
SandMath_44 Manual  - Revision 3x3++ 

 

(c) Ángel M. Martin                                     Page 1 of 167 December 2014  
 





 

User’s Manual and Quick Reference Guide 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Written and programmed by Ángel M. Martin       –     December 2014 



SandMath_44 Manual  - Revision 3x3++ 

 

(c) Ángel M. Martin                                     Page 2 of 167 December 2014  
 

This compilation revision 5.77.77  

Copyright © 2012 – 2014  Ángel M. Martin 

 

 

 

 
 

 

Acknowledgments.- 

 
Documentation wise, this manual begs, steals and borrows from many other sources – in particular 
Jean-Marc Baillard’s program collection on the web. Really both the SandMath and this manual would 

be a much lesser product without Jean-Marc’s contributions. 

 
There are multiple graphics and figures taken from Wikipedia and Wolfram Alpha, notably when it 

comes to the Special Functions sections. I’m not aware of any copyright infringement, but should that 
be the case I’ll of course remove them and create new ones using the SandMath function definition and 

PRPLOT. Just kidding... 

 
An important contribution comes from the AECROM (Geometric Solvers and Curve Fitting) and the HP-
41 Advantage Pac (FROOT and FINTEG).  

 

Original authors retain all copyrights, and should be mentioned in writing by any party utilizing this 
material.  No commercial usage of any kind is allowed. 

 
Screen captures taken from V41, Windows-based emulator developed by Warren Furlow. Its 
breakpoints capability and MCODE trace console are a godsend to programmers. See HHTUTUwww.hp41.org UUTTHH  

 

SandMath Overlays © 2009-2014 Luján García 

 

Published under the GNU software licence agreement. 

http://www.hp41.org/


SandMath_44 Manual  - Revision 3x3++ 

 

(c) Ángel M. Martin                                     Page 3 of 167 December 2014  
 



 
0.- Preamble to Revision 3x3+       7 
 

 Configuring the SandMath 3x3++ (revision “N”)    8 
 

 

1.  Introduction.  
        

HHTUTUFunction Launchers and Mass key assignmentsUUTTHH    9 
HHTUTUUsed Conventions and disclaimersUUTTHH      10 
HHTUTUGetting Started. Accessing the functions.UUTTHH     11 
HHTUTUMain and Dedicated Launchers: the Overlay UUTTHH     12 
HHTUTUAppendix 0.- The Hyper-shift keyboard      13 
AAppendix 1.- Last Function and Launcher Maps    15 
HHTUTUFunction index at a glanceUUTTHH.       16 

 
 

2.  Lower Page Functions in Detail     

 
UU2.1. SandMath44 Group        
 

 HHTUTUElementary Math functions UUTTHH.       20 
 HHTUTUNumber Displaying and Coordinate conversions UUTTHH    24 
 HHTUTUBase ConversionsUUTTHH        26 
 HHTUTUFirst, Second and Third degree EquationsUUTTHH     27 

HHTUTUAppendix 2.-  FOCAL program listingUUTTHH      30 
 HHTUTUAdditional Test Functions: rounded and otherwiseUUTTHH    31 
 
 

UU2.2.  Fractions Calculator        
 

  HHTUTUFraction Arithmetic and displaying UUTTHH     32 
 
 

UU2.3.  Hyperbolic Functions        
 

  HHTUTUDirect and Indirect HyperbolicsUUTTHH      34 
  HHTUTUErrors and ExamplesUUTTHH       35 

 

UU2.4.  Recall Math         
 

  HHTUTUIndividual RCL Math functionsUUTTHH      36 
  HHTUTURCL Launcher – the “Total Rekall”UUTTHH     37 
  HHTUTUAppendix 3.- A trip down memory laneUUTTHH     38 

 
 

2.5.  Geometric and TVM Solvers          
 

HHTUTUIntroduction: yet a new LauncherUUTT     40  
TTTTriangles, Circles and Slopes      41 

  Implementation Details       45 
  The Time Value of Money Solver     46 
 



SandMath_44 Manual  - Revision 3x3++ 

 

(c) Ángel M. Martin                                     Page 4 of 167 December 2014  
 

3. Upper Page Functions in Detail 

  

UU3.1.a. Statistics / Probability        

 
  HHTUTUStatistical Menu – Another type of LauncherUUTTHH    51 
  HHTUTUAlea jacta est…UUTTHH        52 
  HHTUTUCombinations and Permutations UUTTHH     53 
  HHTUTULinear Regression – Let’s not digress UUTTHH    54 
  HHTUTURatios, Sorting and Register MaximaUUTTHH     55 
  HHTUTUProbability Distribution FunctionUUTTHH     56 
  HHTUTUCumulative Probability and InverseUUTTHH     57 
  HHTUTUPoisson Standard DistributionUUTTHH      58 
  HHTUTUAnd what about Prime Factorization?UUTTHH     59 

HHTUTUAppendix 4. Prime Factors decomposition UUTTHH    60 
HHTUTUCurve Fitting: The AECROM Fitter UUTTHH     62 

 
 

U3.1.b. UHTUA few Geometry Functions UTH      
 

HTU3D vectors and 2D distance UTH      65 
 6 

HTUMMore Triangles and tetrahedronsUTH     67 
 
Tr 

 

UU3.2. Factorials         
  

HHTUTUA timid foray into Number Theory UUTTHH      68 
 HHTUTUPochhammer symbol: rising and falling empiresUUTTHH    69 
 HHTUTUMultifactorial, Superfactorial and Hyperfactorial UUTTHH    70 
 HHTUTULogarithm Multi-FactoriaUUTTHHl       72 

HHTUTUAppendix 5.- Primorials; a primordial view. UUTTHH     73 
Apery Numbers         75 

 
 

UU3.3. High-Level Math        
 

 HHTUTUThe case of the Chameleon function in disguise UUTTHH    77 
 
 HHTUTUGamma Function and associates UUTTHH      78 
  HHTUTULanczos FormulaUUTTHH       79 

HHTUTUAppendix 6. Comparison of Gamma results UUTTHH    80 
  HHTUTUReciprocal Gamma function UUTTHH      81 
  HHTUTUIncomplete Gamma functionUUTTHH (lower)     81 
  HHTUTULogarithm Gamma function UUTTHH      82 
  HHTUTUDigamma and Polygamma functions     83 
  HHTUTUInverse Gamma FunctionUUTTHH      85 
  HHTUTUEuler’s Beta functionUUTTHH       87 
  HHTUTUIncomplete Beta functionUUTTHH      87 
 
 HHTUTUBessel Functions and Modified UUTTHH       88 
  HHTUTUBessel functions of the 1UUPUPU

st
UUPUPU KindUUTTHH      88 

  HHTUTUBessel functions of the 2UUPUPU

nd
UUPUPU KindUUTTHH     89 

HHTUTUGetting Spherical, are we?UUTTHH      90 
HHTUTUProgramming RemarksUUTTHH       91 
  

HHAppendix 7. FOCAL program for Yn(x), Kn(x)    92 
 



SandMath_44 Manual  - Revision 3x3++ 

 

(c) Ángel M. Martin                                     Page 5 of 167 December 2014  
 

 HHTUTURiemann Zeta FunctionUUTTHH        93 
HHTUTUAppendix 8.- Putting Zeta to work: Bernoulli numbers UUTTHH    95 

 HHTUTULambert W FunctionUUTTHH        96 
 

 

UU3.4. Remaining Special Functions in Main FAT     
 

 HHTUTUThe unsung HeroUUTTHH         100 
HHTUTUExponential Integral and associatesUUTTHH      101 

 HHTUTUGeneralized Exponential IntegralsUUTTHH      103 
 HHTUTUErrare humanum est…UUTTHH        104 
 HHTUTUGeneralized Error Functions UUTTHH       104 
 HHTUTUAppendix 9.- Inverse Error function: coefficients galore UUTTHH   105 

HHTUTUAppendix 9b. IERF using the CUDA Library approach UUTTHH    106 
 HHTUTUHow many logarithms, did you say? UUTTHH      107 

 HHTUTUClausen and Lobachevsky functions UUTTHH     108 
 

 
UU3.5. Approximations and Transforms      
 

3.5.1. HHTUTUThe basics: Approximation theory UUTTHH     110 

HHTUTUChebyshev’s Approximation UUTTHH      111 
HHTUTUChebyshev PolynomialsUUTTHH       113 
HHTUTUTaylor Coefficients and ApproximationUUTTHH     114 
HHTUTUFourier SeriesUUTTHH        117 
HHTUTUAppendix 10. Fourier Coefficients by brute force UUTTHH    119 

HHTUTUDiscrete Hartley (symmetrical) Transform UUTTHH    120 
 

 

UU3.6. More Special Functions in Secondary FAT     
 

 3.6.1. HHTUTUCarlson Integrals and associates U UTTHH    
HHTUTUThe Elliptic IntegralsUUTTHH       124 

 HHTUTUCarlson Symmetric FormUUTTHH      125 
HTU Complete and Incomplete Legendre FormsUT    126 

Example: Perimeter of an Ellipse     128 

Jacobi Elliptic Functions      129 
JacobianTheta Functions      130 

 HHTUTUAiry FunctionsUUTTHH        132 
  HHTUTUFresnel integralsUUTTHH       133 
  HHTUTUWeber and Anger Functions UUTTHH      134 
  

3.6.2. HHTUTUHankel, Struve and others. UUTTHH       
 HHTUTUA Lambert relapseUUTTHH       135 
 HHTUTUHankel functions – yet a Bessel 3UUPUPU

rd
UUPUPU. KindUUTTHH    136 

 HHTUTUGetting Spherical, are we?UUTTHH      136 
 HHTUTUStruve FunctionsUUTTHH       138 
 HHTUTULommel functionsUUTTHH       139 
 HHTUTULerch Trascendent function UUTTHH      140 

  HHTUTUKelvin functionsUUTTHH       141 
  HHTUTUKummer functionsUUTTHH       142 
  HHTUTUAssociated Legendre functionsUUTTHH      143 
  Whittaker functions       144 

HHTUTU Toronto function       145UTTH4 

 



SandMath_44 Manual  - Revision 3x3++ 

 

(c) Ángel M. Martin                                     Page 6 of 167 December 2014  
 

  
 3.6.3. HHTUTUOrphans and Dispossessed UUTTHH. 
  HHTUTUTackle the Simple ones FirstUUTTHH      146 
  Polynomial evaluation – 1st derivative     147 
  Decibel Addition       148 
  Arithmetic-Geometric Mean      149 
  Example: Complete Elliptic Integral of 1st. Kind    150 
  HHTUTUDebye FunctionUUTTHH       151 
  HHTUTUDawson IntegraUUTTHHl       152 
  HHTUTUHypergeometric FunctionsUUTTHH      153 

Regular Coulomb Wave function     154 
  HHTUTUIntegrals of Bessel functions UUTTHH      156 
  HHTUTUAppendix 11.- Looking for ZeroesUUTTHH     157 
 

 
3.7. Solve and Integrate - Reloaded  ___    
 

 3.7.1. HHTUTU   Functions DescriptionUUTTHH  and Examples     158 
 3.7.2. MCODE Cathedrals – a dissertation     160 

HHAppendix 12 – His master’s voice     162 
  
 

A 
UU 
 
 

.END.          UU 167 
 
 
 
 
 
 

                             
 

Note: Make sure that revision “N” (or higher) of the Library#4 module is installed. 



SandMath_44 Manual  - Revision 3x3++ 

 

(c) Ángel M. Martin                                     Page 7 of 167 December 2014  
 

Preamble – What’s new in Revisions 3x3++ and later. 
 
 
Revision “N” is the eighth generation of the SandMath module. Many important architectural changes 

are added; such as a dual bank-switched configuration for each of its two pages, and thus tripling is 
initial size to 24k – and yet not changing its original 8k footprint. 

 

The benefits obtained with this layout are easy to see: more functions and programs are now available. 
However double storage space doesn’t mean duplicating the number of functions for several reasons: 

 
1. Bank-switched pages are not available simultaneously, thus the code must be structured taking 

into account this limitation, as well as the different requirements imposed by the OS. For 
technical reasons FOCAL code can only reside in the primary bank – thus the usage of 

secondary banks is limited to MCODE only. Furthermore, all the menu launchers use the partial 

data entry technique (less demanding on battery consumption than keystroke pressing 
detection) which is also restricted to the main bank – as the OS will always switch back to the 

main bank when the CPU goes to light sleep.  
 

2. Some of the new functions are real juggernauts, with very large code streams taking up 

considerable space. A good example is the Curve Fitting section (about 1.5k in size in total!), 
but also some others fall in the same category as well (TAYLOR, takes about 1k, and IERF 

takes about 650 bytes by itself – to mention just two).  These are ideal candidates for bank-
switching! 

 

3. The secondary FAT has absorbed the majority of the new functions, with just a few changes 
made to the main FAT in the “-HL MATH” section to include the most important functions in a 

more prominent location. Also a new section (“–TRANSFORM”) has been added to FCAT, to 
facilitate the navigation around this catalog – now containing 97 functions. 

 
4. Defying those reports stating that it could not be done, this new revision includes the all-time 

favorite Solve and Integrate functionality, first released by HP in the Advantage Module - and 

now available here as FROOT and FINTG. The twist has been the modification of the original 
code to run in a bank-switched configuration, located in bank-3 of the upper page. The 

challenge was irresistible, and the end result really is a beauty to behold. 
 

5. Revision 3x3 also includes the Geometry Solvers from the AECROM. The three solvers (TRIA, 

CIRC, and SARR) are consolidated into a single function, SOLVER – so only one FAT entry was 
needed. No surprisingly it is a launcher by itself. 

 
6. The icing on the cake is a full implementation of the Last Function functionality. Similar to 

LastX but applied to the last function executed, it allows repeated execution of the same 
function using a convenient shortcut that bypasses all the launcher paths. Very useful for sub-

functions, which cannot be assigned to any key in USER mode. The LastFunction is recorded 

either by name or index, using  FL , F$ and F#. 

 
7. Substantial enhancements were made to the main launchers and the sub-function handling, 

such as the automated display of the sub-function name during a single-step (SST) execution 

of a program. Sub-function names are also briefly shown during the execution in RUN mode, or 

when entering in a program using F# - providing visual feedback to the user. 

 

8. Last but not least, revision “M” also managed to include the Time Value of Money functionallity 
from the just released TVM ROM: an all-MCODE implementation of the classic functions that 

rivals with that in the HP-12C in speed and accuracy.  
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Rather than re-invent the wheel, the SandMath uses optimized versions of the best math software 

available for the 41’ platform. The Geometric Solvers and Curve Fitting programs from the AECROM are 
a good example; as well as all the excellent programs developed by Jean-Marc Baillard that have found 

its way here. Very often I added a few enhancements to the code (like using 13-digit OS routines or 
other MCODE tweaks) but all credit should go to the original authors. 

 

All in all I hope you’d agree this new incarnation of the SandMath takes good advantage of the 
developments made and reaches an even balance between enhancements and usability – with few 

compromises to speak of.  Note that the changes from previous revisions caused a re-arrangement of 
the function entries in the upper page, the High-Level Math – both in the main and auxiliary FATs. Be 

advised that the individual function codes are different, in case you have written some programs using 
the older ones. 

 

 

Configuring the SandMath_3x3++ Revision “N” 

 

Plugging the SandMath 3x3 module requires using the bank-switching configuration options on the 41-
CL (as well as on Clonix/NoVRAM, or the MLDL-2k). For the 41-CL make sure that the six ROM images 

are stored in the appropriate block locations in memory (either sRAM or Flash), and that you use the “–

MAX” control string in ALPHA for the execution of the PLUG command.  
 

Hint: the same conventions used for the Advantage Pack are applicable here: place the 3 lower banks 
in the first three blocks within a sector, and the 3 upper banks in the 5 PP

th
P , 6PP

th
PPa and 7th blocks of the same 

sector – thus leaving a “gap” of one block in between, which can be used to store other modules 

without a conflict. 
 

There are only a few new functions in revision 3x3 not included in the 2x2, but they alone account for 
two additional banks (one on each page, lower and upper). The difference is therefore substantial, 

despite the apparent sameness between revisions. You may of course choose which one to use, 
depending on which one is more convenient for your hardware.  The optimal setup is the 3x3 revision, 

gathering the most benefits from the bank-switching imlpementation (on-line code that doesn’t take 

additional footprint).  Note that the LASTF features are only available in the 3x3+ verison of the 
module. 
 

Note for Advanced Users U:  

 

Even if the SandMath is a 24k module, it is possible to configure only the first (lower) page as an 
independent bank-switched 4k-ROM. This may be helpful when you need the upper port to become 

available for other modules (like mapping the CL’s MMU to another module temporarily); or 
permanently if you don’t care about the High Level Math (Special Functions) and Statistics sections.  

 
Think however that the FAT entries for the Function launchers are in the upper page, so they’ll be gone 

as well if you use the reduced foot-print version (effective 4k only) of the SandMath. 

 
 

Page Bank-1 Bank-2 Bank-3 

Upper High-Level Math, Stats  
Function Launchers,  

Curve Fitting 
HP Advantage Solve 

& Integrate 

Lower SandMath_44 FRC, HYP, RCL# Math 
TVM$, AECROM  

Geometry Solvers 

 
Note that it is not possible to do it the other way around; that is plugging only the upper page of the 

module will be dysfunctional for the most part and likely to freeze the calculator– do not attempt. 

 
Note: Make sure that revision “N” (or higher) of the Library#4 module is installed. 
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SandMath_44 Module – Revision 3x3++ 

Math Extensions for the HP-41 System 
 

1. Introduction. 
 
Simply put: here’s the ultimate compilation of MCODE Math functions and FOCAL applications to extend 

the native function set of the HP-41 system.  At this point in time - way over 30 years after the 

machine’s launch - it’s more than likely not realistic to expect them to be profusely employed in FOCAL 
programs anymore - yet they’ve been included for either intrinsic interest (read: challenging MCODE or 

difficult to realize) or because of their inherent value for those math-oriented folks. 
 

This module is a record-breaking 24k implementation, arranged in a dual bank-switched configuration. 
The lower pages include more general-purpose functions, re-visiting the usual themes: Fractions, Base 

conversion, Hyperbolic functions, RCL Math extensions, Triangles and Circles, as well as simple-but-

neat little gems to round off the page. In sum: all the usual suspects for a nice ride time.  
 

The upper pages delve into deeper territory, touching upon the special functions, approximation theory, 
and Probability/Statistics. Some functions are plain “catch-up” for the 41 system (sorely lacking in its 

native incarnation), whilst others are a divertimento into a tad more complex math realms. All in all a 

mixed-and-matched collection that hopefully adds some value to the legacy of this superb machine – 
for many of us the best one ever. 

 
I am especially thankful for the essential contributions from Jean-Marc Baillard: more than 3/4ths of 

this module are directly attributable to his original programs, one way or another. 

 
Wherever possible the 13-digit OS routines have been used throughout the module – ensuring the 

optimal use of the available resources to the MCODE programmer. This prevents accuracy loss in 
intermediate calculations, and thus more exact results. For a limited precision CPU (certainly per today’s 

standards) the Coconut chip still delivers a superb performance when treated nicely.  
 

The module uses routines from the Page#4 Library (a.k.a. “Library#4”). Many routines in the library 

are general-purpose system extensions, but some of them are strictly math related, as auxiliary code 
repository to make it all fit in an 8k footprint factor - and to allow reuse with other modules. This is 

totally transparent to the end user, just make sure it is installed in your system and that the revisions 
match. See the relevant Library#4 documentation if interested. 

 

 

Function Launchers and Mass key assignments. 

 

As any good “theme” module worth its name, the SandMath has its own mass-Key assignment routine 
(MKEYS). Use it to assign the most common functions within the ROM to their dedicated keys for a 

convenient mapping to explore the functions. Besides that, a distinct feature of this module is the 

function launchers, used to access diverse functions grouped by categories. These include the 
Hyperbolic, the Fractions, the RCL Math, and the Special Function groups.  This saves memory registers 

for key assignments, whilst maintaining the standard keyboard available also in USER mode for other 
purposes.  

 

This is the eighth incarnation of the SandMath project, which in turn has had a fair number of revisions 
and iterations on its own. One distinct addition has been a secondary Function address Table (FAT)  to 

provide access to many more functions, exceeding the limit imposed by the operating system (64 
functions per page). Some other refinements consisted in a rationalization of the backbone 

architecture, as well as a more modular approach to each of pages of the module. Gone are the “8k” 
and “12k” distinctions of the past – as now the Matrix and Polynomial functions have an independent 

life of their own in separate modules, like the SandMatrix - more on that to come. 
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Conventions used in this manual. 

 

This manual is a more-or-less concise document that only covers the normal use of the functions. All 
throughout this manual the following convention will be used in the function tables to denote the 

availability of each function in the different function launchers: 

 
[*]: assigned to the keyboard by   MKEYS 

[F]: direct execution from the main launcher  FL 

[H]: executed from the hyperbolic launcher -HYP 
[F]: executed from the fractions launcher -FRC 

[RC]: executed from the RCL# launcher,  -RCL 

[CR];  executed from the Carlson Launcher  (no separate function exists) 
[HK]: executed from the Hankel launcher  (no separate function exists) 

[]: executed from the Statistics Menu,  –ST/PRB 

[$]: sub-function in the secondary FAT.  F$ 

 

 
MKEYS prompts for the asiign/de-assign action; use the Y/N keys or back arrow to cancel. There are a 

total of 25 functions assigned, refer to the SandMath overlay for details. Note that MKEYS is 
programmable as well. 

 
 
U 
U 
Xtra Bonus:- High Rollers Game. 

 
There is an Easter egg included in the SandMath 3x3 – hidden somewhere there’s a rendition of the 

High Rollers game, so you can relax in between hard-thinking sessions of math, really!  There was 
simply too much available space in bank 3 of the upper page to leave it unused, so this 500+ bytes 

MCODE rendition of the game  (written by Roos Cooling, see PPCJ V14 N2 p31) was begging to be 

included. As to how to access it… the discovery is part of the enjoyment :-)  Hint: even if it’s not 
geometric, it certainly is a “Solver”, of a [SHIFT]’ed type… 

 

      ,     
 

Choose any combination from the available digits on the right which sum matches the target on the 
left, repeating until there’s no more digits left (YOU WIN) or there aren’t possible combinations (YOU 

LOSE).  Use R/S to proceed, back-arrow to delete digits. The game will ask you to try again and will 
keep the count of the scores. 

 

      ,     
 
 
Finall Disclaimer.- 

 
With “just” an EE background the author has had his dose of relatively special functions, from college 

to today. However not being a mathematician doesn’t qualify him as a field expert by any stretch of the 

imagination. Therefore the descriptions that follow are mainly related to the implementation details, 
and not to the general character of the functions. This is not a mathematical treatise but just a 

summary of the important aspects of the project, highlighting their applicability to the HP-41 platform. 
 

 
Note: Make sure that revision “N” (or higher) of the Library#4 module is installed. 
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Getting Started: Accessing the Functions. 

 
There are about 230 functions in the SandMath Module. With each of the main two pages containing its 
own function table, this would only allow to index 128 functions - where are the others and how can 

they be accessed? The answer is called the “Multi-Function” groups. 
 

Multi-Functions F# and F$ provide access to an entire group of sub-functions, grouped by their 

affinity or similar nature. The sub-functions can be invoked either by its index within the group using 

F#, or by its direct name, using F$. This is implemented in such a way that they are also 

programmable, and can be entered into a program line using a technique called “non-merged 
functions”.   
 

You may already be familiar with this technique, originally developed by the HEPAX programmers. In 
the HEPAX there were two of those groups; one for the XF/M functions and another for the HEPAX/A 

extensions. The PowerCL Module also contains its own, and now the SandMath joins them – this time 
applied to the mathematical extensions, particularly for the Special Functions group. 

 

A sub-function catalog is also available, listing the functions included within the group. Direct execution 
(or programming if in PRGM mode) is possible just by stopping the catalog at a certain entry and 

pressing the XEQ key. The catalog behaves very much live the native ones in the machine: you can 
stop them using R/S, SST/BST them, press ENTER^ to move to the next “sub-section”, cancel or 

resume the listing at any time. 
 

As additional bonus, the sub-function launcher F$ will also search the “main” module FAT if the sub-

function name is not found within the multi-function group – so the user needn’t remember where a 

specific function sought for was located. In fact, F$ will also “find” a function from any other plugged-

in module in the system, even outside of the SandMath module. 
 

Main Launcher and Dedicated (Secondary) Launchers. 
 

The Module’s main launcher is [FL]. Think of it as the trunk from which all the other launchers stem, 

providing the branches for the different functions in more or less direct number of keystrokes. With a 

well-thought out logic in the functions arrangement then it’s much easier to remember a particular 
function placement, even if its exact name or spelling isn’t know, without having to type it or being 

assigned to any key. 

 

Despite its unassuming character, the FL prompt provides direct access to many functions. Just press 

the appropriate key to launch them, using the SandMath Overly as visual guide: the individual functions 

are printed in BLUE, with their names set aside of the corresponding key. They become active when the 

“F: _” prompt is in the display. 

 

        , or     

 

Besides providing direct access to the most common Special Functions, FL will also trigger the 

dedicated function launchers for other groups. Think of these groupings as secondary “menus” and 
you’ll have a good idea of their intended use. The following keys activate the secondary menus: 

 

[A], activates the STAT/PRB menus.  
[H] and [O], activate the Hankel and Carlson groups launchers respectively 

[0] , activates the FRC (Fractions) launcher; [,] (Radix) activates the LastFunction 
[SHIFT] switches into the hyperbolic choices; pressing it twice enables the second overlay. 

[ALPHA] and [PRGM] activate the F$ andF# sub-functions launchers respectively 

[USER] activates the TVM$ launcher (latest addition to the module) 

[<-], back-arrow cancels it or returns to it from a secondary menu. 
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As it occurs with standard functions, the name of the launched function will be shown on the display 

while you hold the corresponding key – and NULLED if kept pressed. This provides visual feedback on 
the action for additional assurance.  

 

This is a good moment to familiarize yourself with the [FL] launcher. Go ahead and try it, using it also 

in PRGM mode to enter the functions as program lines. Note that when activating F$ you’ll NOT need 

to press [ALPHA] a second time to spell the sub-function name (unlike standard functions like COPY, or 
XEQ). This saves keystrokes as you can start spelling the function name directly. You still need to press 

[ALPHA] to terminate the sequence. 
 
UUDirect-access function keys: 
 
[A]: UUStat/Prob MENUS UU 

[B]: Euler’s Beta Function 
[C]: Digamma (PSI) 

[D]: Rieman’s Zeta Function 
[E]: Gamma Natural log 

[F]: One over Gamma 

[G]: Euler’s Gamma Function 
[H]: UUHankel’s Launcher UU 

[I]: Bessel I(n,x) 
[J]: Bessel J(n,x) 

[SHIFT]: UUHyperbolics Launcher UU 

[K]: Bessel K(n,x) 
[L]: Bessel Y(n,x) 

[M]: Lambert’s W 
[SST]: Incomplete Gamma 

[N]: Root Finder 

[O]: UUCarlson Launcher UU 
[R]: Exponential integral 

[S]: Numeric integral 
[X]: Polygamma (PsiN) 

[V]: Cosine Integral 

[W]: Spherical Y(n,x) 
[Z]: Sine Integral 

[=]: Spherical J(n,x) 
[?]: Incomplete Beta 

[0]: UUFractions Launcher   
[R/S]: View Mantissa   

[,]: Activates the Last Function  [USER]: Time Value of Money launcher, TVM$ 

[ALPHA]:Sub-function Alpha launcher,F$ [PRGM]: Sub-function UUIndex Launcher, F# 

 [ON]: Turns the calculator OFF  [<-]:  Cancels out to the OS or retruns from 2nd. 

 
A green “H” on the overlay prefixing the function name represents the Hyperbolic functions. This also 

includes the Hyperbolic Sine and Cosine integrals, in addition to the three “standard” ones. Using the 
[SHIFT] key will toggle between the direct and inverse functions. Pressing [<-] will take you back to 

the main F: prompt.  Note that the RCL Math functions are also linked to the main launcher, to invoke 

them  use the [RCL] launcher, sort of “Hyper-RCL” thus need to press: [FL], [HYP] to get  the  

“RCL# _ _” prompt.  

 
Typically the secondary launchers have the possible choices in their prompt; we’ll see them later on. 

The STAT menu differs from the others in that it consists of two line-ups toggled with the [SHIFT] key 
– providing access to 10 functions using the keys in the top-row directly below the function symbol. 

The Fractions functions are encircled by a red line on the overlay, at the bottom and left rows of the 

keyboard. They include the fraction math, plus a fraction Viewer and fraction/Integer tests. The Hankel 
and Carlson  launchers present their choices in their prompts, and will be covered in a dedicated 

section later in the manual. 
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Appendix 0.- The “Hyper-SHIFT” keyboard.  (HYP”) 
 

 

The available room in the auxiliary banks has proven useful to extend the HYP launcher beyond the 

strictly hyperbolic functions. Presing the [SHIFT] key twice activates the “hyper-SHIFT” mode; and then 
repeat pressings of [SHIFT] will toggle between the normal and hyper-Shift modes:  

 

    ----------  

 
The hyper-SHIFT extensions are mainly about adding a SHIFTED HYP mode with a full keyboard of 

“assignments”, like those for functions assigned by MKEYS to the HYP prompt choices. 
 

The picture below shows the function map for the [HYP] and [SHIFT-HYP] launchers (HYP”). As it’s 

now customary, the [SHIFT] key will toggle between these two, and the back arrow will return to the 

main FL launcher. 

 

Note that this arrangement includes both main- and sub-functions in the same second-layer keyboard. 
This is a very convenient way to circumvent the inability to directly assign sub-functions to keys. Later 

on in the manual we’ll see dedicated launchers for other subfunctions in the CARLSON and HANKEL 

sections – completing the round. 
 

[A]: Prime Factors UU 
[B]: Discrete Hartley Transform 

[C]: Curve Fitting 

[D]: Rieman’s Zeta (Borwein) 
[E]: Poly-Logarithm 

[F]: Fourier Series 
[G]: Inverse Gamma 

[H]: Inverse Hyp SINE UU 
[I]: Inverse Hyp COS 

[J]: Inverse Hyp TAN 

[SHIFT]: UUTToggles Hyp Launchers UU 

[K]: Days between Dates 

[L]: Cubic Equation Roots 

[M]: Shortcut to RCL Launcher 
[SST]: ATAN2 (Complex argument) 

[N]: INPUT data in registers 
[O]: UTaylor Series UU 

[P]: Arithmetic-Geometric Mean 

[<-]: Cancels out to [FL] 

[Q]: Probability Distribution Function 
[R]: Generalized Exponential Integral 

[S]: Generalized Error Function 
[T]: Inverse Error Function 

[U]: Cumulative Probability Function 
[V]: Hyperbolic Sine Integral 

[W]: Whittakert Function M 

[X]: Lobachesvsky function 
[Y]: Inverse Cumulative Probability 

[Z]: Hyperbolic Sine Integral 
[=] Clausen function 

[?] Straight Line Equation 

[:] Reg Maximum    [Spc] Register Sort 
[;] Stack Sort    [R/S] Ceiling function 
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This implementation effectively supersedes the MKEYS approach, respecting the default keyboard (no 

need to toggle USER mode) and without the extra KA registers consumption. Note also that the HYP” 
keyboard is compatible with the SandMath Overlay - of which finally real-life units were made!. Perhaps 
it’s time for a second overlay...  

 
The “Last Function” functionality. 

 
The latest releases of the SandMath and SandMatrix modules include support for the “LASTF” 

functionality.  This is a handy choice for repeat executions of the same function (i.e. to execute again 
the last-executed function), without having to type its name or navigate the different launchers to 

access it. 

 
The implementation is not universal – it only covers functions invoked using the dedicated launchers, 

but not those called using the mainframe XEQ function. It does however support two scenarios: (a) 
functions in the main FATs, as well as (b) those sub-functions from the auxiliary FATs. Because the 

latter group cannot be assigned to a key in the user keyboard, the LASTF solution is especially useful in 
this case. The following table summarizes the launchers that have this feature: 

 

Module Launchers LASTF Method 

SandMath 3x3+ FL, HYP, FRC, RCL# Captures sub/fnc id# 

revision “M” F$ _ Captures sub/fnc NAME 

 F# _ _ _ Captures sub/fnc id# 

revision “N” FCAT (XEQ’) Captures sub/fnc id# 

 
Note that the Alphabetical launcher F$ will switch to ALPHA mode automatically. Spelling the function 

name is terminated pressing ALPHA, which will either execute the function (in RUN mode) or enter it 

using two program steps in PRGM mode by means of the F# function plus the corresponding index 

(using the so-called non-merged approach). This conversion happens entirely automatically. 
 

The LASTF operation is also supported when excuting a sub-function from within the FCAT 
enumeration, using the [XEQ] hot-key - which is very handy for those with elusive spelling. Another 

new enhancement is the display of the sub-function names when using the index-based launcher F# - 

which provides visual feedback that the chosen function is the intended one (or not). This feature is 

active in RUN mode, when entering it into a program, and when single-stepping a program execution - 
but obviously not so during the standard program runs. 
 
 

LASTF Operating Instructions 
 

No separate function exists - The Last Function feature is triggered by pressing the radix key (decimal 

point - the same key used by LastX) while the launcher prompts are up. This is consistently 
implemented across all launchers supporting the functionality in the three modules (SandMath, 

SandMatrix and PowerCL) – they all work the same way.  
 

When this feature is invoked, it first briefly shows “LASTF” in the display, quickly followed by the last-
function name. Keeping the key depressed for a while shows “NULL” and cancels the action. In RUN 

mode the function is executed, and in PRGM mode it’s added as a program step if programmable, or 

directly executed if not programmable.  
 

The functionality is a two-step process: a first one to capture the function id#, and a second that 
retrieves it, shows the function name, and finally parses it.  All launchers have been enhanced to store 

the appropriate function information (either index codes or full names) in registers within a dedicated 

buffer (with id# = 9). The buffer is maintained automatically by the modules (created if not present 
when the calculator is ‘switched ON), and its contents are preserved while it is turned off (during “deep 

sleep”). No user interaction is required. 
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If no last-function information yet exists, the error message “NO LASTF” is shown. If the buffer #9 is 

not present, the error message is “NO BUF” instead. 
 

 

Appendix 1.- Launcher Maps. 

 

The figures below provide a better overview, illustrating the hierarchy between launchers and their 

interconnectivity. For the most part it is always possible to return to the main launcher pressing the 
back arrow key, improving so the navigation features – rather useful when you’re not certain of a 

particular function’s location. 
 

The first one is the Main SandMath Launcher. 

 
The first mapping doesn’t show all the direct execute function keys. Use the SandMath overlay as a 

reference for them (names written in BLUE aside the functions). 
 

 
Note that FL$ requires pressing [ALPHA] a second time in order to type the sub-function name. 

 

And here’s the Enhanced RCL MATH group: 

 

 
 

Here all the prompts expect a numeric entry. The two top rows keys can be used as shortcuts for 1-10. 
Note that No STK functionality is implemented – even if you can force the prompt at the IND step. 

Typically you’ll get a “DATA ERROR” message - Rather not try it :- ) 
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Function index at a glance. 

 
And without further ado, here’s the list of functions included in the module. First the main functions: 
 

# Name Description # Name Description 

0 -SNDMTH 3x3 TAYLOR sub-function 0 -HL MATH+ Displays "RUNNING…" 

1 2^X-1 Powers of 2 1 1/GMF Reciprocal Gamma Cont..Frc. 

2 1/N Harmonic Numbers 2 FL   Function Launcher 

3 DGT Sum of mantissa digits 3 F$ Launcher by Name 

4 N^X Geometric Sums 4 F# Launcher by index 

5 AINT Alpha Integer Part 5 BETA Beta Function 

6 ATAN2 Dual-argument ATAN  6 CHBAP Chebyshev's Approximation 

7 BS>D Base to Decimal 7 CI Cosine Integral 

8 CBRT Cubic Root 8 DHST Discrete Hartley Transform 

9 CEIL Ceil function 9 EI Exponential Integral 

10 CHSYX CHSY by X 10 ENX Generalized Exponential Integrals 

11 CROOT Cubic Equation Roots 11 ERF Error Function 

12 CVIETA Driver for CROOT 12 FFOUR Fourier Series 

13 D>BS Decimal to Base 13 FINTG Numerical Integration 

14 D>H Dec to Hex 14 FLOOP Auxiliary function 

15 E3/E+ 1,00X 15 FROOT Solution of f(x)=0 

16 FLOOR Floor Function 16 GAMMA Gamma Function (Lanczos) 

17 SOLVER Geometric and TVM  Solvers 17 HCI Hyperbolic Cosine Integral 

18 GEU Euler's Constant 18 HGF+ Generalized Hypergeometric Funct. 

19 H>D Hex to Dec 19 HSI Hyperbolic Sine Integral 

20 HMS* HMS Multiply by scalar 20 IBS Bessel In Function 

21 HMS/ HMS Divide by scalar 21 ICBT Incomplete Beta Function 

22 LOGYX LOG b of X 22 ICGM Incomplete Gamma Function 

23 MKEYS Mass Key Assgn. 23 IERF Inverse Error function 

24 P>R Complete P-R 24 IGMMA Inverse Gamma 

25 QREM Quotient Reminder 25 JBS Bessel Jn Function 

26 QROOT 2nd. Degree Roots 26 KBS Bessel Kn Function 

27 QROUT Ouput Roots 27 LINX Polylogarithm 

28 R>P Complete R-P 28 LNGM Logarythm Gamma Function 

29 R>S Rectangular  to Spheric 29 LOBACH Lobachevsky Function 

30 S>R Spheric to Rectangular 30 PSI Digamma Function 

31 STLINE Straight Line  from Stack 31 PSIN Polygamma 

32 T>BS _ _ Dec to Base 32 SI Sine Integral 

33 VMANT View Mantissa 33 SJBS Spherical J Bessel 

34 X^3 X^3 34 SYBS Spherical Y Bessel 

35 X=1? Is X 1? 35 TAYLOR Taylor Polynomial order 10 

36 X=YR? Is X~Y? (rounded) 36 WL0 Lambert W Function 

37 X>=0? is X>=0? 37 YBS Bessel Yn 

38 X>=Y? is X>=Y? 38 ZETA Zeta Function (Direct method) 

39 Y^1/X Xth. Root of Y 39 ZETAX Zeta Function (Borwein) 

40 Y^^X Extended Y^X 40 -PB/STS _ Displays STAT menu 

41 YX^ Modified Y^X 41 %T Total Percentual  

42 -FRC _ Fraction Math Launcher 42 CORR Correlation Coefficient 

43 D>F Decimal to Frac 43 COV Sample Covariance 

44 F+ Fraccion Addition 44 "CURVE" Curve Fitting (AECROM) 

45 F- Fraction Substract 45 EVEN? is X Even? 

46 F* Fraction Multiply 46 GCD Greatest Common Divisor 

47 F/ Fraction Divide 47 LCM Least Common Multiple 

48 FRC? is X fractional? 48 LR Linear Regression 
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# Name Description # Name Description 

49 INT? Is X Integer? 49 LRY LR Y-value 

50 -HYP _ Hyberbolics Launcher 50 NCR Combinations 

51 HACOS Hypebolic ACOS 51 NPR Permutations 

52 HASIN Hyperbolic ASIN 52 ODD? Is X Odd? 

53 HATAN Hyperbolic ATAN 53 PDF Probability Distribution Function 

54 HCOS Hyperbolic COS 54 PFCT Prime Factorization in Alpha 

55 HSIN Hyperbolic SIN 55 PRIME? Is X Prime? 

56 HTAN Hyperbolic TAN 56 RAND Random Number 

57 -RCL _ Extended Recall 57 RGMAX Block Maximun 

58 AIRCL ARCL Integer Part  58 RGSORT Register Sort 

59 RCL^ Recall Power 59 RGSUM Register Sum 

60 RCL+ Recall Add 60 SEEDT Stores Seed for RNDM 

61 RCL- Recall Subtract 61 ST<> Exchange ST & REG 

62 RCL* Recall Multiply 62 STSORT Stack Sort 

63 RCL/ Recall Divide 63 TVM$ Time Value of Money Launcher 

 
Functions in blue are all in MCODE.  Functions in black are MCODE entries to FOCAL programs.  

