
 Areas, Sums & Series ROM

© 2016 ‘Angel Martin Page 1

HP-41 Module:

Areas, Series & Sums.

Fractional

Integro-Differentiation

Overview

This module includes a selection of functions and FOCAL routines mainly focused on Series and Sums field
and other related subjects. For the most part the routines are taken from Jean-Marc Baillard extensive web

site, although some others are takes from Poul Kaarup’s collection as well. A few are already available in the
SandMath Module –even if this version is a more portable implementation that suits itself better for

Clonix/NoVRAM owners.

The initial section of the module covers the simple sums of integers and integer powers. This is followed by

simple explicit sums for single, double, triple and multiple series; recursive term sums and Euler
transformations. Examples are also provided in the FAT for quick familiarization. The second section includes

a set of MCODE functions and FOCAL routines dealing with area calculations for several geometric figures,
such as circles and triangles, as well as areas and diagonal lengths of cyclic and regular polygons.

The last section takes a relative large part of the FAT and deals with Fractional Integro-differentiation of a
few Elemental and Special functions. This technique is based on the Hyper-Geometric function and

consolidates an impressive set of capabilities under the same approach.Without further ado, see below the
list of functions included in the module:

XROM Function Description Input Author

18,00 -SERIES 1A Rounded Comparison x,y in X,Y Ángel Martin

18,01 CHSYX Sign Change of Y by X: Y*(-1)^X Value in Y, n in X Ángel Martin

18,02 NCR Combinations of N in sets of R N in Y, R in X Ángel Martin

18,03 “#” Auxiliary for SOLVE Under program control Ángel Martin

18,04 0 Sum of mantissa digits argument, X Ángel Martin

18,05 1 Sum of first N integers argument, X Poul Kaarup

18,06 1/N Harmonic Numbers argument, X Ángel Martin

18,07 2 Sum of Squares of Numbers argument, X Poul Kaarup

18,08 3 Sum of Cubes of Numbers argument, X Poul Kaarup

18,09 N^X Generalized Faulhaber’s Sum N in Y, exponent In X Ángel Martin

18,10 "UM” Single Series Sum (Explicit) arguments in X, Y, ALPHA JM Baillard

18,11 "UM” Double Series Sum (Explicit) argument in X, ALPHA JM Baillard

18,12 "UM” Triple Series Sum (Explicit) arguments in Y,X, ALPHA JM Baillard

18,13 "UME Euler Transformation argument in X, Y, Z, ALPHA JM Baillard

180,14 "UMR” Single Series Sum (Iterative) arguments in X, Y, ALPHA JM Baillard

18,15 “NUM0” Multiple Series Sum (Explicit) bbb.eee in X, data in registers JM Baillard

18,16 "NT” Example for NUM0 n/a Martin-Baillard

18,17 "T” Example for UM n/a Martin-Baillard

18,18 "TE” Example for UME n/a Martin-Baillard

 Areas, Sums & Series ROM

© 2016 ‘Angel Martin Page 2

18,19 "TR” Example for UMR n/a Martin-Baillard

18,20 "TT” Example for UM n/a Martin-Baillard

18,21 "TTT” Example for UM n/a Martin-Baillard

18,22 -AREAS_1B ALPHA Integer part Argument in X Fritz Ferwerda

18.23 BRHM Brhamagupta formula 4 Sides in stack Ángel Martin

18.24 CIRCLE Circle through three points Coordinates in R01-R06 Ángel Martin

18.25 DIAG Diagonal formula Used in CPLD JM Baillard

18.26 HERON Heron formula Triangle sides in Z, Y, Z Ángel Martin

18.27 RPG1 Regular Polygon from sides # sides in Y, length in X Poul Kaarup

18.28 RPG2 Regular polygon from circle # sides in Y, radius in X Poul Kaarup

18.29 "3PNTS” Driver for CIRCLE/Areas Prompts for coordinates Ángel Martin

18.30 "CCPA” Complex Cyclic Polygon Area Parameters in stack and R00 JM Baillard

18.31 "CCPA+” Driver for CCPA Uses Newton Method Ángel Martin

18.32 "CPLA” Complex Cyclic Polygon Area With all Sides known JM Baillard

18.33 "CPLA+” Driver for CPLA Uses SOLVE Ángel Martin

18.34 "CPLD” Complex Cyclic Polyg. Diagonals bbb.eee in X, data in Registers JM Baillard

18.35 "CPLD+ Driver for CPLD Prompts for data entry Ángel Martin

18.36 "STLA” Star Polygon Area Parameters in Stack JM Baillard

18.37 "STLA+” Driver for STLA Prompts for data entry Ángel Martin

18.38 -ITG/DIFF Generalized Hypergeometric Data in Registers and Stack JM Baillard

