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HP-41 Module: 

Areas, Series & Sums. 

Fractional 

Integro-Differentiation  
 

 

Overview 
 
This module includes a selection of functions and FOCAL routines mainly focused on Series and Sums field 
and other related subjects. For the most part the routines are taken from Jean-Marc Baillard extensive web 

site, although some others are takes from Poul Kaarup’s collection as well. A few are already available in the 
SandMath Module –even if this version is a more portable implementation that suits itself better for 

Clonix/NoVRAM owners.   

The initial section of the module covers the simple sums of integers and integer powers. This is followed by 

simple explicit sums for single, double, triple and multiple series; recursive term sums and Euler 
transformations. Examples are also provided in the FAT for quick familiarization. The second section includes 

a set of MCODE functions and FOCAL routines dealing with area calculations for several geometric figures, 
such as circles and triangles, as well as areas and diagonal lengths of cyclic and regular polygons. 

The last section takes a relative large part of the FAT and deals with Fractional Integro-differentiation of a 
few Elemental and Special functions. This technique is based on the Hyper-Geometric function and 

consolidates an impressive set of capabilities under the same approach.Without further ado, see below the 
list of functions included in the module: 

XROM  Function  Description Input Author 

18,00 -SERIES 1A Rounded Comparison x,y in X,Y Ángel Martin 

18,01 CHSYX Sign Change of Y by X:  Y*(-1)^X Value in Y, n in X Ángel Martin 

18,02 NCR Combinations of N in sets of R N in Y, R in X Ángel Martin 

18,03 “#” Auxiliary for SOLVE Under program control Ángel Martin 

18,04 0 Sum of mantissa digits argument, X Ángel Martin 

18,05 1 Sum of first N integers argument, X Poul Kaarup 

18,06 1/N Harmonic Numbers argument, X Ángel Martin 

18,07 2 Sum of Squares of Numbers argument, X Poul Kaarup 

18,08 3 Sum of Cubes of Numbers argument, X Poul Kaarup 

18,09 N^X Generalized Faulhaber’s Sum N in Y, exponent In X Ángel Martin 

18,10 "UM” Single Series Sum (Explicit) arguments in X, Y, ALPHA JM Baillard 

18,11 "UM” Double Series Sum (Explicit) argument in X, ALPHA JM Baillard 

18,12 "UM” Triple Series Sum (Explicit) arguments in Y,X, ALPHA JM Baillard 

18,13 "UME Euler Transformation argument in X, Y, Z, ALPHA JM Baillard 

180,14 "UMR” Single Series Sum (Iterative) arguments in X, Y, ALPHA JM Baillard 

18,15 “NUM0” Multiple Series Sum (Explicit) bbb.eee in X, data in registers JM Baillard 

18,16 "NT” Example for NUM0 n/a Martin-Baillard 

18,17 "T” Example for UM n/a Martin-Baillard 

18,18 "TE” Example for UME n/a Martin-Baillard 
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18,19 "TR” Example for UMR n/a Martin-Baillard 

18,20 "TT” Example for UM n/a Martin-Baillard 

18,21 "TTT” Example for UM n/a Martin-Baillard 

18,22 -AREAS_1B ALPHA Integer part Argument in X Fritz Ferwerda 

18.23 BRHM Brhamagupta formula 4 Sides in stack Ángel Martin 

18.24 CIRCLE Circle through three points Coordinates in R01-R06 Ángel Martin 

18.25 DIAG Diagonal formula Used in CPLD JM Baillard 

18.26 HERON Heron formula Triangle sides in Z, Y, Z Ángel Martin 

18.27 RPG1 Regular Polygon from sides # sides in Y, length in X Poul Kaarup 

18.28 RPG2 Regular polygon from circle # sides in Y, radius in X Poul Kaarup 

18.29 "3PNTS” Driver for CIRCLE/Areas Prompts for coordinates Ángel Martin 

18.30 "CCPA” Complex Cyclic Polygon Area Parameters in stack and R00 JM Baillard 

18.31 "CCPA+” Driver for CCPA Uses Newton Method Ángel Martin 

18.32 "CPLA” Complex Cyclic Polygon Area With all Sides known JM Baillard 

18.33 "CPLA+” Driver for CPLA Uses SOLVE  Ángel Martin 

18.34 "CPLD” Complex Cyclic Polyg. Diagonals bbb.eee in X, data in Registers JM Baillard 

18.35 "CPLD+ Driver for CPLD Prompts for data entry Ángel Martin 

18.36 "STLA” Star Polygon Area Parameters in Stack JM Baillard 

18.37 "STLA+” Driver for STLA Prompts for data entry Ángel Martin 

18.38 -ITG/DIFF Generalized Hypergeometric Data in Registers and Stack JM Baillard 