Pink background denote new in revisions 3x3, 3x3+ and 3x3++ 

 
 

And now the sub-functions within the Special Functions Group – deeply indebted to Jean-Marc’s 
contribution (and not the only section in the module). Note there are two sections within this auxiliary 

FAT – you can use the FCAT hot keys to navigate the groups. 

 
index# Name Description Author 

0 -SP FNC Cat header - does FCAT Ángel Martin 

1 #BS Aux routine, All Bessel Ángel Martin 

2 #BS2 Aux routine 2nd. Order, Integers Ángel Martin 

3 AIRY Airy Functions  Ai(x) & Bi(x)  JM Baillard 

4 ALF Associated Legendre function 1st kind - Pnm(x)  JM Baillard 

5 AWL Inverse Lambert W Ángel Martin 

6 DAW Dawson integral JM Baillard 

7 DBY Debye functions JM Baillard 

8 HGF Hypergeometric function          JM Baillard 

9 HK1 Hankel1 Function Ángel Martin 

10 HK2 Hankel2 Function Ángel Martin 

11 HNX Struve H Function JM Baillard 

12 ITI Integral if IBS Ángel Martin 

13 ITJ Integral of JBS Ángel Martin 

14 JNX1 Bessel Jn for large arguments Keith Jarret 

15 KLV Ber & Bei functions JM Baillard 

16 KLV2 Ker & Kei functions JM Baillard 

17 KUMR Kummer Function Ángel Martin 

18 LERCH Lerch Transcendent function JM Baillard 

19 LI Logarythmic Integral Ángel Martin 

20 LNX Struve Ln Function JM Baillard 

21 LOMS1 Lommel s1 function JM Baillard 

22 LOMS2 Lommel S2 JM Baillard 

23 RCWF Regular Coulomb Wave Function JM Baillard 

24 RHGF Regularized hypergeometric function          JM Baillard 

25 SHK1 Spherical Hankel1 Ángel Martin 

26 SHK2 Spherical Hankel2 Ángel Martin 

27 SIBS Spherical IBS Ángel Martin 



SandMath_44 Manual  - Revision 3x3++ 

 

(c) Ángel M. Martin                                     Page 18 of 167 December 2014  
 

28 TMNR Toronto function JM Baillard 

29 WEBAN Weber and Anger functions JM Baillard 

30 WHIM Whittaker M function Ángel Martin 

31 WL1 Lambert W1 Ángel Martin 

32 ZOUT Output Complex to ALPHA Ángel Martin 

33 -ELLIPTIC Section Header n/a 

34 AJF Aux for JEF JM Baillard 

35 BRHM Area of cyclic quadrilateral (Bhramagupta) JM Baillard 

36 CLAUS Clausen Function JM Baillard 

37 CRF Carlson Integral 1st. Kind JM Baillard 

38 CRG Carlson Integral 2nd. Kind JM Baillard 

39 CRJ Carlson Integral 3rd. Kind JM Baillard 

40 CSX Fresnel Integrals, C(x) & S(x) JM Baillard 

41 ELIPF Elliptic Integral Ángel Martin 

42 ELP Perimeter of Ellipse Ángel Martin 

43 HERON Area of Triangle (Heron formula) JM Baillard 

`44 JEF Jacobian Elliptic functions JM Baillard 

45 LEI1 Legendre Elliptic Integral 1st. Kind JM Baillard 

46 LEI2 Legendre Elliptic Integral 2nd. Kind JM Baillard 

47 LEI3 Legendre Elliptic Integral 3rd. Kind JM Baillard 

48 PP2 Point-to-Point Distance Ángel Martin 

49 SAE Surface Area of an Ellipsoid  JM Baillard 

50 THETA Theta Functions (1,2,3,4) JM Baillard 

51 THV Tetrahedron Volume JM Baillard 

52 VMOD Vector Module Ángel Martin 

53 VXA Vector Cross Product Ángel Martin 

54 V*A Vector Dot Product Ángel Martin 

 

 

The following section groups the factorial functions, circling back from the special functions into the 
number theory field - a timid foray to say the most. 
 

index# Name Description             Author 

55 -FACTORIAL Section Header n/a 

56 AGM Arithmetic-Geometric Mean Ángel Martin 

57 APNB Apery Numbers JM Baillard 

58 BN2 Bernouilly Numbers Ángel Martin 

59 CPF Cumulative probability (, Ángel Martin 

60 DSP? Display Digits setting Ángel Martin 

61 ERFN Generalized Error Function JM Baillard 

62 FFCT Falling Factorial Ángel Martin 

63 ICPF Inverse Cumulative Prob. Ángel Martin 

64 LOGHF Logarithm Hyper-Factorial Ángel Martin 

65 LOGMF Logarithm Multi-Factorial JM Baillard 

66 MANTXP Mantissa David Yerka 

67 MFCT Multi-Factorial JM Baillard 

68 NPRML Number Primorials Ángel Martin 

69 POCH Pochhammer symbol Ángel Martin 

70 PRML Prime PrImorials Ángel Martin 

71 PSD Poisson Standard Distribution Ángel Martin 

72 QTNL Quantile (Standard Normal ICP) Ángel Martin 

73 SFCT Super Factorial JM Baillard 

74 XFCT Extended Factorial Ángel Martin 
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And the last section takes us into the Transforms and Approximation theory, very loosely speaking: 
 

index# Name Description                 Author 

75 -TRANSFORM Section Header n/a 

76 ^LIST Input Data in List Ángel Martin 

77 ANUMDL ANUM with Deletion HP Co. 

78 b*e Array size from control word Ángel Martin 

79 b<>e index swapping Ángel Martin 

80 CDAY Calendar Day Ángel Martin 

81 CdT Aux for CHBAP JM Baillard 

82 CHB Chebyshev Polinomials 1st. Kind JM Baillard 

83 CHB2 Chebyshev Polinomials 2nd. Kind JM Baillard 

84 CHBCF Chebyshev's Coefficients JM Baillard 

85 CRVF Curve Fitting (AECROM) Nelson F. Crowle 

86 D% Difference Percent Ángel Martin 

87 DAYS Days between Dates HP Co. 

88 DHT Discrete Hartley transform JM Baillard 

89 dPL First derivative of Polynomial Ángel Martin 

90 IN Input Data in Registers Ángel Martin 

91 INPUT Data input as ALPHA Lists Ángel Martin 

92 JDAY Julian Day Number Ángel Martin 

93 OUT Output Data from Registers Ángel Martin 

94 PDEG Polyn degree from control word JM Baillard 

95 PL Polynomial Evaluation Ángel Martin 

96 -/+ Calculates (Y-X)/(Y+X) Ángel Martin 

97 dB+ Decibel Addition Ángel Martin 

98 REV Shows Module revision Ángel Martin 

99 FCAT Function Catalog Ángel Martin 
 

(*)  The best way to access FCAT is through the main launcher [FL] , then pressing [SHIFT] ENTER^ (“N”) 

 
 

 FCAT  provides usability enhancements for admin and housekeeping. It invokes the sub-function 

CATALOG, UUwith hot-keys for individual function launch and general navigation. Users of the POWERCL 
Module will already be familiar with its features, as it’s exactly the same code – which in fact resides in 

the Library#4 and it’s reused by both modules and the SandMatrix as well. 

 
UUThe hot-keys and their actions are listed below: 

 
[R/S]:  halts the enumeration 

[SST/BST]: moves the listing one function up/down 

[SHIFT]: sets the direction of the listing forwards/backwards 
[XEQ]:  direct execution of the listed function – or entered in a program line 

[ENTER^]: moves to the next/previous section depending on SHIFT status 
[<-]:  back-arrow cancels the catalog 

 
 

One limitation of the sub-functions scheme that you’ll soon realize is that, contrary to the standard 

functions, they cannot be assigned to a key for the USER keyboard. Typing the full name (or entering 

its index at the FL# prompt) is always required. This can become annoying if you want to repeatedly 

execute a given sub- function.  

 
The LAST Function implementation certainly reduces this issue for repeat executions of the last sub-

function called, without a dedicated key assignment required. Another work-around consists of writing 

a micro-FOCAL program with just the sub-function as a single pair of program lines, and then assign it 
to the key of choice. Not perfect but it works. 
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   2. Lower-Page Functions in detail 
 
The following sections of this document describe the usage and utilization of the functions included in 

the SandMath_44 Module. While some are very intuitive to use, others require a little elaboration as to 

their input parameters or control options, which should be covered here. Reference to the original 
author or publication is always given, for additional information that can (and should) also be 

consulted. 
 

UUUU 

 

 
 

2.1.1. Elementary Math functions  
 

Even the most complex project has its basis – simple enough but reliable, so that it can be used as 
solid foundation for the more complex parts. The following functions extend the HP-41 Math function 

set, and many of them will be used either as MCODE subroutines or directly in FOCAL programs. 

 

 Function Description Author 

 2^X-1 Self-descriptive, faster and better precision than FOCAL Ángel Martin 

[*] 1/N Harmonic Number H(n) Ángel Martin 

[*] N^X Geometric Sums Ángel Martin 

 ATAN2 Two-argument arctangent (complex argument) Ángel Martin 

[*] CBRT Cubic root (main branch) Ángel Martin 

[*] CEIL Ceiling function of a number Ángel Martin 

[*] CHSYX Multiple CHS by Y Ángel Martin 

 E3/E+ Index builder Ángel Martin 

[*] FLOOR Floor function of a number Ángel Martin 

 GEU Euler-Mascheroni constant Ángel Martin 

[*] LOGYX Base-Y Natural logarithm of X Ángel Martin 

 QREM Quotient Remainder Ken Emery 

[*] X^3 Cube power of X Ángel Martin 

[*] Y^1/X x-th root of Y  Ángel Martin 

[*] Y^^X Very large powers of X (result >= 1E100) Ángel Martin 

 YX^ Modified Y^X (does 0^0=1) JM Baillard 

 

  2^X-1  provides a more accurate result for smaller arguments than the FOCAL equivalents. It 

will be used in the ZETAX program to calculate the Zeta function using the Borwein algorithm. 
 



 1/N  calculates the Harmonic number of the argument in X, that is the sum of the 

reciprocals of the natural numbers (which excludes zero) lower and equal to n. It will be used 

in the calculation of the Kelvin functions and the Bessel functions of the second kind, K(n,x) 

and Y(n,x).  

       

 

 
 

 Example: calculate H(5) and H(25). Use the main FL launcher and the LastF functionality. 

 
 5,  FL [SHIFT] [F]   =>  2.283333333 

 25, FL , [ , ]   =>  3.815958178 
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 N^X  Calculates a generalized value of the Faulhaber’s formula for integer values of x. – The 

few first integer values of x have explicit formulas for the result, but that’s not the case for a 

general value, which can also be non-integer. Obviously for x=-1 this function returns identical 

results than the previous one, albeit slower due to the additional complexity of the term. 
 

Example: Check the triangular (x=1) and pyramidal (x=2) formulas for n=10 – which are 
particular cases of the Faulhaber’s Formula, involving Binomial coefficients and Bernoulli’s 

numbers. See the link below for details: http://en.wikipedia.org/wiki/Faulhaber%27s_formula 

 
10, ENTER^, 1, FL [SHIFT] [A]  => 55.00000000 

10, ENTER^, 2, FL  [ , ]  => 385.0000000 
 

 

 
 

 
 

And using the convention B(1) = 0.5 the formula is: 

  

 

  
Which can be programmed using a few of the SandMath functions, albeit it will be considerably slower 

due to the impact of the Zeta algorithms (part of Bernoulli’s) – kicking in for n>4. 
 

 

  CHSYX  is related to the same subject, and in general relevant to the summation of 

alternating series – It can be regarded as an extension of CHS but dependent of the number in 
X. Its expression is: 

 
  CHS(y,x)= y*(-1)^x,  and thus changing the sign of Y when the number in X is odd. 

 
 

 
 

  ATAN2  is the two-argument variant of arctangent. Its expression is given by the following 

definitions: 

                  

 

 
 

Example:   Calculate ATAN2(, 2) using the main FL launcher.  

 

 PI  ,  PI  ,   2  ,   *  , FL [SHIF]-[SHIFT] [SST]  =>  1.107148718 

 
Those amongst you with a penchant for complex variable would no dobut recognize this as the 

principal value of the argument of the logarithm of a complex number. 

 
 

http://en.wikipedia.org/wiki/Faulhaber%27s_formula
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  E3/E+  does just what its name implies: adds one to the result of dividing the argument in x 

by one-thousand. Extensively used throughout this module and in countless matrix programs, 

to prepare the element indexes. 
 

 

 

  FLOOR  and  CEIL . The floor and ceiling functions map a real number to the largest previous 

or the smallest following integer, respectively. More precisely, floor(x) = [x] is the largest 

integer not greater than x and ceiling(x) = ]x[ is the smallest integer not less than x.   

 
The SandMath implementation uses the native MOD function, through the expressions:  

CEIL (x) = [x – MOD(x, -1)];       and        FLOOR (x) = [x – MOD(x, 1)]. 
 

 

 
  GEU  is a new constant added to the HP-41: the Euler-Mascheroni constant, defined as the 

limiting difference between the harmonic series and the natural logarithm: 

 
 

The numerical value of this constant to 10 decimal places is:   = 0.5772156649…  The stack lift 

is enabled, allowing for normal RPN-style calculations. It appears in formulas to calculate the  

(Psi) function (Digamma) and the Bessel functions of 2nd. Kind, amongst others. 

 

 
  LOGYX  is the base-b Logarithm, defined by the expression below where the base b is 

expected to be in register Y, and the argument in register X. 

 
 

 

 
 

Example: verify that 5.55 = Log[2, 2^(5.55)]  using 2^X-1 and LOGXY: 

 

5.55,  2^X-1 , 1,  + ,  2,  X<>Y  ,  LOGYX   =>  5.55000000 

 

 
 

  QREM  Calculates the Remainder “R” and the Quotient “Q” of the Euclidean division between 

the numbers in the Y (dividend) and X (divisor) registers. Q is returned to the Y registers and 

R is placed in the X register. The general equation is: Y  = Q X + R, where both Q and R are 
integers. Note that if the dividend is smaller than the divisor the function will return zero for 

the quotient, and the remainder will be the divisor itself 
 

Example: calculate the remainder and quotient of dividing 27 over 4. 
 

27, ENTER^, 4,  F$ “QREM”   =>  X=3 (remainder); Y= 6 (quotient) 

 

Since we used the Alpha-Launcher in this example, we can take advantage of the LASTF 
feature to repeat the operation with swapped values: 
 

4,  ENTER^, 27, FL [ , ]   =>  X=4 ; Y=0 
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  CBRT  calculates the cubic root of a number. Note that this could also be done using the 

mainframe function Y^X with Y=1/3 for positive values of X, but unfortunately it results in 

DATA ERROR when X<0 – and therefore the need for a new function.  
 

Obviously it follows that CBRT(-x) = - CBRT(x), for x>0 
 

 

  Y^1/X  and  X^3  are purely shortcut functions, which clearly are equivalent to 

 { 1/X, Y^X }, and to { X^2, LASTx, * } respectively - but with additional precision due to 

the 13-digit intermediate calculations. Besides it does away with the pesky (and totally 

unjustified) issue present with negative numbers as base in Y^X. 
 

Example: verify in two different ways that the cubic root of (-3)^3 is indeed -3. 
 

 3  ,  CHS  ,  X^3 ,  CBRT    =>  -3.000000000 

 3  ,  CHS  ,  X^3 ,  3 ,  Y^1/X  =>  -3.000000000 

 

 
  Y^^X  is used to calculate powers exceeding the numeric range of the calculator, simply 

returning the base in X and the exponent in Y. The result is shown in ALPHA in RUN mode.- 

For instance calculate 85^69 to obtain: 
 

  
 
 

  YX^  is a modified form of the native Y^X function, with the only difference being its 

tolerance to the 0^0 case – which results in DATA ERROR  with the standard function but here 
returns 1.  This has practical applications in FOCAL programs where the all-zero case is just to 

be ignored and not the cause for an error. 

 
 

  XFCT  is an extended-range factorial, capable of displaying results over the standard numeric 

range of th calculator.  Like Y^^X above, it returns the mantissa to X and the exponent to 
the Y-register. This function resides in the secondary FAT, and therefore needs to be called 

using any of the launchers. The implementation is just a particular case of the super-factorial, 
with the repeat factor p=1. This will be described in the corresponding section later on. 

 

Example: to calculate 70! and 120! just type:  (using FIX 6 for display formatting) 
 

 70, F$  “XFCT”   =>  1.197857 E100 

 120, FL [ , ]   =>  6.689503 E198 
 

The full value of the mantissa is left in the X register. 
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2.1.2. Number Displaying, Bases and Coordinate Conversions. 
 

A basic set of base conversions and diverse number displaying functions round up the elementary set: 
 

 Function Description Author 

 DGT Sum of Mantissa digits Ángel Martin 

 AINT A fixture: appends integer part of X to ALPHA Frits Ferwerda 

 DSP? Shows current decimal digits setting Ángel Martin 

 HMS/ HMS Division by scalar Tom Bruns 

 HMS* HMS Multiplication by scalar Tom Bruns 

[F$] MANTXP Mantissa and Exponent of number David Yerka 

[*] P>R Modified Polar to Rectangular, <) in [0, 360[ Tom Bruns 

[*] R>P Modified Rectangular to Polar, <) in [0, 360[ Tom Bruns 

[*] R>S Rectangular to Spherical Ángel Martin 

[*] S>R Spherical to Rectangular Ángel Martin 

[F] VMANT Shows full-precision (10-digit) mantissa Ken Emery 

 

 

 DGT  is a small divertimento useful in pseudo-random numbers generation. It simply returns 

the sum of the mantissa digits of the argument – at light-blazing speed using just a few 

MCODE instructions. More about random numbers will be covered in the Probability/Stats 
section later on. 

 
Example: calculate the sum of all digits of the HP-41’s rendition of PI: 

 

        PI, XEQ “DGT”   =>  40.000000000 
 
 

  DSP?   (also in the secondary FAT) returns in X the number of decimal places currently set in 

the display mode 0 regardless whether it’s FIX, SCI , or END. Little more than a curiosity, it can 
be used to restore the initial settings under program control after changing them for displaying 

or formatting purposes. 
 

 

  AINT  elegantly solves the classic dilemma to append an index value to ALPHA without its 

radix and decimal part - eliminating the need for FIX 0, and CF 29 instructions, taking extra 
steps and losing the original calculator settings. Note that HP added AIP to the Advantage 

module, and the CCD has ARCLI to do exactly the same. 
 

 

  MANTXP  and  VMANT  are related functions that deal with the mantissa and exponent parts 

of a number. MANTXP places the mantissa in X and the exponent in Y, whereas VMANT 

shows the full mantissa for a few instants before returning to the normal display form - or 
permanently if any key is pressed and held during such time interval, similar to the HP-42S 
implementation of  “SHOW”. 

 
 

  R>P  and  P>R  are modified versions of the mainframe functions R-P and P-R. The 

difference lies in the convention used for the arguments in Polar form, which here varies 
between 0 and 360, as opposed to the –180, 180 convention in the mainframe. 

 

Example: convert the point [-1, -1] to the modified polar coordinates and back to rectangular: 
 

  DEG, 1, CHS, ENTER^,  R>P   =>  1.414213562 

X<>Y     =>  225.0000000  (and not -135) 

  X<>Y,  P>R     =>  original point 
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  R>S  and  S>R   contine with the coordinate conversion theme. This pair of functions can be 

used to change between rectangular and spherical coordinates.  

 
 

The convention used is shown in the figure 
below, defining the origin and direction of 

the azimuth and polar angles as referred to 
the rectangular axis: { r, phi, theta } <-> { 

x, y, z } 
 

 
 

The SandMath implementation makes use of 

the fact that with the appropriate selection 
of origins, dual P-R conversions are 

equivalent to Spherical, and vice-versa. 
 

 

 
 

 
Example: convert the rectangular point [1, 2, 3] to spherical coordinates, and then back to 

rectangular: 
 

3, ENTER^, 2, ENTER^, 1,  R>S  =>  r = 3.741657386 (*) 

RDN     =>  phi = 0.640522313 

RDN     =>  theta = 1.107148718 

RDN, RDN,  S>R    =>       original point in stack. 

 

(*) You can also use function VMOD in the secondary FAT to check the modulus result. Its 
value should be slightly more accurate, as it uses direct math routines not based on [TOPOL]. 

 
 

  HMS*  and  HMS/  complement the arithmetic handling of numbers in HMS format, adding 

to the native HMS+ and HMS- pair. They multiply or divide the HH.MMSSSS value in Y by an 
scalar in X. As it’s expected, the result is also put in HMS format as well. 

 

Example: calculate the triple of 2 hours, 45 minues and 25 seconds 
 

2,4525, ENTER^, 3, XEQ “HMS*” =>  8.161499999 
 

That is 8 hours, 16 minutes and 15 seconds almost exactly. 

 
This function is useful in surveying calculations, as a shortcut of the standard approach involving 

conversion to decimal format prior to the operation. Note that to multiply or divide  two numbers 
given in HMS format you need to convert them both to rdecimal form using HR, perfrom the 

operation and convert the result back to HMS format to end. 
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Entering the base conversion section  - The following functions are available in the SandMath: 

 

 Function Description Author 

 BS>D Base to Decimal George Eldridge 

 D>BS Decimal to base in Y George Eldridge 

[*] D>H Decimal to Hex  William Graham 

[*] H>D Hex to Decimal William Graham 

[*] T>BS _ _ Base-Ten to Base, prompting version. Ken Emery 

 
 The first two are FOCAL programs, taken from the PPC ROM. They are the generic base-b 

to/from Decimal conversions. The Direct conversion  D>BS  expects the base in Y and the 

decimal number in X, returning the base-b result in Alpha. The inverse function  BS>D  uses 

the string in Alpha and the base in X as arguments. You can chain them to end with the same 

decimal number after the two executions. 
 

  T>BS  (Ten to Base) is the MCODE equivalent to D>BS, much faster and more elegant due 

to its prompt – where in RUN mode you input the destination base. The result is shown in the 
display and also left in ALPHA, so it could be also used by BS>D (once the base is in X). Note 

that the original argument (decimal value) is left in X unaltered, so you can use T>BS 
repeated times changing the base to see the results in multiple bases without having to re-

enter the decimal value. 

 
T>BS is programmable. In PRGM mode the prompt is ignored and the base is expected to be in the Y 

register, much the same as its FOCAL counterpart D>BS. Obviously using zero or one for the base will 
result in “DATA ERROR”. The maximum base allowed is 36 – and the custom error message “BASE>36” 
will be shown it that’s exceeded (note that larger bases would require characters beyond “Z”). 

 
The maximum decimal value to convert depends on the destination base, since besides the math 

numeric factors; it’s also a function of the Alpha characters available (up to “Z”) and the number of 
them in the display (length <=12). For b=16 the maximum is 9999 E9, or 0x91812D7D600 

 
T>BS is an enhanced version of the original function, also included in Ken Emery’s book “MCODE for 

Beginners”. The author added the PRGM-compatible prompting, as well as some display trickery to 

eliminate the visual noise of the original implementation. Also provision for the case x=0 was added, 
trivially returning the character “0” for any base. The prompt can be filled using the two top keys as 

shortcuts, from 1 to 10 (A-J), or the numeric keys 0-9. 
 

             
 
 
 

Direct DEC<>HEX Conversion. 
 

Because of its importance in computer science, the dec to hexadecimal conversions have dedicated 

MCODE functions in the SandMath,   D>H  and  H>D . Use them to convert the number in X to its 

Hex value in Alpha, and vice-versa. Both functions are mutually reversed, and H>D does an stack lift 

as well. 

 
The maximum number allowed is 0x2540BE3FF or 9,99999999 E9 decimal - much smaller than with 

T>BS, so there’s a price to pay for convenience.  
 

These functions were written by William Graham and published in PPCJ V12N6 p19, enhancing in turn 

the initial versions first published by Derek Amos in PPCCJ V12N1 p3. 
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2.1.3. First, Second and Third degree Equations.  
 

A MCODE implementation of these offers no doubt the ultimate solution, even if it doesn’t involve any 
high level math or sophisticated technique.  The Stack is used for the coefficients as input, and for the 

roots as output. No data registers are used.  
 

 Function Description Author 

[*] STLINE Calculates straight line coefficients from two data points Ángel Martin 

[*] QROOT Calculates the two roots of the equation Ángel Martin 

 QROUT Displays the roots in X and Y Ángel Martin 

[*] CROOT Calculates the three roots of the equation Ángel Martin 

 CVIETA Driver program for CROOT Ángel Martin 

 

  STLINE  is a simple function to calculate the straight line coefficients from two of its data 

points, P BB1BB(x1,y1) and P BB2BB(x2,y2). The formulas used are: 

 

Y = ax +b, with: a= (yBB2 BB-yBB1BB)/(xBB2BB –xBB1 BB),  and   b = yBB1 BB – a xBB1 BB 

 

It is trivial to obtain the root once a and b are known, using:  xBB0BB = -b/a 
 

UUExample UU: Get the equation of the line passing through the points (1,2) and (-1,3) 

 
3,  ENTER^, -1,  ENTER^, 2,  ENTER^, 1,  STLINE =>  Y: 2,500;  X: -0,500 

and its root is left in register Z:       RDN, RDN =>  5,000 
 

 (*) will be shown in RUN mode only  
 

 

  QROOT . The general forms of the Quadratic Equation is:  

 

       with a#0 . 
 

Given the quadratic equation above, QROOT calculates its two solutions (or roots). You need to input 
the three coefficients into the stack registers:  Z, Y, X using:   a, ENTER^,  b,  ENTER^, c   

 
The roots are obtained using the well-known formula:  X1,2 = -b/2a +- sqrt[(-b/2a)^2 – c/a] 

 

Depending on the sign of the discriminant (i.e. the argument of the square root) the result will be real 
or complex roots. If the discriminant is positive then the roots are real, and their values x1 and x2 will 

be left in Y and X registers upon execution. Register Z will contain a non-zero value, which can be used 
in program mode to determine the case. 

 

Example: Calculate the roots of the equation:  x^2 + 2x -3 =0 
 

1, ENTER^, 2, ENTER^, 3, CHS,  QROOT  =>   x1= 1,  x2= -3 

 
In RUN mode the SandMath will show both values in the display, separated by the ampersand sign. 

Moreover, should the values be integers then the representation will omit the superfluous decimal 
places: 
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If the discriminant is negative, then the roots z BB1BB and z BB2BB are complex and conjugated (symmetrical over 

the X axis), with Real and Imaginary parts defined by: 
 

Re(Z) = -b/2a     z BB1BB = Re(z) + i Im(z) 
Im(Z) = sqrt[abs((-b/2a)^2 –c/a)]  z BB2BB = Re(z) – i Im(z) 

 

Upon execution reg-Z will be zero (used in Programs),  Im(z) will be left in Y and Re(z) will be left in X. 
In RUN mode the display will show the first root in a composite format showing one of the roots. 

 
Example: Calculate the roots of the equation:  x^2 + x + 1 = 0 

 

1, ENTER^, ENTER^,  QROOT   =>  Re(z) = -0.500000000 

RDN     =>  Im(z) = 0.866025404 

 

 
 
 

 

  CROOT  The general forms of the Cubic Equation is:,  

 

    with a#0 

 
Given the cubic equation above, CROOT calculates the three solutions (or roots). You need to input 

the four coefficients in the stack registers T, Z, Y, X using: 
 

a, ENTER^, b, ENTER^, c, ENTER^, d, ENTER^ 

 
CROOT uses the well-known Cardano-Vieta formulas to obtain the roots. The highest order coefficient 

doesn’t need to be equal to 1, but errors will occur if the first term is zero (for obvious reasons).  
The SandMath implementation does reasonably well with multiple roots, but sure enough you can find 

corner-cases that will make it fail  - yet not more so than an equivalent FOCAL program. Appendix 2 
lists the code, as well as an equivalent FOCAL program to compare the sizes (much shorter, but surely 

much slower and with data registers requirements 

 
Both functions can return real or complex roots. If the roots are complex, the functions will flag it in the 

following manners: 
 

1. QROOT will clear the Z register, indicating that X and Y contain the real and imaginary parts of 

the two solutions. Conversely, if Z#0 then X and Y contain the two real roots. 
 

2. CROOT will leave the calculator in RAD mode, indicating that X and Y contain the real and 
imaginary parts of the second and third roots. The real root will always be placed in the Z 

register. Conversely, if the calculator is set in DEG mode then registers Z,Y, and X have the 
three real roots. 

 

 

UUExample1: UU Calculate the three solutions of the equation:   x PP

3
PP + xPP

2
PP + x + 1 = 0 

 

1,  ENTER^,  ENTER^,  ENTER^ ,  CROOT      Z: -1,000;  Y: 1,000;  X: 1 E-10 

 

, Shown as rounded number for the real part. 

 
 



SandMath_44 Manual  - Revision 3x3++ 

 

(c) Ángel M. Martin                                     Page 29 of 167 December 2014  
 

UUExample 2: UU- Calculate the roots of the equation: ƒ(x) = 2xPP

3
PP − 3xPP

2
PP − 3x + 2. 

 

2,  ENTER^, -3,  ENTER^,  ENTER^, 2,  CROOT     ->  Z: 0,500;  Y: -1,000;  X: 2,000 

 

  
 
 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

                                                                 

From the final prompt you know all roots are real, since the two last roots are real and the first one 
must always be real in a cubic equation. 

 
The value in Z blinks briefly in the display before the final prompt above is presented; use RCL Z (or 

RDN, RDN) to retrieve it. No user registers are used. 
 
 

 

QROUT  outputs the contents of the X and Y registers to the display, interpreted by the value in Z to 

determine whether there are tow real roots or the Real & Imaginary parts of the complex roots. It will 

be automatically invoked by QROOT (all cases) and by CROOT (real roots) when they are executed in 
RUN mode. Note that CROOT will not display the (first) real root, which will be located in Z. 

 

 CVIETA  is a driver program for CROOT, including the prompts for the equation coefficients. The 

results are placed in the stack, following the same conventions explained above. See the program 

listing below showcasing the use of a few SandMath functions. 
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Appendix 2.-  CVIETA equivalent FOCAL program, replaced now with an all-MCODE implementation. 

 
01 LBL "CVIETA" 64 2

02 -AMC MATH "Running" message 65 / imaginary part

03 R^ 66 RCL  01 cbrt(+x-R3/2)

04 ST/  T (0) a'2/a'3 in T 67 RCL  03 cbrt(-x-R3/2)

05 ST/  Z (1) a'1/a'3 in Z 68 +

06 / 69 2

07 STO  00 a0 = a'0 / a'3 70 /

08 RDN 71 CHS

09 STO  01 a1 = a'1 / a'3 72 RCL  02 a2/3

10 RDN a2 = a'2 / a'3 73 - real part

11 3 74 ,

12 / 75 STO  T (0) flag it as Complex

13 STO  02 a2/3 76 RDN Z=0 indicates it

14 X^3 a2^3/27 77 QROUT

15 ST+  X (3) 2*a2^3/27 78 STO  01

16 RCL  01 a1 79 X<>Y

17 RCL  02 a2/3 80 STO  02

18 * a1*a2/3 81 RTN

19 - 2*a2^3/27 - a1*a2/3 82 LBL 01 all real roots

20 RCL+ (00) Showing off… :-) 83 DEG

21 2 84 LASTX

22 / 85 CHS

23 STO  03 a0/2 + a2^3/27 - a1*a2/6 86 SQRT

24 X^2 (a0/2 + a2^3/27 - a1*a2/6)^2 87 ST+  X (3)

25 RCL  01 a1 88 X#0?

26 RCL  02 a2/3 89 1/X

27 X^2 a2^2/9 90 RCL  03 a0/2 + a2^3/27 - a1*a2/6

28 3 91 ST+  X (3) a0 + 2*a2^3/27 - a1*a2/3

29 * a2^2/3 92 CHS

30 - a1-a2^2/3 93 *

31 STO  01 a1-a2^2/3 94 ACOS

32 3 95 3

33 / 1/3 (a1 - a2^2/3) 96 /

34 X^3 1/27 (a1 - a2^2/3)^3 97 STO  03

35 + 1/27 (a1 - a2^2/3)^3 + (a0/2 + a2^3/27 - a1*a2/6)^298 LASTX

36 X<=0? 99 E3/E+

37 GTO  01         yes, all real roots 100 STO  05 1,003

38 SQRT complex roots 101 RCL  01 a1-a2^2/3

39 ENTER^ 102 3

40 ENTER^ RPLX 103 / a1/3-a2^2/9

41 RCL  03 a0/2 + a2^3/27 - a1*a2/6 104 CHS a2^2/9 - a1/3

42 - 105 SQRT

43 CBRT 106 ST+  X (3)

44 STO  01 cbrt(+x-R3/2) 107 STO  04 2*SQR(a2^2/9 - a1/3)

45 X<>Y 108 LBL 08

46 CHS 109 RCL  03

47 RCL  03 a0/2 + a2^3/27 - a1*a2/6 110 COS

48 - 111 RCL 04

49 CBRT 112 *

50 STO  03 cbrt(-x-R3/2) 113 RCL  02 a2/3

51 + 114 -

52 RCL  02 a2/3 115 "X"

53 - 116 AIRCL Alpha integer REG

54 "X1" 117 5 05

55 ARCL X (3) 118 "|-="

56 AVIEW 119 ARCL  X(3)

57 STO  00 real root 120 AVIEW

58 RCL  01 cbrt(+x-R3/2) 121 STO  IND 05

59 RCL  03 cbrt(-x-R3/2) 122 120

60 - 123 ST+  03

61 3 124 ISG  05

62 SQRT 125 GTO  08        

63 * 126 END              
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2.1.4. Additional Tests: Rounded and otherwise. 
 

Ending the first section we have the following additional test functions: 
 

 Function Description Author 

[*] X=1? Is X (exactly) equal to 1? Nelson C. Crowle 

[*] X>=Y? Is X equal to or greater than Y? Ken Emery 

[*] X>=0? Is X equal to or greater than zero? Ángel Martin 

[*] X=YR? Rounded Comparison Ángel Martin 

[F] FRC? Is X a fractional number? Ángel Martin 

[F] INT? Is X an integer number? Ángel Martin 

 EVEN? Is X an even integer? Ángel Martin 

 ODD? Is X an odd integer? Ángel Martin 

 ZOUT Combines the values in Y and X into a complex result Ángel Martin 

 
They follow the general rule, returning YES / NO in RUN mode, and skipping a program line if false in a 

program. Their criteria are self-explanatory for the first three. These functions come very handy to 

reduce program steps and improve the legibility of the FOCAL programs. 
 

 

  X>=Y?   compares the values in the X and Y registers, skipping one line if false. 

 

  X>=0?   compares with zero the value in the X register, skipping one line if false. 

 
These functions are arguably “missing” on the mainframe set; a fact partially corrected with the indirect 

comparison functions of the CX model (X>=NN?), but unfortunately not quite the same. 

 
 

  X=1?   is a quick and simple way to check whether the value in X equals one. As usual, 

program execution skips one step if the answer is false. 
 

 

  X=YR?   establishes the comparison of the rounded values of both X and Y, according to the 

current decimal digits set in the calculator. Use it to reduce the computing time (albeit at a loss 

of precision) when the algorithms have slow convergence or show oscillating results for larger 
number of decimals.  

 

 

  INT?  and  FRC?  are two more test functions which criteria is the integer or fractional nature 

of the number in X. Having them available comes very handy for decision branching in FOCAL 

programs. The Fractions section of the module is the natural placement for them. 
 

 

  EVEN?  and  ODD?  Test the divisibility by 2 of the number in X, i.e. whether it is an even or 

an odd number. For non-integer values the fractional part will be ignored in the test. 

 

 

  ZOUT  has been used in FOCAL programs in the SandMath, - Its most interesting features are 

perhaps displaying integer values (in either real or imaginary parts) without any decimals; as 

well as omitting them when equal to zero (showing “Z=0” if both are null). 
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UU 

 

 

 
2.2.1. Fraction Arithmetic and Displaying. 

 
A rudimentary set of fraction arithmetic functions is included in the SandMath, including the four basic 

operations plus a fraction viewer and two test functions. 
 

 Function Description Author 

[*] -FCR Fractions Launcher Ángel Martin 

[F] D>F Calculates a fraction that gives the number in X Frans de Vries 

[F] F+ Fraction addition Ángel Martin 

[F] F- Fraction subtraction Ángel Martin 

[F] F/ Fraction multiplication Ángel Martin 

[F] F* Fraction division Ángel Martin 

[F] FRC? Is X a fractional number? Ángel Martin 

[F] INT? Is X an integer number? Ángel Martin 

 

 D>F  is the key function within this group. Shows in the display the UUsmallest possible fraction UU that 

results in the decimal number in X, for the current display precision set. Change the display precision as 

appropriate to adjust the accuracy of the results.  

 
This means the fraction obtained may be different depending on the settings, returning different 

results. For example, the following approximations are found for : 

 

 ~  104348/33215  in FIX 9, FIX 8 and FIX 7 

 ~  355/113  in FIX 6, FIX 5 and FIX 4 

 ~  333/106  in FIX 3 

 ~  22/7  in FIX 2, FIX 1 and FIX 0 

 

This function was written by Frans de Vries, and published in DataFile, DF V9N7 p8. It uses the same 
algorithm as the PPC ROM “DF” routine. 

 

As per the fraction arithmetic functions, there’s not much to say about them – apart from the fact that 
they use the four stack levels to enter both fractions components (the inputted values are expected to 

be all integers), and return the numerator and denominator of the result fraction in registers Y and X 
respectively.  In RUN mode the execution continues to show the fraction result in ALPHA, according to 

the currently set number of decimals (see below). 

 
The fraction arithmetic functions can be used in chained calculations, there’s no need to re-enter the 

intermediate results, and the Stack enabled makes unnecessary to press ENTER^. Notice that fractions 
are entered using the Numerator first. 

 
To re-calculate the fraction after changing the decimal settings just press the divide key, followed by 

D>F to re-generate the fraction values. 

 
For example calculate 2/7 over 4/13, then add 9/17 to the result. 

 

2, ENTER^, 7, ENTER^, 4, ENTER^, 13,  F/ , 9  ENTER^, 17,  F+     347/238    in FIX 6 mode. 
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Needless to say the fractional representation display will not be produced in PRGM mode, but it’ll have 

a silent execution instead. 
 

Note that the fraction math functions operate on integer numbers in the stack, returning also the 

numerator and denominator as integers. To get the decimal number just execute  /  to divide them. 

  

In fact that’s exactly what the functions do in RUN mode: upon completion the fraction is “converted” 
to a decimal number, then D>F presents the final output. That’s why the display settings determine 

the accuracy of the conversions, even if it’s not obviously seen.  

 
This has the advantage that the result is always reduced to the best possible fit. For instance, when 

calculating 2/4 plus 18/24 in program mode – with the four values in the stack – the result will be 120 
in Y and 96 in X (thus 120/96). However on RUN mode (or SST’ing the program) will show the reduced 

fraction: 

 

 

 
 

A good way to check that the result is expressed in irreducible form is pressing GCD, verifying that the 
result is indeed 1; try it out if you’re curious. 

 
 

If you want to see the reduced result from a program execution you’ll need to add program steps to 

perform the division and add a conversion to fraction after the fraction-math operation step. The code 
snippet below describes this (see lines 10 and 11): 

 
01  *LBL "TEST" 

02   2 

03   ENTER^ 
04   4 

05   ENTER^ 
06   18 

07   ENTER^ 
08   24 

09   F+ 

10   / 

11   D>F 

12   END 
 

 

 INT?  and  FRC?  are two more test functions which criteria is the integer or fractional nature of the 

number in X. Having them available comes very handy for decision branching in FOCAL programs. The 
Fractions section of the module is the natural placement for them. 

 
The answer is YES / NO depending on whether the condition is true or false. In program mode the 

following line is skipped it the test is false. 
 

 

 
 

 
 

 

 

 

Note: Make sure that revision “N” (or higher) of the Library#4 module is installed. 
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UU UU 
 

 
 

2.3.1. Hyperbolic Functions.       

 

Yes there are many unanswered questions in the universe, but certainly one of them is why, oh why, 
didn’t HP-MotherGoose provide a decent set of MCODE hyperbolic functions in the (otherwise pathetic) 

MATH-PAC, and worse yet -adding insult to injury- how come that error wasn’t corrected in the 
Advantage ROM? 

 

For sure we’ll never know, so it’s about time we move on and get on with our lives – whilst correcting 
this forever and ever. The first incarnation of these functions came in the AECROM module; I believe 

programmed by Nelson C. Crowle, a real genius behind such ground-breaking module - but it was also 
somehow limited to 10-digit precision.  The versions in the SandMath all use internally13-digit routines. 

 

 

 Function Description Author 

[*] -HYP Hyperbolic Launcher Ángel Martin 

[H] HSIN Hyperbolic Sine Ángel Martin 

[H] HCOS Hyperbolic Cosine Ángel Martin 

[H] HTAN Hyperbolic Tangent JM Baillard 

[H] HASIN Inverse Hyperbolic Sine Ángel Martin 

[H] HACOS Inverse Hyperbolic Cosine Ángel Martin 

[H] HATAN Inverse Hyperbolic Tangent JM Baillard 

 

The use of function launchers permits convenient access to these six functions without having to assign 
them to any key in USER mode. Efficient usage of the keyboard, which can double up for other 

launchers or the standard USER mode assignment if that’s also required. Combining the FL and the 

SHIFT keys does the trick in a clean and logical way. 

 

  and inverses:   
 

 

The formulas used are well known and 
don’t require any special consideration to 

program.  
 

 

 
 

 
 

 
 

The SINH code is also used as a 
subroutine for the Digamma function. 
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The direct functions are basically exponentials, 
whilst the inverses are basically logarithms.  

 
Both cases are well covered with the mainframe 

internal math routines without any need to worry 

about singularities or special error handling. 
 

 
 

 
For all hyperbolic functions the input value is expected in X, and the return value will also be left in X. 

The original argument is saved in LASTx. No data registers are used. 

 
UUExamples:  
 
Complete the table below, calculating the inverses of the results to compare them with the original 

arguments. Use FIX 9 to see the complete decimal range. 

 

         HMKEYS assigns -HYP  to the [SHIFT] key for convenience 

 

x HSIN HASIN HCOS HACOS HTAN HATAN 

1 1,175201194 1,000000000 1,543080635 1,000000000 0,761594156 0,761594156 

1,001 1,176744862 1,001000000 1,544256608 1,001000000 0,762013811 1,001000000 

0.01 0,010000167 0,010000000 1,000050000 0,009999958 0,009999667 0,010000000 

0.0001 0,000100000 0,000100000 1,000000005 0,000100000 0,000100000 0,000100000 

10 11013,23287 10,00000000 11013,23292 10,00000000 0,999999996 10,00271302 

 

By now you’ve become an expert in the HYP launcher and for sure appreciate its compactness – lots of 

keystrokes! 
 

With a couple of exceptions it’s a100% accuracy to 10 decimal places – and really the only sore point is 
in the point 0.001 for HACOS. But don’t worry, there’s no bugs creating havoc here – it’s just the 

nature of the beast, bound to occur with the limited precision (even using 13-digits) in the Coconut 
CPU. 

 

No wonder you’re going to repeat the same table for the trigonometric functions and see how it stacks 
up, right? 

 
While you’re at it, go ahead and calculate the power of two of the square root, pressing: 

 

 FIX   9   ,  2 ,   SQRT  ,   X^2  ,  but don’t call HP to report a bug! 

 

 
For very small arguments the accuracy of SINH and COSH will also start showing incorrect digits. 

However HTAN (and HATAN) use an enhanced formula that will hold the accuracy regardless of how 
small the argument is. 

 

 
 

 
 

 

Note: Make sure that revision “N” (or higher) of the Library#4 module is installed. 
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UU UU 
 

 
 

The SandMath Module includes a set of functions written to extend the native RCL functionality – 
mainly in the direct math operations missing when compared to the STO equivalents, but also 

increasing its versatility and ease of use. There are five new RCL Math functions, plus a launcher to 
access them in a convenient and useful way: 

 

 Function Description Author 

[*] RCL” _ _ RCL Math Launcher Ángel Martin 

[RC] RCL+ _ _ RCL Plus Ángel Martin 

[RC] RCL- _ _ RCL Minus Ángel Martin 

[RC] RCL* _ _ RCL Multiply Ángel Martin 

[RC] RCL/ _ _ RCL Division Ángel Martin 

[RC] RCL^ _ _ RCL Power Ángel Martin 

[RC] AIRCL _ _  ARCL integer Part of number in Register nn Ángel Martin 

 
 

2.4.1. Individual Recall Math functions. 

 

The five RCL Math new functions cover the range of four arithmetic operations (like STO does) plus a 
new one added for completion sake.  The functions would recall the number in the register specified by 

the prompt, performing the appropriate math using the value in register X as first argument and the 
recalled number as the second argument.  

