XEQ “TOF”  =>    days 
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Orbital Velocity using Conservation of Energy. { V<R>} 

Moving on, let’s see how to calculate the instantaneous velocity if the orbiting body at a generic 

position, determined by its true anomaly. As before, we’ll devise two methods for the calculation, the 

first one based on the energy conservation and the second based on the angular moment 

conservation. The second method also requires knowing the velocity at a reference point, typically the 

periapsis (aka. perihelion for the earth around the sun, or perigee for satellites around the earth). 

The energy conservation states that the sum of kinetic and potential energies is constant. In 

particular, for a point situated at a distance r from the focus, the formula below determines the 

magnitude of its velocity – expressed only as a function of the orbital period and the geometry: 

 V(r) = 2/T sqrt[(2a/r) -1] 

In particular for the periapsis and apoapsis, r = a(1–e) and r= a(1+e) respectively ; thus we have: 

Vp = 2a/T sqrt [(1+e)/(1-e)] 

Va = 2a/T sqrt [(1-e)/(1+e)] 

Thus their ratio: Va/Vp = (1-e)(1+e) ; a common parameter of the ellipse. 

 

Vis Viva Equation. 

In astrodynamics, the vis-viva equation, also referred to as orbital-energy-invariance law, is one of the 

equations that model the motion of orbiting bodies. It is the direct result of the principle of 

conservation of mechanical energy which applies when the only force acting on an object is its own 

weight. For any Keplerian orbit (elliptic, parabolic, hyperbolic, or radial), the vis-viva equation is as 

follows:  

 

 

Where r is the distance between the two bodies, and 

=G.M is standard gravitational parameter. In our 

programs we’ll use the orbit period as input, thus for 

an elliptic orbit: ^2 = 2p/T sqrt(a^3) ; 

which is the format we’ll use. 

 

The distance r (elliptic radius) varies with the focal angle, so we need to be careful on which one to 

use. For a LEFT configuration (i.e. with the Sun in the left focus) it also has a closed-form 

representation: 

 

 

Remember: For the program V<R>the convention is to use the LEFT focal angles –  

and not the right ones; make sure you input the correct one. 
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Examples. Using the data from appendix#1, calculate the instantaneous velocity of the Earth in its 

orbit around the sun for the three “cardinal” points of the semi-orbit: apogee (=0), perigee (=) 

and (x=0) 

Solution.-  We type: 

XEQ “V<R>”      

1.496 E8, ENTER^, 149,579,116.1 , R/S  

365.24 , R/S      

0, R/S     =>       km/day  

R/S     =>        at the apogee 

R/S       

PI, R/S     =>    km/day  

R/S     =>        at the perigee 

R/S       

XEQ “<F0-“,     

R/S     =>    km/day 

R/S     => at x=0 

 

 

Program Listing. 

 

 

  

1 LBL "V<R>" 22 * a/r

2 XROM "?ab" 23 ST+  X (3) 2a/r

3 "P=?" 24 FS? 00 to tell the cases apart

4 PROMPT 25 1

5 LBL 00 26 FS? 00

6 "<)=? (-)" 27 - (2a/r) -1

7 PROMPT left focal angle 28 SQRT sqrt[(2a/r)-1]

8 STO 03 29 RCL  01 a

9 <)F-R- left radius 30 * a.sqrt[(2a/r)-1]

10 STO 05 31 PI

11 SF 00 fi rs t pass 32 ST+  X (3) 2p

12 XEQ 02 veloci ty 33 * 2p.a.sqrt[(2a/r)-1)]

13 STO 04 V( r ) 34 RCL  06 Period

14 "V(<))="     35 / 2p.a.sqrt[(2a/r)-1)] / To

15 ARCL X 36 FS? 00 first pass?

16 PROMPT 37 RTN yes, return here

17 CF 00 second pass 38 "Vc="      

18 LBL 02 veloci ty 39 ARCL X

19 RCL 05 40 PROMPT show result

20 1/X 41 GTO 00 new position

21 RCL  01 a 42 END
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Orbital Velocity as function of the abscissa. 

For a known period of the movement To, it’s possible to express the velocity at any point in the orbit 

as a function of the abscissa, i.e. the x-coordinate of the ellipse. The formula is derived directly from 

the vis viva equation, replacing the (right) focal segment “r” with the following: 

r = a.(1 – e.cosE)   ; where cos E = x/a 

the final expression is: 

 V(x) = (2.a/To) √[ (1 + e.x/a) / (1 – e.x/a) ] 

Note that the eccentric anomaly substitution assumes the orbited body is located in the right focus. 

The function V(X) calculates the point velocity; it expects the period in the Y-register and the x-

coordinate in the X-register as inputs.  Upon completion the result is in X and the coordinate in LastX 

– but the period remains in Y for convenience in case of repeated executions. 

 

Example: Obtain the table of velocities for the same ellipse at points between perigee (x=3) and 

apogee (x=-3) at intervals of the abscissa of x = 0.25. Use T0=24 h for the period. 

