
PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 1 of 113 August 2016




System Extensions for the 41CL

Revision – P

 User’s Manual and QRG.

Written and Programmed by Ángel M. Martin

August 2016

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 2 of 113 August 2016

This compilation revision 4.W.13.5

Copyright © 2012 -2016 Ángel Martin

Published under the GNU software licence agreement.

Original authors retain all copyrights, and should be mentioned in writing by any part utilizing this

material. No commercial usage of any kind is allowed.

Screen captures taken from V41, Windows-based emulator developed by Warren Furlow.
See www.hp41.org

CLWRITE Source Code written by Raymond Wiker.

Cover and inside graphic from Personal Brain 7.1, see http://www.thebrain.com/
Inside photos © Geoff Quickfall; Jürgen Keller, 2011

Acknowledgments.- This manual and the POWERCL module would obviously not exist without the

41CL. Many thanks to Monte Dalrymple for creating the amazing CL board.

Everlasting thanks to the original developers of the HEPAX and CCD Modules – real landmark and

seminal references for the serious MCODER and the 41 system overall. With their products they
pushed the design limits beyond the conventionally accepted, making many other contributions pale

by comparison.

http://www.hp41.org/
http://www.thebrain.com/

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 3 of 113 August 2016



Table of Contents.

1. Introduction

1.1. Preamble: Fatter than FAT! 5
1.2. Introduction. 6
1.3. Page#4 Library and Bank-Switching 6
1.4. The PowerCL Overlay 7
1.5. Plugging the POWER_CL module 8

1.6. The Functions at a glance 9

2. The functions in detail

2.1 Function Launchers 15
2.2 Plugging and Unplugging 17
2.3 The “Last Function” 19
2.4 Extended XEQ 21
2.5 Sub-function Groups and FATs 23
2.6 Catalogues and CATalogs 25
2.7 Buffer Catalog 26
2.8 Interrogating the MMU 28
2.9 Page Catalog 29
2.10 A wealth of a Library 30

3. HEPAX and Security

3.1. Configuring the HEPAX system 33
3.2. HEPAX chain alteration 36
3.3. Page-Plug Functions 37
3.4. Using Module Info as input 39
3.5. Security Functions 41
3.6. Encrypting RAM contents 42

4. Advanced Territory

4.1. Alternate memory blocks: Expanded memory 43
4.2. Y-Input and Y-Reset 46
4.3. Image Database functions 47
4.4. Using Page #4 48
4.5. Editing RAM areas with RAMED 49
4.6. Editing ROM areas with ROMED 50
4.7. Quick & Dirty sRAM Editor 52
4.8. Moving and Swapping MMU entries 53

4.9. Calculator Flash backup 54
4.10. Downloading ROM images 57

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 4 of 113 August 2016

5. I/O Bus and Page#

5.1 The system as a whole 59

5.2 The pages within 61

6. Strings and Alpha Extensions

6.1 String Manipulation functions 63
6.2. Alpha and Display Utilities 64

7. System Extensions

7.1. X-Memory Utilities 69
7.2. Second Sets of Main and X-Memory 71
7.3. Buffer Handling Utilities 74
7.4. Key Assignment Utilities 76
7.5. Page Functions revisited 77
7.6. XRAY: how big is your lollypop? 78
7.7. Flag handling functions 81
7.8. Other Miscellaneous Utilities 82
7.9. Extra Functions – Con’t. 84

8. Unit Management System

8.1. Constants Library 87
8.2. Unit Conversion Catalog 90
8.3. Unit Conversion Comparison 93
8.4. Farewell. 96

9. Appendixes.

9.1. Summary of CL functionality 98
9.2. Detailed CL ROM id# table 100
9.3. FOCAL Program Listing 105
9.4. MCODE Highlights 106
9.5. Serial Transfers CLWRITE / CLREAD 109
9.6. Checking ROM Configurations 114
9.7. Re-allocating MMU Entries 116
9.8. Breaking the FAT barrier 117
9.9. Dr. Jekyll and Mr. Hyde 120

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 5 of 113 August 2016


Extension Functions for the 41CL

0. Preambles: Fatter that FAT!

This manual covers revision “P” of the PowerCL_Extreme module, an extended implementation with a

full four-bank configuration on just a 4k footprint. There are 242 functions and numerous advanced

capabilities packed in this module, ranging from strictly CL-related to practically every other aspect of
the 41 system. This manual should provide utilization instructions for the functions, but not an

exhaustive treatment of the subjects involved. A thorough documentation of every single one would
easily take hundreds of pages and require much more in-depth treatment of the topics.

To access all this many functions, they have been structured into sub-function groups, each of them
with an auxiliary FAT. These “hidden” FATs are cleverly interconnected by launchers located in the

main page, real gateways into the bank-switched pages – true parallel dimensions of the module.

All functions are programmable using a non-merged approach, and thus can be called individually –
using their index within the group as a second line parameter for the function launcher. All this

happens automagically when typing the sub-function name, and its complexity is totally transparent

to the user – a beauty to behold.

The programmers of the HEPAX module (real MCODE grand-masters) developed this impressive
technique to overcome the 64-functions limit in the FAT. The same implementation has been used

here, adding further capabilities to the functionality that build upon the original design - making it

easier to use and a little more powerful still.

Broadly speaking this is the breakdown of their contents:

a. The contents of the Main FAT (also known as FAT-0) are essentially the same as in previous

versions of the module, covering the CL-specific functions and some of the most relevant
system extensions – notably the Unit Management System plus a Constants Library.

Prompting functions are also located here. In addition to that, there are three launcher
functions to access the other sub-function groups, both by name and by index within their

FAT. There are a total of 64 functions in FAT-0.

b. The first sub-function group (also known as FAT-1) includes new functions to manage the CL

Expanded memory – that is three sets of alternate blocks in RAM to make back-up copies of
your Main and Extended Memory. Also included in this page is a set of extra functions, many

taken from the ToolBox module - general utilities and mixed topics that will be covered later
in the manual. There are a total of 84 functions in FAT-1.

c. The second sub-function group (also known as FAT-2) includes many of the functions from
the Rampage and Alpha modules. By functional area, there are all the buffer management,

Extended Memory enhancements, and of course the Alpha functions group. Also the HEPAXA
function group from the HEPAX module is included – in recognition of the original

masterpiece. There are a total of 86 functions in FAT-2.

It comes without saying that the real challenge lies not in stuffing all that functionality into the banks,

but for it to be useful there must be capable navigation techniques and usability features. Here’s
where the function launchers (XXEQ, XQ1$, XQ2$, and XFAT) as well as the new FCAT sub-

function catalogues fulfilled the expectation; in their role of master of ceremonies and organizers of
the module - more about this later on.

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 6 of 113 August 2016

1. Introduction.

Without a doubt the 41CL can be considered in many accounts to be the pinnacle of the HP-41
system. It comes with a well thought-out function set to manage its capabilities, from the basic to the

more adventurous – which has inspired the writing of yet further extensions to that capable toolset.

This module is designed to enhance and complement the YFNS Extreme, a.k.a. YFNX function set,

providing easier access to the many powerful capabilities of the 41CL platform. Some are function
launchers, grouping several functions by their area of functionality into a single, prompt-driven one –

like it’s the case for the Plug/Unplug functions, the BAUD rate, TURBO and MMU settings functions.
A “launcher of launchers” sits atop these, providing quick access to multiple YFNX and other functions

from a single key assignment.

Some others extend the functionality by providing new features and more convenient alternative to

manual tasks. Examples of these are:

- A fully-featured ROM library catalog system, allowing direct plugging into the port of choice

- The Page plug functions (alternative to the Port ones), including routines to handle page #4.
- HEPAX configuration and set-up, making the HEPAX integration a simple and reliable affair.

- Security functions to password-protect your machine from prying eyes.
- Two powerful RAM and ROM editors, a hacker’s real delight.

- Comprehensive Expanded Memory enhancements of alternate RAM blocs.
- An extended implementation of the Unit Management System, with Electrical units support

and featuring an all-new Constants Library.

- Tons of sub-functions in auxiliary FAT groups… and many more!

Other housekeeping functions roundup the set, making for a total of 242 functions tightly packed into
a bank-switched 16k ROM. This was a design criterion, as the small footprint of the module (just one

page, or effectively 4k) makes it ideal to combine with other utility packs, most notoriously the CCD

OS/X (or its alter-ego AMC OS/X) for the ultimate control - and except some honorable exceptions
there is no duplication between the two.

Page#4 Library and Bank-Switching.

The first thing to say about the PWRCL_EXT module is that - like the POWER_CL and previous
CL_UTILS revisions - it extensively uses routines and functions from the Page#4 Library. Make sure

the Library#4 revision “M” (or higher) is installed on your system or things can go south. Refer to the
Page#4 Library documentation to properly configure the Library#4 before you start using it.

Plugging the Library#4 on the CL can be done using YPOKE to directly write its image location in the
MMU register for page#4. For example, assuming the library image is loaded at location 0x83F in

sRAM, the syntax would be:

enter “804040-883F” in ALPHA, then execute YPOKE.

This module is, to the author’s knowledge, one of the few ones using bank switching. The idea of

using an auxiliary bank originated from the usage of the very long ROM image internal table required
by CLLIB and ROMLIB. Even after completing the page#4-aware version of CL_UTILS, it was clear

that a bank-switching version would be the ultimate solution, which also enabled an enhanced
implementation of the Unit Management System (UMS) to be included.

Subsequent versions doubled the number of banks (expanding from 2 to 4), and added the sub-
functions launchers, FAT catalogs, and many other functions to the list – touching a large variety of

functional areas: Buffer management, Extended Memory enhancements, Alpha functions, HEPAX
functions. And last but definitely not least the CL Expanded Memory functions for backup.

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 7 of 113 August 2016

The main launcher CL was tweaked to also connect with the FAT groups via the dedicated sub-

function catalogs and launchers: XQ1$, XQ2$, XXEQ and XFAT – enough to make your head spin
but yet easy to grasp. We can say this is the all-wheel drive version, 4x4 – with the four banks using
the Library#4. Bank switching is managed behind the scenes by the launchers. Each function is

responsible for returning to Bank-1 upon completion. The user needs not to be concerned with all this
power and simply use it seamlessly.

The PowerCL Overlay.

To facilitate using the different functions their launchers have been arranged taking the first letter of

the name as the designated key to invoke and execute them. This is easier to remember than other

approaches; even if those hot keys are not grouped together in contiguous locations (like say, the two
top keys). An overlay is therefore just an additional convenience more than a necessity - but here it is,

in case you fancy those over the prompting cues.- The overlay shows all functions available at the

CL prompt – with only one key assignment required.

 Function names on dark grey background (keys with red circle around them) represent the

main launchers. Each of them will present further options in its prompt, as will be described
later in the manual.

 Function names on standard black background are available as individual options due to their

frequent need (for a power user). Some of them are also included in the launcher prompts for

additional convenience.

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 8 of 113 August 2016

Plugging the POWER_CL module.

Being a bank-switched module, there are four 4k-blocks involved: all four banks need to be loaded

using the appropriate syntax at the PLUG function prompt. Whether you use a copy in sRAM or it’s

already burned in FLASH, make sure that the four banks occupy contiguous blocks, or the PLUG
command will not work properly.

For example, assume the banks are copied into locations 0x840 to 0x843 on the V3/V4 CL board (any

other group of contiguous addresses will also work, even in V2 systems). Then this will be the syntax

required to plug it in page #9:

Execute: PLUG, “*840”, pg#

You can use page#6 or page#7 on V3/V4 CL boards, (obviously without a Printer or the HP-IL
connected) as the module is designed to be completely compatible with those system locations.

Plugging with the new Image Database functions.

Version V4 of the CL board comes with the POWERCL_EXT module already burned in flash, thus can

be plugged in simply by using its mnemonic “PWRX” at the PLUG function prompt. Note that this will

NOT take care of the Library#4 dependency, which you’ll have to do manually as well.

To create a new entry in the IMDB for POWERCL_EXT you can use function IMDBINS, once the four
banks are loaded in sRAM. You’ll need to provide an address and mnemonic, making sure you specify

the “–16k” type. Refer to the CL manual for instructions and the proper syntax.

WARNING: Be aware of the dependency with the Library#4, which requires it to also be configured
for the proper operation of the functions. Failure to do this will cause surely unexpected and likely

unpleasant results. Refer to the Library#4 documentation for details.

WARNING: PWRCL_EXT is designed to work paired with YFNX. This is a mandatory requirement.

A word of caution.

As wise men remind us, “with power comes responsibility”. Indiscriminate usage of some of these
functions can have unpleasant consequences, ranging from unexpected results and easy-to-recover

machine lock-ups to more serious ones, losing HEPAX data. Functions have some built-in protection to
ensure that they’re used properly, but they are not absolutely foolproof in that such protection can

always be circumvented. So beware, and as general rule “if you don’t understand something, simply
don’t use it”.

To assist you with this, the more dangerous functions are marked with WARNING signs all throughout
this manual. Avoid them if you’re not absolutely sure that you know what they are for, and fully

understand their operation. Note that the flash back-up functions are back in. They were available in

the CL_UTILS module but were later removed in previous versions of the PowerCL. Notice that the
hard-coded addresses used now are incompatible with V1/V2 revisions of the CL board - They may be

too risky for casual users; so be forewarned! And always follow the “better safe than sorry” rule.

It had to be said – so now that we got it out of the way we’re ready to dive into the POWERCL
description and usage example. May you have a nice ride!

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 9 of 113 August 2016

Function index at a glance.

Without further ado, here are all POWERCL functions, in the three FATs.

Function Description Inputs Output

0 -PWRCL_EXT Splash Screen none Shows message

1 CL _ Main CL Global Launcher Prompts "B:C:H:I:M:P:T:U" Launches selected Launcher

2 ADRID ROM id# from address Flash addr in Alpha ROM ID in Alpha

3 BAUD _ Baud functions launcher Prompts "1:2:4:9:I:M:X" Launches selected function

4 CLLIB _ ROM Library Alphabetical Prompts "A-Z" Starts listing at selected letter

5 DLD48 Download at 4800 baud Destination address ROM downloaded from PC

6 HEPINI _"_ HEPAX FileSys Init Prompts for values Initializes HEPAX File System

7 HEPAX _ HEPAX Launcher Prompts "4:8:6:I:D" Launches selected function

8 HPX4 _ HEPAX Config 4k - CL Prompts for page# Configures 4k HEPAX on CL

9 HPX8 _ HEPAX Config 8k - CL Prompts for page range Configures 8k HEPAX on CL

10 HPX16 _ HEPAX Config 16k - CL Prompts for page range Configures 16k HEPAX on CL

11 IMDB _ IMDB Launcher Prompts "A:C:I:F:R:U:?" Launches selected function

12 MMU _ MMU functions launcher Prompts "C:D:E:G:T:?" Launches selected function

13 MMUCAT MMU Catalog None Sequential list of MMU Entries

14 PLUG# _ PLUG functions launcher Prompts for location ROM with ID in ALPHA is plugged

15 PLUGG _ Plug Page Prompts for page Plugs ROM in page

16 PLUGG? _ Page Location MMU Prompts for page Content of MMU entry for page

17 PPG#4 _ Page#4 Plug Prompts "F:L:S" Selected ROM plugged

18 ROMLIB _ ROM Library by type Prompts "E:F:G:M:U:X" Sequential list of ROMs by type

19 SECURE Enables password lock None Sets SECURE mode ON

20 TURBO _ TURBO functions launcher Prompts "X:2:5:1:0:,:?" Launches selected function

21 UNSECR Disables password lock Asks for password Sets Secure mode OFF

22 UPLG4 Clears MMU entry for page #4 None MMU entry cleared

23 UPLGG _ UPLUG page Prompts for page "6-F" Unplugged if present

24 UPLUG$ UPLUG by Alpha ROM Revision in Alpha Unplugged if present

25 UPLGID _ Unplug by ROM mnemonic Prompts for ROM mnemonic Unplugged if present

26 XCAT _ Xtended CATalogs Prompts: "B:F:H:K:L:M:U" Launches selected function

27 XPASS change password Asks old/new passwords Password is changed

28 YBKSWP y-Blocks Exchange Source in X, Destination in prompt Exchanges alternate blocks (0-4)

29 YCRYPT En/Decrypts RAM content Prompts in program RAM contents scrambled/restored

30 YEDIT _ CL sRAM Editor Prompts for start address reviews & edits word values

31 YINPT Y Input Prompts for characters HEX entry plus control chrs

32 YMEM _ YMemory Launcher Prompts "S:O:E:D:I:M:X" Launches selected Launcher

33 YMOVE Moves MMU Entry FROM: in Y, TO: in X Moves the MMU to TO: page

34 YSWAP Swaps MMU Entries FROM: in Y, TO: in X Swaps the MMU between pages

35 YRALL Y-Read-ALL None Reads Calculator/MMU from Flash

36 YWALL Y-Write-ALL None Writes Calculator/MMU to Flash

37 -SYS/EXT Section Header / DTOA Text in Display Writes text to ALPHA

38 ASG _ Multi-byte ASN Prompts for mnemonic Assignment is made

39 BFCAT Buffer Catalog None Shows present buffers

40 FDATA _ Function Data Prompts for FNAME Fnc. Data in Alpha

41 HEXKB _ HEX Keyboard Prompts for entry Codes NNN in X, string in Alpha

42 IOBUS I/O Bus Launcher prompts "B:F:U:O:R:?" Launches selected function

43 UPL48 Upload ROM Image Destination address Sends image to PC

44 PGSIG _ _ Gets Signature for page Prompts for page, 1-14 data string in Alpha

45 PLNG _ Program Length Prompts for P. Name Program length in X and Alpha

46 RAMED _ RAM Editor Address in X Memory edited as per inputs

47 ROM? ROM Information Prompts for XROM id# Header in Alpha, pg# in X, #FNC In Y

../../../My%20Documents/HP-41CL_UTILSPOWER_CL%22%20l
../../../My%20Documents/HP-41CL_UTILSPOWER_CL%22%20l