18.39 1/GM Reciprocal of Gamma argument in X JM Baillard

18.40 PSI Digamma Function argument n X JM Baillard

18.41 "DAIRY” Airy Function Intg-diffm  in Y, x in X JM Baillard

18.42 "DEI” Exponential Intg. Intg-Diff.  in Y, x in X JM Baillard

18.43 "DERF” Error Function Intg.-Diff  in Y, x in X JM Baillard

18.44 "DCHI” Hyp Cos Integral Intg-Diff.  in Y, x in X JM Baillard

18.45 "DCH” Hyp. Cosine Intg-Diff.  in Y, x in X JM Baillard

18.46 "DCI” Cosine Integral Intg-Diff.  in Y, x in X JM Baillard

18.47 "DCOS” Cosine Intg-Diff  in Y, x in X JM Baillard

18.48 "DCX” Fresnel Cosine Integral Intg-Diff.  in Y, x in X JM Baillard

18.49 "DEXP” Exponential Intg-Diff.  in Y, x in X JM Baillard

18.50 "DHMT” Hermite Function Intg-Diff.  in Z, n in Y, x in X JM Baillard

18.51 "DINX” Bessel I function Intg-Diff.  in Z, n in Y, x in X JM Baillard

18.51 "DJNX” Bessel J function Intg-Diff.  in Z, n in Y, x in X JM Baillard

18.53 "DKNX” Mod. Bessel K function Intg-Diff.  in Z, n in Y, x in X JM Baillard

18.54 "DKUM” Kummer function intg-Diff.  in Y, x in X, a in R00, b in R01 JM Baillard

18.55 "DLANX” Lagrange Function Intg-Diff.  in T, a in Z, n in Y, x in X JM Baillard

18.56 "DLN” Natural Log Intg-Fiff.  in Y, x in X JM Baillard

18.57 "DSB1” Spherical Bessel Funct. 1st. Kind  in Z, n in Y, x in X JM Baillard

18.58 "DSHI” Hyp. Sine Integral inth-Diff.  in Y, x in X JM Baillard

18.59 "DSH” Hyperbolic Sine Intg.Diff.  in Y, x in X JM Baillard

18.60 "DSI” Sine integral Intg-Diff.  in Y, x in X JM Baillard

18.61 "DSIN” Sine Intg-Diff  in Y, x in X JM Baillard

18.62 "DSX” Fresnel Sine Integral Intg-Diff.  in Y, x in X JM Baillard

18.63 "DYNX” Mod. Bessel Y function Intg-Diff.  in Z, n in Y, x in X JM Baillard

 Areas, Sums & Series ROM

© 2016 ‘Angel Martin Page 3

1 –Sums and Series

The first section includes several functions to calculate sums of integer powers, as well as simple methods to
sum series given their general term in explicit or recurrent form.

 0 is a small divertimento useful in pseudo-random numbers generation. It simply returns the

sum of the mantissa digits of the argument – at light-blazing speed using just a few MCODE
instructions. More about random numbers will be covered in the Probability/Stats section later on.

Example: calculate the sum of all digits of the HP-41’s rendition of pi:

 PI, XEQ “0” => 40.000000000

 1/N calculates the Harmonic number of the argument in X, that is the sum of the reciprocals of

the natural numbers (which excludes zero) lower and equal to n. It will be used in the calculation of
the Kelvin functions and the Bessel functions of the second kind, K(n,x) and Y(n,x).

 Example: calculate H(5) and H(25).

 5, XEQ “1/N” => 2.283333333

 25, XEQ “1/N” => 3.815958178

 123 are implemented to calculate the sum of integer powers directly based on the

corresponding formulas. The number of terms to sum is expected to be in the X- register. Functions

calculate the linear sum using the triangular formula; the sum of squares using the pyramidal
formulas; and the sum of cubes also using the pyramidal formulas. 








Example: Calculate the sum of the first 10 natural numbers and their squares and cubes:

10, 1 quickly returns: 55.00000000

LASTX, 2” => 385.0000000

LASTX, 3 => 3,025.000000

 N^X Calculates a generalized value of the Faulhaber’s formula for integer values of x. – The

few first integer values of x have explicit formulas for the result (which are used in the functions

described above) , but that’s not the case for a general value - which can also be non-integer.

Obviously for x=-1 this function returns identical results than 1/N, albeit slower due to the

additional complexity of the definition of the term.

 Areas, Sums & Series ROM

© 2016 ‘Angel Martin Page 4

Example: Check the triangular (x=1) and pyramidal (x=2) formulas for n=10 – which are particular

cases of the Faulhaber’s Formula, involving Binomial coefficients and Bernoulli’s numbers. See the
link below for details: http://en.wikipedia.org/wiki/Faulhaber%27s_formula

10, ENTER^, 1, XEQ “N^X” => 55.00000000

10, ENTER^, 2, XEQ “N^X“ => 385.0000000

And using the convention B(1) = 0.5 the formula is:

Which could be programmed using a few of the SandMath functions, albeit it would be considerably

slower due to the impact of the Zeta algorithms (part of Bernoulli’s) – kicking in for n>4.

 CHSYX is related to the same subject, and in general relevant to the summation of alternating

series – It can be regarded as an extension of CHS but dependent of the number in X. Its

expression is:

 CHS(y,x)= y*(-1)^x, and thus changing the sign of Y when the number in X is odd.