18.39 1/GM Reciprocal of Gamma argument in X JM Baillard 

18.40 PSI Digamma Function argument n X JM Baillard 

18.41 "DAIRY” Airy Function Intg-diffm  in Y, x in X JM Baillard 

18.42 "DEI” Exponential Intg. Intg-Diff.  in Y, x in X JM Baillard 

18.43 "DERF” Error Function Intg.-Diff  in Y, x in X JM Baillard 

18.44 "DCHI” Hyp Cos Integral Intg-Diff.  in Y, x in X JM Baillard 

18.45 "DCH” Hyp. Cosine Intg-Diff.  in Y, x in X JM Baillard 

18.46 "DCI” Cosine Integral Intg-Diff.  in Y, x in X JM Baillard 

18.47 "DCOS” Cosine Intg-Diff  in Y, x in X JM Baillard 

18.48 "DCX” Fresnel Cosine Integral Intg-Diff.  in Y, x in X JM Baillard 

18.49 "DEXP” Exponential Intg-Diff.  in Y, x in X JM Baillard 

18.50 "DHMT” Hermite Function Intg-Diff.  in Z, n in Y, x in X JM Baillard 

18.51 "DINX” Bessel I function Intg-Diff.  in Z, n in Y, x in X JM Baillard 

18.51 "DJNX” Bessel J function Intg-Diff.  in Z, n in Y, x in X JM Baillard 

18.53 "DKNX” Mod. Bessel K function Intg-Diff.  in Z, n in Y, x in X JM Baillard 

18.54 "DKUM” Kummer function intg-Diff.  in Y, x in X, a in R00, b in R01 JM Baillard 

18.55 "DLANX” Lagrange Function Intg-Diff.  in T, a in Z, n in Y, x in X JM Baillard 

18.56 "DLN” Natural Log Intg-Fiff.  in Y, x in X JM Baillard 

18.57 "DSB1” Spherical Bessel Funct. 1st. Kind  in Z, n in Y, x in X JM Baillard 

18.58 "DSHI” Hyp. Sine Integral inth-Diff.  in Y, x in X JM Baillard 

18.59 "DSH” Hyperbolic Sine Intg.Diff.  in Y, x in X JM Baillard 

18.60 "DSI” Sine integral Intg-Diff.  in Y, x in X JM Baillard 

18.61 "DSIN” Sine Intg-Diff  in Y, x in X JM Baillard 

18.62 "DSX” Fresnel Sine Integral Intg-Diff.  in Y, x in X JM Baillard 

18.63 "DYNX” Mod. Bessel Y function Intg-Diff.  in Z, n in Y, x in X JM Baillard 



 Areas, Sums & Series ROM  

© 2016 ‘Angel Martin  Page 3 
 

1 –Sums and Series 

The first section includes several functions to calculate sums of integer powers, as well as simple methods to 
sum series given their general term in explicit or recurrent form. 

 

 0  is a small divertimento useful in pseudo-random numbers generation. It simply returns the 

sum of the mantissa digits of the argument – at light-blazing speed using just a few MCODE 
instructions. More about random numbers will be covered in the Probability/Stats section later on. 

 
Example: calculate the sum of all digits of the HP-41’s rendition of pi: 

 

        PI, XEQ “0”   =>  40.000000000 

 

 1/N  calculates the Harmonic number of the argument in X, that is the sum of the reciprocals of 

the natural numbers (which excludes zero) lower and equal to n. It will be used in the calculation of 
the Kelvin functions and the Bessel functions of the second kind, K(n,x) and Y(n,x).  

       

 

 
 

 Example: calculate H(5) and H(25).  

 

  5, XEQ “1/N”     =>  2.283333333 

  25, XEQ “1/N”   =>  3.815958178 

 

 

 123  are implemented to calculate the sum of integer powers directly based on the 

corresponding formulas. The number of terms to sum is expected to be in the X- register. Functions 

calculate the linear sum using the triangular formula; the sum of squares using the pyramidal 
formulas; and the sum of cubes also using the pyramidal formulas. 



 


 




Example: Calculate the sum of the first 10 natural numbers and their squares and cubes: 

 

10, 1  quickly returns: 55.00000000 

LASTX, 2”   => 385.0000000  

LASTX, 3    => 3,025.000000 

 
 

 

 N^X   Calculates a generalized value of the Faulhaber’s formula for integer values of x. – The 

few first integer values of x have explicit formulas for the result (which are used in the functions  

described above) , but that’s not the case for a general value - which can also be non-integer. 

Obviously for x=-1 this function returns identical results than 1/N, albeit slower due to the 

additional complexity of the definition of the term. 
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Example: Check the triangular (x=1) and pyramidal (x=2) formulas for n=10 – which are particular 

cases of the Faulhaber’s Formula, involving Binomial coefficients and Bernoulli’s numbers. See the 
link below for details: http://en.wikipedia.org/wiki/Faulhaber%27s_formula 

 
10, ENTER^, 1, XEQ “N^X”  => 55.00000000 

10, ENTER^, 2, XEQ “N^X“  => 385.0000000 

 
And using the convention B(1) = 0.5 the formula is: 

  

 

  
 

Which could be programmed using a few of the SandMath functions, albeit it would be considerably 

slower due to the impact of the Zeta algorithms (part of Bernoulli’s) – kicking in for n>4. 
 

 

  CHSYX  is related to the same subject, and in general relevant to the summation of alternating 

series – It can be regarded as an extension of CHS but dependent of the number in X. Its 

expression is: 
 

  CHS(y,x)= y*(-1)^x,  and thus changing the sign of Y when the number in X is odd. 

 
 

  NPR  calculates Permutations, defined as the number of possible different arrangements of N 

different items taken in quantities of R items at a time. No item occurs more than once in an 
arrangement, and different orders of the same R items in an arrangement are counted separately.  