Assuming the ellipse parameters stored in R00-R02, the minimalistic FOCAL program below produces 

all the results: 

01  LBL “VX” 

02  24 

03  ENTER^ 

04   -3 

05  LBL 00 

06  V(X) 

07  STOP 

08  RDN 

09  LASTX 

10  ,25 

11  + 

12  GTO 00 

13  END 

 
 

x v 
-3,00 0,3000 
-2,75 0,3407 
-2,50 0,3797 
-2,25 0,4177 
-2,00 0,4553 
-1,75 0,4929 
-1,50 0,5309 
-1,25 0,5696 
-1,00 0,6094 
-0,75 0,6504 
-0,50 0,6932 
-0,25 0,7380 

0,00 0,7854 
0,25 0,8358 
0,50 0,8899 
0,75 0,9484 
1,00 1,0123 
1,25 1,0829 
1,50 1,1618 
1,75 1,2514 
2,00 1,3548 
2,25 1,4767 
2,50 1,6246 
2,75 1,8105 
3,00 2,0562 

 

0,00

0,50

1,00

1,50

2,00

2,50

-3
,0

0

-2
,7

5

-2
,5

0

-2
,2

5

-2
,0

0

-1
,7

5

-1
,5

0

-1
,2

5

-1
,0

0

-0
,7

5

-0
,5

0

-0
,2

5

0
,0

0

0
,2

5

0
,5

0

0
,7

5

1
,0

0

1
,2

5

1
,5

0

1
,7

5

2
,0

0

2
,2

5

2
,5

0

2
,7

5

3
,0

0

Velocity
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Orbital Velocity using Angular Momentum. { VR+  ,   VR- } 

An alternative approach is based on the conservation of the angular momentum. Because in a two-

boy problem no external torque is applied on the set star/planet (or planet/satellite), its angular 

momentum is constant. In other words, the angular momentum has the same value in all positions on 

the elliptic orbit. 

In particular, on the periapsis and apoapsis the velocity vectors are perpendicular to the elliptic radius, 

thus the angular momentum at those positions will verify: 

r(a). m. Va = r(p) m. Vp ;  and therefore:  V(a)/V(p) = r(a)/r(p) 

At a generic position determined by its focal angle , both vectors aren’t perpendicular so the angular 

momentum depends on the angle between the velocity and radius vectors, .  

Va. r(a) = V .r(). sin  >V = [Va .a(1+e)] / r() . sin  

where we can apply the Vis Viva equation to obtain either V(a) or V(p).  

An expression of r() is easy to get based on the geometric properties of the ellipse. It follows that if 

we can calculate said angle , then the velocity will also be known. How to go about it?Simply using 

the fact that the velocity vector is tangent to the ellipse at the given point, which is the same as 

saying the derivative of the ellipse at that point will give us the slope of the tangent line,  

 = atan(dy/dx)|x=x()   ;      And from here: 

From the equation of the ellipse it’s easy to derive its derivative, say between [-, ] 

y’= dy/dx = - b.x / [a.sqrt(a^2 – x^2)] 

Two programs are included to cover both he Left and Right focal angle configurations: 

• use right focal angles with  VR+, i.e. the sun is at the right focus 

• use left focal angles with  VR- , i.e. the sun is at the left focus 

The direction of the movement can be either clockwise or counter-clockwise indistinctly. 

 

Escape Velocity 

The formula for escape velocity can be obtained from the Vis-viva equation by taking the limit as “a” 

approaches  infinite∞ : 

Vc (r) = 2.a/P sqrt(2a/r) 

We’ll remark the fact that the escape velocity depends on the distance between the two bodies. 

Note: Vc is also calculated by the  V<R>  program. 
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Example.  Calculate the velocity distribution for a body orbiting in an ellipse with semi-axis a=3m, 

b=2m, if the period is 24 hours and the body orbited around is placed at the LEFT focus. 

The solutions are provided in the table below. Note that the convention is Left focal angles, i.s. the 

apoapsis occurs at =0, and the periapsis occurs at =

 

 

The position x=0 is a particular point, and its left focal angle can be obtained using the MCODE 

function  <)F0-  , the counterpart of  <)F0+   for the right-focal angle at the same point. 

 

The velocity distribution is shown in the chart below, using equally spaced angles by an interval of 

0.25 rad. 

 

 

  

Specia l  Pos i tion VisViva  r() X() V()

apogee 0.3 0 5.2361 3 0.3

0.3928 0.25 4.7994 2.4141 0.3928

0.5859 0.5 3.8548 1.1468 0.5859

x=0 0.7854 " 3 1.00E-09 0.7854

0.8032 0.75 2.9328 -0.0902 0.8032

1.0203 1 2.2323 -1.0299 1.0204

1.2274 1.25 1.2275

1.4187 1.5 1.4075 -2.1365 1.4187

Left Focus 1.4693 /2 1.3333 -2.2361 1.4693

1.7378 2 1.0177 -2.6596 1.7378

1.9536 2.5 0.8348 -2.9049 1.9537

2.0512 3 0.7672 -2.9956 2.0511

perigee 2.0562  0.7639 -3 2.0562

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 pi

Orbital Velocity Distribution

V(q)

VisViva
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Program listing. 

