
Total_Rekall ɀ Dare to Compare ɀ Warp_Core+

© Ángel Martin ɀ April 2020 Page 1

The Total_Rekall 2020 Module

άWarp_Core+έ Revision K6

RCL Math and Full Stack Tests for the HP-41

Including FixALL mode for accurate number display
& Auto-Complete Advanced XEQ Mode

Written and programmed by Ángel Martin
April 19, 2020

Total_Rekall ɀ Dare to Compare ɀ Warp_Core+

© Ángel Martin ɀ April 2020 Page 2

This compilation revision 4.1.1

Copyright © 2014 -2020 Ángel Martin

Published under the GNU software license agreement.

Original authors retain all copyrights, and should be mentioned in writing by any part utilizing this

material. No commercial usage of any kind is allowed.

Screen captures taken from V41, Windows-based emulator developed by Warren Furlow.
See www.hp41.org

Acknowledgments. - Thanks to the MCODE pioneers and grand masters who published their work in

PPC Journal and other sources, such as Ken Emery (and alter-ego Skiwd), Clifford Stern, Doug Wilder,
Håkan Thörngren, Frits Ferwerda and Nelson F. Crowle amongst others for their powerful functions,

real examples of solid MCODE programming.

Many thanks to Greg J. McClure and Poul Kaarup for their contributed functions in the auxiliary FAT.

Everlasting thanks to the original developers of the HEPAX and CCD Modules ï real landmark and

seminal references for the serious MCODER and the 41 system overall. With their products they
pushed the design limits beyond the conventionally accepted, making many other contributions pale

by comparison.

http://www.hp41.org/

Total_Rekall ɀ Dare to Compare ɀ Warp_Core+

© Ángel Martin ɀ April 2020 Page 3

WARP_CORE 2020
HP-41 Module

Table of Contents

1. Whatôs New in the 2020 revisions
a. Auto-Complete Mode . 9
b. Universal Execute . 14
c. Accessing Sub-functions . 15
d. Enhanced ASCII File Editor . 18

2. The ñDare to Compareò Edition.
a. General Introduction . 22
b. The Sub-function CATalog . 23
c. Managing Auxiliary FATs 24
d. Stack Comparisons Main Launcher 25

3. The ñTotal Rekallò Edition
a. The Total RCL Dilemma . 26
b. Programmable arguments Look-up Table 27
c. Direct Register Comparisons . 28
d. General-Purpose Comparison . 29
e. General-Purpose Exchange . 30
f. Value Comparison with selected variable. 31

i. Example: Data Registers Bubble-Sort 32
g. Inverse ISG and DSE modes . 33

i. Example: Congruence Equation 35
h. The Double Indirection: a solution in search of a problem 37
i. Going over the top: Multiple Indirection 37

i. Example: Bubble sort w/out Data Movement 38
j. Appendix. A trip to Memory Line 39

4. Advanced System Utilities.
a. Dynamic ALL mode displaying . 39
b. Stack Shuffling and selective clearing 41
c. Shadow Buffer Registers Storage . 43
d. Buffer Header: warping around SELECT 44
e. Finding the X-needle in the REG-haystack 45
f. Playing with Key Assignments. 46
g. Saving Status Registers in X-Memory 47
h. XROM Codes and Function ID# Codes . 48
i. Saving and Restoring the RTN Stack 49
j. LIFO X-Functions . 50
k. Loading Multi-byte instructions . 52
l. Appendix. - Internal Data Field structure 55
m. Appendix.- Dare to Compare: 102 functions at your fingertips . . 56

Total_Rekall ɀ Dare to Compare ɀ Warp_Core+

© Ángel Martin ɀ April 2020 Page 4

Figure 0: Interaction between the different function lau nchers.

Figure 1: RKL Hot keys (left) and Main Overlay (right).

Total_Rekall ɀ Dare to Compare ɀ Warp_Core+

© Ángel Martin ɀ April 2020 Page 5

Summary Function Table.

 # Function Description Input Dependency Type Author

0 -WARP CORE+ Lib#4 Check & Splash none Lib#4 MCODE Ángel Martin

1 ED+ Enhanced ASCII File Editor FName in ALPHA Lib#4 MCODE Hp ς Á.Martin

2 XEQ+ Auto-Complete Mode Initial letter, hot keys Lib#4 MCODE Ángel Martin

3 ?CASE _ _ is case value Value in prompt / Next Line Lib#4 MCODE Ángel Martin

4 RKL _ _ Enhanced RCL function Prompts for RG#. Lib#4 MCODE Ángel Martin

5 RC- _ _ RCL Subtraction RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

6 RC+ _ _ RCL Addition RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

7 RC* _ _ RCL Multiply RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

8 RC/ _ _ RCL Divide RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

9 RC^ _ _ RCL Power RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

10 RIND2 _ _ w/[Lb5 Lb5 ό Lb5 Χύ RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

11 SELCT _ selects variable RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

12 SHFL _ _ _ _ _ Stack Shuffle five stack regs in prompt Lib#4 MCODE Ángel Martin

13 SIND2 _ _ {¢h Lb5 Lb5 ό Lb5 Χύ RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

14 ST<>RG _ _ Stack Exchange RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

15 A<>RG _ _ Alpha Exchange RG# in prompt / Next Line Lib#4 MCODE Ken Emery

16 WF# _ _ _ Sub-function Launcher by index Index at the prompt Lib#4 MCODE Ángel Martin

17 WF$ _ Sub-function Launcher by Name Name in prompt Lib#4 MCODE Ángel Martin

18 Y<> _ _ Swap Y and Register RG# in prompt / Next Line Lib#4 MCODE Greg McClure

19 Z<> _ _ Swap Z and register RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

20 T<> _ _ Swap T and register RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

21 L<> _ _ Swap L and register RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

22 M<> _ _ Swap M and register RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

23 N<> _ _ Swap N and register RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

24 O<> _ _ Swap O and register RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

25 P<> _ _ Swap P and register RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

26 Q<> _ _ Swap Q and register RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

27 -STKTST Function Builder Prompts for Reg and operation Lib#4 MCODE Ángel Martin

28 ?0= _ _ Equal to Zero Test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

29 ?0# _ _ Different from Zero Test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

30 ?0< _ _ Greater than Zero test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

31 ?0<= _ _ Greater than/Equal to Zero Test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

32 ?0> _ _ Less than Zero Test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

33 ?0>= _ _ Less than/ Equal to Zero Test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

34 ?X= _ _ Equal to X test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

35 ?X# _ _ Different from X test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

36 ?X< _ _ Greater than X test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

37 ?X<= _ _ Greater than/Equal to X test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

38 ?X> _ _ Less than X Test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

39 ?X>= _ _ Less than or equal to X test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

40 ?Y= _ _ Equal to Y test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

41 ?Y# _ _ Different from Y test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

42 ?Y< _ _ Greater than Y test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

43 ?Y<= _ _ Greater than or equal to Y test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

44 ?Y> _ _ Less than Y Test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

45 ?Y>= _ _ Less than or equal to Y test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

46 ?Z= _ _ Equal to Z test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

47 ?Z# _ _ Different from Z test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

48 ?Z< _ _ Greater than Z test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

49 ?Z<= _ _ Greater than or equal to Z test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

50 ?Z> _ _ Less than Z Test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

51 ?Z>= _ _ Less than or equal to Z test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

52 ?T= _ _ Equal to T test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

53 ?T# _ _ Different from T test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

Total_Rekall ɀ Dare to Compare ɀ Warp_Core+

© Ángel Martin ɀ April 2020 Page 6

 # Function Description Input Dependency Type Author

54 ?T< _ _ Greater than T test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

55 ?T<= _ _ Greater than or equal to T test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

56 ?T> _ _ Less than T Test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

57 ?T>= _ _ Less than or equal to T test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

58 ?L= _ _ Equal to L test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

59 ?L# _ _ Different from L test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

60 ?L< _ _ Greater than L test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

61 ?L<= _ _ Greater than or equal to T test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

62 ?L> _ _ Less than L Test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

63 ?L>= _ _ Less than or equal to L test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

This module also includes a large set of sub-functions arranged in an Auxiliary FAT, as follows:

0 -STK SWAPS Section Header Lib#4 MCODE Ángel Martin

1 a<> _ _ Swap a and register RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