The formula is:  

 

   
 
 
This last two functions will be used as subroutines in the series sums programs described next. 

  

http://en.wikipedia.org/wiki/Faulhaber%27s_formula
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Sums of Series using their General Terms 
 
The following programs allow you to obtain the value of simple, double and triple series for which the 
general term is known, either as explicit expression or as a recurrent form.  

 

Simple Series. 



UM  calculates a single series sum, that is: 

 

   S = (uk + uk+1 +  uk+2 + uk+3 + ......... )  =   un    for  n >= k  

 
defined by the general term un = f(n)  where f is a known (i,e, explicit) function.  

 
A program which computes  Un = f(n)  is required as a subroutine. It is done assuming n is in X-register 

upon entry. The module includes the routine “T” as example for this case, with Un=1/n! 
 

ALPHA, “TR”, 1, ALPHA, XEQ “UM”   ->  X = 1.718281830 = R01  (in 9 seconds) 

 

 

UMR calculates the same sum when Un is given as a recurrence expression with an initial known value, 

that is: uk is given  and   un+1 =  f(un;n)   where f is a known function. 

 
a program which computes  un+1 = f( Un; n)  is required as a subroutine. It is done assuming Un is in X-

register and n is in Y-register upon entry. The module includes the routine “TR” as example for this case, 

with u1 = 1 and un+1 = un/(n+1) 
 

ALPHA, “TR”, ALPHA, 1, ENTER^, XEQ “UMR”  ->  X = 1.718281830 = R01  (in 7 seconds) 

 

Note that on both cases the initial index can also be zero, assuming that’s compatible with the definition of 
Un, which adds more flexibility to the routine. In both cases the function needs to be programmed under a 

global label, and its name is expected to be in the ALPHA register when the routines are called. 
 

STACK INPUTS OUTPUTS  STACK INPUTS OUTPUTS 

Y / UM  Y k UMR 

X k UM  X uk UMR 

ALPHA F.NAME F.NAME  ALPHA F.NAME F.NAME

   
 

 
Euler Transformation. 


UME calculates the same sum making use of the Euler Transformation  to accelerate the convergence 

of alternating series:   S = u0 - u1 +  u2 - u3 + ...... + (-1)n  un + ..... 

 

The sum is re-written in function of the binomial coefficients,  Cn
p =  n! / ( p! ( n-p )! ) as follows: 

  

S = a0/2 + (C1
1 a0 - C1

0 a1)/2
2 + (C2

2 a0 - C2
1 a1 + C2

0 a2)/2
3 + (C3

3 a0 - C3
2 a1 + C3

1 a2 - C3
0 a3)/2

4  + 

...... 
This may produce superb acceleration but it can also fail. 
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A program which computes  Un = |f(n)|  is required as a subroutine, but without the alternating sign. It is 
done assuming n is in X-register upon entry. The module includes the routine “TE” as example for this case, 

with f(n) = (n+1)-1/2 

 

ALPHA, “TE”, ALPHA, XEQ “UME”  ->  X = 0.6048986431 = R01 
 

For this particular example the error is  -3 10-10 (!), and  only 28 terms are calculated (taking about 6.5 

minutes to converge). Without an acceleration method, more than 1,018 terms would be necessary to 
achieve the same accuracy... which execution time would be much greater than the age of the Universe.  

 

 STACK  INPUTS OUTPUTS 

X / UME 

ALPHA F.NAME F.NAME 

 

 
Double and Triple Series. 


UM calculates a double series sum, that is:  S =  ( un;m );   for  n >= n0 ; m >= m0 

 

As before, the general term needs to be programmed under a separate subroutine using a global label. 
This assumes that “n” is in the X-register and “m” in the Y-register upon entry. The two initial indices 
are expected to be in the stack and the label name must be in the ALPHA register as well. 
 

STACK INPUTS OUTPUTS 

Y m0  

X n0  

ALPHA F.NAME F.NAME 

 
The program uses data registers R00 to R05, which therefore should not be used in the definition of 
the general term. The module includes the routine “TT” as example for this case, with the expression: 

f(n;m)  =  1 / ( nn m! ) 

 
ALPHA, “TT”, ALPHA, 1, ENTER^, XEQ “UM”  ->  X = 2.218793264 = R03  (in 1 min 18s ) 

 
 

UM calculates a triple series sum, that is:  S =  ( un;m;p );   for  n >= n0 ; m >= m0;  p >= p0 

 

As before, the general term needs to be programmed under a separate subroutine using a global label. 
This assumes that “n” is in the X-register  “m” in the Y-register, and p is in the Z-register upon entry. 
The three initial indices are expected to be in the stack and the label name must be in the ALPHA 
register as well. 
 

STACK INPUTS OUTPUTS 

Z p0  

Y m0  

X n0  

ALPHA F.NAME F.NAME 
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The program uses data registers R00 to R07, which therefore should not be used in the definition of 
the general term. The module includes the routine “TTT” as example for this case, with the expression: 

f(n;m;p) = 1 / ( nn m! (p!)2 ) 

 
ALPHA, “TTT”, ALPHA, 1, ENTER^, ENTER^, XEQ “UM”  ->  X = 2.839135243 = R04  (6 min 5s) 

 

With an error =-7 E-9 

 

 

Multiple Series 
 

NUM0 calculates a multiple series sum, with k internal summations that all start in zero - that is:   
 

S =  [ U(n1;n2; ..... ;nk) ]  with  n1>= 0 ;  n2>= 0 ; ........ ;  nk>= 0 

 
Obviously now the number of indices will be in the X register, and there are no initial indices – which are 
assumed to be zero. This may need you to re-write the expression of the general term to make it compatible 

with this condition. 
 