 NPR calculates Permutations, defined as the number of possible different arrangements of N

different items taken in quantities of R items at a time. No item occurs more than once in an
arrangement, and different orders of the same R items in an arrangement are counted separately.

The formula is:

This last two functions will be used as subroutines in the series sums programs described next.

http://en.wikipedia.org/wiki/Faulhaber%27s_formula

 Areas, Sums & Series ROM

© 2016 ‘Angel Martin Page 5

Sums of Series using their General Terms

The following programs allow you to obtain the value of simple, double and triple series for which the
general term is known, either as explicit expression or as a recurrent form.

Simple Series.



UM calculates a single series sum, that is:

 S = (uk + uk+1 + uk+2 + uk+3 +) =  un for n >= k

defined by the general term un = f(n) where f is a known (i,e, explicit) function.

A program which computes Un = f(n) is required as a subroutine. It is done assuming n is in X-register

upon entry. The module includes the routine “T” as example for this case, with Un=1/n!

ALPHA, “TR”, 1, ALPHA, XEQ “UM” -> X = 1.718281830 = R01 (in 9 seconds)

UMR calculates the same sum when Un is given as a recurrence expression with an initial known value,

that is: uk is given and un+1 = f(un;n) where f is a known function.

a program which computes un+1 = f(Un; n) is required as a subroutine. It is done assuming Un is in X-

register and n is in Y-register upon entry. The module includes the routine “TR” as example for this case,

with u1 = 1 and un+1 = un/(n+1)

ALPHA, “TR”, ALPHA, 1, ENTER^, XEQ “UMR” -> X = 1.718281830 = R01 (in 7 seconds)

Note that on both cases the initial index can also be zero, assuming that’s compatible with the definition of
Un, which adds more flexibility to the routine. In both cases the function needs to be programmed under a

global label, and its name is expected to be in the ALPHA register when the routines are called.

STACK INPUTS OUTPUTS STACK INPUTS OUTPUTS

Y / UM Y k UMR

X k UM X uk UMR

ALPHA F.NAME F.NAME ALPHA F.NAME F.NAME

Euler Transformation.


UME calculates the same sum making use of the Euler Transformation to accelerate the convergence

of alternating series: S = u0 - u1 + u2 - u3 + + (-1)n un +

The sum is re-written in function of the binomial coefficients, Cn
p = n! / (p! (n-p)!) as follows:

S = a0/2 + (C1
1 a0 - C1

0 a1)/2
2 + (C2

2 a0 - C2
1 a1 + C2

0 a2)/2
3 + (C3

3 a0 - C3
2 a1 + C3

1 a2 - C3
0 a3)/2

4 +

......
This may produce superb acceleration but it can also fail.

 Areas, Sums & Series ROM

© 2016 ‘Angel Martin Page 6

A program which computes Un = |f(n)| is required as a subroutine, but without the alternating sign. It is
done assuming n is in X-register upon entry. The module includes the routine “TE” as example for this case,

with f(n) = (n+1)-1/2

ALPHA, “TE”, ALPHA, XEQ “UME” -> X = 0.6048986431 = R01

For this particular example the error is -3 10-10 (!), and only 28 terms are calculated (taking about 6.5

minutes to converge). Without an acceleration method, more than 1,018 terms would be necessary to
achieve the same accuracy... which execution time would be much greater than the age of the Universe.

 STACK INPUTS OUTPUTS

X / UME

ALPHA F.NAME F.NAME

Double and Triple Series.


UM calculates a double series sum, that is: S =  (un;m); for n >= n0 ; m >= m0

As before, the general term needs to be programmed under a separate subroutine using a global label.
This assumes that “n” is in the X-register and “m” in the Y-register upon entry. The two initial indices
are expected to be in the stack and the label name must be in the ALPHA register as well.

STACK INPUTS OUTPUTS

Y m0 

X n0 

ALPHA F.NAME F.NAME

The program uses data registers R00 to R05, which therefore should not be used in the definition of
the general term. The module includes the routine “TT” as example for this case, with the expression:

f(n;m) = 1 / (nn m!)

ALPHA, “TT”, ALPHA, 1, ENTER^, XEQ “UM” -> X = 2.218793264 = R03 (in 1 min 18s)

UM calculates a triple series sum, that is: S =  (un;m;p); for n >= n0 ; m >= m0; p >= p0

As before, the general term needs to be programmed under a separate subroutine using a global label.
This assumes that “n” is in the X-register “m” in the Y-register, and p is in the Z-register upon entry.
The three initial indices are expected to be in the stack and the label name must be in the ALPHA
register as well.