2 b<> _ _ Swap b and register RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

3 c<> _ _ Swap c and register RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

4 d<> _ _ Swap d and register RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

5 e<> _ _ Swap e and register RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

6 }-<> _ _ Swap |- and register RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

7 ?M= _ _ Equal to M test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

8 ?M# _ _ Different from M test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

9 ?M< _ _ Greater than M test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

10 ?M<= _ _ Greater than or equal to M test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

11 ?M> _ _ Less than M Test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

12 ?M>= _ _ Less than or equal to M test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

13 ?N= _ _ Equal to N test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

14 ?N# _ _ Different from N test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

15 ?N< _ _ Greater than N test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

16 ?N<= _ _ Greater than or equal to N test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

17 ?N> _ _ Less than N Test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

18 ?N>= _ _ Less than or equal to N test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

19 ?O= _ _ Equal to O test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

20 ?O# _ _ Different from O test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

21 ?O< _ _ Greater than O test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

22 ?O<= _ _ Greater than or equal to O test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

23 ?O> _ _ Less than O Test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

24 ?O>= _ _ Less than or equal to O test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

25 ?P= _ _ Equal to P test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

26 ?P# _ _ Different from P test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

27 ?P< _ _ Greater than P test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

28 ?P<= _ _ Greater than or equal to P test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

29 ?P> _ _ Less than P Test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

30 ?P>= _ _ Less than or equal to P test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

31 ?Q= _ _ Equal to Q test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

32 ?Q# _ _ Different from Q test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

33 ?Q< _ _ Greater than Q test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

34 ?Q<= _ _ Greater than or equal to Q test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

35 ?Q> _ _ Less than Q Test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

36 ?Q>= _ _ Less than or equal to Q test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

37 -SELECT FNS Section Header

38 ?S= Equal to S test Data in sel and target Lib#4 MCODE Ángel Martin

39 ?S# Different from S test Data in sel and target Lib#4 MCODE Ángel Martin

40 ?S< Greater than S test Data in sel and target Lib#4 MCODE Ángel Martin

Total_Rekall ɀ Dare to Compare ɀ Warp_Core+

© Ángel Martin ɀ April 2020 Page 7

41 ?S< _ _ Greater than or equal to S test Data in sel and target Lib#4 MCODE Ángel Martin

42 ?S> _ _ Less than S Test Data in sel and target Lib#4 MCODE Ángel Martin

43 ?S>= _ _ Less than or equal to S test Data in sel and target Lib#4 MCODE Ángel Martin

44 NEXT increment selection SEL variable Lib#4 MCODE Ángel Martin

45 PREV decrement selection SEL variable Lib#4 MCODE Ángel Martin

46 S<> _ _ Swap Selected & Target Regs Target Reg in prompt Lib#4 MCODE Ángel Martin

47 SEL? Shows the selected variable SEL variable Lib#4 MCODE Ángel Martin

48 SRCL Recalls Value in Selected var None Lib#4 MCODE Ángel Martin

49 SSTO Stores value in selected var Value in X Lib#4 MCODE Ángel Martin

50 SVIEW Shows Selected var contents SEL variable Value Lib#4 MCODE Ángel Martin

51 -WARP FNS Shows Splash Screen none Lib#4 MCODE Nelson F. Crowle

52 A<>ST Exchange Alpha & Stack Values in ALPHA and stack Lib#4 MCODE Ángel Martin

53 AIRCL _ _ Integer ARCL Prompts for rg# Lib#4 MCODE Ángel Martin

54 AUXFAT Shows pages w/ Aux FAT none Lib#4 MCODE Ángel Martin

55 bRCL _ Buffer reg recall buffer reg# (1-5) Lib#4 MCODE Ángel Martin

56 bSTO _ Buffer reg Storage buffer reg# (1-5) Lib#4 MCODE Ángel Martin

57 bVIEW _ Buffer Reg View Buffer reg# (1-5) Lib#4 MCODE Ángel Martin

58 bX<> _ Buffer Reg Exchange buffer reg# (1-5) Lib#4 MCODE Ángel Martin

59 /t¸.bY ψέψΥψ Copies Bank# Bank#, from-to pages Lib#4 MCODE Ángel Martin

60 CSST Continuous SST Has hot Keys Lib#4 MCODE Phil Trih

61 DETEXT Decode Text Lines Program Name in ALPHA - MCODE Ross Wentworth

62 DSNEX Decrement and Skip if not Equal Value in X Lib#4 MCODE Ángel Martin

63 FINDX Find register containing X Value in X Lib#4 MCODE Ángel Martin

64 FIXALL Activates Fix ALL mode none Lib#4 MCODE Ángel Martin

65 GETST _ _ Get Status Regs from File # Regs, FileName Lib#4 MCODE Ángel Martin

66 HEX2ROM A_:_ From Hex code to ROM# Hex code Lib#4 MCODE Greg McClure

67 ISLEX Increment and Skip if Equal Value in X Lib#4 MCODE Ángel Martin

68 KAFLP _ Flips ALL Key assignments none Lib#4 MCODE Ángel Martin

69 KYFLP _ Flips Key assignments Pressed key Lib#4 MCODE Ángel Martin

70 ^LASTF _ Prompts for FName to add Buffer #9 Lib#4 MCODE Ángel Martin

71 LASTF^ Starts LastF review Hot keys, Buffer #9 Lib#4 MCODE Ángel Martin

72 POPRTN Pop RTN stack from Buffer None Lib#4 MCODE Poul Kaarup

73 PUSHRTN Push RTN stack to buffer none Lib#4 MCODE Poul Kaarup

74 ROM2HEX_ _:_ _ From ROM# to Hex Code ROM id# Lib#4 MCODE Greg McClure

75 RTN? Tests for pending RTNs YES/NO, skips if False Lib#4 MCODE Doug Wilder

76 RTNS Number of pending RTNs Pust in X, Lifts Stack Lib#4 MCODE Ángel Martin

77 SAVEST _ _ Save Status Regs #Regs, FileName Lib#4 MCODE Ángel Martin

78 SFLNCH _ Sub-function Launcher-launcher Page# in Prompt Lib#4 MCODE Ángel Martin

79 ST<>S Swap Stack and SRegs none Lib#4 MCODE Nelson F. Crowle

80 STVIEW Full Stack View None Lib#4 MCODE Ángel Martin

81 X<I>Y Exchange IND(X) & IND(Y) Values in X, Y Lib#4 MCODE Nelson F. Crowle

82 X=YZ? Double Comparison Values in X, Y, Z Lib#4 MCODE Ken Emery

83 X=YZT? Triple Comparison Values in Stack Lib#4 MCODE Poul Kaarup

84 ·9v Ψ ψ Executes CAT1 function Values in buffer Lib#4 MCODE Ángel Martin

85 XEQ$ _ Universal Execute Prompts for Name Lib#4 MCODE Ángel Martin

86 CAT+ _ Sub-function CATALOG has HOT keys Lib#4 MCODE Ángel Martin

87 ALPHB Alphabetize Sorts alphabetically Lib#4 MCODE Poul Kaarup

88 LODB _ _ Load Bytes in RAM Byte codes in prompts Lib#4 MCODE Nelson F. Crowle

89 LODB+ _ _ Load Bytes in RAM Byte Codes in prompts Lib#4 MCODE Nelson F. Crowle

90 METRON Metronome Beats per min in X Lib#4 MCODE Nelson F. Crowle

91 RCLS Recall Sregs Data in Stack Lib#4 MCODE Ken Emery

92 STOS Sto Stack to SRegs Data in SRegs Lib#4 MCODE Mark Power

93 POP POP LIFO Launcher shows I:A:F:X:Z:T:R Lib#4 MCODE Doug Wilder

94 PUSH PUSH LIFO Launcher shows I:A:F:X:Z:T:R Lib#4 MCODE Doug Wilder

95 PROMT Variable Prompt Number of fields in X Lib#4 MCODE Nelson F. Crowle

Pink Background : New functions in the Bank-Switched versions

Total_Rekall ɀ Dare to Compare ɀ Warp_Core+

© Ángel Martin ɀ April 2020 Page 8

Total_Rekall ɀ Dare to Compare ɀ Warp_Core+

© Ángel Martin ɀ April 2020 Page 9

Whatôs new in the 2020 ñWarp_Coreò edition?