This is the most limiting requirement for this program, which is not suitable for cases that have mutual 

dependencies between the initial indexes. 
 

Here too, the general term needs to be programmed under a separate subroutine using a global label, 
which needs to be entered in ALPHA. This assumes on entry that “n1” is in the R01 register, “n2” in the 
R02 register, “n3” in R03, and successively so until completing the number of variables. 
 

 STACK  INPUTS OUTPUTS 

X k 0 

ALPHA F.NAME / 

 
 
Only the synthetic registers {M,N,O} are used by the program. The module includes the routine “NT” 

as example for this case, with the expression used in the triple aeample : f(n;m;p) = 1 / ( nn m! (p!)2 ).   

 
We therefore need to change it to start at the zero indexes for the three variables, i.e. must make a change 

of arguments to reduce to the standard:   n >= 0 ; m >= 0 ; p >= 0   by replacing  n with (n+1) ; m with 

(m+1) ; p with (p+1):    f(n;m;p) = 1 / {( n+1)(n+1) (m+1)! [(p+1)!]2 }   
 

ALPHA, “NT”, ALPHA, 3, XEQ “NUM0”  ->  X = 2.839135243 = R04  (8 min 39 s) 
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2 –Areas of Polygons 

The second section of the module includes several MCODE functions for triangles, cyclic quadrilaterals and 
even non-regular polygons.  

 CIRCL calculates the radius of a circle passing thru three data points, using the point x,y 

coordinates. The values are expected to be stored in R01-R07.  Besides that, it’ll also return in the 

Y-register the area of the circumscribed triangle defined by the three points.  
 

Example: Calculate the radius of the circle passing thru P(5,1), Q(6,2), and R(5,3) 

 
The results are:  

 
XEQ “CIRCL” => r=1,000000000, 

X<>Y   => A=1,000000000 

 
 

The input sequence starts with the abscissa of P1 in R01. 
 

 

Note that you can use the routines IN and INPUT 
available in the SandMath to populate the registers 

automatically.  
 

 
 

 HERON calculates the area of a triangle knowing its three sides, using Heron’s formula. Just enter 

the sides values in the stack, and execute the function. The result is stored in X, with the original 

side saved in LastX. The rest of the stack is unchanged. 
 

Let the triangle ABC with 3 known sides { a , b , c } and  s = (a+b+c)/2  the semi-perimeter  
 

Heron's formula is:     Area = [ s(s-a)(s-b)(s-c) ]1/2     
 
U Example: U     a = 2,   b = 3,   c = 4  

Type:   2,  ENTER^,  3,  ENTER^,  4,   XEQ “HERON"   =>   Area = 2.904737510  

 
 Note: the function CIRCL described above makes use of the HERON formula internally after it  

 first calculates the triangle sides from the point coordinates. 
 

 
 

 BRHM is related to it, but the calculation for the area of the cyclic quadrilateral - using 

Brhamagupta’s formula. Just enter the four values in the stack and execute the function. The result 

is stored in X, with the original side saved in LastX. The rest of the stack is unchanged. 
 

Let  a, b, c, and d be its sides lengths, and the semi-perimeter  
s = ( a + b + c + d )/2 .The area A of the cyclic quadrilaterals: 

 

A = [(s-a).(s-b).(s-c).(s-d).]1/2    
 
U Example:U    a = 4 , b = 5 , c = 6 , d = 7  

 
 Type:  4,  ENTER^,  5,  ENTER^,  6,  ENTER^,  7,   

XEQ "BRHM"  =>  Area = 28.98275349  
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  PG1  Calculates the area of a regular polygon when its side length is known. Input parameters are 

the number of sides in Y, and the side length in X. The result is left in the X register. 

 

Example: calculate the area of a triangle with side length a=5 m 
 

3, ENTER^, 5, XEQ “PG1”  -> 10.83 m^2 
 

 
 

  PG2  Performs the same calculation but using the radius of the circumscribed circle instead of the 

side length. Same order of parameters for input, with the number of sides in Y. 
 

Example: calculate the area of a triangle circumscribed in a circle with radius r=5 m 
 

3, ENTER^, 5, XEQ “PG2”  ->  32.48 m^2 

 
 

 
 

 

 
 

 
 

 
 

 

 
 

 

 
 Finally, the Routine “3PNTS” is a FOCAL driver for functions CIRCLE. You can use it to enter the 

coordinates of the three points into data registers R01-R06, presented as three screens with the 

prompts: 

 

            …  …   
 

Once this is accomplished the program offers you a choice for the value to calculate next, either the 

triangle area or the circle radius. You can Also press [E] to start over with a new set of three 

points. 
 

           
 

If used on the example listed above, it returns the following results: 

 

           and  
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Convex Cyclic Polygons. 
 
And what about non-regular polygons, you may wonder? Well, those are the subject of the following set of 

FOCAL routines about to be described. 