STACK INPUTS OUTPUTS

Z p0 

Y m0 

X n0 

ALPHA F.NAME F.NAME

 Areas, Sums & Series ROM

© 2016 ‘Angel Martin Page 7

The program uses data registers R00 to R07, which therefore should not be used in the definition of
the general term. The module includes the routine “TTT” as example for this case, with the expression:

f(n;m;p) = 1 / (nn m! (p!)2)

ALPHA, “TTT”, ALPHA, 1, ENTER^, ENTER^, XEQ “UM” -> X = 2.839135243 = R04 (6 min 5s)

With an error =-7 E-9

Multiple Series

NUM0 calculates a multiple series sum, with k internal summations that all start in zero - that is:

S =  [U(n1;n2; ;nk)] with n1>= 0 ; n2>= 0 ; ; nk>= 0

Obviously now the number of indices will be in the X register, and there are no initial indices – which are
assumed to be zero. This may need you to re-write the expression of the general term to make it compatible

with this condition.

This is the most limiting requirement for this program, which is not suitable for cases that have mutual

dependencies between the initial indexes.

Here too, the general term needs to be programmed under a separate subroutine using a global label,
which needs to be entered in ALPHA. This assumes on entry that “n1” is in the R01 register, “n2” in the
R02 register, “n3” in R03, and successively so until completing the number of variables.

 STACK INPUTS OUTPUTS

X k 0

ALPHA F.NAME /

Only the synthetic registers {M,N,O} are used by the program. The module includes the routine “NT”

as example for this case, with the expression used in the triple aeample : f(n;m;p) = 1 / (nn m! (p!)2).

We therefore need to change it to start at the zero indexes for the three variables, i.e. must make a change

of arguments to reduce to the standard: n >= 0 ; m >= 0 ; p >= 0 by replacing n with (n+1) ; m with

(m+1) ; p with (p+1): f(n;m;p) = 1 / {(n+1)(n+1) (m+1)! [(p+1)!]2 }

ALPHA, “NT”, ALPHA, 3, XEQ “NUM0” -> X = 2.839135243 = R04 (8 min 39 s)

 Areas, Sums & Series ROM

© 2016 ‘Angel Martin Page 8

2 –Areas of Polygons

The second section of the module includes several MCODE functions for triangles, cyclic quadrilaterals and
even non-regular polygons.

 CIRCL calculates the radius of a circle passing thru three data points, using the point x,y

coordinates. The values are expected to be stored in R01-R07. Besides that, it’ll also return in the

Y-register the area of the circumscribed triangle defined by the three points.

Example: Calculate the radius of the circle passing thru P(5,1), Q(6,2), and R(5,3)

The results are:

XEQ “CIRCL” => r=1,000000000,

X<>Y => A=1,000000000

The input sequence starts with the abscissa of P1 in R01.

Note that you can use the routines IN and INPUT
available in the SandMath to populate the registers

automatically.

 HERON calculates the area of a triangle knowing its three sides, using Heron’s formula. Just enter

the sides values in the stack, and execute the function. The result is stored in X, with the original

side saved in LastX. The rest of the stack is unchanged.

Let the triangle ABC with 3 known sides { a , b , c } and s = (a+b+c)/2 the semi-perimeter

Heron's formula is: Area = [s(s-a)(s-b)(s-c)]1/2

U Example: U a = 2, b = 3, c = 4

Type: 2, ENTER^, 3, ENTER^, 4, XEQ “HERON" => Area = 2.904737510

 Note: the function CIRCL described above makes use of the HERON formula internally after it

 first calculates the triangle sides from the point coordinates.

 BRHM is related to it, but the calculation for the area of the cyclic quadrilateral - using

Brhamagupta’s formula. Just enter the four values in the stack and execute the function. The result

is stored in X, with the original side saved in LastX. The rest of the stack is unchanged.

Let a, b, c, and d be its sides lengths, and the semi-perimeter
s = (a + b + c + d)/2 .The area A of the cyclic quadrilaterals:

A = [(s-a).(s-b).(s-c).(s-d).]1/2

U Example:U a = 4 , b = 5 , c = 6 , d = 7

 Type: 4, ENTER^, 5, ENTER^, 6, ENTER^, 7,

XEQ "BRHM" => Area = 28.98275349

 Areas, Sums & Series ROM

© 2016 ‘Angel Martin Page 9

 PG1 Calculates the area of a regular polygon when its side length is known. Input parameters are

the number of sides in Y, and the side length in X. The result is left in the X register.

Example: calculate the area of a triangle with side length a=5 m

3, ENTER^, 5, XEQ “PG1” -> 10.83 m^2

 PG2 Performs the same calculation but using the radius of the circumscribed circle instead of the

side length. Same order of parameters for input, with the number of sides in Y.

Example: calculate the area of a triangle circumscribed in a circle with radius r=5 m

3, ENTER^, 5, XEQ “PG2” -> 32.48 m^2

 Finally, the Routine “3PNTS” is a FOCAL driver for functions CIRCLE. You can use it to enter the

coordinates of the three points into data registers R01-R06, presented as three screens with the

prompts:

 … …

Once this is accomplished the program offers you a choice for the value to calculate next, either the

triangle area or the circle radius. You can Also press [E] to start over with a new set of three

points.

If used on the example listed above, it returns the following results:

 and

 Areas, Sums & Series ROM

© 2016 ‘Angel Martin Page 10

Convex Cyclic Polygons.