 

Design criteria for these were: 
 

1. should be prompting functions 
2. should support indirect addressing (SHIFT) 

3. should utilize the top 2 rows for index entry shortcut 

 
The first condition is easy to implement in RUN mode, as it’s just a matter of selecting the appropriate 

prompting bits in the function MCODE name - but it gets very tricky when used under program mode. 
This has been elegantly resolved using a method first used by Doug Wilder, by means of using the 

program line following the instruction as the index argument. Somewhat similar to the way the HEPAX 
implemented it, although here there’s some advantages in that the length of the index argument 

doesn’t need to be fixed, dropping leading zeroes and even omitting it altogether if it’s zero (assuming 

the following line isn’t a numeric one which could be misinterpreted). 
 

 
 
The indirect addressing is actually quite simple, as it simply consists of an offset added to the register 

number in the index. All the function code must do is remove it from the entry data provided by the 

OS, and the task is done. The offset value is hex 80, or 128 decimal. We’ll revisit this when discussing 
the RCL launcher. 

 

 
 

And the third objective is provided “for free” by the OS as well, no need for extra code at all – just 

using the appropriate prompting bits in the function’s name. 
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Stack arguments are more involved than the indirect addressing. No attempt has been made to use the 

mainframe internal routines to accommodate this case, so stack prompts are excluded. Note that even 
if the Stack arguments are not directly allowed (controlled by the prompting bits), it is unfortunately 

possible to use the decimal key in an indirect register sequence; that is after pressing the SHIFT key. 
This won’t work properly in the current design so must be avoided. 

 

 

2.4.2. RCL Launcher – the “Total Rekall”. 

 

The basic idea of a launcher is a function capable of calling a set of other functions. The grouping in 
this case will be for the five RCL Math functions described above, plus logically the standard RCL 

operation – inclusive its indirect registers addressing. Other enhancements include the prompt 

lengthener to three fields for registers over 99 (albeit this is de-facto limited to 128 as we’ll see later 
on).  

 
The keyboard mapping for [RCL] is as follows: 

 

 Numeric keypad (or Top rows) to perform the standard RCL 

 [SHIFT] for Indirect register addresses 

 [EEX] for the prompt lengthener to three places 
 [RCL] to revert to the standard RCL function (see note below) 

 Math keys (+, -, / , *, and ^) to invoke the RCL Match functions 

 Back arrow to cancel out to the OS 

 

Note that [RCL] is not programmable. This is done intentionally by design, so that it can be used in a 
program to enter any of the RCL Math functions directly as a program line (ignoring the corresponding 
prompt). Using the [RCL] hot-key reverts to UUthe standard RCL operation. This nifty trick is what you’d 

use to register it in a program, as long as the RCL key is not assigned to another function. 
 

 

Notice also that indirect addressing is indeed supported by this scheme: just add hex 80 (that is 
decimal 128) to the register number you want to use as indirect register. As simple as that! So RCL+ 

IND 25 will be entered as the following two program lines: RCL+, followed by 153. 
 

This however effectively limits the usefulness of the prompt lengthener to the range R100 to R127 – 

because from R128 and on the index is interpreted as an indirect register address instead.  However,  
the function will allow pressing SHIF and EEX, for a combination of IND and prompt lengthener 

which UUwill work as expected provided that the 128 limit isn’t reached UU – enough to make your head spin 
a little bit!? 

 
UUExample:UU  Store 5 in register R101, and 55555,000 in register R5.  

 

This requires some indirect addressing as well; say using register Y the sequence would be: 
101,  ENTER^, 5,  STO IND  Y, and then:  55555,  STO 5  

 

Then execute RCL” IND 101 (press RCL”, SHIFT,  EEX ,  0 ,  1  )--> to obtain 55555,00 in X 

 

 
 
 

Note: general-purpose prompt lengtheners are a better alternative to the [EEX] implementation used 
here. Their advantage of course is that they are applicable to all mainframe prompting functions, not 

only to the enhanced RCL. Thus for instance, you could use it with STO as well, removing the need for 

indirect addressing to store 5 in R101. The AMC_OS/X module has a general-purpose prompt 
lengthener, activated by pressing the [ON] key while the function prompt is up. 
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Pressing [ALPHA] at the RCL prompt will invoke function AIRCL _ _. This will in turn prompt for a data 

register number, and once filled it’ll append the integer part of the value stored in that register to the 
ALPHA register – thus equivalent to what AINT does with the x register. 

 
Note that AIRCL _ _  is fully programmable. When entered in a program you’d ignore the prompts, 

and the program step following it will be used to hold the register number to be used by ARCLI when 

the program runs. This technique is known as “non-merged” functions, to work-around the limitation of 
the OS – Too bad we can’t use the Byte Table locations wasted by eG0bEEP and W” instead! This 

method is used in several functions of the SandMath module, like the RCL math functions just 
described. 

 
 

Appendix 3.-  A trip down to Memory Lane. From the HP-41 User’s Handbook.-  
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Note: Make sure that revision “N” (or higher) of the Library#4 module is installed. 
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UU UU 
 

 
 

What good is a math–related module without a Triangle solver application? Never too basic to be 
unimportant, especially if it can be tucked away in an auxiliary bank and doesn’t take the customary set 

of FAT entries – FAT space is always at a premium.  Revision 3x3 of the SandMath includes the 
AECROM “TRIA”, which can arguably be considered the best Triangle solver ever written for the 41. 

And it is incorporated into a new single function that acts as consolidated launcher for it and the other 

two geometric solvers. All improved with 13-digit math routines and other usability enhancements. 
 

2.5.1. The three geometric solvers 

 
CIRCLE: different geometric properties of a circle segment. 
SARR:  Slope, Angle, Rise and Run – also connects to the Triangle solver. 

TRIA:  Knowing three elements it resolves the other 3 unknown and the area. 
 

Notice that SOLVER can be launched directly from the mail [FL] launcher, using the  EEX  key as 

shortcut. 
 

      , and then:  

 
Upon selecting the desired solver, an information message is shortly shown on the display while the 

key is held depressed, followed by “NULL” if kept pressed to cancel the action. If not, then the initial 

execution of the chosen solver starts always by presenting the default menu of choices – which can 
always be recalled by pressing the menu option, on the [E] key 

 
It’s important to mention that these three are FOCAL programs (albeit quite unusual and also stealth to 

the FAT) triggering the different choices for these solvers as local labels; therefore the top row keys 
should not have any key assignments for this approach to work. Note also that the USER mode will be 

activated automatically by the function. 

 
Rather than attempt to explain these functions let’s refer to the original AECROM user’s manual for a 

first-hand and inimitable description of their functionality. 
 

 

1. [ %< ] = SARR- SLOPE. ANGLE. RISE. AND RUN SOLVER  

 
The SARR solver computes slopes, angles, rise and run.  Your HP-41 must be in USER mode and, if you 

have anything assigned to the top row of keys, you need to clear those assignments. 
 

Example: The slope of a line is .776. What is the angle between the line and level? 

 
Solution: In USER mode, press [XEQ] “SOLVER”, [C] (i.e. SARR), then:  0.776 [A] [B] (37.8115). 

 
When you execute SARR and switch to USER mode, the keys in the top row take on new meanings. To 

see these new meanings press the [E] key in the top row at any time. The calculator shows you the 

menu: 
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The first four keys in the top row represent the values SLope, ANgle, RIse, and RuN, and the fifth key 

calls the menu. Pressing one of the first four keys can mean either "take the value in the X-register as 
an input" or "calculate a value," depending on when you press it. When you key in a value and press 

one of the first four keys, the HP-41 takes it as an input. But immediately following an input, pressing 
one of the first four keys means "compute this value." 

 

In the above example, the only known value was the slope, which is all you need to know to solve for 
the angle. You simply keyed in the slope (0.776 [A]) and solved for the angle [B]).  

 
To solve for anyone of the four unknowns, you need to input knowns according to the following table.  

 
To Solve for:   You need to input:    
Slope   Run and Rise, or Angle·    

Angle   Run and Rise, or Slope    
Rise   Run, and Angle or Slope    

Run   Rise, and Angle or Slope   
 

IMPORTANT RULE: Always key in your knowns from right to left in the menu. 

 
Example:  The center riser on a triangular roof truss is four feet high and the length from one end of 

the truss to the midpoint is 22 feet. What is the slope of the roof? 
 

                
 

Solution: This solution assumes you have already pressed [XEQ] “SOLVER”, [C] 
 

Now press [E] to view the menu and 22 [D], 4 [C], [A]. The answer is 0.1818. 

 
 

 
Example: With a theodolite, you measured the angle of an imaginary line going from the top of a tree 

to the ground at a distance of 5.749924998 m (*) from the base of the tree to be 57 degrees. How tall 

is the tree? 
 

Assuming you just completed the previous example, press 
(remember: you need to be in USER mode, and also in DEG 

mode for this example). Then 5.749924998 [D], 57 [B].  
 

[C] will give you the answer (8.854108050 m). 

 
In the above example, you are solving for the Rise given 

the Run and the angle (57 degrees). Notice that when you 
key in a number before you press a key in the top row, the 

calculator takes it as an input. But when you press one of 

the top row keys without first keying in a number, the HP-
41 calculates that value based on the numbers you've just 

keyed in. 
 

 

(*) Converted from the original feet value in the manual. 
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2.  [ <> ] = TRIA - THE TRIANGLE SOLVER. 

 

From SARR, you can press [SHIFT] [d] to execute the TRIA solver, or you can use [XEQ]  “SOLVER”, 
[A] (i.e. TRIA). TRIA helps you solve all the characteristics of any triangle given three defining 

quantities for that triangle. Here's a picture of an arbitrary triangle with its angles and sides labeled: 
  

                            
 

The sides are labeled in a counterclockwise order around the triangle and the angles are numbered 

according to the opposite side. This is the way that TRIA expects a triangle to be oriented. To call up 
the TRIA menu execute the function SOLVER, then [A]. Remember, the calculator must be in USER 

mode. You will see the menu on the left: 

 

     -----  

 

The first three keys in the left-side menu represent the three sides of the triangle, “AR” shows that 

using the [D] key you can solve for the AREA of a triangle and the “M” shows you that the [E] key 
brings up the menu at any time. 

 
Now press [ ] [e]. You will see the menu on the right side. This is the shifted menu of TRIA. This menu 

shows you that by using the shifted top row keys ([ ] [a], [ ] [b], and [ ] [c]), you can input or solve 

for any of the three angles of a triangle. Plus, the “^S” selection executes SARR (described before),. So 
remember, the TRIA function has two menus. The [E] key calls up the unshifted menu, and [ ] [e] calls 

the shifted menu. 
 

TRIA has fairly specific rules for inputting the three knowns that define a triangle. Once the triangle is 

oriented similar to the previous diagram (sides labeled counterclockwise), the known values need 
to be input in counterclockwise order around the triangle as follows: 

 
Knowns   Suggested input order 
SSS   S1, S2, S3 
ASA   A3, S2, A1 

SAS   S1, A3, S2 

SAA   S1, A3, A1 
SSA   S1, S2, A1 

 

Example 1: Solve for all the unknown sides, unknown angles, and the area of the following triangle: 

 
Solution: 5.3 [A], 3.1 [B], 83 [ ] [c]. Then press 

[ ] [a] to solve for A1 (64.9903), [ ] [b] to solve 

for A2 (32.0097), [C] to solve for S3 (5.8048), 
and [D] to solve for AREA (8.1538). 

 
Once you have input the three defining knowns 

of a triangle, you can change one or two values 

at a time to see how the other lengths are 
affected. 
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Example 2: Given the following triangle with three known sides, calculate all the angles and the area of  

the triangle. 
 

 Solution: This is a S S S problem, so the input 
order is S1, S2, S3. With 4.24 as S1: 

 

A1 = 20.44°, A2 = 46.25°, A3 = 113.31°, and 
AREA = 17.07.  

 
Here are the keystrokes: 4.24 [A], 8.77 [B], 

11.15 [C], [ ] [a], [ ] [b], [ ] [c], [D]. 
 

 

 
Example 3: Given the triangle below (left side) with two known angles and one known side, calculate 

the unknowns. Solution: This is an ASA problem, thus the input order is A3, S2, A1. With 15 as S2, 
press 65 [ ] [c], 15 [B], 75 [ ] [a]. Then press [A] to see S1 (22.54), [C] to see S3 (21.15), [ ] [b] to 

see A2 (40°), and [D] to see the area (153.22). 

                                   
 

 
Example 4: Calculate the unknown characteristics of the triangle above (right side). Solution: This is a 

SSA problem, so the input order is S1. S2. A1. Once you have input this problem the calculator displays 

the warning “ANGL.SIDE.SIDE”, indicating that this combination of inputs can result in more than one 
solution. The calculator solves for the case where A2 is acute. 

 
The keystrokes to input the triangle are 435.7 [A], 452.9 [B], 67 [ ] [a]. After the calculator displays 

“ANGL.SIDE.SIDE”. you can solve for the unknowns: 

 
73.11 =A2;  39.89 =A3;  303.58 = S3; 63.280.40 = AREA 

 
Moving between SARR and TRIA. 

 

Pressing the [ ][d] key from the TRIA menu will execute the SARR function, and pressing [ ] [d] from 
SARR will execute TRIA. Data are transferred between the two functions as follows: When going from 

TRIA to SARR. S1 becomes RUN and S2 becomes RISE. The slope and angle are calculated accordingly. 
 

When going from SARR to TRIA. RUN becomes SI, RISE becomes S2, and A3 is set to 90. 
 

If you transfer between SARR and TRIA using the [XEQ] “SOLVER” ... process, all the data are 

cleared. 
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3. [ ( ) ] = CIRC - THE CIRCLE SOLVER 

 

The CIRC solver allows you to calculate properties of a circle and a sector of that Circle from a known 
radius and central angle. Like the SARR and TRIA cases, the CIRC solver is menu driven. The following 

diagram shows you some of the properties of a circle that can be calculated using CIRC: 

                             
 

Important: The radius (Rd). the sector angle (AN<), and the X- distance (Xd) are the only allowed 
inputs. You can also calculate the circumference (CI) of the circle, the area (AR) of the circle, the 

segment area (SG), and the sector area (ST). 
 

Three menus are available for CIRC. To view each menu, execute the function ([XEQ] “SOLVER” [B]) 

and press the [E], [ ][e], and [J] keys.                                 
 

        ----  

                   
 

The menu that comes up when you press the [E] 
key tells you the meanings of the top row keys, the 

menu on the [ ][e] key applies to the shifted top 

row, and the [J] menu tells you the meanings of the 
keys in the second row. 

 
 

Example 1: Calculate the diameter, area, and circumference of a circle with a radius of 10.0. Also, 
calculate the arc length, chord length, chord rise, sector area, and segment area of a sector in that 

circle with a central angle of 30 degrees. 

 
Solution: With USER mode on and the display set to FIX 4, press SOLVER, [B] (i.e. CIRC), 

[E] 10 [A] 30 [B]. Then ... 
 

To calculate  Press   Result:     _  

diameter   [ ][a]   20.0000    
area   [F]   314.1593    

circumference  [ ][c]   62.8319    
arc length   [ ][b]   5.2360    

chord length  [C]   5.1764    
chord rise   [ ][d]   0.3407    

sector area  [H]   26.1799    

segment area  [G]   1.1799    
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Example 2: Calculate the rise (YR) at X = 1.8. Solution: 1.8 [D] [I] (0.1774) 

 
Notice that the only values you can input are the radius (RA on the [A] key), the central angle (AN on 

the [B] key), and the X-distance (XDIS on the [D] key). These values must be knowns if you wish to 
calculate any properties that depend upon them. 

 

 
 

Geometric Solvers Implementation Details.-  

 
This section has some comments on the integration to the SandMath - Ignore it altogether if you’re not 

interested in what’s going on under the hood.  

 
Adding the AECROM geometric solvers to the SandMath has been an exercise of discovery and 

patience. The first due to the appreciation of the ingenuity used by the original developers to integrate 
the MCODE accuracy and speed to a basically FOCAL-driven data input process, which relies on the 

user flag 22 (DATA Entry flag) as trigger for known / unknown elements. 

 
As mentioned at the beginning of this section, there are three FOCAL programs, which account for all 

the possible menu selections made in the three launchers – that is a total of 30 choices. The uncanny 
thing about those programs is that for every one and each of them, the same instruction is always 

executed – and that instruction is nothing less that the AECROM header function itself. 
 

How then does the function know which option is called up for? The answer lies in the actual program 

pointer position of the calling step, thus the relative location of the code was of utmost importance – 
which accounts for the patience part, as I had to move and shift large sections of code to 

accommodate for the demanding requirements of the FOCAL newcomers. 
 

So there were just about 180 words in the main bank in total, but what a tricky thing to adjust for on 

an already-packed module with interdependencies across three banks and two pages...  
 

Fortunately the bulk of the code is the MCODE for SOLVER itself, which has been conveniently located 
in bank-3 of the lower page – briefly “coming up” to the main one for the partial key sequence 

prompts, and every time the execution ends to the FOCAL program. 
 

I got partial vindication by consolidating the three FOCAL drivers into a single launcher, which 

furthermore allowed the removal of the three FAT entries (TRIA, SARR, and CIRC) – a definitive plus 
given that the FAT was already full. You can explore those programs switching to PRGM mode during 

their execution (in-between entries, standard procedure). 
 

You probably have noticed that I changed the text presented by the different menus to a less-busy 

version of the same. Perhaps more importantly, I also swapped the [D] and [ ][d] actions in the TRIA 
solver, so now the unshifted [D] calculates the Area. This provides consistency to the [ ][d] key, as the 

“gate” to interconnect SARR and TRIA on both cases. Subtle differences, probably just a matter of 
taste. 

 

As a side effect of the modification, only one function (MANTXP) was removed from the main FAT; it 
has been placed into the auxiliary FAT of the upper page. Hope you agree it was a small price to pay 

for such a rewarding addition – definitely worth the extra effort. 
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2.5.2. The Time Value of Money solver.-                 

 

Putting a second yellow ribbon around the box, from revision “M” the SandMath also includes the new 
TVM$ solver functionality - taken from the just released TVM ROM. This is an all-MCODE 

implementation of the classic functions that rivals with the HP-12C implementation in speed and 

accuracy – use it to solve for any of the five money variables with the other four known: N, I, PV, PMT, 
and FV.  

 

First of all, accessing the TMV$ solver is also possible using a dedicated entry in the FL launcher – 

just press the [USER] key directly at its prompt; thus no need to go through the SOLVER function 

even if for consistency reasons it’s also included there. The direct way saves keystroke pressings; 

therefore it’s the recommended approach. 
 

Also important to know is that to input the data, TVM$ expects the value already in X before calling 
the corresponding menu choice. This is reversed from the geometric solvers, which first present the 

prompt with the menu choices for informational purposes (not a launcher). 
 

The same option key is used to either input the variable value or to calculate it based on the other four. 

This duality is possible by relying on the status of the user flag 22 (the data entry flag) to determine 
whether it’s an input or a calculation action: UF 22 set means input, whereas UF 22 clear means 

calculation. 
 

Remember that to actually set the satus of flag 22, you need to press a key on the numeric pad, i.e. 

the digits 0-9, the Radix or EEX keys. Any other key will not activate it, in particular RCL, CHS and 
ENTER^ - so you need to work around those cases as appropriate when a new value is to be entered. 

 
TVM$ will clear UF 22 upon completion of the command (either inputting or calculating) – this enables 

a repeat calculation of different values just by pressing each menu choice in sequence. 

 
After the input or calculation is done, a message will show the result value for the variable chosen. If 

the value is an integer number then decimal settings in the calculator will be ignored for further clarity. 
 

 
Not shown in the main menu are the following actions: 

 

 B/E (key [J]) – use it to toggle between BEGIN / END modes. A message is displayed to 

inform of the selected mode, and it also toggles UF 00 annunciator in the display as a reminder 
of the currently selected mode. 

 

  
 
 

 SHOW (keys [F] to [I]) – use it to sequentially review the current values of each of the Money 

variables: N, I, PV, PMT, and FV. For additional consistency with the data entering approach, 

both B/E and SHOW will also clear UF 22 upon completion. 
 

 
Rather than attempt to explain the usage and complete functionality let’s borrow the section from the 

HP-41 Advantage’s Pac user’s manual – a superb vintage document that avoids re-inventing the wheel. 

Bear in mind that whereas the FOCAL version relies on the local keys within the program, the SandMath 
implementation uses the TMV$ launcher options for each value input – this is the main difference 

between both implementations. 
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The TVM program solves different problems involving time, money, and interest - the compound-

interest functions. The following variables can be inputs or results. 
 

 N = the number of compounding periods or payments. (For a 30-year loan with monthly 

payments, N = 12 x 30 = 360.) 
 

 I = the periodic interest rate as a percent. (For other than annual compounding, this 

represents the annual percentage rate divided by the number of compounding periods per 

year. For instance, 9% annually compounded monthly equal 9 / 12 = 0 75%) 
 

 PV = the present value. (This can also be an initial cash flow or a discounted value of a series 

of future cash flows.) Always occurs at the beginning of the first period. 
 

 PMT = The periodic payment, 

 
 FV = The future value. (This can also be a final cash flow or a compounded value of a series of 

cash flows.) Always occurs at the end of the Nth period. 

 

You can specify the timing of the payments to be either at the end of the compounding period (End 
mode) or at the beginning of the period (Begin mode). Begin mode sets flag 00. Ending payments are 

common in mortgages and direct-reduction loans; beginning payments are common in leasing. 
 

Equation 
 

 

 
 

Where i is the periodic interest rate as a fraction (i = 1/100), 
p = 1 in Begin mode or 0 in End made. 

 

 

Valid Input Values for Data 
 

Use a cash-flow diagram to determine what your cash-flow inputs are and whether to specify them as 
positive or negative. The cash-ftow diagram is just a time-line divided into time periods. Cash flows 

(transactions) are indicated by vertical arrows: an upward arrow is positive for cash received, while a 
downward arrow is negafive for cash paid out. 

 
For example, the six-period time line on the left shows a $20 cash outflow initially and a $50 cash 

inflow at the end of the fourth period. (Begn mode cannot be used in calculating PV or FV.) The five-

period time line on the right shows a $1,000 cash outflow initially and a $100 inflow at the end of each 
period, ending with an additional #1,000 inflow at the end of the fifth period. 
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Instructions. 
 

 The program TVM will solve for any one of the variables N, I, PV, PMT, or FV given the other 

three or four, which must include either N or I. The order of entry is unimportant. lf you use 

only four variables, then the fifth must equal zero. All variables are set to zero when you first 
run TVM or clear the financial data, so you do not have to enter a zero in these cases. 

 

 You should clear the financial data (.B) before beginning a completely new calculation; 

otherwise, previous data that is not overwritten will be used (i.e., for the fourth, unused 
variable), Running the program anew also clears the financial data. 

 
 Remember to specify cash inflows (arrow up) as positive values and cash outflows (arrow 

down) as negative values. The results are also given as positive ox negative, indicating inflow 

or outflow. 

 
 Check that the payment mode is what you want. If you see the flag 00 annunciator (a small 0 

below the main display line), then Begin mode is set. If not, End mode is set. To change the 

mode, press [J] (a toggle). The display will then show what you have just set: BEGIN MODE or 
END MODE. The default is End-mode (flag 00 clear). 

 
 Remember that the interest rate must be consistent with the number of compounding periods. 

(An annual percentage rate is appropriate only if the number of compounding periods also 

equals the number of years.) 

 
 You might want to set the display format for two or three decimal places (FIX 2 / 3). 

 

 
This menu will show you which key corresponds to 

which function in TVM. Press to recall this menu to the 

display at any time. This will not disturb the program in 
any way. 

 
To clear the menu at any time, press [<-]. This shows 

you the contents of the X-register, but does not end 
the program. You can perform caIculations, then recall 

the main menu by pressing 0. (However, you do not 

need to clear the program's display or recall the menu 
before performing calculations.) 

 
 

 

 

 
Remarks 
 
This program uses local Alpha labels (as explained in the owner's manual fox the HP-41) assigned to 

keys [A]- [E], and their shifted counterparts (except [ ][c]) and [J]. These local assignments are 
overridden by any User-key assignments you might have made to these same keys, thereby defeating 

this program. Therefore be sure to clear any existing User-key assigments of these keys before using 

this program, and avoid redefining these keys in the future within possible. 
 

The financial varlable keys will only store a value if you enter it from the keyboard. If, for example, you 
recall a value from a register then press a variable key, the program wil calculate that variable instead 

of storing the recalled value. To store a value that was placed in the X-register by some other means 
than actually keying it in, press [STO] before pressing the variable key. 
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Examples 
 
Example 1.- A borrower can afford a $650.00 monthly payment on a 30-year, 14.25% mortgage. How 
much can he borrow? The first payment is made one month after the money is loaned. (This requires 
End mode.) 
 

 
 

Using the TVM$ solver, we’ll input the known variables first, and then use the unknown function key to 

obtain the result: 
 

Input    Keys   Result        
650, CHS   TVM$, [D]  “PMT=-650“ 

14.25, ENTER^, 12, /  TVM$, [B]  “I=1.1875“ 

30, ENTER^, 12, *  TVM$, [A]  “N=180” 
0    TVM$, [E]  “FV=0” 

    TVM$, [C]  “PV=53,955.91959“ 
 

 

Example 2.-  How much money must be set aside in a savings account each quarter in order to 
accumuIate $4,000 in 3 years? The account earns 11% interest, compounded quarterly and deposits 
begin immediately 
 

 
Input    Keys   Result        

   TVM$, [J]  “BEGIN MODE“ (sets flag 00) 
11, ENTER^, 4, /  TVM$, [B]  “I=2.7500“ 

3, ENTER^, 4, *  TVM$, [A]  “N=12” 

4000    TVM$, [E]  “FV=4,000” 
0    TMV$, [C]  “PV=0 

TMV$, [D]  “PMT=-278,223688” 
 

Notice that when you press a key after keying in a value, the calculator stores that value in the 

indicated variable (equivalent to STO into the register). However, when you press it without first keying 
in a value, the calculator computes a value for the indicated variable. 
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Programming Information. 
 
The calculation for N, PV, PMT and FV all use a direct formula based on the values for the other four 

variables. TVM$ uses 13-digit math routines for extended precision, thus the accuracy should in theory 
be better than the FOCAL programs used elsewhere (like the Advantage’s own TVM).  

 

The calculation for the interest rate uses an iterative method to solve the non-explicit equation. This is 
done applying Newton’s formula for the successive estimations of the solution, starting with the 

following initial value: 
 

i0 = [ abs( PV + n*PMT + FV) ]
1/n

 

 

The function’s derivative for Newton’ s formula is calculated using the expression: 

 

f ’ (i) =   (PMT / i
2 

) * [ (1+i)
-n 

 - 1 ]  + n * [PMT (1 + ip)/i – FV ] * (1+i)
-(n+1)

 

 
 

During the calculation the display shows a blinking message, shortly followed by the calculated result: 

 

       and then:  

 

 

Data Registers. 
 

The usage of data registers in TVM$ is compatible with the other FOCAL programs in the Advantage 
Pac (“TVM”) and in the PPC ROM (“FI”).  This is convenient if you want to use them interchangeably 

to compare the speed and accuracy of the different implementations. You can see the current contents 

with the RCL function and the top row keys as arguments, from 01 to 05 as follows: 
 

N –  R01 
I –  R02 

PV –  R03 

PMT –  R04 
FV -  R05 

 
When you call TVM$ it first makes a copy of the contents of these data registers into the stack, and 

uses those values for the calculations. Upon completion the obtained result is stored in the 
corresponding register and left in the X register as well. 

 

 
Using TVM$ in Programs. 
 

Notice that TVM$ is designed to be used interactively – but it can also be entered in a program 
utilizing the merged functions scheme, whereby the specific option is specified as an index (or 

argument) in the next program step following TMV$. This will be taken as the “function argument of 
the argument in Rnn”, always assuming it is a calculation action and not data input (regardless of the 

current status of UF 22). Simply use STO for storing the values in a program. 

 
The valid values for this argument line are logically 0 to 10, corresponding to the same indexes used in 

the register allocation and local keys within the menu. Had TVM$ been a sub-function, and therefore 

already using 2 steps in a program (F# plus index), you’d appreciate the fact that it’d take three 
program lines (and 5 bytes) to access to any of the financial sub-routines!  This compounded scheme is 

nothing short of amazing, if you ask me… 
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3. Upper-Page Functions in detail. 
 
It’s time now to move on to the second page within the SandMath – holding the Special Functions and 

the Statistical and Probability groups. Let’s see first the Statistical section – easier to handle and of 

much less extension; and later on we’ll move into high-level math, taking advantage of the extended 
launchers and additional functionality described in the introduction of this manual. 

 
 

UU.UU 

 

 
The following functions are in this general group: Some of them are plain catch-up, with the aim to 

complete the set of basic functions. Some others are a little more advanced, reaching into the high 
level math as well. 

 

 Function Description Author 

[*] %T Compound Percent of x over y Ángel Martin 

 EVEN? Tests whether x is an even number Ángel Martin 

[*] GCD Greatest Common Divider Ángel Martin 

[*] LCM Least Common Multiple Ángel Martin 

[*] NCR Combinations of N elements taken in groups of R Ángel Martin 

[*] NPR Permutations of N elements taken in groups of R Ángel Martin 

 ODD? Tests whether x in an odd number Ángel Martin 

[*] PDF Normal Probability Density Function Ángel Martin 

[*] PFCT Prime Factorization Ángel Martin 

[*] PRIME? Primality Test – finds one factor Jason DeLooze 

[*] RAND Random Number from Seed (in buffer) Håkan Thörgren 

[*] RGMAX Maximum in a register block JM Baillard 

[*] RGSORT Sorts a block of registers Hajo David 

 RGSUM Sums a block of registers JM Baillard 

[*] SEEDT SEED with Timer Håkan Thörgren  

[*] ST<> REG exchange with Stack Nelson C. Crowle 

[*] STSORT Stack Sort David Phillips 

 
 

Statistical Menu  - Another type of Launcher. 

 

Pressing [FL] twice will present the STAT/PROB functions menu, allowing access to 10 functions using 

the top row keys [A]-[J]. Two line-ups are available, toggled by the [SHIFT] key: 

 

[] Default Lineup:  Linear Regression         [] UUShifted Lineup:  Probability UU  

 

  -----  

 

Note the inclusion of the mainframe functions MEAN and SDEV in the menus, for a more rounded 
coverage of the statistical scope. With the menus up you just select the functions by pressing the key 

under the function abbreviated name. Use [SHIFT] to toggle back and forth between both lineups, and 

the back arrow key to cancel out to the OS.  
 

Obviously the data pairs must be already in the REG registers for these functions to operate 

meaningfully. 
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Alea jacta est…   {  SEED  ,  RAND  } 

 

 

UUIt’s a little known fact that the SandMath module also uses a buffer to store the current seed UU used for 
random number generation. The buffer id# is 9, and it is automatically created by SEEDT or RAND 

the first time any of them is executed; and subsequently upon start-up by the Module during the 
initialization steps using the polling points. 

 

  SEEDT  will take the fractional part of the number in X as seed for RNG, storing it into the 

buffer. If x=0 then a new seed will taken using the Time Module – really the only real random 

source within the complete system. 

 

  RAND  will compute a RNG using the current seed, using the same popular algorithm 

described in the PPC ROM - and incidentally also used in the CCD module’s function RNG. 

 
Both functions were written by Håkan Thörngren, an old-hand 41 programmer and MCODE expert -  

and published in PPC V13N4 p20 

 
 

  PRIME?  Determines whether the number in the X register is Prime (i.e. only divisible by itself 

and one). If not, it returns the smallest divisor found and stores the original number into the 
LASTX register. PRIME? Also acts as a test: YES or NO are shown depending of the result in 

RUN mode. When in a program, the execution will skip one step if the result is false (i.e. not a 
prime number), enabling so the conditional branching options. 

 

This gem of a function was written by Jason DeLooze, and published in PPCCJ V11N7 p30. 
 
 
 
 

UUExample program: UU- The following routine shows the prime numbers starting with 3, and using diverse 
Sandbox Math functions. 

 

01  LBL “PRIMES”  05  PRIME?   09  INCX 
02  3    06  VIEW X  <yes>  10  GTO 00  

03  LBL 00   07  X#Y?     <no>  11  END  
04  RPLX   08  LASTX  

 
See other examples later in the manual, relative to prime factorization programs. 

 

 
 

  DSP?  (in the secondary FAT) returns in X the number of decimal places currently set in the 

display mode 0 regardless whether it’s FIX, SCI , or END. Little more than a curiosity, it can be 
used to restore the initial settings after changing them for displaying or formatting purposes. 
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Combinations and Permutations – two must-have classics. 

 

Nowadays would be unconceivable to release a calculator without this pair in the function set – but 
back in 1979 when the 41 was designed things were a little different. So here there are, finally and for 

the record. 
 

  NPR  calculates Permutations, defined as the number of possible different arrangements of N 

different items taken in quantities of R items at a time. No item occurs more than once in an 

arrangement, and different orders of the same R items in an arrangement are counted 
separately.  The formula is:  

 

   
 

  NCR  calculates Combinations, defined as the number of possible sets or N different items 

taken in quantities or R items at a time. No item occurs more than once in a set, and different 
orders of the same R items is a set are not counted separately. The formula is: 

 

 

 
 
UUThe general operation include the following enhanced features: 

 

 Gets the integer part of the input values, forcing them to be positive. 

 Checks that neither one is Zero, and that n>r 

 Uses the minimum of {r, (n-r)} to expedite the calculation time 

 Checks the Out of Range condition at every multiplication, so if it occurs its determined as soon 

as possible 
 The chain of multiplication proceeds right-to-left, with the largest quotients first. 

 The algorithm works within the numeric range of the 41. Example: nCr(335,167) is calculated 

without problems. 

 It doesn't perform any rounding on the results. Partial divisions are done to calculate NCR, as 

opposed to calculating first NPR and dividing it by r! 
 

Provision is made for those cases where n=0 and r=0, returning zero and one as results respectively. 

This avoids DATA ERROR situations in running programs, and is consistent with the functions 
definitions for those singularities. 

 
Note as well that there is no final rounding made to the result. This was the subject of heated debates 

in the HP Museum forum, with some good arguments for a final rounding to ensure that the result is an 
integer. The SandMath implementation however does not perform such final “conditioning”, as the 

algorithm used seems to always return an integer already. Pls. Report examples of non-conformance if 

you run into them. 
 

UUExample UU:  Calculate the number of sets from a sample of 335 objects taken in quantities of 167: 
 

Type:    335, ENTER^, 167, XEQ “NCR“   ->     3,0443587 99 
 

UUExample:UU  How many different arrangements are possible of five pictures, which can be hung on the 

wall three at a time: 
 

Type:    5,  ENTER^,  3,  XEQ “NPR“  ->     60,00000000 

 
The execution time for these functions may last several seconds, depending on the magnitude of the 

inputs. The display will show “RUNNING…” during this time. 
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Linear Regression – Let’s not digress. 

 

The following four functions deal with the Linear Regression, the simplest type of the curve fitting 
approximations for a set of data points. They complement the native set, which basically consists of 

just MEAN and SDEV. 
 

 Function Description Author 

[] CORR Correlation Coefficient of an X,Y sample JM Baillard 

[] COV Covariance of an X,Y sample JM Baillard 

[] LR Linear Regression of an X,Y sample JM Baillard 

[] LRY Y- value for an X point JM Baillard 

 

Linear regression is a statistical method for finding a straight line that best fits a set of two or more 
data pairs, thus providing a relationship between two variables. Using the well-known method of least 

squares,    LR   will calculate the slope A and Y-intercept B of the linear equation:  Y = Ax + B.  

 

 
 

 
The results are placed in Y and X registers respectively. When executed in RUN mode the display will 

show the straight-line equation, similar to the STLINE function described before. 

 
UUExample UU: find the y-intercept and slope of the linear approximation for the data set given below: 

 

X 0 20 40 60 80 

Y 4.63 5.78 6.61 7.21 7.78 

 

Assuming all data pairs values have been entered using Y-value, ENTER^, X-value ,  + ; we type: 

XEQ “LR”  ->  0,038650000   and  X<>Y  ->4,856000000  producing the following output in FIX 2: 

 

        
 

As to the remaining functions,  COV   calculates the sample covariance.  CORR  returns the correlation 

coefficient, and  LRY  the linear estimate zero-intercept. 

 

For the same sample still in the calculator’s memory, we obtain the values: 

   
Covariance = 38.65;     CORR=0.987954828;    LRY=4.894184454  
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Ratios, Sorting and Register Maxima. 

 

 

  %T  and  D%  (in the secondary FAT) are miniature functions to calculate the percent of a 

number relative to another one (its reference), and the delta percentual between the numbers 

in Y(reference) and X(new value). The formulas are: 
 

   %T(y,x) = 100 x / y ;  D% = 100 (x-y) /x 

 
Example: the relative percent of 4 over 25 is 16%.-  You type: 25, ENTER^, 4, XEQ “%T”   

Example: the delta percentual of a change from 85 to 75 is –11,765% 
 

 

  GCD  and  LCM  are fundamental functions also inexplicably absent in the original function 

set. They are short and sweet, and certainly not complex to calculate. The algorithms for these 

functions are based on the PPC routines GC and LM – conveniently modified to get the most 

out of MCODE environment. 
 

If a and b are not both zero, the greatest common divisor of a and b can be computed by using 
least common multiple (lcm) of a and b: 

 

 

 
 

Examples:  GCD(13,17) = 1 (primes), GCD(12,18) = 6; GCD(15,33) = 3 
Examples:  LCM (13,17) = 221;  LCM(12,18) = 36; LCM(15,33) = 165  

 
 

  RGSORT  sorts the contents of the registers specified in the control number in X, defined as: 

bbb,eee, where “bbb” is the begin register number and “eee” is the end register number.  If 

the control number is positive the sorting is done in ascending order, if negative it is done in 
descending order. This function was written by HaJo David, and published in PPCCJ V12N5 

p44. 
 

  STSORT  sorts in descending order the contents of the four stack registers, X, Y, Z and T. 

Obviously no input parameters are required. This function was written by David Phillips, and 
published in PPCCJ V12N2 p13 

 
 

  RGMAX  finds the maximum within a block of consecutive registers – which will be placed in 

X, returning also the register number to Y. The register block is defined with the control word 

in X as input, with the same format as before: bbb.eee.  
 

  RGSUM  is a handy and super-fast way to calculate the sum of the data registers specified by 

the control word bbb.eee in X. It was written by Jean-Marc Baillard. 
 

 

  ST<> exchanges the contents of five statistical registers and the stack (including L). Use it 

as a convenient method to review their values when knowing their actual location is not 
required.  

 

 

  ODD?  And  EVEN?  are simple tests to see is the number in X is odd or even. The answer is 

YES / NO, and in program mode the following line is skipped it the test is false.  The 

implementation is based on the MOD function, using MOD(x,2) = 0 as criteria for evenness. 
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(Normal) Probability Distribution Function. {  PDF  } 

 

In probability theory, the normal (or Gaussian) distribution is a continuous probability distribution that 

has a bell-shaped probability density function, known as the Gaussian function or informally as the bell 
curve: 

 

 
 
The parameter μ is the mean or expectation (location of the peak) and σ^2 is the variance. σ is known 

as the standard deviation. The distribution with μ = 0 and σ^2 = 1 is called the standard normal 
distribution or the unit normal distribution 

 

 PDF  expects the mean and standard deviation in the Z and Y stack registers, as well as the argument 

x in the X register. Upon completion x will be saved in LASTx, and f(,,x) will be placed in X.  It has 

an all-MCODE implementation, using 13-digit routines for increased accuracy. 
 

PDF is a function borrowed from the Curve Fitting Module, which contains others for different 
distribution types. With the Normal distribution being the most common one, it was the logical choice 

to include in the SandMath. 
 

 

 
 
The figures above show both the density functions as well as the cumulative probability function for 

several cases. The Error function ERF in the SandMath can be used to calculate the CPF – no need to 
apply brute force and use PDF in an INTEG-like scenario, much longer to obtain or course. The 

relation to use is: 

 

  

 

 
 
UU 
 
 
 

Example program: UU  The routine below calculates CPF. Enter μ, σ, and x values in the stack. 

 
01  LBL “CPF”  08  / 

02  RCL Z  09  ERF 

03  -   11  INCX 
04  X<>Y  12  2 

05  /   13  / 
06  2   14  END 

07  SQRT 
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Cumulative Probability Function and its Inverse. {  CPF  ,  ICPF  ,  QNTL  } 

 
Since revision 2x2 the SandMath includes a few functions to calculate the cumulative probability and its 

inverse – both for the standard and general cases (any standard deviation and mean) of a Normal 
Distribution. 

 

The direct function is  CDF , which basically employs the Error function erf with the appropriate 

adjustment factors as described in the previous example. The inverse function is  ICPF , which benefits 

from a native implementation of the inverse Error Function ierf (more about this later). 

 
The expression used is, conversely:      

 

x = +  sqr(2) . ierf [2 P(x,,) - 1]  
 

 

where x = ICPF and P(x)= CPF,  programmed as shown in the listing at 

the left - a very simple FOCAL program that directly relies on IERF to do all 

the work. Note that the stack is expected to contained the three parameters 

defining the distribution. 
 

 
 

 

Both CPF and ICPF require the mean in Z, the standard deviation in Y, and the argument in X. You 
can use the fact that they are inverse from each other to verify the results. 

 

The third function is  QNTL , which basically is a particular case for ICPF – for the Standard Normal, 

with =1 and=0. It is calculated with an iterative approach using the Halley method to converge to 

the result. Obviously the results should be equivalent to ICPF with the standard parameters inputted. 

 

Halley’s method uses the following expression to calculate the successive approximations to the root: 
 

 

 
 

where our function in this case is f(x) = [CPF(x) – Value], thus we take advantage of the fact: 

f ‘(x) = PDF and f “(x) = -k f ‘(x); thus the above expression gets simplified considerably. 
 

 
UUExamples. UU Which argument  yields a probability of 75% for a Standard Normal distribution? 