 

 

  

1 LBL "VR+" 46 RCL  03 

2 CF 04 47 COS cos  

3 GTO 04 48 * r.cos  

4 LBL "VR-" 49 RCL  00 e

5 SF 04 50 RCL  01 a

6 LBL 04 51 * ae = OF

7 XROM "?ab" 52 FC?  04

8 "P=?" 53 CHS x =  r.cos  -a.e

9 PROMPT 54 + x =  r.cos a.e
10 STO 06 55 ENTER^ x

11 1 56 ENTER^ x

12 RCL 00 57 RCL  02 b

13 -/+ 58 * b.x

14 SQRT 59 RCL  01 a

15 RCL 01 60 /

16 * 61 X<>Y x

17 PI 62 X^2 x^2

18 ST+ X 63 CHS -(x^2)

19 * 64 RCL  01 a

20 RCL 06 period 65 X^2 a^2

21  / 66 + a^2 -  x^2

22 STO 04 67 SQRT sqrt(a^2- x^2)

23 LBL 00 68 X#0?

24 "<)=? (" 69 / b.x./  sqrt(a^2 - x^2) 

25 FC? 04 70 CHS y ' (x)

26 "|- +)" 71 ATAN 

27 FS? 04 72 RCL  03 

28 "|- -)" 73 X<>Y

29 PROMPT 74 -  - atan(Y')

30 STO 03 75 FC?  04

31 FC? 04 76 GTO  04                 

32 <)F-R- left radius 77 CHS

33 FS? 04 78 PI

34 <)F-R+ right radius 79 +

35 STO  05 r 80 LBL  04

36 1/X 1/r 81 SIN

37 1 function derivative 82 RND

38 RCL  00 e 83 X#0?

39 + 1+e 84 ST/  05

40 * (1+e)/r 85 RCL  05 recall result

41 RCL  01 a 86 "V(<))="     

42 * a.(1+e)/r 87 ARCL X

43 RCL  04 V(a) 88 PROMPT shos result

44 * V(a).a.(1+e) / r 89 GTO 00 new position

45 X<>  05 r 90 END
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Appendix. Other Auxiliary functions. 

The tables below summarize the auxiliary functions by categories: 

1. Input/output utilities 

The input/output functions will skip the data entry if you press R/S without entering any numeric 

value. This is very convenient to use the current values in the data registers. 

1. “?ab“ Prompts for semi-axis. New values or R/S for current See (*) 

2. “?<)-“ Prompts for left-angles. new Values or R/S for current See (*) 

3. “?<)+“ Prompts for right-angles. new Values or R/S for current See (*) 

4. “?P“ Prompts for Orbital Period.  new Values or R/S for current See (*) 

 

(*) You can also call one of the Planet Data function at this point to populate the data registers with 

the orbital data corresponding to that planet. If you do, note that the semi-axis are given in km, and 

the orbital period in days. 

 

2. Special Angle Values 

Note that all of these functions use the data registers holding the values of the semi-axis (R01 

and R02), and the eccentricity (R00).  They are marked with an asterisk in the table. 

(*) <)C0+ Central angle for Focal = 90° (a b,e) in R00-R02.  Lifts Stack  

(*) <)C-R Central angle to Radius {a,b,e} in R00-R02,  in X Saves   in LastX 

(*) <)C-XY Central angle to coordinates {a,b,e} in R00-R02,  in X Saves   in LastX 

(*) <)F0+ Right focal angle at x=0 (a,b,e) in R00-R02.  Lifts Stack 

(*) <)F0- Left Focal angle at x=0 (a,b,e) in R00-R02.  Lifts Stack 

(*) <)F>R+ Right focal angle to radius {a,b,e} in R00-R02,  in X Saves   in LastX 

(*) <)F>R- Left Focal angle to radius {a,b,e} in R00-R02,  in X Saves   in LastX 

 
Warning: remember that the input angles for <)F-R+ and <)F>R- are different; left or right focal 

angles respectively depending on the function. Also R(+) + R(-) does not equal “2a” 

 

3. Planet Data functions. 

Their name says it all: one for each of the planets plus another one for the Moon. They will silently 

populate the data registers with the appropriate data, not disturbing the stack or ALPHA. Here’s the 

register mapping: 

Register R00 R01 R02 R06 

Value Eccentricity Semi-major axis Semi-minor axis Orbital Period 
 

Warning: The values are stored in km for the semi-axis, and in days for the orbital periods. 

The semi-minor axis value is derived from the eccentricity and the semi-major axis. 
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Appendix. Solar System Orbits Data 

The table below summarizes the ellipse data for the planets and the moon orbits. The Semi-minor axis 

is calculated from the semi-major and the eccentricity using: b = a.sqrt(1-e^2) 

 

The following diagram shows the relation between the line of solstice and the line of apsides of Earth's 

elliptical orbit. The orbital ellipse goes through each of the six Earth images, which are sequentially 

the perihelion (periapsis — nearest point to the Sun) on anywhere from January 2 to January 5, the 

point of March equinox on March 19, 20, or 21, the point of June solstice on June 20, 21, or 22, the 

aphelion (apoapsis — farthest point from the Sun) on anywhere from July 3 to July 5, the September 

equinox on September 22, 23, or 24, and the December solstice on December 21, 22, or 23.[7] The 

diagram shows an exaggerated shape of Earth's orbit; the actual orbit is less eccentric than pictured 
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Standard Gravitational Parameter and Orbital periods. 