1. The Auto-complete mode. XEQ+

If youôve been following the evolution of the ñTotal_Rekallñ module youôd no doubt expect grand and
important new things of a major revision li ke this one ï and you wonôt be disappointed, because this

edition includes the all-new, long-awaited, Auto-Complete mode for XEQ functions.

When you call the XEQ+ function a new mode of execution opens up to the user; one where instead

of spelling the complete function names at the alpha prompt, only the first initial letter is entered and
the calculator does the rest for you ï with a few control hot -keys to navigate the complete system

(CATô2), from page #3 up to the top in page #F for the plug -in modules, and page #1 for the native
OS functions (in CATô3).

This is akin to the ñauto-completeò functionality popular on other systems, very useful to assist in the
selection of those available functions in the current ROM configuration. Because of the finite number

of possible options (with an absolute total maximum of 630 functions w hen all pages are filled up
with modules each having 64 entries in their FATs), limiting the auto -completion to the first character

is not a shortcoming, but a practical design cri teria to keep the code size and execution times within

reasonable parameters.

Using Auto-Complete.

In short: the function XEQ+ starts a new mode by prompting for an initial character letter or number.

When that selection is made and after a short search time (negligible on the CL for sure) it presents
all functions currently available in the bus that begin with that letter - commencing the search in

page#3 up until page #F. The listing can be done manually (SST) or continuous (R/S), and

several navigation keys are included: jump page, back-up page, next function, previous function, next
letter, previous letter.

The initial prompt is ready to look in the plug -in section of the system bus, i.e. from page #3 up to

page #F (15). This is indicated by a double-quotes character in the display. Note that this

representation changes automatically to a single-quotes character if the target function is located in

the O/S, i.e. for the ñnativeò functions in CATô3. You can use the USER key to toggle between b oth:

 <-->

For XROM functions, both MCODE functions and FOCAL programs will be shown:

 ;

Once you've locked on your target function simply press XEQ to execute it, or [] ASN to assign it

to the key of your choice. If youôre not sure this is your choice (say duplicates or similarly spelled

ones exist), pressing RCL will show you some vital signs of the function, such page# and XROM id#

 <-->

Pressing the ENTER̂ navigation key, you can change the letter sought to the next one alphabetical,

always starting at the current page and moving upwards.

Total_Rekall ɀ Dare to Compare ɀ Warp_Core+

© Ángel Martin ɀ April 2020 Page 10

Manually Changing the Searched Page.

You can move up or down one page using the + or - control keys. If no target exists in the next

page using + the engine will keep looking look in pages above it, but not so using - for the

previous page. Eventually if no function starting with the selected letter exists , a left -justified
information message will be briefly shown (ñNO MATCHò) and the current function will persist. You

can also force the searched page by using the EEX or ñPò hot-key, and inputting the initial page to

start the search from. The same upwards/downwards behavior applies when there are no target

functions in a forced page location, using the + or - control keys for pages jumping, or the EEX

key for a forced destination:

Functions from CATô3

The native OS functions are fully supported by the Auto-Complete engine. You can access the OS

area either by typing ñ0ò, ñ1ò, or ñ2ò directly at the page prompt triggered by EEX , or decreasing

the page# using - while a function from pg# 3 is shown (provided that such first letter is also

available in the OS group, as per the previous descriptions).

In case you wonder, page#4 is simply skipped over, while pages 0 -1-2 (indistinctly) default to
page#1 to include the CATô3 functions as well ï so this functionality includes the standard functions

of the calculator (such as BEEP, FACT, MOD, SDEV, etc.). This support includes their inclusion on the
LASTF list for quick access of recently executed functions.

Back-door to the Standard XEQ

The PRGM key is also active as a hot key to invoke the native XEQ function. Use it if you want to

revert to the standard OS method to access numeric labels or a local label (A-H, a-e) within a user
program, or to spell the function name in ALPHA mode; by pressing ALPHA and then spell the name

as usual. However this method is now superseded by the ñUniversal Executeò as will be described
later on.

Typing in Special Characters.

Lower case characters (a-e), numbers and all other key -able special chars are accessed using the

shifted keys in the standard ALPHA keyboard. Another option is provided pressing the / key at the

main prompt, to use special characters ï even if not key-able but allowed in function names. This

makes it possible to search for function names staring with ñmò, the forwards and backwards geese,

or all the little men just to name a few.

 ñ2Eò =>

Automated enumeration.

If youôd rather see an automated enumeration of the options then pressing R/S will show all

functions meeting those criteria up u ntil the end of the bus. You can quit the listing at any time

pressing any key, and then press XEQ or ASN to perform the action once halted.

Note that (with the exception of the native OS group), functions are not listed in alphabetical order,

but in sequential order, as theyôre found in the respective FATôs of the modules currently plugged in
the calculator. The only condition is that they all begin with the letter chosen at the initial prompt.

Total_Rekall ɀ Dare to Compare ɀ Warp_Core+

© Ángel Martin ɀ April 2020 Page 11

Sub-functions are included in the search.

The latest revisions of the WARP module provide the capability to also include the sub-functions in
the search, thus they will be shown when the first -letter criteria are met. In case you are not familiar

with them, this is a special functionality present in several adv anced modules than breaks the 64-

function FAT barrier of the O/S. - see the list below for details.

Sub-functions are structured in Auxiliary FATs, different from the main FAT atop of each module page.
Since they are not included in the main FATs, the O/S knows nothing about them and therefore they

are not accessible by the standard XEQ function. This means they need another way to be invoked ï

and typically each of those advanced modules has at least a dedicated launcher. More about this later,
in the ñUniversal Executeò section.

Module Aux FAT Location Launchers # Sub-functions

 41Z Deluxe Middle of Lower page ZF$, ZF# 62

 AMC_OS/X Middle of page XF$, XF# 22

 CL X-Mem Manager Middle of page YF$, YF# 22

 Formula Evaluation Middle of page SF$, SF# 24

 GJM ROM Middle of page GJM$, GJM# 24

 HEPAX_4H Top of Bank-3, Middle of bank-3 HEPAX, XF$ 21 + 25

 HP-16C Simulator Middle of page 16$, 16# 62

 PowerCL Extreme Top of Bank-3, Top of bank-4 XQ1$, XQ2$ 89 + 89

 SandMath 4x4 Middle of Upper page SF$, SF# 117

 SandMatrix Middle of Lower page SM$, SM# 63

 WARP_Core Middle of page WF$, WF# 100

 Total System Indistinct XEQ$ 704

Table 1: Advanced Modules w/ Auxiliary FATs

The sub-functions are found whether they are located in (1 :) an Auxiliary FAT or (2:) a Banked FAT

atop the page ï and (3:) in the combination of both situations, i.e. an auxiliary FAT located at the
middle of a banked page . This last case is only used by the HEPAX modules, and itôs of relative

interest because it just includes the replica of the X-Functions ï only meaningful for non -CX systems.

The representation of the Sub-functions found during the enumeration is different from that of the
(standard) Main functions: the single or double quotes character used by native and XROM main

functions respectively is replaced by:

¶ An underscore character if the sub-function is in the auxiliary FAT (middle of the page)

¶ An overscore character when the sub-function is atop of a banked page, and

¶ A colon/overscore character when the sub-function is atop of a second banked page

See below the examples showing main function BFCAT and sub-function DCTXT (both from the
AMC_OSX module), and with sub -functions BFVIEW and BANKS? from the PowerCl_Extreme

module (in banks 3 and 4 respectively):

 ;

 Main function Auxiliary FAT

 ;

 Banked FAT, bk#3 Banked FAT, bk#4

Note that the same punctuation convention is used in the ñPG#:ò and ñLAST:ò information screens.

Total_Rekall ɀ Dare to Compare ɀ Warp_Core+

© Ángel Martin ɀ April 2020 Page 12

Executing Sub-functions.

For complete location information of a sub -function we need to know its index# within the Auxiliary
FAT, and the address location of said Aux. FAT ï which, youôd remember, may even be in a banked

page as well. With that information at hand itôs possible to direct the program pointer to the

beginning of the sub-function code for manual execution.

However, that method wonôt work when the sub-function needs to be entered into a program. In that
instance the information required besides its index# within the Aux. FAT is the a ctual sub-function

launcher code. This is exactly how sub-functions are entered in a program directly from the XEQ+

prompt, which does all the legwork identifying the suitable launcher and proceed ing by inserting two
program steps with the launcher code and the index, as non-merged parameter.