 

a) Using ICPF:   0, ENTER^, 1, ENTER^,  0.75, F$ “ICPF”  -> 0,674489750 

b) Using QNTL:      0.75, F$ “QNTL”  -> 0,674489750 

 
What is the cumulative probability for the argument obtained in the previous example? 

 

Type:    0, ENTER^, 1, RCL Z,F$ “CPF”,   -> 0,750000000 

 
The accuracy is quite good, also holding up well across the entire range of values for both ICPF and 

QNTL – thanks to the thorough implementation of IERF, and to the iterative Halley approach 
employed. Execution speed is much faster for ICPF than for QNTL, but this one is more accurate for 

arguments in the vicinity of 1. 
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Poisson Standard Distribution. {  PSD  } 

 

 

 PSD  is another Statistical function, which calculates the UPoisson Standard Distribution U. In probability 

theory and statistics, the Poisson distribution is a discrete probability distribution that expresses the 
probability of a given number of events occurring in a fixed interval of time and/or space if these 

events occur with a known average rate and independently of the time since the last event 
 

A discrete stochastic variable X is said to have a Poisson distribution with parameter λ>0, if for k = 0, 
1, 2, ... the probability mass function of X is given by: 

 

 

 
 

Its inputs are k and  in stack registers 

X and Y.  PSD’s result is the probability 
corresponding to the inputs. 

 

 
 

 
 

 
 

 

 
 

 
                                         
                  

Example 1.- 
 
Calculate the probability mass function for a Poisson 
distribution with parameters: l=4, k=5 

 

4,  ENTER^,  5,  F$ “PSD” 

Returns:   0.156293452 
 

 
Example 2: do the same for l=10 and k=10 

 

10,  ENTER^,  F$ “PSD” 

(or  FL , [,] – “LastF”) 

Returns:   0.125110036 
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And what about prime factorization?  {  PFCT  }  
 
 

Function  PFCT  will do a very fast and simple prime factorization of the number in X, using PRIME? 

To look for the successive divisors until 1 is found. PFCT uses the ALPHA registers to present the 

results, grouping the repetitions of a given factor in its corresponding exponent. 

 
For example, for x=126 the three prime factors are 2, 3, and 7, with 3 repeated two times: 

 

 
 

For large numbers or when many prime factors exist, the display will scroll left to a maximum length of 
24 characters. This is sufficient for the majority of cases, and only runs into limiting situations in very 

few instances, if at all – remember that exceeding 24 characters will shift off the display the left 
characters first, that is the original number - which doesn’t result into any data loss. 

 

Obviously prime numbers don’t have any other factors than themselves. For instance, for x=17777 
PFCT will return: 

 

, which indeed is hardly debatable. 

 

Note that only the last two prime factors found will be stored in Y and Z, and that the original number 
will remain in X after the execution terminates. A more capable prime factorization program is available 

in the ALGEBRA module, using the matrix functions of the Advantage and Advanced Matrix ROMs to 

save the solutions in a results matrix. See the appendices for a listing of the program used in the 
SandMath and the more comprehensive one. 

 
   

Shown on the left there’s an even simpler version, that doesn’t 

consolidate the multiple factors – which will aggravate the length 
limitation of the ALPHA registers of 24-chrs max. The core of the action 

is performed by PRIME?, therefore the fast execution due to the 
MCODE speed. 

 
 

See the appendix in the next pages, with both the actual code for PFCT  

in the SandMath , and for PRMF - a more capable implementation using 
the Matrix functions from the HP Advantage to store the prime factor 

and their repetition indexes – really the best way to present the results. 
 

For that second case the function PF>X restores the original argument 

from the matrix values. Also function TOTNT is but a simple extension, 
using the same approach. 
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Appendix 4. Enhanced Prime factor decomposition. 

 

The FOCAL programs listed below are for PFCT – included in the SandMath – and PRMF, a more 
capable implementation that uses the Matrix functions from the HP Advantage (or the SandMatrix 

ROM). For sure a matrix is a much better place than the ALPHA register to hold that information – as is 
done in PFCT. The drawback is of course the execution speed, much faster in PFCT.  

 

 
 PRMF stores all the different prime factors and their repetition indices in a (n x 2) matrix. The 

matrix is re-dimensioned dynamically each time a new prime factor is found, and the repetition 

index is incremented each time the same prime factor shows up. 
 

 PF>X is the reverse function that restores the original number from the values stored in the 

matrix. 

 
 TOTNT (Totient function) is but a simple extension, also shown in the listings below. 

 

 
PRMF, PC>X and TOTNT are included in the Advanced MATRIX ROM. 

 
 

Below is the program listing for PFCT, as implemented in the SandMath: 
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Below is the Enhanced version, allowing for any number of different prime factors and repetition indices 

– all stored in a (n x 2) matrix file in extended memory, “PRMF”. 
 

Note how the program structure is basically the same, despite the addition of the matrix handling. 
Since the Advantage module is required we’ve used AIP instead of AINT, totally interchangeable as 

they’re basically the same function. 

 
 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

 

 
 

1   LBL "PRMF" 46 RCL 00

2 "PRMF" 47 MSR+

3 2 48 RDN

4 E3/E+ 49 ST/ L

5 MATDIM 50 LASTX

6 CLX 51 DIM?

7 MSIJA 52 INCX

8 RDN 53 MATDIM

9 CF 00 54 X<> Z

10 INT 55 MSR+

11 ABS 56 FS?C 00 was it prime?

12 PRIME? 57 GTO 01 yes, wrap up

13 SF 00 58 X<>Y no, swap things

14 MSR+ 59 GTO 05 and do next PF

15 X=1? 60 LBL "PF>X "

16 GTO 01 61 SF 04

17 FS?C 00 if prime, we're done 62 SF 10

18 GTO 01 63 "PRMF"

19 STO 01 save for grouping 64 LBL 01

20 ST/ L 65 E 

21 LASTX reduced number 66 FC? 10

22 LBL 05 67 MSR+

23 E 68 STO 00 re-build the number

24 STO 00 reset counter 69 MSIJA

25 RDN 70 CLA

26 LBL 00 71 LBL 06

27 RCL 01 previous prime factor 72 MRR+

28 X<>Y 73 FC? 04

29 PRIME? 74 AIP

30 SF 00 75 MRR+

31 X#Y? different PF? 76 FC? 04

32 GTO 02 YES 77 X=1?

33 ISG 00 increase counter 78 GTO 04

34 NOP SAME pf 79 "|-^"

35 FS?C 00 was it prime? 80 AIP

36 GTO 03 skip if Prime 81 LBL 04

37 ST/ L 82 Y^X

38 LASTX 83 ST* 00

39 GTO 00 84 FC? 10

40 LBL 03 85 "|-*"

41 RCL 00 86 FC? 10

42 MSR+ 87 GTO 06

43 GTO 01 88 RCL 00

44 LBL 02 NEW pf 89 PROMPT

45 STO 01 90 END
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Curve Fitting at its best. {  CURVE  ,  CRVF  ,  EQT  } 

 

Perhaps few other subjects have been so thoroughly covered and repeatedly implemented on 

programmable calculators as Curve Fitting. Certainly the 41 is no exception to this, see the excellent 
examples from the Advantage Module and the PPC ROM, or the standard-setting macro-program from 

W. Kolb on the same subject. 
 

Revision 3x3 of the SandMath includes the excellent implementation of the Curve Fitting functions from 

the AECROM – enhanced to use 13-digit math routines. Both the  CURVE  program (in FOCAL) and the   

CRVF  function (MCODE) are included in their entirety. With them you can make fast and convenient 

curve fitting calculations to 16 different curve types, choosing the best fit amongst them based on the 

correlation coefficients obtained.   

 
The following paragraphs are extracted from the AECROM Users manual - by itself an excellent work, 

perfect complement to the world-class programming that went into the Module. They should provide 
enough information to get you going. It’s only after some consideration that I decided to include them, 

both begging forgiveness and asking permission - you’re encouraged to consult the original manual, 

available at:  HHTUTUhttp://www.hp41.org/LibView.cfm?Command=View&ItemID=581 UUTTHH  

 

 

The AECROM Curve Fitter. 

 

With the AECROM program "CURVE" you can fit an unlimited number of data pairs (x,y) to sixteen 

different curves. "CURVE” will automatically determine which of the sixteen curves best fits the supplied 
data or you can specify the curve to fit. Once the data has been fit to a curve, "CURVE” will return 

predicted y-values for x-values you supply. 

 

A menu-driven program. 
 
The program "CURVE" is menu driven, that is, it redefines the meanings of the top row of keys and 

those new meanings can be shown in the display above the keys. In order to use "CURVE," you must 
set your calculator to USER mode (press [USER] to turn on the word USER in the display) and you must 

clear any global assignments on the top row of keys. 

 
Press XEQ “CURVE” and the top row of keys takes on the following meanings:  

   
[A] -(AD):  Accumulate an (x,y) Data pair.    

[B] -(FIT):  Fit the Data to the curve specified in register 00 (curve number 0 -15)    

[C] –(y=):  Calculate a y-value on the current curve for an input x.    
[D] -(BST):  Find the BeST fit (of the sixteen available curves) for the current data.    

[E] -(ME):  Bring up this Menu.    
[SHIFT] [a]-:  Remove an (x,y) Data pair (for error corrections).    

 
The Sixteen curves 
 
The sixteen curves available and their equations' are listed below according to curve number. 
 

0. LINEAR: y = a + bx 

1. RECIPRCL (reciprocal of linear): y = 1 / (a + bx) 
2. HYPERBLA (hyperbola): y = a + b/x 

3. REClP HYP (reciprocal of hyperbola): y = x / (ax+b) 
4. POWER: y = ax^b 

5. MOD PWER (modified power): y = a b^x 

6. ROOT: y = a b^1/x 
7. EXPONENL (exponential): y = a e^(bx) 

 

http://www.hp41.org/LibView.cfm?Command=View&ItemID=581
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8. LOGRTHMC (logarithmic): y = a + b x LNx 

9. LIN HYP (linear hyperbolic): y = a + bx + c/x 
10. 2 ORD HY (second order hyperbolic): y = a + b/x + c/(x^2) 

11. PARABOLA: y = a + bx + c(x^2) 
12. LIN EXPN (linear exponential): y = ax/(b^x) 

13. NORMAL: y = a e"(((~-b)~2)/c) 

14. LOG NORM (log normal): y = a e^(((b-LNx)^2)/c) 
15. CAUCHY: y = l/(a(x+b)"2 + c) 

 

Data Register usage. 
 
In order to run the "CURVE program (or use the CRVF function), you need to have 56 registers 
available for data storage ([XEQ] "SIZE 056). Registers 00 to 07 (below) are the ones that contain the 

information pertaining to the curve fit. Registers 08 to 55 (listed on page 55) contain the accumulated 
data information required to fit data to the sixteen curves. 

 

R00 - Curve number (0 to 15) 
RO1 -a 

R02 - b 
R03 - c 

R04 - RR (coefficient of determination) 

R05 - RR corrected (for comparing curves of different orders) 
R06 - Best RR corrected so far 

R07 - Rest curve number so far 
 

Executing the CURVE program clears all data registers in the HP-41. 

 
 
UUExample 1 : Finding the Best Fit 
 

As a genetic engineer, you recently completed an experiment dealing with algae growth under varying 

levels of radiation. The experiment yielded nine data pairs, which after scaled and rounded to one 
significant digit, looked like this: 

 

Radnt. 1 3 3 4 5 5 8 10 11 

Growth 5 7 10 9 9 11 12 10 13 
 
Which curve best fits these nine data pairs? 
 
Solution: (Assumes FIX 4) 
 

Keystrokes   Display     
 XEQ “CURVE”     AD,FIT,Y=,BST,ME 

 5, ENTER^, 1, [A]   1.0000 

 7, ENTER^, 3, [A]   2.0000 
10, ENTER]^, 3 [A]   3.0000 

 9, ENTER^, 4, [A]   4.0000 
 9, ENTER^, 5, [A]   5.0000 

11, ENTER^, 5, [A]   6.0000 

12, ENTER^, 8, [A]   7.0000 
10, ENTER^, 10 [A]   8.0000 

13, ENTER^, 11,[A]   9.0000 
[E]    AD,FIT,Y=,BST,ME 

[D]    LINEAR_. RECIPRCL_, HYPERBLA_, … CAUCHY_, LIN EXPN_ 
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By pressing the [D] key, you told the CURVE program to determine which of the sixteen curves fits this 

data best. The calculator displays each curve name as it is fitting the data to that curve. When the 
search is completed, the name LIN EXPON_ is shown in the display to indicate that the data fits best to 

a linear exponential curve. 
 

The equation for the LIN EXPON curve is y= ax/(b^x), and the values for "a" and "b" are stored in 

registers 01 and 02, respectively. If you press RCL 01, you will see 4.3859, which is the calculated 
value for "a."  RCL 02 will show you 1.1476, which is "b." 

 
 

Goodness of Fit 
 
The coefficient of determination, [RR], is stored in register 04. As you know, this number is a score 

ranging from 0 to 1 that tells you how well your data fits to the specified curve. A score of 1 tells you 
that every data point falls exactly on the curve specified by a. b, c, and the curve's equation. If you 

press [RCL] 04, you should see the value 0.8767, which is RR for the previous example. 

 
The value for RR just described is dependent upon the number of data points in your sample and upon 

the number of coefficients (a, b, and c) that are estimated for a given curve. For this reason, RR is not 
often a good tool for comparing curves. However, a corrected version of RR, one that isn't dependent 

upon sample size or number of coefficients, has been provided (stored in register 05) for use when 
comparing different curves. 

 
 
 
UUExample 2: Predicting Y at a given X. 

 
As a metallurgist, you are testing a new additive to an alloy. This additive influences the strength of the 

alloy and this influence varies according to the percentage of the additive in the alloy. In tensile 
strength experiments, you measured failure points in wires of different additive percentages. The 

following table of scaled data was produced: 

 
Additive % Failure/Scale  Additive % Failure/Scale 

0 1.00  4.0 4.165 

0.5 1.131  4.5 4.629 

1.0 1.079  5.0 4.811 

1.5 1.354  5.5 5.577 

2.0 1.382  6.0 5.391 

2.5 2.350  6.5 4.735 

3.0 3.767  7.0 4.618 

3.5 3.945    

 
Input the data and find the best fit. Use the failure variables as the values of y and the percentages as 
the x's. Then, based on this best fit curve, find the scaled failure point for a wire with an additive 

percentage of 4.3. 
 

 

UUSolution:UU  The best fit is the NORMAL curve or NORMAL distribution (the equation is y = a e^(((x- 
b)^2)  +  c).  The values for a, b, and c, are: 5.173, 6.234, and -19.175 respectively.  Once you have 

determined this to be the curve, to get the y-value a t x = 4.3  press: 4.3 [E], [C]. That value is 4.256. 
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A few more Geometry Functions. 

 

 Function Description Author 

[$] PP2 2D Distance between 2 points Ángel Martin 

[$] VMOD 3D Vector Module Ángel Martin 

[$] VXA 3D Cross Product Ángel Martin 

[$] V*A 3D Dot Product Ángel Martin 

[$] HERON Area of a Triangle JM Baillard 

[$] BRHM Area of cyclic quadrilateral JM Baillard 

[$] THV Tetrahedron Volume JM Baillard 

 

This is the small set of geometry functions in the SandMath – just a token to glimpse the subject, not a 

comprehensive implementation. The VECTOR ANALYSIS module contains many more, as well as a 
full-featured 3D-Vector Calculator (see overlay below). It is a 4k-module that can be used 

independently from the SandMath, but sure it is a powerful complement for these specific subjects. 
 

 

Distance between two points. { PP2  } 

 

The Euclidean distance between two points p and q is the length of the line segment connecting them. 
In the Euclidean plane, if p = (p1, p2) and q = (q1, q2) then the distance is given by 

 

 
 

  
 

 PP2  expects the coordinates of the two points stored in the stack, (y1,x1),  (y2,x2)  in T,Z,Y, and X 

(or vice-versa). The distance will be placed in X upon completion. 
 

UUExample:UU Calculate the distance between the points a(-3,5) and b(6,-2) from the figure below: 
 
 

Type: 5, ENTER^, -3, ENTER^, -2, ENTER^, 6, ENTER^,  

 

F$ “PP2”   -> 11.40175425 

 
Note: A similar function exists in the 41Z module – 

ZWDIST, which basically calculates the same thing, albeit 
done in a complex-number context. 

 
 
 

 
 

 
 

3D Vector Modulus (Magnitude) {  VMOD  } 

 

With the 3 coordinates stored in the stack registers Z,Y, and X,  VMOD  calculates the vector modulus. 

The result is returned in X, but the stack is otherwise unchanged. The initial x-coordinate is saved in 

LastX, so you can restore the original vector using X<> L 
 

UExample:U Calculate the magnitude of vector V = [ 1 –3 4] 
 

Type: 4,  ENTER^, -3,  ENTER^, 1, F$ “VMOD”  ->  5.099019514 

 

Note the “reversed“ order in the data entry sequence. 
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3D Dot and Cross products. {  V*A   ,  VXA  } 

 

Here the first vector is stored in stack registers X,Y,Z, and the second in ALPHA registers M,N,O. 

Obviously having an auxiliary function like ST<>A will come handy – such is available in the 
AMC_OS/X module. You can also use STO M, STO N, and STO O for each coordinate. 

 
VXA returns the result coordinates in the Stack, replacing the initial values. ALPHA is unchanged. 

V*A returns the result value in X, the stack and ALPHA are unchanged. 

 
Examples.  Calculate the cross and dot products between: V1 = [ 1  2  3 ] and V2 = [ 4  5  6 ] 

 

Type: 6, ENTER^, 5, ENTER^, 4,  ENTER^,  ST<>A     
and 3, ENTER^, 2, ENTER^, 1,  ENTER^,  F$ “V*A” -> 32.00000000 

 

Then use X<> L, to restore the initial value, and  F$ “VXA” -> -3.000000000 

 

Use RDN twice to see the result vector is:  V1 x V2 = [-3  6  -3 ] 
Remember also that the cross product is not commutative, thus (V1xV2) = - (V2xV1).  

 
 

                 
 

Here’s a way to check your results in WolframAlpha: 

HTUhttp://www.wolframalpha.com/input/?i=cross+product UTH  

 

 
 

 

 
 

 
 

 

 
 

 

http://www.wolframalpha.com/input/?i=cross+product
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More Triangles and Tetrahedrons. {  HERON  ,  BRHM  ,  THV  } 

 

A short reminder section - to reflect the popularity of these topics so common in the early days of 

programmable calculators. See JM Baillard’s pages on the subjects posted at: 
HTUhttp://hp41programs.yolasite.com/polygon.php UTH and HTUhttp://hp41programs.yolasite.com/heron.php UTH  

 
 

  HERON  calculates the area of a triangle knowing its three sides, using Heron’s formula. Just 

enter the sides values in the stack, and execute the function (located in the auxiliary FAT). The 
result is stored in X, with the original side saved in LastX. The rest of the stack is unchanged. 

 

Let the triangle ABC with 3 known sides { a , b , c } and  s = (a+b+c)/2  the semi-perimeter  
 

Heron's formula is:     Area = [ s(s-a)(s-b)(s-c) ]1/2      
 
U Example: U     a = 2,   b = 3,   c = 4  

Type:    2,  ENTER^,  3,  ENTER^,  4,   F$ "HERON"   =>   Area = 2.904737510  

 
 

  BRHM  is related to it, but the calculation for the area of the cyclic quadrilateral - using 

Brhamagupta’s formula. Just enter the four values in the stack and execute the function (in the 

secondary FAT). The result is stored in X, with the original side saved in LastX. The rest of the 
stack is unchanged. 

 
Let  a, b, c, and d be its sides lengths, and the semi-perimeter  

s = ( a + b + c + d )/2 .The area A of the cyclic quadrilaterais: 

 

A = [(s-a).(s-b).(s-c).(s-d).]1/2    
 

U Example: U    a = 4 , b = 5 , c = 6 , d = 7  
 

  Type:  4,  ENTER^,  5,  ENTER^,  6,  ENTER^,  7,   

F$ "BRHM"  =>  Area = 28.98275349  
 
 
 

  THV   calculates the volume of a tetrahedron using Francesca’s formula - with edges values 

stored in registers R01 to R06. - provided that the edges a , b , c intersect at the same vertex 

and  the edges d , e , f  are respectively opposite to the edges a , b , c  -  thus  a and d ( 
respectively b and e , c and f ) must be non-coplanar.  

 
Here too you can use IN or INPUT to conveniently store those values in the registers, see DHST 

description section for details. 
 

U Example1: U    a = 3   b = 5   c = 7   d = 6   e = 8   f = 4  

 
Store these 6 numbers into  R01 thru R06  

then:  F$ "THV"  =>   V = 8.426149773  - The exact value is sqrt(71) , all digits correct. 

 
 

U Example2 U:    a = 120   b = 160   c = 153   d = 25   e = 39   f = 56  
 

Store these 6 numbers into  R01 thru R06 , 

T hen:  F$ "THV"   =>   V = 8,063.999998  - the exact result is 8,064 

 
The second tetrahedron is a heronian tetrahedron: the edges lengths, the faces areas & the volume are 

all integers. So not even the 13-digit math routines return exact results in difficult cases like example2.  

http://hp41programs.yolasite.com/polygon.php
http://hp41programs.yolasite.com/heron.php
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UU 

 

 
Quick recap: a summary table of the different factorial functions available in the SandMath.- 
 

 Function Description Author 

[$] APNB Apery Numbers JM Baillard 

[$] BN2 Bernouilli Numbers Ángel Martin 

[$] MFCT Multifactorial JM Baillard 

[$] LOGMF Logarithm Multifactorial Ángel Martin 

[$] SFCT Superfactorial JM Baillard 

[$] XFCT Extended FACT JM Baillard 

[$] POCH Pochhammer symbol Ángel Martin 

[$] FFCT Falling factorial Ángel Martin 

 
Large numbers in a calculator like the HP-41 represent a challenge. Not only the numeric range 

represents a problem, but also the reduced accuracy limits the practical application of the field. 

Nevertheless the few functions that follow contribute to add further examples of the ingenuity and 
what’s possible using this venerable platform. 

 
This was the last section added to the SandMath in revision “E”. It also required compacting the few 

gaps available, and transferring some code to the last available space in the Library#4 module. Make 

sure you have matching revision of those two! 
 

The functions in the table above Uoperate only on integers U, i.e. no extension to real numbers using 
GAMMA. Below one of such extensions, the Hyperfactorial in a 3D visualization from WolframWorld: 

 

 

 

 
The figure on the left shows a plot of the four 

functions on the real line (Fibonacci in blue, 
double factorial in red, superfactorial in green, 

hyperfactorial in purple).  
 

Don’t expect quantum leaps in number theory 

here; it is after all one of the most difficult 
branches of math. 
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 Pochhammer symbol: Rising and falling empires. {  POCH  ,  FFCT  } 
 

In mathematics, the Pochhammer symbol introduced by Leo August Pochhammer is the notation (x) PP

n,
PP 

where n is a non-negative integer. Depending on the context the Pochhammer symbol may represent 
either the rising factorial or the falling factorial as defined below. Care needs to be taken to check 

which interpretation is being used in any particular article. 
 

The symbol x PP

(n)  
PPis used for the rising factorial (sometimes called the "Pochhammer function", 

"Pochhammer polynomial", "ascending factorial", "rising sequential product" or "upper factorial"): 
 

 
 

The symbol (x)BBn BB is used to represent the falling factorial (sometimes called the "descending 

factorial",[2] "falling sequential product", "lower factorial"): 

 

  
 
These conventions are used in combinatory. However in the theory of special functions (in particular 
the hypergeometric function) the Pochhammer symbol (x)n is used to represent the rising factorial. 

Extreme caution is therefore needed in interpreting the meanings of both notations ! 

 
The figures below show the rising (left) and falling factorials for n={0,1,2,3,4}, and -2<x<2 
 

 

 
 
Function POCH calculates the rising factorial.  It expects n and x to be in the Y and X registers 
respectively (i.e. the usual convention). For large values of n the execution time may be very long – you 
can hit any key to stop the execution at any time. 

 
The falling factorial is related to it  (a.k.a. Pochhammer symbol) by : 
 

 
 

 

The usual factorial n! Is related to the rising factorial by: n ! = 1 PP

(n) 

Whereas for the falling factorial the expression is: n ! = (n)BBn 

 
UExamples U: Calculate the rising factorial for n=7, x=4, and the falling factorial for n=7, x=7 
 

7, ENTER^, 4, F$  “POCH”      ->  604.800,0000,   

7, ENTER^, 7, CHS, F$  “POCH”, 7, XEQ “CHSYX”  ->  5.040,000000 
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Multifactorial, Superfactorial and Hyperfactorial. {  MFCT ,  SFCT  ,  HFCT  } 

 

 

This section covers the main extensions and generalizations of the factorial. There are different ways to 
expand the definition, depending on the actual sequences of numbers used in the calculation.  

 
The double factorial of a positive integer n is a generalization of the usual factorial n!, defined by: 

 

      

 

            
 
Even though the formulas for the odd and even double factorials can be easily combined into: 
 

      

 

 
 
The double factorial is a special case of Uthe multifactorial U, which uses the same formula but with 

different “steps”: subtracting “k” (instead of “2”) from the original number, thus: 

 

 

where the products run through positive integers.  Obviously for k=1 we have the standard FACT. 

One can define the k-th factorial, denoted by n!PP

(k) 
PPrecursively for non-negative integers as: 

 

 

 
 
 

Another extension to the factorial is the Superfactorial. It doesn’t use any step-size as variant, rather 
it follows a similar formula but using the factorial of the numbers instead of the numbers themselves: 

 

 

 
Both the multifactorial and (specially) 

the superfactorial will exceed the 
calculator numeric range rather quickly, 

so the SandMath functions use a 

separate mantissa and exponent 
approach, using registers X and Y 

respectively.  
 

Nevertheless the functions will put up a 

consolidated (combined) representation 
in the display, using the letter “E” to 

separate both amounts.  Make sure to 
adjust the FIX settings as approriate: 
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UExamples:    UCalculate the multi- and superfactorials given below: 
 

2345 !! !! !! type:  6, ENTER^, 2345, “MFCT”    ->   
 

1234 !! !! ! type:  5, ENTER^, 1234,  “MFCT”     ->   
 

Sf(41)  type:  41, F$ "SFCT"    ->     
 

Sf(100)  type:  100, FL, [ , ]"  ->   

 
 

To complete this trinity of factorials – Occasionally Uthe hyperfactorial Uof n is considered. It is written 

as H(n) and defined by: 
 

 

 
 

The figures below show a plot for both the hyperfactorial and its logarithm – itself a convenient scale 
change very useful to avoid numeric range problems. Note that they’re extended to all real arguments, 

and not only the natural numbers – also called the “K-function”. 
 

      

 

 
 

See below a couple of simple FOCAL program to calculate the hyperfactorial (which runs beyond the 

numeric range dramatically soon!) and its logarithm written by JM Baillard. Understandably slow and 
limited as these programs are, you can visit his web site for a comprehensive treatment using 

dedicated MCODE functions for the many different possible cases. 
 

01  LBL "HFCT"  07  *   01  LBL "LOGHF"  07  * 

02  1    08  DSE Y  02  0    08  + 
03  LBL 01   09  GTO 01  03  LBL 01   09  DSE Y 

04  RCL Y   10  END  04  RCL Y   10  GTO 01 
05  ENTER^      05  ENTER^   11  END 

06  Y^X      06  LOG  
 

Example: calculate the Hyper-factorial of 23: 
 

23, F$  "LOGHF", 10, X<>Y, Y^^X  =>  
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Logarithm Multi-Factorial.  {  LOGMF  } 

 

 

The product of all odd integers up to some odd positive integer n is often called the double factorial of 
n (even though it only involves about half the factors of the ordinary factorial, and its value is therefore 

closer to the square root of the factorial). It is denoted by n!!. For an odd positive integer n = 2k - 1, k 
≥ 1, it is 

 

  
 A common related notation is to use multiple exclamation points to denote a multifactorial, the product 

of integers in steps of two (n!!), three (n!!!), or more. The double factorial is the most commonly used 
variant, but one can similarly define the triple factorial (n!!!) and so on. One can define the k-th 

factorial, denoted by n! PP

(k)
PP, recursively for non-negative integers as: 

 

 

 
 

 

The figures below show the plots for X!! (right), a comparison with log(abs(gamma)) (red) 

versus log(abs(doublegamma)) (green). – left. 

 

 
 
 

Using the Logarithm is helpful to deal with large arguments, as these functions go beyond the 

calculator numeric range very quickly. Also ran out of space in the module to have more than one 
function on this subject, thus LOGMF was chosen given its more general-purpose character. 

 
The implementation is thru an all-MCODE function, yet execution times may be large depending on the 

arguments. 
  

LOGMF may also be used to compute factorials, use n=1 and then E^X on the result. Obviously the 

accuracy won’t be the greatest, but it’s a reasonable compromise 
 

 
 

UExamples:  
 

      2   ENTER^ ,   100       F$  "LOGMF" ->  Log ( 100 !! )  =  79.53457468                

   999 ENTER^,     123456,  FL, [ , ]     ->   Log ( 123456 ! ..... ! ) = 578.0564932      

 
 

Stack Input Output 

Y n / 

X x LGMF(x) 
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Appendix 5.- Primorials – a primordial view. {  NPRML  ,  PPRML  } 

 

 

Welcome to the intersection between factorials and prime numbers... 
 

In number theory primorial is a function from natural numbers to natural numbers similar to the 
factorial function, but rather than multiplying successive positive integers, only successive prime 

numbers are multiplied. The name "primorial", attributed to Harvey Dubner, draws an analogy to 

primes the same way the name "factorial" relates to factors. 
 

There are two conflicting definitions that differ in the interpretation of the argument: the first interprets 
the argument as an index into the sequence of prime numbers (so that the function is strictly 

increasing), while the second interprets the argument as a bound on the prime numbers to be 
multiplied (so that the function value at any composite number is the same as at its predecessor).  
 

The figures below plot both definitions, comparing their shape and slopes:- 
 

  
 
 
Prime primorial  (left plot): For the nth prime 

number pn the primorial pn# is defined as the 
product of the first n primes (where pk is the 

kth prime number): 
 

 

Natural primorial (right plot):  In general, for a 

positive integer n such a primorial n# can also 

be defined, namely as the product of those 
primes ≤ n.  

  

 

                                                      

 

 
 

The FOCAL programs below can be used to calculate both flavors of primorials. Note the primordial 
(pun intended) role of function PRIME?, which effectively makes this a simple application as opposed 

to a full-fledged program from the scratch. 

 

TTExamples: Calculate both primorials for the first 20 natural numbers. 

See the solutions on the table next page.
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Table of primorialTTsTTTT 

n n# p BBnBB p BBnBB# 

0 1 no prime 1 

1 1 2 2 

2 2 3 6 

3 6 5 30 

4 6 7 210 

5 30 11 2310 

6 30 13 30030 

7 210 17 510510 

8 210 19 9699690 

9 210 23 223092870 

10 210 29 6469693230 

11 2310 31 200560490130 

12 2310 37 7420738134810 

13 30030 41 304250263527210 

14 30030 43 13082761331670030 

15 30030 47 614889782588491410 

16 30030 53 32589158477190044730 

17 510510 59 1922760350154212639070 

18 510510 61 117288381359406970983270 

19 9699690 67 7858321551080267055879090 

20 9699690 71 557940830126698960967415390 

 

 

        

01 LBL "NPRML"

02 ABS

03 INT

04 E

05 X>Y?

06 RTN

07 X<>Y

08 LBL 00

09 PRIME?

10 GTO 01

11 X<> L

12 GTO 03

13 LBL 01

14 ST* Y

15 LBL 03

16 DSE X

17 GTO 00

18 X<>Y

19 RTN            

01 LBL "PPRML"

02 ABS

03 INT

04 E

05 X>Y?
06 RTN

07 STO Z

08 LBL 00

09 INCX

10 PRIME?

11 GTO 01

12 X<>  L

13 GTO 00

14 LBL 01

15 ST* Z

16 DSE Y

17 GTO 00

18 RCL Z

19 END  
 

 
Both routines only use the stack – no data registers or user flags are used. Clearly the numeric range 

will again be the weakest link, reaching it for n=54 for PPRML and n=251 for NPRML. 
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Apéry Numbers. {  APNB  } 

 

In mathematics Apéry's numbers were defined by Roger Apéry in his proof of irrationality of the Apery’s 

constant, - (3) -, and are defined by the following sums of binomial coefficients: 

 

 

 

 
 
There’s an expression based on the Generalized Hypergeometric Function (will be covered later in the 

manual), which is the one used in the SandMath – albeit in an independent MCODE function, thus not 
calling HFG+ Said formula is: 

 
   An  

 

 
A short FOCAL program using this formula is listed below: 

 
01  LBL "APNB"  07  STO 06  13  4 

02  CHS   08  STO 07  14  PI 

03  STO 01  09  X<>Y  15  INT 
04  STO 02  10  -   16  1 

05  1   11  STO 03  17  HGF+ 
06  STO 05  12  STO 04  18  END 

 
 

They are also given by the recurrence equation: 

 

 

 
 

The fisrt few are:  1,  5,  73, 1445,  33001  ....     (see Sloane's  A005259) 
 

Their values grow very large quickly, therefore exceeding the 41 numeric range for n>=67. The 
technique used has been to split the result in mantissa and exponent, same as it was described for the 

extended factorials sections seen earlier in the manual. 

 
The user instructions are simply to input the index n in X, and call APNB with the sub-function 

launcher F$. The result will by placed in stack registers Y (exponent) and X (mantissa), as well as 

shown as an ALPHA message in RUN mode. 
 

Examples: 
 

68,    F$ "APNB"   ->    A67 = 5,08229 E100  

 

Shown as follows in RUN mode:         

 

Other Examples: 
 

 41,   F$ "APNB"   -> A41 =  4.944386782 E59               

 100, F$ "APNB"   -> A100 =  2.824655679 E149             

 329, F$ "APNB"  ->  A329= 1.990511251 E499                     
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Synergy in action:  A glimpse of what’s ahead: 

 
 

        
 

“Relationship between common special functions”.  Taken from John Cook’s web site: 

HHTUThttp://www.johndcook.com/special_function_diagram.html UTTHH 

 
 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

 

 
 

Note: Make sure that revision “N” (or higher) of the Library#4 module is installed. 

http://www.johndcook.com/special_function_diagram.html
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U.U 

 

 
A word about the approach.  The Hyper-Geometric Function as a generic function generator  
(or “the case of the chameleon function in disguise”).  

 

Special functions are particular mathematical functions which have more or less established names and 
notations due to their importance in mathematical analysis, functional analysis, physics, or other 

applications, frequently as solutions to differential equations. There is no general formal definition, but 
the list of mathematical functions contains functions which are commonly accepted as special. Some 

elementary functions are also considered as special functions. 
 

The implementations described in this manual do nothing but scratching the surface (or more 

appropriately, “gingerly touching it”) of the Special Functions field, where one can easily spend several 
life-times and still be just half-way through. 

 
UImplementing multiple special functions in a 41 ROM U is clearly challenged by the available space in 

ROM, the internal accuracy and the speed of the CPU. It is therefore understandable that more 

commonality and re-usable components identified will make it more self-contained and powerful, 
overcoming some of the inherent design limitations.  

 
The Generalized Hyper-geometric function is one of those rare instances that works in our favor, as 

many of the special functions can be expressed as minor variations of the general case.  Indeed there 
are no less than 20 functions implemented as short FOCAL programs, really direct applications of the 

general case - saving tons of space and contributing to the general consistency and common approach 

in the SandMath. 
 

We have Jean-Marc Baillard to thank for writing the original HGF+, the Generalized Hyper-geometric 
function - real cornerstone of the next two sections. The SandMath has an enhanced MCODE 

implementation that optimizes speed and accuracy thanks again to internal usage of 13-digit OS 

routines. The reuse made of it more than pays off for its lengthy code.  
 

A few examples will illustrate this:- 
 

 

  
 

 

  
 

 
 
Naturally this is not the case for any special function, and even when there’s such an expression it may 

be more appropriate to use the direct definition instead – or an alternative one – for the 

implementation. This is the case of the Bessel functions, which use the series expansion approach in 
the SandMath; the Gamma function using the Lanczos formula, etc.  

 
With that said, let’s delve into the individual functions comprising the High-Level Math group. First off 

come those more frequently used so that they have gained their place in the ROM’s main FAT. Looking 

at the authorship you’ll see the tight collaboration between JM and the author, as stated in the opening 
statements of this manual. 
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3.3.1. Gamma function and associates. 

 
Let’s further separate these by logical groups, depending on their similarities and applicability. The first 
one is the GAMMA and related functions: 1/GM, PSI, PSIN, LNGM, ICGM, BETA, and ICBT – all of 

them a Quantum leap from the previous functions described in the manual, both in terms of the 

mathematical definition and as it refers to the required programming resources and techniques.  
 

 Function Description Author 

[F] 1/GMF Reciprocal Gamma (Continuous fractions) JM Baillard 

[F] BETA Euler’s Beta function Ángel Martin 

[F] GAMMA Euler’s Gamma function (Lanczos) Ángel Martin 

[F] ICBT Incomplete Beta function JM Baillard 

[F] ICGM Incomplete Gamma function JM Baillard 

 IGMMA Inverse Gamma function Ángel Martin 

[F] LNGM Logarithm Gamma function Ángel Martin 

[F] PSI Digamma (Psi) function Ángel Martin 

[F] PSIN Polygamma function JM Baillard 

 
 

In mathematics, the Gamma function (represented by the capital Greek letter Γ) is an extension of the 
factorial function, with its argument shifted down by 1, to real and complex numbers. 

 

If n is a positive integer, then  
 

  
 

showing the connection to the 
factorial function. 

 

For a complex number z with positive 
real part, the Gamma function is 

defined by 

 
 
Things become much more 

interesting in the negative semi-

plane, as can be seen in the plot on 
the right for real arguments. 

 
The Gamma function has become standard in pocket calculators, either as extended factorials or as 

proper gamma definition. It’s already available in the HP-11C and of course on the 15C, and that has 

continued to today’s models. Implementing it isn’t the issue, but achieving a reasonable accuracy is the 
challenge.  

 
A popular method uses the Stirling approximation to compute Gamma. This is relatively simple to 

program, but its precision suffers for small values of the argument.  A version suitable for calculators is 

as follows: 

 
Valid for Re(z)>0, and with reasonable precision when Re(z)>8.  
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For smaller values than that it’s possible to use the recurrence functional equation, taking it to the 

“safe” region and back-calculating the result with the appropriate adjusting factor: 
 

 
 

Incidentally, this method can be used for any approximation method, not only for Stirling’s. 

 

The method used on the SandMath is the Lanczos approximation, which lends itself better to its 
implementation and can be adjusted to have better precision with careful selection of the number of 

coefficients used.   For complex numbers on the positive semi-plane [Re(z)>0], the formula used is as 
follows: 

Although the formula as stated here is only valid for arguments in the right complex half-plane, it can 
be extended to the entire complex plane by the reflection formula, 

 
An excellent reference source is found under HHTUThttp://www.rskey.org/gamma.htm UTTHH, written by Viktor T. 

Toth. 
 

Let’s mention that this method yields good enough a precision that doesn’t require using the functional 

equation to adjust it for small values of the argument. The obvious advantage is that without the 
required program loop, the execution time is shorter and constant for any input. This becomes of 

extreme importance when Gamma is used as a subroutine of more complex cases, like the Bessel J and 
I functions – where the cumulative additional time is very noticeable. 

 

q 0  = 
  

75122.6331530 
  

q 1  = 
  

80916.6278952 
  

q 2  = 
  

36308.2951477 
  

q 3  = 
  

8687.24529705 
  

q 4  = 
  

1168.92649479 
  

q 5  = 
  

83.8676043424 
  

q 6  = 
  

2.5066282 
  

  

http://www.rskey.org/gamma.htm
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Appendix 6.- Accuracy comparison of different Gamma implementations. 

 

The tables below provide a clear comparison between three methods used to calculate the Gamma 
function: 

1. Lanczos formula, with k=6 
2. Continuous fractions, and 

3. Windschitl (Stirling). 

 
Each of them implemented using both standard 10-digit and enhanced 13-digit precision routines. 

 
The results clearly show that the best implementation is Lanczos, and that the 13-digit routines provide 

a second order of magnitude improvement to the accuracy, or in other words: that it cannot 

compensate for the deficiencies of the used method. We’re lucky in that the more accurate method is 
faster that the second best, albeit not as fast as Stirling’s. 

 
Obviously the extrapolation from integer case to the general case for the argument is assumed to 

follow the same trend, albeit not shown in the summary tables. 

 

Standard 10-digit Implementation 

Reference   Lanczos (k=6) Continuous Fractions Windschitl (Stirling) 

(x-1) ! x Result error Result error Result err 

1 1 1,000000001 1E-09 1,000000001 1E-09 1,000000012 1,2E-08 

1 2 1 0 1,000000001 1E-09 1,000000012 1,2E-08 

2 3 2 0 2,000000001 5E-10 2,000000024 1,2E-08 

6 4 5,999999999 -1,66667E-10 6,000000002 3,33333E-10 6,000000071 1,18333E-08 

24 5 24,00000001 4,16667E-10 24 0 24,00000028 1,16667E-08 

120 6 120 0 120 0 120,0000014 1,16667E-08 

720 7 720,0000008 1,11111E-09 720,0000001 1,38889E-10 720,0000087 1,20833E-08 

5040 8 5040,000002 3,96825E-10 5040 0 5040,00006 1,19048E-08 

40320 9 40320,00003 7,44048E-10 40319,99999 -2,4802E-10 40320,00048 1,19048E-08 

 362880 10  362880,0002 5,51146E-10 362879,9998 -5,5115E-10 362879,9988 -3,30688E-09 

3628800 11  3628800,001 2,75573E-10 3628800,018 4,96032E-09 3628800,05 1,37787E-08 

39916800 12  39916799,99 -2,50521E-10 39916800,01 2,50521E-10 39916800,9 2,25469E-08 

479,001,600 13  479001599,5 -1,04384E-09 479001598,3 -3,549E-09 479001580,2 -4,1336E-08 

6,227,020,800 14  6227020803 4,81771E-10 6227020798 -3,2118E-10 6227020957 2,52127E-08 

Enhanced 13-digit Implementation 

Reference   Lanczos (k=6) Continuous Fractions Windschitl (Stirling) 

(x-1) ! x Result error Result error Result error 

1 1 1 0 1 0 1 0 

1 2 1 0 1,000000001 1E-09 1 0 

2 3 2 0 2 0 1.999999999 -5E-10 

6 4 6 0 6.000000004 6,66667E-10 5.999999997 -5E-10 

24 5 24 0 24 0 23.99999999 -4,16667E-10 

120 6 120 0 120 0 120,0000014 1,16667E-08 

720 7 720 0 720 0 719.9999996 -5,55556E-10 

5040 8 5040 0 5039,9999990 -1,9841E-10 5,039.999998 -3,96825E-10 

40320 9 40320 0 40,320.00001 2,48016E-10 40,319.99998 -4,96032E-10 

362880 10  362880 0 362880 0 362,880 0 

3628800 11  3628800 0 3628800 0 3,628,800 0 

39916800 12  39916800 0 39916800 0 39,916,799.99 -2,50521E-10 

479,001,600 13  479001600 0 479001600 0 479,001,599.8 -4,17535E-10 

6,227,020,800 14  6227020800 0 6227020800 0 6,227,020,800 0 
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3.3.2. Reciprocal Gamma function. {  1/GMF  } 

 

The reciprocal Gamma function is the function  

  
where Γ(z) denotes the Gamma function. Since the 

Gamma function is meromorphic and nonzero 

everywhere in the complex plane, its reciprocal is 
an entire function. The reciprocal is sometimes 

used as a starting point for numerical computation 
of the Gamma function, and a few software 

libraries provide it separately from the regular 

Gamma function. 