And what about non-regular polygons, you may wonder? Well, those are the subject of the following set of

FOCAL routines about to be described.

Programs “CCPA” and “CPLA” compute the area A and the circumradius R of a convex cyclic polygon

assuming all the sides lengths are known. Moreover, we also assume that the center of the circumcircle is
inside the polygon.

If{a1 , a2 , , an} are the sides lengths and { µ1 , µ2 , , µn }are the corresponding central

angles, we have to solve the system of (n+1) equations:

 2.R sin µ1/2 = a1

 2.R sin µ2/2 = a2

 …………….

 2.R sin µn/2 = an

 µ1 + µ2 + ... + µn = 360°

Performing a few substitutions lead to an expression with the radius as single unknown, to be resolved
iteratively using any root-finding method:

 asin (a1/2R) + asin (a2/2R) + + asin (an/2R) = 180°

After finding R, the Area is given by : A = (R2/2) (Sin a1 + Sin a2 + + Sin an)

There are two versions included in the module – “CPLA” uses the SOLVE function in the Advantage and
“CCPA” uses a built-in root finder based on Newton’s method. Each one has advantages and shortcomings,

as usual.

Drivers for Data Entry.

The routines expect the sides of the polynomial already stored in contiguous data registers, and the control
word “bbb.eee” in the X register before you call the routine. For your convenience, a driver routine is also

included that prompts for the side values and does the storing for you, Using “CPLA+” or “CCPA+”, all you

need to do is enter the values at each prompt, and once completed it’ll direct the execution to the
corresponding data engine downstream.

Example. Find the area of a convex cyclic polygon with sides: 4 , 5 , 6 , 7 , 8 , 9 , 10

XEQ “CPLA+” “N=?”
7, R/S “d1=?”

4, R/S “d2=?”
5, R/S “d3=?”

6, R/S “d4=?”
7, R/S “d5=?”

8, R/S “d6=?”

9, R/S “d7=?”
10, R/S -> 174.6757940 the area, and

X<>Y -> 8.143816980 the radius

 Areas, Sums & Series ROM

© 2016 ‘Angel Martin Page 11

Diagonal Lengths.

CPLD calculates the diagonal lengths of a convex cyclic polygon with its side lengths known. The method

used involves solving a linear system of (n-3) equations with (n-3) unknowns, which is solved by successive

approximations. The convergence is linear only – which results in relative longer execution times.

The iteration starts with all diagonals lengths = 0, which is very simplistic. The successive sums of the
differences between 2 consecutive approximations (in absolute values) are displayed. They should tend to

zero, however, the termination criterion may lead to an infinite loop. Since there are 319 registers at most,

"CPLD" can find the diagonals lengths of a 159-gon – but the execution time will not be small without an
emulator.

CPLD expects the number of sides in R00, and the sides of the polynomial already stored in contiguous data

registers starting with R01 until Rn+1. Then you must provide the control words “bbb.eee” indicating the
location of the data registers that store the side lengths.

STACK INPUT OUTPUTS

X / bbb.eee

For your convenience, a driver routine is also included that prompts for the side values and does the storing

for you, Using “CPLD+” all you need to do is enter the values at each prompt, and once completed it’ll

direct the execution to CPLD downstream.

Example: Find the diagonals lengths of a convex cyclic hexagon with sides: 4 , 5 , 6 , 7 , 8 , 9

XEQ “CPLD+” “N=?”

6, R/S “a1=?”

4, R/S “a2=?”
5, R/S “a3=?”

6, R/S “a4=?”
7, R/S “a5=?”

8, R/S “a6=?”

9, R/S shows estimations… -> convergence
 d8=8.46278437

R/S d9=12.12358502
R/S d10=12.97690535

There are in fact n(n-3)/2 diagonals whose lengths may be obtained by "rotating" the sides lengths in
registers R01 to R06 and we have similarly: n(n-3)/2 = 9 if n = 6

 d4 = 9.998827970 d7 = 11.30861231

 d5 = 13.01214483 d8 = 13.06010803

 d6 = 11.49035918 d9 = 12.32872367

Finally, the MCODE function DIAG is used internally by CPLD to speed-up the calculations. It computes the
following expression, assuming x , y , z , t are in registers X , Y , Z , T upon entry

SQRT [{ x.y (z2 + t2) + z.t (x2 + y2) } / (x.y + z.t)]

 Areas, Sums & Series ROM

© 2016 ‘Angel Martin Page 12

Regular Star Polygons

A star polygon {n/k}, with n,k positive integers, is a figure formed by connecting with straight lines every “k-

th” point out of n regularly spaced points lying on a circumference. The number k is called the polygon

density of the star polygon. Without loss of generality, take k<n/2. The star polygons were first
systematically studied by Thomas Bradwardine.

If k=1, a regular polygon {n} is obtained. Special cases of {n/k} include {5/2} (the pentagram), {6/2} (the
hexagram, or star of David), {8/2} (the star of Lakshmi), {8/3} (the octagram), {10/3} (the decagram), and

{12/5} (the dodecagram).