You should also check the ñSearching for Auxiliary FATsò section to learn more about this subject, and

to get familiar for the sub -functions AUXFAT and SFLNCH, very handy tools to manage t hese
advanced structures across the entire system bus.

The Extended LASTF facility.

The [XEQ] operation will also add the executed function automatically to the enhanced LASTF facility,
which now will hold up to five entries (say , LastF now stands for ñlast-fiveò? ;-). The storage includes

both Main functions from the O/S or plug -in modules and Sub -functions from auxiliary FATs, either
in the main bank or in a bank -switched one. It is performed automatically and needs no user

intervention. Two new utili ties allow the user to review and execute these (LASTF^) , plus a manual
mode to enter main functions into the list if so desired (^LASTF) .

¶ The first time you press the radix key youôre invoking the LASTF^ sub-function. This gives

you the opportunity to re -access the last five functions stored in the buffer, simply use the
[SST] key to scroll the list, then press XEQ to execute it.

¶ Pressing the radix key a second time invokes the ^LASTF sub-function, which shows an

editable field to manually enter a function name for its inclusion in the Last -Five buffer - from

where you can access it using the method described above.

Itôs therefore important to remark that sub -functions will also be stored in the L ASTF buffer .

This universal coverage guarantees that *any* command accessed via the XEQ+ facility is logged in
the Lasf-5 buffer . The only restriction is that the plug -in modules are not moved n=between accesses

to the LASTF facility.

Implementing this coverage wasnôt trivial, and it definitely ran into the ñlow of diminishing returnsò ï

a lot of complex code to cover fringe cases ï but the user experience is much more complete in this
way.

Total_Rekall ɀ Dare to Compare ɀ Warp_Core+

© Ángel Martin ɀ April 2020 Page 13

Understanding the Main Function Search process.

The prompt always shows the ñdomainò block used for the search, either the OS area or the I/O Bus:

¶ A single quote indicates OS area: XEQ ô

¶ Double quotes indicate the I/O bus : XEQ ò

¶ Underscore denotes sub-functions in Auxiliary FATs XEQ_

¶ Overscore denotes sub-functions in Banked FATs XEQǒ / XEQ:ǒ)

The search always starts in page #3 ï which holds the extended functions FAT in the CX. If no
functions starting with the target letter exist in that FAT, then the search continues in page#5, and

keeps going up until page #F. Once that end is reached, the original prompt is shown if still no
targets are found, i.e. thereôs no roll-over at this point.

When a function is found you can list the following starting with the same letter using [SST], which

will automatically increase the page within the domain block when the current FAT is completed. This

means it will show functions either within the OS, or within the I/O bus but not across the divide!

You can also move back to the previous function using [BST], which will also move back to the
previous page when the top of FAT has been reached. Note that itôs easy to know that the FAT

always starts at the first byte within the page , but moving backwards the code needs to determine

the end of the FAT in the previous page - by reading the number of functions in its second byte.

The figure above does not show Auxiliary or Banked FATS, yet the same functionality exists with

them for the most part. There are, however, two important difference s between the [SST] and [BST]
enumeration features.

¶ The first one occurs when a gap is in-between pages; i.e. thereôs an empty page or a blank

(page with no FAT), or no functions meeting the target criteria). In that situation the gap will
be skipped moving upwards (the code will keep trying pages up until page #F is reached) but

the gap wonôt be crossed moving downwards. Note that the same consideration applies to
the [+] and [-] navigation keys: going upwards will skip blank pages (gaps), but moving
downwards will not .

¶ The other important difference has to do with the sub -functions. The rule is that Auxiliary

FATs are always included in the search, on either direction ï but Banked FATs are only

scanned going upwards. Therefore sub-functions in Auxiliary FATs will be enumerated in both
directions ï but those in Banked FATs will be skipped going backwards.

Remember that you can always force the page# to look within, either by moving sequentially to the

next/previous page (with a target letter present in both pages in the [-] case), or by jumping directly

to a specific page# using [EEX]. This is how you can move to the OS area, i.e. pages #0 to #2:
either by pressing [-] while a function from page #3 is locked -on, or by jumping directly to any of the

first three pages (0 -2).

FAT# 9 FAT #8 FAT #7 OS / CAT_3

[BST]
[SST]

Total_Rekall ɀ Dare to Compare ɀ Warp_Core+

© Ángel Martin ɀ April 2020 Page 14

2.- The Universal Execute. XEQ$_

The Auto-Complete mode is a very powerful way to ñnavigateò the entire system bus, looking for

functions and sub-functions using only the initial letter of their names. This is often speedier and
more convenient that the s tandard { XEQ, ALPHA } approach of the O/S ï which requires typing

correctly the complete name, - needed to be fully known by the user.

But each situation is different and sometimes it may be more convenient to use the direct full -name

spelling method. The trouble child here are the sub-functions, invisible to the O/S and therefore not
seen by the native XEQ function ï regardless of its prowess, which arenôt to be underestimated.

The solution is the new ñUniversal Executeñ function, XEQ$, which allows you to type main function

names, as well as sub-function names ï located either in Auxiliary FATs or in Banked-switched FATs !
Therefore knowing the dedicated launcher to access a particular sub-function is no longer needed,

freeing up the casual user from t hat requirement for t he complete utilization of the full potential of

the system.

Accessing XEQ$ is as simple as pressing the ALPHA key at the XEQ+ prompt, or during the

enumeration of the selected (sub)function. Once you do it the display will change t o an editable field
and ALPHA will be active for the typing of the name:

Note: Because XEQ$ is itself a sub-function, itôs also possible to access it using the Warp Sub-
function Launchers ï either numerically with WF# and its index# = 085 , or alphabetically with WF$.

XEQ$ supports manual (interactive) execution and Program entry of (sub)functions in a FOCAL

program in RAM ï pretty much like its ñnavigatorò counterpart, XEQ+

The (sub)function search commences scanning the OS and the plug-in bus for matches, i.e. pretty

much like the native XEQ except that FOCAL Labels in RAM programs will be ignored. If the name
isnôt found the code will sequentially scan all bus pages looking for Auxiliary and Banked FATs, and

scan their contents for a suitable match. During the process the display shows an information
message as seen below

 perhaps:

LASTF support of XEQ$

The most beneficial aspect of the universal execute is possibly that all functions invoked will be added
to the LAST-5 buffer for later accessibility. This includes OS functions from CATô3, and MCODE

functions or FOCAL programs from plugged-in module. Having them saved in the buffer can become

very handy during long programs data entry.

But thereôs more: like it was the case in the XEQ+ ñnavigatorò mode, sub-functions foundt using
XEQ$ are also included in the LAST-5 buffer as mentioned before.

Caveat Emptor: Note that the latest revisions of the modules listed in Table -1 are needed for the
Universal Execute to work with sub-functions. Older revisions will trigger the ñNO MATCHò message,

but other than that shouldnôt cause any harmful disruptions to the system.

Total_Rekall ɀ Dare to Compare ɀ Warp_Core+

© Ángel Martin ɀ April 2020 Page 15

Sub-function access.

The way sub-functions are accessed depends on whether theyôre being entered in a program, or used
directly in manual mode.

¶ In PRGM mode the sub-function needs two program steps, the first one with the

corresponding sub-function launcher and a second one with the index in the auxiliary FAT.
Itôs therefore up to the XEQ+ facility to identify the launcher (in the main bank of the current

page), and figure out its corresponding index within the Auxiliary FAT.

This works flawlessly even if there are two Auxiliary FATs in different banks, like it happens in the
PowerCL_Extreme and the HEPAX_4H modules (see diagram below) ï automatically selecting the

appropriate of the two launchers. This is a very robust implementation, and the program steps

entered will work as long as the module is plugged in the calculator - regardless of which page .
Not bad, if you think about it.

¶ In the manual case the XEQ+ facility will simply send the program pointer to the address

where the code for the called function starts, be that in a main bank or in a banked -switched

one (circumstance that will require activating th e target bank previously too). This will start
the execution of the sub -function.