 
Taylor series expansion around 0 gives 

 
 
 

The SandMath however uses the expression based in continuous fractions, according to which: 
 

 (x) = [x^(x-1/2)] sqrt(2) exp [ -x + (1/12)/(x +  
         + (1/30)/(x + (53/210)/(x +(195/371)/(x + ...  ))))] 

 
Comparing the results obtained by GAMMA (using Lanczos) and continuous fractions it appears that 

the precision is generally better in the Lanczos case – which also happens to be faster due to its 
polynomial-like form and the absence of loops to adjust the result for smaller arguments. 

 

Note the special case for x=0, which is not a pole for this function but it is a singularity for all the 
others that used the common subroutines – therefore the dedicated check in the routine listing. 

 
 

3.3.3. (Lower) Incomplete Gamma function. {  ICGM  } 

 

In mathematics, the upper and the lower incomplete gamma functions are respectively as follow: 

 

               

 

  
 

 

Connection with Kummer's confluent hypergeometric function, when the real part of z is positive - 
which is the expression used to program it in the SandMath. 

 

                      
 

  
 

The Upper incomplete Gamma function can be easily obtained from the relationship: 
 

                          
 
Examples  :   3,   ENTER^ ,  4,  XEQ "ICGM"  ->  1.523793389   
                 1.2,  ENTER^,  1.7, XEQ “ICGM”  ->  0.697290898   
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3.3.4. Log Gamma function. {  LNGM  } 

 

 

Many times is easier to calculate the Logarithm of the Gamma function instead of the main Gamma 
value. This could be due to numeric range problems (remember that the 41 won’t support numbers 

over E100), or due to the poles and singularities of the main definition. 
 

The SandMath uses the Stirling approximation to compute LogGamma, as given by the following 

expression (directly obtained from the formula in page 27): 

 
This approximation is also good to more than 8 decimal digits for z with a real part greater than 8. For 

smaller values we’ll use the functional equation to extend it to the region where it’s accurate enough 
and then back-calculate the result as appropriate. 

 

The picture on the left shows the 
LogGamma function for positive 

arguments. Interestingly it has a negative 
results region between 1 and 2 – so it 

isn’t always positive. 
 

Note also the asymptotic behavior near 

the origin – due to the Gamma function 
pole. 

 
 

 

 
 

 
The implementation on the SandMath uses the analytical continuation to calculate LogGamma for 

arguments less than 9, Uincluding negative values U. Obvious problems (like the poles at negative integer) 
will yield DATA ERROR messages, but outside that the approximation should hold.  

 

since:   (z+n) =  (z) * (z+i) | BBi=1,2..n 

 

it follows:  Ln (z+n) = Ln (z) + Ln [(z+i) | BBi=1,2..n] 

 
Notice also that the same error will occur when trying to calculate LogGamma when Gamma is 
negative, which occurs between even-negative numbers and their immediately lower (inferior) one – 

see the plot in page 27). 

 
Example: 
               1000,  XEQ "LNGM"  yields   ln[(1000)]  = 5.905,220423    

               therefore   (1000)   = 4.02387  102564 

 

 
See the following link for a detailed description of another implementation (using Lanczos for both 

cases) to calculate Gamma and LogGamma on the 41 by Steven Thomas Smith: 
HHTUThttp://www.hpmuseum.org/cgi-sys/cgiwrap/hpmuseum/articles.cgi?read=941 UTTHH  

 

An excellent implementation of Gamma and related functions for the 41 is available on the following 
link, written by Jean-Marc Baillard (very complete and detailed): 

HHTUThttp://www.hpmuseum.org/software/41/41gamdgm.htm UTTHH 

 

http://www.hpmuseum.org/cgi-sys/cgiwrap/hpmuseum/articles.cgi?read=941
http://www.hpmuseum.org/software/41/41gamdgm.htm
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3.3.5. Digamma and Polygamma functions. {  PSI  ,  PSIN  } 

 

 

In mathematics, the digamma function is defined as the logarithmic derivative of the gamma function: 

              
It is the first of the polygamma functions.   
 

 
Its relationship to the harmonic 

numbers is shown in that for natural 

numbers: 
 

       
 

where Hn is the n'th harmonic number, 
and γ is the Euler-Mascheroni constant. 

 
 

 
 

 

 
 

 
 

 

 
As can be seen in the figure above plotting the digamma function, it’s an interesting behavior showing 

the same poles and other singularities to worry about. It should be possible to find an approximation 
valid for all the definition range of the function.  

 

It has been implemented on the SandMath using the formulas derived from the called Gauss digamma 
theorem, although further simplified in the following algorithm: 

 

               
 
programmed as:  u^2{[(u^2/20-1/21)u^2 + 1/10]u^2 –1}/12 – [Ln u + u/2],  

 
 

The implementation also makes use of the analytic continuation to take it to arguments greater than 9 
(same as it’s done for LogGamma), using the following recurrence relation to relate it to smaller values 

- which logically can be applied for negative arguments as well, as required. 

                 
 

Examples:    PI,  XEQ "PSI" ->  Psi() = 0.977213308  

        1,  XEQ “PSI” ->  Psi(1) = -0.577215665  (opposite of Euler's constant)  

  -7.28,  XEQ “PSI” ->  Psi(-7.28) = 4.651194216  
-1234.5, XEQ “PSI” ->  Psi(-1234.5) = 7.118826276   
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The Polygamma Function {  PSIN  } 

 
In mathematics, the polygamma function of order m is a meromorphic function on C and defined as the 

(m+1)-th derivative of the logarithm of the gamma function: 
 

        

 

 
 

For m=o the expression holds, where ψ(0) = ψ(z) is the digamma function and Γ(z) is the gamma 
function. They are holomorph on C \ -N0. At all the negative integers these polygamma functions have 

a pole of order m + 1. The function ψ(1)(z) is sometimes called the trigamma function. 
 

The polygamma function satisfies the follwing Recurrence relation: 

        

 

 
 

and the following Reflection formula: 

        

 

 
 
The SandMath implements the FOCAL program written by JM Baillard. The asymptotic expansion of the 

Psi-function is derived n times and the recurrence relation is used for values lower then 8 to achieve a 
good accuracy in the result. Note also that it uses ALPHA and the stack, but no data registers. 
 
 

The figure below shows the graphis for the first few values on m , color coded as follows: 

Blacik: n=0;  Red: n=1;  Yellow n=2;  Green: n=3... 
 

                

 

  
 
Examples.- Calculate Digamma(-1.6)  Trigamma(-1.6)  Tetragamma(-1.6)  Pentagamma(-1.6)  

 
   0.   ENTER^, -1.6,  XEQ "PSIN" ->  Digam(-1.6) = -0.269717877  [Psi(-1.6)] 

   1.   ENTER^ ,-1.6,  XEQ "PSIN" ->  Trigam(-1.6) = 10.44375936  
   2.   ENTER^, -1.6,  XEQ "PSIN" ->  Tetragam(-1.6) = -22.49158811  

   3.   ENTER^, -1.6,  XEQ "PSIN" ->  Pentagam(-1.6) = 283.4070827     
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3.3.6. Inverse Gamma function. {  IGMMA  } 

 

 

Not to be confused with the reciprocal, the inverse gamma function is a bit of an elusive one in terms 
of literature and references – perhaps due to a relatively small applicability. 

 
From a theoretical point of view however, it represents an interesting challenge, which in the SandMath 

has been resolved with an iterative calculation approach – making use of the Digamma function directly 

in the Newton method. 
 

Let (x) = Val, the value for which a suitable argument x is sought.  Thus the function to find a root is 

f(x) = [(x) – Val], and applying Newton’s method to calculate the successive approximations: 
 

          

 

 
 

but in this case:  f(x) / f ‘(x) = 1 / (x);  which simplifies considerably the calculation.  

 

The only remaining aspect is that of the initial approximation, x0. We have used that formula provided 
by D. Cantrell, which involves the Lambert W function as well: 

 

Approx Inv Gamma or AIG(x) = L(x) / W[L(x) / e] + ½, 
Letting L(x) = ln[(x+c)/Sqrt(2)],  with c ~= 0.036534 

 
See reference:  HHTUThttp://mathforum.org/kb/thread.jspa?messageID=342551 UTTHH  

 

Even if this initial calculation takes longer than, say using the Logarithm or a polynomial approximation 
of Gamma (DataFit), the benefits of a more accurate initial value are fewer number of iterations, and 

therefore shorter total execution times. See below a tabulated comparison of the execution times, using 

the two initial approaches: 
 

x Direct (David Cantrell) DataFit (Gerson Barbosa) 

1.0 2.370024 2.9339976 
1.5 15,4800000 17,6000040 
2.0 17,96998 17.219989 
2.5 11.85998 17.469972 
3.0 10.98 17.66 
3.5 10.36008 15.289992 
4.0 10.47996 14.72004 
4.5 10.179972 15.17004 
5.0 10.110024 14.7900024 
10 9.34992 14.230008 
15 8.740008 13.86 
20 9.36 14.349996 

 
 

Naturally this approach requires a good implementation of both Gamma and Psi, which is the case with 
the SandMath. Clearly the challenging region is going to be the negative axis, where Gamma has all the 

singularities and thus the calculation will have some difficult times to obtain the result for values near 
the origin, even returning negative arguments (!).  

 

UExample U: calculate the non-integer argument that yields (x) = 2 

 
Type:    2, XEQ “IGMMA”  ->  0,442877396 

To check it simply:          XEQ “GAMMA” ->  2,000000001  
 

http://mathforum.org/kb/thread.jspa?messageID=342551
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The programs below show the two versions of the implementation – very similar in the approach, but 

with a different initial estimation, which makes a difference as shown in the table from previous page. 
Note that in the SandMath case the calculation of the L(x) factor is done in MCODE – which increases 

accuracy and saves bytes in the main bank. 
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3.3.7. Euler’s Beta function. {  BETA  } 

 
The beta function, also called the Euler integral of the first kind, is a special function defined by  

 

The beta function was studied by Euler and Legendre and was given its name by Jacques Binet. 
The most common way to formulate it refers to its relation to the Gamma function, as follows: 

 

 
 

As a graphical example, the picture below shows B(X,0.5) for values of x between –4 and 4. As it’s 
expected, the same Gamma problem points are inherited by the Beta function. 

 

 
The implementation on the SandMath 

makes no attempt to discover new 
approaches or utilize any numeric 

equivalence: it simple applies the definition 

formula using the Gamma subroutine. 
Obvious disadvantages include the reduced 

numeric range – aggravated by the 
multiplication of gamma values in the 

numerator. 
 

Execution time corresponds to three times 

that of the Gamma function, plus the small 
overhead to perform the Alpha Data 

checks and the arithmetic operations 
between the three gamma values. 

 

 

3.3.8.  Incomplete Beta Function. {  ICBT  } 

 
The incomplete beta function, a generalization of the beta function, is defined as: 

 

 

 
 

For x = 1, the incomplete beta function coincides with the complete beta function. The relationship 
between the two functions is like that between the gamma function and its generalization the 

incomplete gamma function. And it’s also given in terms of the Hypergeometric function the expression 

by: 

 

 
 

Examples:  Calculate B(0.7;, e)  and B(0.4; 21; 40) 

 

Type:   PI,  1,  E^X,  0.7, XEQ “ICBT“   ->   0.029623046 
          21, ENTER^, 40, ENTER^,  0.4,  XEQ “ICBT“  ->   4.8989756-18 
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3.3.9. Bessel functions and Modified.  

  
The next logical group comprises the Bessel functions – and Spherical variants. 

 
 Function Description Author 

[F] IBS Bessel I(n,x) of the first kind Ángel Martin 

[F] JBS Bessel J(n,x) of the first kind Ángel Martin 

[F] KBS Bessel K(n,x) of the second kind Ángel Martin 

 SIBS Spherical Bessel i(n,x) Ángel Martin 

[F] SJBS Spherical Bessel j(n,x) Ángel Martin 

[F] SYBS Spherical Bessel y(n,x) Ángel Martin 

[F] YBS Bessel Y(n,x) of the second kind Ángel Martin 

[$] JNX1 Bessel J for large arguments (integer orders only) Keith Jarret 

 
The SandMath Module includes a set of functions written with the harmonic analysis in mind, 
specifically to facilitate the calculation of the Bessel functions in their more general sense: for any real 

number for order and argument. 
 

 

Bessel functions of the First kind – I(n,x) and J(n,x) 

 
The formulae used are as follows: 

 

 
Where TTΓTT denotes the Gamma function. 

 
These expressions are valid for any real number as order, although there are issues for negative 

integers due to the singularities in the poles of the gamma function - as there’s always a term for which 
(m+n+1) equals zero or negative integers, all of them being problematic. 

 

To avoid this, we use the following expression for negative integer orders: 

 
Whilst:  I BB-αBB(x) = I BBαBB(x),       for every real number order. 

 
This definition is also valid for negative values for X, as there’s no singularity for any x value. 

 
The SandMath implementation uses a recurrence formula instead of the one shown above. It has the 

clear advantage of not having to calculate Gamma for each term in the sum, contributing to a much 

faster and robust algorithm.  
 

The iterative relationships are as follows: 
 

J(n,x) = {U(k)|k=1,2…} * (x/2)PP

n
PP / (n+1),  where: 

U(k) = - U(k-1) * (x/2)^2 / k(k+n),  with  U(0) = 1. 
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The graphics below plot the Bessel functions of the first kind, J BBα BB(x), and their modified, I BBα BB(x),  for 

integer orders α=0,1,2,... 

 

 
Note that for large values of the argument, the order or both these algorithms will return incorrect 

results for J(n,x). This is due to the alternating character of the series, which fools the convergence 

criteria at premature times and fouls the intermediate results. Unfortunately there isn’t an absolute 
criteria for validity, but a practical rule of thumb is to doubt the result if (n+x) it greater than 20. 

 
 

Bessel functions of the Second kind – K(n,x) and Y(n,x) 

 

The formulae used are as follows: 
 

 
 

These expressions are valid for any real number as order – with the same issues as the first kind 

functions above when the order is integer. To avoid the singularities and to reduce the calculation time, 
the following expressions are used Ufor integer orders U: 

 

 YBBnBB(x) = 2[TTγ + Ln x/2] JBBnBB(x) – {(-1)PP

k
PP f BBkBB(n,x)} – {gBBkBB(n,x)} 

 

2 KBBnBB(x) = TT(-1)PP

n+1
TPTP 2 [TTγ + Ln x/2] IBBnBB(x) + (-1)PP

n 
PP{ fBBkBB(n,x)} +  {(-1)PP

k
PP g BBkBB(n,x)} 

 
where TTγTT is the Euler–Mascheroni constant (0.5772...), and:       
 

TTg BBkBB(n,x) = (x/2)PP

2k-n 
PP (n-k-1)! / k!  ; k=0,1,2,…(n-1) 

 

TTf BBkBB(n,x) = (x/2)PP

2k+n 
PP[H(k) + H(n+k)] / [k! (n+k)!]  ; k=0,1,2,….. 

 

and H(n) is the Uharmonic number U, defined as:     H(n) = (1/k) | k = 1,2,.. n 

 

Where:      YTBTB– TTnBB(x) = (-1)PP

n
PPYBB n BB (x),  and   KTBTB– TTnBB (x) = KBBnBB(x)   

 
(*) note that for x<0, Y(n,x) and K(n,x) are complex numbers. 
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The graphics below plot the Bessel functions of the second kind, Y BBα BB(x), and their modified, K BBα BB(x),  for 

integer orders α=0,1,2,... 

 
 
 

 

 
 

 
 

 

 
 

 
 

 
 

Note that KNBS and YNBS are FOCAL programs that use dedicated MCODE functions specially written 

for the calculations (#BS and #BS2). Their entries are located in the sub-functions FAT, thus won’t be 
shown in the main CAT listings – in case you wonder about their whereabouts. 

 
 

Getting Spherical, are we? 

 

The spherical Bessel functions jn and yn, and are (very closely) related to the ordinary Bessel functions 
Jn and Yn by: 

 
Which graphical representation (naturally very JBS-ish looking) is show below: 
 

  
Notice that there really isn’t any Spherical i(n,x) properly defined – but there’s one in the SandMath just 

the same, using the same relationship as for j(n.x) and y(n,x). 

 
Once again, r Uemember than as (n+x) increases the accuracy of the results decreases U – specially for 

J(n,x), Y(n,x) and the spherical counterparts, where the returned value can be completely incorrect if 
(n+x) > 20 (a practical rule, not an absolute criterion). 
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Programming Remarks. 

 

The basic algorithms use the summation definition of the functions, calculating the successive values of 
the sum until there’s convergence for the maximum precision (10 decimal places on the display). 

Therefore the execution time can take a little long – a fact that becomes a non-issue on the CL. Or 
when using 41-emulator programs, like V41, setting the turbo mode on. 

 

UThere are different algorithms depending on whether the order is integer or not U. This speeds up the 
calculations and avoids running into singularities (as mentioned before). 

 
Note that for integer indexes the gamma function changes to a factorial calculation, which benefits 

from faster execution on the calculator. Non-integer orders utilize the special MCODE function, 

GAMMA, with shorter execution times than equivalent FOCAL programs – but still longer than FACT 
when integers. 

 
Besides that, for integer orders the execution time is further reduced by calculating simultaneously 
the two infinite sums involved in the first kind and the second kind terms. This assumes that the 

convergence occurs at comparable number of terms, which fortunately is the case - given their relative 
fast convergence.   

 
TTNote that in order to obtain similar expressions for both Yn and Kn – and so getting simpler program 

code - we can re-write Kn as follows: 
 

TT(-1)PP

n+1  
TPTP2 KBBnBB(x) = 2 [TTγ + Ln x/2] IBBn BB(x)  – { f BBkBB(n,x)} –  (-1)PP

n 
PP{(-1)PP

k
PP g BBkBB(n,x)} 

 

 
Dedicated MCODE Functions. 

 
To further decrease the execution time of the programs, two dedicated functions have been written, 
implemented as MCODE routines as follows: 
 
Function Flag 00 Clear    Flag 00 Set 

--------------------------------------------------------------------------------- 

#BS   UBBk BB(n,x), |k=0,1,2…   where  UBBk BB =- UBBk-1BB * (x/2)^2 / k(k+n) 

#BS2  {fBBk BB(n,x)}  |k=0,1,2…   or: {gBBk BB(n,x)} |k=0,1,…(n-1) 

 

UThe first function #BS U is used equally in the calculation of U the first kind and the second kind of non-

integer orders. U  
 

Function Integer Non-integer 

JBS 
#BS 

IBS 

YBS 
2x #BS2 #BS 

KBS 

  

 
As it was said before, the summation will continue until the contribution of the newer term is negligible 

to the total sum value. All calculations are done using the full 13-digit precision of the calculator. No 
rounding is made until the final comparison, which is done on 10-digit values. 

 

From the definition above it’s clear that #BS coincides with either Jn(x) or In(x) depending on the 
status of the CPU flag 9, and for positive orders. The functions JBS and IBS are just MCODE 

extensions of #BS that set up the specific settings prior to invoking it, and (depending on the signs of 
the orders and the arguments) possibly adjust the result after it’s completed.  
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UThe second function U #BS2 is only used for second kind functions with integer orders. It’s a finite sum, 

and not an infinite summation. Its contribution to the final result grows as the function order increases. 
Its main goal was to reduce execution time as much as possible, derived from the speed gains of 

MCODE versus FOCAL.  
 

The definition of  f BBk BB(n,x) is as follows: 

 

TTf BBkBB(n,x) = {(x/2)PP

2k+n 
PP / [k! (n+k)!] } [H(k) + H(n+k)] ;  k=0,1,2… TT 

 

The definition of  gk(n,x) is as follows:  

 

TTg BBkBB(n,x) = (x/2)PP

2k-n 
PP (n-k-1)! / k!  ; k=0,1,…(n-1) 

 

Despite GAMMA’s execution time being reasonably fast, it is noticeably longer than that of the 

Factorial for integer indexes – therefore #BS2 will use FACT instead for integer orders. 
 

The Harmonic Numbers H(n) are obtained using another SandMath function as subroutine, 1/N. You 

see that the internals of #BS2 perform quite an involved procedure, utilizing multiple resources within 
the SandMath module. 

 

Furthermore, #BS2 Uis called twiceU within the FOCAL program to calculate KBS or YBS – once for the 
first, infinite summation and a second time for the second, finite sum. The status of User Flag 00 

controls the calculation made.  That was done to save one FAT entry, when the limiting factor was the 
maximumm nuber of functions per page (i.e. 64 functions). Now they have been pushed even further 

off, to the secondary FAT used for the sub-functions group. 

 

Bessel Function Summed Functions by #BS2 Flag 00 Flag 01 

Yn(x) 
g BBk BB(n,x) Set Set 

 fBBk BB(n,x) Clear 

Kn(x) 
(-1) PP

k
PP BB*BB g BBk BB(n,x) Set 

Clear 
(-1) PP

k
PP BB*BB fBBk BB(n,x) Clear 

 

Note also that for integer orders there are two infinite summations involved for the Bessel functions of 
the second kind – as calculating the 1st. kind function is also required. This is Udone simultaneously 

within #BS2 when user flag 02 is set,U as both series converge in very similar conditions (i.e. with the 

same number of terms). 
 

 
Main functions: IBS, JBS, KBS, and YBS. 

 
The first kind pair (IBS and JBS) are entirely written in MCODE – including exception handling and 

special cases. This is the only version known to the author of a full-MCODE implementation on the 41 

platform, and it is however a good example of the capabilities of this machine. 
 

No data registers are used – but both the stack and the Alpha registers are used. The number of terms 
required for the convergence is stored in register N upon termination. 

 

The second kind pair (KBS and YBS) is implemented using a FOCAL driver program for the auxiliary 
functions #BS and #BS2 (in the secondary FAT). Notably more demanding than the previous two, 

their expressions require additional calculations that exceed the reasonable MCODE capabilities. 
 

Although they’re not normally supposed to be used outside of the Bessel program, #BS and #BS2 
could be called independently. Both use the same input parameters: index in Y and half of the 

argument in X.  Pay close attention to the status of user flags 00 and 01 as they directly influence their 

result. 
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UExamples:  

 
J(1,1) = 0,440050586   I(1,1) = 0,565159104 

J(-1,-1) = 0,440050586   I(-1,-1) = -0,565159104 
J(0.5,0.5)   = 0,540973790  I(0.5,0.5) = 0,587993086 

J(-0.5, 0.5) = 0,990245881  I(-0.5,0.5) = 1,272389647 

 
Y(1,1) = -0,781212821   K(1,1) = 0,601907230 

Y(-1,2) = 0,107032431   K(-1,2) = 0,139865882 
Y(0.5,0.5)  = -0,990245881  K(0.5,0.5) = 1,075047604 

Y(-0.5,0.5) = 0,540973790  K(-0.5,0.5) = 1,075047604 
 

 

UError Messages: 
 

Note that the functions will return a “DATA ERROR” message when the solution is a complex number, 
like J(-0.5, -0.5) or I(-0,5, -0.5). There’s no way around that save in some particular cases of the order. 

You can always use the versions available in the 41Z Module for full complex range coverage. 

 
“OUT OF RANGE”, occurs when the calculator numeric range is exceeded. This typically occurs for large 

indexes, during the power exponentiation step. 
 

“ALPHA DATA” indicates alphabetic data in registers X or Y. May also trigger “DATA ERROR”. 
 

 

Iterative Method for large arguments. {  JNX1  } 

 

The FOCAL program  JNX1  is also available in the secondary FAT for cases involving large values of 

the arguments and (integer) orders. It uses the relations: 

 

  
   Jn-1(x) + Jn+1(x) = (2n/x) Jn(x) 
 

The execution time is substantially longer than the direct approach, but as an additional benefit JNX1 

will also calculate J(0,x) in addition, leaving this value in the Y-register upon completion. 
 

Example:  J3(100)  =  7.628420178 10 -2 
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Appendix 7.-  FOCAL program used to calculate the Bessel Functions of the second kind. As you can 

see it’s just a simple driver of the MCODE functions, with the additional task of orchestrating the logic 
for the different cases. 

 
Note the usage of the sub-functions from the auxiliary FAT , as well as other SandMath functions. 

 

01 LBL "KBS" 51 LBL 02 orden,argument swapped

02 SF  01 52 CF  02 default case
03 GTO 00 53 X<0? is it negative?

04 LBL "YBS" 54 SF  02 negative order

05 CF  01 55 ABS remember this fact!

06 LBL 00 56 STO 01 abs(n)

07 X=0? 57 ,

08 RTN single case x=0 58 STO 00 reset counter

09 2 59 STO 02 and partial sum

10  / HALFX 60 RDN

11 STO  03 x/2 61 X=0? skip i f n=0

12 X<>Y swap things  62 GTO 06

13 STO 01 n 63 CF  00 selects  #B2

14 INT? is it integer order? 64 SPFC# [gk(n,x)] |k=0,1…(n-1)

15 GTO 02 yes, divert to section 65 2 #BS2

16 CHS -n 66 CHS

17 X<>Y x/2 67 STO 02

18 RAD 68 RCL 01 abs(n)

19 SPFC# Multi-Function Launcher 69 LBL 06

20 1 Recurrence Sum #BS 70 RCL 03 x/2

21 CHS -J(-n,x) 71 SF  00 selects #B1

22 STO 02 partia l  result 72 SPFC# [fk(n,x)] |k=0,1,2…

23 RCL 01 n 73 2 #BS2

24 RCL 03 x/2 74 ST- 02 partial result

25 SPFC# Multi-Function Launcher 75 RCL 03
26 1 Recurrence Sum #BS 76 LN

27 STO 00 save J(n,x) here - used by Hankel 77 GEU

28 FC?  01 is  KBS? 78 +

29 GTO 01 yes , skip 79 RCL* showing off ! :-)

30 RCL 01 n 80 ST+  X(3)

31 PI 81 ST+ 02 partial result

32 * 82 RCL 02

33 COS 83 FS?  01 is  i t YBS?

34 * 84 GTO 04 yes , cut the chase

35 LBL 01 85 RCL 01 abs(n)

36 RCL 02 partia l  result 86 E

37 + 87 + INCX

38 RCL 01 n 88 CHSYX (-1)^n+1 * result

39 PI 89 2

40 * 90  / HALFX

41 SIN 91 GTO 03

42  / 92 LBL 04

43 FS?  01 is  YBS? 93 PI

44 GTO 03 94  /

45 2 95 FC?  02 was negative order?

46  / HALFX 96 GTO 03 no, skip correction

47 PI 97 RCL 01 abs(n)

48 * 98 CHSYX

49 CHS 99 LBL 03

50 GTO 03 100 STO 02 final result

101 END   
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3.3.9. Riemann Zeta function. {  ZETA  ,  ZETAX  } 

 
Perhaps one of the most-studied functions in mathematics, it owes its popularity to its deep-rooted 

connections with prime numbers theory. Not having an easy approximation to work with, its 
implementation on the 41 will be a bit of a challenge – mainly due to the very slow convergence of the 

series representation used to program it.  Be assured that this numeric calculation won’t help you prove 

the Riemann hypothesis (and collect the $1M prize) – so adjust your expectations accordingly. 
 

The Riemann zeta function is a function of complex argument s that analytically continues the sum of 
the infinite series                                     

  or the integral form:  

 

 
 

The Riemann zeta function satisfies the functional equation 

 
valid for all complex numbers s (excluding 0 and 1), which relates its values at points s and 1−s. 

 

The plots below of the real Zeta function show the negative side with some trivial zeros, as well as the 
pole at x=1. 

                          
 
The direct implementation in the SandMath module uses the alternative definitions shown below, in a 

feeble attempt to get a faster convergence (which in theory it does although not very noticeably given 
the long execution times involved).  The summations are called the Dirichlet Lambda and Eta functions 

respectively. 

                                                                        
 

 
 

 

Go ahead and try  ZETA  with FIX 9 set in the calculator – you’ll see the successive iterations being 

shown for each additional term, until the final result doesn’t change. Be aware than MCODE or not, it’ll 
take a very long time for small arguments, approaching infinite as x approaches zero. 

 
For values lower than 1 we make use of the following 

relationship – a sort of “reflection formula” if you wish.  
 

The interesting fact about this is how it has been 

implemented: if x<1 then the MCODE function branches to 
a FOCAL program that (as part of the calculations) calls the 

MCODE function after doing the change:  x = (1-x), which 
obviously is >1. 
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Really the direct method isn’t very useful at all, and it’s more of an anecdotal implementation with 

academic value but not practical. The Borwein algorithm provides an iterative alternative to the direct 
method, with a much faster convergence even as a FOCAL program, and more comfortable treatment. 

It is implemented in the SandMath as a courtesy of JM Baillard, in the function ZETAX. 
 

For example, using  ZETAX  to calculate (1.001) returns the correct solution 1,005.577289 in a few 

seconds!  See the appendices for a FOCAL listing of the program if interested. 
 

UExamples.- 
 

Complete the table below for (x), using both the direct method and the Borwein algorithm. Use the 

result in WolframAlfa as reference to also determine their respective errors. 

 
 

x (x) Direct error Borwein error 

-5 -0,0039682539682 -0,003968254 8,0136E-09 -0,003968254 8,0136E-09 

5 1,036927755 1,03692775 -4,96019E-09 1,036927755 -1,38255E-10 

3 1,202056903 1,20205676 -1,19096E-07 1,202056903 -1,32764E-10 

2 1,6449340668482 n/a n/a 1,644934066 -5,15644E-10 

1,1 10,58444846 n/a n/a 10,58444847 4,77115E-10 

 
 

We see that not only is the Borwein algorithm faster and more capable in range, but also their results 

are more accurate than the direct approach; MCODE or not, 13-digit internal subroutines 
notwithstanding. 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

 

 
 

 
 

Note: The following links to the MAA and the (now defunct) Zetagrid make fascinating reading on the 

Zeta zeros current trends and historic perspective – make sure you don’t miss them! 

HHTUThttp://www.maa.org/editorial/mathgames/mathgames_10_18_04.html UTTHH 

HHTUThttp://www.zetagrid.net/ UTTHH  

 
 

 

 

http://www.maa.org/editorial/mathgames/mathgames_10_18_04.html
http://www.zetagrid.net/


SandMath_44 Manual    -  Revision 44_3x3+ 
 

(c) Ángel M. Martin                                     Page 97 of 167  December 2014  
 

Appendix 8.- Putting Zeta to work: Bernoulli numbers. {  BN2  } 

 
 

In mathematics, the Bernoulli numbers Bn are a sequence of rational numbers with deep connections 
to number theory. The values of the first few Bernoulli numbers are 

 
    B0 = 1, B1 = ±1⁄2, B2 = 1⁄6, B3 = 0, B4 = −1⁄30, B5 = 0, B6 = 1⁄42, B7 = 0, B8 = −1⁄30. 

 

If the convention B1=−1⁄2 is used, this sequence is also known as the first Bernoulli numbers; with the 
convention B1=+1⁄2 is known as the second Bernoulli numbers. Except for this one difference, the first 

and second Bernoulli numbers agree. Since Bn=0 for all odd n>1, and many formulas only involve 
even-index Bernoulli numbers, some authors write Bn instead of B2n. 

 

The Bernoulli numbers were discovered around the same time by the Swiss mathematician Jakob 
Bernoulli, after whom they are named, and independently by Japanese mathematician Seki Kōwa. 

Seki's discovery was posthumously published in 1712 in his work Katsuyo Sampo; Bernoulli's, also 
posthumously, in his Ars Conjectandi of 1713. Ada Lovelace's note G on the analytical engine from 

1842 describes an algorithm for generating Bernoulli numbers with Babbage's machine. As a result, the 
Bernoulli numbers have the distinction of being the subject of the first computer program. 

 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

There are several (or rather many!) algorithms and approaches to 

the calculation of Bn. In this particular example we’ll use the 
expression based on the Riemann’s Zeta function, according to 

which the values of the Riemann zeta function satisfy 
 

 n ζ(1 − n) = −Bn  
 

for all integers n≥0. The expression n ζ(1 − n) for n = 0 is to be 

understood as the limit of x ζ(1 − x).) when x->0. 

 
 

The FOCAL program on the right shows the implemented SandMath 
code. As you can see it is a super-short application of the ZETA 

function, even if it’s used for negative arguments, Obviously we’ve 
single-cased the troublesome points to avoid execution times 

unreasonably long, but apart from that it’s quite generic in its 

approach. It also uses a few others SandMath functions as additional 
bonus. 
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3.3.10. Lambert W function. {  WL0  ,  WL1  ,  AWL  } 

 
 
The last function deals with the implementation of the Lambert W function. Oddly enough its definition 

is typically given as the inverse of another function, as opposed to having a direct expression. This 
makes it a bit backwards-looking initially but in fact it is significantly easier to implement than the 

Riemann Zeta seen before. 

 
The Lambert W function, named after Johann Heinrich Lambert, also called the Omega function or 

product log, is the inverse function of f(w) = w exp(w) where exp(w) is the natural exponential 
function and w is any complex number. The function is denoted here by W.  

 
For every complex number z: 

 
 

The Lambert W function cannot be expressed in 
terms of elementary functions. It is useful in 

combinatory, for instance in the enumeration of 
trees. 

 

It can be used to solve various equations 
involving exponentials and also occurs in the 

solution of delay differential equations. 
 

 
 

The Taylor series of W0 around 0 can be found using the Lagrange inversion theorem and is given by: 

 

 
 

where n! is the factorial. However, this series oscillates between ever larger positive and negative 

values for real z>~0.4, and so cannot be used for practical numerical computation. 
 

The W function may be approximated using Newton's method, with successive approximations to w = 
W(z) (so z = w e PP

w
PP) being: 

 

     
 

The implementation in the SandMath uses this iterative method to solve for W(z) the roots of its 
functional equation, given the functions argument z. An important consideration is the selection of the 

initial estimations. For that the general practice is to start with Ln(x) as lower limit, and 1+Ln(x) as 
upper value. 

 

Another aspect of the W function is the existence of two branches. The second branch is defined for 
arguments between –1/e and 0, with function values between –1 and –infinite.  

 
The “lower” branch is also available in the SandMath as the function WL1. In fact the MCODE 

algorithm is the same one, with just different initial estimations depending on the branch to calculate!. 
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UExample 1 U:  calculate W for x=5 

 

5, WL0  ->   “RUNNING…”, followed by 1,326724665 

 

We can use the inverse Lambert function AWL to check the accuracy of the results, simply executing it 
after WL0 and comparing with the original argument.  Note the AWL will be seen later on, in the 

Secondary FAT (Sub-functions) group. This it requires F$ to call it, not XEQ. 

 

5,  WL0 , F$ “AWL” ->  4,999999998; an error of  err= 4 E-10 

 

where F$ can be called using the main launcher: [FL], [ALPHA] 

 

 

UExample 2 U.- calculate the Omega constant,  = W(1) 

 

1,  WL0  => “RUNNING…” , followed by  0,567143290 

 
 
 
UExample 3 U: Calculate both branches of W for x=-1/2e 

 

1,  E^X,  CHS, ST+ X, 1/X,  WL0   -> W BB0BB (-1/2e) = -0,231960953 

                   LASTX,   F$  “WL1“  -> W BB-1BB(-1/2e) = -2,678346990 

 

 
 
 

 

And here’s a 3D representation of the 
complex Lambert to end this section with a 

graphical splash. Enough to make you want 
to start using your 41Z Module, isn’t it? 
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3.4. Remaining Special Functions in the Main FAT. 
 
 

The third and last chapter of the Special functions in the main FAT comprises other Hyper-geometric 

derived functions, plus one notable exception not easy to associate: LINX 

 
 Function Description Author 

[F] CI Cosine Integral JM Baillard 

[F] EI Exponential Integral JM Baillard 

[F$] LI Logarithmic Integral Ángel Martin 

[RF] ELIPF Eliptic Integral Ángel Martin 

[F] ERF Error Function JM Baillard 

[H] HCI Hyperbolic Cosine Integral JM Baillard 

 HGF+ Generalized Hyper-geometric Function JM Baillard 

[H] HSI Hyperbolic Sine Integral JM Baillard 

 LINX Polylogarithm function Ángel Martin 

[F] SI Sine Integral JM Baillard 

 
Notable examples of “multi-purposed function” are also the Carlson Integrals, themselves a generator 

for several other functions like the Elliptic Integrals. More about these later on, in the corresponding 
sections of the manual. 

 
 

The unsung hero: HGF+ 

 

If we’re to believe that behind a great man there is often an even greater woman, then the greatest 
idea behind all these functions is the implementation of the Generalized Hyper-geometric function. A 

general-purpose definition requires the use of data registers for the parameters (a1... am) and (b1, ... 
bn) , and expects the argument x in the X register, with the number of parameters m and n stored in Z 

and Y, for the generic expression: 

 

BBmBBF BBpBB(aBB1BB,aBB2BB,....,aBBm BB; b BB1 BB,b BB2BB,....,b BBp BB; x ) =   

=   BBk=0,1,2,..... BB[(aBB1 BB) BBkBB(a BB2BB) BBkBB.....(aBBmBB) BBkBB] / [(b BB1BB) BBkBB(b BB2BB) BBkBB.....(b BBpBB) BBkBB] . x PP

k
PP/k! 

 If m = p = 0 , HGF+  returns exp(x) 

 The program doesn't check if the series are convergent or not. 

 Even when they are convergent, execution time may be prohibitive: press any key to stop 

 Stack register T is saved and x is saved in the L-register.  

 R00 is unused. 

 The alpha "register" is cleared.  

The original HGF+ was written by Jean-Marc Baillard. Only small changes have been made to the 
version in the SandMath, optimizing the code and checking for ALPHA DATA in all registers used, as 

well as for the argument x. 
 

 
 

 Function Description Author 

[F] WL0 Lambert’s W  - main branch Ángel Martin 

 WL1 Lambert’s W – secondary branch Ángel Martin 

[F] ZETA Riemann’s Zeta – direct method Ángel Martin 

 ZETAX Riemann’s Zeta – Borwein algorithm JM Baillard 
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3.4.1. Exponential Integral and associates. {  EI  ,  CI  ,  SI  ,  LI  } 

 

 

The first sub-section covers the Exponential, Logarithmic, Trigonometric and Hyperbolic integrals. 
They’re all calculated using their expressions using the Generalized Hyper-geometric function, in a clear 

demonstration of the usefulness or the adopted approach. 
 

For real nonzero values of x, the exponential integral Ei(x) is defined as: 

 

       

 

 
 
Integrating the Taylor series for exp(t) and extracting the logarithmic singularity, we can derive the 

following series representation for real values: 
 

       

 

 
 

where we substitute the series by its Hyper-Geometric representation: 
 

 x^k / k k!} =  x * BB2 BBF BB2BB( 1, 1 ; 2, 2; x )     
 

The logarithmic integral has an integral representation defined for all positive real numbers by the 
definite integral: 

 

       

 

 
 

The function li(x) is related to the exponential integral Ei(x) via the equation: 
 

   which is the one used to program it in the SandMath module. 
 

 

 
Examples:  

 
   1.4,   XEQ "EI"   ->   Ei(1.4) =  3.007207463    or: [F], [R] 

   1.4,   FL$ "LI"  ->    Li(1.4) =  -0,144991005 
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LI is the ULogarithm Integral, U also a quick application of the EI function, using the formula:   

 

Li(x) = Ei [(ln(x)].  
 

Note how LI starts as a MCODE functions that transfers into the FOCAL code calculating EI, so strictly 
speaking it’s a sort of “hybrid” natured function. 

 

 
 

The different trigonometric and hyperbolic integral definitions and their relations with the Hyper-
Geometric funcion (for the relevant integral in the definition) are as follows: 

 

 

 

 

 

x * BB1 BBFBB2 BB(1/2; 3/2, 3/2; -xPP

2
PP/4 ) x  * BB1 BBFBB2BB( 1/2 ; 3/2 , 3/2 ; x PP

2
PP/4 ) 

 

 

 

 

 

-(xPP

2
PP/4) BB2 BBFBB3BB( 1, 1 ; 2, 2, 3/2 ; -xPP

2
PP/4 ) (xPP

2
PP/4) BB2 BBFBB3BB( 1, 1 ; 2, 2, 3/2 ; x PP

2
PP/4 ) 

 

Examples: 
 

1.4,   XEQ "SI"     -> Si(1.4) =   1.256226733  - or: [F], [Z] 

1.4,   XEQ "CI"    -> Ci(1.4) =   0.462006585  - or: [F], [V] 

1.4,   XEQ "HSI"  -> Shi(1.4) = 1.561713390  - or: [F], [SHIFT], [Z] 

1.4,   XEQ "HSI" -> Chi(1.4) = 1.445494076  - or: [F], [SHIFT], [V] 

 

 
The figure below shows the function plots for Si and Ci for 0<X<15.  