"STLA" computes the area A, the perimeter P, the inradius r and the circumradius R of a regular

star polygon { n / k } from its edge length a

Formulae:

 A = n R2 Sin (180°/n) Cos (180° k/n) / Cos [180°(k-1)/n]

 a = 2.R Sin (180° k/n)

 r = R Cos (180° k/n)

 P = 2.A / r

The table on the left shows the input and output

Required by the program – easy does it!

STACK INPUTS OUTPUTS

T / R

Z a r

Y n P

X k < n/2 A

 Areas, Sums & Series ROM

© 2016 ‘Angel Martin Page 13

Examples:

 • a = 1 , n = 5 , k = 2
 1 ENTER^, 5 ENTER^, 2 XEQ "STLA" -> A = 0.310270701

 RDN P = 3.819660113

 RDN r = 0.162459848
 RDN R = 0.525731112

 • a = 1 , n = 10 , k = 3

 1 ENTER^, 10 ENTER^, 3, R/S -> A = 0.857567126

 RDN P = 4.721359547

 RDN r = 0.363271264

 RDN R = 0.618033989

 • a =  , n = 41 , k = 13
 PI ENTER^, 41, ENTER^, 13, R/S -> A = 9.855571194

 RDN P = 19.37713086

 RDN r = 1.017237409
 RDN R = 1.871409374

This program works in all angular modes, however, DEG mode should be preferable.

If k = 1, we get the convex regular n-gon. For instance, with a = 1 , n = 5 , k = 1, "STLA" returns what
corresponds to the regular pentagon.

A = 1.720477401

P = 5

r = 0.688190960
R = 0.850650808

Driver Program.

Here too you have a convenient driver program to guide you thru the data entry process: program “STLA+”

will prompt for the input values and will present the results sequentially after the calculations are done.

, ,

, , etc…

 Areas, Sums & Series ROM

© 2016 ‘Angel Martin Page 14

3 –Fractional Integro-Differentiation

If  is a real number (integer or fractional) and a function f is defined by a power series:

f(x) = k=0,1,2,..{ck x
k }

then its fractionalintegro-differentiation may be computed by:

dµ f / dxµ = Dµ f(x) = k=0,1,2,....{ ck [(k+1) / (k+1-µ)] xk-µ }

If the function may be expressed in terms of hypergeometric functionspFq, the following relation is very

useful too:

Dµ
pFq (a1, ... , ap ; b1, .. bq ; x) = x -µ(b1)....(bq) p+1F

~
q+1 (1, a1, , ap ; 1-µ, b1, ... bq ; x)

where  is Euler's Gamma function, andpF
~

q is the regularized generalized hypergeometric function. This

function was already included in the SandMath module, and it is now copied here for convenience – tucked
away under one of the section headers so that a dedicated FAT entry was not required.

As a trivial corollary, D0 f(x) = f(x). Positive integer numbers (i.e. natural numbers) represent the

successive derivatives of the function. Also if µ= -1, -2, -3, the results are the repeated integrals of the

function f - usually those that vanish for x = 0.

Formulae and details.

Besides the special functions in the module there are several elementary functions included as well. Note

that all program names begin with the ‘D” letter, followed by the common acronym that designates the
function’s name.

As usual when a function is evaluated by a power series, the results are not very accurate for large
arguments;they may even be meaningless ... unless all the terms have the same sign!

For data entry, µ is always to be entered first, then the order/index - if any - and finally, x in register X: (*)

Stack Input#1 Input#2 Input#3 Result

T / / µ /

Z / µ a /

Y µ n n /

X x x x (Dµ f) (x)

(*) as single exception, for Kummer’s functions R01 and R02 must also be initialized first
with the function parameters a & b.

You’re encouraged to visit JM’s original page located

at:http://hp41programs.yolasite.com/fracintegrdiff.php

http://hp41programs.yolasite.com/fracintegrdiff.php

 Areas, Sums & Series ROM

© 2016 ‘Angel Martin Page 15

A few elementary functions.

 • Hyperbolic Sine Dµ Sinh x = 2µ-1 sqrt() x1-µ
1F

~
2 (1 ; (2-µ)/2 , (3-µ)/2 ; x2/4)

 • Hyperbolic Cosine Dµ Cosh x = (2/x)µ sqrt() 1F
~

2 (1 ; (1-µ)/2 , (2-µ)/2 ; x2/4)

 • Sine Dµ Sin x = 2µ-1 sqrt() x1-µ
1F

~
2 (1 ; (2-µ)/2 , (3-µ)/2 ; -x2/4)

 • Cosine Dµ Cos x = (2/x)µ sqrt() 1F
~

2 (1 ; (1-µ)/2 , (2-µ)/2 ; -x2/4)

 • Exponential Dµ Exp x = x -µ
1F

~
1 (1 ; 1-µ ; x)

 • Logarithm Dµ Ln x = x -µ FC(µ)
log (x)

 where FC(µ)
log (x) = (-1)µ-1 (µ-1) ! if µ is a positive integer,

 and FC(µ)
log (x) = [Ln x - Psi(1-µ) - ] / (1-µ) otherwise .