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 10 of 113 August 2016

Function Description Inputs Output

48 ROMCAT _ _ ROM id# CAT Prompts ROM id#, 1-32 Stats CAT-2 at this point

49 ROMED _ _ _ _ ROM Editor Prompts for address ROM edited as per inputs

50 SIGPG? Gets page# of matching sig Signature in Alpha Page# in X

51 STR$ String Manipulation launcher Prompts "L:M:R;S:U:W" Launches selected function

52 T>BS _ _ Base Ten to Base number in X, base in prompt Converted number in ALPHA

53 XQ1 _ FAT1 eXEQute prompts for FNAME Launches function

54 XQ2 _ FAT2 & FAT1 eXEQute prompts for FNAME Launches function

55 XFAT _ _/_ _ FAT Function# Launcher prompts for FAT# , FNC# Launches function

56 XROM _ _,_ _ ROM function Launcher prompts for XROM#, FNC# Launches function

57 XXEQ _ XEQ Launcher prompts "0:1:2:F:M" Launches selected function

58 -SI Direct Unit conversion value in X, string in Alpha Converted unit in X

59 A<>RG _ _ Swap ALPHA and Registers Register in prompt Data swapped

60 KLIB _ Constants Library 4 displays of 5x each, SST Constant value to X, unit to Alpha

61 SI- Reverse Unit conversion value in X, string in Alpha Converted unit in X

62 ST<>RG _ _ Stack and Registers swap Stack and Regs. contents Contents exchanged

63 UCAT _ Unit Catalog section in prompt (1-5) Lists units starting at section#

0 -YFNM NEW Section Header n/a n/a

1 ?MMU Is MMU enabled? none Yes/No, skips if False

2 ?YFNX Checks for YFNX version none Shows error if not present

3 MM-YBK Main memory to Block Destination Block# in X Main Memory saved in block

4 MMYSWP Main Memory Exchange Swap Block# in X Status Regs. Saved in block

5 ST-YBK Status Regs to Block Destination Block# in X Extended Mem saved in Block

6 STYSWP Status Regs. Exchange Swap block# in X Status Regs. exchanged

7 XM-YBK Extended Mem. To Block Destination Block# in X Extended Mem. saved in block

8 XMYSWP Ext-Memory Exchange Swap block# in X Extended Mem exchanged

9 YBK-MM Y-Block to Main memory Source block# in X Main Memory restored from block

10 YBK-ST Y-block to Status Regs Source block# in X Status Regs. Restored from block

11 YBK-XM Y-block to Extended Mem. Source block# in X Ext-Mem. Restored from block

12 YBSP ALPHA back Space String in ALPHA Deletes rightmost character

13 YCL> Clears string from ">" String in ALPHA Clears from ">" char to the right

14 YFNZ? Location of YFNS ROM Alternate YFNS? Disables MMU if not found

15 YMCOPY General-purpose Copy Control data as NNN in X Copies data to block 0-4

16 YMEXCH General-Purpose Exchange Control Data as NNN in X Swaps Data between blocks 1-3

17 YRESET Resets the MMU None Disables the MMU

18 YSWP> Swaps both sides of ">" string in ALPHA Alpha swapped around ">"

19 Y1SEC 1 Second delay None Pauses for 1 second

20 -PAGE FNS Section Header n/a n/a

21 BANKED Lists banked pages in I/O Bus none String in Alpha

22 BANKS? _ number of banks in page Prompting - page# in X in PRGM Number in X

23 BFREE Lists free pages in I/O Bus none String in Alpha

24 BLANK? _ Tests whether page is blank Prompting - page# in X in PRGM Yes/No, skips line if false

25 BUSED Lists used pages in I/O Bus none String in Alpha

26 CDE Code NNN HexCode in ALPHA NNN in X

27 CHKSYS Check xROM Configuration none OK/BAD message

28 CLBL Clear Block "bbbbeeee" in X as NNN Clears block content (sRAM only)

29 DCD Decode NNN NNN in X HexCode in Alpha

30 FOG En/Decrypts Page adr in X (NNN), Pwd in ALPHA En/Decrypts pg content

31 OSREV Shows revision of OS ROMS none String in Alpha

32 PG? _ Page information Prompting - Pg# in X in PRGM Header in Alpha, XROM,# funct. In X

33 PGCPY _ _ Copy Page FROM: in X, TO: in prompt Copies page from/ to

34 PGROOM _ Counts zero-words within page Prompting - Pg# in X in PRGM Number in X, stack lifted

35 PGSUM _ Page Sum Prompting - Page# in X in PRGM Sums page and writes value

../../../My%20Documents/HP-41CL_UTILSPOWER_CL%22%20l

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 11 of 113 August 2016

Function Description Inputs Output

36 READPG Reads page from HPIL disk page# in X, Fname in Alpha Page read from disk

37 ROMCHKX Checks ROM XROM# in x Verifies checksum

38 ROMLST Shows all XROMs plugged none String in Alpha

39 SUMPG _ Sums Page Prompts for pg# Sums page and writes value

40 WRTPG Writes page to HPIL disk Page# in X, Fname in Alpha Page copied to Disk

41 X=PG? Pages Comparison FROM: in X, TO: in prompt

42 XQ>XR Changes XEQ into XROM Program Name in Alpha XEQ changed to XROM

43 -XTRA FNS Section Header n/a n/a

44 RG? SREG location finder none Location in X

45 AVU41 Alpha view as 41 Instruction Digit in Alpha Instruction syntax in ALPHA

46 CFX Extended CF flag# in X (0 – 55) Flag is cleared.

47 COMPILE Compiles User Program Prgm Name in Alpha Program compiled

48 CRTN? Curtain location finder none Location in X

49 CSST Continuous SST PC in current program Lists steps in sequence

50 CVIEW Continuous View Text in Alpha Shows text, non stop

51 DREG? Number of Data Registers none Current SIZE in X

52 FC?S Flag clear and set test flag# in X (0 – 55) Tests flag and sets it

53 FREG? Free registers Finder none # of available REGS in X

54 FS?S Flag Set and Set test flag# in X (0 – 55) Tests flag and sets it

55 FSIZE Drive File Size File Name in Alpha File Size in X

56 GETPC Gets current PC in x none PC value in X as NNN

57 GTEND Go to .END> none Sets PC to the .END.

58 LASTP Go to Last Program none Sets PC to last program in memory

59 PC<>RTN Exchanges PC and RTN PC location in X Data exchanged

60 PCOPY Programmable COPY Prompts for PRGM Name Copies PRGM to RAM

61 PUTPC Puts PC PC in for in X as NNN PC is reset

62 READF Read Data File XF-NAME,IL-Name file copied to Drive

63 READXM Reads all XMEM contents Drive File Name in ALPHA XMEM read

64 RTN? Is a RTN pending? None Yes/No, Skip if false

65 SFX Extended SF flag# in X Flag is set

66 SPEED Recalls CPU cycles data none CPU cycles/sec in X

67 ST<> Swaps Stack and reg none reg contents exchanged

68 TOGF Toggle Flag Flag# in X Flg status toggled

69 TGPRV Toggle Private Status Prgm Name in Alpha PRV status toggled

70 WRTDF Write Data File “XM-File,IL-File” in Alpha File is written to Drive

71 WRTXM Write all X-Memory FileName in Alpha XM Contents written to Drive

72 X<I>Y Indirect X<>Y reg# in X and Y Reg contents exchanged

73 XQ>GO Deletes one return address none RTN ADR deleted

74 ZOUT Outputs Complex number Im in Y, Re in X „Z=Re +/- jIm“ in Alpha

75 -56 BITS Section Header n/a n/a

76 DGT Mantissa digits sum Number in X, Sum of digits in X

77 1CMP One’s complement number in X result in X, stack drops

78 2CMP Two’s complement number in X result in X, stack drops

79 BRXL Byte Rotate X Left number in X, #bytes in Y result in X, stack drops

80 NOTX Not X number in X result in X, stack drops

81 RXL Rotate X Left number in X result in X, stack drops

82 RXR Rotate X Right number in X result in X, stack drops

83 WSIZE? Word Size Finder none word size in X

84 XANDY X and Y numbers in X and Y result in X, stack drops

85 XORY X or Y numbers in X and Y result in X, stack drops

86 X+Y X+Y numbers in X and Y result in X, stack drops

87 Y-X Y-X numbers in X and Y result in X, stack drops

88 Y/N? Prompts for Y/N keys Uses control keys Skips line if “N”

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 12 of 113 August 2016

Function Description Inputs Output

89 FCAT1 FAT-1 Catalog Uses control keys Enumerates sub-functions

0 -POWERCL 3X Section Header n/a n/a

1 BFLNG Buffer Length Buf id# in X Buffer length in X

2 BFLST Buffer List none shows string with buffers present

3 BFVIEW View Buffer Content Buf id# in X Shows all buffer registers

4 BUFHD Buffer Header Buf id# in X Header reg location in X

5 CLEM Clear Extended memory none Main EM directory deleted

6 CLMM Clears complete RAM none Clears all Main and X-Memory

7 CRBUF Create Buffer Buf#,size in X Buffer created

8 DELBUF Delete Buffer Buf id# in X Buffer Deleted

9 FLCOPY Copies X-Mem File FROM, TO names in ALPHA Both files must already exist

10 FLHD File Header FileName in Alpha Register location in X

11 FLTYPE Gets File Type FileName in Alpha Filetype in X

12 GETBF Get Buffer FileName in Alpha Buffer is read from XMEM

13 GETKA Get Keys FileName in Alpha KA Read from XMEM

14 GETST Get Status Registers FileName in Alpha Status registers restored

15 GETZS Get Complex Stack FileName in Alpha Complex Buffer Restored

16 HEXIN Hex Input Prompts for Hex chars Text in Alpha and Display

17 KACLR Clear Keys and Buffers “OK/OKALL” in Alpha Clears KA and Buffers

18 KALNG KA Length none KA length in X

19 KAPCK Pack KA registers none KA registers packed

20 LKAOFF Suspends Local Keys none Local Keys suspended

21 LKAON Activates Local Keys none Local keays activated

22 MRGKA Merges Keys FileName in Alpha Merges KA from XM File

23 PEEKR Peek Register Register# in X in decimal Register content in X as NNN

24 POKER Poke Register Reg# in X, Content in Y Replaces register content

25 REIDBF Re-issue Buffer id# oldid#,newid# in X buffer id# is changed

26 RENMFL Rename File “OldName,NewName” in Alpha File Name is changed

27 RESZBF Resize Buffer id#,size in X Buffer size changed

28 RETPFL Re-types File FileName in Alpha, Type# in X File type is changed

29 RSTCHK Reset Checksum FileName in Alpha Checksum byte is refreshed

30 SAVEBF Save Buffer buf id# in X, FileName in Alpha Buffer is written to XM File

31 SAVEKA Save Key assignments FileName in Alpha KA regs written to XM File

32 SAVEST Save Status registers FileName in Alpha Status registers saved in XM

33 SAVEZS Save Complex Stack FileName in Alpha Complex Buffer saved in XM

34 WORKFL Appends Workfile Name none FileName appended to Alpha

35 XQXM XEQ Program File FileName in Alpha Execution transferred to file

36 -ALPHA/DSP Section Header n/a n/a

37 AINT ARCL Integar part x in X int(X) appended to Alpha

38 ALEFTJ Alpha Justify Left Text in Alpha Justified left

39 ANUMDL ANUM w/ Deletion String in Alpha Number from string to X

40 APPEND _ Appends text to Alpha Text in prompt Text appended to Alpha

41 ARCLCHR ARCL Character FileName in Alpha ARCLs chr# at current pointer

42 AREV Alpha Reverse Text in Alpha Reversed text in Alpha

43 ASCII ASCII value of Char Text in Alpha Value in X, leftmost chr#

44 ASUB Alpha Substitute char chr# in Y, chr# value in X char is replaced

45 ASWAP Alpha Swap around “,” A,B in Alpha B,A in Alpha

46 CHRSET Character Set none Lists all character set

47 CLA? Is Alpha Empty? Text in Alpha Yex/No, skips line if false

48 DSP Sets Display digits # of digits in X Display settings changed

49 DSP? Finds Display digits none number of decimal digits in X

50 DTOA Display to ALPHA Display contents Text in Alpha

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 13 of 113 August 2016

Function Description Inputs Output

51 DTST Display Test none Shows display all lit up

52 LADEL Left Alpha Delete Text in Alpha Leftmost char deleted

53 LEFT$ Left Alpha String Text in Alpha, length in X Sub-string text in Alpha

54 LOW$ Lower Case Text Text in Alpha Text changed to lower case chars

55 MID$ Middle Alpha String Text in Alpha, length in X, start in Y Sub-string text in Alpha

56 POSTSP Post-space string Text in Alpha Removes all before space char

57 PRESP pre-space string Text in Alpha Removes all after space char

58 RADEL Right Alpha Delete Text in Alpha rightmost character deleted

59 RATOX Right Alpha to X Text in Alpha rightmost character deleted

60 RIGHT$ Right Alpha string Text in Alpha, length in X sub-string text in Alpha

61 ST<>A Stack and Alpha swap Stack and Alpha contents Contents exchanged

62 UPR$ Upper Case text Text in Alpha Converted Text in Alpha

63 USWAP Unit Swap “TXT1-TXT2” string in Alpha String swapped around “-“

64 VIEWA View Alpha Text in Alpha Shows text, doesn’t stop

65 VMANT View Mantissa Number in X Shows mantissa

66 XTOAL char to left Alpha chr value in X Prefix Alpha w/ chr

67 -HEPAXA2 Section Header n/a n/a

68 AND X and Y Numbers in X and Y Result in X, stack drops

69 PGCAT Block Catalog none Lists block contents

70 CLRAM Clears Page Page# in X Page contents cleared

71 CODE Codes Hex string String in Alpha NNN in X

72 COPYROM Copies Pages Pg# in Y (from) and X(to) FROM Page copied to TO page

73 DECODE Decodes NNN NNN in X Decodes string in Alpha

74 DECODYX Decodes a number of nibbles NNN in X, #nibbles in Y Decoded string in Alpha

75 HEPCHN Sets HEPAX Ram Chain Pages as string in Alpha Chain re-set

76 HEPCHN? Shows current HEPRAM chain none Shows string in Alpha

77 NOT Not X Number in X Result in X

78 OR X or Y Numbers in X and Y Result in X, stack drops

79 RLSRAM Release RAM pag# in X Releases page from HepRAM

80 ROTXY Rotates Y register X bits Number in Y, #bits in X result in X, stack drops

81 SHIFTYX Shifts Y register X bits Number in Y, #bits in X result in X, stack drops

82 XOR Logical X exclusive-or Y Number in X result in X, stack drops

83 X+Y Bitwise addition Numbers in X and Y result in X, stack drops

84 X-$ Converts X to Alpha string Number in X result in X

85 Y-X Bit-wise subtraction Numbers in X and Y result in X, stack drops

86 FCAT2 FAT-2 Catalog none Lists sub-functions

87 REV Shows Revision String none Revision shown in LCD

88 NXT Increases Address string “ABC>XYZ” in Alpha Increases ABC+1, XYZ+1

 (*) Orange background denotes Launcher functions.
(**) Pink background: Gateways to bank-switched FATs
(***) Blue background denote new or improved in Revisions H to J.
(*IV) Red font denotes new in PWRCL_EXT

Deserving special attention, the function launchers will be discussed later on with the appropriate level

of detail. A short write-up article on the Sub-function groups and the multiple FATs is posted in the HP
Museum forum, at the following location:

http://www.hpmuseum.org/cgi-sys/cgiwrap/hpmuseum/articles.cgi?read=1195

Note: Make sure that revision “M” (or higher) of the Library#4 is installed.

http://www.hpmuseum.org/cgi-sys/cgiwrap/hpmuseum/articles.cgi?read=1195

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 14 of 113 August 2016

Photo courtesy of Geoff Quickfall. © 2011

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 15 of 113 August 2016

2. The functions in detail.

The following sections of this document describe the usage and utilization of the functions included in

the POWER_CL module. While some are very intuitive to use, others require a little elaboration as to
their input parameters or control options, which should be covered here.



2.0 Function Launchers.

The table below lists the launchers by function groups:

Index Function Warnings Description

1 BAUD None Prompts for baud rate setting, plus SERINI, YIMP and YEXP

2 MMU Light Prompts for options to manage the MMU configuration

3 TURBO None Prompts for CPU speed values, plus TURBO?

4 PLUG” Light Prompts for menu of choices, including pg#4 options

5 IMDB Medium Calls the corresponding IMDB function

6 HEPX Medium Configuration loading for HEPAX set-ups

7 XCAT None Extended CATalogs: Buffers, Blocks, CLLIB, etc.

8 YMEM Medium Calls the corresponding Expanded Memory function

9 XXEQ None Extended Execution Launcher – for both FAT1 and FAT2

10 IOBUS None I/O Bus info and control. Has two “screens”.

11 SRT$ None String and ALPHA Manipulation – Has two “screens”.

12 CL None Launcher of Launchers -> invokes any of the above

Once you assign CL to any key, that alone will give you access to more than 150 functions (!) from

that single key – an effective way to make it compatible with other existing key-assignments, saving
memory (KA registers) and time. So go ahead and get comfortable with that arrangement as your

standard baseline.

Note that the CL function is designed to work best when assigned to the + key.

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 16 of 113 August 2016

Launchers IOBUS and STR$ were added in revision “J”. Each of them has two pages; you can use
the [SHIFT] key to toggle between them. STR$ is triggered by the A key, whereas IOBUS is

triggered by the [SHIFT] key – use those hot keys to access them from any other launcher prompt.

Prompting functions use a technique called partial key entry, dividing the data entry in two (or more)

steps. The keyboard is also redefined, in that only those keys corresponding to the appropriate
options are active. The cues in the prompt will offer you indication of which keys are active on the

keyboard, and typically are intuitive enough to figure out in each case.

See below a few examples of the prompts, where the choices are to a large extent self-explanatory:

The TURBO options are as follows: none, 2x, 5x, 10x, 20x, 50x, and ?. Use “0” for 20x and the [T]

key for “50” - as 2 and 5 are already taken for 2x and 5x speeds.

In general, all launchers behave in a similar manner:

- The Back Arrow key either cancels out entirely or removes partial entries;

- Non-active keys will blink the display and maintain the prompt
- The [A] key from the main prompt will trigger the STR$ launcher

- The [A] key from any secondary launcher will revert back to the main launcher, CL

- The [ALPHA] key triggers the XQ$2 function, to execute a sub-function by name
- The [USER] key triggers the XFAT function, to execute a sub-function by index

- The [SHIFT] key triggers the IOBUS launcher, or will toggle the “pages” within multi-page

launchers
- Holding down the last key briefly shows the invoked function name – for visual feedback.

- This will be followed by “NULL” if kept depressed long enough – last chance to bail out.
- Launchers are not programmable per-se – but they can be used in PRGM mode to enter the

called-upon function in a program line.

Some of the functions called by the prompts are from the YFNX module, but many others are from the

PWRCL_EXT itself as well. The list is long and somehow warps around itself, as launchers are inter-
connected in a (more or less) logical way.

There are two other “hidden” launchers, not shown in the prompt. They are for the Sub-function

Catalogs, FCAT(1) and (2) – accessed by pressing ENTER^ directly from the CL and the XXEQ

launchers respectively -. More about these two later on as well.

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 17 of 113 August 2016

Plugging and Unplugging Modules.

The PLUG# launcher offers a large selection of choices in its prompts – and therefore deserve special

consideration; starting with a review of the internal and external ports and pages on the 41 – as seen
in the picture below:

Valid entries for the prompt are shown below – note that [SHIFT] toggles between PLUG and

UPLUG actions, and that the prompt choices vary depending on which mode you’re in:

 -----

 The [P] key invokes the standard PLUG function in the YFNX– by itself a vastly enhanced

version over those in the FYNS and FNYP modules. For starters, it is a prompting function,

and it now works on pages as opposed to ports – thus modules are plugged as per their size,

starting at the port provided at the prompt.

 Key [$] (same as [P]) and [I] keys invoke the UPLG$ and UPLGID functions respectively,

which will unplug a module using its signature string or its IMDB mnemonic – in both cases
irrespective of its currently mapped port. – see later descriptions for details.

 Key [G] triggers functions PLUGG and UPLGG - depending on from which one of the above

it had been pressed. You may think of these as shortcuts for the “official” PLUG function, but
using the ALPHA register to hold the ROM id# for PLUGG, or “EMPT” for UPLGG.

Irrespective of how you got to one of them, pressing [SHIFT] toggles between them - the
same as it happens with their precursors launchers.

 Keys [L] and [U] trigger the LOCK and UNLOCK functions from the YFNX module. Use them

to manage the write-to protection of the page, which number (in hex) is entered in the

function prompt. Note that you cannot unlock the page where YFNX is configured no matter

how many times you use UNLOCK, as such protection is connected to the calculator polling
points, effectively canceling your action.

 Key [4] invokes the page-4 management functions, PPG#4 and UPLG4. They give you a

convenient way to configure those special modules that plug on page#4, like the Service

ROM, the FORTH module and the LaitRAM. Note however that the Library#4 is not one of

them, as it needs to be already configured for the PWRCL_EXT to work.

 Key [?] will call functions PLUGG? (in the un-shifted mode) and LOCK? (in the shifted

mode). The former is a quick method to find out the module plugged into a page, simpler
than the standard approach using PLUG and the question mark in the prompt syntax. See the

YFNX manual for details on LOCK?

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 18 of 113 August 2016

Remarks.- Exercise extra caution with pages #6 and #7, as those locations may be used by system
extensions like Printer or HP-IL. Page #6 in particular has stricter demands on the ROM layout that

makes it non-suitable for the majority of ROMS.

Note that pages #6 and #7 on V2 version of the CL board don’t support bank switching; thus they

unfortunately aren’t a good place for the HEPAX ROM for V2 systems – but makes it the ideal location
for V3 boards, where said restriction was removed.

Note: PLUG, PLUGG and PLGG? will also allow “4” as valid input, which is nice but potentially very

dangerous. In that instance the dedicated functions are not invoked – and the page#4 is used as any

other one. Be careful not to inadvertently plug any module not specifically designed for it!

For example the sequence {PLUG#, [SHIFT], “G”, 4 } will unplug your Library#4, rendering the
PWRCL_EXT useless and potentially locking up your calculator. At that point you’d need to plug it back

using YPOKE or the YFNX function PLUG – but not the PWRCL_EXT launcher PLUG#

The graphic below summarizes the PLUG / LOCK functionality – note also the relationships with the
other “sibling” launchers (on the right), its “parent” main launcher, and the related functions (on the

left).

Refer to section 3.3.3 (starting on page 37) for further discussions of the page plug/unplug functions,

including a few examples of utilization.

Warning: Remember that plugging a module into the “wrong” port location can create minor issues
(or major havoc) if you’re overwriting some/part of the machine’s configuration. A good example is

overwriting YFNX itself, or a HEPAX RAM block. Always make sure the destination is safe – using

PGCAT, the standard CAT2 or better yet the CCD CAT’2.

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 19 of 113 August 2016

LASTF: The “Last Function” – at last!

The latest releases of the PowerCL module include support for the “LASTF” functionality. This is a

handy choice for repeat executions of the same function (i.e. to execute again the last-executed
function), without having to type its name or navigate the different launchers to access it.

The implementation is not universal – it only covers functions invoked using the dedicated launchers,
but not those called using the mainframe XEQ function. It does however support three scenarios:

a. Functions in the module main FATs

b. Functions on any other module when called using XQ$1/XQ$2
c. Sub-functions from the auxiliary FATs.

Because functions from the latter group cannot be assigned to a key in the user keyboard, the LASTF
solution is especially useful in this case. The following table summarizes the launchers that have this

feature:

Module Launchers LASTF Method

PowerCL_4BS
revision “N”

CL, XCAT, TURBO, BAUD, MMU,

IMDB, HEPX, YMEM, XXEQ, PLUG

Captures (sub)fnc id#

 IOBUS, IOPG#, STR$, ALP$ Captures (sub)fnc id#

 XQ$1 _ , XQ$2 _ Captures (sub)fnc NAME

 XFAT _ _:_ _ Captures (sub)fnc id#

 FCAT (XEQ) Captures (sub)fnc id#

For consistency sake, all prompts connect to the Alphabetical sub-function launcher XQ$2 using the
ALPHA key, and with the index sub-function launcher XFAT using the USER key.

Note as well that the Alphabetical launchers XQ$1, XQ$2, will switch to ALPHA mode automatically.

(i.e. there’s no need to press ALPHA to start spelling the function name).

Spelling the function name is terminated pressing ALPHA, which will either execute the function (in

RUN mode) or enter it using two program steps in PRGM mode by means of the XQ$1/2 plus the
corresponding index (using the so-called non-merged approach). This conversion is made

automatically – refer to next chapter for more information.

Another new enhancement is the displaying of the sub-function names when invoked via the index-

based launcher XFAT - which provides visual feedback that the chosen function is the intended one
(or not). This feature is active in RUN mode, when entering it into a program, and when single-
stepping the program execution – but obviously not so during the automated run.

Finally, as of revision”O2” the execution of a sub-function from within the FCAT enumeration (using

the XEQ hot-key) also supports the LASTF operation for additional convenience. This includes both
FCAT1 and FCAT2.

LASTF Operating Instructions

There is no stand-alone LASTF function - the Last Function feature is triggered by pressing the radix

key (decimal point - the same key used by LastX) at the launcher prompts. This is consistently

implemented across all launchers supporting the functionality in the three modules – they all work the
same way.

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 20 of 113 August 2016

When this feature is invoked, it first shows “LASTF” briefly in the display, quickly followed by the last-
function name. Keeping the key depressed for a while shows “NULL” and cancels the action. In RUN

mode the function is executed, and in PRGM mode it’s added as a program step if programmable, or
directly executed if not programmable.

The functionality works in RUN and PRGM modes – entering the last function (or sub-function) as a

program line in PRG mode.

Error Handling.

If no last-function information yet exists, the warning message “NO LASTF” is shown. If the buffer #9

is not present, the error message is “NO BUF” instead.

LASTF Implementation details.

The Last Function functionality is a two-step process: a first one unattended to capture the function
id# when it is executed, and a second one triggered by the user’s action that retrieves it, shows the

function name, and finally parses it for re-execution. All launchers in the PowerCL and other

advanced modules have been enhanced to store the appropriate function information (either index
codes or full names) in registers within a dedicated buffer (with id# = 9).

The buffer is maintained automatically by the module (created if not present when the calculator is

‘switched ON), and its contents are preserved while it is turned off (during “deep sleep”). No user
interaction is required.

There is one register in the buffer reserved for each of the modules featuring this functionality
(PowerCL, SandMath, and SandMatrix) – plus the buffer header register also stores the 41Z last-

function (which is always in the main FAT). Therefore up to four last-functions can be simultaneously
available. A total of five registers are used, as follows:

Register Used for

b4 SandMatrix fcn id# or name

b3 SandMath fcn id# or name

b2 PowerCL fcn id# or name

b1 Time-based Seed (RND)

b0 Buffer Header – w/41z fcn id#

The stored format of the function id# can be either a string of alpha characters (stored in reversed
order) representing the function name, or a three-digit hex value representing the sub-function index.

In the latter case the [MS] field is marked with an “F” to tell the cases apart.

When the LASTF action is triggered pressing the Radix key, the code seeks for the function data in
the relevant buffer register, depending on the module carrying the action. When found, it displays the

sub-function name (either by mirror-imaging the id# or by looking it up in the corresponding auxiliary

FAT. Finally it’s parsed to the corresponding section responsible for the execution of the sub-functions.

The LASTF and function name displaying facility together immensely facilitates dealing with sub-

functions, almost as if there were standard functions from the main FAT. Go ahead and try it - it’s
quite something to behold!

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 21 of 113 August 2016



2.1 Extended Execution.

Pressing [XEQ] at the main CL prompt (even if not shown in the cue) will connect with this

launcher, introduced in revision 4B of the PowerCL. It gathers all relevant functions to access any of

the sub-functions, as well as a few other tricks for advanced applications.

The functions included in the XXEQ launcher are as follows:

Key Function Warnings Description

0 XEQ None Invokes the native XEQ function

1 XQ$1 None Calls XQ$1, for FAT-1 sub-functions calling by NAME

2 XQ$2 None Calls XQ$2, for ANY sub-function calling by NAME

F XFAT None Calls XFAT, for ANY sub-function calling by index

R XROM None Calls XROM, to execute any ROM function (if present)

Q XQ>XR None Converts XEQ instructions to XROM

M XQXM None Calls XQXM, to execute a program File

Without a question this is one of the most intriguing parts of the POWERCL. Perhaps a quick refresher

on the theory of operation of sub-functions is appropriate, so let’s get on with it:-

- Sub-functions can be called by their name (using an ALPHA prompt) or by their FAT index
(using a numerical prompt). So in principle two main functions are needed per each FAT and

since there are two of these FAT groups, it’d be logical to assume that four functions would
be needed in total, one per each type times two FATs.

- To reduce the requirements on the main FAT, the two numeric launchers have been
consolidated into a single function (XFAT _ _: _ _) with two prompt fields: use the first for

the FAT, and the second for the index.

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 22 of 113 August 2016

- Furthermore, having two different Alpha launchers may be confusing; as the user would need
to remember the group any of the sub-functions belongs to. To avoid this, both launchers are
capable of searching for any sub-function, and not only for those in its own FAT.

- But that’s not all – after a while the user won’t necessarily remember whether a given

function of the module is either in the main FAT-0, or in any of the two sub-function groups.
To avoid this, the XQ$1 and XQ$2 launchers are also capable of searching in the main FAT,

and will do so if the name hasn’t been found in FAT-1 and in FAT-2.

In fact, they will also search in all main FATs present in the system (which may have more

modules plugged in), and not only the POWERCL one. So XQ$1 and XQ$2 are universal
XROM function caller – by name.

Note however that they won’t find the mainframe functions (like BEEP, SIN, etc.). If that’s

what you’re after you can also use the option “0” provided in the XXEQ launcher to invoke
the native XEQ – in all its glory: ALPHA, numeric, INDirect, etc.

The above considerations would suggest that having two launchers with the same capabilities is
somehow redundant, and sure you’d wonder why not removing one of them, freeing up one more

entry in the main FAT for other purposes. There is however an important reason to have it there: it is
needed to have the programming capability for the sub-functions in each FAT; let’s explain.

When XQ$1/2 are used in program mode to call a sub-function by its name, it will create two
program lines. The first will be either XQ$2 or XQ$1, depending on which FAT the sub-function

belongs to. The second will be the index within the FAT.-

Therefore “XQ$1_nn” is different from “XQ$2_nn”, even for the same “nn” – and this is exactly the

reason why both need to be present. But even if both must be there, the user really only needs to use
one – as the conversion from the spelled-out names will occur automatically on a need-to basis!

Let’s see an example. Say we want to execute function FLTYPE to find out the type of the X-Mem
file which name is in ALPHA. This can be done either by its name or by its index. In the first case we’d

type:

XQ$1 (or XQ$2), F,L,T,Y,P,E,[ALPHA] (note how ALPHA will come up automatically)

If the numeric launcher is to be used instead, the key entry sequence will be:

XFAT 02, 11; or also: XXEQ, [F], 02, 11

Either way this creates the same two program lines in PRGM mode:

 changes to:

Note as well how the sub-function NAME is briefly displayed during this process – providing visual

feedback on the selected function - even if the name wasn’t used to enter it.

Let’s now see how to execute function YBK-XM, which is a sub-function within FAT-1. If done by

name the user could press –now using the XXEQ launcher from the scratch

XXEQ, 1, Y,B,K,-,X,M, [ALPHA] or

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 23 of 113 August 2016

XXEQ, 2, Y,B,K,-,X,M, [ALPHA] indistinctly.

And if the numeric launcher were to be used instead, the entry sequence would be:

XFAT 01, 11; or also: XXEQ, [F], 01, 11

Any of these three options creates the same two program lines in PRGM mode:

 changes to:

XFAT is clever enough to know that the only valid inputs for the first prompt are 0,1, or 2. Should you

enter any other number the calculator will politely ignore the input and continue to display the prompt
– much more user friendly than allowing the entry and then coming back with a “DATA ERROR”

message.

And speaking of this, the function called for entry value of zero is XROM – a jewel of a routine
originally written by Clifford Stern – which in turn prompts for the XROM id# and the function number

for a function from any ROM. All in programmable splendor and ready to execute!

The remaining functions XROM and XQXM are both covered in a later section of the manual. They

are included in the XXEQ launcher for additional convenience. Nothing short of amazing if you ask me
– a great implementation made even better with the addition of the FAT Catalogs, described below.-

Sub-function CATalogs

One of the missing features in the original HEPAX implementation of the Multi-function groups

(XFA/XFA and HEPAX/HEPAXA) was the lack of a sub-function catalog. Having such enumeration

option would certainly be convenient, and very useful if it also had the capability to directly launch the
function which name is being displayed.

But not so anymore! - Meet FCAT1 and FCAT2, the sub-functions CATALOG facility that will allow

you do exactly that. To invoke it you can use its name in the XQ$1 or XQ$2 ALPHA prompts, or its

index in the numeric prompts XFAT 01,_ _ & XFAT 02,_ _

No doubt you surely have noticed (or are about to) that the sub-functions are arranged in alphabetical
order, all except FCATn which is placed at the bottom of each list. Besides, the first function (the

section header) can also be used to trigger FCATn – so that you don’t really need to know their
respective indices – (which happen to be 89 in FAT-1 and 86 in FAT-2); and can use “00” in both

cases as an enhanced usability shortcut.

The following hot keys are available:

- [R/S] to stop/resume the sequential enumeration;

- [SST]/[BST] to single-step forward or backwards while in manual mode;

- [ENTER^] to jump to the next/previous section within the catalog;
- [XEQ] to execute the function being displayed – now supports LASTF.

- [SHIFT] to flag the forwards/backwards direction;
- [<-] Back arrow will terminate the enumeration; and

- [ON] to power the calculator OFF.

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 24 of 113 August 2016

This is almost identical in form and feature to the CCD approach for the system CATalogs – all except
the [A] hot-key for the assignment. – It should be noted that sub-functions cannot be assigned to a

key on the keyboard, and therefore the absence of such an option.

Note also that the enumeration will be output to a printer when NORM/TRACE is selected, and a

forwards’ enumeration is performed - for a hard-copy record of the listing.

Sections within the two sub-FATs

Each multi-function group has a lot of sub-functions. Navigating the catalogs could be very tedious
without the existence of sub-sections within them, and the capability to jump from section to section.

The sections underneath the sub-FATs are listed below:

For FAT-1
-YFNX NEW including the Expanded memory fncs. plus more.

-PAGE FNS including all page-related and I/O Bus function
-XTRA FNS with a long list of utilities and MCODE-related functions

-56 BITS with digital functions (on the complete register size).

For FAT-2

-PWREXT B3 with the Buffer and Extended Memory enhancements
-ALPHA/DSP for the ALPHA and Display functions, and

-HEPAXA2 including the functions from the HEPAX group, plus some more.

Hotkey [ENTER^] will toggle between the sections or the individual functions listing, exactly the
same as it works in the CCD –style catalogs. This makes it easier to navigate your way in such long

lists, considering that FAT-1 has 89 functions and FAT-2 87 and otherwise waiting for your target sub-
function to appear in the enumeration could be a relatively long wait.

Note: The following shortcuts are the most-convenient ways to access the sub-CATalogs:

 Pressing ENTER^ at the CL prompt will invoke the sub-function Catalog for FAT-1,

 Pressing ENTER^ at the XXEQ prompt will invoke the sub-function Catalog for FAT-2.

A new feature in revision “K” allows an even easier approach – by means of the XCAT function
described in the next section:

 XCAT, “1” will invoke FCAT1, the sub-function Catalog for FAT-1,

 XCAT, “2” will invoke FCAT2, the sub-function Catalog for FAT-2,

Several ways to perform the same task – but all of them intuitively accessible form the expected
location to provide choices to power users.

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 25 of 113 August 2016



2.2. CATalogs and Catalogues…

The additional CATalogs are accessed by XCAT, and include the following:

key Function Warnings Description

G PGCAT None Borrowed from the HEPAX ROM – shows the 4k-blocks contents.

B BFCAT Light Lists those elusive buffers present in the system.

M MMUCAT None Lists the MMU mappings into each block.

H HEPDIR None Calls the HEPAX’ HEPDIR function

K KLIB _ None Constants Library Selections

L CLLIB _ Light CL ROM Image Library - alphabetical or by type.

U UCAT _ None Lists all available units for UMS conversion.

X XXEQ None Another entry for the Extended XEQ launcher

1 FCAT(1) None Easiest way to access functions in FAT-1

2 FCAT(2) None Easiest way to access functions in FAT-2

If you’re like me you’ll like to have good visibility into your machine’s configuration. With its ROM
Library and MMU settings the CL adds a few dimensions to the already rich 41CX system – and the

goal is to have equivalent catalogue functions to review the status and options available.

Each CATalog has its own idiosyncrasies, but in general they feature single-step modes, and have “hot
keys” to allow for specific actions – like deletion of buffers, navigation shortcuts, and direct plugging

of ROMs into a port. This makes chores like searching for the correct syntax and plugging a module

from the library a trivial task.

Some (PGCAT, BFCAT, KLIB, UCAT) are not strictly related to the CL, and will also work on a
standard 41. Obviously MMUCAT is only meaningful for a CL machine, and will return zeroes if the CL

board is not installed.

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 26 of 113 August 2016

CATalog functions are notoriously complex and take up a significant amount of space – yet you’d
hopefully agree with me that the usability enhancements they provide make them worthwhile the

admission price.

2.2.1. Buffer Catalog.

BFCAT Buffer CATalog Hot keys: R/S, SST, SHIFT, D, H

[D] Deletes Buffer In manual mode Asks Y/N?

[H] Decodes Header register In manual mode

This function is very close to my heart, both because it was a bear to put together and because the

final result is very useful and informative. It doesn’t require any input parameter, and runs
sequentially through all buffers present in the calculator, providing information with buffer id# and

size.

41 buffers are an elusive construct that is mainly used for I/O purposes. Some modules reserve a
memory area right above the KA registers for their own use, not part of the data registers or program

memory either. The OS will recognize those buffers and allow them to exist and be managed by the

“owner” module – which is responsible to claim for it every time the calculator is switched on.

Each buffer has an id# number, ranging from 1 to 14. Only one buffer of a given id# can exist, thus
the maximum number present at a given time is 14 buffers – assuming such hoarding modules would

exit – which thankfully they don’t.

For instance, plug the AOSX module into any available port. Then type PI, SEED, followed by BFCAT

to see that a 2-register buffer now exists in the HP-41 I/O area – created by the SEED function.

 id#=5, buffer at address 194, size=2, properly allocated.

Suppose you also change the default word size to 12 bits, by typing: 12, WSIZE. This has the effect

of increasing the buffer size in one more register, thus repeating BFCAT will show:

 id#=5, buffer at address 194, size=3, properly allocated.

Say now that you also plug the 41Z module into a full port of your CL. Just doing that won’t create the
buffer, but switching the calculator OFF and ON will – or alternatively execute the -HP 41Z function.

After doing that execute BFCAT again, then immediately hit R/S to stop the listing of the buffers and

move your way up and down the list using SST and BST. You should also see the line for the 41Z
buffer, as follows:

 id#=8, buffer at address 197, size=12, properly allocated.