 

                        
 
 

Nota also that even if support for complex arguments is not covered by the SandMath, the following 
relation between the Exponential and Trigonometric Integrals is available: 
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Generalized Exponential Integrals. {  ENX  } 

 

The exponential integral may also be generalized to   

 

 
 
which can be written as a special case of the 

(upper) incomplete gamma function: 
 
 

 
 
We also have:     
E0(x) = (1/x).exp(-x)  and    
En(0) = 1/(n-1)  if  n > 1 

 

 
 

However the SandMath uses the implementation developed by JM Baillard, using a series expansion for 
x<- 1.5, and continuous fractions for x > 1,5 – as shown below: 
 
 

 
and: 

  

 

 
 
UExamples:  UCalculate ENX for x=1.4 and n ={0,2,100} 
 

0, ENTER^,  1.4  XEQ "ENX"   -> E0(1.4) = 0.176140689   

       2, ENTER^,  1.4  XEQ "ENX"   -> E2(1.4) = 0.0838899263   
       100, ENTER^, 1.4  XEQ "ENX"   -> E100(1.4) = 0.0024558006 

 
 
UExamples U: Calculate ENX for x=2 and n=3, and for x=n=100.  
 

    3, ENTER^,  2,   XEQ "ENX"   ->   E3(2) = 0.03013337978 

    100,  ENTER^,   XEQ "ENX"   ->  E100(100) = 1.864676429 E-46   
 

Note that we can use ENX to “reverse-calculate” UICGM – the upper incomplete gamma, which 
obviously should satisfy the equation shown in the ICGM section: LICGM(s,x) + UICGM (s,x)= (s) 

 

01   LBL “UICGM”   10  1 
02   X<>Y   11  - 

03   CHS   12  CHS 
04 1   13  Y^X 

05 +   14  * 
06 X<>Y   15  END 

07 ENX 

08 RCL 00   A short and simple program does it, just type: 
09 RCL 01   n, ENTER^, x, XEQ “UICGM” 
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3.4.2. Errare humanum est. {  ERF  ,  ERFN  } 

 

In mathematics, the error function (also called the Gauss error function) is a special function (non-

elementary) of sigmoid shape, which occurs in probability, statistics and partial differential equations. 
Its definition and the expression based on the Hyper-geometric function (via ascending series) are 

given in the table below: 
 

 

 

erf x = (2x/PP

1/2
PP) exp(-x PP

2
PP)  BB1 BBFBB1 BB( 1, 3/2 ; x PP

2
PP ) 

 

The complementary error function, denoted erfc, is defined as :    erfc = 1 – erf (x) 
 
Both functions are shown below for an overview. 
 

  
 

Generalized Error Functions.  { ERFN } 

 
Some authors discuss the more general functions: 

 

 
Notable cases are: 

 E BB0BB(x) is a straight line through the origin, E(0,x) =  x/e. sqrt(p) 

 E BB1BB(x) is the equation (1 − e^x)/sqrt{p)  - gray curve 

 E BB2BB(x) is the error function, erf(x).  - red curve 

 green curve: E3(x); blue curve: E4(x); and gold curve: E5(x). 

 

UExamples U: Calculate the first four error functions for x=.5 and x=0.9, comparing E(2,x) to the results 

obtained by ERF. 
 

x erf1 erf2 erf3 erf4 erf delta 

0.5 0.221991303 0.520499878 1.641511206 6.687094868 0.520499878 0.000000000 

0.9 0,334807217 0,796908213 2,589816366 10,839692051 0,796908213 0.000000000 

 

Note that because ERFN is located in the auxiliary FAT, you need to use F$ to execute it (or 

alternatively F# 061, its corresponding sub-function index). 
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Appendix 9a.- Inverse Error Function.- coefficients galore… 

 

The inverse error function can be defined in terms of the Maclaurin series 
 

 

 
 
Where  c0 = 1 and 

 

 

 
 

This really is a bear to handle, requiring quite a number of coefficients to be calculated for good 

accuracy result. Moreover, that calculation involves a lot of registers to store the values – since there 
isn’t any iterative approach based on recursion. 
 

                                            
 

The expression below is definitely too inaccurate (only three or four digits are correct) to deserve a 
dedicated MCODE function: 
 

 

 
 

A paper from 1968 by A. Strecok lists the first 200 coefficients of a power series that represents the 
inverse error function. While using this approach it became clear that at least 30 of them are needed for 
a 10-digit accuracy for 0< x < 0,85. This only gets worse as x approaches 1, getting into a clear 
example of the “law of diminishing results”.  
 
 
A better method for the vicinity of 1 is probably to use an asymptotic expansion, such as: 
 

 

 
 
A combination of both approaches would seem to be the best compromise, depending on the 

argument. . Typing the 30 coefficients is not fun however, thus the best is no doubt to use a data file in 

X-Memory to keep them safe. 
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Appendix 9b.- Inverse Error Function – CUDA Library. {  IERF  } 

 
The author reportedly went ahead and implemented the Strecok method using the entire 200 

coefficients set, both in 10-digit and 13-digit formats. Without a doubt this was an extravaganza and a 
bit of an insane task, which unfortunately didn’t yield satisfactory results despite the resulting huge 

code stream – not to mention the painstakingly error-prone programming!  Adding insult to injury, the 
13-digit version showed worse accuracy than the 10-digit one, which should be explained by a 

coincidental benefit of the rounding – confirming that 13 digits is not enough of an improvement for 

the region near 1.  
 

In case you’re interested and want to see by yourself, the IERF ROM is available for download on 
request – probably a double record of both the most boring ROM ever produced, and the one with 

fewest functions (only eight in an 8k footprint!) 

 
So for a while the only practical alternative was to use an iterative calculation (using Halley or Newton 

methods), which would yield acceptable accuracy (better than the failed approach above), even if the 
calculation time increases exponentially with the proximity to 1 

 
Further research however uncovered the paper by Michael Giles, referring to yet another polynomial 

approximation - but much more tractable, and certainly suitable for implementation in the SandMath. 

This is known as the CUDA Library, and both a single and a double precision are published in the 
following references (for the paper itself and the source code): 

 
HHTUThttp://people.maths.ox.ac.uk/gilesm/files/gems_erfinv.pdf UTTHH  

HHTUThttp://gpucomputing.net/?q=node/1828 UTTHH  

 

 
The final SandMath implementation is entirely a MCODE function (very fast!) that uses the single 

precision approximation for the central region, and the double precision for the upper end region, 

determined by the condition: -Ln(1-x^2) < 6.25,  that is:  x^2 > 1 – exp(-6.25) ~= 0,998069546 

 

 
 
UExamples.-U Using ERF and IERF complete the table below. Note the relative error column (Delta), 
indicating the more than reasonable accuracy of both functions combined, both in the central and 

extreme regions equally. 

 

x ierf erf Delta 

0.000100000 0.000088623 0.000100000 0.000000000E+00 

0.001000000 0.000886227 0.001000000 0.000000000E+00 

0.010000000 0.008862501 0.010000000 0.000000000E+00 

0.100000000 0.088855991 0.100000000 0.000000000E+00 

0.200000000 0.179143455 0.200000000 0.000000000E+00 

0.300000000 0.272462715 0.300000000 0.000000000E+00 

0.400000000 0.370807159 0.400000000 0.000000000E+00 

0.500000000 0.476936276 0.500000000 0.000000000E+00 

0.900000000 1.163087154 0.900000000 0.000000000E+00 

0.995000000 1.984872613 0.994999999 -1.005025097E-09 

0.999500000 2.461266226 0.999500001 1.000500222E-09 

0.999950000 2.867761312 0.999950001 1.000049974E-09 

0.999995000 3.227792264 0.999995000 0.000000000E+00 

0.999999500 3.554139637 0.999999501 1.000000472E-09 

0.999999950 3.854657923 0.999999951 1.000000133E-09 

0.999999995 4.134484326 0.999999994 -1.000000088E-09 

http://people.maths.ox.ac.uk/gilesm/files/gems_erfinv.pdf
http://gpucomputing.net/?q=node/1828
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3.4.3. How many logarithms, did you say? {  LINX  } 

 
 LINX  calculates the polylogarithm function, (also known as Jonquière's function) a special function 

defined by the infinite sum, or power series: 

 

 

 
 
Only for special values of the order s does the polylogarithm reduce to an elementary function such as 
the logarithm function. The above definition is valid for all complex orders s and for all complex 

arguments z with |z| < 1; it can be extended to |z| ≥ 1 by the process of analytic continuation. 
 

For particular cases, the polylogarithm may be expressed in terms of other functions (see below). 

Particular values for the polylogarithm may thus also be found as particular values of these other 
functions. For integer values of the polylogarithm order, the following explicit expressions are known: 

 

  
 

 
 

 
 

 
 

 
 

 
 

The SandMath implementation is an MCODE function that uses direct series summation, adding terms 
until their contribution to the sum is negligible. Convergence is very slow, especially for small 

arguments. Its usage expects n to be in register Y and x in register X. The result is saved in X, and X is 
moved to LastX. 

 

The program below gives a FOCAL equivalent – note the clever programming done by JM Baillard to 
only perform Y^X once per term, which reduces the execution times significantly. 

  
01 LBL "LIN"  

02 STO 01  

03 X<>Y 
04 STO 02 

05 1 
06 STO 03 

07 CLX 

08 STO 00 

09 LBL 01 

10 RCL 01 

11 RCL 03 
12 *  

13 STO 03 
14 ISG 00 

15  CLX 

16  RCL 00   

17  RCL 02 

18  Y^X 

19  / 
20  + 

21  X#Y? 
22  GTO 01 

23  END 

 
Examples.-  Calculate the Di- and Tri-logarithms of 0.7; Li(2, 0.5) and Li(3, 0.7);  

 
2, ENTER^, 0.7,  XEQ “LINX”  =>  0,889377624 

3, ENTER^, 0.7,  XEQ “LINX“  =>  0,780063934 
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3.4.4. Clausen and Lobachevsky Functions. {  CLAUS  ,  LOBACH  } 

 

Very closely related to each other by just a change of variable, but implemented in the SandMath using 

different approaches in independent programs, for a better coverage – allowing comparison between 
both. 

 
In mathematics, the Clausen function was introduced by Thomas Clausen (1832), and is defined by 

the following integral: 

 

     or:     

 
The expression on the right is a more general definition valid for complex s with Re s >1. This 

definition may be extended to all of the complex plane through analytic continuation – however it’s not 
practical for programming, as  thousands of terms would be required to return accurate results if we 

used this formula. 
 

Integrating by parts gives: Cl2(x) = -x Ln ( 2 sin (x/2) ) + 2 § BB0 PBPB

x/2
PP (u / tan u ) du 

 
which using the series expansion for [ x / tan x ], (expressed using the Bernoulli numbers B2n), can be 

written by a sum of the integration of the terms – a much easier approach to say the least. We’ll use 

the ZETA function to calculate B2n for n>3, thus we have all tools required for the task. 
 

 
Graphically we see a nice slanted shape compared 

to the trigonometric functions, also notice that 

they are periodic functions, with period =  

 
  

Some special values include Cl2(/4) = G 

(Catalan’s constant, ~ 0.915 965 594…) 

 
 

 
 

 
 

 

The Lobachevsky function Λ or Л is essentially the same function with a change of variable: 

 

 
 

although the name "Lobachevsky function" is not quite historically accurate, as Lobachevsky's formulas 
for hyperbolic volume used the slightly different function:   

 
 
We have also:   L(µ) = (1/2) Im [ Li2 ( exp(2i.µ) ) ] ;   where   Li2 = dilogarithm function. 

 
Using the same method explained above, the expression to program becomes: 
 

(µ) =  -2.µ ln | 2.µ | + 2.µ + BBk=1,2,...BB(-1)PP

k-1
P
P/(2k+1)! [B BB2kBB/(2k)] (2.µ) PP

2k+1 
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 LOBACH  has an all-MCODE implementation – also motivated by the need to locate the code in a 

secondary bank, where FOCAL is not supported. This provides a fast execution, even if the M-code 

length  more than doubles the equivalent FOCAL program (there’s a lot to say about how efficient 
FOCAL code is!). See JM Baillard’s page for the FOCAL code at: 

                                                                 TUhttp://hp41programs.yolasite.com/lobachevsky.php UTTHH  

 

Because the expression programmed is truncated to 8 terms, the Bernoulli numbers have been hard-
coded in the code, so there’s no need to use  ZETA as subroutine. The accuracy of this approach 

appears to be good enough within the 9 decimal digits resolution of the machine. 

 

 CLAUS  uses a more general approach, actually calculating as many terms as needed until their 

contribution to the partial sum is negligible. It is however limited to arguments in the interval [ 0, 2]. 

Note that CLAUS will read the input in the set angular mode, but it will change it to DEG (!).  
The code is also taken from JM Baillard’s page, posted at: 
                                                                    HHTUThttp://hp41programs.yolasite.com/clausen.php UTTHH  

 

 
UExamples. U Calculate both Clausen and Lobachevsky’s functions for the three arguments given in the 

table below, and compare their relative results. Use the LOBACH result as reference, obtaining the 

adjusted value for Cl2(2x)/2 using CLAUS  - i.e. Cl2(2x) / 2 =  (x) 

 
 

 x Cl2(2x) / 2 Lobach(x)   delta 

/3 0.33831387 0.338313869 -2.95584E-09 

0.15 0.330783505 0.330783505 0 

6 out of range -0.445441712 n/a 

 

As you can see for small arguments the results are identical – this is because for those cases 

calculating ZETA is not required for CLAUS either, thus both programs use pretty much the same code. 
 

Execution time tends to infinity as x tends to 2. This routine produces DATA ERROR if x = 0, but f(0) 

= 0. Note also that CLAUS will change the angular mode to DEG, thus you need to make sure it’s set 

back in the appropriate mode before calling LOBACH (!) 
 

                  
 

UHome assignment:- Being curious about their similar shapes, calculate the differences between the 

Lobachevsky function and an equivalent Sine, say f(x) = G. sin (2x), where G = Catalan’s constant, 
so they both have the same amplitude and frequency. 

 

TUT%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20http:/hp41programs.yolasite.com/lobachevsky.phpUTT
http://hp41programs.yolasite.com/clausen.php
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Function Approximations. 

 
 Function Description Author 
FL$] CHB, CHB2 Chebyshev Polynomials Tn and Un JM Baillard 

FL$] CHBCF Chebyshev Coefficients JM Baillard 

 CHBAP Chebyshev’s Approximation JM Baillard 

FL$] CdT Auxiliary for CHBAP JM Baillard 

 TAYLOR Taylor Polynomial of order 10 and Approximation Martin - Baillard 

 FFOUR Fourier coefficients for (x) Ángel Martin 

 DHST Discrete Hartley Symmetrical Transform JM Baillard 

 
 
In mathematics, approximation theory is concerned with how functions can best be approximated with 

simpler functions, and with quantitatively characterizing the errors introduced thereby. Note that what 
is meant by best and simpler will depend on the application. A closely related topic is the approximation 

of functions by generalized Fourier series, that is, approximations based upon summation of a series of 

terms based upon orthogonal polynomials. 
 

One problem of particular interest is that of approximating a function in a computer mathematical 
library, using operations that can be performed on the computer or calculator (e.g. addition and 

multiplication), such that the result is as close to the actual function as possible. This is typically done 

with polynomial or rational (ratio of polynomials) approximations. 
 

The objective is to make the approximation as close as possible to the actual function, typically with an 
accuracy close to that of the underlying computer's floating point arithmetic. This is accomplished by 

using a polynomial of high degree, and/or narrowing the domain over which the polynomial has to 
approximate the function. Narrowing the domain can often be done through the use of various addition 

or scaling formulas for the function being approximated. Modern mathematical libraries often reduce 

the domain into many tiny segments and use a low-degree polynomial for each segment. 
 

Optimal polynomials 
 

Once the domain and degree of the polynomial are defined, the polynomial itself is chosen in such a 

way as to minimize the worst-case error. That is, the goal is to minimize the maximum value of |P(x)-
f(x)|, where P(x) is the approximating polynomial and f(x) is the actual function. 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 

Left figure: Error between optimal polynomial 
and log(x) (red), and Chebyshev 

approximation and log(x) (blue) over the 
interval [2, 4]. Vertical divisions are 10−5. 

Maximum error for the optimal polynomial is 
6.07 x 10−5. 

 

Right figure: Error between optimal polynomial 
and exp(x) (red), and Chebyshev 

approximation and exp(x) (blue) over the 
interval [−1, 1]. Vertical divisions are 10−4. 

Maximum error for the optimal polynomial is 
5.47 x 10−4. 
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In the graphs above, note that the blue error function is sometimes better than (inside of) the red 

function, but sometimes worse, meaning that it is not quite the optimal polynomial. Note also that the 
discrepancy is less serious for the exp function, which has an extremely rapidly converging power 

series, than for the log function. 
 

Chebyshev Approximation. {  CHBAP  ,  CHBCF  ,  CdT  } 

 

One can obtain polynomials very close to the optimal one by expanding the given function in terms of 

Chebyshev polynomials and then cutting off the expansion at the desired degree. This is similar to the 
Fourier analysis of the function, using the Chebyshev polynomials instead of the usual trigonometric 

functions. 
 

If one calculates the coefficients Ci in the Chebyshev expansion for a function: 

 

 
and then cuts off the series after the T_N term, one gets an Nth-degree polynomial approximating f(x). 

 
The reason this polynomial is nearly optimal is that, for functions with rapidly converging power series, 

if the series is cut off after some term, the total error arising from the cutoff is close to the first term 
after the cutoff. That is, the first term after the cutoff dominates all later terms. The same is true if the 

expansion is in terms of Chebyshev polynomials. If a Chebyshev expansion is cut off after T_N, the 
error will take a form close to a multiple of T_{N+1}. The Chebyshev polynomials have the property 

that they are level – they oscillate between +1 and −1 in the interval [−1, 1]. T_{N+1} has N+2 level 

extrema. This means that the error between f(x) and its Chebyshev expansion out to T_N is close to a 
level function with N+2 extrema, so it is close to the optimal Nth-degree polynomial. 

 
After this introduction we’re better equipped to use the functions and programs included in the 

SandMath related to approximation. The first three are related to the Chebyshev approximation: 

 
If f is a function defined over [-1,+1] and if n is a positive integer, the Chebyshev coefficients  {c0, c1, 

............, cn}  may be computed by the formula: 
 

    cj = [2/(n+1)]  { cos [ 180° j (k+1/2)/(n+1)]  f { cos [180° (k+1/2)/(n+1)]}}  

                             | k=0,1,...,n        if  j # 0 

 

    cj = [1/(n+1)]  { cos [ 180° j (k+1/2)/(n+1)] f { cos [180° (k+1/2)/(n+1)]}}  

                            | k=0,1,...,n         if  j = 0 
 
If f is defined over [a,b], we make the change of variable  u = (2x -a-b)/(b-a) 

 

 CHBCF  expects a,b stored in R11 and R12, the function name in ALPHA, and the desired number of 

coefficients to calculate in X. After it’s done the control word for the coefficients is returned to X (in the 

form bbb.eee), and the coefficients are stored in the corresponding registers. The Uexecution time will 
be very long U (recommended to use TURBO mode on V41 or the CL). 
 

 CHBAP  obtains the approximation of the function using these coefficients calculated by CHBCF. It 

uses the status of flag 01 to control whether the function or its first derivative will be approximated, 
with all the data stored in R11, R12, the coefficients and the argument x in X. 

 
Obviously CHBAP requires that the coefficients have been calculated previously, but repeated 

estimations can be calculated using the same coefficients with no further need to re-calculate them 

every time. Setting user flag 06 will allow you to call CHBAP directly, which will do the coefficients 
calculations (invoking CHBCF internally) saving you the additional step,  
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CHBCF is located in the secondary FAT, thus you need to use FL$ [or alternatively FL# 080]. You 

need to make sure that enough number of registers are available to store the results, setting SIZE = 

19+n for n coefficients. 
 

 CdT  is a MCODE auxiliary function to expedite CHBAP execution. It is also in the secondary FAT, but 

typically you’ll have no need to call it separately. 
 

UExample U:    f(x) = 1/(x2+x+)    and   [a,b] =  [2,5] 

 

Which is easily programmed as follows: 
 

01 LBL “FF” 05  PI 
02 ENTER^ 06  + 

03 X^2  07  1/X 

04 +  08  END 
 

 
Store “FF“ in ALPHA;  2 in R11;  and 5 in R12  (interval begin and end points). 

Type 10, F$ “CHBCF”   -> 18,028  (after 5 minutes! on a normal-speed 41) 

 

This is the control word that indicates that the coefficients are stored as follows: 
 

R18 = c0 =  0.061130486                            R24 = c6 =  0.000001210 
R19 = c1 = -0.038060320                            R25 = c7 =  0.000000410 

      R20 = c2 =  0.008422922                            R26 = c8 = -0.000000170 
      R21 = c3 = -0.001522665                            R27 = c9 =  0.000000042 

      R22 = c4 =  0.000227407                            R28 = c10 = -0.000000008 

      R23 = c5 = -0.000025750  
 

Note: you can use the program “OUT” (also included in the secondary FAT) to review and output those 
results. Use SF 21 if you want the display to halt after each value, resuming with R/S. 

 

 
UExample U.- Let’s now evaluate f(3) & f ‘(3) using CHBAP and flag 01 to select the case: 

 
First we set flag 06 to bypass the data entry prompts, then we store the control word (bbb.eee) in R13 

 

CF 01, 3, XEQ “CHBAP”  ->  0.066043252 
SF 01, 3, XEQ “CHBAP”  -> -0.030531990 

 
 

If you’re missing automation you’ll be glad to know there is some. Rather than a different driver 
program, CHBAP doubles as one when flag 06 is clear, triggering the data entry prompts which drive 

the data entry. At the prompt “a^b^N=?” enter the three values separated by ENTER^, then R/S.  

 
After a long time the coefficients are calculated and the program prompts: “X=?”, your chance to 

input the point for the approximation. Repeat this last step as needed by entering the value, then R/S. 
 

The accuracy of the approximation depends on the number of coefficients used - Choosing a larger n-

value would give a better precision – but will also increase the calculation time. 
 

The Chebyshev polynomials are useful to approximate f(x) if f is very complicated - like the planetary 
positions, but it's also interesting to use these programs to evaluate the derivative f'(x), where the 

results are often more accurate than those given by other numerical differentiation methods. 
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Chebyshev Polynomials. {  CHB  ,  CHB2  } 

 

Integral part of the approximation is the calculation of the Chebyshev polynomials, which is done 

internally in the CdT function. The SandMath also includes separate functions to calculate Tn(x) and 
Un(x), the first and second kind respectively. 

 
The Chebyshev polynomials of the first and second kinds are defined by the recurrence relations: 
 

 

 
 
There are also explicit expressions, based on different approaches to defining them: trigonometric, 

square roots, and even an expression using the Hypergeometric Function 

 
 

 

  
 

 
 

  

 
 
 

 

 

 
 

 

The functions are CHB for Tn(x) and CHB2 for Un(x), both are located in the secondary FAT and thus 

require F$ to execute them. Note that the iterative method is used, slower but more accurate for 

small values of the argument – and that it returns both P(n,x) in X and P(n-1, x) in Y 
 

UExamples:U Calculate T7(0,314) and U7(0.314) 

7,  ENTER^,  0,314,  F$ “CHB”   ->  -0.786900700 in X, and   0.338782777 in Y 

7,  ENTER^,  0.314,  F$ “CHB2”   ->  -0.582815681 in X, and   0.649952293 in Y 

 

 

 

 

 

  



SandMath_44 Manual    -  Revision_3x3++ 
 

(c) Ángel M. Martin                                      Page 114 of 167 December 2014  
 

Taylor Series and Polynomials. {  TAYLOR  } 

 
In mathematics, a Taylor series is a representation of a function as an infinite sum of terms that are 

calculated from the values of the function's derivatives at a single point. The concept of a Taylor series 
was formally introduced by the English mathematician Brook Taylor in 1715. If the Taylor series is 

centered at zero, then that series is also called a Maclaurin series, named after the Scottish 
mathematician Colin Maclaurin, who made extensive use of this special case of Taylor series in the 18th 

century. 

 
It is common practice to approximate a function 

by using a finite number of terms of its Taylor 
series. Taylor's theorem gives quantitative 

estimates on the error in this approximation. Any 

finite number of initial terms of the Taylor series 
of a function is called a Taylor polynomial. 

The Taylor series of a function is the limit of that 
function's Taylor polynomials, provided that the 

limit exists. A function may not be equal to its 
Taylor series, even if its Taylor series converges 

at every point. A function that is equal to its 

Taylor series in an open interval (or a disc in the 
complex plane) is known as an analytic function.  
 
The Taylor series of a real or complex-valued 

function ƒ(x) that is infinitely differentiable in a 

neighborhood of a real or complex number a is 
the power series: 
 
 

  
 
where n! denotes the factorial of n and ƒ PP

(n)
PP(a) denotes the n-th derivative of ƒ evaluated at the point a. 

The derivative of order zero ƒ is defined to be ƒ itself and (x − a)^0 and 0! are both defined to be 1. 
In the case that a = 0, the series is also called a Maclaurin series.  

 
Establishing an analogy with the Chebyshev approximation, one would notice that here the 

approximation is made using certain coefficients affecting the Taylor polynomials terms, which are 

simpler versions than Chebyshev’s – basically x^n for the McLaurin case. Thus it’s intuitively 
understandable that a similarly good approximation (i.e. with small enough error) will require a larger 

number of Taylor terms to accomplish it. 
 

Numerically however we’re faced with the problem to calculate all the function derivatives of a given 

function. This is approached using the Taylor Expansion, using the notion of small increments of both 
the function and the argument Uto estimate the derivatives U. Let h be that small increment, then The 

Taylor expansion of a function f in a point near the center is  
 

f(a+h) = f(a) + h f '(a) + h^2 f ''(a) / 2! + ..... + h^n f PP

(n)
PP(a) / n! + .....  

 
Given a function f(x), we seek approximations of   a1 = f'(a) , a2 = f''(a)/2! , ...., an = f PP

(n)
PP(a)/n!  

 
The SandMath implementation is a direct application of JM Baillard’s method, using a 10-degree 

polynomial to approximate the derivatives. This theoretically provides perfect accuracy for polynomials 
of degree <= 10, but in practice - due to roundoff-errors - the precision decreases as k increases and 

the estimation of a degree >10 is often very doubtful.  
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Because of the internal structure of the SandMath, TAYLOR was split into two distinct parts. The first 

part is a FOCAL program that calculates all the values for f(a+h) and f(a-h). The second is an MCODE 
version of all the remaining code. The main reason to do that was not simply to accelerate the 

calculation and increase the accuracy with 13-digit OS routines, - which it certainly does in both 
accounts - but to place the code in the second bank of the lower page, which is where the space was 

available.  

 
Formulae and Methodology. 

 
The formulas used are as follows: 

 
Let  a= center of the series;  F = f(a), and:  

 

A= f(a+h)-f(a-h);  B= f(a+2h)-f(a-2h);  C= f(a+3h)-f(a-3h);  D= f(a+4h)-f(a-4h); E= f(a+5h)-f(a-5h) 
G =f(a+h)+f(a-h); H= f(a+2h)+f(a-2h); I= f(a+3h)+f(a-3h); J= f(a+4h)+f(a-4h); K= f(a+5h)+f(a-5h) 

 
then we have: 

 

 h  .    f'(a)  ~  ( 2100 A - 600 B + 150 C - 25 D + 2 E ) / 2520 
 h^2 . f"(a) ~  ( -73766 F + 42000 G - 6000 H + 1000 I - 125 J + 8 K ) / 25200 

 h^3 . f"'(a)  ~  ( -70098 A + 52428 B - 14607 C + 2522 D - 205 E ) / 30240 
 h^4 . fPP

(4)
PP(a)  ~  ( 192654 F - 140196 G + 52428 H - 9738 I +1261 J - 82 K ) / 15120 

 h^5 . fPP

(5)
PP(a)  ~  ( 1938 A - 1872 B + 783 C - 152 D + 13 E ) / 288 

 h^6 . fPP

(6)
PP(a)  ~  ( -233244 F + 184110 G - 88920 H + 24795 I -3610 J + 247 K ) / 4560 

 h^7 . fPP

(7)
PP(a)  ~  ( -378 A + 408 B - 207 C + 52 D - 5 E ) / 24 

 h^8 . fPP

(8)
PP(a)  ~  ( 462 F - 378 G + 204 H - 69 I + 13 J - K ) / 3 

 h^9 . fPP

(9)
PP(a)  ~  ( 42 A - 48 B + 27 C - 8 D + E ) / 2 

 h^10 fPP

(10)
PP(a)  ~  ( -252 F + 210 G - 120 H + 45 I - 10 J + K ) 

 

To understand where all this comes from, we write the polynomial p(x) = a0 + a1.x + ..... + a10.x^10   

so that it takes the same values as f for x = 0;  x = +/- 1;  x = +/-2 , ........... , and x = +/-5.  With 
this we get a 11x11 linear system to solve, which requires finding the inverse of a "Vandermonde" 

matrix like the one below: 
 

[[ 1  0  0 ...........……..          0 ] 

 [ 1  1  1 ...........……..          1 ] 

 [ 1 -1  1 -1 ......…..….          1 ] 

 [ 1  2  4 ........……….    1024 ] 

 [ 1 -2  4 -8 ...………..    1024 ] 

 . . . . . . . . . . . . . . . . . . . .  

 [ 1  5  25  125 ......….     5^10 ] 

 [ 1 -5  25 -125 ..…..  (-5)^10 ]] 
 
Once the coefficients are calculated we can evaluate the 10-degree Taylor Polynomial as a check to 

verify the accuracy of the approximation. Note that this accuracy will decrease as the argument chosen 

to evaluate it gets further away from the “center”, i.e. the value “a” used to generate them – which 
intuitively can be explained by the need of more terms of the polynomial, certainly more than the 10 

available to us. 
 

Let’s see a couple of examples of utilization. The first one using   f(x) = e^x  , perhaps the best-

behaved non-rational function. We’ll use TAYLOR twice to obtain the coefficients around a=0 and a=1, 
then evaluate the resulting polynomials (T0 and T1) for x=1, x=2, and x=3 in each case. 

 

After programming the function as: { 01 LBL EXP, 02 E^X, 03 RTN }, let’s use h=0.2 as step-size for 
the derivative approximations. For the first case then you type: 

 



SandMath_44 Manual    -  Revision_3x3++ 
 

(c) Ángel M. Martin                                      Page 116 of 167 December 2014  
 

 ALPHA , “EXP”,  ALPHA  - to enter the program name in the Alpha register; followed by: 

0.2, ENTER^, 0, XEQ “TAYLOR”  ->  #5… #4… #3… #2… #1…  “RUNNING…”   

 
and for the second case (the program name is still in ALPHA): 

 
0.2, ENTER^, 1, XEQ “TAYLOR”  ->  #5… #4… #3… #2… #1…  “RUNNING…” 

 
The display shows the progress in the calculations, with the first phase obtaining the 5 pairs of value 

functions, followed by the approximation of the coefficients. When it’s complete (in shorter time that 

expected due to the MCODE speed advantage), the execution stops with the first four coefficients in 
the stack, and all ten of them stored in registers R01 to R10.   

 
In these particular cases the results are summarized in the table below, together with the exact values 

and the accuracy of the estimations – which deteriorates as the order of the derivative increases.  

 

RG# T1 Approx. T1 Exact  T1 delta T0 Approx. T0 Exact T0 delta 

R01 2.718281828 2.718281828 0.000000000 0.999999999 1 -0.000000001 

R02 1.359140927 1.359140914 0.000000010 0.499999994 0.5 -0.000000012 

R03 0.453046958 0.453046971 -0.000000029 0.166666691 0.166666667 0.000000144 

R04 0.113261624 0.113261743 -0.000001051 0.04166676 0.041666667 0.000002232 

R05 0.022652373 0.022652349 0.000001059 0.008333231 0.008333333 -0.000012240 

R06 0.003775805 0.003775391 0.000109658 0.001388497 0.001388889 -0.000282240 

R07 0.00053928 0.000539342 -0.000114955 0.000198548 0.000198413 0.000680399 

R08 0.000066832 0.000067418 -0.008692041 0.000025386 0.000024802 0.023546488 

R09 0.000007608 0.000007491 0.015618742 0.000002726 0.000002756 -0.010885341 

R10 0.000001031 0.000000749 0.376502003 -0.000000003 0.000000276 -1.010869565 

 
The exact values for T1 are:  ak =  e / k! ;  and for T0 are: ak = 1/ k! 

 

To evaluate the resulting Taylor polynomial simple press “E” in user mode (or R/S right after the 
previous steps), and input the argument at the prompt “X=?” , then R/S again. Repeat as needed. 

 
Here are the results of our example: 

 

  Eval Exact delta 

T1 (1)  2.718281828 2.71828183 0 

T1 (2)  7.389056096 7.3890561 -4.06006E-10 

T1 (3)  20.0855858 20.0855369 2.43359E-06 
       

T0 (1)  2.718281828 2.71828183 0 

T0 (2)  7.388834562 7.3890561 -2.99818E-05 

T0 (3)  20.06646854 20.0855369 -0.000949359 

 

 

Final Remarks.-  
 

Choosing the increment h between 0.1 and 0.2 is "often" a good choice. The program employs the 
same h-value for all the derivatives, but a good choice for f'(x) may be a bad choice for f'''(x), and the 

same issue appears for all the derivatives. See JM Baillard’s FOCAL application where h is independently 

adjusted modified per derivative order, which achieves higher accuracy in the results. 
 

HHTUThttp://hp41programs.yolasite.com/taylor.php UTTHH  

 
Note that registers R00 thru R09 may be used by the subroutine to program f(x). 

http://hp41programs.yolasite.com/taylor.php
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Fourier Series. {  FFOUR  } 

 

In mathematics, a Fourier series decomposes periodic functions or periodic signals into the sum of a 

(possibly infinite) set of simple oscillating functions, namely sines and cosines (or complex 
exponentials). The study of Fourier series is a branch of Fourier analysis. 

 

The partial sums for ƒ are trigonometric polynomials. One expects that the functions N ƒ approximate 

the function ƒ, and that the approximation improves as N tends to infinity. The infinite sum 

 

 

 
 

is called the Fourier series of ƒ. The Fourier series does not always converge, and even when it does 

converge for a specific value x0 of x, the sum of the series at x0 may differ from the value ƒ(x0) of the 
function. It is one of the main questions in harmonic analysis to decide when Fourier series converge, 

and when the sum is equal to the original function. 
 

 
FFOUR Calculates the Fourier coefficients for a periodic function F(x), defined as: 

 

 

 
 
 

with the following characteristics: 
 

- centered in x = x0 
- with period 2L on an interval [x0, x0+2L] 

- with a given precision for calculations (significant decimal places) 

 
FFOUR is a rather large FOCAL program, despite having a MCODE FAT entry. It calculates all integrals 
internally, not making use of general-purpose numeric integrators like INTEG, IG, etc – so it’s totally 

self-contained. 
 

 
The function must be programmed in main memory under its own global label. The program prompts 

for the function name, the first index to calculate, and the number of desired coefficients.   

 
The program also calculates the approximate value of the function at a given argument applying the 

summation of the terms, using the obtained coefficients: 
 

 

 
 

To use it simply enter the value of x and press “E” (XEQ E) with user mode on – this assumes that no 
function is assigned to that key. The approximation will be more correct when a sufficient number of 

terms is included. The goodness is also dependent on the argument itself. 
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Example: calculate the first six coefficients for  f(x) = x^2, assuming: 

 

a period T = 2, centered in x0 = 0.  As it’s known,  

 

X^2 = 4/3 ^2 + { 4 cos(nx) /n^2 - 4sin(nx) /n } |n=0,1,… 

 
Using an accuracy of 6 decimal places the program returns the following results: 

 

 

 
a0 = 13,1595 b0 = 0 

a1 = 4 b1 = -12,566 

a2 = 1 b2 = -6,2830 

a3 = 0,4444 b3 = -4,1888 

a4 = 0,250 b4 = -3,1415 

a5= 0,160 b5 = -2.513 

 
 

 

 
 

Pressing [E] will calculate an estimation of the function for the argument in X, using the fourier temrs 
calculated previously. In this case: 

 

X=5,  XEQ [E] ->  f(x) =  23,254423 
X=1,  XEQ [E] ->  f(x) = -0,154639,  which obviously misses the point.  

 
 

 
Typically the functions used are related to the harmonic analysis though. Here’s an nteresting one, the 

“Christmas-Tree”  function and its Fourier representation for different number of terms. 
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Appendix 10.- Fourier Coefficients by brute force. 

 

Since the coefficients are basically integrals of the functions combined with trigonometric functions, 
nothing (besides common sense) stops us from using INTEG to calculate them. This brute force 

approach is just a work-around, considering the time requirements for the execution – but it can be 
useful to calcuate a single term randomly, as opposed to the sequential approach used by FFOUR. 

 

So here the idea is to calculate the n-th. Coefficient independently, which responds to the following 
definig equation: 

 
 

 
Notice that the module SIROM 
(‘Solve and Integrate” ROM) contains 

not only FROOT and FINTG, but 
also the program FOURN in its “-

APPLIED”  section – so you can use 

that 4k rom instead of the Advantage 
– that’ll also save you from having to 

type in the program. 

 
Simply enter the information asked at 

the prompts, including the precision 
desired (number of decimal digits), 

function name and its chosen period 

(2).  

 
 

The screenshot below shows the 
ILPER output of the process: 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

 

 
 

 
 

 

 
Using this program we’ll calculate the coeffcients for the 7 PP

th
PP and 9PP

th
PP terms for f(x) = x^2. 

 
a7 = 0.081633,     b7 = -1,795196;    and: 

a9 = 0,049383,     b9 = -1,396263 
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Discrete Hartley Transform. {  DHST  ,  DHT  ,  INPUT  } 

 
A discrete Hartley transform (DHT) is a Fourier-related transform of discrete, periodic data similar to 

the discrete Fourier transform (DFT), with analogous applications in signal processing and related 

fields.  Its main distinction from the DFT is that it transforms real inputs to real outputs, with no 
intrinsic involvement of complex numbers.  Just as the DFT is the discrete analogue of the continuous 

Fourier transform, the DHT is the discrete analogue of the continuous Hartley transform, introduced by 
R. V. L. Hartley in 1942. 

 
Definition and Properties. 

 
Formally, the discrete Hartley transform is a linear, invertible function H : RPP

n
PP -> RPP

n
PP (where R denotes 

the set of real numbers).  The N real numbers x0, ...., xN-1 are transformed into the N real numbers 

H0, ..., HN-1 according to the formula: 

                    , k=1,2,.. (N-1) 
 

The combination [Cos (z) + sin (z)] is sometimes denoted Cas(z), with the well-known expression 
based on the double-angle formula: 

                                 
 

The transform can be interpreted as the multiplication of the vector (x0, ...., xN-1) by an NxN matrix; 

therefore, the discrete Hartley transform is a linear operator. The matrix is invertible; the inverse 
transformation, which allows one to recover the xn from the Hk, is simply the DHT of Hk multiplied by 

1/N. That is, the DHT is its own inverse (involutary), up to an overall scale factor. 
 

The DHT Ucan be used to compute the DFT U, and vice versa. For real inputs xn, the DFT output Xk has a 
real part (Hk + HN-k)/2 and an imaginary part (HN-k - Hk)/2. Conversely, the DHT is equivalent to 

computing the DFT of xn multiplied by 1+i, then taking the real part of the result. 

 
Implementation details. 

 

The SandMath includes DHT, written by JM Baillard to calculate the transform for both vectors in R
n
, as 

well as for matrices of order (nxm). The transformation is strictly symmetrical, thus Uall coefficients are 

divided by sqrt(n*m) U. – so DHT[DHT(A)] = A  – but for small round-off errors as usual. 
 

 DHT  is an all-MCODE function, with the considerable speed advantage over equivalent FOCAL 

counterparts. The transform elements are expected to be stored in data registers before DHT is 

executed. Their existence is checked, but there’s no check for Alpha Data – which will trigger a DATA 
ERROR condition. The transform results will be stored in a block of registers same size of the input 

data, and located right following the last element of the initial elements.  
 

Input parameters for DHT are: 

 
- the dimension of the vector/matrix in R00, 

- the data elements stored in registers [ R01 to Rm.n ],  and  
- the index of the result element in X - use zero for all as a convenient shortcut. 

 
 

A few auxiliary programs are also provided for the data entry and review of the results – which can be 

a tedious process for relatively large size vectors or matrices. These are as follows: 
 

 



SandMath_44 Manual    -  Revision_3x3++ 
 

(c) Ángel M. Martin                                      Page 121 of 167 December 2014  
 

 IN  and  OUT , to sequentially enter or review a block of registers: 

 

 Enter the initial register index for IN, then proceed with all required entries and terminate 
with a “blank” R/S to end the sequence. Control word bbb.eee is in X upon termination. 

 

 Input the control word in X in the form bbb.eee, and OUT will display all registers 

sequentially. Use flag 21 to control the display prompt (set) or not (clear). 
 

 INPUT  /  ^LIST , to enter a set of coefficients in a List, using the ALPHA register.  

 

 Simply type the control word in X, and F$ “INPUT”.  Use ENTER^ to separate the list entries 

while you’re in data entry mode, terminating with R/S. 

 

 Entries can be negative or positive, integer or fractional – the only limitation is no “E” character 

(for exponents) is possible in this mode – use IN instead. 
 

 Remember also the maximum length is limited to 24 characters, including the blank spaces in 

between the entries. Use it repeated times with smaller range if this limit is expected to be 
insufficient for the complete list. 

 
Note that INPUT is a FOCAL program that drives its MCODE heart, i.e. ^LIST –originally written for 

the Polynomial Data entry in the Polynomial ROM and later modified for Matrix Input as well.  
 

INPUT also uses ANUMDL under the hood, to read the numeric values from the ALPHA string, 
deleting them  in a loop repeated as many times as elements on the list. All these functions reside in 

the Library#4 ROM, so only FAT pointers are added to the SandMath. 
 

Let’s see a couple of examples from JM’s web page: HHTUThttp://hp41programs.yolasite.com/hartley.php UTTHH  

 
U 
 

Example1 U:  One-dimensional data.     Let A be the vector:    A = [ 1 2 4 7 ] ;  here, n = 4 & m = 1  
 

Input the data elements using INPUT (ideally suited to this type of integer data) , and review the 
results using OUT: 

 

1,004,  F$ “INPUT”  ->  “^_    “  1, ENTER^, 2, ENTER^, 4, ENTER^, 7, R/S 

4,  STO_00,  0,  F$ “DHT” ->  7.0000  (value of b1) 

5.008,  F$ “OUT”   ->  [ R05  R06  R07  R08 ] = [ 7  -4  -2   1 ] listed sequentially 

 

 
U 
 
 
 
 
 
 
 
 

Example2:U  Two-dimensional data.  Let  [M] be the 2x3 matrix defined by:   [[1  2  4] 

                 [3  5  6]] 
 

Repeating the same process as above:- Note that for two-dimensional cases, the elements are 
introduced in UcolumnU  order (!). 