 
Programs “CCPA” and “CPLA” compute the area A and the circumradius R of a convex cyclic polygon 

assuming all the sides lengths are known. Moreover, we also assume that the center of the circumcircle is 
inside the polygon. 

If{a1 , a2 , ......... , an}  are the sides lengths and  { µ1 , µ2 , ......... , µn }are the corresponding central 

angles, we have to solve the system of (n+1) equations:  

     2.R sin µ1/2 = a1 

     2.R sin µ2/2 = a2 

     ……………. 

     2.R sin µn/2 = an 

    µ1 + µ2 + ... + µn = 360°  

Performing a few substitutions lead to an expression with the radius as single unknown, to be resolved 
iteratively using any root-finding method: 
 

             asin (a1/2R) + asin (a2/2R ) + ..................... + asin (an/2R)  =  180°        

After finding R, the Area is given by : A = (R2/2) (Sin a1 + Sin a2 + ........... + Sin an)  
 

 

There are two versions included in the module – “CPLA” uses the SOLVE function in the Advantage and 
“CCPA” uses a built-in root finder based on Newton’s method. Each one has advantages and shortcomings, 

as usual. 

 
 

Drivers for Data Entry. 
 

The routines expect the sides of the polynomial already stored in contiguous data registers, and the control 
word “bbb.eee” in the X register before you call the routine. For your convenience, a driver routine is also 

included that prompts for the side values and does the storing for you, Using “CPLA+” or “CCPA+”, all you 

need to do is enter the values at each prompt, and once completed it’ll direct the execution to the 
corresponding data engine downstream. 

 
 

Example.  Find the area of a convex cyclic polygon with sides: 4 , 5 , 6 , 7 , 8 , 9 , 10 

 
XEQ “CPLA+”  “N=?” 
7,  R/S   “d1=?” 

4,  R/S   “d2=?” 
5,  R/S   “d3=?” 

6,  R/S   “d4=?” 
7,  R/S   “d5=?” 

8,  R/S   “d6=?” 

9,  R/S   “d7=?” 
10, R/S   ->  174.6757940  the area, and 

X<>Y   ->  8.143816980  the radius 
 

 



 Areas, Sums & Series ROM  

© 2016 ‘Angel Martin  Page 11 
 

 

Diagonal Lengths. 
 
CPLD calculates the diagonal lengths of a convex cyclic polygon with its side lengths known. The method 

used involves solving a linear system of (n-3) equations with (n-3) unknowns, which is solved by successive 

approximations. The convergence is linear only – which results in relative longer execution times. 
 

The iteration starts with all diagonals lengths = 0, which is very simplistic. The successive sums of the 
differences between 2 consecutive approximations (in absolute values) are displayed. They should tend to 

zero, however, the termination criterion may lead to an infinite loop. Since there are 319 registers at most, 

"CPLD" can find the diagonals lengths of a 159-gon – but the execution time will not be small without an 
emulator. 

 
CPLD expects the number of sides in R00, and the sides of the polynomial already stored in contiguous data 

registers starting with R01 until Rn+1. Then you must provide the control words “bbb.eee” indicating the 
location of the data registers that store the side lengths. 

 

STACK INPUT OUTPUTS 

X / bbb.eee 

 

 
For your convenience, a driver routine is also included that prompts for the side values and does the storing 

for you, Using “CPLD+” all you need to do is enter the values at each prompt, and once completed it’ll 

direct the execution to CPLD downstream.  
 

 
Example:  Find the diagonals lengths of a convex cyclic hexagon with sides:  4 , 5 , 6 , 7 , 8 , 9 

 
XEQ “CPLD+”  “N=?” 

6, R/S   “a1=?” 

4, R/S   “a2=?” 
5, R/S   “a3=?” 

6, R/S   “a4=?” 
7, R/S   “a5=?”  

8, R/S   “a6=?” 

9, R/S   shows estimations… -> convergence 
   d8=8.46278437 

R/S   d9=12.12358502 
R/S   d10=12.97690535 

 

There are in fact  n(n-3)/2  diagonals whose lengths may be obtained by "rotating" the sides lengths in 
registers R01 to R06 and we have similarly: n(n-3)/2 = 9  if  n = 6 

     d4 =  9.998827970                    d7 = 11.30861231  

     d5 = 13.01214483                     d8 = 13.06010803                    

     d6 = 11.49035918                     d9 = 12.32872367  

 
 

Finally, the MCODE function DIAG is used internally by CPLD to speed-up the calculations. It computes the 
following expression, assuming  x , y , z , t  are  in  registers  X , Y , Z , T  upon entry 

 

SQRT [ { x.y ( z2 + t2 ) + z.t ( x2 + y2 ) } / ( x.y + z.t ) ]      
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Regular Star Polygons 
 
A star polygon {n/k}, with n,k positive integers, is a figure formed by connecting with straight lines every “k-

th” point out of n regularly spaced points lying on a circumference. The number k is called the polygon 

density of the star polygon. Without loss of generality, take k<n/2. The star polygons were first 
systematically studied by Thomas Bradwardine. 

 

 
 

If k=1, a regular polygon {n} is obtained. Special cases of {n/k} include {5/2} (the pentagram), {6/2} (the 
hexagram, or star of David), {8/2} (the star of Lakshmi), {8/3} (the octagram), {10/3} (the decagram), and 

{12/5} (the dodecagram). 
 