If the module is not present during the CALC_ON event (that’s to say it won’t re-brand the buffer id#)

the 41 OS will mark the buffer space as “reclaimable”, which will occur at the moment that PACKING
or PACK is performed. So it’s possible to have temporary “orphan” buffers, which will show a question

mark next to the id# in the display. This is a rather strange occurrence, so most likely won’t be shown
– but it’s there just in case.

Perhaps the best example is the Time module, which uses a dedicated buffer to store the alarms data.

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 27 of 113 August 2016

The table below lists some of the well-known buffers that can be found on the system:

Buffer id# Module / EPROM Reason

1 David Assembler MCODE Labels already existing

2 David Assembler MCODE Labels referred to

3 Eramco RSU-1B ASCII data pointers

4 Eramco RSU-1A Data File pointers

5 CCD Module, Advantage Seed, Word Size, Matrix Name

6 Extended IL (Skwid) Accessory ID of current device

7 Extended IL (Skwid); XROM ROM Printing column number & Width

8 41Z Module Complex Stack and Mode

9 SandMath, PowerCL; 41Z Time Seed; Last Function data

10 Time Module Alarms Information

11 Plotter Module, HP-16C Emulator Data and Barcode parameters

12 IL-Development; CMT-200 IL Buffer and Monitoring

13 CMT-300; FORTH Module Status Info; FORTH Code

14 Advantage, SandMath INTEG & SOLVE scratch

15 Mainframe Key Assignments

BFCAT has a few hot keys to perform the following actions in manual mode:

[R/S] stops the automated listing and toggles with the manual mode upon repeat pressings.

[D] for instant buffer deletion – there’s no way back, so handle with care!
[H] decodes the buffer header register. Its structure contains the buffer ID#, as well as

some other relevant information in the specific fields - all buffer dependent.
[V] Views the contents of the buffer, sequentially showing its registers in the display

[SHIFT] flags the listing to go backwards – both in manual and auto modes.

[SST]/[BST] moves the listing in manual mode, until the end/beginning is reached
[<-] Back Arrow to cancel out the process and return to the OS.

Like it’s the case with the standard Catalogues, the buffer listing in Auto mode will terminate

automatically when the last buffer (or first if running backwards) has been shown. In manual mode
the last/first entry will remain shown until you press BackArrow or R/S.

Should buffers not be present, the message ”NO BUFFERS” will be shown and the catalog will
terminate. Note also that the catalogue will be printed if in NORM/TRACE mode, producing a record of

all buffers present in the system!

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 28 of 113 August 2016

2.2.2. Interrogating the MMU.

MMUCAT MMU CATalogue No inputs

ADRID Gives ROM id# from ADR Expects string in Alpha

FYNZ? FYNS Location Finder No inputs

PLUGG? ROM id# in page by X Prompts for page# Valid inputs are 4, 6-F

MMUCAT is really a FOCAL program that drives the function ADRID, the real engine behind it – not
to be confused with the capital city of a country I know quite well. ADRID is obviously

programmable. The idea is simple: produce a list of the MMU mappings into the different pages,

showing either the ROM id# or the address (Flash or SRAM) currently mapped to the port.

A loop is executed starting on page #3, and up until page #F. Each iteration retrieves (pokes more
appropriately) the address written into the corresponding MMU register, then searches it against the

internal ROM id# table written in bank-2 of the PWERCL_EXT module. More about this later.

Note that full-port modules will return the ROM id# attached to the lower half, and the Flash address

mapped to the upper half. sRAM MMU entries will return the corresponding sRAM address.

While similar to the CAT2 concept, this really has an MMU-oriented perspective of things, and thus is
purely a 41 CL feature – it’ll render all entries zero if used on a “regular” HP-41. The program listing

is rather simple – as ADRID does all the weight lifting under the hood:

A related function is YFNZ?, which returns the page number the YFNS is currently plugged in. This

can come very handy in your programs to avoid overwriting it with other modules – as we’ll see in the
HEPAX configuration routines. Note that YFNZ? is located in Bank-3, thus requires XQ2 to launch.

Another related function is PLUGG? - It interrogates the MMU to find out which module is plugged

into a given page – entered in the prompt. Note that it is programmable, and that in program mode it

will take the page# from the X registers. This is all page-driven, and not based on the port number.
There is no restriction in the input to the page number, however the returned values for pages

0,1,2,3, and 5 don’t quite have the same meaning.

PLUGG? Also uses ADRID to decode the string returned by YPEEK – which reads the MMU address
mapping the corresponding page. In the YFNZ? case there’s no need to look up in the ROM id# table

since we know what we’re looking for – just need to check all pages looking for that specific string.

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 29 of 113 August 2016

2.2.3. Page Catalog.

PGCAT Page Catalog VM Electronics Source: HEPAX Module

PGCAT is taken from the HEPAX Module (called BCAT there, within

the HEPAX sub-functions group) - and written by Steen Petersen.

PGCAT enumerates the first function of each page, starting with
page 3. The enumeration can be stalled pressing any key other than

R/S or ON, but the individual functions won’t be listed.

PGCAT Lists the first function of every ROM block (i.e. Page), starting with Page 3 in the 41 CX or

Page 5 in the other models (C/CV). The listing will be printed if a printer is connected and user flag 15
is enabled.

- Non-empty pages will show the first function in the FAT, or “NO FAT” if such is the case

- Empty pages will show the “NO ROM” message next to their number.
- Blank RAM pages will also show “NO FAT”, indicating their RAM-in-ROM character.

No input values are necessary. This function doesn’t have a “manual mode” (using [R/S]) but the
displaying sequence will be halted while any key (other than [R/S] or [ON]) is being depressed,

resuming its normal speed when it’s released again.

See below the printout outputs from both BFCAT and PGCAT using J-F Garnier’s PIL-Box and the

ILPER PC program, showing a nice traceability of the pressed keys:

We’ll encounter this function again as part of the IOBUS / IOPG# function launchers later in the

manual.

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 30 of 113 August 2016

2.2.4. A wealth of a Library – with two access modes.

ROMLIB _ ROM Library by type Prompts for type: E:F:G:M;S:U;X Has Hotkeys

CLLIB _ CL Library by name Prompts for A-Z Has Hotkeys

[P] Invokes PLUG _

[A] Copies id# shown to Alpha

One of the most notable features of the CL is its extensive ROM image library, allowing you to plug
almost any conceivable module ever made (of which I have contributed a few) into your 41CL just by

using one of the PLUGxx functions. The input syntax requires that the correct ROM ID string be

written in Alpha, and certainly there are a few of those to remember – and rather similar to each
other since the string is only 4 characters long.

These two functions come to the rescue – providing listings of all available module mnemonics, either

alphabetically or by their type - so you can review them, and –eventually – plug the ROM directly from
the catalogue for convenience sake.

ROMLIB prompts for a ROM type, whereas CLLIB prompts for an alphabetical section, A to Z.
Pressing [SHIFT] at this point toggles between both modes, alphabetical or by type. Both catalogues

can run in auto mode of can be stopped using R/S, and then the listing can proceed in manual mode
using SST and BST as you can expect.

It is in manual mode where you can use the other shortcuts or “hot keys”, as follows:

- [ENTER^] skips to the next section (or previous if running backwards)
- [A] to copy the id# shown to Alpha

- [P] to exit the catalog and invoke the PLUG_ function launcher

- [SHIFT] changes the direction of the listing, backwards <-> forwards
- [<-] Back Arrow will cancel out the catalog.

The enumeration terminates in auto mode when the last ROM id# (or first one if running backwards)

has been reached. Also keeping any key depressed in RUN mode will halt the sequence displaying
until it’s released again, so it’s easier to keep tabs with the enumeration.

The same considerations made about plugging modules apply here – be careful not to inadvertently
overwrite anything you’re using with a new ROM image (especially important for YFNS), as there’s no

check whether the target location is already used or not – with the only exception being function
PLUGG

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 31 of 113 August 2016

As you can guess there is a lot of code sharing between ADRID and these two ROM library catalogue
functions. Fundamentally they all use a ROM id# table within bank-2 of the POWER_CL ROM to look

up for the string, and fetch the address in Flash of the corresponding image. This table is quite long,
occupying more than 1k in the ROM – yet worth every byte.

The prompt in ROMLIB suggests the different ROM types as follows:

- [E] Engineering-related modules in all the main branches: EE, ME, etc.
- [F] Finance-related modules – you gotta love those too…

- [G] Games and entertainment related modules;

- [M] Math-related modules, at the heart of the machine for some;
- [S] Applied Science-related modules, excluding Engineering;

- [U] The Utilities group, all those nice packs adding extra tools to the system;
- [X] System-Extensions group, all what makes the 41 much more than just a calculator.

-

As you can see these groupings are somewhat loosely defined, yet it’s simple and intuitive enough to

have a good handle on the categories – which is the main objective for the searches. Also there’s no

distinction between HP-made or 3rd. Party modules in this scheme.

The “A-Z” prompt entry in CLLIB is a refinement of the same idea: it provides a handy shortcut to
start your search in the appropriate section, so there’s no need to review all the preceding ones –

which can be very lengthy considering the sheer number of them, even if you used ENTER^ to skip

sections. The implementation is quite nice, even if it’s the author who says it – have a look at the
POWERCL_Blueprint if you’re curious about the MCODE implementation details.

If the section doesn’t have any ROM id# starting with such letter (which currently only occurs with the

[W] letter) the message “NO MATCH” will be shown. Non-alphabetical keys are not valid entries for

CLLIB, and will cause the display to just blink and maintain the prompt. Lastly, selecting [X] will list
the general-purpose placeholders; refer to the CL manual for details on those.

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 32 of 113 August 2016

The enumeration output includes three pieces of information, as follows:

(1) The ROM ID name (entry used by the CL in the PLUGxx functions),
(2) Its size (either single or multi-page modules), and

(3) The type it belongs to according to the classification explained above.

Like it was the case for BFCAT, these two functions fully support the printer TRACE/NORM modes,
generating a complete printout record of the ROM enumeration for your convenience. See appendixes

for a complete listing of the module database, and the example below listing just the Finance and
Games modules, taken as a direct cut & paste from the output using the USB-41 module:

At any given time, the automatic enumeration can be stopped using [R/S], and continued manually

in single-step mode using SST , either forwards or backwards controlled by the [SHIFT] key – yet the

entry will only be printed going forwards, to eliminate redundancy. Finally, the hotkeys [A] and [P]
will copy just the ROM CL_ID text into Alpha, without the size/type details so it’s ready to be used by

any PLUG# function.

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 33 of 113 August 2016



2.3.1. Configuring the HEPAX system.

HPX4 4k RAM HEPAX Setup Prompts for HRAM Page# ROM into previous

HPX8 8k RAM HEPAX Setup Prompts for HRAM page range ROM into previous

HPX16 16k RAM HEPAX Setup Prompts for HRAM page range ROM into previous

These three functions will prepare the CL to hold a properly configured HEPAX file system, starting

from the scratch. The process can be divided into four distinct parts:

1. First copying the HEPAX RAM template from Flash into the appropriate number of SRAM
blocks, as many times as needed depending on the choice.

2. Followed by mapping those SRAM blocks to the 41 ports using the MMU,
3. Configuring the Hepax FileSystem using HEPINI - so that they are enabled for the HEPAX

ROM to use.

4. Besides that, the functions will also map the HEPX ROM image to the page preceding the first
HRAM block, as shown in the table on next page.

They will first present a confirmation prompt - as a precaution to avoid overwriting existing HRAM

blocks. Only Y/N input is allowed at this point. If “Yes”, they’ll prompt for the first page to locate the

HRAM blocks; in hexadecimal format. Allowed entries for each case are shown in the prompt. Inputs
other than those will simply be ignored and the prompt will be maintained.

 “Y”:

or:

 or:

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 34 of 113 August 2016

You must be fully aware that the previous MMU mapping to those ports will be overwritten. The
exception being the YFNS ROM itself – as the functions will check whether it is currently mapped
to any page within the affected range – aborting if that’s the case. A nice built-in protection that

avoids getting in trouble.

WARNING: Obviously these functions are not to be used frequently, since each execution will
wipe off the existing content of the HRAM pages, overwritten with blank FLASH templates (!).
Therefore the “medium” warning sign, proceed with caution. Before the page prompt, a conformation

will be requested for safety, showing the message “OK? Y/N” – you know what to do.

See the appendix 2 for a listing of the FOCAL programs that implement this functionality.

WARNING: because the page# is used for the XROM id#, some conflicts *will* occur when using

pages C or F – clashing with YFNS and POWERCLXROM id#’s. Make sure you EDIT those manually.

Re-Initializing the Pages control fields.

HEPX HEPAX Fns. Launcher Prompts “4:8:6:H:I:D” Accessible from CLF

HEPINI Initializes File System Prompts for values Author: Howard Owen

HEPINI is used to initialize the HEPAX File System on the CL. This is needed on the CL because this

feature is disabled in the HEPAX ROM image included in the CL Library, thus the addition here. It also
allows for dynamic configuration changes, modifying the number and location of HRAM pages set up.

In manual mode, the function takes two parameters: the number of HEPAX RAM pages to

configure and the address of the first one. Note that even if the first prompt is a DECIMAL entry,
the double quotes will remind you that the second one is in HEX, with valid inputs being 8,9, and A-F.

HEPINI is also programmable. In PRGM mode it takes the number of HRAM pages from Y, and the

first page address from X – both in DECIMAL format.

The procedure consists of writing a few control words into strategic locations within each HRAM page,

so that the HEPAX will recognize them as being part of its File System. Those locations and byte
values are shown in the table below:

Address Byte value Comment

x000 ROM id# => equal to the page# Always done

xFE7 Previous HRAM page id# (zero if first) Always done

xFE8 Next HRAM page id# (zero if last) Always done

xFE9 Fixed value = 091 Won’t be overwritten if not zero

xFED Fixed value = 090 Done always

xFEF Fixed value = 091 Won’t be overwritten if not zero

xFF1 Fixed value = 0E5 Done always

xFF2 Fixed value = 00F Done always

XFF3 Fixed value = 200 (or 100) Done always

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 35 of 113 August 2016

Two of the byte values shown in the table above located at addresses 0xpFE9 and 0xpFEFhave a
different treatment: they will be branded only if the previous content is zero. They denote the initial

address in the page where the next file or program will be written using HSAVEP, HCRFLAS and
HCRFLD. Their values will vary as more programs or content is written to the HRAM page, thus

should not be overwritten by HEPINI – or else the HEPAX FileSys catalog will become corrupt.

This explains why HEPINI won’t disturb the actual contents of the HRAM FileSystem, so it can be

used at any time provided that the entries used are compatible with the HRAM arrangement. It is also
possible to use them to configure only a subset of the available HRAM, as long as such subset uses

the lower pages. An example will clarify this.

The maximum number of HRAM pages accepted by the function is 7, but typical HEPAX configurations

have TWO pages (Standard HEPAX, 8k) or FOUR (Advanced HEPAX, 16k). The ROM id#’s are
assigned using the same value as the page number – be aware that this may conflict with other ROMS

currently plugged in your CL, notably POWERCL uses ROM id# “C”, and YFNS uses “F” so those
two pages will have to be their id# manually re-issued to avoid any issues (!). You can use ROMED

or HEXEDIT for that.

HEPINI will check the validity of the entry for first page, which is obviously related to the number of

pages (n) chosen in the first prompt. The first page must be greater than 8 and lower than (17-n).
Should that not be the case, one of the following error messages will be produced:

Even if there is a considerable amount of error protection built-in, nothing will prevent you from using

this function over non-HEPRAM pages, including YFNS itself! – Therefore exercise caution as always.

Example:- Say you have used HPX16 described above to configure 16k of HRAM, that is pages C to

F contain copies of the HEPAX RAM template. You may want to use some pages for the FileSys, and
others to hold other ROM images, and this done in a dynamic way.

Then the following options are available to configure the HEPAX File System with HEPINI:

N PG# Result Comment

1 C Page C Can extend upwards to {C,D}, {C,D,E}, or {C,D,E,F}

1 D Page D Can extend upwards to {D,E}; or {D,E,F}

1 E Page E Can extend upwards to {E,F}

1 F Page F

2 C Pages C,D Can extend upwards to {C,D,E}; or {C,D,E,F}

2 D Pages D,E Can extend upwards to {D,E,F}

2 E Pages E,F

3 C Pages C,D,E Can extend upwards to {C,D,E,F}

3 D Pages D,E,F

4 C Pages C,D,E,F

Notice that the configuration can always be extended to include other pages located at upper

addresses, but not the other way around. This is because the HEPAX code searches for the blocks
sequentially to determine whether they belong to its FileSystem, starting at page 8. So once they are

configured, changing the location of the first page to a lowered-number block will create a conflict.

Obviously for all this to work the target pages must be mapped to sRAM – or otherwise the byte

values could obviously not be changed. So it is expected that the appropriate number of HRAM pages
are configured, which is the subject of the functions described in the previous section.

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 36 of 113 August 2016

2.3.2 HEPAX Chain Alteration.

HEPCHN? Recalls current CHAIN Placed in ALPHA and Display Sebastian Toelg

HEPCHN Sets CHAIN Data in ALPHA Sebastian Toelg

RLSRAM Releases RAM page Pg# in X (decimal) Sebastian Toelg

These functions provide yet additional options to configure the HEPAX chain after the first

initialization, allowing for non-contiguous allocation of pages, as well as individual page removal
without disrupting the complete HEPAX FileSystem. They are taken from the NEXT ROM, recently

published by Sebastian Toelg (so great to see the trade is not lost!).

Note that they’re located in the FAT-2 group, thus you need to use XQ2 to execute them. For a more

convenient arrangement, HEPCHN? is also accessible form the HEPAX main launcher, using the “?”
hot-key character.

 and “?”:

 HEPCHN? Returns a string to ALPHA showing the pages used by the HEPAX chain, with zeros

as prefix and postfix to indicate the chain ends. The information is also shown in the display if

executed in run mode. For instance, the screen below denotes pages C and D are in the

HPRAM chain.

,

 HEPCHN re-configures the HEPAX chain as per the information provided in the string in

ALPHA. This must always start and end with zero characters, even if there’s only one page
configured. Obviously all pages must be mapped as sRAM in the CL.

 RLSRAM releases a given RAM page (which value is in the X-register), removing it from the

HEPAX chain – and closing the chain accordingly to avoid any ruptures. In RUN mode the

new chain (after page removal) will be displayed for feedback information.

Comments:-

You can use HEPCHN to restore pages removed previously with RLSRAM. Executing HEPCHN right

after HEPCHN? makes no modification to the HEPRAM chain.

Notice that HEPCHN will not take a three-zeros string as valid HRAM chain – attempting to do so will
return the error message “NULL”. Note however that you could come to that situation by releasing the

last page in the chain using RLSRAM.

Dedicated error conditions will report the absence of a configured chain (“NO START”), a broken chain

condition (“CHAIN BROKEN”), or the incorrect choices for released pages. Be careful not to remove
pages or reconfigure the chain if they already contain data and are part of the FileSystem.

Note: Using the prompt [D] in the HEPX function launcher will invoke the HEPDIR function from the

HEPAX ROM – which obviously is expected to be mapped to the MMU (or physically plugged to the CL)

for this to work.

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 37 of 113 August 2016

2.3.3 Page-Plug functions.

PLUGG _ PLUG page by prompt Prompts for page: “6-F” 4k ROMS only

PLGG#4 PLUG page #4 Prompts for ROM: “F:L:S” Take-Over ROMS

PLUGG? _ Get plugged ID# Prompts for page: “6-F”

UPLGG Unplugs page Prompts for page: “6-F” 4k ROMS only

UPLG$ Unplugs ROM by Alpha ROM Signature in ALPHA

As mentioned before, the HEPAX configuration functions also take care of plugging the HEPAX ROM

into the appropriate page. This is accomplished by a single function, using a parameter to define the

page address. This function is PLUGG, or “Plug Page”.

The unplugging action is performed by the reverse function, UPLGG. Both functions expect the

page# in the X register when used in PRGM mode. In manual (RUN) mode it presents a prompt to

input the destination page. As before, pressing [SHIFT] will toggle between PLUGG and UPLGG – all
interconnected for quick changes and convenience sake.

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 38 of 113 August 2016

 ---

Contrary to the port-based convention of the original YFNS / YFNP functions we’re now referring to a
page-based one, whereby the arguments of the function are the ROM id# in Alpha (same as usual)

and the page# in X – removing the hard-coded dependency of the location used by the PLUGLxx
and PLUGUxx functions.

The picture below (taken from the HEPAX manual) provides the relationship between ports and pages,
also showing the physical addresses in the bus and those reserved for special uses (like OS, Timer,

Printer, HP-IL, etc). Note that some pages (also called 4k-blocks or simply “blocks”) are bank-
switched. As always, a picture is worth 1,024 words:

Note that PLUGG and PLUGG? are mutually complementary functions, as they both operate on page
id# and will take or return the corresponding ROM id# from/to Alpha. You could use PLUGG? to

interrogate the MMU about page#4, and you can use PLUGG to plug take-over ROMS to page#4 – by

directly invoking the dedicated function PLGG#4, which will be covered in section 2.4 of the manual
later on.

The following error conditions can occur:

- Because of dealing with pages and not full ports, PLUGG will only accept 4k ROMS, or
otherwise “TYPE ERR” will be shown. Note however that UPLGG will always work, removing

the MMU mapping to the selected page - so be careful not to half-remove 8k-ROMS (!)

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 39 of 113 August 2016

- Main valid page# inputs are within to the 6-F range. Letters other than A-F will be inactive
during the prompt, but all numeric keys will be allowed - yet values less than 6 will also be

rejected, resulting in an “OS AREA” error message.

- Also a valid special input is “4”, which accesses the page#4 functions – but it requires the

string “OK” placed in ALPHA to accept it. Any other value will trigger a “NOT OK” error

message.

- Attempting to plug a ROM to the page currently used by YFNS will also trigger an error code,
to prevent accidental overwrite. The display will show “PG=YFNS” and no action will occur. If

you want to relocate it you need to use one of the CL “standard” PLUG functions instead.

- If the string in Alpha is not a valid ROM id# you’ll get “BAD ID” or “NO ENTRY”– as expected.

- If the YFNS ROM is not present (not mapped to the MMU or running on a standard 41 without

the CL board) you’ll get “NONEXISTENT” error.

Using Module Information for Unplugging. { UPLG$, UPLGID }

Functions UPLG$ and UPLGID introduce a new aspect to the ROM plug/unplug chapter in that they
use the text in ALPHA as input, and not page or port information – which may not be known to the

user at the moment of the unplugging action.

For UPLG$ The string in Alpha is expected to be the Page Signature, a four-letter string written at
the end of each 4k-page comprising the module, just before the checksum word at the very bottom of

the page.

Typically the page signature is not known to the normal user, but power-users are of course a

different kind. There is a couple of ways to find out the signature for any page:

1. Using the function PGSIG; which prompts for the page number in Hexadecimal format (from

0 to F), returning the signature string to ALPHA and the display. Note that it’s also
programmable, and than in PRGM mode the page# is taken from the X register instead.

2. Using MMUCAT; now also adding the signature to the information shown in the display. This

enhances the output and provides more details as to the type of mapping for each page,

which may be for a module in Flash (showing its ROM CL_ID and the page Signature), or a
module in sRAM (showing the address and the Signature), or not part of the MMU (showing

zeros and signature), or even a blank page with nothing plugged in – virtually or physically -
(showing zeros and the “@@@@” string). All in all, a better characterization of the system

configuration, which will also be printed if the NORM/TRACE mode is set.

Notice that despite being a similar concept, the page signature is not the same as the ROM ID
mnemonic used by the CL’s PLUGxx functions – and listed by ROMLIB or CLLIB. If this is known

then you can use function UPLGID instead, which will prompt for the mnemonic in RUN mode or take
it from ALPHA during a program execution.

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 40 of 113 August 2016

Note how UPLGID will switch ALPHA on automatically when used in RUN mode, a feature common
with most other functions in the PWRCL that take alphabetical inputs.

At this point an example should clarify. The screenshot below shows the output of MMUCAT for a

system with the USB-41 module, and a couple of MMU-plugged modules. Note that the Page#4

Library is included in the USB-41 itself, and thus the MMU address for it is zero - as it corresponds to
any “real” module (i.e. not virtual).

Note also that in pages #8 and #9 the sRAM addresses are listed (as opposed to CL_ID’ s) since I’m

not using the Flash versions of the CLLIB or YFNS modules. Lastly, note as well the “all empty” nature

of page #F in the left-side picture.

Plugging the HEPAX module from Flash to page #F changes the last line as seen on the right-side
picture, showing both the CL_ID and the page signature side-by-side.

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 41 of 113 August 2016

2.3.4. Security functions.

The following group of functions are a small detour, in that they aren’t directly related to the CL but

they come to full fruition when used on this platform.

SECURE Activate Security Author: Nick Harmer Source: Data File

UNSECR Deactivate Security Author: Angel Martin

XPASS Change Password Author: Nick Harmer Source: Data Fie

Here we have a nice practical application of advanced system control. Use these functions to manage

a password-protection scheme for your CL – so nobody without authorized access can use it.

They were published in Data File back in 1987 by Nick Harmer, and implemented in Q-RAM devices

(a.k.a MLDL). Obvious caveat there was that removing the MLDL from the machine dismantled the
whole scheme – but the CL has made it possible as integral part of the core system now.

The protection works as follows:-

1. Function SECURE activates the security by setting the protection flag. The execution also
switches off the machine. This sets up a process executed on each CALC_ON event, causing

to prompt the user for the password during the start-up process.
2. Function UNSECR deactivates the security by clearing the protection flag.

3. Function XPASS allows the user to change the password from the default one to his/her

favorite one. The length of the password is limited to six (6) characters.

 Enter code (up to 6 chars. long) and end with [R/S]

Inputting the password is very simple but very unforgiving as well: at the prompt “PASSWORD=?” just
type the letters one by one until completing the word, and you’re done. If you make a mistake the

machine will switch itself off and it’ll be “groundhog day” all over gain – until you get it right.

Each keystroke will be acknowledged by a short tone, but no change to the display – so nothing like

“*****” as you type the word. If the wrong letter is entered a lower-pitch sound will be heard and the
calculator will go to sleep.

Be especially careful when entering a new password code – as there is no repeat input to confirm the

entry, so whatever key combination you type will be taken when ending the sequence with R/S. The
initial password (“factory default”, so to speak) is “CACA”.

 Enter code (up to 6 chrs. long) and end with [R/S]

Here again it comes without saying that this will only work when the PWRCL_Ext module is mapped to

a sRAM block in the MMU – otherwise none of the ROM writing will work.

Note: this is how you’d get yourself out of trouble if somehow you forgot the right code: call YRES

(or do a memory lost) to disable the MMU, and then reload the POWERCL from flash – which has the
protection flag cleared. Map it to the right page and enable the MMU again – you’re back in charge.

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 42 of 113 August 2016

2.3.5. Encrypting and Decrypting RAM contents.

YFOG Scrambles RAM See description below/ *WARNING*

YCRYPT Driver for FOG Follow program prompts *WARNING*

If you’re concerned about the security of the data and programs held in your RAM pages here is the
ultimate encryption facility to completely cover your tracks and protect the system to the paranoia

stage.

YFOG will scramble the RAM contents using a 6-characters long encryption key provided in ALPHA,

starting from the address in the S&X field of X (thus a NNN is expected), and until the bottom of that
page. Repeating the operation with the same encryption code will restore the contents to its original

state, so the operation is reversible – as long as you remember the key used to encrypt it in the first

place.

YCRYPT is a nice and easy driver program for YFOG that takes care of preparing the required inputs
for you. No additional “precautions” are added, so the “ADR _ _ _ _” input will accept any HEX

characters and not only valid addresses.

As these functions only operate in RAM the OS area is safe, even if you attempt to encrypt it. Ditto for

every page plugged to a module in Flash memory – but watch out for the RAM-plugged pages (like
HEPAX RAM, or any other module you have residing in sRAM). That’s why the confirmation message

“OK? Y/N” will also be prompted when calling this function – even in a program.

Needless to say things can get hairy pretty quickly if you mess with critical areas, like the polling

points. YFOG will not modify the contents of locations 0xpFF4 and above within the page, but that
doesn’t guarantee a trouble-free result – because if polling points are active who knows what will be

there where they’re pointing at AFTER the encryption!

YCRYPT is a trivial-looking program that just manages to

prepare things for YFOG. The listing is shown on the right, note
the usage of the undocumented function “–SYS EXT” that

prompts for the target address and places it in the S&X field of

status register Q(9).