This case is not as fool-proof however; consider for example that you access the sub-function

BANKED in the PowerCL_Extreme with the module plugged in page #7. As explained before, the

sub-function current address will be stored in the LAST-5 buffer for ulterior access via LASTF, but
letôs say you relocate the PowerCL module to a different page in-between, and then access the

LAST-5 engine: what will be the consequence? The wrong address is stored and will potentially
play some havoc. Not a very likely scenario though, but itôs not totally impossible and therefore

itôs good to know about it.

HEPAX_4H POWER_CL

Total_Rekall ɀ Dare to Compare ɀ Warp_Core+

© Ángel Martin ɀ April 2020 Page 16

Note for MCODErs.

The table below shows the information stored in the LAST-5 register fields depending on the type of
function. This information is stored there when executing the function using either XEQ+ or XEQ$,

and will later be process ed by the LASTF^ facility to show the (su b)-function name and XROM data

upon request.

Type C[MS] C[M] C[S&X]

O/S Mainframe ñ0ò ñ- - - - - - 1ADRò ñ- - -ñ

XROM Main Function ñ0ò ñ- - - - - - FADRò ñCDEò

Sub-Function bk# (0-3) ñ- - - - - - FADRò ñ000ò

Remarks:

¶ ñFADRò is the functionôs FAT entry address, and not the functionôs execution address ï which

could be obtained from ñFADRò calling the [GTADR5] routine in the Library#4. Here the ñFò
character represents the page# (or ñ1ò for the O/S mainframe functoins), and the ñAò

character is either zero (for main FATs and banked FATS atop the page) or ñ8ò for Aux FATs,
in whichever bank.

¶ ñCDEò are the three rightmost characters of the function HEX code, which is obtained from
ñFADRò calling the [FNCODE] routine located at 0xp6EA. Having this is very valuable when it

comes to execute the function: weôll call [RAK70] in the Library#4, which work even if the

plug-in module containing the function were to be relocated between the initial XEQ$ action
and the re-call via LAST5.

You may wonder why the information for sub-functions stored in the LAST-5 buffer is the FAT

address, instead of the combination of its launcher code plus the index#. After all, such alternative is
used in PRGM mode, so why couldnôt it also be the method for manual mode? All that would be

needed is to fill the A.X field with the index# (in hex) and send the program pointer to the launcher
function itself, right?

That would certainly work if the implementation had followed the standard method defined in the O /S
to prompt for the i ndex parameter (using the upper bits of the function title chars) é but not such

luck! As it turns out this is a self -inflicted problem because most of the sub-function launchers do
not use said standard O/S method, but a custom one that mimics the same f unctionality but also

allows for ALPHA key pressing ï to switch to the launcher by name version ï which isnôt possible with
the OS method.

For example using WF# in the Warp module, you can either enter an index number of press ALHA

to switch to the text entry mode:

 ,

Note that ALPHA is automatically active when entering in the WF$ prompt (this saves one

keystrike). Note as well that pressing ALPHA again without any characters typed in will use the
current text in ALPHA instead. This is a subtle enhancement but very useful to harmonize the

standard and enhanced methods.

Total_Rekall ɀ Dare to Compare ɀ Warp_Core+

© Ángel Martin ɀ April 2020 Page 17

Overlays and Underlays.

The XEQ+ mode is a new way to navigate the variable environment of the calculator that doesn ôt
require you know the exact function spelling, nor that you do the actually typing of the letters ï but

itôs much more than an alternative for machines with defective ALPHA key ;-)

The picture on the right shows the available hot keys
at different stages of the operation. Some are active at

the initial ñA:Zò prompt ï like ^:_ _ for special

character input; whilst others are applicable to the
shown selection ï such INFO, XEQ, and ASN.

Use the back arrow key to restart the process or to

cancel out to the OS.

The ALPHA key is used to trigger the ñUniversal

Executeò, XEQ$. Use it if you want to type the

complete (sub)function name directly at the prompt,
which enables ALPHA automatically.

The PRGM key is also active as a hot key to revert to

the nativel XEQ function. Use it if you want to revert to
the standard OS method to spell the function name in

ALPHA mode, simply press PRGM, ALPHA and then

spell the name as usual.

The operation is very dynamic and therefore not easy

to describe with a static overlay. The best way to learn
is by using it a few tim es. Seeing is believing: try it out

and chances are soon itôll become one of your favorites. A real keeper!

Module Dependencies.

The Warp_Core module is a Library#4-aware module, and therefore requires the Library#4 (revision
R4 or higher) to be plugged in the calculator. It also requires the CX OS, as some CX internal routines

are used. I f the Library#4 is missing or the machine is not a CX the errors will halt it to avoid likely
problems.

Also note that the Warp_Core is a bank-switched module: its foot-print is only 4k in the I/O bus, yet

there are two 4k -pages involved holding the code. This is important to properly configure it using

hardware devices like Clonx/NoV_RAM or MLDL2k. For the CL board, the module id# is óWARPò, and
it will automat ically be plugged using PLUG.

Note also that these modules are not compatible with page#6 ï avoid plugging them in that location.

Total_Rekall ɀ Dare to Compare ɀ Warp_Core+

© Ángel Martin ɀ April 2020 Page 18

3.- The Enhanced ASCII File Editor. ED+

Below is the article posted in the hp -forum describing the Enhanced Editor as a patch for the CX OS.

Note that the version in the Warp_Core module does not require the patch, but the description is
applicable to the implementation here, which is a tad more complicated than the patch for the CX,

because it uses a port-dependent scheme, as obviously the module could be plugged in any of the
I/O external bus pages (8-F). This required changing the original ?NCXQ calls to three-byte calls,

with the unpleasant consequence of losing the C-register as valid parameter-passing resource.

As a result, in the Warp_Core the code uses the stack register ñLò for scratch ï which means

that every time you call ED+ the contents of the LastX register will be lost . Make sure you make up
for this in your FOCAL programs if needed.

41CX: Adding Lower Case & Special Chars to ASCII File Editor.

The standard ASCII file Editor in the 41CX has no support for lower case and other special

characters. As a consequence, those chars need to be entered first in ALPHA and then manually

transferred to the ASCII file using APPCHR or APPREC; either way the user needs to exit the editor,

make the manual transfer, and call ED again.

With this patch entering lower-case and special characters is simply done by typing the designated

key from within ED itself, no need for intermediate cumbersome steps.

The special chars keyboard layout is the same one available for ALPHA mode on the OS/X Module

(and in turn on the original CCD Module) with USER off. There are two conceptual differences

though:

1. Since ED uses the USER key to move the cursor one position to the left, that key cannot be the

mode flag in this case. Activation of the lower case & special chars is done switching ALPHA off

instead.

2. With ALPHA switched off, the "native" ED uses the numeric keys to enter digits , radix and the

unary minus sign. That is not changed, and therefore imposes a design for the rest of available

choices. This forces an inverted scheme for the layout compared to the OS/X, as follows:

¶ Special characters are in the same positions as in the OS/X, but accessed using non-Shifted

keys. The exception to this rule are the "little men" characters, which use letters [A], [B], [C],

and [K] instead.

¶ Lower-case letters are accessed using SHIFTED keys - from SHIFT-A for "a" thru SHIFT-Z

for "z". The only exception being "l" and "m", which use the non-shifted keys "L" and "M"

(as LBL and GTO are reserved for the insertion mode and go-to-record functions within ED).

Easier to use it than to describe it - especially if you have the old CCD overlay at hand. The important

thing is that none of the standard features or character layout in the original ED are altered in any

way.

Total_Rekall ɀ Dare to Compare ɀ Warp_Core+

© Ángel Martin ɀ April 2020 Page 19

Patching the CX ROM.

All changes are confined within the bank-switched page of the CX-Extended Functions, i.e.

ROM_5B. If you use the 41-CL or an emulator capable of altering the OS sector (like V41), then all

you have to do is replace said ROM_5B with the new one containing the patch.

Patching instructions. Three steps are necessary:

Step #1. There are only three bytes to change in the original ED code, which is good news since that

code is 1,001 bytes long!. The bytes to change are located at 0x5F62, 0x5EF0 and 0x5EF1; where:

0x5F62 has a jump-if -carry to address 5F51 (37F JC - 17d). The jump distance needs to be changed to

point at 5F4C instead, i.e.