Two other functions are related to this chapter; and in fact to all sections as we have already 

mentioned. The function names are  (T( and 1/2 -yes, tricky to use but that’s part of their 

charm ;-)  Tip: use XROM in the OS/X module. 

The first one  (T( calculates the period  of an elliptical orbit with major semi-axis given, around a 

body with mass known (i.e. using its mass as data). The expression used is 

T = 2. a.√(a/) 

 

Example. If the mass of the sun is 1.9885 E30 kg, calculate the orbital period of the Earth around 

the sun. Make use of EARTH to retrieve the major semi-axis value to R01. 

We type: 

XEQ “EARTH”     =>  writes EARTH data to R00-R06 

1.9885 E30, RCL 01, E3, *,  XEQ “T()”  =>31,557,670.11 period in seconds 

3600, / , 24, /      =>365.2508115 period in days 

 

The second one  1/2  derives the standard gravitational parameter   for a body, when the orbital 

period and the semi-axis are known, using the expression: 

 

Example.- Derive the value of  the standard gravitational 

parameter for the Sun using the Earth’s orbit data. 

 We type: 

365.25, ENTER, 3600, *, 24, * =>31,557,600.00 

period in seconds 

 

RCL 01, E3, *   =>1.4959831 11 

major semi-axis in m 

 

XEQ “1/2”   =>1.1520357 10 

X^2    =>1.3271864 20 

Which is close enough to the value found in the literature, as 

shown in the table  on the right. 
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Delta-V Orbit Simulator. { ORBIT}  - from HP41 Physics Solutions Book. 

Delta-v (literally "change in velocity"), symbolized as ∆v, as used in spacecraft flight dynamics, is a 

measure of the impulse that is needed to perform a maneuver such as launch from, or landing on a 

planet or moon, or in-space orbital maneuver. It is a scalar that has the units of speed. As used in this 

context, it is not the same as the physical change in velocity of the vehicle. 

Delta-v is produced by reaction engines, such as rocket engines, and is proportional to the thrust per 

unit mass and the burn time. It is used to determine the mass of propellant required for the given 

maneuver through the Tsiolkovsky rocket equation. For multiple maneuvers, delta-v sums linearly. 

 

Program Description 

This program calculates orbit parameters from initial position and velocity data both for elliptical and 

hyperbolic orbits in a plane. It is also possible to move the point of interest to anywhere along the 

orbit and then recalculate orbit parameters. 

                         

The program is taken from the HP-41 Physics Solutions Book without fundamental changes. Only a 

top-level menu and parameter input prompts have been added for a more convenient use. This main 

menu is presented after the user has entered the initial orbital data: 

Parameter Position Velocity 

Mass Angle Magnitude Angle Magnitude 

 

The options menu offers the following choices: 

 

• LBL A  is used to input new initial conditions. 

• LBL B  is used to show the orbit Geometry 

• LBL C is used to move to a new position in the old orbit 

• LBL D is used to enter the Delta-V in angle and magnitude 

• LBL E  is used to present this options menu again. 
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Each of these options proceeds to prompt for the variables changed or added to the initial set. This 

approach makes it easier to use without access to the manual, so it’s more fool-proof. 

Once the calculations are done with the new data, the program enumerates the four new orbital 

conditions: R, <), V, and V<). You can return to the main menu at any time during this enumeration. 

In option “B”, the program will tell you the type of orbit created by the initial conditions or after the 

delta-V changes. The possible choices are Elliptical, Parabolic and Hyperbolic, as determined by the 

eccentricity value derived from the inputs. 

 

 

Example. Execute a Hohmann transfer from a low-earth orbit to a high-earth orbit, using a delta-V of 

2,300 m/s at the initial point, and another of 1,450 m/s at the transfer orbit. The initial conditions are 

listed below: 

Parameter Position Velocity 

5.979 E24 kg 0° 7.1 E3km 90° 7.4 E3 m/s 

 

With the calculator in DEG mode we type: 

XEQ “ORBIT”    

5.979 E24, R/S    

7.1 E6, R/S    

0, R/S     

7.4 E3, R/S   

90, R/S  ->    ;     

R/S    || ;   

R/S     

The first step is a burst from the low-earth orbit into a TRANSFER orbit: 

XEQ D    ||      -  amount and angle of change  

90, ENTER^, 2300, R/S     ;       - same position  

R/S    ||    ;      - new velocity  

After this burst the object is placed in an elliptical orbit that shares the same point with the original 

one, but with a different velocity due to the boost. The geometry of this transfer orbit can be 

reviewed using LBL B, as follows: 

XEQ B    ;   ”   position in the new orbit - 

R/S            same as original orbit - 

R/S      

R/S      ;     