YCRYPT uses a couple of functions from the AMCOS/X module,
which obviously should also be plugged in the MMU.

GTEND is also available in FAT1, so you could use XQ1

“GTEND” instead. Or even just stop there (STOP, RTN) but it’s

safer to leave the scene after the job is done (or the error
encountered).

A piece of trivia: YFOG must be located in the main FAT in order

to be callable from within the YCRYPT code: this is a limitation

that won’t affect your programs located in RAM – or even located
in other plug-in modules - as long as they are not plugged in the

same PORT as the POWER_CL.

The original FOG function was written by Derek Amos, and

published in PPCCJ, V12N5 p3.

1 LBL "YCRYPT"
2 -SYS EXT

3 RCL Q

4 "PWD="

5 PMTA

6 ASTO L

7 ALENG

8 6

9 X#Y?
10 GTO 01

11 RCL Z

12 FOG

13 TONE 7

14 LBL 02

15 CLA

16 ARCL L

17 GTEND

18 LBL 01

19 TONE 0

20 "#PWD<>6"
21 AVIEW

22 GTO 02

23 END

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 43 of 113 August 2016



2.4.1. Alternate Blocks and Expanded memory

Welcome to the most recent addition to the PWRCL_EXT module. These functions are not included in
the POWER_CL version, and have only recently been made available. They require the YFNX module

to operate. The following error message will be displayed if the FNX module is not found:

Note that this check is based on the FAT entry order for

function MMU?. This is less fool-proof that looking into
the module checksum information, but it’s more flexible

approach that will work with different revisions of YFNX as long as such function order has not
changed.

The intent here has been to include in the launcher the most frequently accessed functions, like
YPEEK and YPOKE, together with a couple of favorite ones: YEDIT and YINPT - described

somewhere else in this manual.

YEDIT sRAM mini-Editor Input ADR, then Y/N WARNING

YPEEK Peek Word Value Location syntax in ALPHA

YPOKE Poke Word Value Location/Value in ALPHA WARNING

YINPT Universal Y-input Prompts for characters WARNING

MM-YBK Main Memory to Block Destination Block# in X Includes Status regs.

ST-YBK Status Regs. To Block Destination Block# in X

XM-YBK Extended Mem. to Block Destination Block# in X

YBK-MM Block to Main Memory Source Block# in X Includes Status Regs

YBK-ST Block to Status Regs. Source Block# in X

YBK-XM Block to Extended Mem. Source Block# in X

STYSWP Status Regs Exchange Swap Block# in X

YBKSWP Alternate blocks swap Source in X, Dest. in Prompt

MMYSWP Main Mem Exchange Swap Block# in X Includes status regs.

XMYSWP Ext-Mem Exchange Swap Block# in X

YRESET Resets (Disables) the MMU Use it when YFNS is “lost”

?YFNX Tests for YFNX presence Shows error if not (doesn’t SKIP line!)

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 44 of 113 August 2016

The CL Expanded Memory Sets

The CL board has four blocks in sRAM that can be allocated for the 41 system RAM. Of these, only the

first one (0x800) is utilized by the OS, holding the registers 0-3FF – that is the complete calculator
memory set, including both Main and all Extended Memory.

It is therefore possible to use the other three blocks to hold backup copies of the first (default) one,

or alternate sets of memory and programs. This requires a few utility functions to store, recall and
exchange (swap) the block contents – which is the main subject of this section.

The operation can be done at the complete block level, or selectively for Main and Extended memory
only. Note that the Main memory transfers always include the status registers as well.

All functions require the alternate block# to be used in the corresponding action. The only valid inputs

are 0, 1, 2, or 3 – denoting the blocks at addresses 0x800, 0x801, 0x802, and 0x803 respectively. The

picture below should graphically depict the CL Expanded Memory structure and data transfer
possibilities:

Main BLOCK @ 0x800

1,007 3EF

EM-2/0

769 301

2F0-300

751 2EF

EM-1/0

513 201

511 1FF

MAIN-0

192 0C0

191 0BF

64 040

010-03F

16 Status/0 00F

BLOCK-1 @ 0x801 BLOCK-2 @ 0x802 BLOCK-3 @ 0x803

2,031 7EF 3,055 BEF 4,079 FEF

EM-2/1 EM-2/2 EM-2/3

1,794 701 2,817 B01 3,841 F01

6F0-730 22F0-2300 EF0-F00

1,775 6EF 2,779 AEF 3,823 EEF

EM-1/1 EM-1/2 EM-1/3

1,537 601 2,561 A01 3,585 E01

1,535 5FF 2,559 9FF 3,583 DFF

MAIN-1 MAIN-2 MAIN-3

1,216 4C0 2,240 8C0 3,264 CC0

1,215 4BF 2,239 8BF 3,263 CBF

1,088 440 2,112 840 3,136 C40

410-43F 810-83F C10-C3F

1,040 Status/1 40F 2,064 Status/2 80F 3,087 Status/3 C0F

XF/M-3

XF/M-0

XF/M-1 XF/M-2

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 45 of 113 August 2016

To prevent accidental data loss, the operation requires the confirmation string ”OK” in ALPHA to
proceed if the destination block is zero (i.e. the main RAM used by the OS).

These functions are fully programmable, but you should be careful about altering the main memory

(or status registers) during a program; as you may be overwriting the program itself, or other OS

parameters like the program pointer or line number. This will likely result in a MEMORY LOST event.

A look under the Hood: General-Purpose Functions.

The function set provides choices for the particular section to back-up or restore (Main & Extended
memory, Status registers), so you don’t have to worry about physical memory boundaries or type of

transfer. Besides those, two general-purpose functions YMCOPY and YMEXCH (not to be confused
with YMOVE and YSWAP, which operate on the MMU settings instead) are also available that allow a
flexible selection of memory sectors to be transferred, defining a sector as a 256-register set within

the block. The input parameters are expected to be in a control NNN stored in the X-register, as
follows:

Source and Destination:

input X<13> = source

input X<12>= destination
(Valid values are 0/1/2/3)

Data fields:

input X<3:0> = blocks to transfer,

one digit (nibble) per 256-word block
(16 sectors for complete block)

The table below shows the values used on the standard functions internally, where “b” denotes the

alternate block# (1,2, or 3) used for the backup or restore:

Function Swap Flag Control NNN

MM-YBK Clear 0b-00000000-00F9
MMYSWP Set 0b-00000000-00F9

ST-YBK Clear 0b-00000000-0001
STYSWP Set 0b-00000000-0001

XM-YBK Cleat 0b-00000000-FF06
XMYSWP Set 0b-00000000-FF06

YBK-MM Clear b0-00000000-00F9

YBK-ST Clear b0-00000000-0001
YBK-XM Clear b0-00000000-FF06

The diagram on the right shows the beginning and ending

addresses for each of the significant sections within the
main block; in decimal to the left and hex to the right.

With exception of the general-purpose functions YMCOPY
and YMEXCH, the appropriate addresses are chosen

automatically by each of the memory transfer functions, all
completely transparent to the user.

Lastly, to prepare the control NNN to use with the general-purpose versions of the memory transfer
functions, you can use any of the HEX Entry functions available in the PWRCL_EXT, such as CDE,

HEXKB, HEXIN, as well as the powerhouse memory editor RAMED. See their description in later

sections of this manual.

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 46 of 113 August 2016

Inputting Y-Control strings with YINPT.

The reason why characters “-“ and “>” are so relevant is the formatting syntax required by many of

the functions, like YPEEK, YPOKE, PLUGxx, etc. To that effect a most useful function within this
group is YINPT, which redefines the keyboard as a hex entry {0-9, A-F}, plus a few special control

characters, as follows:

- [J] adds the control character “>” to the display
- [Q] adds the control character “-“ to the display

- [K] adds the string “16K” to the display – for bank-switched modules

- [L] adds the string “DBL” to the display – for 8k modules
- [M] adds the string “RAM” to the display – for single 4k modules

- [SST] adds the string “MAX” to the display – for 16k modules
- [ENTER^] adds three zeroes to the display

- [<-] BA removes the last character (or groups above), or cancel out if Empty

- [R/S] terminates the entry process, and copies the display content to ALPHA.

Using this function expedites the construction of the Alpha strings required by all other Y-Functions,
make sure you have it assigned to a handy key as it’s likely to be used quite frequently – or

alternatively use it directly from the YMEM launcher, option “I”.

When used in PROGRAM mode, the prompt “Y:” will be replaced by the text in ALPHA – so you can

have your custom prompts.

Notice that because it uses the display as repository (ALPHA is not altered until the end), the valid
length accepted by YINPT is limited to 11 characters (not counting the prompt). This is sufficient for

all parameter input purposes within YFNS functions, but remember: if you exceed this limit characters

will be “lost” from the left. YINPT is used in other FOCAL programs in the PowerCL module, such as
YEDIT and DLD48.

Resetting the MMU.

 YFNZ? is completely equivalent to YFNS?, in fact is just a code stub that invokes the latter.

It must be in the POWERCL module for subroutine purposes. Incidentally, this is how

PLUGGX checks for YFNS being currently mapped to the target page, and discards the
request if so.

[Note: there’s an ulterior motive for having this function included in the POWERCL module,

and such is as a back-door recovery method from a “lost YFNS” contingency. This may occur

when the YFNS is overwritten with another module image by the MMU, typically as result of
inadvertently using PLUGxx on the same location. If that’s the case, YFNZ? will

automatically disable the MMU so you can take charge again and rebuild the MMU to correct
the issue - with no need to resort to ML or removing the batteries anymore. Upon completion

the following message is displayed:

 YRESET was added in revision “J”. It provides a more purposed approach to the same task,

i.e. looking for the YFNX module and effectively disabling the MMU (resetting it) if it’s not
found - albeit only if the “OK/OKALL” string is in ALPHA – to avoid accidental disabling.

 Lastly ?MMU is the same as MMU? In the YFNS module - plus also writing either 1/0 in X

depending on the result. The stack contents are lifted

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 47 of 113 August 2016



2.4.2. The new kid on the block.

One of the additions to the initial CL’s bag of tricks was a set of functions to manage the ROM Image

database. It’s not in the scope of this manual to describe them, you’d have to read the CL manual for
that; but this launcher is available to group all of them under a single function in the POWERCL. Be

very careful not to use the options by mistake – correcting errors in the IMDB is time consuming!

IMDBCPY Copy IMDB to RAM Makes a copy in 0x805 WARNING

IMDBUPD Update IMDB from RAM Flashes the entire sector! WARNING

IMDBF Activates IMDB in Flash Uses copy in Flash

IMDBR Activated IMDB in RAM Uses copy in sRAM

IMDBINS Inserts new IMDB entry Data in ALPHA WARNING

IMDB? IMDB Entry Data Data in Alpha

IMDBF? Checks if IMDB in Flash Yes/No

The IMDB is the only reference used by all PLUGxx and UPLUGxx function, be that the “native” port-

related ones in the YFNS, or their page-related counterparts in the POWERCL. It’s therefore not to be
confused with the internal database within the POWERCL, used by functions ADRID, CLLIB and

ROMLIB – which purely perform an informational role for enhanced usability.

IMDB? has similarities with ADRID in that both retrieve details on the ROM specified in the

argument. For ADRID such is its flash or RAM address (returning the ROM ID in Alpha), whereas
IMDB? uses the string in ALPHA – either ROM ID or address are valid inputs.

Obviously the CL is a must requirement; so don’t try this on your favorite emulator or “plain” machine,
where you’ll get the friendly reminder (courtesy of the YFNX module):

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 48 of 113 August 2016

Differences between the IMDB and the PowerCL ROM Library.

The PowerCL has its own image Library included in bank-2. This local library (currently occupying

about 1,435 bytes) is the source of information for functions ADRID, CLLIB and ROMLIB, covered
earlier in the manual. The entries are arranged alphabetically, and they have field descriptors for the

module size and type – used by those functions, as you already know.

There are 287 entries in the ROM table. Each entry takes up 5 bytes as follows: 3 for the mnemonic,

one for the address in flash, and the last one for the size/type information combined. Besides, a table
header and footer (of 6 bytes each) are also needed for the search algorithms.

000 <Table Boundary>

000 <Table Boundary>

000 <Table Boundary>

000 <Table Boundary>

000 <Table Boundary>

0ab
cdf "name"

efg

xyz size / type Size in XS digit

add address

001 Advantage Applications

011 "AADV" J-F Garnier

046 4k
10D size / type

08D address

Arguably there is redundancy in maintaining a duplicate of the IMDB, and a potential source of errors
if there is divergence between both. In the ideal scenario this should not be required; however, it was

coded very early in the days of the beta version of the CL board, before the IMDB was implemented.

The module enumeration is faster than using the different options in the YFNX’s version of PLUG. It

also provides a convenient grouping of the modules by types. Finally, being integral part of functions
ADRID, MMUCAT, and PLUGG? – would make it rather difficult to eliminate now after its pivotal

character.

An obvious limitation is that the PowerCL knows nothing about new IMDB entries made after its

release, or those you may have added to it in your own CL system.

It will also get out of sync if you re-locate ROM images within the IMDB – although this is quite a

corner case, not likely to occur with the 99.99% of users.

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 49 of 113 August 2016

 

2.5.1. Using Page#4

As mentioned previously page#4 is a special case that requires its own dedicated (un)plugging

functions, not covered by PLUGG or the native (U)PLUG ones either.

PPG#4 Plugs ROM in page#4 Prompts F:L:S WARNING

UPGG4 Unplugs ROM from p4

The 41 OS reserves Page #4 as a special location. There are frequent checks done during strategic

moments to specific locations that can be used to take control on the system, even over the OS itself

if that was required – as it happens with the diagnostics executed from the different SERVICE ROMS.

Because of that, only “take-over” ROMS can be plugged in page#4. They have been written
specifically for it and will either take complete control of the system (like the FORTH and service

modules), or drive it from their own directive (like the LAITRAM module).

Function PPG#4 prompts for the ROM to plug into the page, options being just those three

mentioned above: FORTH, LAITRAM, or SERVICE modules – by their initials: “F:L:S”. Once the
selection is made the function transfers the execution to a hidden FOCAL program that writes the

appropriate entries into the MMU registers, so that the mapping is correct. Refer to the CL manual for
details on this.

WARNING: Be aware that once the order is complete you’ll be at the mercy of the plugged module.
Going back to the “normal” OS may not be as simple as you think, especially with the Service ROM
plugged – which requires removing the batteries, then clearing the MMU entry with the MMU disabled

after you switch it back on.

For the other instances it is possible to “exit” back to the OS, and thus you could execute UPGG4 to

unplug the module from the page. Obviously no inputs are needed in this case.

Note that because of the name not directly key-able using XEQ (an intentional measure) you’ll have

to use another approach to invoke PPG#4. It’s a trivial task with the CCD-style CAT’2, either during
the catalog run or through a previous assignment to any USER key. Of course as a CL owner you’re
only one YPOKE away from a permanent solution if POWERCL resides in sRAM .

And what about the Library#4?

The Library#4 is not one of the choices offered by PPG#4 because it’s assumed to be already
installed for the POWERCL module to work. This configuration must be done manually. This is an

important point, so make sure to always have the Library#4 plugged in order to use the POWER_CL
module. The library contains routines used by many functions in the module, thus it must be present

for proper execution. Failure to do so will create unexpected issues ranging from unpleasant to
harmful events!

WARNING: Be aware that just plugging/unplugging the Library#4 (once you have it burned in Flash or
copied in sRAM) will not check for its presence. It is therefore strongly recommended to power-cycle

the machine in order to perform the Library#4 existence check. As always, refer to the Library#4

documentation for additional details.

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 50 of 113 August 2016

2.5.2. RAM and ROM Editors

Placing the ROM image library on bank 2 freed up a large amount of space for additional functions to

be included in the POWER-CL module, as can be seen by looking at its full-FAT list. The choice of
functions added over previous CL_UTILS incarnations was clearly meant to have a comprehensive and

self-contained function set that included some the best examples ever written for the HP-41 system.
RAM and ROM editors are no doubt amongst these, and as such are available in the POWER-CL.

RAMED RAM Editor Uses GETKEY [KEYFNC] WARNING

ROMED ROM Editor Uses Partial Data Entry WARNING

YEDIT CL sRAM Editor Uses AMC_OS/X Module

Editing RAM memory with RAMED.

Written by Håkan Thörngren, this powerful RAM editor rivals with (and exceeds it in several aspects)
the ZENROM implementation. It was first published in PPCJ V13 N4 p26.-, you’re encouraged to check

his original contribution for a complete description of the functionality and usage.

The starting address is taken from the X register in RUN mode (as decimal value between 0 and 999),

or from the program pointer in PRGM mode. The display shows two distinct fields, with the nybble &
byte section shown on the left side and the actual register content shown on the right – as a 7-digit

scrollable field controlled by the USER and PRGM keys – very much like the CX’s ASCII file editor ED.

Nybble D (the 13th within the register) is selected upon start-up, with the cursor centered in the

middle of the field and its value blinking on the display. At this point you can use the control
characters to move between both areas and within the fields, or the digit keys plus A-F to input the

nybble HEX values being edited. Scrolling includes a tone to signal the wrap-around condition within
the register, as the nybble being edited is updated in the address field on the left. Without a doubt, a

real tour-de-force and a masterful implementation.

The screens below show a couple of examples, editing the leftmost nybble of the Y register (address:

D002) and the rightmost digit of the X register (address 0003). The screenshots don’t capture its
magic; you really need to use it to appreciate its simple and powerful functionality.

The control keys for RAMED are as follows:

[USER]: moves down to the previous nybble or position within the field

[PRGM]: moves up to the next nybble or position within the field
[+]: moves up to the next register

[-]: moves down to the previous register

[.]: the Radix key moves between both fields, used to change the register address

[1]-[9],[A]-[F] the nybble value being edited

[<-] back-arrow cancels out and exits the editing
[ON]: turns the calculator OFF

RAMED is completely located in bank-2, with only the function name and a small code snippet in the
first bank to transfer the execution. I have only minimally altered the source code to take advantage

of the CX- and Library#4 routines.

RAMED uses a key-detection technique more power-demanding than the Partial Key Sequence, thus

will drain on the battery life if used extensively. Do not leave it run idle for a prolonged time.

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 51 of 113 August 2016

Editing ROM areas with ROMED.

Written by W. Doug Wilder, another MCODE master - this ROM editor has all the basic functionality

required for the most common needs; perhaps just a couple of notches below the tremendous
HEPAX’s HEXEDIT – but in a much more concise foot-print implementation and not exempt of

wonders on its own.

The initial prompt requests the address to edit, ranging from 0x0000 to 0xFFFF as you would expect.
Once entered, the display is identical to that one in HEXEDIT, with three distinct fields showing the

address being edited, the current value, and three underscore characters where the new value will be

written as the input progresses.

Usual rules of the game apply: the first character can only be 0,1,2,3; and obviously there must be a
MLDL-RAM block for the input to be actually written in. A nice touch (lacking in HEXEDIT) is a “ROM”

message shown when the destination is read-only.

The control keys for ROMEDIT are as follows:

[SST] : moves up one word
[BST], [TAN] moves down one word

[1]-[9],[A]-[F] the nybble value being edited

[ENTER^]: inputs three zeroes as word value
[<-]: first back-arrow prompts for a new address, second exits the editing

[ON] turns the calculator OFF

ROMED is completely located in bank-1. Besides the changes “of rigueur” to use the Library#4
routines, I have made a couple of enhancements to the original implementation, adding the

underscores for the edited field and the [ENTER^] control key for a closer resemblance to the HEPAX
implementation in HEXEDIT.

ROMED can only edit the first bank, so the only missing functionality is perhaps this; no access to the
other banks in bank-switched modules (like the HEPAX, Advantage, Timer, or POWER_CL itself).

Certainly not a big deal in the 90% of the cases; and sure enough well worth the admission price.

[Note: The other missing functionality is the ability to do live-editing of polling points and other OS-
controlled hot addresses, which the HEPAX manages by preventing the calculator from going into light

sleep – definitely hardly used in the 99,9% of the cases.]

The screenshots below show editing of the Library#4 contents on-the-fly – a real godsend for

MCODERS to quickly test small code changes without having to re-compile / rebuild the ROM images.

ROMED uses the partial-key entry technique, more gentle on the battery drain requirements – and

incidentally also the reason why it cannot be located on bank-2, as a technical detail.

Final remark.- The original ROMED is available in the DISASM module, under the name WROM,
and RAMED is also included in the RAMPAGE module, named RAMEDIT there. Thanks to its

gigantic module image library there’s certainly no shortage of modules to use on the CL, but having all
these functions included in a lean 4k-footprint ROM is very advantageous from the usability and

compatibility standpoints, eliminating the need to alter the system configuration to access another

module containing the desired function.

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 52 of 113 August 2016

RAMED and ROMED Overlays.

The figures below show two possible overlays for the Ram and ROM Editor functions, RAMED and

ROMED. For comparison purposes, I have also prepared similar virtual-overlays for the more capable
versions of the same functions included in the ZENROM and the HEPAX. Interestingly, the overlay for

ROMED could be simply a subset of the HEXEDIT overlay – so it’d appear killing two birds with the
same stone.

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 53 of 113 August 2016

2.5.3.- YEDIT- Quick & Dirty sRAM Editors.

RAMED and ROMED are capable of editing the complete content of the RAM and ROM plugged to

the CL via the MMU settings, but obviously cannot be used to edit the content of the sRAM on the CL
board. YEDIT closes that gap, in a minimalist approach that provides a simple but elegant way to

drive YPEEK and YPOKE instructions automatically, so that the sRAM words can be edited.

The execution starts by asking for the starting sRAM or Flash address, as a six-digit hex format. It
then gets into a loop reviewing every word in a sequential manner, using [R/S] or [Y] for each

consecutive word. Use [N] to get into the editing screen, input the new values (4-digits are required)

and follow with [R/S]. It comes without saying that YEDIT isn’t able to edit the data in Flash sectors,

although you can use it to review its contents.

Note that some functions from the AMC_OS/X module are used, thus you’ll need to have it plugged as

well – one more reason to *always* have it on-line.

Listed below are a couple of small FOCAL programs that illustrate the functionality present in YEDIT..

The first one only reviews the contents (useful to check whether the block contains the expected
information), and the second also allows actual changes to it. Like the final program in the POWERCL

module, these example programs also use functions WSIZE and ARCLH, from the AMC_OS/X

module. The final version of YEDIT also uses PMTA, instead of APPEND.

The simple version on the right allows moving to a different address without re-starting the program,
simply add (or subtract) the offset from the current one, entering it in X (in decimal) then pressing

[+] (or [-]) just before R/S. For YEDIT+ on the left you’ll need to re-start the program and input
the new address.

The screenshot above shows the data at address 0x83F000, first word in the last sRAM block in the V2
CL systems – my customary location for the Page#4 Library.

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 54 of 113 August 2016

2.5.4. Reallocating MMU entries.

YMOVE Moves MMU mappings FROM: in Y; TO: in X *WARNING*

YSWAP Swaps MMU mappings FROM: in Y; TO: in X *WARNING*

It is often the case that you’d like to have the MMU mappings changed, to either move a current entry
to a different page (freeing the original one), or even to exchange two entries. Granted this is doable

using the standard (U)PLUGxx Y-functions, but such an approach requires knowing the module ID’s,

and/or the sRAM addresses where they are physically located.

New additions to the POWERCL allow doing the changes just using their logical addresses, i.e. the
page numbers the MMU entries point to. This is much faster and simpler, yet also provides nice ways

to get you in trouble if not used carefully.

As of revision “K” both YMOVE and YSWAP are proper MCODE functions. Because they are in the

PowerCL, the page where the PowerCL is located will be excluded – or otherwise the program pointer
would “get lost” in the middle of the execution – sort of removing the floor from their feet while

they’re in operation. Attempting to do so will show the “NO SELF” error message.

Obviously the OS pages must be avoided, as well as those system-reserved like the printer or HP-IL.

Finally, revision “L” added protection to the YFNS page in a MOVE action as well. Try it!

These functions are meant to be used with 4k-ROMS, since only the pages in the TO: and FROM:
inputs will get reallocated - regardless of which other logical connections may exist. And you’ll be

glad to know that they support bank-switched modules (i.e. HEPAX, OS/X3).

The FOCAL program listed on the left shows an
alternative unrestricted version for YSWAP – use

it judiciously.

Besides the restriction not to use it with the

PowerCL itself, other obvious limitations for the
FOCAL program (but not for the MCODE function!)

include not moving the YFNS and AMC_OS/X
modules either. It’s only valid for non-bank

switched modules

2.5.

01 LBL "MMUSWP"
02 ,

03 WSIZE

04 RDN

05 XEQ 00 read the TO: page

06 ASTO T save in T

07 XEQ 00 read the FROM: page

08 ASTO L save in scratch
09 XEQ 02 write FROM: into TO:

10 R^

11 STO L save in scratch
12 RDN write TO: into FROM:

13 LBL 02

14 "804"

15 ARCLH

16 "|-0"

17 ARCL L

18 YPOKE

19 X<>Y
20 RTN

21 LBL 00

22 "804"
23 ARCLH

24 "|-0-1111"

25 YPEEK

26 ASHF

27 X<>Y

28 END

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 55 of 113 August 2016

5. Calculator Flash Backup & Restore.

YWALL Backs up to Flash “OK” or “OKALL” in Alpha *WARNING*

YRALL Restore from Flash “OK” or OKALL” in Alpha *WARNING*

The MMU content is preserved during a MEMORY LOST event, and the same is true with the sRAM on
the CL board. So using RAM for a complete calculator backup and restore is not a bad idea at all, and

it will allow you different setups or complete configurations to be swapped back and forth directly

from sRAM.

However sRAM contents will be lost if the batteries are removed from the calculator for a certain
period of time – longer than what it takes to reset a small glitch, but shorter than it used to be for the

standard 41, - due to the increased power demands from the CL board.

Early CL beta user Geoff Quickfall prepared a few FOCAL programs to commit the calculator contents

to FLASH, so that even without the batteries it’ll be preserved for a restore at any later time. It’s a
powerful concept, but it doesn’t come free from pitfalls if you’re not careful.

 The first consideration is related to the Flash write function and you should read and

understand all about it in the CL manual. Specifically pay strong attention to the

recommendations about the fresh battery state before performing any flash-write operation.

 The second one is that YWALL will pick certain hard-coded FLASH locations as destination for

the backup, so both 4k blocks 0x1FE and 0x1FF will be ERASED by YFERASE. Note

that earlier versions of CLUTILS used sector 0x0D8-0x0DF instead. This was moved to the
current location to avoid erasing other ROMs, added to that sector with V3 revision of the CL

board. Therefore revisions V3/V4 of the CL board are required.

 With regards to having to run the programs from RAM for the flash-write/read to work.- As of

revision 2A of YFNX this requirement is entirely removed, therefore you can ignore this point

completely.

 Note that POWERCL module may reside in Flash during the process, even if the FOCAL

program calls upon YFWR – as the “from-RAM-only” restriction only applies to YFNS.

 Finally, after the backup copy is made YWALL resets the MMU settings plugging the flash

copy of YFNX back in. Note that these functions make no assumption on which page YFNX is

initially plugged in, and will restore it to the same page after completion. This means it’s
compatible with any MMU port setting for YFNS – at least one thing not to worry about.

The FOCAL code used by the function is shown in next page – There is also a check done in MCODE

looking for the strings “OK” or “OKALL” to be present in Alpha. If neither is there the execution will
end with “NOT OK” – as a protection against accidental usage. “OK” will get the Calculator content

backed up, whilst “OKALL” will also include the MMU entries into Flash. Note that only the
corresponding 4k blocks will be erased, but not the whole 32k sector.

Should any of those default settings clash with your system setup I’d suggest you change it to match

them as the easiest way to go around the incompatibilities. Even if it’s possible, re-writing the
program in 41-RAM is strongly not recommended.