"STLA" computes the area A, the perimeter P, the inradius r and the circumradius R of a regular 

star polygon { n / k }  from its edge length a  

Formulae:  

    A = n R2 Sin (180°/n) Cos (180° k/n) / Cos [180°(k-1)/n]  

    a  = 2.R  Sin (180° k/n)  

    r  =   R   Cos (180° k/n)  

    P  = 2.A / r  

The table on the left shows the input and output 

Required by the program – easy does it! 

 
 

 

STACK INPUTS OUTPUTS 

T / R 

Z a r 

Y n P 

X k < n/2 A 
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Examples:  

  •  a = 1 , n = 5 , k = 2  
     1   ENTER^, 5   ENTER^, 2   XEQ "STLA" ->   A = 0.310270701  

                                  RDN         P = 3.819660113  

                                  RDN             r  = 0.162459848  
                                  RDN            R = 0.525731112  

  •  a = 1 , n = 10 , k = 3  

      1   ENTER^, 10  ENTER^, 3,  R/S  ->    A = 0.857567126  

                          RDN           P = 4.721359547  

                          RDN           r  = 0.363271264  

                          RDN          R =  0.618033989  

  •  a =  , n = 41 , k = 13 
     PI   ENTER^, 41, ENTER^, 13,  R/S  ->   A = 9.855571194  

                         RDN             P = 19.37713086  

                         RDN             r  = 1.017237409  
                       RDN           R =  1.871409374  

This program works in all angular modes, however, DEG mode should be preferable.  

 

If k = 1, we get the convex regular n-gon. For instance, with  a = 1 , n = 5 , k = 1, "STLA" returns what 
corresponds to the regular pentagon.  

A = 1.720477401  

P =  5  

r  =  0.688190960  
R  =  0.850650808  

 

Driver Program. 

Here too you have a convenient driver program to guide you thru the data entry process: program “STLA+” 

will prompt for the input values and will present the results sequentially after the calculations are done. 

,  ,   
 

, , etc… 
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3 –Fractional Integro-Differentiation 

If  is a real number (integer or fractional) and a function f is defined by a power series: 

f(x) = k=0,1,2,..{ck x
k }    

then its fractionalintegro-differentiation may be computed by: 

dµ f / dxµ = Dµ f(x) = k=0,1,2,....{ ck [ (k+1) / (k+1-µ) ] xk-µ } 

If the function may be expressed in terms of hypergeometric functionspFq, the following relation is very 

useful too: 

Dµ
pFq ( a1, ... , ap ; b1, .. bq ; x ) = x -µ(b1)....(bq)  p+1F

~
q+1 (1, a1, .... , ap ; 1-µ, b1, ... bq ; x) 

where  is Euler's Gamma function, andpF
~

q is the regularized generalized hypergeometric function. This 

function was already included in the SandMath module, and it is now copied here for convenience – tucked 
away under one of the section headers so that a dedicated FAT entry was not required. 

As a trivial corollary, D0 f(x) = f(x). Positive integer numbers (i.e. natural numbers) represent the 

successive derivatives of the function. Also if µ= -1, -2, -3, ....  the results are the repeated integrals of the 

function f - usually those that vanish for x = 0. 

Formulae and details. 

Besides the special functions in the module there are several elementary functions included as well. Note 

that all program names begin with the ‘D” letter, followed by the common acronym that designates the 
function’s name.  

As usual when a function is evaluated by a power series, the results are not very accurate for large 
arguments;they may even be meaningless ... unless all the terms have the same sign! 

For data entry, µ is always to be entered first, then the order/index - if any - and finally, x in register X: (*) 

Stack Input#1 Input#2 Input#3 Result 

T / / µ / 

Z / µ a / 

Y µ n n / 

X x x x (Dµ f) (x) 

(*) as single exception, for Kummer’s functions R01 and R02 must also be initialized first  
with the function parameters a & b. 

 

 
 
 
You’re encouraged to visit JM’s original page located 

at:http://hp41programs.yolasite.com/fracintegrdiff.php 

  

http://hp41programs.yolasite.com/fracintegrdiff.php
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A few elementary functions. 

  •  Hyperbolic Sine Dµ Sinh x = 2µ-1 sqrt() x1-µ
1F

~
2 ( 1 ; (2-µ)/2 , (3-µ)/2 ; x2/4 )  

  •  Hyperbolic Cosine  Dµ Cosh x = (2/x)µ sqrt()  1F
~

2 ( 1 ; (1-µ)/2 , (2-µ)/2 ; x2/4 )  

  •  Sine                     Dµ Sin x = 2µ-1 sqrt() x1-µ
1F

~
2 ( 1 ; (2-µ)/2 , (3-µ)/2 ; -x2/4 )  

  •  Cosine                  Dµ Cos x = (2/x)µ sqrt()  1F
~

2 ( 1 ; (1-µ)/2 , (2-µ)/2 ; -x2/4 )  

  •  Exponential          Dµ Exp x = x -µ
1F

~
1 ( 1 ; 1-µ ; x )  

  •  Logarithm             Dµ Ln x = x -µ FC(µ)
log (x)  

        where     FC(µ)
log (x) = (-1)µ-1 (µ-1) !       if  µ is a positive integer, 

          and       FC(µ)
log (x) = [ Ln x - Psi(1-µ) -  ] / (1-µ)   otherwise . 