R/S    

The next step is another burst when the body has reached the opposite position, i.e. determined by 

the current angle in the new orbit plus 180 degrees. Thus we first let the object travel to the new 

position, i.e. we “move” its position from the current one (which is why we used LBL B before). 
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XEQ C     

359.9976, ENTER^, 180, +  - 180° are added to the first position! - 

R/S       ;    

R/S    ||=   ;        

And now we place the object into its FINAL orbit with another burst: 

XEQ D    || 

270.009, enter^, 1450, R/S   

R/S           – same position - 

R/S    ||  

R/S         – new velocity – 

To see the high-earth orbit geometry we use LBL B as before: 

XEQ B       ;     

R/S     

R/S     

R/S      ;     

R/S     

Remarks: it’s important to note that two bursts are needed, both using the current velocity angle. The 

second burst occurs at 180 degrees opposite from the position after the first one.  

 

The figure below shows a generic transfer situation, where the velocity bursts don’t occur at opposite 

points but at other determined by the bi-elliptical conditions. This type is faster but requires more fuel. 
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Velocity Increments forHohmann Transfers.{ +VH12} 

For most Earth orbits which were serviced by the Space Shuttle, the distancesfrom the earth was 

small in terms of Earth radii. For such orbits (even out to and beyond geosynchronous distance), the 
Hohmann transfer is the best transfer to use when transferring between circular coplanar orbits. 

 
For transfers between circular coplanar orbits, the information usually given consists of the radii of the 

initial and final orbits. The information desired consists of the semi-major axis of the transfer orbit, the 

velocity increments at the ends of the transfer orbit, and the total velocity increment required for the 

transfer. The semi-major axis of the transfer orbit is given by: 

aT=(rp+ra)/2.  
 
In order to calculate the required information, it is necessary to calculate the following four velocities: 
 

 

The initial and final velocity increments are then given by the equations below: 

               ;    

Where:  

• r1 is the radius of the initial circular orbit 

• r2 is the radius of the final circular orbit 

• a(r) is the semi-mayor axis of the transfer orbit:  a(r) = (r1 + r2) /2 

• m is the gravitational parameter of the central body 

 

The MCODE function+VH12 performs both velocity increments calculations. It expects the input 

parameters in the stack registers, as follows: 

Register Input Function Output 

Z: M = Mass of central body  

+VH12 

M = mass of central body 

Y: R1 = Initial orbit radius V1 = Velocity increment#1 

X: R2 = Final orbit radius V2 = Velocity Increment# 2 

LastX: - R2 = Final Orbit radius 
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Bi-Elliptic tangential Transfers.{ +VB123} 

A variation of the previous case, the bi-elliptic transfer requires two elliptical orbits that share the 

same apoapsis (or apogee in case of Earth orbits).  This transfer requires three velocity increments, so 

in principle it’d appear the energy required should be larger. However, depending on the apogee 

distance used, the total velocity increment may be smaller than the standard Hohmann transfer - even 

if there’s one more step involved. 

 

Let r1 and r3 be the radii of the initial and final 

circular orbits. Let r2 be the common apogee of 

the two elliptical transfer orbits.  

Let’s now define: 

a1 = ( r1 + r2 ) / 2 

a2 = ( r3 + r2 ) / 2 

The expressions are shown below. First leaving the initial orbit (prograde burst) and arriving to the 

final orbit (retrograde burst): 

                  

And the intermediate bi-elliptical transfer: 

           

Note that if r2 = r3 then V3=0, and it becomes a standard Hohmann transfer. 

The function calculates the three velocity increments at the same time. There are four input 

parameters required for this case, expected to be in the stack as shown in the table below: 

Register Input Function Output 

T: M = Central body Mass  

 

+VB123  

M = Central body Mass 

Z: R1 = Initial orbit radius V1 = Velocity increment#1 

Y: R2 = Final orbit radius V2 = Velocity Increment #2 

X: Rb = Elliptical orbit apogee V3 = Velocity Increment #3 

LastX: - Rb = Elliptical Orbit apogee 

 

Important remarks: The input values are expected in SI units, i.e. meters for the radii and kg for 

the mass. This is because internally the gravitational constant is used with the SI values: 

G = 6.6742800 E-11  N*M2/KG2 

Note: The ALPHA register is used for scratch – its previous contents will be lost. 
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Example #1. Calculate the speed increments used in the ORBIT problem example if the data are the 

two orbit radii, as per the table below: 

Parameter LEO GEO 

5.979 E24 kg 7.1 E3 km 36.5014059 km 

 

We type:  (don’t miss the implicit unit requirements!) 

5.979 E24, ENTER^, 36.5014059 E6, ENTER^, 7.1 E6  

XEQ “+VH12”    =>    m/s 

X<>Y     =>    m/s 

Note that these results are not quite the same exact values as the ones used in the problem, which 

may be just rounding errors, and the slightly different values for the Earth mass. 

 

Example #2. Find the total delta-v requirement for a bi-elliptic Hohmann transfer from a geocentric 

circular orbit of 7,000 km radius to one of 105,000 km radius. Let the apogee of the first ellipse de 

210,000 km. Compare the delta-v schedule and the total flight time with that for a standard Hohmann 

transfer ellipse. (Note: Earth’s  = 3.9860044 14). 