 

1.006,  F$ “INPUT“  -> “^_  “ 1, ENTER^, 3, ENTER^, 2, ENTER^, 5, ENTER^, 4, ENTER^, 6, R/S 

2.003,  STO_00, 0, F$ “DHT”  -> 8.573214097 (value of b1) 

7.012,  F$ “OUT”    -> R07 to R12 listed sequentially, as show below: 

 
B =  [[8.5732   -2.8978   -0.7765 ]       rounded to 4 decimals. 

        [-2.8577  -0.1494    0.5577  ]] 

 
If you copy {R07 ....  R12} to {R01 .... R06}  and press  0,  F$ “DHT” again, you'll get the elements of 

the original matrix [M] with a mean error of about 3 E-9  

 

http://hp41programs.yolasite.com/hartley.php
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A driver program for DHT.  {  DSHT  } 

 

Revision “N”  of the SandMath includes many small enhancements and improvements in several areas, 

as well as  DSHT ; an all-new driver program for DHT – which has been moved to the secondary FAT.  

 
With DSHT the data entry is automated with prompts under program control, so the user needs not to 

remember the parametes before hand.  
 

The dimension can be either an integer number or a 2-column matrix. There’s no need to use a “1”  for 
the one-dimensional case. It’s however important to remember that for 2-dimensional data the element 

entry and output are made in COLUM order, as opposed to other matrix applications. 

 
DSHT is a FOCAL program, despite its MCODE appearance in the FAT. The execution may be stopped 

and resumed in single-step mode if so desired. The program listing is shown below.  
 

 

 
 
 

Note how the auxiliary functions need to be used after the INT? conditional tests – due to their multi-

line structure. The program has the 4-byte GTO jumps pre-compiled so there are no LBL 00 steps. 
 

The sub-function b*e is also available in the auxiliary FAT. I simply calculates the product of the 
integer part of a number by its fractional part – normalized to three decimal digits. It is therefore the 

matrix dimension in this case.  

 
Note that both b*e and b<>e (which swaps the begin/end formats) have lower-case letters in their 

names, but despite that fact you should use upper letters when spelling them at the F$ prompt. 
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 3.5.- More Special Functions in the Secondary FAT 
 

This section of the manual covers many other functions included in the Sub-functions group, with 
entries located in the secondary (hidden) FAT (go ahead and review the accessibility information from 

the introduction for a quick refresher if needed). Let’s use the Carlson and Hankel launchers as 

grouping criteria.- 
 

 

3.5.1. Carlson Integrals and associates. {  RF ,  RJ  ,  RG  ,  ELIPF  } 

 
The first sub-function launcher is the Carlson group. It’s loosely centered on the Carlson’s integrals, 

plus related functions. The launcher prompt is activated by pressing [O] at the main FL prompt, and 

offers the following 14 choices – in two line-ups controlled by the [SHIFT] key.  Note the different 

leadings on each screen, keeping the choices constant regardless:     
 

                       
 
The table below shows in the first column the letter used for each of the functions within this group: 

 

[CR] Function Description Author 
[E] ELIPF Elliptic Integral Ángel Martin 

[F] CRF Carlson Integral 1
st

. Kind JM Baillard 

[G] CRG Carlson Integral 2
nd

. Kind JM Baillard 

[J] CRJ Carlson Integral 3
rd

. Kind JM Baillard 

[C] CSX Fresnel Integrals, C(x) & S(x) JM Baillard 

[W] TWEBAN  Weber and Anger functions JM Baillard 

[L] ALF  Associated Legendre function 1
st

. kind - Pnm(x) JM Baillard 

[Y] AIRY  Airy Functions  Ai(x) & Bi(x)  JM Baillard 
    

[1] LEI1 Incomplete Legendre Integral of 1
st

. kind    (F) Ángel Martin 

[2] LEI2 Incomplete Legendre Integral of 2
nd

. Kind   (E) Ángel Martin 

[3] LEI3 Incomplete legendre Integral of 3
rd

. kind    () Ángel Martin 

[j] JEF Jacobi Elliptic Integrals JM Baillard 

[C] CLAUS  Clausen integral JM Baillard 

[L] LOBACH  Lobachesvki function Ángel Martin 

[W] WHIM  Whittaker M function JM Baillard 

[Y] DBY Deby function JM Baillard 
 
 

../../../Mis%20Documentos/HP-41Math_4L%22%20l
../../../Mis%20Documentos/HP-41Math_4L%22%20l
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The Elliptic Integrals.  

 

In integral calculus, elliptic integrals originally arose in connection with the problem of giving the arc 
length of an ellipse. They were first studied by Giulio Fagnano and Leonhard Euler. Modern 

mathematics defines an "elliptic integral" as any function f which can be expressed in the form 
 

 

 

  
 

where R is a rational function of its two arguments, P is a polynomial of degree 3 or 4 with no repeated 
roots, and c is a constant. 

 
The most common ones are the incomplete Elliptic Integrals of the first, second and third kinds. 

Besides the Legendre form given below, the elliptic integrals may also be expressed in Carlson 

symmetric form – which has been the basis for the implementation in the SandMath – completely 
based on the JMB_MATH ROM. 

 
The incomplete elliptic integral of the first kind F is defined as: 
 

 

 

  
 

which in terms of the Carlson Symmetric form R BBF BB, it results: 
 

 

  
 
 

 ELIPF  is implemented as a MCODE function which simply calls CRG with the appropriate input 

parameters. All the heavy lifting is thus performed by CRG, which together with CRJ do all the hard 
work in the calculation for the Elliptic Integrals of first, second and third kinds. 

 

The figure below shows the first and third kinds in comparison: 
 

  
 

 
This is a perhaps a good moment to define the Carlson symmetric forms. The Carlson symmetric forms 

of elliptic integrals are a small canonical set of elliptic integrals to which all others may be reduced. 
They are a modern alternative to the Legendre forms. The Legendre forms may be expressed in terms 

of the Carlson forms and vice versa.  
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The Carlson Symmetric Elliptic integrals of the First and Third kinds are defined as: 

 
 

 

 
 

 

 
 

 

 CRF  and  CRJ  are the SandMath functions that calculate their values (located in the auxiliary FAT).  

Their arguments x,y,z are expected to be in the corresponding stack registers, and the result will be 

placed in X-Reg upon completion. 
 

The term symmetric refers to the fact that, in contrast to the Legendre forms, these functions are 

unchanged by the exchange of certain of their arguments. The value of R BBF BB is the same for any 

permutation of its arguments, and the value of  R BBJ BB is the same for any permutation of its first three 

arguments. 
 

 

 

The Carlson Symmetric Elliptic integral of the 2PP

nd
PP. Kind is defined as: 

 

 

 
 

 CRG  in the SandMath is calculated using the following expression involving CRF and CRJ: 

2.R
BB

G

BB

(x;y;z) = z.R
BB

F

BB

(x;y;z) - (x-z)(y-z)/3 R
BB

D

BB

(x;y;z) + ( x.y/z )
PP

1/2
PP

  

with   RD(x;y;z) = RJ(x;y;z;z) 

 
Examples. Calculate  RF(2;3;4),, and RG(2;3;4) 

4  ENTER^,  3  ENTER^,  2  F$ "CRF"  RF(2;3;4) = 0.584082842  

4  ENTER^,  3  ENTER^,  2  F$ "CRG"  RG(2;3;4) = 1.725503028  

 

Examples.  Calculate  RJ(1;2;3;4) and RJ(1;2;4;7).  

4  ENTER^, 3  ENTER^,  2  ENTER^,  1  F$ "CRJ"    RJ(1;2;3;4) = 0.239848100   
7  ENTER^, 4  ENTER^,  2  ENTER^,  1  [FL ] [ , ]      RJ(1,2,4,7) = 0.147854445  

Where the second call was made using the last-function shortcut.
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Complete and Incomplete Legendre Forms. {  LEI1  ,  LEI2  ,  LEI3  } 

In mathematics, the Legendre forms of elliptic integrals are a canonical set of three elliptic integrals to 

which all others may be reduced. Legendre chose the name elliptic integrals because the second kind 
gives the arc length of an ellipse of unit semi-minor axis and eccentricity k  - the ellipse being defined 

parametrically by  
 

In modern times the Legendre forms have largely been supplanted by an alternative canonical set, the 

Carlson symmetric forms described before. Nevertheless the SandMath also includes LEI1, LEI2, and 
LEI3 - three FOCAL programs based on the Carlson formulas to calculate them.  Here are the 

definitions again.- 
 

The incomplete elliptic integral of the first kind is defined as, 

 

 , calculated with LEI1 (or with ELIPF) 
the second kind as 

 

 

 

, calculated with LEI2 

 
And the third kind as 

 

 

, calculated with LEI3 
 

Note also that the respective complete elliptic integrals are easily obtained by setting the value of the 

amplitude, (the upper limit of the integrals), to /2. 

 
The formulas used to calculate them are as follows:   

E = sin (). R
B

F 

B

(cos
P

2
P

(); 1-m.sin
P

2
P

(); 1) - (m/3) sin
P

3
P

(). RJ

B

 (cos
P

2
P

(); 1-m.sin
P

2
P

(); 1)  

P = sin (). R
B

F

B

 (cos
P

2
P

(); 1-m.sin
P

2
P

(); 1) - (n/3) sin
P

3
P

(). R
B

J

B

 (cos
P

2
P

(); 1-m.sin
P

2
P

(); 1 ;  

      1 + n.sin
P

2
P

() )  

Stack input of the three are the amplitude  in Y and the argument in degrees in X . – and LEI3 also 

expects the characteristic n in Z. The result is always returned to X. 

Examples:     in DEG mode (!) calculate F(0.7; 84), E(0.7; 84), and P(0.9; 0.7; 84).- 

 

  0.7,  ENTER^,  84,   F$ "LEI1"    ->  F ( 84° | 0.7 ) =  1.884976271    

  0.7,  ENTER^,  84,   F$ "LEI2"  ->  E ( 84° | 0.7 ) =  1.184070048     
  0.9,  ENTER^,  0.7,  ENTER^, 84,  F$ "LEI3" ->  P (0.9; 84° | 0.7 ) =  1.336853616 

 
Obviously we could have used ELIPF for the first case – which has a slightly faster execution and 
yields the same result. 
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Application Examples.  {  SAE  ,  ELP  ,  -+/  } 

 
The following two examples should illustrate the applicability of these special functions in the geometry 
subjects related to ellipses and ellipsoids – and therefore provide some context to their origins and 

development. 

 
 

Example 1.-  Surface Area of an Ellipsoid.  {  SAE  } 
 
 

 SAE  is a direct application of the Carlson Symmetrical Integral of second kind, CRG, used to calculate 

the surface aerea of an escalene ellipsoid (i.e. not of revolution): 
 

             

 

 
 

which formula is:    

   

Area = 4.RBBGBB( aPP

2
PPbPP

2
PP , a PP

2
PPcPP

2
PP , b PP

2
PPc PP

2
PP ) 

 

with c < b < a 
 

Example:  a=2, b=4, c=9  -> A= 283.4273843 
 

 
 
 
 
 
 
 
 

 Function Description Author 
 SAE Surface Area of an ellipsoid Ángel Martin 

 ELP Perimeter of a ellipse Ángel Martin 

 -+/ Calculates (Y-X)/(Y+X) Ángel Martin 
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Example 2.- Perimeter of the Ellipse. {  ELP  ,  -+/  } 
 

For an ellipse with semi-major axis a and semi-minor axis b and eccentricity e , the complete elliptic 
integral of the second kind  is equal to one quarter of the perimeter C  of the ellipse measured in units 

of the semi-major axis . In other words: 

, with:    

or more compactly in terms of the incomplete integral of the second kind  E(, k), as: 

  
 

Function  ELP  is available in the auxiliary FAT. It is a FOCAL program like the one listed below, which 

calculates the perimeter from the semi-axis values input in Y and X stack registers – a sweet and short 

application of the Elliptic Integrals at work. Note how the (pesky) input conventions are observed: the 
parameter k is squared!  

 
 

1 LBL "ELIPER"

2 X<>Y

3 STO 05 a

4  / b/a

5 X^2 (b/a)^2

6 CHS

7 E 

8 + 1-(b/a)^2

9 90

10 DEG

11 LEI2 uses R00 - R04

12 RCL 05

13 ST+ X 2a

14 *

15 ST+ X 4a E(/2; e)

16 END  
 
 
Example: calculate the perimeter for a=3 and b=2 

 
3,  ENTER^,  2,  F$ “ELP”  ->  15.86543959 

 
 
A related magnitud appearing in formulas related to ellipses is the ratio (a-b)/(a+b), sometimes 

squared. There’s no “proper name” for this parameter (unlike eccentricity) – but regardless the sub-

funcion  -+/  (appropriately also without a proper name) in the Auxiliary FAT (the very last one in the 

catalog) is available to compute it using the values in Y and X registers. 

 

Example: for Y=1 and X=3,  -+/   returns –0.5 
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Jacobi Elliptic functions. {  JEF  ,  AJF } 

 

In mathematics, the Jacobi elliptic functions are a set of basic elliptic functions, and auxiliary theta 

functions, that are of historical importance. Many of their features show up in important structures and 
have direct relevance to some applications (e.g. the equation of a pendulum). They also have useful 

analogies to the functions of trigonometry, as indicated by the matching notation sn for sin. They were 
introduced by Carl Gustav Jakob Jacobi (1829). 

 

Definition as inverses of elliptic integrals  
 

There is a simpler, but completely equivalent definition, giving the elliptic functions as inverses of the 
incomplete elliptic integral of the first kind. Let     

                                            

 

  
 

Then the elliptic functions sn(u,m), cn(u,m), and dn(u,m) are given by: 

 
sn (u,m) = sin ( cn (u,m) = cos (and   
 

Here, the angle  is called the amplitude. On occasion, dn(u) = Δ(u) is called the delta amplitude. In 

the above, the value m is a free parameter, usually taken to be real, 0 ≤ m ≤ 1, and so the elliptic 

functions can be thought of as being given by two variables, the amplitude and the parameter m. 

 

The elliptic functions can be given in a variety of notations, which can make the subject unnecessarily 
confusing. Elliptic functions are functions of two variables. The first variable might be given in terms of 

the amplitude φ, or more commonly, in terms of u given below. The second variable might be given 
in terms of the parameter m, or as the HTelliptic modulus TH k, where kP

2
P = m, or in terms of the HTmodular 

angle TH α, where m =  sinP

2
P α. 

 

 

Formulae and Methodology. 
 

The SandMath implementation is based on  the Gauss transformation, with the formulas used being: 
 

With  m' = 1-m ,  let be  µ = [(1-sqrt(m')/( 1+sqrt(m')] P

2
P   and   v = u/( 1+sqrt(µ) ] ,  we have:  

 

   sn ( u | m ) = [ ( 1 + sqrt(µ) ) sn ( v | µ ) ] / [ 1 + sqrt(µ) sn P

2
P ( v | µ ) ]  

   cn ( u | m ) = [ cn ( v | µ ) dn ( v | µ ) ] / [ 1 + sqrt(µ) sn P

2
P ( v | µ ) ]  

   dn ( u | m ) = [ 1 - sqrt(µ) sn P

2
P ( v | µ ) ] / [ 1 + sqrt(µ) sn P

2
P ( v | µ ) ]  

 

These formulas are applied recursively until µ is small enough to use. 

 

The program calculates the three functions simultaneously, returning the result in the stack registers X 
[sn], Y [cn], and Z [dn]. The input parameters are the amplitude m, and the argument u – expected in 

Y and X respectively before calling JEF.  
 

 
Two functions are included in the SandMath, JEF and AJF. The main program is JEF, which can be used 

to calculate the results for any value of the amplitude m (*). AJF  is a MCODE funtion used to speed up 

the calculations, applicable when the amplitude lies between 0 and 1. You could use AJF directly in this 
case, since JEF does nothing but calling it in that circumstance. 

 
(*) If  m < -9999999999 the program can give wrong results. 
 

 

http://en.wikipedia.org/wiki/Elliptic_modulus
http://en.wikipedia.org/wiki/Modular_angle
http://en.wikipedia.org/wiki/Modular_angle
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Example 1- Evaluate  sn ( 0.7 | 0.3 )     cn ( 0.7 | 0.3 )     dn ( 0.7 | 0.3 ) 

 

   0.3, ENTER^, 0.7, F$ "JEF"     -> sn ( 0.7 | 0.3 )  = 0.632304776                    

RDN -> cn ( 0.7 | 0.3 ) = 0.774719736 

     RDN -> dn ( 0.7 | 0.3 ) = 0.938113640  
 

Example 2 - Likewise for x=0.7 and amplitudes { 1,  2, -3 } 

 
sn ( 0.7 | 1 ) = 0.604367777          sn ( 0.7 | 2 ) = 0.564297007        sn ( 0.7 | -3 ) = 0.759113421  
cn ( 0.7 | 1 ) = 0.796705460          cn ( 0.7 | 2 ) = 0.825571855        cn ( 0.7 | -3 ) = 0.650958382  

dn ( 0.7 | 1 ) = 0.796705460          dn ( 0.7 | 2 ) = 0.602609138        dn ( 0.7 | -3 ) =1.651895746  

 
 

(Jacobian) Theta Functions.  {  THETA  } 

 

There are several closely related functions called Jacobi theta functions, and many different and 

incompatible systems of notation for them. One Jacobi theta function (named after Carl Gustav Jacob 
Jacobi) is a function defined for two complex variables z and τ, where z can be any complex number 

and τ is confined to the upper half-plane, which means it has positive imaginary part. It is given by the 
formula: 

 

 
The SandMath uses the following definitions as per JM Baillard, with  q =  e

-pi K'/K
   (0<= q < 1) 

 

   Theta1(x;q) =  2.q
1/4

 k>=0  (-1)
k
 q

k(k+1)
 sin(2k+1)x  

   Theta2(x;q) =  2.q
1/4

 k>=0    q
k(k+1)

 cos(2k+1)x  

   Theta3(x;q) =  1 + 2 k>=1    q
k*k

 cos 2kx                                 

   Theta4(x;q) =  1 + 2 k>=1  (-1)
k
 q

k*k
 cos 2kx  

 
Use the program THETA to calculate any of these, using the function index in Z, and the two 
arguments in Y and X. The result is returned in X. 

 
Example:   Compute  Theta1(x;q) , Theta2(x;q) , Theta3(x;q) , Theta4(x;q)   for  x = 2 ; q = 0.3 
 

1,  ENTER^,  0.3,  ENTER^,  2,  F$ "THETA"  ->      1.382545289              

2,  ENTER^,  0.3,  ENTER^,  2   F$ [,] (LastF)           ->     -0.488962527  

3,  ENTER^,  0.3,  ENTER^,  2,  F$ [,] (LastF)             ->      0.605489938           

4,  ENTER^,  0.3,  ENTER^,  2,  F$ [,] (LastF)             ->      1.389795845 

 

 

Final remarks on the Jacobi Elliptic functions. 
 

Note the interesting role of the parameter m as it moves from 0 to 1. The condition m=0 causes the 
functions to become the same as the trigonometric sin and cos, whereas in the other extreme for m=1 

they become the hyperbolic tanh and sech.  In more proper terms, these functions are doubly periodic 

generalizations of the trigonometric functions satisfying: 
 

sn ( v | 0 ) = sin v ;    cn ( v | 0 ) = cos v ;   and  dn ( v | 0 ) = 1  
sn ( v | 1 ) = tanh v ;  cn ( v | 0 ) = sech v ; and  dn ( v | 1 ) = sech v  

 
The figures in next page represent three intermediate stages; observe the tendency as the elliptic 
modulus k varies towards both ends of the range. Quite a remarkable behavior showing how the 

interrelationships amongst seemingly unrelated topics appear. 
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Airy Functions. {  AIRY  }  

 

 

For real values of x, the Airy function of the first kind is defined by the improper integral 
 

 

 

  
 

which converges because the positive and negative parts of the rapid oscillations tend to cancel one 
another out (as can be checked by integration by parts). 

 
The Airy function of the second kind, denoted Bi(x), is defined as the solution with the same amplitude 

of oscillation as Ai(x) as x goes to −∞ which differs in phase by π / 2: 

 

 

 
 

The expressions used to program them are again based on HGF+, as follows: 

 

Ai(x) = [3PP

 -2/3
PP / (2/3) ] BB0BBF BB1BB( ; 2/3; x PP

3
PP/9 ) - x [ 3PP

 -1/3
PP / (1/3) ] BB0 BBF BB1BB( ; 4/3; x PP

3
PP/9 )  

 

Bi(x) = [ 3 PP

 -1/6
PP / (2/3) ] BB0BBF BB1BB( ; 2/3 ; x PP

3
PP/9 ) + x [ 3PP

 1/6
PP / (1/3) ] BB0BBF BB1BB( ; 4/3 ; x PP

3
PP/9 ) 

  
 

The figure below shows Ai and Bi plotted for -15 < x < 5  

 
 

REGISTERS: R00 thru R04 
FLAGS:   none  

   
 

 

UExample:  
 

  0.4  F$ "AIRY"  -> Ai(0.4) = 0.254742355 ;  or: [FL], [O], [Y] 

                X<>Y   -> Bi(0.4) = 0.801773001  
 

Stack Input Output 

Y n/a Bi(x) 

X x Ai(x) 
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Fresnel Integrals. {  CSX  } 

 

 

Fresnel integrals, S(x) and C(x), are two transcendental functions named after Augustin-Jean Fresnel 
that are used in optics. They arise in the description of near field Fresnel diffraction phenomena, and 

are defined through the following integral representations: 
 

 

 
 

The function CSX will calculate both S(x) and C(x) for the argument in X, returning the results in Y and 
X respectively. It is a short FOCAL program that uses (yes you guessed it) the Generalized Hyper-

geometric function, according to the expressions: 

 

S(x) = (  x PP

3
PP/6 ) BB1 BBFBB2 BB( 3/4 ; 3/2 , 7/4 ; -PP

2
PP x PP

4
PP/16 ),  and 

 

C(x) = x BB1BBFBB2BB( 1/4 ; 1/2 , 5/4 ; -PP

2
PP x PP

4
PP/16 ) 

 
 
The figure below shows both functions plotted for 0<x<5 

 
 
REGISTERS: R00 thru R04 

FLAGS:   none  
   

 

 
UExamples:  
 

1.5 F$ "CSX"  -> C(1.5) = 0.445261176     X<>Y, S(1.5) = 0.697504960  

   4 F$ "CSX"  -> C(4) =   0.498426033     X<>Y, S(4)    = 0.420515754  

 

Or: [FL], [O], [C] 

Stack Input Output 

Y n/a S(x) 

X x C(x) 
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Weber and Anger functions.  {  WEBAN  } 

 

In mathematics, the Anger function, introduced by C. T. Anger (1855), is a function defined as 

 

 

 

  
 

The Weber function introduced by H. F. Weber (1879), is a closely related function defined by: 

 

 

 
 

 UIf ν is an integer U then Anger functions Jν are the same as Bessel functions Jν, and Weber functions 
can be expressed as finite linear combinations of Struve functions (Hn and Ln). 

  
With n and x in the stack, WEBAN will return both J(n,x) and E(n,x) in the Y and X stack registers 

respectively. 

 
The figures below show four of these functions for 4 orders( 0, 0.5, 1, and 1,5)  – Anger on the left 

plots, and Weber on the right. [Check: J(0,0) = 1, and E(0,0) = 1] 
 

    
 

Note that WEBAN will return both values to the stack. 
 

REGISTERS: R00 thru R06 
FLAGS:   none  

   

 
 

UExample:  
 

  2 , SQRT, PI,  F$ "WEBAN"   -> E(sqrt(2), ) = - 0.315594385  

                                 X<>Y  -> J(sqrt(2), ) =    0.366086559  

 

Alternatively: [FL], [O], [W] using the main launcher instead. 

Stack Input Output 

Y n J(n,(x) 

X x E(n,x) 

http://dlmf.nist.gov/11.10.F1.mag
http://dlmf.nist.gov/11.10.F1.mag
http://dlmf.nist.gov/11.10.F2.mag
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3.5.2. Hankel, Struve, and similar functions. 

 

The second sub-function launcher is the Hankel group. It’s loosely centered on the Hankel functions, 

plus related sort. The launcher prompt is activated by pressing [H] at the main FL prompt, and offers 

the following 14 choices – in two line-ups controlled by the [SHIFT] key.  Note the different leadings on 

each screen, keeping the choices constant regardless:      

 

                       
 

The table below shows in the first column the letter used for each of the functions within this group: 
 

[HK] Function Description Author 

[1] HK1 Hankel1 Function Ángel Martin 

[2] HK2 Hankel2 Function Ángel Martin 

[W] WL0 Lambert W0 Ángel Martin 

[H] HNX Struve H Function JM Baillard 

[L] LOMS1  Lommel s1 function JM Baillard 

[R] LERCH Lerch Transcendental function JM Baillard 

[T] TMNR Toronto function JM Baillard 

[K] KLV  Kelvin Functions 1st kind              JM Baillard 
    

[1] SHK1 Spherical Hankel1 Ángel Martin 

[2] SHK2 Spherical Hankel2 Ángel Martin 

[W] WL1 Lambert W1 Ángel Martin 

[H] LNX Struve Ln Function JM Baillard 

[L] LOMS2  Lommel s2 function JM Baillard 

[R] RCWF  Regular Coulomb Wave Function JM Baillard 

[T] THETA  Theta functions  JM Baillard 

[K] KLV2 Kelvin Functions 2
nd

. kind              JM Baillard 

 
Here we finally find both branches of the Lambert W function, WL0 and WL1, described previously in 

the manual, as well as a nice selection of other related sub-functions. 
  

So your several choices in terms of launchers are as follows:- 

 

a) Function WL0 in main FAT 

 

XEQ “WL0”, the ordinary method       

FL], [M],  shortcut using the main launcher 

F$  “WL0”, since F$ also finds functions in the main FAT 

FL], [ALPHA], “WL0” 

 
b) Functions W0L and W1L in secondary FAT 

 
FL], [H], [W]     [FL], [H], [SHIFT], [W] 

F# 031,     F# 032 

F$ “WL0”     F$ “WL1” 

FL], [ALPHA], “WL0”    FL], [ALPHA], “WL1” 

 
Now that’s what I’d call both a digression and multiple ways to skin this cat.
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Hankel functions – yet a Bessel third kind. {  HK1 ,  HK2  } 

 

Another important formulation of the two linearly independent solutions to Bessel's equation are the 

Hankel functions Hα(1)(x) and Hα(2)(x), defined by:  
 

 
 

where i is the imaginary unit. These linear combinations are also known as Bessel functions of the third 
kind, and it’s just an association of the previous two kinds together. 

 

This definition allows for relatively simple programming only using the real-domain Bessel programs – 
assuming the individual results for J and Y are not complex. The small program in the next page shows 

the FOCAL code to just drive the execution of both JBS and YBS, piercing them together via ZOUT (or 
ZAWIEW in the 41Z module). 

 

 

Getting Spherical, are we? {  SHK1  ,  SHK2  } 

 
Finally, there are also spherical analogues of the Hankel functions, as follows: 

 

 
 

The FOCAL programs below list the simple code snippets to program the three pairs of functions just 

covered, as follows: 
 

1. Hankel functions, HK1 and HK2 
2. Spherical Bessel functions, SJBS and SYBS 

3. Spherical Hankel functions, SHK1 and SHK2. 
 

Note the symmetry in the code for the spherical programs, making good use of the stack efficiency 

derived from the utilization of the MCODE JBS function. 
 

 
 

The plots on the left show the Spherical 

Hankel-1 function for orders 1 and 2, for 
a short range of the argument x. 

Explicitly, the first few are  



SandMath_44 Manual    -  Revision_3x3++ 
 

(c) Ángel M. Martin                                      Page 137 of 167 December 2014  
 

 
 
 
 

 

UExamples.- 
 

Calculate H1, H2, SH1, and SH2 for the following values in the table: 
 

Arguments 
H1 H2 SH1 SH2 

n x 

1 1 Z=0,440-J0,781 Z=0,440+J0,781 Z=0,301-J1,382 Z=0,301+J1,382 

1 -1 DATA ERROR 
0.5 1 Z=0,671-J0,431 Z=0,671+J0,431 Z=0,552-J0,979 Z=0,552+J0,979 

0.5 0.5 Z=0,541-J0,990 Z=0,541+J0,990 Z=0,429-J2,608 Z=0,429+J2,608 

-0.5 1 Z=0,431+J0,671 Z=0,431-J0,671 Z=0,959+J0,111 Z=0,959-J0,111 

-0.5 -1 DATA ERROR 

Shortcut: [FL],[H], [1] [FL],[H], [2] [FL],[H],[SHIFT],[1] [FL],[H],[SHIFT],[2] 

 

Where we see that for negative arguments (integer and non-integer orders both), the result of the 

Bessel function of the second kind is itself a complex number, therefore the DATA ERROR message. 
Note also the symmetric nature of the values for each of the function pairs, H1 with H2, and SH1 with 

SH2. 
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Struve functions. {  LNX  ,  HNX  } 

 

Struve functions are solutions y(x) of the non-homogenous Bessel's differential equation: 

 

 

 
 
Struve functions H(n,x), and Modified Struve Functions L(n,x), have the following power series forms: 

 

 

 
 

 

 
 

The figure below shows a few Struve functions or integer order, n=1 to 5; for –10<x<10 
 

 

 

    

 

 
 

Struve functions of any order can be expressed in terms of the Generalized Hypergeometric function 

1F2 (which is not the Gauss Hypergeometric function 2F1). – This is the expression used in the 
SandMath implementation: 
 

 

 
 

in other words, referred to the URationalized U Generalized Hypergeometric function (which with such a 
long name it definitely must be a formidable function… but it’s just the same divided by Gamma) 

 

HBBn BB(x) = (x/2)PP

n+1
PP BB1 BBFPP

~
PBPB2 BB( 1 ; 3/2 , n + 3/2 ; - xPP

2
PP/4 )     

     

LBBn BB(x) = (x/2)PP

n+1
PP BB1 BBFPP

~
PBPB2 BB( 1 ; 3/2 , n + 3/2 ;  xPP

2
PP/4 )  

 
 

UExamples: U   Compute  H(1.2 , 3.4 )   and   L(1.2 , 3.4 )  

 

  1.2   ENTER^,  3.4   F$ "HNX"  ->  H(1.2 , 3.4 ) = 1.113372657    

  1.2   ENTER^,  3.4   F$ "LNX"   ->  L(1.2 ,  3.4 ) = 4.649129471    

 

Alternatively: [FL], [H], [H] for HNX,     and:        [FL], [H], [SHIFT], [H]  for LNX 
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Lommel functions. {  LOMS1  ,  LOMS2  } 

 

 

The Lommel differential equation is an inhomogeneous form of the Bessel differential equation: 
 

 

 
 

Two solutions are given by the Lommel functions sμ,ν(z) and Sμ,ν(z), introduced by Eugen von Lommel 
(1880), 

  

 

 
 

 

 
 

where Jν(z) is a Bessel function of the first kind, and Yν(z) a Bessel function of the second kind. 

 
 

Using the Generalized Hypergeometric function the expressions for s1(m,n,x) is: 
 

sPP

(1)
PBPBm,n BB(x)  = xPP

m+1
PP / [ (m+1)PP

2
PP - n PP

2
PP ]  BB1 BBFBB2 BB ( 1 ; (m-n+3)/2 , (m+n+3)/2 ; -xPP

2
PP/4 ) 

 
LOMS1 and LOMS2 calculates s1(m,n,x) and s2(m,n,x).   Here are the specifics: 

 
DATA REGISTERS:  R00 thru R09: temp  

Flags Used:  F01 

 
 
U 

 
Example: 
 
 

   2   SQRT,   3   SQRT,   PI   F$ "LOMS1" ->   s1[sqrt(2), sqrt(3), ) = 3.003060384      

   2   SQRT,   3   SQRT,   PI   F$ "LOMS2" ->   s2[sqrt(2), sqrt(3), ) = 9.048798662      

 

alternatively: [FL], [H], [L]  for s1;  and  [FL], [H], [SHIFT]. [L]  for s2 

Stack Input Output 

Z m / 

Y n / 

X x s1 / s2 
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Lerch (Transcendent) Function. {  LERCH  } 

 

In mathematics, the Lerch zeta-function, sometimes called the Hurwitz–Lerch zeta-function, is a special 

function that generalizes the Hurwitz zeta-function and the polylogarithm. It is named after Mathias 
Lerch. 
 

The Lerch zeta-function L and a related function, the ULerch Transcendent  U, are given by: 

 

 

              

 

 
 
USpecial cases U.- The Lerch Transcendent generates other special functions as particular cases, as it’s 

shown in the table below: 
 

The Hurwitz zeta-function   

The Legendre chi function  
 

The Riemann zeta-function   

The polylogarithm   

The Dirichlet eta-function   
 

The figures below depict the representation for x, given the other two constant. 

  
 
The SandMath implementation LERCH is for the Lerch Transcendent function. It is a short MCODE 

routine originally written by Jean-Marc Baillard, which calculates the series terms and adds them until 
they don’t have a contribution to the final result. It is a slow converging series, and therefore the 

execution time can be rather long (at normal CPU speeds). 
 

Data input follows the usual conventions for the stack registers, entering x as the last parameter (in 

register X) – despite the written form: 
 

 
 

 
UExamples:- 
 

PI   ENTER^ ,   0.6  ENTER^ ,   0.7  F$ "LERCH"  - >   ( 0.7 ;  ; 0.6 )  =  5.170601130            

3    ENTER^,  -4.6  ENTER^ ,   0.8   F$ "LERCH"   ->    ( 0.8 ; 3 ; -4.6 ) =  3.152827048                                               

 

Alternatively: [FL], [H], [R]  using the main launcher instead. 

Stack Input Output 

Z s T 

Y a T 

X x (x,s,a) 
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Kelvin Functions. – {  KLV1  ,  KLV2  } 

 

 

In applied mathematics, the Kelvin functions of the first kind  -Berν(x) and Beiν(x) - and of the Second 
kind - Kerν(x) and Keiν(x) - are the real and imaginary parts, respectively, of 

 

 
 for the 1st. Kind                  

 
  for the 2nd. Kind. 

 

 
These functions are named after William Thomson, 1st Baron Kelvin. 

 
For integers n, Bern(x) and Bein(x) have the following series expansion 

 

 

 
and 

 

 
 

The figure below shows Ber(n,x) and Ker(n,x) for the first 4 integer orders and real arguments: 

  
 

Ber(n,X), Bei(n,x), Ker(n,x) and Kei(n,x) are available in the SandMath, implemented as FOCAL 
programs written by JM Baillard. Both values are calculated simultaneously by KLV(2), and left in X,Y 

registers as follows: 

Stack Input Output Output 

Y n bei(n,x) kei(n,x) 

X x ber(n,x) ker(n,x) 

UExamples:  
 

2   SQRT,  PI,  F$ "KLV1"   ->   ber (sqrt(2), ) = -0.674095951    

                               X<>Y  ->   bei (sqrt(2), ) = -1.597357210 

 

2,  SQRT,  PI,  F$ "KLV2"   ->   ker (sqrt(2), ) = 0.025901894                                  

                               X<>Y  ->   kei (sqrt(2), ) = 0.089242867 

 
 

alternatively: [FL], [H], [K]  for KLV1 and:   [FL], [H], [SHIFT], [K] for KLV2   
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Kummer Function. {  KUMR  } 

 

 

Kummer's equation has two linearly independent solutions M(a,b,z) and U(a,b,z). 
 

 

 
 

Kummer's function of the first kind M (also called Confluent Hypergeometric function) is a generalized 
hypergeometric series introduced in (Kummer 1837), given by 

 

 

 
 

Where aPP

(n)
PP is the rising factorial, defined as: 

 

 
 
 

The figures below depict two particular cases for {a=2, b=3}  and {a=-2, b=-3} 
 

 
 

 
The SandMath implementation is got to be one of  the simplest application ot HGF+ possible, which 

renders acceptable accuracy to the results 

 
DAT REGISTERS: 

 
a – R00;   b – R01  

 
 

UExamples: 
 

Compute  M(2;3;-) and M(2;3;-) 

 

  2  ENTER^ ,  3  ENTER^ ,  PI   CHS, F$ "KUMR"  ->  M(2;3;-)  = 0.166374562    

  2  ENTER^ ,  3  ENTER^ ,  PI     FL [ , ]   ->  M(2;3;)  =  10,24518011    

 

 

Alternatively: [FL], [H], [SHIFT], [K]  using the main launcher instead 

Stack Input Output 

X x M(a;b;x) 

L / x 
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Associated Legendre Functions. {  ALF  } 

 

 

In mathematics, the Legendre functions P(λ), Q(λ) and associated Legendre functions Pμ(λ) and Qμ(λ) 
are generalizations of Legendre polynomials to non-integer degree. Associated Legendre functions are 

solutions of the Legendre equation: 
 

 

 
 

where the complex numbers λ and μ are called the degree and order of the associated Legendre 

functions respectively. ULegendre polynomials Uare the associated Legendre functions of order μ=0. 
 

 
These functions may actually be defined for general complex parameters and argument: 

 

 

 

 

 
The figures below give a couple of graphical plots for the Legendre Polynomials: 

 

  
 
 

REGISTERS:    R00 thru R05  
FLAGS:            /  

 
 

 

 
UExamples:  
 

    0.4   ENTER^,   1.3  ENTER^ ,  0.7   F$ "ALF" ->   P1.3|0.4(0.7) =  0.274932821  

   -0.6   ENTER^ ,  1.7  ENTER^ ,  4.8   FL, [ , ] ->   P1.7|-0.6(4.8) = 10.67810281  

 
 

Alternatively: [FL], [H], [SHIFT], [L] using the main launcher instead. 

Stack Input Output 

Z m  
Y n  
X x P(n,m.x) 
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Whittaker Function. {  WHIM  } 

 

In mathematics, a Whittaker function is a special solution of Whittaker's equation, a modified form of 

the confluent hypergeometric equation introduced by Whittaker (1904) to make the formulas involving 
the solutions more symmetric. 

 
Whittaker's equation is 

 
 

 
 
It has a regular singular point at 0 and an irregular singular point at ∞. Two solutions are given by the 

Whittaker functions Mκ,μ(z), Wκ,μ(z), defined in terms of Kummer's confluent hypergeometric functions 
M and U by 
 

 
 

The graphics below show both functions for the particular case k=2 and m=0.5 
  

            
 

 
DATA REGISTERS:   R00 thru R02:  

Flags: none. 

 
 
 
Example:  
 
   2,   SQRT,   3,  SQRT ,  PI,   F$ "WHIM"  ->  W( sqrt(2), sqrt(3), ) = 5.612426206        

 
 

 

 

Stack Input Output 

Z K  
Y M  
X x Wk,m,x 
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Toronto Function. {  TNMR  } 

 

In mathematics, the Toronto function T(m,n,r) is a modification of the confluent hypergeometric 

function defined by Heatley (1943) as 
 

 

 
 

Which to untrained eyes just appears to be a twisted cocktail of the Kummer function, adding the 
exponential to the mix and scaling it with Gamma. 

 
DATA REGISTERS:   R00 thru R04:  

Flags: none. 

 
UExample:  

 
   2,   SQRT,   3,  SQRT ,  PI,   F$ "TMNR"  ->  T( sqrt(2), sqrt(3), ) = 0.963524225                 

 
 

Alternatively: [FL], [H], [T]  using the main launcher instead  

 

 
 

 
 

 

Stack Input Output 

Z m  
Y n  
X r m,n,r 
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3.5.3. Orphans and dispossessed. 
 

The last group of sub-functions include those not belonging to any particular launcher – for no other 
particular reason that there’s no more available space in the ROM. – Keep in mind that the only (dual) 

way to execute them is using the FL# or FL$ launchers. 

 

 Function Description Author 
[FL] -SP FNC Section header - does FCAT Ángel Martin 

[FL] #BS Aux routine, All Bessel Ángel Martin 

[FL] #BS2 Aux routine - 2nd. kind, Integer orders Ángel Martin 

[FL] AMG Arithmetic-geometric Mean Ángel Martin 

[FL] AWL Inverse Lambert Ángel Martin 

[FL] PDEG Polynomial Degree JM Baillard 

[FL] LI Logarithmic Integral Ángel Martin 

[FL] PSD Poisson Standard Distribution Ángel Martin 

[FL] dPL Polynomial first derivative Ángel Martin 

[FL] DAYS Days between dates (MM,DDYYYY in X,Y) HP Co. 

[FL] JDAY Julian Day number of a Date (MM,DDYYYY in X) Ángel Martin 

[FL] CDAY Date for a Julian day number (day number in X) Ángel Martin 

 

Let’s tackle the simpler ones on the list first. 
 

 

  –SP FNC  simply provides the index-zero shortcut for FCAT. UIt invokes the sub-function 

CATALOG, Uwith hot-keys for individual function launch and general navigation. Users of the 
POWERCL Module will already be familiar with its features, as it’s exactly the same code – 

which in fact resides in the Library#4 and it’s reused by both modules. 
 
 

  #BS  and  #BS2  are auxiliary functions used in the FOCAL programs for the Bessel functions 

of 2PP

nd
PP Kind, KBS and YBS. They were explained in more detail in the Bessel Functions 

paragraph. Feel free to ignore them, as they’re not intended for stand-alone use. 
 
 

  AWL  is the UInverse Lambert W function U, an immediate application of the W definition 

involving just the exponential – but with additional accuracy using the MCODE 13-digit routines 

in the OS.  AWL = W * exp(W) 
 
 

   LI   is the ULogarithm Integral,U also a quick application of the EI function, using the formula:  

Li(x) = Ei [(ln(x)] (see description for EI earlier in the manual). Note how LI starts as a 

MCODE functions that transfers into the FOCAL code calculating EI, so strictly speaking it’s a 
sort of “hybrid” natured function. 

 

  DAYS  is taken from the HP Securities Pac. It calculates the number of days between two 

dates. The input format is MM,DDYYY, with the later date in Y and the earlier in X. The result is 

returned to the X-reg. 