 Psi = Digamma Function; = Euler's constant =0.5772156649... and =Gamma Function.

Examples:

 • Hyperbolic Sine:

 3.14 ENTER^, 1.28 XEQ "DSH" -> D3.14Sinh (1.28) = 1.999005451

 • Hyperbolic Cosine:

 3.14 ENTER^, 1.28 XEQ "DCH" -> D3.14Cosh (1.28) = 1.502958219

 • Sine:

 3.14 ENTER^, 1.28 XEQ "DSIN" -> D3.14Sin (1.28) = -0.019142092

 • Cosine:

 3.14 ENTER^, 1.28 XEQ "DCOS" -> D3.14Cos (1.28) = 0.888787267

 • Logarithm:

 3.14 ENTER^, 1.28 XEQ "DLN" -> D3.14Ln (1.28) = 1.138569850

 • Exponential:

 3.14 ENTER^, 1.28 XEQ "DEXP" -> D3.14Exp (1.28) = 3.501963669

 Areas, Sums & Series ROM

© 2016 ‘Angel Martin Page 16

A few Special Functions.

• Sine Integral Dµ Si x = 2µ-2  x1-µ
2F

~
3 (1/2 , 1 ; 3/2 , (2-µ)/2 , (3-µ)/2 ; -x2/4)

• Hyperbolic Sine Integral Dµ Shi x = 2µ-2  x1-µ
2F

~
3 (1/2 , 1 ; 3/2 , (2-µ)/2 , (3-µ)/2 ; x2/4)

• Cosine Integral

Dµ Ci x = [FC(µ)
log (x) +  / (1-µ)] x -µ - 2µ-3 sqrt() x2-µ 2F

~
3 (1, 1 ; 2, (3-µ)/2, (4-µ)/2 ; -x2/4)

• Hyperbolic Cosine Integral

Dµ Chi x = [FC(µ)
log (x) +  / (1-µ)] x -µ + 2µ-3 sqrt() x2-µ

2F
~

3 (1, 1 ; 2, (3-µ)/2, (4-µ)/2 ; x2/4)

• Exponential Integral

Dµ Ei x = [FC(µ)
log (x) +  / (1-µ)] x -µ + x1-µ 2F

~
2 (1 , 1 ; 2 , 2-µ ; x)

• Fresnel Cosine Integral

Dµ C(x) = 22µ-3/23/2 x1-µ
3F

~
4 [1/4 , 3/4 , 1 ; (2-µ)/4 , (3-µ)/4 , (4-µ)/4 , (5-µ)/4 ; -2 x4/16]

• Fresnel Sine Integral

Dµ S(x) = 22µ-11/25/2 x3-µ
3F

~
4 [3/4 , 1 , 5/4 ; (4-µ)/4 , (5-µ)/4 , (6-µ)/4 , (6-µ)/4 ; -(PI)2 x4/16]

• Spherical Bessel Function - 1st kind

Dµ jn (x) = 2µ-2n-1 xn-µ (n+1) 2F
~

3 [(n+1)/2 , (n+2)/2 ; (n+1-µ)/2 , (n+2-µ)/2 , n+3/2 ; -x2/4]

• Modified Bessel Function - 1st kind

Dµ In (x) = 2µ-2n sqrt() xn-µ (n+1) 2F
~

3 [(n+1)/2, (n+2)/2; (n+1-µ)/2, (n+2-µ)/2, n+1; x2/4]

• Bessel Function - 1st kind

Dµ Jn (x) = 2µ-2n sqrt() xn-µ (n+1) 2F
~

3 [(n+1)/2 , (n+2)/2 ; (n+1-µ)/2 , (n+2-µ)/2 , n+1 ; -x2/4]

• Modified Bessel Function - 2nd kind; where n is not an integer.

Dµ Kn (x) = 2µ-2n-13/2 x-µ-n csc(n.) {16n(1-n) 2F
~

3 [(1-n)/2, (2-n)/2; (1-µ-n)/2, (2-µ-n)/2, 1-n;

x2/4] - x2n/(n+1) 2F
~

3 [(n+1)/2, (n+2)/2; (n+1-µ)/2, (n+2-µ)/2, n+1; x2/4]}

• Bessel Function - 2nd kind; where n is not an integer.