5F62 357 JC -22d

0x5EF0/F1 has a call to [BLINK] (265 , 020) - this needs to be replaced with a non-conditional jump

to address 0x5BF1:

5EF0 3C5 ?NC GO

5EF1 16E ->5BF1

Step #2. Next we need to add the following code at the jumped-to location (which is conveniently

empty in the original ROM), to process the key-presses and triage them accordingly:

ode:
5BDF 1B0 POPADR get calling address

5BE0 170 PUSHADR keep it in RTN stack

5BE1 03C RCR 3 move pg# to C<3>

5BE2 0A6 A<>C S&X get absolute TBL adr

5BE3 1BC RCR 11 rotate to ADR field

5BE4 066 A<>B S&X put reference in A[S&X]

5BE5 11A A=C M preserve this address

5BE6 330 FETCH S&X read KEYCODE

5BE7 2E6 ?C#0 S&X value non - zero?

5BE8 14D ?NC GO NO, Skip one line and RTN

5BE9 032 - >0C53 [SKIP1]

5BEA 23A C=C+1 M add offset until

5BEB 366 ?A#C S&X are they different?

5BEC 01B JNC +03 no, exit loop

5BED 23A C=C+1 M next addr field

5BEE 3BB JNC - 09 loop back

5BEF 330 FETCH S&X get func. address

5BF0 3E0 RTN and return

5BF1 066 A<>B S&X sought - for value

5BF2 130 LDI S&X beginning of table

5BF3 3F9 CON: [LWRCAS]

5BF4 1F6 C=C+C XS "6F9"

5BF5 106 A=C S&X start of table

5BF6 37D ?NC XQ search ADDR in table

5BF7 16C - >5BDF [SRCHR1]

5BF8 02B JNC +05 [GOTCHA]

5BF9 265 ?NC XQ blink screen

5BFA 020 - >0899 [BLINK]

5BFB 3C9 ?NC GO return to main code

5BFC 17A - >5EF2 [CURSR2]

Total_Rekall ɀ Dare to Compare ɀ Warp_Core+

© Ángel Martin ɀ April 2020 Page 20

5BFD 106 A=C S&X replaced char#

5BFE 075 ?NC GO take over from here

5BFF 17A - >5E1D [VALID1]

Step #3. The code above relies on a character table that needs to be added to the ROM. We do this
in another empty section, not to disturb any existing code - as follows:

Code:
56F9 041 shift - "A"

56FA 061 "a"

56FB 042 shift - "B"

56FC 062 "b"

56FD 043 shift - "C"

56FE 063 "c"

56FF 044 shift - "D"

5700 064 "d"

5701 045 shift - "E"

5702 065 "e"

5703 046 shift - "F"

5704 066 "f"

5705 047 shift - "G"

5706 067 "g"

5707 048 shift - "H "

5708 068 "h"

5709 049 shift - "I "

570A 069 "i"

570B 04A shift - "J "

570C 06A "j"

570D 04B shift - "K"

570E 06B "k"

570F 04C "L"

5710 06C "l"

5711 04D "M"

5712 06D "m"

5713 04E shift - "N"

5714 06E "n"

5715 04F shift - "O"

5716 06F "o"

5717 050 shift - "P"

5718 070 "p"

5719 051 shift - "Q"

571A 071 "q"

571B 052 shift - "7"

571C 072 "r"

571D 053 shift - "8"

571E 073 "s"

571F 054 shift - 9"

5720 074 "t"

5721 055 shift - "U"

5722 075 "u"

5723 056 shift - 4"

5724 076 "v"

5725 057 shift - "5"

5726 077 "w"

5727 058 shift - "6"

5728 078 "x"

5729 059 shift - "Y"

572A 079 "y"

572B 05A shift - "1"

572C 07A "z"

572D 03D shift - "2"

572E 10C "m"

572F 03F shift - "3"

5730 021 "|"

5731 020 shift - "0"

5732 101 "pi"

5733 064 "D"

5734 05B "["

5735 065 "E"

5736 05D "]"

5737 07E "F"

5738 01F "spat "

5739 025 "G"

573A 040 "@"

573B 01D "H"

573C 023 "#"

573D 03C "I"

573E 028 "("

573F 03E "J"

5740 029 ")"

5741 05E "N"

5742 027 " ' "

5743 024 "P"

5744 022 " " "

5745 02D " - "

5746 05F "_"

5747 02B "+"

5748 026 "&"

5749 02A "*"

574A 060 "t"

574B 02F "/"

574C 05C " \ "

574D 02C shift - radix

574E 03B ";"

574F 03F shift - "?"

5750 021 "|"

5751 03A shift - "/"

5752 100 upper "_"

5753 000 <end of table>

That's all there's to it folks - enjoy your enhanced ED+ !

Total_Rekall ɀ Dare to Compare ɀ Warp_Core+

© Ángel Martin ɀ April 2020 Page 21

PS. With this enhancement, it's possible to enter any formula expression used by the Formula
Evaluation module directly in an ASCII record. Refer to the following for details:
http://www.hpmuseum.org/forum/thread-862...evaluation

PPS. To *visualize* the lower-case letters in the LCD you need to use a half-nut machine, and also
apply the patch provided by JF-Garnier in the following link:
http://www.hpmuseum.org/cgi-sys/cgiwrap/...?read=1205

WARP Top-Level Overlay.

Besides the one for the XEQ+ facility, the WARP module also has a top-level overlay, which obviously

includes an entry for the enhanced Text Editor ED+ , the SELCT/CASE functions, the General Stack
Comparisons facility STKT, as well as many other functions and sub-functions from the module. All

of these will be described in the following sections of the manual.

This overlay is somehow different from the standard concept because it also fosters a few functions
from the Formula Evaluation module. Why is that? Because combining these two modules makes a

lot of sense from the programmability and synergy standpoint, really taking the 41 environment to

new realms.

The functions from the Formula Evaluation

are as follows:

IF , ELSE, ENDIF ; evaluated on formula

expressions

DO, WHILE ; evaluated on formula

expressions

LET= , GET= ; for direct assignment of
variables to the Shadow buffer registers

(very similar to bSTO and bRCL indeed).

It comes without saying that clicking on
these functions without the Formula_Eval

module plugged in will only show t he
corresponding XROM codes but no actual

execution will take place. You can however

use them to enter them in a user program of
course.

http://www.hpmuseum.org/forum/thread-8622.html?highlight=formula+evaluation
http://www.hpmuseum.org/cgi-sys/cgiwrap/hpmuseum/articles.cgi?read=1205

Total_Rekall ɀ Dare to Compare ɀ Warp_Core+

© Ángel Martin ɀ April 2020 Page 22

General Introduction ï óDare to Compareò.

Welcome to unexplored territories, a journey taking the venerable hp-41 platform to places it

probably hasn't been before: meet the " Dare 2 Compare" version of the Total_Rekall module, with

the following new bells & whistles:

¶ Enhanced launchers and function prompts that interact with one another and are "aware" of

previous choices. Refer to the sketch in previous pages for details.

¶ Added a secondary FAT with 85 sub-functions, amongst them all test functions on the stack

registers {M-Q} ï to complement {T to L} impleme nted as main functions).

¶ Automatic entering for main functions of non-merged arguments as second program lines.
For instance: Z<=T? . This feature was a must, after I learned how to do during the

development in the CLXPREGS module.

¶ For sub-functions, a triple-non-merged argument scheme using three program steps. For

instance: M>= IND Z? , whereby only the third parameter is entered manually.

¶ Added functions SELCT and ?CASE ï a pseudo SLECT-CASE implementation that allows

comparison of any ñvariableò (i.e. register, including the stack and indirect) defined by SELCT

and stored in the buffer - with a hard value (integer) entered at the ?CASE prompt.

¶ New direct register exchange (not using the stack) between the register selected by SELCT

and the target chosen by S<> , also supporting indirect, stack and combination of both.
Features housekeeping utilities like NEXT, PREV, and SEL? to show, increment and

decrement the selected register variable. Useful for program algorithms to save explicit re -

selections.

¶ Direct comparison to zero for any register (direct, indirect, stack), with the "Zero -group"

functions. For instance: ?0# 23

¶ Implements the " emergency storage buffer" with five data registers in case you r un out of

regular ones. You can store, recall, view and Exchange the buffer registers with the X register
at any time. Also you can use this buffer with functions PUSHRTN and POPRTN to extend

the RTN stack length.