 

First for the bi-elliptic transfer. 

5.979 E24, ENTER^, 7 E6 , ENTER^,  

105 E6, ENTER^, 210 E6 

XEQ “+VB123” =>  2,953.825526 

RDN  =>  775.4013118  

RDN  =>  301.5877266  

RDN,   =>  5.9790000 24 

RDN, +, + =>  4,030.814565  

Then for the simple transfer: 

X<>Y  (the mass was still there) 

7 E6 , ENTER^, 105 E6 

XEQ “+VH12” =>  1,259.525314 

RDN  =>  2,786.805728 

+  =>  4,046.331042 

with TOF = T/2 = . √(105 E6 + 7 E6)^3 / √8= √[(112 E6)^3 / 8= 65,942.13822s 

 

The counterpart are of course the times of flight: 

In the first ellipse, TOF(1) = T1/2 = . √[(205 E6 + 7 E6)^3 / 8= .√ [(212 E6)^3 / 8

In the second one, TOF(2) = T2/2 = . √[(205 E6 + 105 E3)^3 /8]= . √[(310 E6)^3 / 8 

And the total TOF = TOF(1) + TOF(2) = p.(54,662.55282 + 96,655.96462) = 475,381.1427 s 

 

i.e. greater by the factor: 475,381.1428 - 65,942.13822 = 409,439.0046 s = 4.738877367 days 
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Transfer between Coaxial Elliptical Orbits.{+VEa12 ,  +VEb12 } 

We know that planet orbits aren’t circular but elliptical – although their eccentricities are not large. 

Therefore, using this approach would appear to be more appropriate, evenif the accuracy increase 

isn’t that significant in a limited 10-digit mantissa world. 

This type of transfers has two possible trajectories, depending on whether it is initiated at the apogee 

or at the perigee of the initial orbit – which are the two points in the orbit where the velocity is 

perpendicular to the radius; the required condition for a tangential velocity increment goal. 

 

The perigee and apogee of the two orbits are labeled in the sequence of transfer: From A to B 

(perigee-1 to apogee-2), or from A’ to B’ (apogee-1 to perigee-2). 

 

The expressions for the velocity increments for both cases are as follows: 

1. Starting at the perigee:      2. Starting at the apogee: 

 

 

Warning: these formulas are not verified with a second source, so they may contain transcription 

errors. Also it’s not entirely clear they are dimensionally correct ? 
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There are five input parameters required for this case. The function expects the radii in the stack, and 

the mass of the central object in the LastX register. Use SF 00 / CF 00 to toggle the cases. 

Register Input Function Output 

T: A1 = initial orbit apogee  
+VEa12 

+VEb12 

M = Central body Mass 

Z: B1 = Initial orbit perigee A1 = initial orbit apogee 

Y: A2 = final orbit apogee V1 = Velocity increment#1 

X: B2 = Final orbit perigee V2 = Velocity Increment#2 

LastX: M = Central body Mass B1 = Final orbit perigee 

 

Example. A spacecraft is in a 480 km by 800 km earth orbit (orbit 1). Determine the most efficient 

transfer from orbit 1 to another elliptical orbit of 1000 km by 7 000 km, and the required delta-v. 

First for the perigee jumps, we type: 

5.97219 E24, STO L    - mass of the Earth 

480 E3, ENTER^, 8 E5, ENTER,  - perigee and apogee of “lower” ellipse 

1 E6, ENTER^, 7 E6   - perigee and apogee of “upper” ellipse 

XEQ “+VEa12”   =>      m/s 

X<>Y    =>  m/s 

And the transfers at the apogee: 

RDN, RDN, 5.97219 E24, STO L 

CLX, 1 E6, ENTER^, 7 E6 

XEQ “+VEb12”   =>    m/s 

X<>Y    =>    m/s 

 

Comparing these results, it’d appear initiating the transfer from the perigee is considerably more 

efficient. This is logical because the velocity at the apogee is always smaller than at the perigee, as 

determined by the relationship: 

Va = Vp [(1-e)/(1+e)] ;   thus: Va/Vp = (1-e)/(1+e) < 1 

On the other hand, this assumes the numbers correct which as mentioned before, may not be true.  

Note that these velocity increments are much larger than those used in circular orbits. This may be 

yet another reason why elliptical orbits are avoided for satellite placement – besides the many other 

facts that complicate calculations and aren’t well suited for earth communications. 
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Orbital Rendez-vous. {CORV  , CPRV } 

Orbital transfer becomes more complicated when the object is to rendezvous with or intercept another 

object in space: both the interceptor and the target must arrive at the rendezvous point at the same 

time. This precision demands a phasing orbit to accomplish the maneuver. A phasing orbit is any orbit 

that results in the interceptor achieving the desired geometry relative to the target to initiate a 

Hohmann transfer.  

Co-orbital Rendezvous. 