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 56 of 113 August 2016

1 LBL "YWALL"

2 IMDBF? is the IMDB in flash?

3 GTO 01 yes, go on

4 GTO 02 no, skip to end

5 LBL 01

6 "00F>805" prepare copy
7 AVIEW show settings

8 YMCPY copy YFNS to RAM

9 "805-RAM" prepare mapping

10 YFNS? get current YFNS location

11 SF 25 protection override

12 PLUGG plug RAM there

13 "1FE000" prepare erasing
14 AVIEW show settings

15 FC? 49 battery ok?

16 YFERASE erase BLOCK (!!!!)

17 "800>1FE" prepare copy

18 AVIEW show settings
19 YFWR write calculator to flash

20 FC? 01 was MMU also selected?

21 GTO 00 no, skip to end

22 "1FF00" prepare address

23 AVIEW show settings

24 FC? 49 battery ok?

25 YFERASE erase MMU block

26 "804>1FF" prepare copy
27 AVIEW show settings

28 YFWR write MMU to flash

29 LBL 00

30 "YFNP" prepare restore

31 YFNS? get YFNS location

32 SF 25 protection override

33 PLUGG plug it there
34 GTO 02 go to end section

35 LBL "YRALL"

36 "1FE>800" prepare copy

37 AVIEW show settings

38 YMCPY restore backup to RAM

39 "1FF>804" prepare copy

40 FS? 01 was MMU also selected?
41 YMCPY restore MMU to RAM

42 LBL 02

43 "DONE" show final message

44 AVIEW and end.
45 END

Backing up MMU entries may be seen as superfluous, yet think about the issues arising from restoring

MMU configurations that don’t include the POWERCL module – which is where the program is being
run from: welcome to CL-limbo! - Surely something to be avoided.

Similar issues will occur if in the restored configuration the YFNS and POWERCL modules are plugged

in a different port than the ones the restore process is being executed from – the program pointer will

get confused and the calculator may hang up.

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 57 of 113 August 2016

2.5.6. Transferring ROM images from/to PC files. { DLD48, UPL48 }

The serial link is a very practical alternative to download and upload ROM images from/to the PC.
Definitely worth the set-up and configuration price, even if initially it may look a bit intimidating.

The program below is a nice and short application to automate the downloading and uploading of

ROM images from/to the PC, using the serial link. The core of the routine is the function YIMP, with
the other few lines just setting the stage to make sure nothing is forgotten – typical when done

manually. So it’s nothing to write home about, but since I use it so frequently I opted for adding them

to the module on a permanent basis (got tired of entering the program in RAM every time).

It uses a 4800-baud setting, which happens to be a good compromise between reliability and
performance – at least for my own systems. It’s very minimalist due to the tightness of space left in

the module, but it does its job quite nicely.

1 LBL "DLD48" 11 "ADR: _" prompt text

2 SF 01 flag case 12 YINPT input adr

3 GTO 01 13 "|-000-0FFF" control string

4 LBL "UPL48" 14 AVIEW show feedback

5 CF 01 flag case 15 FS? 01 downloading?

6 LBL 01 16 YIMP yes

7 SERINI initialize serial 17 FC? 01 uploading?

8 48 18 YEXP yes

9 PBAUD set speed 19 GTO 05 loop back for next

10 LBL 05 20 END done.

Refer to the YFNS manual for details on the serial link function. Also to appendix 6 for a listing of the

CLWRITER and CLREADER, the PC programs running on the other end of the serial link.

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 58 of 113 August 2016

CL-to-CL Connectivity.-

Version 4 of the CL board has the capability to use the serial link without the assistance of a PC

connected to it to power the serial bus. This opens the possibility to use a modified cable to link two
CL machines together, with the V4 board installed at least in one of them - for the purposes of data

and program transferring from one another.

While transferring complete blocks of ram is little more than a trivial exercise (using YEXP and YIMP
on each machine), dedicated software needs to be written to deal with 41 programs or other choices

from the actual calculator memory areas. To be continued...

The photo below shows initial experimenting done on this very new capability.

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 59 of 113 August 2016



3.1. The system as a whole.

This set of functions provides useful information on the contents of the I/O bus of the calculator –
used by the system extensions like plug-in modules, HP-IL, etc. Typically the complete bus is

scanned, showing those hits that meet definition asked, such as free or used pages, banked ports, or
system configuration checks.

Even if there isn’t a dedicated letter for it, the IOBUS launcher can be accessed by pressing [SHIFT]

at any of the launchers prompts (including the main CL). IOBUS it’s a two-page launcher, with the

second part dedicated to Page functions. Use the [SHIFT] key to toggle between both:

 ---

As always, press CL to return to the main launcher – the real anchor in the UI. The table below lists

the functions available at the first page – three of them brand new in revision “J” of the PowerCL:

BANKED Lists Bank-switched pages New

BFREE Lists Unused pages New

BUSED List pages used New

OSREV Shows OS ROM revisions Nelson F. Crowle

ROMLST Lists all ROM id# plugged

CHKSYS Checks for ROM id# conflicts

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 60 of 113 August 2016

 BANKED presents a colon-separated string of numbers (in hex) corresponding to those pages

with a bank-switched configuration, as defined in the ROM signature characters. The official
convention is not strictly followed by the (very few) authors of the few bank-switched ROMs,

but the number of banks should be marked in characters 2/3/4 of the ROM signature.

An example with both the PowerCL and the SandMath_2x2 plugged returns the following:-

Can you explain the presence of the “5”? Hurry, time’s ticking out!

,

 BFREE and BUSED will present colon-separated strings of hex numbers corresponding to

those free or used pages in the calculator. Obviously the OS will always be listed by BUSED,

which is a nice clue to quickly tell which particular string you’re looking at. See for instance
the examples bellow showing a pretty decent configuration:

 for the free pages, and

 for the used pages.

The strings are compiled using the display, and transferred to ALPHA upon completion. For

full-house configurations the list of used pages will take up more characters than those
allowed in the display – and the string will be scrolled to the left, dropping the first three

pages in the worst case. Since those hold the OS (always there) there’s no real information
loss.

The strings can have “holes”, as this is totally dependent on the modules plugged. Some of

them use the upper part of the port (like the Zenrom), or just simply due to the physical

locations used.

 CHKSYS is a very useful routine to check for incompatibilities in the system configuration, as

may occur when two ROMs with the same XROM id# are plugged. The function will scan all

the ROM blocks looking for repeat values, showing a confirmation or a warning message
depending on the case.

It will also report all and every offending id# in case of conflicts, as many as there may exist.

Use it as frequently as you need, it’s the best way to ensure that things are fine after plugging
any of the many modules available on the CL library – a match made in heaven.

 or

 plus:

 ROMLST has somewhat of a similar purpose: it will produce a list in Alpha with the XROM
id#’s of the plugged modules on the system, so you can check for dups. Because of the 24-

char limit in the Alpha string, only the last 8 modules will be shown – sufficient in the majority
of cases, specially considering that pages 3, 4, and 5 are most likely unique because of being

dedicated to the X-Functions, the Library#4, and the Time Module.

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 61 of 113 August 2016

 Example: winning Lotto combination or ROM list?

 Lastly, OSREV shows the revisions for the three first pages, containing the core Operating

System code (in ROMS 1/2/3) / which for an unmodified CL are as follows:

3.2 The Pages within.

Even if these functions aren’t strictly new, they have been improved to make them more usable and

work in combination with one another within this launcher.

PGCAT Page Catalog No Input VM Electronics

PGSIG _ Retrieves ROM signature Page# in prompt/X Ángel Martin

SIGPG? Finds page# if plugged Signature in ALPHA Ángel Martin

SUMPG _ Sums Page checksum Page# in prompt/X George Ioannou

PG? _ Page vital constants Page# in prompt/X W&W GmbH

ROM? _ _ Rom vital constants XROM id# in X W&W GmbH

 PG? returns miscellaneous information corresponding to the page number input in the prompt

in RUN mode, or in X as decimal value if run in a program. The information is as follows:

o Header function name in ALPHA, and:

o [XROM id#] ; [# of functions] in X. (in integer and fractional parts)

Note that when used on the POWERCL page it’ll return the vital constants for bank-3 (where
its code resides), which strangely enough are 56,86 in X (as it was explained at the beginning

of the manual)

Considerable trickery has been used modifying this function in revision “J” to be prompting –

despite being located in a secondary bank. This makes for a more consistent and usable user

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 62 of 113 August 2016

interface, common with other page functions. If there’s nothing plugged in the page the
message “NO ROM” will be shown.

,

Input prompt Page is not used (Free).

 ROM? is also a prompting function. It returns the ROM vital constants for the XROM id#

value input in the prompt, as follows:

o Page# where is plugged in X, and
o number of functions in Y.

The ROM header (first function name) is also displayed (but not saved in Alpha). Note that
this is very similar to PG?, only that the input is not the page number but the XROM id#

instead. If the ROM is not found the display will simply show “NO” – indicating that this
functions doubles as a test function as well, and therefore it’ll skip one line in a program in

this case.

 PGSIG will retrieve the signature string of the ROM plugged in the page entered at the

prompt (in Hex format) – or in the X register (in Decimal) if used in a program. If no ROM is
plugged it’ll return four “@” characters.

input prompt represents a “blank” signature value.

 SIGPG? Is the inverse function: it’ll return the page# where the ROM with signature input in

ALPHA is plugged – returning “NO MATCH” if no matching string is found.

 SUMPG prompts for the page number in Hex in a fancy manner, with alternating texts as

shown below (that alone covered its admission price). Its mission is to calculate the Checksum
byte and to write it in the last word of the page – and that it’ll do very nicely.

 PGCAT was described before in the CATALOGS section. See below the printout output using

JF Garnier’s PIL-Box and the ILPER PC program, showing a nice traceability of the pressed
keys:

CL / XCAT

PGCAT
3:-EXT FCN 2D

4:-LIBRARY#4

5:-TIME 2C
6:-PRINTER 2E

8:-YFNP'1C

9:-TOOLBOX 4
A:-SNDMTH 2X2

B:-HL MATH+
C: NO ROM

D:-AMC"OS/X

E:-POWERCL 3X
F: NO ROM

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 63 of 113 August 2016



String Manipulation and Alpha/Display functions.

The sub-function groups implemented in auxiliary FATs is a great concept, short from being perfect in

all but one component: they cannot be assigned, and thus a full function spelling must be done to
invoke them. This can become a nuisance for those sub-functions used frequently, and having them

available in a dedicated launcher can be a blessing.

This is exactly the situation with the STR$ / ALP$ launchers, conveniently accessible simply pressing

the A key at the main launcher prompt. This can be seen in the diagram below, note the related
items on the left side:

and the associated doppelganger:

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 64 of 113 August 2016

Think of them as ALPHA-Launchers, governed with the [A] key. Pressing A again will toggle to the

execution of the main CL prompt

4.1. The ALPHA Functions section.

This is now a much-extended set of functions compared to previous revisions. Some are clearly
related with one another, and a few of them are symmetrical complements to existing functions in the

native set. Let’s see them individually with the detail they deserve:-

A<>RG_ _ _ Swap Alpha and Regs. 1st. RG# in prompt Ken Emery (original)

AINT Append Integer part Takes absolute value Frits Ferwerda

ALEFTJ Alpha Left Justify Moves test to end Doug Wilder

ANUMDL ANUM with Deletion Gets number to X HP Co.

APPEND Append Text Turns ALPHA input on Doug Wilder

AREV Alpha Reverse Mirror image of text Frans de Vries

ASWAP Alpha Swap Around the “,” char Ángel Martin

CHRSET Character Set Shows the complete set Chris L. Dennis

CLA? Is Alpha Empty? YES/NO test function Doug Wilder

DTST Display Test Source: PPCJ V18 N8 p14 Chris L. Dennis

DTOA Display to Alpha Opposite to AVIEW Ángel Martin

 AINT appends the integer part of the number in X to ALPHA. Perfect to append indexes and

counter values without having to change the display settings (FIX 0, CF 29).

 ALEFTJ left-justifies ALPHA – by writing as many space characters as required until the total

length is 24.

 ANUMDEL works like ANUM, but also deletes the number found and placed in X.

 APPEND is equivalent to using the “append” functionality manually, i.e. pressing [ALPHA],

and “|-“ keys. More interestingly, in a program it will prompt the existing ALPHA contents for
the user to continue entering more. Similar to PMTA, but the initial string will remain.

 AREV will reverse the string in ALPHA, turning it into its mirror-image. For instance:

 

 ASWAP swaps the strings at the left and right of the comma character. Very handy for X-

Functions data input. Does nothing if comma is not there. For example:

 

 CHRSET will show all characters included in the character set of the machine. There are 128

characters in total, scrolled from right to left in groups of 12. Pressing any key will speed-up
the process but the execution won’t stop until they’re all shown. The screen below shows the

enumeration mid-stream:

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 65 of 113 August 2016

 CLA? Is a test function that returns YES/NO depending on whether ALPHA is empty or not –

or in other words, the test is true if ALENG is not zero. As usual, in program mode a line is

skipped if the test is FALSE.

 DTOA captures the display content and writes it into ALPHA. This is an elusive concept, as

there are no standard ways to just write text in the display not using ALPHA or other RAM

registers – but it’s used frequently in MCODE to transfer the display contents to ALPHA.

 DTST Simultaneously lights up all LCD segments and indicators of the calculator display, pre-

ceded by all the comma characters (which BTW will be totally unnoticed if your CL is running
at 50x Turbo!). Use it to check and diagnose whether your display is fully functional. No input

parameters are required.

, and

aVIEW Lower Case AVIEW No conversion occurs Ángel Martin

LOW$ Lower Case convert Conversion of chars. Ángel Martin

UPR$ Upper case convert Conversion of chars. Mark Power

 aVIEW shows the ALPHA contents displayed all with lower-case characters. Note that there’s

no conversion to the text in ALPHA, only the displayed characters. Note also that full-nut

machines (like those CL donors all are) cannot display most of them, so it’s a little academic
at this point. On a half-nut machine (or V41) it makes more sense, for instance:

 

 LOW$ does the actual character conversion to lower-case type, thus changing the contents

of ALPHA. For the example below, the string is as shown for both the full-nut and half-nut
models. This functionality is useful for the printer (which has a complete lower case character

set) and when typing ASCII files using lower case characters: just type it “normal”, then

convert them down in block.

 >

 UPR$ does the reverse conversion, getting the text back to upper case characters – perfectly

compatible with the machine character set, and thus legible in ALPHA.

ASCII ASCII value Does not remove char Melbourne ROM

LADEL Left Alpha Delete Removes leftmost char Ross Cooling

RADEL Right Alpha Delete Removes rightmost char Ross Cooling

RATOX Right Alpha to X Symmetric to ATOX Ross Cooling

XTOAL X to Alpha Left Symmetric to XTOA Håkan Thörgren

 ASCII is similar to ATOX but it does NOT remove the (leftmost) character from Alpha. Use it

to read its value into X, but leaving it alone (preserved in ALPHA). The following relationship

shall help understand the similarities: ATOX = ASCII + LADEL

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 66 of 113 August 2016

 XTOAL appends to the Left of the Alpha text the character which ASCII value is in the X

register. This is the symmetrical counterpart to XTOA, which appends the character to the

right of Alpha. Strictly speaking XTOA should be called “XTOAR”, and in fact that’s how the
functions were relabeled in the Extended-IO module.

 RATOX removes the rightmost character from Alpha and places its ASCII value in X, also

lifting the stack. It is therefore the symmetrical operation performed by ATOX, which strictly

speaking could be called “LATOX”

 RADEL deletes the rightmost character from alpha but doesn’t place its ASCII code in X, so

it’s a “diminished RATOX” if you will, in that it only does the first half of it.

 LADEL is similar to ATOX but not quite the same: Like ATOX it will delete the leftmost

character from ALPHA, but contrary to ATOX, its ASCII value will NOT be placed in X. ATOX
is a combination of both ASCII plus LADEL used consecutively; if this comparison helps.

Some of these functions are mutually inverses, one undoing what the other does. The figure
below shows these associations more clearly:

POSTSP Post-space string Deletes all before SPC Doug Wilder

PRESP Pre-space string Deletes all after SPC Doug Wilder

ASUB Alpha Substitute Replaces character ZENROM Manual

LEFT$ Left Substring Gets left substring Ross Cooling

MID$ Middle Substring Gets Middle substring Ross Cooling

RIGHT$ Right Substring Gets Right substring Ross Cooling

 LEFT$ is a sub-string function. They follow the BASIC model, using the number in the X

register to define the length of the sub-string. In this case the substring will be taken from the

left, truncating it from the rest. For instance with 5 in X:

 

 RIGHT$ has the equivalent functionality but taking the substring from the right. The

following example should document it, assumes 9 is in X:

 

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 67 of 113 August 2016

 MID$ takes the substring from the middle of the text, thus it requires two parameters to

define it: the number of characters to remove from the left is expected in Y, and the substring
length is expected in X. For example, type: 2, ENTER^, 4, XQ2 “MID$”

 

 PRESP and POSTSP remove the alpha characters to the right or to the left of the first blank

space found, leaving just what was before (PRE) or after it (POST).

 ASUB replaces the character located in the zero-based position entered in Y with the

character which code is in the X register. Only one character at a time will be replaced. For
example, with: 6, ENTER^, 85 , XQ2 “ASUB” will change the text from the left to the right

screens:

 

CVIEW Non-stop VIEW Avoids the printer halt Frits Ferwerda

VIEWA Non-stopping AVIEW Avoids the printer halt Ken Emery

ST<>A Stack exchange w/ Alpha Register swapping Ángel Martin

USWAP Swaps around “-“ String swapped Ángel Martin
ASWP> Swaps around “>” String in ALPHA Angel Martin

YBSP Alpha back space Rightmost chr removed W&W GmbH

YCL> CLA from “>” String in ALPHA W&W GmbH

ZOUT Complex displaying Uses X:Y values Ángel Martin

 ZOUT is a complex number display routine. It uses the values in X and Y registers taken as

real and imaginary parts of the complex Z, which is presented in the display and ALPHA. The
imaginary unit is represented by “J”

,

Values are used with the current number of decimal places set (the number returned by

DSP?), thus the display will scroll if the total length exceeds 12 characters. If any of the parts
is zero it’ll be omitted from the representation:

 or:

 ST<>A and A<>RG are simple register exchange routines that swap the contents of the

Alpha registers (that is M, N, O, P) with the stack registers X, Y, Z, T o or with a register block

starting with the RG# input at the prompt respectively. This is handy to temporarily save the
stack in alpha for later reuse. Note however that register P is partially used by the OS as

scratch, so depending on what you do in between two executions of ST<>A the content of

the T register may have changed.

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 68 of 113 August 2016

 ASWAP, YCL>, and YBSP are pretty much self-explanatory, performing partial Alpha

deletions and text swapping around the control characters “-“ and “>”. They are used by
some of the FOCAL programs included in the module. Because they were used in FOCAL

programs, these three functions were in the main FAT in previous revisions of the PowerCL

module, but have been moved to an auxiliary FAT after the program was modified.

This is probably a good moment to be reminded about the register map of the calculator, including

the buffer area (relatively small in comparison), the Status registers and the complete extended
memory – see figures below, taken from the CCD Manual and “MCODE for Beginners” book: (*)

(*) Correct addresses should be 201-2EF and 301-3EF for the first and second EM modules.

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 69 of 113 August 2016



5.1. X-Memory Utilities.

The table below shows the advanced X-Memory utilities, complementing and enhancing the standard

capabilities of the native system. Usual suspects, you’ll surely recognize the names.

ARCLCHR ARCL Character from file FNAME in Alpha Håkan Thörngren

CLEM Clear Extended Memory No inputs Håkan Thörngren

CLRAM Clear all RAM No inputs R. del Tondo

FHD File Header FNAME in Alpha Ángel Martin

FLTYPE File Type FNAME in Alpha Ángel Martin

PEEKR Peek Register RG# address in X Ken Emery

POKER Poke Register RG# address in Y Ángel Martin

RENMFL Rename File OLDName , NEWName Ángel Martin

RETPFL Retype File NAME in Alpha, type in X Ángel Martin

RSTCHK Reset Checksum FNAME in Alpha Håkan Thörngren

XQXM Execute (Program) File FNAME in Alpha Ross Cooling

READXM Read X-Mem from Disk FNAME in Alpha Skwid

WRITXM Write X-Mem to Disk Disk FNAME in Alpha Skwid

GETST Get Status Registers FNAME in Alpha Ángel Martin

SAVEST Save Status Registers FNAME in Alpha Ángel Martin

WORKFILE Appends Workfile name none Sebastian Toelg

The following short descriptions summarize the most important points for each function:

 ARCLCHR appends the character at the current pointer position of the ASCII file which name

is in Alpha (or the current file if no name is provided). The Pointer is advanced one position,

ready to retrieve the next character if needed.

 CLEM is an expeditious Extended Memory eraser – all files will be gone, just by deleting the

content of the X-Mem main status register, at address 0x040. In RUN mode the function will
show the message “DIR EMPTY” for confirmation.

 CLRAM will go beyond the previous scope, also clearing the contents of Main memory:

Buffers, Key assignments and data registers – in sum, ALL RAM will be gone. Similar to

MEMORY LOST for all that counts, so use it at your own risk.

 FHD will return the absolute address (in decimal) for the Header register of the file named in

Alpha. This is useful as input for PEEKR and POKER, RAMED and other memory editing

functions.

 FLTYPE returns the type of the file which name is given in Alpha. Valid file types are shown

in the table below, note the five custom extensions supported by the AMC_OS/X module:

File PRGM DATA ASCII Matrix Buffer Keys “T” “Z” “Y” “X” “H”

Type 1 2 3 4 5 6 7 8 9 10 11

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 70 of 113 August 2016

 RENMFL is a handy utility that renames an X-Mem file. The syntax is the same used by

RENAME for the HPIL Disks, that is the string “OLDNAME,NEWNAME” must be in alpha. The
function will check that the OLDNAME file exists (“FL NOT FOUND” condition otherwise), and

that there isn’t any other filed named NEWNAME already (“DUP FL” error message).

 RETPFL is a bit of a hacker trick: it modifies the file type information for the file named in

Alpha, changing it to the value in X. This is actually useful in a number of circumstances, like
sorting a Matrix file using SORTFL (which only works for DATA files): just change the type to

“2”, sort its contents with SORTFL, and change it back to “4”. You can use any value from 1
to 14 in X, other values will cause “FL TYPE ERR” conditions

 RSTCHK is a rescue function that restores the checksum value for a PROGRAM file. Use it if

this byte gets corrupt or when you alter the program file manually (hacker beware!), so the
file will recover its “valid” status.

 XQXM is a PROGRAM File Execute - direct execution of the program. Note that all GOTO’s

must be pre-compiled, and no calls to other programs may exist within the file.

 WRTXM and READXM are used to write/read the complete contents of the X-Memory

to/from a disk drive over HPIL. These functions exercise the full capability of the system, and
provide a nice permanent back-up for your XMEM files. Note that only the non-zero content

will be copied, thus the resulting disk file size will not be larger than required - in other

words, it won’t always copy all XMEM even if zero, like other FOCAL implementations of the
same functionality can only do. These functions are taken from the Extended-IL ROM, written

by Ken Emery’s alter ego Skwid.

 WORKFL will append the name of the current workfile to ALPHA. Easy does it!

 SAVEST and GETST are special in a couple of ways. For starters because their subject is the

complete Status Registers, i.e. the “Chip0” of the system RAM. Use SAVEST to make backups

of the entire status registers area to XMEM, including the stack, flags, Alpha, and the other
control registers. Use GETST to restore the status registers back to the same state. For

obvious reasons the file size will always be 16. They’re also special because they use a file
type 7, which is properly recognized as type “T” by the CAT’4 implementation in the AMCOS/X

module:

A couple of observations are in order:

o The XMEM file name is expected in ALPHA, thus this imposes a little limitation on
things. You can however add a comma to the FileName and write additional text after

it – which will be ignored by the functions.

o Register 12(b) stores the program counter (PC). Executing GETST in a program will

overwrite the current PC, and the program execution will be “lost” – going to the
same place it was at when the status registers were saved. There are more tricky

issues using these in PRGM mode, like the question of the subroutine stack and the
program line. Suffice it to say it’s not really advisable – yet I resisted the idea to make

it non-programmable, but users beware!

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 71 of 113 August 2016

o Saving and restoring the Key Assignments involves two separate actions. GETST only
restores the key mappings in registers 10(|-) and 15(e), but it doesn’t have anything

to do with the actual KA registers in the I/O area. Make sure you use SAVEKA and
GETKA instead for this need, or the key assignments will be scrambled. See the KA

utilities section.

 SAVEZS and GETZS are really buffer functions in disguise – thus a good segue way to
the next section. Use them to store and recall the Complex stack to/from an Extended

Memory file. This includes the five complex registers Z, W, U, V, and LastZ; plus the

buffer header and control registers – thus the file size is always 12. (Refer to the 41Z
manual for details if interested).

The file type used is 8, which is recognized by the CAT’4 implementation in the AMCOS/X

as type “Z” (how could it be otherwise?):

Note: For the Z-Stack you can also use SAVEBF and GETBF with a buffer id#=8 input in X (see

next section), but the resulting XM-file will have a generic type “B”, as opposed to the specific for
the Complex Stack.

 Last in this section are well known amongst all HP41 users, PEEKR and POKER. PEEKR can

be compared to the RCL function, however it is now possible to read the contents of any

register, and without normalization, into the X register. This removed one of the main
problems of synthetic programming. The address of the register to be read is entered as

absolute address in to X. As when using RCL IND X, the stack registers are lifted. PEEKR
works for every existing register address from zero to 1,023. If we want to use relative data

register numbers with PEEKR, the absolute address of the data registers must be first

obtained.

 POKER writes over the absolute register, which address is specified in the Y register, with the

contents of the X register. POKER works for the entire existing register range of the

calculator. The stack registers remain unchanged, as long as they are not specified by the
absolute address in Y. Since POKER can change any register, this function should only be

employed if the calculator structure is well understood. Otherwise it may result in unwanted
changes in programs, data registers, status registers, etc. or even a MEMORY LOST condition.

Example: Creating second sets of Main and Extended Memory.

A nice utilization of these functions on the 41CL are the examples shown below to create backups of

your complete Main memory and Extended memory sets – located in RAM block 0x801 (that is,
above the standard calculator RAM space located at 0x800).

Because PEEKR and POKER accept input addresses higher than the standard calculator range,

they’re well suited for the task. Basically all we need to do is copy the contents of the

Main/Extended memory from its current addresses (refer to figure in page 66) to addresses located
1k above them. In fact, one can have an alternate set of memory and “swap” between both as

needed, duplicating so the calculator’s on-line capacity. An additional benefit is that the secondary
set will not be affected in case of a MEMORY LOST, thus you can use it as a safety backup as well.

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 72 of 113 August 2016

Main memory is trickier than extended in that the status registers should also be included in the
backup to ensure a properly configured FOCAL chain and memory configuration. These must

include register 13(c), and ideally also 10(+), 14(d) & 15(e) for compatible flags and key
assignments definition (together with the KA registers in the I/O area).

Below are the programs to swap the sets of Main and Extended memory at your convenience,
MMSWAP and XMSWAP respectively:

The program below copies the main memory to the higher location for a backup, or to prepare the

destination for successive main memory swapping (needs to “prime the pump” to make sure the

second set is compatible with the OS).

Note: you could also do the initial step copying the complete 4k block using YMCPY, with the
following string in ALPHA: “800>801”. This would be faster than MMCOPY but will not discriminate

Main Memory from Extended one, so both will be backed up.

Note: this section is clearly superseded by the function set described in the YMEM launcher, see
section 4.1, pages 43 to 45. It has however some usefulness as it only requires OS/X functions and
thus can be used independently from the PowerCL itself.

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 73 of 113 August 2016

At the risk of stating the obvious, MMSWAP cannot be run from main memory! – or you’ll get nice

pyrotechnics and a guaranteed ML event. Make sure you run it from ROM (HEPAX or similar), or
even from X-Memory if you are up to those tricks.

As interesting as these examples are, don’t forget that being in sRAM the alternate sets of Main and

Extended memory will be lost when the calculator battery goes flat. For a permanent backup refer
to section 2.5.5 on page 53, describing the flash backup and restore programs YWALL and YRALL.

CL board: The soul in the machine.

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 74 of 113 August 2016

5.2. Buffer Utilities

Fascinating things these Buffers, so challenging and elusive they are that prompted the development

of the “BUFFERLAND” Module. Many of its functions are incorporated in here as well, as follows:

BFLNG Buffer Length Buffer id# in X Ángel Martin

BFLST Lists Buffers Shows list in Alpha David Yerka

BFVIEW Views Buffer contents Displays all registers Ángel Martin

BUFHD Buffer Header Address to X Ángel Martin

CRBUF Creates Buffer ID#,SIZE in X Ángel Martin

DELBUF Deletes Buffer Buffer id# in X Ángel Martin

GETBF Gets Buffer from file FileName in Alpha, id in X Håkan Thörngren

GETZS Gets Z-Stack from file FileName in Alpha Ángel Martin

REIDBF Re-issue Buffer id# OLDID,NEWID in X Ángel Martin

RESZBF Resize Buffer ID#,SIZE in X Ángel Martin

SAVEBF Save Buffer to File FileName in Alpha, id in X Håkan Thörngren

SAVEZS Saves Z-Stack to File FileName in Alpha Ángel Martin

Not listed here is the “queen” buffer function, BFCAT – which was included in the “CATALOGS”

section covered before. A quick summary recap on “buffer theory” will help understand this section

better:-

1. Buffers reside in the I/O area of RAM, which starts at address 0x0C0 and extends up until the
.END. register is found. Typically they are located right above the Key Assignments registers,

the only exception being buffer-14, used by the Advantage Pac to hold the SOLVE and INTEG
data (expected to be in fixed addresses by the code). Note that this implies that the actual
location of a buffer will be dynamically changed when Key assignments are made or removed;

when timer alarms are set or run, and possibly also when other buffers are removed - either by
the OS housekeeping tasks or using the buffer functions.