¶ An all-new stack shuffle function SHFL, that allows altering the five main stack registers
XYZTL according to a register pattern entered as a five-field prompt in manual mode, or in an

ALPHA string during program execution. Selective register clearing is also possible using zero
as the register description in the strings.

¶ New functions to search for Auxiliary FATs (AUXFAT) and their corresponding launchers

(SFLNCH) ï help you manage the advanced features in the system.

Very tricky stuff, and not simple to make it all tick at unison - but the results are nothing short of
amazing if I may say it. Reading this manual should help you digest the new functionality and

apply it to practical examples as well.

Note: To make all these additions and enhancements possible it was needed to remove the UMS
(Unit Management System) from the previous version of the Total_Rekall module. The UMS with

Constants Library is available in the PowerCL and PowerCl_Extreme modules. The UMS without
the constants library is also available in the dedicated ñUMS Moduleò for those of you without a

41CL (say what? a temporary situation hopefullyé)

Total_Rekall ɀ Dare to Compare ɀ Warp_Core+

© Ángel Martin ɀ April 2020 Page 23

The Sub-Function Catalog. { CAT+ }

CAT+ provides usability enhancements for admin and housekeeping. It invokes the sub-function
CATALOG; UU with hot-keys for individual function launch and general navigation . Users of the POWERCL

Module will already be familiar with its features, as itôs exactly the same code ï which in fact resides
in the Library#4 and itôs reused by other modules, like the SandMath and SandMatrix as well.

UUThe hot-keys and their actions are listed below:

[R/S] : halts the enumeration
[SST/BST]: moves the listing one function up/down

[SHIFT]: sets the direction of the listing forwards/backwards

[XEQ]: direct execution of the listed function ï or entered in a program line
[ENTER^]: moves to the next/previous section depending on SHIFT status

[< -]: back-arrow cancels the catalog

One limitation of the sub -functions scheme that youôll soon realize is that, contrary to the main
functions, they cannot be assigned to a key for the USER keyboard. Typing the full name (or entering

its index at the WF# _ _ _ prompt) is always required. This can become annoying if you want to

repeatedly execute a given sub- function. The LAST Function implementation certainly minimizes
this issue for repeat executions of the last sub-function called, without a dedicated key assignment

required.

Launchers and Last Function functionality. { WF# , WF$ }

This module includes full support for the ñLASTFò functionality. This is a handy choice for repeat

executions of the same function (i.e. to execute again the last -executed function), without having to
type its name or navigate the different launchers to access it. The implementation is not universal ï it

only covers functions invoked using the dedicated launchers, but not those called using the

mainframe XEQ function. The following table summarizes the launchers that include this feature:

Module Launchers LASTF Method

Dare2Compare -STKT _ Captures (sub)fnc id#
 RKL _ _ Captures (sub)fnc id#

 WF$ _ Captures fnc NAME

 WF# _ _ _ Captures (sub)fnc id#

 CAT+ (XEQô) Captures (sub)fnc id#

LASTF Operating Instructions

The Last Function feature is triggered by pressing the radix key (decimal point - the same key used

by LastX) at the ñST: ò prompt. When this feature is invoked, it first shows ñLASTFò briefly in the

display, quickly followed by the last -function name. Keeping the key depressed for a while shows
ñNULLò and cancels the action. In RUN mode the function is executed, and in PRGM mode itôs added

as a program step if programmable, or directly executed if not programmable.

If no last -function record yet exists, the error message ñNO LASTFò is shown. If the buffer #9 (used

to store the last function id# code) is not present, the error message is ñNO BUFò instead.

Total_Rekall ɀ Dare to Compare ɀ Warp_Core+

© Ángel Martin ɀ April 2020 Page 24

Searching for Auxiliary FATs. { AUXFAT , SFLNCH }

With the spread of advanced modules, itôs become challenging to know how many of them have
auxiliary FATôs holding sub-functions. To assist on this subject, the WARP_Core adds two new

functions as described below.

Sub-function Launcher-launcher (no typo).

SFLNCH will scan the page entered at the prompt for Auxiliary FAT. If one is found, the

corresponding sub-function launcher will be launched, offering the user to type the sub -function
name. For example, for the Warp_Core itself:

, => ,

The input will be restricted from #6 to #F, as those are the only pages that may have a secondary
FAT. Typing any other character will simply be ignored by the function, and the prompt will persist.

If thereôs no module plugged in the chosen page, or if the ROM has no FAT youôll get the usual error

messages ñNO ROMò or ñNO FATò correspondingly.

The search starts at the top of the page, looking for code structure common to all sub -function
facilities, involving the consecutive presence of several MCODE instructions. Note that depending on

the actual location of those instructions within the 4k page the search time may be long.

When the sub-function launcher code is found the function will transfer the execution to it, presenting

the ALPHA prompt for the sub-function name spelling. If no launcher code is found, the function will
show a ñNO MATCHò message.

Enumeration of Pages with Secondary FATs.

AUXFAT will scan the calculator bus looking for auxiliary FATs in all the pages, starting with pg# 6. A

list will be compiled and presented when the scanning has completed (i.e. all pages until pg# F have

been searched).

For example, with the WARP_Core and the Formula_EVAL modules plugged in, the function returns
the following result (which is helpful to find out on which pages are meaningful for SFLNCH):

AUXFAT will ñseeò the secondary FAT from the PowerCL, even though it is in a bank-switched page.

It will not however see the original HEPAX secondary FATs. Note also that AUXFAT is itself a sub-

function, and therefore needs to be called using WF$ (or WF# with index #045)

Total_Rekall ɀ Dare to Compare ɀ Warp_Core+

© Ángel Martin ɀ April 2020 Page 25

The main Function Launcher { ïSTKT }

Considering the number and nature of the functions included in this module it isnôt surprising that the

launcher method has been once again the chosen approach. You can access any of the stack swaps
and test functions with a few keystrokes using a single function, the ñFunction Builderò -.

The driving parameter for the function is the stack register, thu s the expected input at the òST _ò
main prompt is to be the corresponding stack register letter {X, Y, Z, T, L, M, N, O, P, Q,} ï which will

be placed on the left side of the display in a second prompt to chose the specific action to perform.

Once the stack register is chosen, the second prompt offers a selection of options in a menu -like

fashion with two screens toggled by the SHIFT key to fit the seven choices available:

 ă-Ą

Once the individual register is selected, a common feature in all functions is that the prompt accepts
IND _ _ , and ST _ arguments using the SHIFT and RADIX keys as with the native OS implementation.

The combined IND ST _ is also allowed of course.

Dynamic Register Update: the ñNEXTò choice.

Pressing the [SST] key will update the function builder main prompt; changing the source register
sequentially in a cyclic sequence each time is pressed. This saves time and keystrokes, making it

easier to use in spite of its comprehensive functionality. Note also that pressing the back-arrow will
revert back to the main prompt, requesting a register to start the process.

Where are the upper status registers? {ñaò to ñeò}

All 16 stack register swaps are available, either as main functions or in the auxiliary FAT as sub-
functions. This is the case of the upper stack registers {a -e}, that can be accessed directly from the
main launcher pressing the corresponding top-row key. Just be careful with these!!

Because of their relative small practical application, the tests of the upper status registers were

replaced by the Zero-testing set, You can still use them as the second argument at the stack

addressing prompt, for instance you could do: T<> a , or: Z<> c if wanted.

Special Guest ñZeroò

In addition to the 10 stack registers m entioned before you can also enter ñ0ò at the main

ñST_ñ prompt to invoke the Zero-comparison test function ï so considered it to be the invited guest

to the stack for these purposes. Note this is not Data Register R00, but the value ñ0ò for the
comparison.

Reversed Logic RPN?

Contrary to the standard native functions on the 41 OS, all the individual test comparison functions
feature the question mark at the beginning of its name. This is just a nomenclature choice but has no

bearing on the actual operation of the functions. In a program the same ñSkip line if Falseò rule

applies if the test result is not true, whereas in manual mode the ñYESô/ôNOò messages will be
triggered for the True/False cases as usual.

Total_Rekall ɀ Dare to Compare ɀ Warp_Core+

© Ángel Martin ɀ April 2020 Page 26

The ñTotal_Rekallò Dilemma. { RKL }

One of the obvious shortcomings of the HP-41 OS is the lack of RCL math functions: even if they are

less necessary than the STO math and perhaps easily replaced by combination of other standard

functions, it is a sore omission that has been the previous subject of different implementation
attempts to close that gap.