      Psi = Digamma Function; = Euler's constant =0.5772156649...  and =Gamma Function. 

 

Examples: 

  •  Hyperbolic Sine: 

     3.14   ENTER^, 1.28   XEQ "DSH"    ->   D3.14Sinh ( 1.28 ) = 1.999005451  

  •  Hyperbolic Cosine: 

     3.14   ENTER^, 1.28   XEQ "DCH"   ->  D3.14Cosh ( 1.28 ) = 1.502958219  

  •  Sine: 

     3.14   ENTER^, 1.28   XEQ "DSIN"   ->   D3.14Sin (1.28) = -0.019142092  

  •  Cosine: 

     3.14   ENTER^, 1.28   XEQ "DCOS"   ->   D3.14Cos (1.28) = 0.888787267 

  •  Logarithm: 

     3.14   ENTER^, 1.28   XEQ "DLN"   ->   D3.14Ln (1.28) = 1.138569850 

  •  Exponential: 

     3.14   ENTER^, 1.28   XEQ "DEXP"    ->   D3.14Exp (1.28) = 3.501963669  
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A few Special Functions. 

•  Sine Integral             Dµ Si x = 2µ-2    x1-µ
2F

~
3 ( 1/2 , 1 ; 3/2 , (2-µ)/2 , (3-µ)/2 ; -x2/4 )  

 

•  Hyperbolic Sine Integral         Dµ Shi x = 2µ-2    x1-µ
2F

~
3 ( 1/2 , 1 ; 3/2 , (2-µ)/2 , (3-µ)/2 ; x2/4 )  

 
•  Cosine Integral            

Dµ Ci x = [ FC(µ)
log (x) +  / (1-µ) ] x -µ - 2µ-3 sqrt() x2-µ  2F

~
3 (1, 1 ; 2, (3-µ)/2, (4-µ)/2 ; -x2/4)  

 
•  Hyperbolic Cosine Integral      

Dµ Chi x = [ FC(µ)
log (x) +  / (1-µ) ] x -µ + 2µ-3 sqrt() x2-µ

2F
~

3 (1, 1 ; 2, (3-µ)/2, (4-µ)/2 ; x2/4)  

 
•  Exponential Integral      

Dµ Ei x = [ FC(µ)
log (x) +  / (1-µ) ] x -µ + x1-µ  2F

~
2 (1 , 1 ; 2 , 2-µ ; x )  

 
•  Fresnel Cosine Integral      

Dµ C(x) = 22µ-3/23/2 x1-µ
3F

~
4 [ 1/4 , 3/4 , 1 ; (2-µ)/4 , (3-µ)/4 , (4-µ)/4 , (5-µ)/4 ; -2 x4/16 ]  

 
•  Fresnel Sine Integral     

Dµ S(x) = 22µ-11/25/2 x3-µ
3F

~
4 [ 3/4 , 1 , 5/4 ; (4-µ)/4 , (5-µ)/4 , (6-µ)/4 , (6-µ)/4 ; -(PI)2 x4/16 ]  

 
•  Spherical Bessel Function - 1st kind       

Dµ jn (x) = 2µ-2n-1  xn-µ  (n+1)  2F
~

3 [(n+1)/2 , (n+2)/2 ; (n+1-µ)/2 , (n+2-µ)/2 , n+3/2 ; -x2/4]  

 
•  Modified Bessel Function - 1st kind       

Dµ In (x) = 2µ-2n sqrt() xn-µ  (n+1)  2F
~

3 [(n+1)/2, (n+2)/2; (n+1-µ)/2, (n+2-µ)/2, n+1; x2/4]  

 
•  Bessel Function - 1st kind            

Dµ Jn (x) = 2µ-2n sqrt()  xn-µ  (n+1)  2F
~

3 [(n+1)/2 , (n+2)/2 ; (n+1-µ)/2 , (n+2-µ)/2 , n+1 ; -x2/4]  

 
•  Modified Bessel Function - 2nd kind;  where n is not an integer. 

Dµ Kn (x) = 2µ-2n-13/2  x-µ-n csc(n.) {16n(1-n)  2F
~

3 [(1-n)/2, (2-n)/2; (1-µ-n)/2, (2-µ-n)/2, 1-n; 

x2/4] - x2n/(n+1)  2F
~

3 [(n+1)/2, (n+2)/2; (n+1-µ)/2, (n+2-µ)/2, n+1; x2/4]} 
 

•  Bessel Function - 2nd kind; where n is not an integer. 

Dµ Yn (x) = 2µ-2n (PI)1/2  x-µ-n csc(n.) { -16n(1-n)  2F
~

3 [(1-n)/2 , (2-n)/2 ; (1-µ-n)/2, (2-µ-n)/2,  

1-n ; -x2/4 ]  + x2n Cos(n.) (n+1)  2F
~

3 [(n+1)/2, (n+2)/2 ; (n+1-µ)/2, (n+2-µ)/2, n+1 ; -x2/4]}      

•  Generalized Laguerre's Functions    

Dµ La
n (x) = [ (n+a+1)/(n+1) ] x -µ

2F
~

2 (1, -n; a+1, 1-µ ; x)  