2. Each buffer has a header register (at the bottom) that holds its control data. The structure of

the header varies slightly for each buffer, but all must have the buffer type (a digit between 1

and E) repeated twice in nybbles 13 and 12, as well as the buffer size in nybbles 11-10
(maximum 0xFF = 255 registers). The rest are buffer-dependent; for example the 41Z buffer

holds the data format (RECT or POLAR) in nybble 9. The HP-IL Devel buffer uses nybbles 9-7
to store the pointer value, and nybble 3 to hold the pointer increment type (MAN or AUTO).

T T S Z A D R

13 12 11 10 9 8 7 6 5 4 3 2 1 0

3. Some buffers write the address location in the [S&X] field (nybbles 2-0) but this is of relative

use at most, since the buffer can get re-allocated as mentioned above. In fact, BFCAT uses
that field to record the distance to the previous buffer in the I/O area, necessary to keep tabs

with the RAM structure in SST/BST operation mode.

4. When the calculator awakens from Deep Sleep the OS erases nybble 13 from all buffer headers

found. The execution is transferred to the Polling Points of those modules present, which
should re-write the buffer type in that nybble for those buffers directly under their

responsibility. At the end of this process (when all Modules have done their stuff) the OS
performs a packing of the I/O area, deleting all buffers not preserved” – i.e. with nybble 14 still

holding zero.

5. Under some rare circumstances a given buffer can exist in memory as a “left-over” not linked

to any module (i.e. nybble 13 in the Header register is cleared). The OS upon the next

PACKING operation will reclaim these orphan buffers, so their life span is very short – get what
you need from it before it’s gone!

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 75 of 113 August 2016

Note that to denote this contingency, BFCAT will add a question mark to the buffer id# in the display.
For example, see the screen below showing an “orphan” buffer id#5 on V41:

With these preambles made let’s delve into the description of buffer functions. The following general
remarks and individual comments apply:-

BFLST is a poor-man’s version of the buffer catalog, showing a short list in Alpha of the buffer
id#’s currently present in the system; (lean and compact, see example below):

When the function operates on a given buffer its id# is expected to be in the X register. This is the
case for BFLNG, BUFHD, BFVIEW. The X-MEM Save/Get functions SAVEBF and GETBF (seen in

next section) also expect the File Name in Alpha.

The input for CRBUF and RESZBUF is given in X as a combined

decimal number: ID#,SIZE The integer part represents the buffer
id# (must be between 1 and 14), and the decimal part its size

(must have three decimal places). Maximum size is 255 registers,
larger values (as well as zero) will trigger “DATA ERROR”

messages. This convention also applies to REIDBF, so the new

id# must be expressed with three significant digits:

9,010 ; XQ$2 “REIDBF” -> changes buffer #9 into buffer #10

Note that those buffers created with CRBUF are somehow
“extemporaneous” (i.e. not managed by dedicated modules) - thus

they’ll be short-lived by nature, because they won’t survive a

power-off cycle.

The operation of RESZBF is compatible with KA and multiple
buffers existence. Note however that while upsizing a buffer will be

smooth and will keep the previous buffer contents, downsizing it
will cause loss of the data contained in the removed section.

DELBUF will remove the buffer with id# in X. It works simply by

clearing the nybble 14 in the buffer header register, and then

calling the OS routine [PKIOAS] to reclaim the registers previously
used by it – so no “uncommitted” buffers are left behind. This function is equivalent to CLB,

available in the CCD Module and its derivatives (like the AMCOS/X). Also available in those ROMs is
function B?, to test the existence of a buffer.

Saving and Getting buffers in/from Extended memory with SAVEBF and GETBF follows the same
convention used for other file types, with the buffer id# in X and the FileName in Alpha. Error

handling includes checking for duplicate buffer (“DUP BF”), buffer existence (“NO BUF”), as well as
previous File existence (“DUP FL”). It is possible to have multiple files with the contents of one

specific buffer id#, but only one buffer id# can exists in the I/O RAM area at a time.

GETBF, CRBUF and RESZBF will check for available memory, showing “NO ROOM” when there

isn’t enough room in main RAM to proceed.

b3 B3 Header

b2 B2 Header

b1 B1 Header

KA regs

0C0

B3

B2

B1

RAM

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 76 of 113 August 2016

5.3. Key Assignment Utilities

The table below shows the Key Assignments related functions. Typically, no inputs are required (no

need to identify the “buffer type” in this case) - with a few of exceptions:

ASG _ Multi-byte ASN Supports synthetics Frits Ferwerda

GETKA Gets KA from File FileName in Alpha Håkan Thörngren

KACLR Clears KA / Bufefrs OK/OKALL in Alpha Hajo David

KALNG KA Length No inputs Hajo David

KAPCK Packs KA Area No inputs Hajo David

LKAOFF Deactivates Local KA No inputs Gordon Pegue

LKAON Activates Local KA No inputs HP Co.

MRGKA Merge KA to File FileName in Alpha Håkan Thörngren

SAVEKA Save KA to File FileNAme in Alpha Håkan Thörngren

 ASG is another example of first-class MCODE programming: imagine being able to directly

input multi-byte functions (even with synthetics support) into the ASN prompt, so to assign
“LBL IND e”, or “RCL M” to a key - not using key codes or byte tables? Well no need to

imagine it, just use ASG instead. This function is taken from the MLROM, and it resides

completely in the Page#4 Library, with only the FAT entry in the POWERCL calling it. You’re
encouraged to refer to the MLROM documentation for further details.

 KACLR expects a confirmation string in Alpha. With “OK” only the KA will be erased, and with
“OKALL” the complete IO area will be purged (that is the KA registers and ALL buffers).

 Saving and getting KA in/from Extended Memory with SAVEKA, GETKA and MRGKA also

expects the FileName in Alpha. GETKA will completely replace the existing key assignments
with those contained in the file, whilst MRGKA will merge them – respecting the unused keys

so only the overlapping ones will be replaced. Same error handing is active to avoid file

duplication or overwrites. Like their Buffer counterparts they will check for available memory,
showing “NO ROOM” when there isn’t enough for the retrieval.

 LKOFF and LKON are meant to be used together, to temporarily suspend the local key

assignments (on keys A-J) so that it doesn’t interfere with local program labels. These

functions only modify the key mappings in status registers 10(”|-“) and 15(“e”), not altering
the actual KA registers.

 KAPCK will pack the KA registers, compacting the voids (blanks) left behind when un-

assigning individual function keys. The diagram below shows that each KA register can hold

up to three key assignments: two nybbles for the key code and two for the function id#. It
also shows that they always have 0xFF in nybbles 13 and 12 – which explains why 15 is not

available for buffer id#.

F F K Y C D K Y C D K Y C D

13 12 11 10 9 8 7 6 5 4 3 2 1 0

 KALNG returns the number of registers used in the I/O area for key assignments. So you
could use it before and after calling KAPCK to see the effect of the packing (if anything at all).

If no key assignments exist then the result will be zero.

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 77 of 113 August 2016

5.4. Page Functions Revisited.

The following group deals with more page-related functions not covered in the IOPG# launcher

section. These are loosely defined as those functions operating on complete pages, or retrieving page-

related information. They are as follows:

BANKS? _ Gets # of banks Page# in X (decimal) Ángel Martin

BLANK? _ Checks page contents Page# in X, YES/NO Ángel Martin

CLBG Clear Block BBBEEE in X (as NNN) Frits Ferwerda

PGCPY _ Copy Page FROM: in X, TO: prompt Ángel Martin

PGROOM _ Counts zero words Page# in X (decimal) Ángel Martin

PGSUM _ Sums Page checksum Prompts for Page# Frits Ferwerda

READPG Reads page from HP-IL Page# and FileName R. del Tondo (?)

ROMCHKX Verifies ROM checksum XROM id# in X HP Co.

WRTPG Writes page to HP-IL Page# and FileName R. del Tondo (?)

X=PG? _ Compares two Pages Pg# in X and Prompt Ángel Martin

DECODE NNN to HEX string NNN in X VM Electronics

CODE HEX string to NNN Hex string in Alpha VM Electronics

XQ>XR XEQ to XROM Converts instructions W&W GmbH

Note the color-code convention for function names: BLUE means located in the main FAT (use XEQ to

invoke them), BROWN means located in a secondary FAT (i.e. you need to use XQ1 or XQ2 to invoke
them). Of course you can always use XQ2 for any of them, as discussed before.

BLANK?, BANKS?, and PGROOM were added in revision “J”, and (even if they are sub-functions!)
are prompting as of revision “N2”. The three share the same data input approach: a hex page id# (0-

F) in RUN mode, and a decimal number in X in program execution.

 BLANK? Is a test function that checks the contents of a full page, looking for non-zero

words, displaying YES/NO in RUN mode accordingly. If at least one word is not a zero the

result is false and a program line is skipped when used in a program. Note that the word FFF
is also considered to be a blank; this is used by the CL and some other MLDL boxes for

“empty” Flash blocks.

 BANKS? returns the number of banks for a given page, which number in decimal is input in

X. The allowed range of results is of course 0-4: non bank-switched ROMS return a “1’, and

empty pages will return zero. This function reads the third nibble of the last three words in
the ROM signature, which is where the bank-switched configuration is supposed to be

recorded according to some undocumented criteria. The few authors who released this type
of modules followed this rule loosely, thus the result may be a little off. For example, the

convention used by Zengrange for the ZEPROMs is not exactly the same.

Not even HP followed this to the letter, or if they did I cannot figure out the Advantage’s

scheme. Another discrepancy occurs on the CL itself, where the time signature of the TIME
module has been altered – misleading BANKS to report 4 banks instead of just two.

 PGROOM counts the number of words with zero value in the page which number is in X.

Interesting to see the density of your favorite MCODE modules (use the OS as a ranking

benchmark), and to get an idea on how much room is still available in the page.

Application Example.- How big is your lollypop?

The short program below – XRAY – will calculate the complete number pf banks configured on-line in
the calculator at a given time. I have corrected the TIME Module glitch just by starting to scan the I/O

but at page 3, thus the extra banks reported for it would account for the OS pages 0-2.

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 78 of 113 August 2016

The program first enumerates the banks found for each page (set it in TURBOX if you want to see
them), and then shows the total actual size, given in kilobytes - with 4k per page. Note that the listing

shows BANKS? and ARCLI for clarity, but they are in fact XQ2 and XQ1 functions with their
corresponding indexes in a second program line.

Examples. An MMU-disabled CL would return 24k for the CX OS plus another 4 for the YFNS/YFNP;

that is a minimum “baseline” of 28k. Obviously the PowerCL must be plugged in as well to run the
program, which adds another 16k to the sum you’re likely to see,

A full-house configuration like the one shown in the figure below can have up to 160 kB, quite an
impressive feat considering we’re talking about a hand-held calculator design from 1979 – which

although extended, expanded, and stretched to the limit really shows the versatility and solid
engineering of the design.

Port Page Addresses Primary Bank Secondary Bank Bank #3 Bank #4

FFFF

F000

EFFF

E000

DFFF

D000

CFFF

C000

BFFF

B000

AFFF

A000

9FFF
9000

8FFF

8000

7FFF

7000

6FFF

6000

5FFF

5000

4FFF
4000

3FFF

3000

2FFF

2000

1FFF

1000

0FFF

0000

YMM_1C

PRINTER

1

9

HEXED /DSM

CX FNS - Bank 2

hpi l

OS - ROM 2

IR Printer - B2

AEC PROG

OS - ROM 0

2

1 OS - ROM 1

CX FNS- Bank 1

Library #4

AMCOSX4 - B2

CL Library

AMCOSX-4

SandMath - B2

0

6

3

7

4

5

PWERXT-B2

TIMER

8

F

E

D

C

HP-16C Emulator HP-16C Emulator

3

YFNX_1G

HL_Math - B1

HP-16C Emulator

HEPAX_1G- b1

ADV Matrix - B1

2

B

A

4

PWERXT-B1

Solve & Integ

GM Solvers / TVM

SandMatrix - B1

HL_Math - B2

Vector Calc- B2

PWERXT-B3 PWERXT-B4

41-UMSSandMath - B1

HEPAX_1G- b4

ADV Matrix - B2

HEPAX_1G- b3HEPAX_1G- b2

HP-16C Emulator

AEC PROG

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 79 of 113 August 2016

 CLBG will clear the block between addresses “bbbb|nnnn” given as a NNN placed in X, which

is used as input. If the input is just one digit it’ll delete the complete page. Obviously will only

work with RAM-mapped pages. Note that CLRAM in the “-HEPAXA2” section also clears the
complete page, and it takes a decimal input for the PG# in X. Both require the string “OK” in

Alpha, as a security measure to avoid accidental usage.

 X=PG? compares the complete contents of two pages, returning YES/NO depending on the

result and skipping a line in PRGM mode when false. The execution time will depend on the
logical condition, whereby a “NO” result is returned as soon as the first non-equal word is

found.

 PGCPY copies the contents from page number in X to the page entered in the prompt (in hex

format, 0-F). The destination page must be mapped to RAM for a correct operation. No

confirmation string is required!

COPYROM in the “-HEPAXA2” section, pretty much does the same as CPYPG, but taking the
FROM: page input from Y and the TO: page input from the X register instead of the prompts.

The function name is somehow misleading, as it’s operating on PAGE numbers and not on

XROM id#’s – I left them unchanged as in the original HEPAX.

 PGSUM does the same as SUMPG (seen in the IOPG# launcher section) but using a simpler

prompting approach for the input. In program mode PGSUM will take the page number from

X. Its mission is to calculate the Checksum byte and to write it in the last word of the page –
and that it does very nicely. And nothing better than using the next function to verify the

result…

 ROMCHKX will check the ROM which XROM id# is in X for the correct checksum byte value.

The display shows information message while the test takes place, followed by a confirmation

or a warning depending on the case.

,

Incidentally it’s more than likely that if you run ROMCHKX on the POWERCLitself the result is

“BAD”. This is not because of an error; I just usually don’t bother to update the checksum
values, as the code is updated very frequently.

 READPG and WRTPG are the mandatory read/write entire blocks (a.k.a. pages) to the HP-IL

disk drive. Very much equivalent to the HEPAX’ READROM and WRTROM, where the

destination page is expected to be in X. It works on any page, RAM or ROM, and OS
included. Note: for bank-switched modules only the first bank is copied!

Their code is entirely contained in the Library#4, so this is another example of the “free-

riders” only needing the FAT entry and the calling stub footprint. They are taken from the

CCD OS/X, thus I attributed authorship to R. del Tondo – which to this date is unconfirmed.

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 80 of 113 August 2016

 XQ>XR is without a doubt a powerful function. It converts the XEQ instructions included in a

FOCAL program (saved in Q-RAM) into the appropriate XROM equivalents, assuming that the

calls were made other programs residing in a plugged-in module. The need for this arises
when programs are loaded on Q-RAM devices, like the HEPAX RAM.

The net result is substantial byte savings, because any XROM instruction takes only two bytes,

regardless of the label length of the called program. XQ>XR is not strictly a “full-page”
function, but it only operates on RAM pages thus its inclusion here is justified.

 will be shown while the conversion occurs.

 Lastly CODE and DECODE are the ubiquitous NNN<>HEX functions present in every ROM

worth its name – in fact the PowerCL has two sets of them, ONE IN THE “-HEPAXA2”
SECTION and another as part of the “-PG FNS” section, aptly named (you’ll never guess) CDE

and DCD respectively. We can’t have enough of a good thing, or so it seems…

An example to impress your friends: decode the contents of the Status “c” register.

 

 Switch on ALPHA to see the complete contents scroll.

 ©Photo By Jürgen Keller, 2011.

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 81 of 113 August 2016

5.5. Flag Handling functions.-

Modest but still interesting – the functions below round up the flag handling capabilities.

XCF Extended CF Allows ANY flag# Michael Katz
XSF Extended SF Allows ANY flag# Michael Katz

TOGF Toggle Flag Allows ANY flag# Ken Emery

FC?S Is Flag Clear and Set it Allows ANY flag# Ken Emery

FS?S Is Flag Set and Set it Allows ANY flag# Ken Emery

 XCF and XSF are natural extensions to the mainframe standard Clear/Set Flag functions.

Unlike those, the input is expected in X as a decimal entry. Also unlike them they’ll accept

anyone of the 56 flags from 0 to 55. When used in a program enter the flag# in the preceding
program line.

 TOGF is a toggle function, inverting the status of the flag which number is in X. It’s

equivalent to IF, the Invert Flag routine in the PPC ROM. See the PPC ROM manual pages 217
and 218 for fun examples altering the status of the system reserved flags.

 FS?S and FS?C are the symmetric counterparts to the native FC?S and FC?C functions. They

extend the logic and provide shorter handling – sometimes not possible without them. They

also operate on the complete flag range, as you’d expect.

Probably not a bad moment for a quick flag recap, see the table below:

0-4 shown when set

5-8 general-purpose
9-10 matrix end of line/column

 11 auto execution
 12 print double width

 13 print lower case

 14 card reader allow overwrite
 15-16 HPIL printer mode:

 0) manual; 1) normal
2) trace; 3)trace w/stack print

 17 record incomplete
 18 IL interrupt enable

 19-20 General-Purpose

21 printer enabled
 22 numeric input available

 23 alpha input available
 24 ignore range errors

 25 ignore any errors & clear

 26 audio output is ignored
 27 user mode is active

 28 radix mark: 0). 1),
 29 digit groupings shown:

0) no; 1) yes

30 catalog set

31 date mode: 0)M.DY 1)D.MY
32 IL man I/O mode

33 can control IL
34 prevent IL auto address

35 disable auto start

36-39 number of digits, 0-15
40-41 display format: 0) sci; 1) eng

2) fix; 3) fix/eng mode)
42-43 angle mode: 0) deg; 1) rad

 2) grad; 3) rad
44 continuous on

45 system data entry

46 partial key sequence
47 shift key pressed

48 alpha keyboard active
49 low battery

50 set when message is displayed

51 single step mode
52 program mode

53 IL I/O request
54 set during pause

55 printer exists

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 82 of 113 August 2016

5.6. Other Miscellaneous utilities.

The following functions perform housekeeping tasks and are included in the POWERCL for added

convenience.

HEXIN _ HEX Input 1-9, and A-F Håkan Thörngren

HEXKB _ HEX Entry 1-9, and A-F Clifford Stern

ROMCAT _ _ ROM Catalog Starts CAT’2 at ROM id# J.D. Dodin

SPEED CPU cycles per second No input Doug Wilder
T>BS _ _ Base Ten to Base Prompts for Base Ken Emery

PLNG _ Program Length Program name in prompt W&W GmbH

RTN? Pending Returns? Tests for RTN stack Doug Wilder

XROM _ _ Rom function Launcher Prompts for values Clifford Stern

XQ>GO XEQ to GO Drops one RTN Address Håkan Thörngren

DCD NNN to HEX string NNN in X W&W GmbH

CDE HEX string to NNN Hex string in Alpha Ken Emery

Some brief comments pertaining to each function follow:

 HEXKB is the well-known HEXNTRY function published in Ken Emery’s book “MCODE for
beginners”, and originally written by Clifford Stern. For all purposes it supercedes CODE (or
CDE), which is available in the AMC_OS/X module anyway.

 HEXIN does basically the same thing, except that it uses the text in Alpha (if any) as prompt

(useful in programs). Use Back-Arrow to delete digits and R/S to terminate the data entry.

You may be wondering how come this is a prompting function, if it is located in a bank-

switched page – and the answer is that such is possible as long as the partial key entry

method is not employed. This is the case here, and also in SUMPG as well – both functions
use a key-pressed detection loop as alternative approach, more demanding on power

requirements as the CPU doesn’t get to Light Sleep - and therefore no switching back to bank-
1. The drawback of course is the higher battery consumption, not to be underestimated.

 XROM is a well-known function to directly call any function within a plug-in ROM, knowing its

ROM id# and function#. Written by Clifford Stern in the heydays of the 41 systems, with a
real inside knowledge of the internal OS routines [PARSE]. Both prompt inputs are to be

entered as DECIMAL values.

 ROMCAT was written by Jean-Daniel Dodin, well-known MCODE pioneer and HP-41 old hand.

It prompts for the XROM id# and starts CAT’2 from the position used by such ROM (if
present). The usual conventions apply, whereby only the ROM headers are listed unless the

catalog is stopped and ENTER^ is pressed in manual mode.

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 83 of 113 August 2016

 SPEED is a curious gem, although I’m not completely sure I managed to transcribe it well.

It’s supposed to return the number of CPU cycles per second, so I thought it’d be ideal for the
CL given the different TURBO modes. Alas, it always returns the same value (1,126.316),

irrespective of the TURBO setting. This is about 6 times bigger than the normal HP-41 result,

(167,333) for what is worth. We have Doug Wilder to thank (again) for writing it, using the
Time module to keep pace with things.

 PLNG asks for the program name in the prompt and returns the program length in bytes.

This function is not programmable – and it’s extracted from the CCD ROM. Note that the
ALPHA mode is turned on automatically for you – no need to press it twice.

 XQ>GO is a nifty function that drops one RTN address from the subroutine RTN stack. This

can come very handy when you don’t want to return to the calling XEQ while running a

subroutine, for example depending on the partial results obtained.

 RTN? Is related to the same subject: it’s another test function that returns YES/NO

depending on whether there are pending returns in the subroutine RTN stack. In fact you

could use them combined, to cancel the return only if there’s a pending RTN to go back to.

 DCD and CDE are the classic NNN to/from Hex utilities, also used as subroutines throughout

the module and thus made available to the user as individual functions as well. Use them to
decode the output of PEEKR, or to encode the input for POKER (albeit HEXIN or HEXKB

provide a more interactive way to do the latter – see next section for details). Note that here
too functions CODE and DECODE in the “-HEPAX2” group basically do the same thing.

 T>BS (Ten to Base) is a prompting function for base conversions – where in RUN mode you

input the destination base. The result is show in the display and also left in ALPHA. Note that

the original argument (decimal value) is left in X unaltered, so you can use T>BS repeated
times changing the base to see the results in multiple bases without having to re-enter the

decimal value.

T>BS is programmable. In PRGM mode the prompt is ignored and the base is expected to be
in the Y register. Obviously using zero or one for the base will result in DATA ERROR. The

prompt can be filled using the two top keys as shortcuts, from 1 to 10 (A-J), or the numeric

keys 0-9. The maximum base allowed is 36 – and the “BASE>36” error message will be
shown it that’s exceeded (note that larger bases would require characters beyond “Z”).

The maximum decimal value to convert depends on the destination base, since besides the

math numeric factors; it’s also a function of the Alpha characters available (up to “Z”) and the

number of them (length) in the display (12). For b=16 the maximum is 9999 E9, or
0x91812D7D600. T>BS is an enhanced version of the original function included in Ken

Emery’s book “MCODE for Beginners”. The author added the PRGM-compatible prompting, as
well as some display trickery to eliminate the visual noise of the original implementation. Also

provision for the case x=0 was added, trivially returning the character “0” for any base.

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 84 of 113 August 2016

5.7. Extra Functions – Miscellaneous Con’t.

Well yes, there is more! - The table below lists the remaining of miscellaneous functions in the

secondary FATs; still excluding the “-HEPAXA2” and “-56BITS” groups.

The underlying idea is to have the most complete function set always available within in those bank-

switched pages of the POWERCL – so that there’s no need to PLUG other modules, or at least to do it

as less frequently as possible. A careful selection of candidates should have screened the less-useful
functions, although of course that’s always a subjective view.

What follows are the brief descriptions of the functions, grouped them by functionality area - Starting

with the system information group.

CRTN? Curtain location No inputs Ken Emery

DREG? # of Data Registers Set No inputs Ken Emery

DSP? # of Decimal Digits Set No inputs Ángel Martin

FREG? # of Free Registers No inputs Ken Emery

RG? Stat RGs location No inputs Ken Emery

 CRTN? Returns to X the absolute address of the curtain (i.e. separation between program

and data registers). No input value is required. The general equation is: Total Registers =

Data Regs + Program Regs; where: TotalRegs = 512 on the CV and CX models.

 DREG? Is another SIZE finder, slightly faster than the native version SIZE?

 FREG? Returns to X the number of available (free) program registers in Main Memory. No

input value is required.

 DSP? is used to return the number of decimal places currently selected in the display. This is

independent from the decimal mode, FIX / SCI / or ENG.

 RG? Returns the current location of the Statistical Registers - i.e. those used by the

Statistical functions to accumulate the data pairs. Basically it’s identical to the CX function

REG?.

READF Reads Data File from IL Disk FileName in ALPHA R. del Tondo

WRTDF Writes Data File to Disk Disk FileName in ALPHA R. del Tondo

FSIZE HP-IL Disk File Size Disk FileName in ALPHA Dutch PPC members

CVIEW Non-stop AVIEW Text in ALPHA Frits Ferwerda

 FSIZE Returns to X the length in registers of the (primary) mass storage file which name is

specified in Alpha. If no HP-IL is present on the system an error message will be shown.

 READF and WRTDF are used to read and write individual DATA files between the IL Drive

and XMEM. They are slightly more complicated to use than other file types (like GETAS and

SAVEAS do for ASCII file types), because the Data file must be previously created in the
destination. Remember also that READXM and WRTXM operate on the whole XMEM

contents, not on individual files. See their description paragraphs above.

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 85 of 113 August 2016

DGT Mantissa Digits sum Number in X Ángel Martin

VMANT Views Full mantissa Number in X Ken Emery

ST<> Swaps Stack and StatRG No inputs Nelson C. Crowle

X<I>Y Swaps INDirect X<>Y No inputs Nelson C. Crowle

 DGT is a divertimento utility that calculates the sum of all mantissa digits, returning it to the

X registers. You can use it a s a pseudo-random number generator, or just for the sake of it.

 VMANT shows the full mantissa of the value in X. The display will present it briefly, and then

will return to the standard display settings – unless you press and hold any key during the

initial displaying. Good eye-hand coordination is required :-)

 ST<> exchanges the contents of the Statistical registers with the Stack. Combined with

REG _ _ this can be useful to MOVE or SWAP blocks of registers in groups of five, using the

stack as intermediate conduit. For instance:

REG_10, ST<>, REG_20, ST<> will move R10-R15 to R20-R25. This is just 6 bytes

needed, as opposed to 11 if we were using the REGMOVE with its control word in X:
10,020005.

 X<I>Y is also about register swapping – this time using X and Y as indirect pointers, so it’s

equivalent to: RCL IND Y, RCL IND Y, STO IND T, RDN, STO IND Y.

GETPC Gets Program Counter No inputs W&W GmbH

PC<>RTN Exchanges PC and RTN No inputs W&W GmbH

PUTPC Puts Program Counter PC location in X W&W GmbH

 GETPC, PUTPC, and PC<>RTN are program-pointer manipulation functions. Use them to

recall the location of the current PC, to re-set to another position, or to exchange it with the

(last) subroutine return address. They are to be used with a solid understanding of their
capabilities (and possible consequences). These functions are not as user-friendly as the CCD

Module counterparts PC>X and X>PC, as proven by the fact that their input and output are

NNN. You can use DCD to decode the actual addresses.

COMPILE Compiles jump distances Global LBL in ALPHA Frits Ferwerda

TGPRV Toggle PRIVATE status Program Name in Alpha W&W GmbH

CSST Continuous SST PC position on program Phi Trinh

GTEND Goes To .END. No inputs Ken Emery

LASTP Go to Last Program No inputs ZENROM Manual

 TGPRV is the inevitable Set/Clear Private status functions – with a twist. To use it the

program name must be in ALPHA. This includes programs in RAM or in sRAM (seen as ROM

by the calculator). If Alpha is empty, the program pointer must set to any line within the
program. TGPRV is programmable.

 GTEND Sends the program counter to the permanent .END. in program memory (the position

of the Curtain). Almost identical to it is LASTP, the difference being that the program pointer

is placed at the first line of the Last program in RAM, i.e. the one closest to the .END.