 
Example: Calculate the number of days elapsed between July 21st, 1959 and May 21st, 2014: 

5.212014,  ENTER^,  7.211959, F$ “DAYS”  =>  20,014.00000 
 

 
  JDAY  and  CDAY  are reciprocal date functions to convert a given date into the Julian day 

number and back to the calendar date. Use flag 00 to select either Julian or gregorian 

calendars in the conversions. The date format is also MM.DDYYYY regardless of the time 
module settings if there’s one. 

 

../../../Mis%20Documentos/HP-41Math_4L%22%20l
../../../Mis%20Documentos/HP-41Math_4L%22%20l
../../../Mis%20Documentos/HP-41Math_4L%22%20l
../../../Mis%20Documentos/HP-41Math_4L%22%20l
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Example: the date May 21st, 2014 corresponds to 2,456,799 (Gregorian calendar) or 2,456,812 

(Julian calendar) day numbers. 
 

You can also use JDAY to calculate the elapsed number of days between two dates – simply 
converting both to their Julian day numbers and subtracting them. If you do that you’ll notice a 

small discrepancy (18 days) between this approach and the resuts from DAYS – which leads 

me to believe that DAYS has some different convention, but unfortunately it appears to be a 
stealth function, as there is no documentation for it in the Securities Pac at all. 

 
These two functions are based on the PPC routines JC and CJ – ported to an all-MCODE 

implementation to make effective use of the available ROM space in the secondary banks. The 
formulas used are as follows (see PPC ROM manual for details): 

 

 
JDN = int { int [ [ D + int(367 x) - int(x) ] -  0.75 * int(x) ] - 0.75 * int[int(x)/100) } +  

 + 1,721,115;       where: X = Y + (M-2.85) / 12 
 

Let N = JDN - 1,721,119 

C = int {(N-0.2(/36,524.25] 
 

if Gregorian: N ' = N + C - int(C) – or  if Julian: N' = N + 2 
 

Y' = int[(N' -0.2) / 365.25];    N" = N' - int(365.25 * Y'] 
M' = int[(N" - 0.5) / 30.6];          D = int [N" - 30.6 * M' + 0.5] 

 

 
A few polynomial functions follow next.-  You should refer to the SandMatrix module for a much 

comprehensive coverage on this subject. 
 

 

  PDEG  is a simple but useful routine to get the polynomial degree from the control word in X, 

in the form bbb.eee. It is used by INPUT, and obviously we have:  degree = (eee – bbb).  As 

an additional bonus, PDEG also leaves in LastX the address of the next free register, eee+1. 

 
 
 

  dPL  and  PL  are full-fledged MCODE functions used to evaluate polynomials and to calculate 

the first derivative of a polynomial, which coefficients are stored in data registers. It requires 

the control word (bbb.eee) in Y, and the evaluation point x in X. 
 

Example: evaluate and calculate the derivative of P(x) = 5x^3 – 4 x^2 -3 in  x=2 
 

First we input the coefficients in registers R00 to R03, using INPUT: 

 

0,003,  F$  “INPUT”, followed by “5, ENTER^, 4, CHS, ENTER^, 0, ENTER^, 3, CHS, R/S” 

 

This leaves the control word in X, thus we just enter the evaluation point and call the 
appropriate functions, as shown below: 

 

0.003, ENTER^, F$ “PL”  => 21.0000 

RDN, 2  F$ “DPL” (*)   => 44.0000 

 
(*) Note how the function name is spelled using upper–case letters 

 
The FOCAL programs shown below were written by JM Baillard. They perfrom the same tasks, and are 
provided for your sheer enjoyment – and as an example of how efficient FOCAL can be, specially with a 

4-stack register pile and the capability to use indirect addressing. 
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Consider that the minimalistic programs below have an equivalence of abour 150 bytes in MCODE, by 

the time you’re done with the error handling and math syntax to use the OS routines. However the 
speed advantage - and the ability to locate the code in a secondary bank – are well worth the effort. 

 
 

 
 
 
 

Decibel Addition. {  dB+  } 

 

The decibel (dB) is a logarithmic unit used to express the ratio between two values of a physical 
quantity, often power or intensity. One of these quantities is often a reference value, and in this case 

the decibel can be used to express the absolute level of the physical quantity, as in the case of sound 

pressure. The number of decibels is ten times the logarithm to base 10 of the ratio of two power 
quantities,[1] or of the ratio of the squares of two field amplitude quantities [2]. One decibel is one 

tenth of one bel, named in honor of Alexander Graham Bell. 
 
[1] Power quantities 

  
When referring to measurements of power or 

intensity, a ratio can be expressed in decibels 
by evaluating ten times the base-10 logarithm 

of the ratio of the measured quantity to the 

reference level. Thus, the ratio of a power 
value P1 to another power value P0 is 

represented by LdB, that ratio expressed in 
decibels,[19] which is calculated using the 

formula below: 

  
 

[2] Field quantities 

  
When referring to measurements of field 

amplitude, it is usual to consider the ratio of 
the squares of A1 (measured amplitude) and 

A0 (reference amplitude). This is because in 

most applications power is proportional to the 
square of amplitude, and it is desirable for the 

two decibel formulations to give the same 
result in such typical cases. Thus, the following 

definition is used: 

 

 
 
 

The function  dB+  calculates the result of adding or subtracting two values in X and Y expressed in 

decibels. The result is also a dB value. Use a negative sign in X for subtractions. 

 
Examples:   3 dB + 5 dB =  7.124426028 

5 dB – 3 dB =  0.670765667 
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Arithmetic-Geometric Mean {  AGM  } 

 

In mathematics, the arithmetic–geometric mean (AGM) of two positive real numbers x and y is defined 

as follows: First compute the arithmetic mean of x and y and call it a1. Next compute the geometric 
mean of x and y and call it g1; this is the square root of the product xy: 

 

 
 
Then iterate this operation with a1 taking the place of x and g1 taking the place of y. In this way, two 

sequences (an) and (gn) are defined: 

 

 
 
These two sequences converge to the same number, which is the arithmetic–geometric mean of x and 

y; it is denoted by M(x, y), or sometimes by agm(x, y). 

 

Stack Input Output 

Y a0 Z 

X b0 agm(a0,b0) 

L - b0 

 

Note that “DATA ERROR” will be triggered when one of the arguments is negative (but not if both are). 
 

 

Example 1: 
 

To find the arithmetic–geometric mean of a0 = 24 and g0 = 6, simply input: 
 

24, ENTER^, 6, F$ “AGM”   13,45817148 

 

 
Example 2. Gauss Constant. 
 
The reciprocal of the arithmetic–geometric mean of 1 and the square root of 2 is called Gauss's 

constant, after Carl Friedrich Gauss. Calculate it using AGM: 

 

2, SQRT, 1, F$ “AGM”   1,198140235;  1/X   0,834626842 

 

A piece of trivia: the Gauss constant is a transcendental number, and appears in the calculation of 
several integrals such as those below: 
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Example 3.- Complete Elliptic Integral of 1st Kind. 
 

Using AGM it’s a convenient way to calculate the Complete Elliptic Integral of the first kind, ELIPK (k), 
by means of the following relationship (where M(x,y) represents the AGM): 

 

  
where K(k) is the Complete Elliptic Integral of the first kind: 

 

 
 

As usual the conventions used for the input parameters get in the way – so paying special attention to 
this, we can re-write the expresion using the Incomplete Elliptic Integral instead, as follows: 

 

ELIPF { /2 | (a-b)/(a+b) } =  (a+b) / 4 AGM(a,b),       which is the same as: 

 

ELIPF { /2, [(a-b)/(a+b)]^2 } =  (a+b) / 4 AGM(a,b) 

 

The idea is to find two values a,b derived from the argument: x = [(a-b)/(a+b)]^2 
 

The easiest approach is to choose a=1, and therefore:  b= [1-sqr(x)] / [1+sqr(x)] 
 

Here’s the FOCAL program used for the calculation.- Note the first step needed to get the square root 

of the argument, to harmonize both conventions used. 
 

   

1 LBL "ELIPK" 7 E 13 4 19 E

2 SQRT 8 + 14 * 20 +

3 E 9  / 15 1/X 21 *

4 X<>Y 10 RCL X 16 PI 22 END

5 - 11 E 17 *

6 LASTX 12 AGM 18 X<>Y  
 

 

And here are some results, compared to the values obtained using ELIPF. As you can expect, the 
execution is substantially faster using the AGM approach. 

 

x ELIPK(x) ELIPF (/2, x) % Delta 

0.1 1.612441348 1.612441348 0 

0.2 1.659623599 1.659623598 6.02546E-10 

0.3 1.713889448 1.713889447 5.83468E-10 

0.4 1.777519373 1.777519371 1.12516E-09 

0.5 1.854074677 1.854074677 0 

0.6 1.949567749 1.949567749 0 

0.7 2.075363134 2.075363135 -4.81843E-10 

0.8 2.257205326 2.257205326 0 

0.9 2.578092113 2.578092113 0 

 
 

Let’s now continue with the not-so-simple functions still remaining, where some of them will – not 

surprisingly – be based on the Hyper-geometric functions again. 
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Debye Function. {  DBY  } 

 

 

The family of Debye functions is defined by: 
 

 

 
 

The functions are named in honor of Peter Debye, who came across this function (with n = 3) in 1912 
when he analytically computed the heat capacity of what is now called the Debye model. 

 
The formula used for n positive integers and X>0 is: 

 

 

db(x;n) = BBk>0 BB  e PP

-k.x
PP [ xPP

n
PP/k + n.xPP

n-1
PP/kPP

2
PP + ..... + n!/kPP

n+1
PP ] 

 

 
 
Despite being a FOCAL program, DBY pretty much behaves like an MCODE function: no data registers 

are used (only the stack and ALPHA), and the original argument is preserved in LASTx. – credit is due 
to JM Baillard once more. 

 

Stack Input Output 

Y n n 

X x db(n,x) 

L - x 

UExample: 
 

3  ENTER^,  0.7 , F$ "DBY"  -> DB( 0.7 ; 3 ) = 6.406833597 

 

Alternatively: [FL], [O], [SHIFT], [Y]  using the main launcher instead  
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Dawson Integral. {  DAW  } 

 

 

The Dawson function or Dawson integral (named for John M. Dawson) is either: 
 

 

 
or: 

 

 
 
 

DAW computes F(x) by a series expansion: 

 

F(x) = ePP

 -x^2
PP [ x + x3/3 + x5/(5 2!) + x7/(7 3!) + ..... ]  

 
The figures below show both functions in graphical form: 
 

   
 

Here as well no data registers are used (!) 
 

Stack Input Output 

X x D+(x) 

L - e-x^2 

UExamples: 
 

     1.94,  F$ "DAW"   -> F(1.94 ) =  0.3140571659      

        10,   FL, [ , ]      -> F(10)     =   0.05025384716  

        15,   FL, [ , ]    -> F(15)     =   0.03340790676      

 
For x > 15 , there will be an OUT OF RANGE condition. 

 

For large arguments the execution is rather slow, taking a couple of seconds even with TURBO mode 
on V41 - so be patient! 
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Hyper-geometric Functions. {  HGF   ,  RHGF  } 

 

 

HGF and RHGF are the ordinary and the Regularized Hyler-geometric functions.  
 

The Gaussian or ordinary hypergeometric function BB2BBFBB1BB(a,b;c; z) is a special function represented by the 

hypergeometric series, that includes many other special functions as specific or limiting case. It is 

defined for |z| < 1 by the power series: 

 

 

 
 
provided that c does not equal 0, −1, −2, ... Here (q)n is the Pochhammer symbol, which is defined by: 

 

 

 
 
Many of the common mathematical functions can be expressed in terms of the hypergeometric 

function, or as limiting cases of it. Some typical examples are: 

 

  
 

  
 

 
 

 
 

The relation    BB2BBFBB1BB (a,b,c,x) =  ( 1 - x ) -a  BB2BBFBB1BB (a, c-b, c ; -x/(1-x))      is used if  x < 0 

 
 

The URegularized U Hypergeometric function has a similar expression for each summing term, just divided 
by Gamma of the corresponding Pochhamer symbol plus the index n. 

 

REGISTERS:    R01 thru R03. They are to be initialized before executing HGF or RGHF. 
           R00 is not used. 

 
R01 = a, R02 = b, R03 = c 

 

 
HGF Examples: 
 
  •   1.2  STO 01,    2.3  STO 02 ,   3.7  STO 03 

 

     0.4   F$ "HGF" -> 1.435242953 

       -3   FL [ , ] -> 0.309850661 

 
RHGF Examples: 
 
  •   2  STO 01,    3  STO 02,    -7  STO 03 

 

     0.4, F$ "RHGF" - > 5353330.290 

       -3  FL [ , ]    -> 2128.650875 

 

Stack Input Output 

X X< 1 
BB2BBFBB1BB (a,b,c,x) 
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Regularized Generalized Hypergeometric Function  {  HGF+  } 

 

In mathematics, a generalized hypergeometric series is a power series in which the ratio of successive 

coefficients indexed by n is a rational function of n. The series, if convergent, defines a generalized 
hypergeometric function, which may then be defined over a wider domain of the argument by analytic 

continuation 
 

We’ve already  described the pivotal role of this function in the multiple ways it’s used to calculate 

many of the special functions – but so far haven’t used it by itself. Let’s complete the description with a 
few examples, all taken from JM Baillard web pages as it’s become customary already. 

 
The first remark is about the parameter entry. Being a generalized function, it takes a variable number 

of arguments, which are to be stored in the corresponding data registers – starting with R01. The total 

number of arguments is specified by the function’s indexes “m” and “p” , as they are provided in the 

function’s name: mFp. Besides those, register R00 is reserved for the principal argument “x”. 

 
The usage requires m, p, and x in the Stack – in registers Z, Y, and X respectively. 

 

Stack Input Output 

Z m Last k-val 

Y +/- p 1st. term 

X x mFp 

 
 

The second remark is the dual character of the implementation: it can compute the standard or the 

regularized function (the latter has all the coefficients divided by products of the Gamma function). The 
option is indicated by the sign in the second parameter “p”, in the Y register: positive for the standard, 

and negative for the reguralized. 
 

 

Example1:   Calculate 3F4( 1, 4, 7 ; 2, 3, 6, 5 ;  ) and 3F4 ~ ( 1, 4, 7 ; 2, 3, 6, 5 ;  ) 
 

1,007, F$ “INPUT”  -> 1, ENT^. 4. ENT^, 7 ENT^, 2  ENT^,  3 ENT^,   6  ENT^,   5  ENT^, R/S  

 

3  ENTER^,  4  ENTER^, PI,  XEQ "HGF+"   ->  3F4( 1, 4, 7 ; 2, 3, 6, 5 ;  )  =  1.631019643  

3  ENTER^, -4  ENTER^, PI,  XEQ "HGF+"   ->  3F4 ~ (1, 4, 7; 2, 3, 6, 5 ;  ) =  0.0002831631328   

 

 

 Example 2:   Calculate  2F2( 1, 4; -2, -5; 0.1 ) 

 

 1  STO 01,   4  STO 02,   -2  STO 03,   -5  STO 04  

 2  ENTER^, -2  ENTER^, 0.1, XEQ "HGF+"   ->  2F2~ ( 1, 4 ; -2, -5 ; 0.1 ) = 0.01289656888    
  
 

Notes: 
 

 If m = p = 0 , HGF+  returns exp(x) 

 The function code doesn't check if the series are convergent or not. 

 Even when they are convergent, execution time may be prohibitive: press any key to stop  

 It first checks that for register Rm+p existence 

 The SandMath implementation of HGF+ checks for alpha data 

 Contents of stack register T is preserved, and saved in register L (LastX) 



SandMath_44 Manual    -  Revision_3x3++ 
 

(c) Ángel M. Martin                                      Page 155 of 167 December 2014  
 

Regular Coulomb Wave Functions. {  RCWF  } 

 

 

In mathematics, a Coulomb wave function is a solution of the Coulomb wave equation, named after 
Charles-Augustin de Coulomb. They are used to describe the behavior of charged particles in a 

Coulomb potential and can be written in terms of confluent hypergeometric functions or Whittaker 
functions of imaginary argument.  The Coulomb wave equation is show below: 

 

 
 
where L is usually a non-negative integer. The 

solutions are called Coulomb wave functions. 
Putting x = 2iρ changes the Coulomb wave 

equation into the Whittaker equation, so 

Coulomb wave functions can be expressed in 
terms of Whittaker functions with imaginary 

arguments. Two special solutions called the 
regular and irregular Coulomb wave functions are 

denoted by FL(η,ρ) and GL(η,ρ), and defined in 

terms of the confluent hypergeometric function 
by the friendly expression below: 

 

 
where  Mk,µ = Whittaker's function of the 1st kind – which is included in the SandMath, but without 

support for complex numbers and therefore can’t be used for this purpose. 
 

The formulas used instead are as follows: (as per JM Baillard’s implementation as usual) 

FL(n,r) = CL(n) r
 L+1

  Ak
L
 (n) r

 k-L-1
 ; for k>L, and L integer 

    with   CL(n) = (1/(2L+2)) 2
L
 e

 -pi.n/2
 | (L+1+i.n) |  

    and    AL+1
L
 = 1 ;  AL+2

L
 = n/(L+1)  ;  (k+L)(k-L-1) Ak

L
 = 2n Ak-1

L
 - Ak-2

L
   ( k > L+2 )  

further, we avoid using gamma for complex arguments by replacing the last modulus calculation with 

the following expressions: 

| ( 1+i y ) |
2
 = (.y) / sinh ( y);   and  

| ( 1+L+i y ) |
2
 = [ L

2
 + y

2
 ] [ (L-1)

2
 + y

2
 ] .................. [ 1 + y

2
 ]  ( y) / sinh ( y) 

 
The resulting FOCAL program is RCWF, which takes as inputs the values for L, n anr r in the stack 

registers Z, Y, and X respectively – returning the result into X. 
 

Example: calculate F( 2, 0.7, 1.8 ) 
 

     2,  ENTER^,  0.7,  ENTER^, 1.8,  F$ "RCWF"   ->   F2( 0.7 , 1.8 ) = 0.141767746  

     or alternatively:  [FL], [H], [SHIFT], [R]  using the main launcher instead. 

 

Note the restrictions imposed on the parameters, which are:  
L is a non-negative integer, ,      n  is real,        r  is non-negative.  
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Integrals of Bessel Functions. {  ITI  ,  ITJ  } 

 

 

One of the usual approaches is to use the following recurrent relations for the calculation 
 

 

 
With Re(n)>0. More specifically, for positive integer orders n=1,2,.... we have 
 

 

 
and also 

 

 
 

There’s however another approach based (yes, here as well!) on the Generalized Hypergeometric 
function HGF+. In fact the applicability of this method extends to the Integro-Differential forms of the 

Bessel functions, and so could be used to calculate second primitives or derivatives as well. 
 

The expressions used in the SandMath for functions ITJ and ITI are as follows: 
 

DPP

µ
PP I BBnBB(x) =  K xPP

n-µ
PP (n+1) BB2 BBFPP

~
PBPB3BB[(n+1)/2, (n+2)/2 ; (n+1-µ)/2, (n+2-µ)/2, n+1 ; x PP

2
PP/4 ] 

 

DPP

µ
PP J BBnBB(x) =  K xPP

n-µ
PP (n+1) BB2BBFPP

~
PBPB3 BB[(n+1)/2, (n+2)/2 ; (n+1-µ)/2, (n+2-µ)/2, n+1 ; -xPP

2
PP/4 ] 

 

Where   K = 2PP

µ-2n
PP sqrt();  and  µ = -1 for the integral (primitive) 

 
in case you don’t believe such a convenience, take a look at this WolframAlpha’s link: 

 HHTUThttp://www.wolframalpha.com/input/?i=integrate+%28besselI%28n%2Cx%29%29 UTTHH  

 
 

 
 

 
 
Nothing short of magical if you ask me – what I’d call “going out with a bang”. 
 

A few examples: (note the convenient usage of the LASTF feature for repeat executions of the same 

function.) 

 
 

  1.4  ENTER^,  3,  F$ "ITJ" ->   §|0,3  J(1.4,x).dx = 1.049262785   

  1.4  ENTER^,  3,  F$ "ITI" ->   §|0,3  I(1.4,x).dx = 2.918753200  

     1  ENTER^,  3,  F$ "ITJ" ->   §|0,3  J(1,x).dx =  1.260051955      

     0  ENTER^, 10,  FL [ , ] ->   §|0,10  J(0,x).dx =  1.067011304   

   50  ENTER^, 30,  FL [ , ] ->   §|0,30  J(50,x).dx =1.478729947 E-8  

 

http://www.wolframalpha.com/input/?i=integrate+%28besselI%28n%2Cx%29%29
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Appendix 11- Looking for Zeros.   

 
Once again we’re just connecting the dots: here’s a brute-force crude implementation of a root finder 
for Bessel functions, made possible once the major task (i.e. calculating the function value) is reduced 

to a single MCODE function. 

 

The following trivial-looking program (it really can’t get any simpler!) uses SOLVE within the Advantage 
Pack (or FROOT in the SandMath), no less. Starting with zero, obvious guess values are the previous 

root and the root incremented by one. Successive repetitions will unearth all those roots; just make 

sure you have the “turbo” mode enabled on V41 (or equivalent emulator). Enjoy!  

 

The first few roots j(n,k) of the Bessel function Jn(x) are given in the following table for small 
nonnegative integer values of n and k 

See also:  HHTUThttp://cose.math.bas.bg/webMathematica/webComputing/BesselZeros.jsp UTTHH 

 

 

 

Note that the program listing also includes code to calculate the Integral of JBS, defined as incomplete 
function with the argument in the upper integration limit.  Granted it isn’t the fastest one in town but 

such isn’t an issue on a modern-day emulator, and the economy of code cannot be stronger! 

 

              

 

          

 

 
Which allegedly satisfies the equation: § BB0 PBPB

x
PP J BBnBB(t).dt = 2 ( JBBn+1 BB(x) + JBBn+3 BB(x) + JBBn+5BB(x) + ........ ) 

http://cose.math.bas.bg/webMathematica/webComputing/BesselZeros.jsp
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3.7.  Solve and Integrate  - Reloaded! 

 
 

3.7.1. Functions description and examples. 
 

Last but not least (what an understatement in this case) let’s go with a bang: welcome to the bank-
switched implementation of Solve and Integrate. Chances are that if you’re reading this you’re already 

familiar with SOLVE and INTEG, from the Advantage Pac module – needless to say this is about the 
same functions, so we won’t get into a lengthy discussion on the functions  methodology and attributes 

- both are assumed to be already known to you 

 

 Function Description Comments 

 FROOT Calculates roots of f(x) in an interval Same as SOLVE 

 FINTG Calculates the integral of f(x) between limits Same as INTEG 

 FLOOP Auxiliary function for control Does nothing by itself. 

 SIRTN Auxiliary function for control  In hidden FAT (bank-3) 

 

 
FROOT will attempt to obtain a real root for the function in an interval defined by the values in [Y, X], 

and FINTG will numerically calculate the definite integral of a function f(x) between the integration 
limits defined in registers Y (lower limit) and X (upper limit). In both cases the function needs to be 

programmed in a FOCAL program , and its global LBL name needs to be in ALPHA when FROOT or 

FINTG are executed in program mode.  
 

Note that this means it won’t work for mainframe or MCODE functions from plug-in ROMS, which will 
need a dummy user code program to “host” them. Also note that – contrary to the original SOLVE and 

INTEG - , on the SandMath implementation these functions will prompt for the program name when 
executed in RUN mode. ALPHA will be turned on automatically for convenience. 

 

Let’s see a couple of examples.  The first one should be a repeat of the exercise from previous 
appendix, now using this version of the functions. Be aware that the execution time will be long, but 

that’s an acid test for the operation – being a nested example of both. 
 

For a second example refer to appendix in page 107 to calculate the Fourier coefficients for an explicit 

function, f(x). Now this is what closes the circle :-) 
 

 
Example. Calculate the roots of Digamma and Exponential integral functions. 

 

Nothing can be easier than writing this trivial program: 
 

01  LBL “PSI2” 
02  PSI 

03  RTN 
04  LBL “EI2” 

05  EI 

06  END 
 

Enter the values 1, ENTER^, 5,  then execute FROOT. – typing the program name in ALPHA at the 
prompt:  XEQ [ALPHA] “FROOT”, [ALPHA], “PSI2”, [ALPHA] or: XEQ “FROOT”, [ALPHA], “EI2”, [ALPHA] 

 

The corresponding solutions (in FIX 9) are as follows: 
 

X = 1.461632145  for PSI, and  
X = 0.372507411  for Ei 
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Example.   Calculate the root of the Kepler equation for  E = 0.2 and m=0.8 

The equation is:    x – E sin x = m 
 
Programmed as follows, assuming E is in R01 and m in R00 data registers: 
 

01 LBL “KPLR”    input data: 0,2  STO 01,  0.8  STO 00 
02 RAD     input interval [0,1] in YX 
03 SIN     XEQ “FROOT”  “KPLR” -> 0.964333888 
04 RCL 01 
05 * 
06 – 
07 RCL-          (substracts R00) 
08 END 

 
 
 
Example.  Write a program to calculate Bessel J using the formula:  
 

 
 

1 LBL "JYX" 12 LBL "*JN"

2 STO 01 13 RAD

3 X<>Y 14 RCL 00

4 STO 00 15 *

5 "*JN" 16 X<>y

6 0 17 SIN

7 PI 18 RCL 01

8 FINTG 19 *

9 PI 20 -

10  / 21 COS

11 RTN 22 END  
 

Which won’t compete for the speed award compared with the SandMath JBS function, but besides 
illustrating the example note that it returns more accurate results for large orders and arguments (as 

discussed in the Bessel functions section).    
 

Example.-  J(50, 50) = 0.121409022 
 

Correct to the 9th decimal place as can be seen using WolframAlpha’s result: 

0.1214090218976150638201083836782773998739591421282135  
 

 
Note that the iterative JNX1 can also be used for this calculation, yielding the exact same result in a 

comparable execution time: 

 

50, ENTER^, FL$ “JNX1”  => 0.121409022 
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Programming Highlights: MCODE Cathedrals. 

 
 
Often when visiting a landmark or a commemorative building we feel the imposing presence of 

something that’s bigger than what any possible description could convey, and we proceed tip-toeing, 

speaking in whispers not to disturb the spirit of its creators...  this is exactly how I felt about the 
addition of the SOLVE and INTEG “cathedral of MCODE” to the SandMath. 

 
Leaving their mathematical prowess and attributes aside - as tremendous as they are – the 

housekeeping chores and implementation on the 41 platform are nothing short of spectacular. The 
original programmers - we are told - adapted the already-existing code form the HP-15C, but they had 

to overcome a couple of real challenges to port it smoothly into the 41 platform. Possibly the 15C also 

required similar trickery, but I don’t know its internal architecture so I can’t say. 
 

The first striking thing is of course being able to return to an MCODE code stream after executing a 
user code program (FOCAL) – which calculates f(x). That alone can leave you thinking – as it did to me, 

suspecting the hows and the abouts being explained somehow by SIRTN and SILOOP, the two 

auxiliary functions written for this purpose. – Yet how did they exactly work?  We need to understand 
the buffer-14 paradigm before we can answer this. 

 
Yes, there’s the question of Buffer-14, the dedicated buffer in the Advantage that exhibits a rather 

idiosyncratic temperament: contrary to all other modules, the Advantage seems to be on a “search and 

destroy” mission, with the apparent aim to kill any previous existence of the buffer, judging by the 
polling events CALC_OFF and IO_SRVC.   

 
Equally intriguing is the location of said buffer, which is situated (while it’s allowed to exist) below the 

Key assignments area – and not above it as it’s the normal way. This fact conflicts with the OS routines 
that manage the I/O area, like [PKIOAS] and others, and would create real havoc if it weren’t because 

the Advantage manages the buffer dynamically, creating it on-the-fly just when the execution starts, 

and killing it upon termination. So as far as the rest of the machine is concerned (OS included), it is as 
if buffer-14 had never existed! 

 
But why all that hassle, you’d ask? Couldn’t they have used the normal approach to hold whatever data 

that needed to be stored in a standard-type buffer, like every other implementation does? I believe the 

reason was to have an absolute location for the buffer registers: with the starting location for buffer-14 
always being 0x0C0 (192 dec) the access and retrival of the values stored there becomes a much 

easier affair, just using their fixed “register numbers”. This may have made using the 15C algorithms 
simpler, and avoids altogether the relative addressing problem present when the buffers are placed in 

their “regular” space (which incidentally I became very aware of while writing the 41Z complex stack 
buffer implementation). 

 

However one of the implications of wedging a buffer below the key assignments area is that the code 
would first need to move them all – as well as all other buffers already present – up in memory, to 

make room for the newcomer. And conversely, this will have to be undone upon termination of the 
function execution. 

 

Now you can imagine the housekeeping chores required, and the intricacies of the implementation in 
the code. That’s why the IO_SRVC event is constantly checking for the presence of buffer-14, 

proceeding to its removal if found at a non-suitable time.  
 

Let’s add to this mounting MCODE nightmare the requirement that both SOLVE and INTEG would 

work in a nested way, which is something that the code will only discover having already created the 
buffer for the first function – so the buffer would potentially have to be resized on the fly, not losing 

any previous information already contained. 
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And adding insult to injury, welcome to the parallel dimension of bank-swithching: imagine now 

attempting to do all that from within an auxiliary bank (say bank-3), which when activated would not 
know a thing about the main one (little details like the FAT, etc); so it’s there to live and die by its own 

sword. Case in point being: what if the function f(x) to solve or integrate contains functions available 
within the same module, how then could they be found? 

 

Well at least this one has an easy answer: bank-1 needs to be the active one while the FOCAL program 
runs, thus obviously the main FAT is also there and all will work out. So provided we can identify the 

exact points in the code where the execution is transferred to the FOCAL label we’d be home free, or 
would we?  But beware, because then not only the MCODE execution needs to be resumed (how it 

does it  is still pending clarification), but it’ll also have to re-activate bank-3 as the very first thing it 
does.   

 

Buffer-14 comes to the rescue.- Say there are two auxiliary functions, one of them SIRTN is sought for 
during the initialization, and its address is placed in the RPN return stack, just above the other address 

for the global LBL that calculates f(x).  This will ensure that SIRTN will run after LBL f(x) is finished, ok 
so we’ve got control back – what to do with it?  Say now that the second auxiliary function SILOOP is 

the very first (and only) line in SIRTN, that’ll send the execution back to our MCODE – way to go, but 

this is a new function that has no recollection of the past or knows nothing about whatever was done 
before, unless...  

 
Unless of course we use the buffer as data structure to do the parameter passing! Isn’t this brilliant? 

Yes of course, that’s the answer: SILOOP will retrieve from buffer-14 the necessary information to 
resume, picking up exactly where it was left off prior to calling LBL f(x). Mind you, it’ll also have to 

make sure things are as expected when it “wakes up”: is the buffer there, which function was run 

(SOLVE or INTEG), and react adequately if some of the information is not there. This can happen if a 
user programs SILOOP unadvertingly, of course (although they could have made it non-programmable 

I suspect they didn’t care anyway). 
 

The last touch of sophistication to speed up things was to also store the addresses of both LBL f(x) and 

SIRTN in the buffer itself, thus there’s no need to search for them in every iteration of the solution; 
and we know there may be from several to many depending of the difficulty of the function. Consider 

that the OS routine [ASRCH] is used to locate them both, and it’s a sequential search: first RAM for LBL 
f(x), then ROM – and there may be several plugged in. 

 

You no doubt have noticed that in the SandMath there are only three functions related to this: FROOT, 
(not so fruity :-), FINTG, and FLOOP (the fluppy one :-) – which sure correspond to SOLVE, INTEG, 

and SILOOP. But what about the whereabouts of SIRTN?  No, it’s not one of the section headers - 
already used for other purposes- , and nor is it in the secondary FAT (that’d be impossible to pull off) – 

fortunately this is one of the added pluses of going bank-switched: SIRTN is in the FAT of bank-3 , all 
by itself so it’ll be found while [ASRCH] is called from the MCODE... all that extra work payed off and so 

we saved a precious FAT entry in the main FAT.  

 
All in all, a stroke of genious - with all the ingredients of a work of art if you ask me.  So I feel 

especially glad to finally have cracked this nut and managed to include it in the SandMath; the yellow 
ribbon around the box. Hope this dissertation wasn’t too boring, and that you enjoy it at least as much 

as I did working on it. 

 
 

, as created by FROOT 

, as created by FINTG. 

 
(*) To see this by yourself: insert function BFCAT in the LBL f(x) , then stop the enumeration. 
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Appendix 12.- His master’s voice (or text).- 

 

The following excerpts are taken from the Advantage Manual, pages 61-66.  Just replaced SOLVE with 
FROOT (and INTEG with FINTG) and we’re all set. Besides the Advantage Pac manual and the “HP-15C 

Advanced Functions Handbook” as obvious first references, most recommended reading is the 
description of IG and SV in the PPC_ROM users’ manual – with a thorough description of the 

methodology and plenty of examples to try your hand and test the functions. 

 
Finding the roots of an equation f(x) = 0. 
 

The FROOT program finds the roots of an equation of the form 
f(x)=0, where x represents a real root. Note that any equation with 

one variable can be expressed in this form. 
 

For example. f(x) - a is equivalent to f(x) - a =0. and f(x) = g(x) is 

equivalent to f(x) - g(x) = 0 

 
 
Method.  
 

FROOT normally uses the secant method to iteratively find and test 
x values as potential roots. It takes the program several seconds to 

several minutes to do this and produce a result. 

 
If c isn't a root, but f(c) is closer to zero 

than f(b), then b is relabeled as a, c is 
relabeled as b, and the prediction process 

is repealed. Provided the graph of [(x) is 
smooth and provided the initial values of 

a and b are close to a simple root, the 

secant method rapidly converges to a 
root. 

 
If the calculated secant is nearly 

horizontal, then FROOT modifies the 

secant method to ensure that |c - bl <= 
100 la - bl. (This is especially important because it also reduces the tendency for the secant method to 

go astray when rounding error becomes significant near a root.) 
 

If FROOT has already found values a and b such that f(a) and f(b) have opposite signs, it modifies the 
secant method to ensure that c always lies within the interval containing the sign change. This 

guarantees that the search interval decreases with each iteration, eventually finding a root. If this does 

not yield a root, FROOT fits a parabola through the function values at a, b, and c, and finds the value d 
at the parabola 's maximum or minimum, The search continues using the secant method, replacing a 

with d. 
 

If three successive parabolic fits yield no root or d = b, the calculator displays “NO”. In the X- and Z-

registers remain b and f(b), respectively, with a or c in the Y -register. At this point you could: resume 
the search where it left off, direct the search elsewhere, decide that f(b) is negligible so that x = b is a 

root, transform the equation into another equation easier to solve, or conclude that no root exists, 
 

Instructions.  
 
In calculating roots, FROOT repeatedly calls up and executes a program that you write for evaluating 

f(x). You must also provide FROOT with two initial estimates for x, providing a range for it to begin its 
sea rch for the root. 
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Realistic estimates greatly facilitate the speedy and accurate determination of a root. If the variable x 

has a limited range in which it is meaningful and realistic as a solution, it is reasonable to choose initial 
estimates within this range. (Nega tive roots, for instance, are often unrealistic for physical problems.) 

 
• FROOT requires thirteen unused program registers. If enough spare program registers are not 

available, FROOT will not run and the error “NO ROOM” results. Execute PACK in Program 

mode to see how many program registers are available. 
 

• Before running FROOT you must have a program (stored in program memory or a plug-in 
module) that evaluates your function f(x) at zero. This program must be named with a global 

label. FROOT then iteratively calls your program to calculate successively more accurate 
estimates of x. Your program can take advantage of the fact that FROOT fills the stack with its 

current estimate of x each time it calls your program.  

 
• You then enter two initial estimates for the root, a and b, into the X and Y -registers. Lastly 

put the name of your program (that evaluates the function) into the Alpha register and then 
XEQ “FROOT”. 

 

When the program stops and the calculator displays a number, the contents of the stack are: 
 

Z = the value of the function at x - root (this value should be zero)! 
Y = the previous estimate of the root (should be close to the resulting root). 

X = the root (this is what is shown in the display). 
 

If the function that you are analyzing equals zero at more than one value of x, FROOT stops when it 

finds anyone of these values. To find additional values, key in different initial estimates and execute 
FROOT again. 

 

When no root is found. 
 

It is possible that an equation has no real roots. In this case, the calculator displays “NO” instead of a 
numeric result. This would happen, for example, if you tried to solve the equation lxl= -1, which has no 

solution since the absolute value funct ion is never negative. 
 

 

There are three general types of errors that stop FROOT from running: 
 

• If repeated iterat ions seeking a root produce a constant nonzero va lue for the specified 
function, the calculator displays “NO”. 

 
• If numerous samples indicate that the magnitude of the function appears to have a nonzero 

minimum value in the area being searched, the calculator displays “NO”. 

 
• If an improper argument is used in a mathematical operation as part of your program, the 

calculator displays “DATA ERROR”. 
 

Programming Information.- 
 
You can incorporate FROOT as part of a larger program you create. Be sure that your program provides 

initial estimates in Ihe X- and Y-regislers just before it executes Remember also that FROOT will look in 
the Alpha register for the name of the program that calculates your function. 

 

If the execution of FROOT in your program produces a root, then your program will proceed to its next 
line. If no root resuits, the next program line will be skipped. (This is the "do if true" rule of HP-41 

programming). Knowing this, you can write your program to handle the case of FROOT not finding a 
root, such as by choosing new initial estimates or changing a func tion parameter. 
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FROOT uses one of the six pending subroutine returns that the calculator has; leaving five returns for a 

program that calls FROOT. Note that FROOT cannot be used recursively (calling itself). If it does, the 
program stops and displays “RECURSION”. You can  however use FROOT with FINTG, the integration 

program. 

 
 

Numerical Integration 
 

The FINTG program finds the definite integral, I, of a function f(x) 
within the interval bounded by a and b. This is expressed 

mathematically and graphically as:  
 

 
 
Executing the FINTG program employs an advanced numerical 

technique to find the definite integral of a function. You supply the 
equation for the function (in a program) and the interval of 

'integration, and FINTG does the rest. 
 

 

Method. 
 

The algorithm for FINTG uses a Romberg method for accumulating the value of an integral. The 
algorithm evaluates f(x) at many values of x between the limits of integration. It takes the program 

from several seconds to several minutes to do this and produce a result. 

 
Several refinements make the algorithm more effective. For instance, instead of using uniformly spaced 

samples, which can induce a kind of resonance producing misleading results when the integrand is 
periodic, FINTG uses samples that are spaced nonuniformly. Another refinement is that FNTG uses 

extended precision (13 significant digits) to accumulate the internal sums. This allows thousands of 

samples to be accurately accumulated, if necessary. 
 

A calculator using numerical integration can almost never calculate an integral precisely. However, 
there is a convenient way for you to specify how much error is tolerable. You can set the display format 

according to how many figures are accurate in the integrand f(x). A setting of FIX  2 tells the calculator 
that decimal digits beyond the second one can't matter, so the calculator need not waste time 

estimating the integral with unwarranted preciSion. Refer to the heading, “Accuracy of FINTG”. 

 

Instructions. 
 
In calculating integrals, FINTG repeatedly executes a program that you write for evaluating f(x). You 

must also provide FINTG with two limits for x, providing an interval of integration. 

 
• FINTG requires 32 unused program registers. If enough spare program registers are nor available, 

FINTG will not run and the error NO ROOM results. Execute PACK in Program mode to see how 
many program registers are available. 

 

• Before running FINTG you must have a progra m (stored in program memory or a plug-in module) 
that evaluates your function f(x). This program must be named with a global label. * Your program can 

take advantage of the fact that FINTG fills the stack with its current estimate of x each time it calls your 
program. 

 
• You then enter the two limits, a and b, into the X- and Y -registers. Lastly put the name of your 

program (that evaluates the funct ion) into the Alpha register and then XEQ “FINTG”. 
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When the program stops and the calculator displays the integral, the contents of the stack are: 

 
T  - the lower limit of the integrat ion, a. 

Z -  the upper limit of the integration, b. 
Y -  the uncertainty of the approximation of the integral. 

X-   the approximation of the integral (this is what is shown in the display). 

 
 

Accuracy of FINTG. 
 

Since the calculator cannot compute the value of an integral exactly, it approximates it. The accuracy of 

this approximation depends on the accuracy of the integrand's function itself as calculated by your 
program. While in tegrals of functions with certain characteristics such as spikes or rapid oscillations 

might be calculated inaccurately, these functions are rare. 
 

This is affected by round-off error in the calculator and the accuracy of empirical constants. To specify 
the accuracy of the func tion, set the display format (FIX  n,  SCI n, or ENG n) so that n is no greater 

than the number of decimal digits that you consider accurate in the funct ion's values. If you set n 

smaller, the calculator will compute the integral more quickly, but it will also presume that the function 
is accurate to no more than the number of digits shown in the display format. FIX and ENG determine 

an uncertainty in the function that is proportional to the function's magnitude, while SCI determines an 
uncertainty that is independent of the function's magnitude. 

 

At the same time that the FINTG program returns the resulting integral to the X-register (the display), 
it returns the Uncertainty of that approximation to the Y-register. To view this uncertainty value, press 

X<>Y. No algorithm for numerical integration can compute the exact difference between its 
approximation and the actual integral. But this algorithm estimates an upper bound on this difference, 

which is returned as the uncertainly of the approximation. 
 

If the uncertainty of an approximation is greater than what you choose to tolerate, you can decrease it 

by specifying more digits in the display format and rerunning FINTG. 
 

 

Programming Information. 
 
You can incorporate FINTG as part of a larger program you create. Be sure that your program provides 
upper and lower limits in the X- and Y-registers just before it executes FINTG. Remember also that 

INTEG will look in the Alpha register for the name of the program that calculates your function. 
 

INTEG uses one of the six pending subrout ine returns that the calculator has, leaving five returns for a 

program that calls FINTG. Note that FINTG cannot be used recursively (calling itself). If it is, the 
program stops and displays “RECURSION”. You can use FINTG with FROOT. A routine that combines 

both FINTG and FROOT requires 32 available program registers to operate. 
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This completes this manual. 

 
Don’t forget to check Jean-Marc Baillard extensive and authoritative references on the web (despite its 

unassuming web site name), located at:   HHTUThttp://hp41programs.yolasite.com/ UTTHH  

 

A treasure chest awaits you... enjoy the ride! 

 
 

                                     
 
 

  
 

http://hp41programs.yolasite.com/