This is the easier of the two cases. Both interceptor and target are in the same orbit, at a relative 

position given by the initial phase angle o measured from the interceptor in the direction of 

rotation. Therefore, the initial angle will be positive if the interceptor is behind the target, and 

negative if it is ahead of it. This makes an important difference in the velocity increments to apply.  

• If the target is ahead of the chaser, the latter needs to reduce its speed to move into a 

smaller elliptical orbit (inside the circular one, tangential to the transfer point) – with a smaller 

period, and thus it’ll be able to catch up with the target in the next revolution at the tangent 

point. The period of such elliptical orbit must equal the time taken by the target to travel to 

the rendezvous point, i.e. to move an angle:t = 2 -o . 

 

• If the target is behind the chaser, the latterneeds to increase its speed to move into an outer 

elliptical orbit (with a positive velocity increment) into an elliptical orbit with greater period 

than the circular one, to allow the target to move a travel angle t = 2 +  up to the point 

of tangency (one revolution later). 

 

• In either case the chaser requires a second velocity increment equal to the first one but in 

opposite direction, to return to the original circular orbit. The rendezvous can be initiated at 

any time, there’s no need to wait for a “launch window” to occur. 

 

 

 

Left: Chaser ahead of target 

Right: Chaser behind the target (clockwise rotation) 
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For circular orbits, the phasing elliptical orbit semi-major axis is easily calculated as: 

a ‘ = R [(2+o)/2p ]^(3/2) 

and the TOF is the full period of such orbit: 

 TOF = T’ = 2. √(a‘^3/ 

 

For elliptical orbits one must resort to the Mean anomaly instead – or use an area-based approach. 

In that case the expression for the semi-major axis of the phasing phase is: 

a ‘ = R [(2+Mo)/2p ]^(3/2),  with:  Mo =Eo – e.sin(Eo) , etc. 

 

Example. Spacecrafts at A and B are in the same elliptical orbit 1. At the instant shown, the chaser 

vehicle at A executes a phasing maneuver so as to catch the target S/C back at B after just one 

revolution of the chaser’s phasing orbit 2. What is the required total delta-v. 

 

Solution: The driver program CORV does all the work. We’ll use:2a=  (ra + rp)_, and:  b = √(ra.rp) 

XEQ “CORV”      

5.972186 E24, R/S     

13600, ENTER^, 6800, + , 2 , / , ENTER^  

13600 E3, ENTER^, 6800 E3, * , SQRT   

R/S          

PI, 2, / , R/S      

R/S       

R/S      

Note the very small retrograde increment of velocity in direction contrary to the movement. Note also 

that it must be repeated  as prograde (in the same direction this time) at the rendezvous point to 

return to the initial orbit. 
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Co-orbital Rendezvous Program Listing: 

 

 

 

Note. Using the area-based approach instead of the mean anomaly could also be possible, once we 

can establish the central angle corresponding to the initial phase angle (which is measured as a true 

anomaly).  

Let A(t) be the focal sector area swept by the target. Then the semi-axis of the chaser’s phasing     

orbit would be given by: 

                                        a’ = at * [A(t) / .a.b ]^(1/3) 

Unfortunately no more room was available in the module, so this option is not included. 

  

1 LBL "CORV" 30 Y^X

2 CF 00 default: circular 31 RCL  01 a

3 "MASS=?" 32 *

4 PROMPT 33 STO  06 a'

5 STO 05 M 34 "a' ="

6 XROM "?ab" 35 ARCL X

7 RCL 00 e 36 AVIEW

8 X#0? elliptical? 37 AVIEW

9 SF 00 yes, flag case 38 RCL  05 M

10 LBL 00 39 X<>Y a'

11 "<)=? (C>T)" phase angle 40 ST+  X (3) 2a'

12 PROMPT 41

13 FC? 43 42 RCL  01 a

14 D-R 43 - 2a' - a

15 FS? 00 elliptical? 44 RCL  01 a

16 T>E yes, Eccectric anomaly 45 X<>Y put in expected order

17 FS? 00 elliptical? 46 +VH12

18 E>M yes, Mean anomaly 47 STO 04

19 STO  03  o 48 "dV1="

20 CHS 49 ARCL X

21 PI 50 AVIEW

22 ST+  X (3) 2 51 RCL  05 M

23 52 RCL  06 a'

24 +  o + 2 53 T()

25 LASTX 2 54 "TOF="

26 /  o + 2  55 ARCL X

27 X^2 56 PROMPT

28 3 57 GTO 00

29 1/X 58 END
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Co-planar Rendezvous. 

If the initial and final orbits are circular, coplanar, and of different sizes, then the phasing orbit is 

simply the initial interceptor orbit. The interceptor remains in the initial orbit until the relative motion 

between the interceptor and target results in the desired geometry. At that point, we would inject the 

interceptor into a Hohmann transfer orbit. Chances are the initial relative positions of target and 

chaser are not the required ones for the transfer, so a wait time will be required.  

           

    Left: Launching condition.    Right: Initial condition 

The required conditions specify a lead angle between the target and the rendezvous point, 

determined by the time taken by the chaser to move along the Hohmann transfer. Only in that 

circumstance both object will meet at the desired point. 