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 86 of 113 August 2016

 COMPILE is a very powerful function that writes all the jump distances in the GOTO and XEQ

instructions within the program named in ALPHA. This is extremely useful when uploading a
program to a Q-RAM device, like the HEPAX RAM. Having all the jumping distances compiled

expedited the execution of the program (no need to search for the label), and also guarantees
that short-form GOTO’s are not used inappropriately.

o They are feedback messages shown during the execution, indicating which type of
instructions are being compiled: 2-Byte GOTO’s, and 3-Byte GOTO/XEQ’s.

,

o When the work is done, the message “READY” is shown to inform the user that the

execution is completed. Alternatively if a label is missing the execution stops with the
program pointer set at the GTO/XEQ statement, and a working message is shown:

 CSST Sequentially displays the program steps of the program pointed at by the Program

Counter (PC). It’s equivalent to using the SST key multiple times, and thus its name. The

delay between lines shown can be adjusted by pressing any keyboard key, see the original
article in PPCJV9N7 p49 for further details. To use it, position first the PC at the target

location (using GTO or similar). Note that it won’t list PRIVATE programs.

And last (and perhaps also least for many, not interested in computer science) let’s mention the digital

bit manipulation functions, as present in the “-56BIT” section of the auxiliary FAT. The table below
lists the functions, which operate on the complete 56-bit register as word size (no sophistication here

like in the CCD Module).

Function Description Author

1CMP Sets 1-Complement mode Frits Ferwerda

2CMP Sets 2-Complement mode Frits Ferwerda

X+Y Bitwise addition of values stored in X and Y; Result left in X Gordon Pegue

Y-X Bitwise subtraction of values in X and Y, Result left in X Gordon Pegue

XANDY Logical AND of values in X and Y, Result left in X Gordon Pegue

XORY Logical OR of values in X and Y, Result left in X Gordon Pegue

NOTX Logical NOT of values in X and Y, Result left in X Gordon Pegue

RXR Rotate right 56-bit field in X one digit (4 bits) Gordon Pegue

RXL Rotate Left 56-bit field in X one digit (4 bits) Gordon Pegue

BRXL Rotate Left 56-bit field in X one bit w/ wraparound Gordon Pegue

RLN Rotate Left 56-bit field in Y N digits, w/ N is in X Gordon Pegue

RRN Rotate Right 56-bit field in Y N digits, w/ N in X Gordon Pegue

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 87 of 113 August 2016



6.1. Unit Management System – A full swing relapse.

Bank-switched modules are a fantastic invention, but there are a few system design limitations that
cannot be overcome, not even using this advanced technique. Such is the 64-entries limit in the FAT,

one of the absolute barriers (or boundary conditions if you prefer) that exerts its controlling power

regardless of the number of shadowed-banks we care to set-up.

It is because of this that bank switching lends itself very well to large bodies of code with few FAT
entries, as opposed to many functions of reduced size. The best example is the HEPAX module, where

dedicated banks are arranged for gigantic-code functions – such as HEXEDIT and DISASM.

In the POWERCL case the triggering point was the ROM table holding the image library information,

but even being large enough (over 1k) it doesn’t fill up the second bank completely. The idea of
adding the Unit Management System came as a natural to “fill the gap”, because it too has the ideal

attributes to be placed on the second bank: huge chunks of code, used sequentially and
independently from the rest of the module, with tables and hard-coded values to be read.

The idea was very appealing; as it removes the need to have the Unit Conversion module loaded and
saves one block for other uses – two big scores in one. It also provided the opportunity to write a

Constants Library a la 33S or 35S, sorely missing even in the UMS module.

So chances are you’ll never use it, but even then because they’re all tucked away in a secondary bank

it’s not adding any burden to your system configuration, or compromising the available resources. And
if you use it, well I think you’ll be pleased with the end result. Can anyone ask for more?

-SI Direct Unit Conversion FROM-TO in Alpha HP Co. / Á. Martin

A<>RG Swaps Alpha and Regs Alpha <> Regs Á. Martin

KLIB Constant Library 4 line-ups w/ 5 each Á. Martin

SI- Inverse Unit Conversion TO-FROM in Alpha HP Co. / Á. Martin

ST<>RG Swaps Registers Stack <> Reg Á. Martin

UCAT UNIT Catalog Prompts for Type P. Platzer / A. Martin

The main conversion functions are obviously –SI and SI-, where the hyphen sign indicates the

direction of the conversion “to/from” the International System of units (Systeme Internationale in
French); or in mixed specifications in the from/to unit string.

The two auxiliary functions A<>RG and ST<>RG as added here for convenience.- Use then to save
complete ALPHA unit strings in consecutive data registers, as well as making temporary back-ups of

the stack contents. They are both prompting functions in RUN mode, asking for the initial data
register.

Functions have been slightly modified to comply with the bank-2 requirements, and UCAT is also
enhanced with a new unit type prompt (“G:F:T:W:E“ for Geometry, Force, Temp/Mass, Work, and

Electrical units) and better internal structure.

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 88 of 113 August 2016

6.2. An enhanced Constants Library.

KLIB is the new addition to the Unit Conversion. In its original implementation the module included

15 constants, each of them setup as an individual FAT entry. This allowed individual access in RUN
and PRGM modes, but however lacked a library catalog - offering a more convenient way to access

them.

Besides the obvious advantage in usability, with this new implementation only one FAT entry is used –
allowing for more functions to be added to the ROM. The use in PRGM mode is also possible by

selecting the specific constant by its index (a number from 1 to 20), as independent program line

following KLIB (thus the same non-merged approach also used elsewhere).

The following improvements have been made:

 Added 5 more constants to the library – for a total of 20. Not surprisingly quite a few of them

are related to the EE field, showcasing both the UMS extensions and the author’s background.

 Constants are presented in the display as line-up menus, with 4 groups of 5 entries each.

 In RUN mode, the selection is made using the top row keys, with the SST key used to

navigate between the four “line-up” screens. Flag annunciators 1-4 indicate the current
screen, so you know where you are.

 In PRGM mode the selection is made by adding an index number after KLIB, using the non-

merged functions technique: two program lines in total for the complete information, not

disrupting the stack. Note that the function will not offer selection screens in this case.

 The constant value is placed in the X register (stack is lifted), and its units are written in Alpha

– ready for any unit conversion activity.

The figure above shows the four line-ups available in KLIB, to select the constant from the library.

Note the flag annunciator indicating the one currently selected.

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 89 of 113 August 2016

Because of the limited capabilities of the HP41 display, some of the symbols used to represent the

constants differ from the standard notation. Slightly improved notation is possible using the lower
case letters available in the “halfnut” character set but I have used the standard “fullnut” character set

for compatibility with all 41 models (and the CL specially).

KLIB follows the same model available in newer calculators, like the 33S and the 35S, so chances are

that you’re probably already familiar with it. Use the SST key to navigate to the next menu screen,
from 1 to 4 repeated in sequential way (no backwards choice). The appropriate flag indicator –

1,2,3,4 – will tell the current “screen” shown, so you’ll know where you are. Use the BackArrow key to

cancel out – and no constant will be selected.

There is no visual feedback when you choose the constant using keys A-E. its value and units will be
directly entered in the X and ALPHA registers – or the action cancelled (showing ‘NULL”) if you hold

the key depressed for a while.

The constants included, their values and appropriate units in which they are expressed are listed in

the following table (note the first column with the index for PRGM operation):

Name Description Value Units

1 e- Electron Charge -1,6021764 E-19 CB

2 Me Electron Mass 9,1093821 E-31 KG

3 c Speed of Light 2,9979245 E 08 M/S

4 MP Proton's Mass 1,6726216 E-27 KG

5 a Free-fall Acceleration 9,8066500 E 00 M/S2

6 0 Vacuum Permitivity 8,8541878 E-12 FD/M

7 0 Vacuum Permeability 1,2566370 E-06 N/A2

8 G Gravity Constant 6,6742800 E-11 N*M2/KG

9 NA Avogadro's Number 6,0221417 E 23 1/MOL

10 R Gas Constant 8,314472150 J/K*MOL

11 EH Hartree Energy 4,359748226 E-18 J

12 SG Stefan-Boltzmann 5,6705119 E-8 W/M2*K4

13 K Boltzmann's Constant 1,3806504 E-23 J/K

14 Z0 Vacuum impedance 376,7303134 OHM

15 H Planck's constant 6,6260689 E-34 J*S

16 F0 Magnetic flux quantum 2,0678336-15 WB

17 a0 Bohr Radius 5,2917720-11 M

18 U Atomic mass unit 1,6605387-27 KG

19 G0 Conductance quantum 77,480916-06 1/OHM

20 F Faraday constant 96.485,34 CB/MOL

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 90 of 113 August 2016

5.3.- Unit Conversion Catalog.

As the unit tables get larger it becomes more challenging to remember the exact spelling of each unit

symbol, resulting in frequent Invalid Conversion error conditions. A Unit Catalog is therefore almost an
obvious addition to the UMS – and as such it was mentioned in the old HP documentation as a next

addition, which obviously never came into being. Until now, that is.

UCAT lists all unit symbols sequentially, following the order in which they are stored on the Unit
Table. This used to be alphabetical in the original implementation – but has been modified in this new

incarnation for reasons explained in the next paragraph. UCAT adds a prompting entry to select the

magnitude section to start the listing from. The section prompts are as follows:

G: Geometry Section (length, surface and volume units)

F: Pressure and Force Section
T: Matter and Mass section (Mass, Density, Viscosity, Temperature)

W: Energy, Power and Time Section
E: Electrical and Luminance Section

The units listing will continue until the end of the table is reached (i.e. end of section 5) regardless of
where it got started. This is not perfect but good enough for the majority of circumstances where

one’s looking for the appropriate specific unit symbol.

Navigating the Unit Catalog.

The catalog can be paused and resumed at any time using R/S. Besides, you can use SST and BST to

single-step the units forwards and backwards, and resuming the listing with SHIFT activated will list
them in reverse order. Use the arrow key to stop the listing and return to the main OS.

 A running catalog will automatically terminate when it reaches the end of the unit table (or
the beginning if running backwards).

 A single-stepped catalog will not go beyond the last unit (or first one if moving backwards)

even if you keep pressing SST (or BST). To terminate it you can press R/S or the back arrow
key.

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 91 of 113 August 2016

 Use R/S to toggle between continuous and single-step catalog display at any time during the

execution.

Catalog Hot-keys.

With the unit catalog paused, (i.e. in single-step mode) you can use the following keys to directly
edit the unit string in the Alpha register in the following manner:

 [ENTER] – Clears Alpha and adds the displayed unit symbol to the string.

 [SHIFT],[ENTER] – Appends the displayed unit as destination field in the unit string - i.e.

appends “-” plus the unit symbol to the text already existing in Alpha.

 [*] - Appends the displayed unit as multiplying unit (i.e. appends “*” plus symbol)

 [/] - Appends the displayed unit as dividing unit (i.e. appends “/” plus symbol)

In this way it’s rather simple to build complete unit string just by pressing the corresponding hot keys

during the catalog listing – no need to remember the exact spelling of the unit symbols. Obviously it’s
still the user’s task to recognize the symbol and identify it with the corresponding unit name. Of

course you can edit the Alpha register directly as always just typing the syntax in Alpha mode - if

that’s your preferred choice.

Note that there are no checks for the string built – so it’s possible to press [/] multiple times, or
repeat [SHIFT],[ENTER] – which obviously would not be a valid string. Note also that after every

usage of a hot key you need to re-start the catalog listing again if you want to continue to build the
complete unit string. A small price to pay for the convenience to occasional users (aren’t we all?) to

avoid syntax errors!

Meaningful Error Conditions.

The Thermal Pac only used standard OS error messages (like ALPHA DATA and DATA ERROR) to

inform the user of an error condition. It did NOT report unit spelling errors either, ignoring them even

if user flag 25 was cleared! The Petroleum Pac improved on that with its dedicated error message
“Invalid Conversion”.

This however wasn’t very informative, as it didn’t indicate where exactly was the problem: either a

syntax error (like typing the sigma or percent sign), an invalid unit string (non-homogeneous source

and destinations), or a misspelled unit symbol all produced the same “INVALID CONV”. Besides it
didn’t signal the ALPHA DATA condition anymore – clearly a step back here.

The Unit Conversion Module recovers the alpha data message and adds two new messages to the

Invalid Conversion condition – offering four error-trapping cases, and so making error detection and
correction a much easier task, needless to say. The messages are as follows:

ALPHA DATA – when a non-numeric input is in X
SYNTAX ERR – when using illegal characters (like lower-case letters)

NO SUCH UNIT – when the alpha string contains a symbol not on the unit table
INVALID CONV – when the unit string is not dimensionally correct.

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 92 of 113 August 2016

Example:- Car Consumption comparison (Gas/Petrol)

The short routine below converts between the two (mystifying and
apparently opposite) conventions used in the US and Europe to rate

the gas consumption of a car:

US: Milles per Gallon, vs

Europe: Liters per 100 km.

And here’s a little table compiled with it:

Mi/Gal L/100km
15 15.681

20 11.761

25 9.409

30 7.840

35 6.720

Finally, note that Multiples and Submultiples are unfortunately not supported, or at least not in a

straightforward fashion. You should avoid using them in the unit strings, as they’ll typically return
unpredictable results.

 © Photo by Geoff Quickfall, 2011

1 LBL “->US”

2 XEQ 00

3 –SI

4 E2

5 /

6 1/X

7 RTN

8 LBL “->EU”

9 1/X

10 E2

11 *

12 XEQ 00

13 SI-

14 RTN

15 LBL 00

16 “L/KM-GAL/MI”

17 END

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 93 of 113 August 2016

Symbol Unit Magnitude Group U
ni

tC
on

Pe
tr

ol
eu

m

Th
er

m
al

M
ac

hi
ne

ACRE acre Surface Geometry 1 1 - -

ANG angstrom Length Geometry 1 - 1 1

AU Astronomical Unit Length Geometry 1 - - -

BBL Barrel of petroleum Volume Geometry 1 1 1 -

CM Centimeter Length Geometry 1 1 1 1

FT Foot Length Geometry 1 1 1 1

GAL Gal lon (US) Volume Geometry 1 1 1 1

GALUK Gal lon (UK) Volume Geometry - 1 - -

IN Inch Length Geometry 1 1 1 1

KM ki lometer Length Geometry 1 1 1 1

L l i ter Volume Geometry 1 1 1 1

LY Light Year Length Geometry 1 - - -

M meter Length Geometry 1 1 1 1

MI mile Length Geometry 1 1 1 1

MIC micron Length Geometry 1 - 1 1

MIL 1/1000 inch Length Geometry 1 - 1 1

ML mil l i l i ter Volume Geometry 1 1 1 1

MM mil l imeter Length Geometry 1 1 1 1

PC Parsec Length Geometry 1 - - -

UM micrometer Length Geometry - 1 - -

YD yard Length Geometry 1 1 1 1

Symbol Unit Magnitude Group U
ni

tC
on

Pe
tr

ol
eu

m

Th
er

m
al

M
ac

hi
ne

ATM Atmosphere Pressure Force & Pressure 1 1 1 1

BAR Bar Pressure Force & Pressure 1 1 1 -

DYNE Dyne Force Force & Pressure 1 1 1 1

FTH2O Foot of Water Pressure Force & Pressure 1 1 1 -

INHG Inch of Mercury Pressure Force & Pressure 1 1 1 -

INH2O Inch of Water Pressure Force & Pressure 1 1 1 -

KGF Ki logram Force Force Force & Pressure 1 1 1 -

KIP Ki lopound Force Force Force & Pressure 1 1 1 -

KPA ki lopascal Pressure Force & Pressure 1 1 1 1

KSI KIP per square inch Pressure Force & Pressure - 1 - -

LBF pound force Force Force & Pressure 1 1 1 1

MBAR mil ibar Pressure Force & Pressure - 1 - -

MMHG mil l imiter of mercuryPressure Force & Pressure 1 1 - -

MN meganewton Force Force & Pressure - 1 - -

MPA megapascal Pressure Force & Pressure 1 1 - -

N newton Force Force & Pressure 1 1 1 1

PA pascal Pressure Force & Pressure 1 1 1 1

PDL poundal Force Force & Pressure 1 - 1 1

PSF pound force per square footPressure Force & Pressure 1 1 1 1

PSI pound force per square inchPressure Force & Pressure 1 1 1 1

TORR torr Pressure Force & Pressure 1 1 1 -

Appendix.- Module Unit Conversion Comparisons.

The following five sections offer a detailed comparison between the implementations of the Unit

Conversion System, as found in the different modules.

1. Geometry Units.

2. Force and Pressure Units.

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 94 of 113 August 2016

Symbol Unit Magnitude Group U
ni

tC
on

Pe
tr

ol
eu

m

Th
er

m
al

M
ac

hi
ne

API Degree API Dens ity Matter & Mass - 1 - -

BCF Bi l l ion Cubic Feet of GasGas Volume Matter & Mass - 1 - -

C Degree Cels ius Temperature Matter & Mass 1 1 1 1

CP Centipoise Viscos i ty Matter & Mass - 1 - -

CST Centis toke Kinematic Viscos i tyMatter & Mass - 1 - -

D Darcy Poros i ty Matter & Mass 1 1 - -

DA Dalton Mass Matter & Mass 1 - - -

F Degree Farenheit Temperature Matter & Mass 1 1 1 1

G Gram Mass Matter & Mass 1 1 1 1

K Kelvin Temperature Matter & Mass 1 1 1 1

KG Ki logram Mass Matter & Mass 1 1 1 1

KMOL ki lomole Matter Matter & Mass - 1 - -

KT ki lotonne Mass Matter & Mass - 1 - -

LBM pound mass Mass Matter & Mass 1 1 1 1

MCF thousand cubit feet gasGas Volume Matter & Mass - 1 - -

MD mil l idarcy Poros i ty Matter & Mass - 1 - -

MG megagram Mass Matter & Mass - 1 - -

MMCF mil l ion cubic feet gasGas Volume Matter & Mass - 1 - -

MOL(E) mole Matter Matter & Mass 1 1 1 -

MT megatonne Mass Matter & Mass - 1 - -

P(OISE) poise Viscos i ty Matter & Mass 1 1 1 -

R degree rankine Temperature Matter & Mass 1 1 1 1

SCF standard cubic foot Gas Volume Matter & Mass - 1 - -

SCM standard cubic meterGas Volume Matter & Mass - 1 - -

SCMZ standard cubic meter 2Gas Volume Matter & Mass - 1 - -

SLUG slug Mass Matter & Mass 1 - 1 1

SPGR speci fic gravi ty to waterDens ity Matter & Mass - 1 - -

ST(OKE) stoke Kinematic Viscos i tyMatter & Mass 1 1 1 -

T tonne Mass Matter & Mass - 1 - -

TON short ton Mass Matter & Mass 1 1 1 1

TONUK long ton Mass Matter & Mass - 1 - -

Symbol Unit Magnitude Group U
ni

tC
on

Pe
tr

ol
eu

m

Th
er

m
al

M
ac

hi
ne

BTU British Thermal Unit Energy Energy & Time 1 1 1 1

CAL Calorie Energy Energy & Time 1 1 1 1

CV Cheval Vapeur Power Energy & Time 1 - - -

DAY Day Time Energy & Time 1 1 1 -

ERG Erg Energy Energy & Time 1 1 1 1

EV Electron-Volt Energy Energy & Time 1 - - -

HP Horsepower Power Energy & Time 1 1 1 1

HR Hour (mean solar) Time Energy & Time 1 1 1 1

J Joule Energy Energy & Time 1 1 1 1

KCAL ki loca lorie Energy Energy & Time 1 1 1 -

KJ Ki lojoule Energy Energy & Time - 1 - -

KW ki lowatt Power Energy & Time 1 1 1 1

MIN minute Time Energy & Time 1 1 1 1

MJ megajoule Energy Energy & Time - 1 - -

MO month Time Energy & Time - 1 - -

MW megawatt Power Energy & Time - 1 - -

S second Time Energy & Time 1 1 1 1

THERM 10^5 BTU Energy Energy & Time - 1 - -

W watt Power Energy & Time 1 1 1 1

YR year Time Energy & Time 1 1 - -

3. Matter & Mass Units.

4. Energy, Power & Time Units

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 95 of 113 August 2016

5. Electrical & Luminance Units

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 96 of 113 August 2016

Farewell.

And with this you’ve reached the end of the POWERCL_EXT manual. – I hope these few pages have
proven useful to you in your quest to become familiar with its capabilities and whet your appetite for

even more to come.

The 41CL is an innovative development nothing short of incredible, with amazing possibilities that

open the door to yet new tricks on the HP-41 platform; all this still happening 33+ years after the
original 41 was launched. Now that’s what I call an achievement!

Before and after: 33 years separate these boards:

Photo: Steve Leibson, (c) May 2011

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 97 of 113 August 2016

Appendices.

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 98 of 113 August 2016

Appendix 0. Summary of [CL] launching functionality.

There are several function launchers in the POWERCL. We’ve also seen that they show very flexible
and interconnected combinations, sometimes “warping” around the complete module in a lot of ways.

It’s initially a bit confusing, yet you should not get intimidated by the multiple layers - as you’ll get
very quickly acquainted to the design and comfortable using it.

Notice that in some instances the same function can be accessed from two different places (i.e.

HEPDIR, MMUCAT). Note also that they may be required to sequentially input the prompts from two

(or more) launchers to finally get to the desired end result. –

For instance, say you want to plug the AMC”OS/X ROM into port 7 (the HP-IL one). Say you don’t
remember its CL ROMid#, nor the function name to accomplish that (which happens to be PLUGH).

You decide to start at the very beginning, executing CL, then chose “”C” for CATALOGS, then “L” for

CLLIB, then “A” to start the enumeration from the letter A, then R/S at the “AOSX”, followed by “P”
to invoke the PLUG action. Then “G” to go to the page settings, then “7”. A breeze !! 

Putting it all together now.-

Granted this is one of the more complex examples (but trust me, not the worst one!) Here it is again
with more details so it’s easier to follow:- Let the display be our guide in this dialog with our trusty

companion…

Start off by executing FL, which will present:

, enter “C” for the Catalog Launcher [XCAT]

, enter “L” for the CL Library [CLLIB]

, input “A”, R/S, SST to navigate until you see:

, enter “P” to trigger the PLUG functionality [PLUG]

, enter “G” to invoke the page-plugging [PLUGG]

, enter “7” - the page number to complete the job.

Easy does it – and you didn’t have to remember any mnemonic or function name; nor does it require

any key assignment other than CL - to call up to 58 different functions. Does it get any better than

this?

As a handy summary see the menu map in the left, and the table in next page showing all possible

combinations to access a given function, using the different function launchers. Cells show the keys to
press to access to the function, starting from the launcher on the column header.

BLACK fns. YFNS Functions

BLUE fns. POWERCL Functions

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 99 of 113 August 2016

F. Name CL BAUD XCAT HEPX MMU TURBO PLUG UPLUG

1 BAUD12 B,1 1

2 BAUD24 B,2 2

3 BAUD48 B,4 4

4 BAUD96 B,9 9

5 BFCAT C,F F

6 BLCAT C,B B

7 CLLIB _ C,L L

8 HEPDIR H,D H D

9 HEPINI _"_ H,I I

10 HPX16 _ H,6 6

11 HPX4 _ H,4 4

12 HPX8 _ H,8 8

13 KLIB _ C,K K

14 MMU? M,? ?

15 MMUCAT M,T M T

16 MMUCLR M,C C

17 MMUDIS M,D D

18 MMUEN M,E E

19 PLUG1 P,1 L,*,P,1 1 [] ,1

20 PLUG1L P,L,1 L,*,P,L,1 L,1 [] ,L,1

21 PLUG1U P,U,1 L,*,P,U,1 U,1 [] ,U,1

22 PLUG2 P,2 L,*,P,2 2 [] ,2

23 PLUG2L P,L,2 L,*,P,L.2 L,2 [] ,L,2

24 PLUG2U P,U,2 L,*,P,U,2 U,2 [] ,U,2

25 PLUG3 P,3 L,*,P,3 3 [] ,3

26 PLUG3L P,L,3 L,*,P,L,3 L,3 [] ,L,3

27 PLUG3U P,U,3 L,*,P,U,3 U,3 [] ,U,3

28 PLUG4 P,4 L,*,P,4 4 [] ,4

29 PLUG4L P,L,4 L,*,P,L,4 L,4 [] ,L,4

30 PLUG4U P,U,4 L,*,P,U,4 U,4 [] ,U,4

31 PLUGG _ P,G L,*,P,G G [] ,G

32 PLUGG? _ P,A L,*,P,A G A [] ,A

33 PLUGH P,H L,*,P,H H [] , H

34 PLUGP P,P L,*,P,P P [] ,P

35 PPG#4 _ P,G,4 L,*,P,G,4 G,4 [] ,G,4

36 ROMLIB _ C,L,[] L,[]

37 SERINI B,I I

38 TURBO? T,? ?

39 TURBO10 T,1 1

40 TURBO2 T,2 2

41 TURBO20 T,0 0

42 TURBO5 T,5 5

43 TURBO50 T,";" ";"

44 TURBOX T,X X

45 UCAT _ C,U

46 UPLGG _ U,G L,*,P,[] ,G [] ,1 G

47 UPLUG1 U,1 [] ,L,1 1

48 UPLUG1L U,L,1 [] ,U,1 L,1

49 UPLUG1U U,U,1 [] ,2 U,1

50 UPLUG2 U,2 [] ,L,2 2

51 UPLUG2L U,L,2 [] ,U,2 L,2

52 UPLUG2U U,U,2 [] ,3 U,2

53 UPLUG3 U,3 [] ,L,3 3

54 UPLUG3L U,L,3 [] ,U,3 L,3

55 UPLUG3U U,U,3 [] ,4 U,3

56 UPLUG4 U,4 [] ,L,4 4

57 UPLUG4L U,L,4 [] ,U,4 L,4

58 UPLUG4U U,U,4 [] ,G U,4

59 UPLUGA U,A [] ,A A

60 UPLUGH U,H [] , H H

61 UPLUGP U,P [] ,P P

62 UPPG4 U,G,4 [] ,G,4 G,4

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 100 of 113 August 2016

Appendix 1 – Detailed ROM id# table – in alphabetical order.

The table below lists all modules included in the CL Library, sorted alphabetically by CL-ID mnemonic.