   
•  Airy Functions 

Dµ Ai(x) = 3µ-4/3 x -µ { 32/3(1/3) 2F
~

3 [ 1/3 , 1 ; (1-µ)/3 , (2-µ)/3 , (3-µ)/3 ; x3/9 ] - 

- x (2/3) 2F
~

3 [2/3 , 1 ; (4-µ)/3 , (2-µ)/3 , (3-µ)/3 ; x3/9 ] }  

Dµ Bi(x) = 3µ-5/6 x -µ { 32/3(1/3) 2F
~

3 [ 1/3 , 1 ; (1-µ)/3 , (2-µ)/3 , (3-µ)/3 ; x3/9 ] + 

+ x (2/3) 2F
~

3 [2/3 , 1 ; (4-µ)/3 , (2-µ)/3 , (3-µ)/3 ; x3/9 ] }  

 •  Error Function Dµ Erf (x) = 2µ x1-µ
2F

~
2 [ 1/2 , 1 ; (2-µ)/2 , (3-µ)/2 ; -x2 ]  

   



 Areas, Sums & Series ROM  

© 2016 ‘Angel Martin  Page 17 
 

  
 •  Hermite Function 

Dµ Hn (x) = [ 2n+µ () x-µ / ((1-n)/2) ] 2F
~

2 [ 1 , -n/2 ; (1-µ)/2 , (2-µ)/2 ; x2 ] - 

- [ 2n+µ x1-µ / ((-n)/2) ] 2F
~

2 [ 1 , (1-n)/2 ; 1-µ/2 , (3-µ)/2 ; x2 ]  

  •  Kummer's Function          Dµ F(a;b;x) = x -µ(b) 2F
~

2 ( 1 , a ; 1-µ , b ; x )  

 

Examples: 

  •  Sine Integral  

     3.14, ENTER^, 1.28, XEQ "DSI"  ->   D3.14 Si ( 1.28 ) = -0.045395644  

  •  Hyperbolic Sine Integral  

     3.14, ENTER^ , 1.28, XEQ "DSHI"  ->   D3.14 Shi ( 1.28 ) = 0.576495211  

  •  Cosine Integral  

     3.14, ENTER^, 1.28, XEQ "DCI" ->   D3.14 Ci ( 1.28 ) = 1.367323895  

  •  Hyperbolic Cosine Integral  

     3.14, ENTER^, 1.28, XEQ "DCHI"   ->   D3.14 Chi ( 1.28 ) = 1.405640394  

  •  Exponential Integral  

     3.14, ENTER^, 1.28, XEQ "DEI"  ->   D3.14 Ei ( 1.28 ) = 1.982135606  

  •  Fresnel Cosine Integral  

     3.14, ENTER^, 1.28, XEQ "DCX"  ->   D3.14 C ( 1.28 ) = 16.95612253  

  •  Fresnel Sine Integral  

     3.14, ENTER^, 1.28, XEQ "DSX"   ->   D3.14 S ( 1.28 ) = -11.20302776  

  •  Spherical Bessel Function - 1st kind  

     3.14, ENTER^, 2.41, ENTER^, 1.28   XEQ "DSB1"  ->   D3.14 j2.41 ( 1.28 ) = -0.064451622  

  •  Modified Bessel Function - 1st kind ,  n # -1 , -2 , -3 , … 

     3.14,  ENTER^, 2.41, ENTER^, 1.28, XEQ "DINX"  ->   D3.14 I2.41 ( 1.28 ) = 0.352247279  

  •  Bessel Function - 1st kind ,  n # -1 , -2 , -3 , ... 

     3.14,  ENTER^,  2.41, ENTER^, 1.28   XEQ "DJNX"  ->   D3.14 J2.41 ( 1.28 ) = -0.150524582  

  •  Modified Bessel Function - 2nd kind - non-integer order  

     3.14, ENTER^, 2.41, ENTER^, 1.28   XEQ "DKNX" ->   D3.14 K2.41 ( 1.28 ) = -38.98469314  

  •  Bessel Function - 2nd kind - non-integer order  

     3.14, ENTER^, 2.41, ENTER^, 1.28, XEQ "DYNX"  ->   D3.14 Y2.41 ( 1.28 ) = 25.49308580  

  •  Generalized Laguerre's Functions  

     3.14, ENTER^, 1.76, ENTER^, 2.41, ENTER^, 1.28   XEQ "DLANX" ->     

D3.14 L1.76
2.41 ( 1.28 ) = -1.767203465  
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 •  Airy Functions  

     3.14   ENTER^, 1.28   XEQ "DAIRY"     ->    D3.14 Ai (1.28) = -0.162004857    

X<>Y   D3.14 Bi (1.28) = 3.432592624  

  •  Error Function  

     3.14   ENTER^, 1.28, XEQ "DERF"   ->   D3.14 Erf ( 1.28 ) = 1.250557023  

  •  Hermite Function  

     3.14   ENTER^, 2.41, ENTER^, 1.28   XEQ "DHMT"  ->   D3.14 H2.41 ( 1.28 ) = 3.537707646  

  •  Kummer's Functions      With a = sqrt(2)  &  b = sqrt(3)  
     2, SQRT,  STO 01, 3,  SQRT, STO 02  

     3.14   ENTER^, 1.28, XEQ "DKUM"   ->   D3.14 F ( 21/2 ; 31/2 ; 1.28 ) = 2.075891500  

 

End of the Manual.- 