The TOF of the Hohmann section is given by the known geometry (radii for both circular orbits Rc and 

Rt), as half the period of the elliptical phasing orbit: 

TOF = . √(a‘ /with  a‘ = (Rc + Rt)/2 

 

and this time must equal the one taken by the target to travel the lead angle . If it travels with a 

known angular velocity t, then the condition is:  TT =  / t = TOF,  hence: 

 = . t.√(a‘ /. √/Rt^3) .√(a‘/. √(a‘/Rt)^3 

 

Next, we need to determine the wait time, i.e. how long it’ll take for the chaser and target to be in the 

appropriate position; which is obviously dependent on their initial relative position. Say initially they 

are situated an angle o apart from one another, and let t, c be the angular velocities of target 

and chaser in their circular orbits – i.e. their relative velocity is (c – t) 

The situation we want is when simultaneously the chaser’s lead angle is , and the target’s lead angle 

is ; that’s to say the angle between them must be. Thus, the traveled angle until that point is:  

t = (and the wait time is simply such traveled angle over the relative velocity:  

WT = [((c – t) ;     or WT = [ ((c – t) 
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Example. Determine the transfer conditions for an automated repair spacecraft in LEO with Ri = 

6570 km to rendezvous with a disabled target spacecraft in a geosynchronous orbit with Rt = 

42160km, if the initial angle between the two spacecrafts is 180. 

Solution - The driver program CPRV does all the work: 

XEQ “CPRV”    

5.972186  24, R/S   

6570 E3, R/S    

42160 E3 , R/S    

180, R/S   

R/S    

R/S    

R/S      
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Co-Planar w/ Circular orbits. Program Listing: 

 

 

  

1 LBL "CPRV" 44 PI

2 "MASS=?" 45 * lead angle

3 PROMPT 46 CHS 

4 STO 05 M 47 RCL  00 

5 "R(C)=?" 48 - 

6 PROMPT 49 PI

7 STO 04 R1 50 + 

8 "R(T)=?" 51 X<=0?

9 PROMPT 52 GTO 00

10 STO 03 R2 53 PI

11 RCL 04 R1 54 ST+ X

12 + 55 -

13 2 56 LBL 00

14  / a'  = (R1+R2)/2 57 RCL  03 Rt

15 STO 06 58 3

16 LBL 00 59 Y^X

17 "<)0=?" 60 1/X

18 PROMPT 61 SQRT t

19 FC? 43 62 RCL  04

20 D-R 63 3

21 STO  00 o 64 Y^X

22 RCL  05 M 65 1/X

23 RCL  04 R2 66 SQRT c

24 RCL  03 R1 67 - t - c

25 +VH12 68 / o / (t - c)

26 STO  02 dV2 69 RCL  07 T

27 X<>Y 70 RCL  06 a'

28 STO  01 dV1 71  

29 RCL  05 M 72 X<>Y

30 RCL  06 a'  = (R1+R2)/2 73 RDN  ^1/2

31 T() 74 / Wait

32 STO 07 75 STO  08

33 2 76 "WT="

34  / 77 ARCL X

35 "TOF"= 78 AVIEW

36 ARCLX 79 "dV1="

37 AVIEW 80 ARCL 01

38 RCL  06 a' 81 AVIEW

39 RCL  03 Rt 82 "dV2="

40 / 83 ARCL 02

41 3 84 PROMPT

42 Y^X 85 GTO 00

43 SQRT 86 END
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Projectile Trajectory. { PRJTL}- by PoulKaarup. 

This program can be used as an applet to calculate the different variables of a projectile motion. The 

initial conditions are the position and velocity (both in magnitude and angle) at the point of launch.  

Then a menu of choices is displayed, where the unknown variablesare shown - as follows: 

 

• LBL A is used to find the altitude (y) at a given distance (x) 

• LBL B calculates the distance and time for a given altitude (y) 

• LBL C finds the x,y position for a given time (t) 

• LBL D finds the angle required to hit a target x,y and the time to get there 

• LBL E finds the velocity required to hit a target x,y and the time to get there. 

Note that LBL D and E will prompt for new values for the initial variables 

On each of these options the program will prompt for the known variables needed for the calculation 

of the unknown. Simply answer the prompts and press R/S to proceed.  

Example. A projectile is launched with the following initial conditions: from (xo,yo) = (1, 2) – red dot - 

and with a velocity Vo= 10 m/s, with an angle <(o = 45 deg from the horizon line. 

 

Find the altitude at x=5m; the distance for y=4m, and the position at t=1s. 

XEQ A    

5, R/S    ;  (green line) 

XEQ B    

4, R/S    ;(blue line) 

XEQ C    

1, R/S   ;  (green dot on the far right) 
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Find now the angle to hit the “blue” target at (2, 2) and the time to get there: 

XEQ D    (blue dot) 

2, ENTER^, 3, R/S  ;  

R/S    ;  

XEQ E    

2, ENTER^, 2.5 , R/S ;  ;   

 

Lastly, find the launch velocity to hit the “green” target located at (x, 2.5), and the time to get there: 

XEQ E    

2, ENTER^, 2,5, R/S  ; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