ID Size Name Type Author

1 141B 8k C141B FSC Engineering Boeing

2 16CS 16k HP-16C Simulator Extensions Martin-McClure

3 2SWP 8k Swap Disks utils Utilities Swap Disks

4 3SWP 8k Swap Math Math Swap Disks

5 441Z 8k Lib#4 based 41Z Math Ángel Martin

6 4ALP 4k Alpha_44 Utilities Ángel Martin

7 4AOS 4k AMC_OS/X 4L Extensions Ángel Martin

8 4DIG 4k Lib#4 41Z Diagnostics Math Ángel Martin

9 4LIB(*) 4k Library#4 Extensions Ángel Martin

10 4MTI 16k SandMatrix_44 3x3 Math Ángel Martin

11 4RAM 4k RamPage_4L Utilities Ángel Martin

12 4TBX 4k ToolBox_4L Utilities Ángel Martin

13 A41P 12k Advantage Pac Math HP Co.

14 AADV 4k Advantage Applications Science J-F Garnier

15 ADV1 16k Adventure_1 Games Ángel Martin

16 ADV2 12k Adventure_2 Games Ángel Martin

17 ADVG 4k Advantage Math Math Martin, McClure, Baillard

18 AEC3 8K AECROM 13-digit Engineering Ángel Martin

19 AECR 8k AECROM Engineering Red Shift

20 AFDE 8k AFDC1 Engineering GunZen

21 AFDF 8k AFDC2 Engineering GunZen

22 AFIN 4k Auto Finance Financial GMAC

23 AGAM 8k Action Games Games Diverse

24 ALGY 4k Astro*ROM Science Elgin Knowles & Senne

25 ALPH 4k ALPHA ROM Utilities Á. Martin & D. Wilder

26 ANGZ 8k Angel’s Zeprom Utilities Ángel Martin

27 ANTS 4k Antennas Engineering HP Co.

28 AOSX 4k AMC OS/X Engineering Ángel Martin

29 ASM4 4k Assembler4 Extensions ??

30 ASMB 4k Assembler3 Extensions ??

31 ASTT 16k ASTRO-2010 Module Science Jean-Marc Baillard

32 AUTO 4k Auto-Start / Dupl ROM Extensions HP Co.

33 AV1Q 4k AV1 ROM Engineering Beechcraft

34 AVIA 4k Aviation Pac Engineering HP Co.

35 B52B 8k B-52 ROM Engineering Boeing

36 BCMW 4k BCMW ROM Engineering ??

37 BESL 8k Bessel ROM Math Á. Martin & JM Baillard

38 BLDR 8k BLD ROM Utilities W. Doug Wilder

39 BLJK 4k Blackjack 1B Games Nelson F. Crowle

40 BJMX 4k Blackjack MAX-2E Games Nelson F. Crowle

41 BLND 4k Bufferland ROM Utilities Ángel Martin

42 BSMS 4k Bus Sales/Mkt/Stat. Financial HP Co.

43 BUD2 8k Buderus-2 Engineering WMK

44 BUD3 4k Buderus-3 Engineering WMK

45 CAB4 8k Balancing ROM Engineering Karl Schenk

46 CCDA 4k CCD AdvApps. Utilities Ángel Martin

47 CCDP 8k CCD Plus Utilities W&W + Angel Martin

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 101 of 113 August 2016

ID Size Name Type Author

48 CCDR 8k CCD Module Utilities W&W

49 CCDX 4k CCD OS/X Extensions W&W + R. del Tondo

50 CENG 4k Chemical Engineering Engineering HP Co.

51 CHEM 4k Chemistry Sol. Book Science Les Wright

52 CHES 8k Chess ROM Games C. Roetlgen

53 CIRC 4K Circuit Analysis Pac Engineering HP Co.

54 CITY 4k Counties and Capitals Utils Ángel Martin

55 CIVI 4k Civil Engineering SolBook Engineering HP Co.

56 CIVU 8k Civil Eng. Collection Engineering Diverse

57 CLIN 4K Clinical Lab Pac Engineering HP Co.

58 CLND 4k Calendars Sol. Book Utilities HP Co.

59 CMT1 16k CMT-10 Eprom Test Extensions CMT

60 CMT2 4k CMT-200 ROM Extensions CMT

61 CMT3 8k CMT-300 ROM Extensions CMT

62 CNTL 4k Control Systems SolBook. Engineering HP Co.

63 COOQ 8k Co-Op Surveying Engineering Surveyors Inc.

64 CRTO 4k Cryptography ROM Utilities Martin & Others

65 CURV 8k Curve-Fitting Module Math Martin & others

66 CVPK 8k Cv-Pack ROM Engineering ??

67 DA4C 4k DisAssembler 4C Extensions W. Doug Wilder

68 DACQ 8k Data Acquisition Pac Extensions HP Co.

69 DASM 4k DisAssembler 4D Extensions W. Doug Wilder

70 DAVA 4K David Assembler 2C Extensions David van Leeuwen

71 DBUG 4k MCODE Debugger ROM Extensions Mark Power

72 DEMO 16k 41 System Demo Module Extensions HP Co.

73 DEV2 4k HP-IL Devil-2 Extensions HP Co. + ÁM

74 DEVI 8k HP-IL Development Extensions HP Co.

75 DIFF 8k DIFFEQ ROM Math Jean-Marc Baillard

76 DIGT 4k DigitPac ROM Engineering Ángel Martin

77 DIIL 4k HP-IL Diagnostics Extensions HP Co.

78 DMND 4k Diamond ROM Financial ??

79 DSTL 12K CalTrans Surveying Engineering CA Dept. Transport.

80 DYRK 4k Dyerka ROM Utilities David Yerka

81 E41S 8k ES41 Module Extensions Eramco

82 EEFD 8k EE Filter Design Engineering Diverse

83 EENG 4k Electrical Eng. Engineering HP Co. + ÁM

84 EILP 4k Extended IL+ Extensions Christoph Klug

85 ELPT 4k Elliptic Functions Math Ángel Martin

86 EPRH 4k ML Eprom 1H Utilities S. Bariziene & JJ Dhenin

87 EPRM 4k MM Eprom Utilities Dutch PPC Members

88 EPTN 4k Trans-Neptunian planets Science JM Baillard

89 ESML 4k ES MLDL 7B Extensions Eramco

90 ETI3 8k ETSII-3 Engineering Ángel Martin

91 ETI4 8k ETSII-4 Engineering Ángel Martin

92 ETI5 8k ETSII-5 Engineering Ángel Martin

93 ETS9 4k ETSII-6 Engineering Ángel Martin

94 EXIO 4k Extended I/O Module Extensions HP Co.

95 EXTI 4k Extended-IL ROM Extensions Ken Emery

96 FACC 4k 300889_FACC Engineering ??

97 FAIR 8k Gear Design Module Engineering Fairfield Inc.

98 FCST 4k Forecaster / Astronomy Finance Finnigan Associates

99 FCS2 4k Market Forecast Finance Finnigan Associates

100 FDYN 4k Fluid Dynamics Solutions Engineering HP Co.

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 102 of 113 August 2016

ID Size Name Type Author

101 FFEE 4k For-Fee Collection Engineering Ángel Martin

102 FINA 4k Financial Pac Financial HP Co.

103 FLDB 4k Flash YCRC Database Extensions Monte Dalrymple

104 FRTH (*) 8k FORTH Module Extensions Serge Vaudenay

105 FSSY 8k FOCAL Assembler Utilities Swap Disks

106 FUNS 8k Fun Stuff Module Games Ángel Martin

107 GAME 4k Games Pac Games HP Co.

108 GAMX 8k Explore Games Games Bruce Bailey

109 GASL 16k Gas Properties – Part 1 Engineering Michael Diemert

110 GASU 16k Gas Properties – Part 2 Engineering Michael Diemert

111 GEOD 4k Differential Geometry Math JM Baillard

112 GEOM 4k Geometry Sol. Book Math HP Co. + ÁM

113 GJMR 8k GJM Collection Utils Greg McClure

114 GMAS 4k Auto Fiance-2 Module Financial GMAC

115 GMAT 8k Auto Fiance-3 Module Financial GMAC

116 GMTY 4k Geometry 2011 Math Jean-Marc Baillard

117 GRF1 8k Plotter Grafiks – 1 Utilities

118 GRF2 8k Plotter Grafiks – 2 Utilities
 119 GRMK 8k Sammlung Games Games Stefan Feigert

120 GRVI 8k Gravity & Time Science JM Baillard

121 GSBK 8k Games Solution Books Games HP Co.

122 GSLV 4k AECROM Geometric Solvers Math Nelson F. Crowle

123 GSWP 8k Swap Games Games Swap Disks

124 HCMP 4k HydraComp ROM Engineering Paul Monroe

125 HDIS 4k HEPAX Disassembler Extensions VM Electronics

126 HEPR 4k HEPAX RAM Template Extensions VM Electronics

127 HEPX 16k HEPAX Module Extensions VM Electronics

128 HMTH 4k High-Level Math Solbook. Math HP Co.

129 HNDY 4k Handy Compact Engineering ???

130 HOME 4k Home Management. Pac Financial HP Co.

131 HPCL 8k Hyper-Complex Modu;e Math JM Baillard

132 HPX2 16k HEPAX Modified Extensions VM Electronics

133 HTAB 12k Periodic Table Database Science Martin - Isene

134 HVAC 4k Heating, Vent. & AirCon Engineering HP Co.

135 IBOX 4k ICE Box Utilities Geir Isene

136 ICDO 4k Icode ROM Extensions ??

137 ICEB 4k ICE Box Utilities Geir Isene

138 IDC1 8k ML-ICD Engineering BCMC 1987

139 IDC2 4k BG/UG IDC Engineering BCMC 1985

140 IERF 8k Inverse ERF Math Ángel Martin

141 ILBF 4k IL-Buffer Extensions Ángel Martin

142 IMDB 4k Module Database Extensions Monte Dalrymple

143 INDO 4k Indoors Lighting Engineering Philips Eindhoven

144 INTG 8k Integrator ROM Math JM Baillard & Á. Martin

145 ISEN 4k ISENE ROM Utilities Geir Isene

146 ISOL 4k Interchangeable. Solutions Science UPLE

147 ITCP 4k TCP/IP Module Extensions ???

148 JARR 8K XF/SP Book Examples Utilities Keith Jarret

149 JMAT 8k JMB Math Math Jean-Marc Baillard

150 JMBC 4k JBM Calendars Science JM Baillard

151 JMTX 8k JMB Matrix Math Jean-Marc Baillard

152 KC135 12k Weight & Balance Comp. Engineering ??

153 KNGT 4k Knight’s Tour Games JM Baillard

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 103 of 113 August 2016

ID Size Name Type Author

154 KRGM 8k German Book Examples Utilities Krusse/Gosmann

155 KRSS 8k German Book Examples Utilities Krusse

156 L119 8k AFDC-1E-003 Engineering Zengun

157 LAIT (*) 4k LaitRAM XQ2 Extensions LaitRam Corp.

158 LAND 4k Land Navigation ROM Science Warren Furlow

159 LBLS 4k Labels ROM Extensions W. Doug Wilder

160 LENG 4k Solar Engineering Solutions Engineering HP Co.

161 LNDL 4k Lend, Lease & Sav. Financial HP Co.

162 LPLC 8k Laplace Transform ROM Math Raymond Moore

163 MAJH 8k Mah-Jong Scoring ROM Games DataFile

164 MADV 12k Advanced Matrix Pac Math Ángel Martin

165 MASS 4k Mass Storage Utilities Extensions Ángel Martin

166 MATH 4k Math Pac Math HP Co.

167 MCHN 4k Machine Construction Pac Engineering HP Co.

168 MCKK 4k Book Examples Utilities A. MacCornack

169 MCMP 4k Mountain Computer Utilities Paul Lind

170 MDP1 8k AFDC-1F ROM Engineering Zengun

171 MDP2 8k AFDC-1F ROM Engineering Zengun

172 MELB 4k Melbourne ROM Utilities PPC Members

173 MENG 4k Mechanical Eng. Sol Book Engineering HP Co. + ÁM

174 MILE 8k Military Engineering ROM Engineering ??

175 MLBL 4k Mainframe Labels Extensions David van Leeuwen

176 MLRM 4K ML ROM Utilities Frits Ferwerda

177 MLTI 8k? Multi-Prec. Library Math Peter Platzer

178 MONO 8k MONOPOLY ROM Games Thomas Rodke

179 MTST 4k MC Test ROM Utilities ??

180 MUEC 8k Muecke ROM Engineering Mücke Software GmbH

181 MWK3 4k MWK - 3 Engineering MW Koeln

182 MWK4 8k MWK - 4 Engineering MW Koeln

183 NAVI 8k Navigation Pac Science HP Co.

184 NCHP 4k NoVoCHAP Utilities G. Isene & A. Martin

185 NEA1 8k SNEAP1 Engineering SNEAP Society (F)

186 NEA2 8k SNEAP2 Engineering SNEAP Society (F)

187 NEA3 8k SNEAP3 Engineering SNEAP Society (F)

188 NEXT 4k Next ROM Utilities Sebastian Toelg

189 NFCR 4k NFC ROM Utilities Nelson F. Crowle

190 NONL 4k Non-Linear Module Math Martin-Baillard

191 NPAC 8k NavPac ROM Science ??

192 NTHY 4k Number Theory ROM Math Jean-Marc Baillard

193 NVCM 8k NaVCOM 2 Science ??

194 OBCZ 4k Obstetricist Computer Engineering General Electric

195 OILW 8k OilWell Module Engineering Jim Daly

196 OPTO 4k Optometry I & II Science HP Co.

197 OTRP 8k OvenTrop Engineering WMK

198 OSX3 4k AMC_OS/X w/ Lib#4 Extensions Ángel Martin

199 P3BC 16k Aviation for P3B/C Engineering ??

200 PANA 8k PANAME ROM Utilities S. Bariziene & JJ Dhenin

201 PARI 4k PARIO ROM Extensions Nelson F. Crowle

202 PCOD 4k Proto-Coder 1A Extensions Nelson F. Crowle

203 PETR 8k Petroleum Pac Engineering HP Co.

204 PHYH 4k Physics Science HP Co.

205 PKP1 4k ALPHA & Pointers Utilities Poul Kaarup

206 PKP2 8k Math & Physics Science Poul Kaarup

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 104 of 113 August 2016

ID Size Name Type Author

207 PKP3 4k Flags & Stack Utlities Poil Kaarup

208 PKP4 4k Program utils Utilities Poul Kaarup

209 PKP5 4k Timer & Utils Utilities Poul Kaarup

210 PLAN 4k Planets ROM Science JM Baillard

211 PLOT 8k Plotter Module Extensions HP Co.

212 PLTO 4k Plutoids ROM Science JM Baillard

213 PMLB 4k PPC Melb ROM Utilities PPC Members

214 POLY 8k Polynomial Analysis Math Á. Martin & JM Baillard

215 PPCM 8k PPC ROM Utilities PPC Members

216 PPCU 8k PPC User Examples Utilities PPC Members

217 PPOK 4k Poker & BlackJack Games JM Baillard

218 PRFS 4k ProfiSet Extensions Winfried Maschke

219 PRIQ 8k PRIDE ROM Engineering James Frieslng

220 PROG 4k AECRO’s Programmer Extensions Nelson F. Crowle

221 PRTW 8k US Ports Database Engineering Martin-Baillard

222 PSRV 4k Printer Service ROM Extensions HP Co.

223 PWCL 16k PowerCL_B4 Extensions Ángel Martin

224 PWRX 16k PowerCL_Extreme Extensions Ángel Martin

225 QUAT 8k Quaternion ROM Math Jean-Marc Baillard

226 QUEN 4k N-Queens ROM Games Martin-Baillard

227 RCRD 4k Card Reader 1G Extension HP Co.

228 REAL 8k Real State Pac Financial HP Co.

229 RGME 8k RAW Games Games Diverse

230 RM32 4k RAMBOX-32 Extensions W&W GmbH

231 ROAM 4k ROAM Module Utilities Wilson B. Holes

232 ROMS 4k SV's ROM Utilities Serge Vaudenay

233 ROMX 4k XROM ROM Utilities Martin, McClure, Others

234 ROSV 8k RSU OS Extensions Eramco

235 RUBK 4k Rubik’s Cube Solver Games J. Perry

236 SBOX 8k SandBox Utilities Ángel Martin

237 SEAK 4k SeaKing MK5 Engineering Navy Air

238 SECY 4k Securities Pac Financial HP Co.

239 SERI 4k Series, Sums and Areas Math Martin-Baillard

240 SGSG 4k Gas Module Engineering SGS Redwood

241 SHTZ 4k Spreadsheet & Simplex Finance Diverse

242 SIHP 4k Solve/Intg ROM Math HP Co. + ÁM

243 SIMM 16k SIM Module Science ??

244 SKWD 4k Skwid's BarCode Extensions Ken Emery

245 SM44 16k SanMath_44 4x4 Math Ángel Martin

246 SMCH 8k Speed Machine Financial Alameda Mngmt. Corp.

247 SMPL 4k Simplex Module Math Phillipe J. Roussel

248 SPEC 4k Spectral Analysis Math Jean-Marc Baillard

249 SR1B 4k Slantr SR-1B Engineering ???

250 SRVC (*) 4k Service ROM Extensions HP Co.

251 STAN 4k Standard Pac Science HP Co.

252 STAT 4k Statistics Pac Math HP Co.

253 STEQ 4k Steam properties Engineering Martin-Faulhaber

254 STRE 4k Stress Analysis Pac Engineering HP Co.

255 STRU 8k Structural An, Pac Engineering HP Co.

256 SUD1 4k SUDOKU & Sound Games Á. Martin & JM Baillard

257 SUPR 8k SUP-R-ROM Science James W. Vick

258 SURV 4k Surveying Pac Science HP Co.

259 TAFB 8k Tinker Air Force Base Engineering USAF

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 105 of 113 August 2016

ID Size Name Type Author

260 TDSM 4k TDS Surveying Module Engineering TDS

261 TDSI 4k TDS Instrument Module Extensions TDS

262 TDSP 4k TDS Plotter Module Extensions TDS

263 TEST 4k Test Statistics Math HP Co.

264 THER 4k Thermal Pac Engineering HP Co.

265 TIDW 4k Tide Water Levels Engineering Martin-Baillard

266 TIME 4k Timer Sol. Book Extensions HP Co.

267 TMAX 4k Turbo MAX Games Nelson F. Crowle

268 TOMS 4k Tom's ROM Science Thomas A. Bruns

269 TREK 4k Star Trek Games Ángel Martin

270 TRIH 4k 83Trinh Utilities Phil Trinh

271 TTRC 4k Total Rekall Extensions Ángel Martin

272 TVMY 4k Time Value of Money Finance Ángel Martin

273 UCCD 4k CCD Users Examples Utilities Diverse

274 UCLN 4k User Calendar Science Diverse

275 UNIT 4k Unit Conversion Extensions Ángel Martin

276 USPS 8k Mail Delivery Engineering USPS

277 VECT 4k VECTOR Calculator Math Ángel Martin

278 VEGS 4k Vegas Blackjack Games Nelson F. Crowle

279 VERM 4k Vermessungs Pack Engineering J. Groesbrink

280 VONK 4k Math Collection Math C. Vonk / L. Vieira

281 WORD 8k English-Spanish Dictionary Utilities Ángel Martin

282 WRAM 4k RAMbox 64 Extensions W&W GmbH

283 WWDB 4k Wickes, Wlodek & Dearing Utilities Diverse

284 XBFR 8k DSM: Beams & Frames Engineering Alois Kemmerl

285 XPMM 4k CL Expanded Memory Extensions Martin-Dalrymple

286 XTAT 4k Extended Statistic Math Martin & Others

287 XTRS 8k DSM: Trusses Engineering Alois Kemmerl

288 YACH 8k Yach Computer Science Bobby Schenk

289 YFNF 4k Y-Functions Memory Extension Monte Dalrymple

290 YFNP 4k YFNS Plus Extensions Monte Dalrymple

291 YFNS 4k Alternate YFNS Extensions Monte Dalrymple

292 YFNZ 4k Main YFNS Extensions Monte Dalrymple

293 Z4DL 16k 41Z Module Deluxe Math Ángel Martin

294 ZENR 4k Zenrom Utilities Zengrange Ltd.

295 ZEPR 4k Programmer Extensions Zengrange Ltd.

(*)Take-over ROM. Need to use PPG#4

(**)Must be located in page#4. Plug it manually using YPOKE

Other modules not included in the Library:-

For sure many more of these abound, yet these are the ones I know about – feel free to complete the
list with your own entries, and don’t forget to share them with the whole community.

1. Mortar Fire Data Calculator 8k MDN Canada
2. Dr. Z RaceTrack Module 4k William T. Ziemba

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 106 of 113 August 2016

© Photo courtesy of Wilson “Bill” Holes.

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 107 of 113 August 2016

Appendix 2. FOCAL program Listings.

Provided for your reference and in case you feel

like experimenting with your own settings.

As always, mind the potential conflicts with other
modules when plugging stuff, and pay special

attention not to overwrite YFNS. (you’re safe if

using PLUGGX – it won’t let you to :-)

In the HEPAX configuration code the role of
HEPINI is to write the appropriate words into

the HRAM pages, as per the description provided
before. This could also be done using YPOKE,

but the memory requirements are much larger

due to all the alpha strings that would be
required to do so.

For example, see below for the 16k case, using

pages C,D,E, and F.

This would mean having to write on each page

the four page id#s, plus the pointers to the
previous and next pages, for a total of 10x – or

equivalent to 110 bytes:

"809FE7-000C"

"808000-000C"

"808FE8-000D"

"80AFE7-000D"

"809000-000D"

"809FE8-000E"

"80BFE7-000E"

"80A000-000E"

"80AFE8-000F"

"80B000-000F"

In fact such was the original method used in
earlier versions of the CLUTILS – so using

HEPINI resulted in significant byte savings that

allowed the inclusion of other functionality.

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 108 of 113 August 2016

Appendix 3.- CLLIB MCODE Listing Examples.

The function CLLIB begins by building the prompt text in the display. Using the OS routine [PROMF2]

is helpful to save bytes, so there’s no need to write the function name again. Alpha is cleared using
[CLA], just to prepare for a possible copy of the ROM id# to Alpha using the [A] hot-key in run mode.

Then we get into a partial data entry “condition”, waiting for a key to be pressed.

Back Arrow sends the execution to [EXIT3], to do the housekeeping required to reset everything back
to the standard OS-required status (disable Display, resetting Keyboard bits, CPU flags, etc.). Since

the valid keys are quite a lot [A-Z] we need to use multiple conditions in the logic. The first two rows

are the easiest; as they set up CPU flag#4 and that can be tested easily. In this case we copy the
mantissa sign in A to C[S&X], then store it in B[S&X] and we move on.

For the rest [K-Z] we’ll need to read the keycode of the pressed key and act accordingly. Also we
need to discard any non-letter key, rejecting it if its keycode value is outside of the [A,Z] range.

Now the show is about to start: see how the key pressed value (in N) is compared with every
possible value in the [K-Z] range, building the “pointer” in C[S&X] by repeat one-additions until

coming up to its final result.

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 109 of 113 August 2016

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 110 of 113 August 2016

The last part is about presenting the chosen key – allowing NULLing if it’s held down long enough –
Resetting everything back to normal conditions [CLNUP], and see whether there actually exists such a

section – before we launch into a blindfold enumeration. This is done by the subroutine [SRCHR],
which will fetch the address in the ROM id #table where the section starts. With that we’ll transfer the

execution to the ROMLIB function code where the actual enumeration will take place - only with a

padded value to start from, as opposed to doing it from the top of the table.

Note how [SRCHR] is really part of the ADRID function code, which also does table look-ups for its
own purpose. This code is written around the table structure; refer to the Blueprints for more details.

And that’s all folks - easy when you know the tricks 

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 111 of 113 August 2016

Appendix 4.- Serial Transfer CLWRITE and CLREAD source code.
 – Written by Raymond Wiker.

 1) Copy YFNS-1A to RAM at 80C000, and patch for items 2, 5, 8. These

 affect the operation of YIMP. I did this with a variation of the

 PATCHIT program posted earlier.

 2) Execute TURBO50.

 3) Execute SERINI

 4) Execute BAUD12. From the documentation, this should not be

 necessary, but I had to explicitly set 1200 baud to get the transfer

 to work.

 5) The file yfns-1e.rom has the opposite byte order of what YIMP

 expects, so the transfer program needs to perform byte swapping.

 Alternatively, you might do the byte-swapping before you do the

 transfer.

 6) Transfer the ROM; I chose to transfer it to 80D000 (i.e, put

 80D000-0FFF in the alpha register, start YIMP). For the transfer, I

 used the CLWriter program that I posted a few days back, with the

 command

 CLWriter.exe yfns-1e-fixed.rom com1 1200 5

 --- the file yfns-1e-fixed.rom is the byte-swapped version of

 yfns-1e.rom. I probably should have chosen a slightly different

 name, but that does not really matter. The "5" means that I put a 5

 millisecond delay after each byte. It may not actually be necessary;

 I added it because I got timeouts, but these were probably because I

 left out step 4 (BAUD12).

 7) Execute PLUG1L with "80D-RAM" in the Alpha register.

 8) Verify (using CATALOG 2) that I'm now running YFNS-1E.

CLREADER follows somehow the reverse process, Make sure you execute CLREADER on the PC

first, followed by YEXP so there won’t be any data stream missed.

Using TURBO50 settings the transfer rate can safely be increased to 4800 and most likely up to 9600

without any data loss. More critical is the padding time, which heavily depends on your system
hardware. I have obtained reliable results with 1 ms and 4800 as my standard settings in either

direction - write and read.

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 112 of 113 August 2016

using System;
using System.IO;

using System.IO.Ports;
using System.Threading;

public class CLWriter
{

 public static void Main(string [] args)
 {

 int baudrate = 1200;

 int delay = 0;
 if (args.Length < 2) {

 Console.Error.WriteLine("Usage:");
 Console.Error.WriteLine(" {0} file port [baudrate [delay]]", "CLWriter");

 Console.Error.WriteLine();
 Console.Error.WriteLine("Where baud defaults to {0}", baudrate);

 Console.Error.WriteLine("and delay defaults to {0}", delay);

 Console.Error.WriteLine("Available Ports:");
 Console.Error.WriteLine();

 foreach (string s in SerialPort.GetPortNames())
 {

 Console.Error.WriteLine(" {0}", s);

 }
 return;

 }
 string filename = args[0];

 string portname = args[1];

 if (args.Length > 2) {
 baudrate = int.Parse(args[2]);

 if (baudrate != 1200 && baudrate != 2400 &&
 baudrate != 4800 && baudrate != 9600) {

 Console.Error.WriteLine("Invalid baudrate {0}; should be one of", baudrate);
 Console.Error.WriteLine("1200, 2400, 4800, 9600");

 return;

 }
 }

 if (args.Length > 3) {
 delay = int.Parse(args[3]);

 if (delay > 10) {

 Console.Error.WriteLine("delay {0} probably too large.", delay);
 return;

 }
 }

 if (!File.Exists(filename)) {

 Console.Error.WriteLine("File {0} does not exist.", filename);

 return;
 }

 FileStream fstream = File.Open(filename, FileMode.Open);

 if (fstream.Length > 8192) {
 Console.Error.WriteLine("WARNING: {0} is over 8192 bytes long ({1});", filename,

fstream.Length);
 Console.Error.WriteLine("Will only transfer the first 8192 bytes.");

 }

 BinaryReader binReader = new BinaryReader(fstream);

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 113 of 113 August 2016

 SerialPort serialport = new SerialPort();

 serialport.PortName = portname;
 serialport.BaudRate = baudrate;

 serialport.Parity = Parity.None;

 serialport.DataBits = 8;
 serialport.StopBits = StopBits.One;

 serialport.Handshake = Handshake.None;

 serialport.Open();

 try {

 byte[] buffer = new byte[8192];
 int count = binReader.Read(buffer, 0, 8192);

 // swap high & low bytes:

 for (int i = 0; i < count; i+= 2) {

 byte tmp = buffer[i];
 buffer[i] = buffer[i+1];

 buffer[i+1] = tmp;
 }

 for (int i = 0; i < count; i++) {
 Console.Write("{0:x2} ", buffer[i]);

 if (i % 16 == 15) {
 Console.WriteLine();

 }

 serialport.Write(buffer, i, 1);
 if (delay > 0) {

 Thread.Sleep(delay);
 }

 }
 Console.WriteLine();

 }

 catch (EndOfStreamException) {
 // nada

 }
 serialport.Close();

 }

}

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 114 of 113 August 2016

using System;

using System.IO;

using System.IO.Ports;
using System.Threading;

public class CLReader

{

 public static void Main(string [] args)
 {

 int baudrate = 1200;
 if (args.Length < 2) {

 Console.Error.WriteLine("Usage:");

 Console.Error.WriteLine(" {0} file port [baudrate]", "CLReader");
 Console.Error.WriteLine();

 Console.Error.WriteLine("Where baud defaults to {0}", baudrate);
 Console.Error.WriteLine("Available Ports:");

 Console.Error.WriteLine();
 foreach (string s in SerialPort.GetPortNames())

 {

 Console.Error.WriteLine(" {0}", s);
 } return;

 }
 string filename = args[0];

 string portname = args[1];

 if (args.Length > 2) {
 baudrate = int.Parse(args[2]);

 if (baudrate != 1200 && baudrate != 2400 &&
 baudrate != 4800 && baudrate != 9600) {

 Console.Error.WriteLine("Invalid baudrate {0}; should be one of", baudrate);

 Console.Error.WriteLine("1200, 2400, 4800, 9600");
 return;

 }
 }

 if (File.Exists(filename)) {
 Console.Error.WriteLine("File {0} already exists, will not overwrite.",

 filename);

 return;
 }

 SerialPort serialport = new SerialPort();
 serialport.PortName = portname;

 serialport.BaudRate = baudrate;

 serialport.Parity = Parity.None;
 serialport.DataBits = 8;

 serialport.StopBits = StopBits.One;
 serialport.Handshake = Handshake.None;

 serialport.ReadTimeout = 30000; // milliseconds

 serialport.Open();

 byte[] buffer = new byte[8192];

 int pos = 0;

 try {

 int count;

 do {
 count = serialport.Read(buffer, pos, 8192 - pos);

 pos += count;

PowerCL Module - Revision “P”

(c) Ángel M. Martin Page 115 of 113 August 2016

 } while (pos < 8192);
 }

 catch (TimeoutException) { // nada
 }

 serialport.Close();

 if (pos % 2 != 0) {

 Console.Error.WriteLine("Odd number of bytes read.");
 return;

 }

 // swap high & low bytes:
 for (int i = 0; i < pos; i+= 2) {

 byte tmp = buffer[i];
 buffer[i] = buffer[i+1];

 buffer[i+1] = tmp;
 }

 FileStream fstream = File.Open(filename, FileMode.CreateNew, FileAccess.Write);

 BinaryWriter binWriter = new BinaryWriter(fstream);

 binWriter.Write(buffer, 0, pos);

 binWriter.Close();
 fstream.Close();

 }
}