Dµ Yn (x) = 2µ-2n (PI)1/2 x-µ-n csc(n.) { -16n(1-n) 2F
~

3 [(1-n)/2 , (2-n)/2 ; (1-µ-n)/2, (2-µ-n)/2,

1-n ; -x2/4] + x2n Cos(n.) (n+1) 2F
~

3 [(n+1)/2, (n+2)/2 ; (n+1-µ)/2, (n+2-µ)/2, n+1 ; -x2/4]}

• Generalized Laguerre's Functions

Dµ La
n (x) = [(n+a+1)/(n+1)] x -µ

2F
~

2 (1, -n; a+1, 1-µ ; x)

• Airy Functions

Dµ Ai(x) = 3µ-4/3 x -µ { 32/3(1/3) 2F
~

3 [1/3 , 1 ; (1-µ)/3 , (2-µ)/3 , (3-µ)/3 ; x3/9] -

- x (2/3) 2F
~

3 [2/3 , 1 ; (4-µ)/3 , (2-µ)/3 , (3-µ)/3 ; x3/9] }

Dµ Bi(x) = 3µ-5/6 x -µ { 32/3(1/3) 2F
~

3 [1/3 , 1 ; (1-µ)/3 , (2-µ)/3 , (3-µ)/3 ; x3/9] +

+ x (2/3) 2F
~

3 [2/3 , 1 ; (4-µ)/3 , (2-µ)/3 , (3-µ)/3 ; x3/9] }

 • Error Function Dµ Erf (x) = 2µ x1-µ
2F

~
2 [1/2 , 1 ; (2-µ)/2 , (3-µ)/2 ; -x2]

 Areas, Sums & Series ROM

© 2016 ‘Angel Martin Page 17

 • Hermite Function

Dµ Hn (x) = [2n+µ () x-µ / ((1-n)/2)] 2F
~

2 [1 , -n/2 ; (1-µ)/2 , (2-µ)/2 ; x2] -

- [2n+µ x1-µ / ((-n)/2)] 2F
~

2 [1 , (1-n)/2 ; 1-µ/2 , (3-µ)/2 ; x2]

 • Kummer's Function Dµ F(a;b;x) = x -µ(b) 2F
~

2 (1 , a ; 1-µ , b ; x)

Examples:

 • Sine Integral

 3.14, ENTER^, 1.28, XEQ "DSI" -> D3.14 Si (1.28) = -0.045395644

 • Hyperbolic Sine Integral

 3.14, ENTER^ , 1.28, XEQ "DSHI" -> D3.14 Shi (1.28) = 0.576495211

 • Cosine Integral

 3.14, ENTER^, 1.28, XEQ "DCI" -> D3.14 Ci (1.28) = 1.367323895

 • Hyperbolic Cosine Integral

 3.14, ENTER^, 1.28, XEQ "DCHI" -> D3.14 Chi (1.28) = 1.405640394

 • Exponential Integral

 3.14, ENTER^, 1.28, XEQ "DEI" -> D3.14 Ei (1.28) = 1.982135606

 • Fresnel Cosine Integral

 3.14, ENTER^, 1.28, XEQ "DCX" -> D3.14 C (1.28) = 16.95612253

 • Fresnel Sine Integral

 3.14, ENTER^, 1.28, XEQ "DSX" -> D3.14 S (1.28) = -11.20302776

 • Spherical Bessel Function - 1st kind

 3.14, ENTER^, 2.41, ENTER^, 1.28 XEQ "DSB1" -> D3.14 j2.41 (1.28) = -0.064451622

 • Modified Bessel Function - 1st kind , n # -1 , -2 , -3 , …

 3.14, ENTER^, 2.41, ENTER^, 1.28, XEQ "DINX" -> D3.14 I2.41 (1.28) = 0.352247279

 • Bessel Function - 1st kind , n # -1 , -2 , -3 , ...

 3.14, ENTER^, 2.41, ENTER^, 1.28 XEQ "DJNX" -> D3.14 J2.41 (1.28) = -0.150524582

 • Modified Bessel Function - 2nd kind - non-integer order

 3.14, ENTER^, 2.41, ENTER^, 1.28 XEQ "DKNX" -> D3.14 K2.41 (1.28) = -38.98469314

 • Bessel Function - 2nd kind - non-integer order

 3.14, ENTER^, 2.41, ENTER^, 1.28, XEQ "DYNX" -> D3.14 Y2.41 (1.28) = 25.49308580

 • Generalized Laguerre's Functions

 3.14, ENTER^, 1.76, ENTER^, 2.41, ENTER^, 1.28 XEQ "DLANX" ->

D3.14 L1.76
2.41 (1.28) = -1.767203465

 Areas, Sums & Series ROM

© 2016 ‘Angel Martin Page 18

 • Airy Functions

 3.14 ENTER^, 1.28 XEQ "DAIRY" -> D3.14 Ai (1.28) = -0.162004857

X<>Y D3.14 Bi (1.28) = 3.432592624

 • Error Function

 3.14 ENTER^, 1.28, XEQ "DERF" -> D3.14 Erf (1.28) = 1.250557023

 • Hermite Function

 3.14 ENTER^, 2.41, ENTER^, 1.28 XEQ "DHMT" -> D3.14 H2.41 (1.28) = 3.537707646

 • Kummer's Functions With a = sqrt(2) & b = sqrt(3)
 2, SQRT, STO 01, 3, SQRT, STO 02

 3.14 ENTER^, 1.28, XEQ "DKUM" -> D3.14 F (21/2 ; 31/2 ; 1.28) = 2.075891500

End of the Manual.-