The first component is naturally the addition of individual RCL math functions, like RC+, RC- , RC*

and RC/ . These can be written without much difficulty, even supporting INDirect register addressing,

but with two major restrictions:

1. Operating in manual mode only, and
2. Excluding the Stack registers from the register sources.

The first limitation can be overcome using the non -merged function approach, whereby the argument
of the function in a program is given in the next program line following it. This is stack -neutral so

doesnôt interfere with the intermediate calculations.

To solve the stack addressing one needs to resort to heavier wizardry, basically writing extra code to
replace the OS handling of the prompting in these functions ï which is based on the PTEMP bits of

the function name. The custom prompting is therefore completely under the control of the function,

and not facilitated by the OS. It is arguably a small net benefit compared to the r equired effort, but
as the only remaining challenge it was well worth tackling down.

Once the technique was developed it was relatively easy to apply to other functions, like the stack

exchange and comparison tests ï if you can you envision instructions like: ñY<> IND Mò, or ñZ<=N?ò

to give just two examples. Unfortunately, the Library#4 was already full, so the subroutines are only
available on this module.

RCL Math on steroids: The Extended RKL Launcher.

In addition to the four ñstandardò arithmetic operations this module includes RC^ , for the Recall

Power function ï which will calculate the REG-th. power of the value in X, i.e. X= e^(RG# * ln X).

The other additional case is AIRCL , which will append to ALPHA the integer part of the value stored
in the data register. It also supports the stack and indirect values, such as IND ST X.

All RCL functions feature a prompt lengthener to directly access registers in the 100-111 range. You

can activate this by pressing the EEX key at any of their prompts. Note that from 112 and up youôll

be either accessing Stack registers or INDirect addresses, as shown in the next pages (see table 1.1)

In terms of usability , note that you can switch amongst the five RCL math functions pressing the
corresponding arithmetic key at their prompt. You can also revert back to the RKL function simply

pressing the [SST] key twice during any of their prompts (this toggles between the RKL group and
the main launcher described in the following section).

To save program bytes, RKL will automatically revert to the standard RCL when entered as a program
step. Lastly, you can manually revert to the native RCL pressing the [XEQ] key again at its prompt.

When you do this in program mode the standard OS is used for effic ient line entering of the standard
cases, i.e. RCL 27 in a single program step as opposed to using the non-merged approach. More on

this subject later on.

Total_Rekall ɀ Dare to Compare ɀ Warp_Core+

© Ángel Martin ɀ April 2020 Page 27

Programmability: arguments Look-up Table

All functions and sub-functions are fully programmable. When entered into a program the argument
will be automatically entered as a second program line after the main function . This line will not be
executed; rather the function will read the value during the program execution. Note also that this

works seamlessly for direct data registers up to R111, with no need for manual adjustment for
extended range, INDirect and Stack register arguments (refer to the table below for details).

For INDirect registers 80 Hex (or 128 dec) is automatically added to the registe r number.

Examples: Z<> IND 25 => Z<> followed by 152

 RC/ IND 16 => RC/ followed by 144

For Stack arguments 70 Hex (or 112 dec) is automatically added to the ñStack indexò number.

Examples: Z<> T => Z<> followed by 112 (T index = 0)

 RC+ Y => RC+ followed by 114 (Y index = 2)

For combined INDirect Stack arguments, F0 hex (or 240 dec) is automatically added to the stack

index, or 240 decimal

Examples: Z<> IND Z -> Z<> followed by 241

 RC* IND M => RC* followed by 243

The table below shows the transition zones graphically:

Table 1: Register index mapping.

A few exceptions to the rule.

A couple of functions in the module do not allow stack arguments in their prompt s. These functions

are A<>RG and ST<>RG . You can use any register number and INDirect addressing but not Stack
registers as the destination ï neither the combination IND ST even if it is possible to invoke it. These

functions use the standard method provided by the OS to build the prompts, which as it was

mentioned before lacks the complete flexibility offered by the newer functions.

Warning: Be aware that the merged lined will not be automatically created for these two functions. If
you enter t hem in a program, you must add the argument manually as an additional program step.

Argument Shown as: Argument Shown as: Argument Shown as:

100 00 112 T 124 b

101 01 113 Z 125 c

102 A 114 Y 126 d

103 B 115 X 127 e

104 C 116 L 128 IND 00

105 D 117 M 129 IND 01

106 E 118 N 130 IND 02

107 F 119 O 131 IND 03

108 G 120 P 132 IND 04

109 H 121 Q 133 IND 05

110 I 122 | - 134 IND 06

111 J 123 a 135 IND 07

Total_Rekall ɀ Dare to Compare ɀ Warp_Core+

© Ángel Martin ɀ April 2020 Page 28

Direct Register Comparisons.

A fact that may be easily overlooked is that besides doing intra -stack register comparisons, these

functions also allow direct comparison of any of the main stack registers with any data register in
RAM. Furthermore, the Zero group allows direct comparison with zero on any data register as well,

not just the stack.

This provides more flexible programming choices, saving programming steps and keeping the stack

unaltered as thereôs no need to bring the register content to X/Y in order to make the comparisons.

Some examples:

?X< 13 => is R13 > X? ?0# 05 => is R05 different from zero?
?T>= 16 => is R16 <= T? ?0> 11 => is R11 less than zero?

Example: Armed with these new functions bubble-sorting the stack is a fairly simple task:

01 LBL ñSTSRT

02 X>Y?

03 X<>Y
04 ?Y> (Z)

05 Y<> (Z)

06 ?Z> (T)

07 Z<> (T)

08 X>Y?
09 X<>Y

10 ?Y> (Z)

11 Y<> (Z)

12 X>Y?

13 X<>Y
14 END

Be aware that in program mode the function arguments will be automatically added as non-merged

steps ïthis will be described in the following pa ges.

Stack Exchange vs. Test Functions

There is no fundamental difference in the eligible stack registers for exchange functionality vs. direct
comparisons. All the status registers except the ñlazy-Tò }-(10) have the same set, although some

functions are in the main FAT, and some others are in the Auxiliary FAT. This is again due to the
limited number of entries in the FAT, w hich imposed some selection between registers, based on

likely importance and usability.

In terms of the functionality, t he table below shows the available choices for a direct approach, and

which ones are only available indirectly, as a second argument of the particular function.

Register Exchange Tests Register Exchange Tests

X Main Main Q Main Sub-fcn

Y Main Main | - Sub-fcn Indirect

Z Main Main a Sub-fcn Indirect

T Main Main b Sub-fcn Indirect

L Main Main c Sub-fcn Indirect

M Main Sub-fcn d Sub-fcn Indirect

N Main Sub-fcn e Sub-fcn Indirect

O Main Sub-fcn ñ0ò n/a Main

P Main Sub-fcn Rnn Main Indirect

Lastly, non-stack Data Register swapping is missing from this set, but itôs not forgotten - itôs the
subject of the next section s.

Total_Rekall ɀ Dare to Compare ɀ Warp_Core+

© Ángel Martin ɀ April 2020 Page 29

General-Purpose Comparison with SELCT / ?CASE

Perhaps the most versatile approach for register comparison is provided by the combination of

functions SLCT and ?CASE. With them you can test any register (chosen using SELCT) against a
fixed integer value ï which is provided as the argument for ?CASE.

The variable chosen by SELCT is stored in the header of buffer id# 7 (the same one used for the
ñemergency storageò information). This may be a direct data register number, a stack register (adds

70 Hex), an indirect register (adds 80 Hex), or the combination of both (adds F0 Hex). Refer to the
table in previous section for details. This is done automatically by the function, totally transparent to

the user.

In program mode the variable for SELCT and the comparison value for ?CASE will be introduced as

non-merged lines in program step following the main function ï which is consistent with the other
functions seen before that use the same schema. Note that comparison values are positive integers

only.

If no variable has been selected previously, ?CASE will default to the X register (i.e. id# 73 Hex or

115 decimal ï again no need for you to be concerned with that detail). Pressing [VIEW] at the SLCT
prompt will show you the current variable stored in t he buffer.

The variable will therefore continue to be in effect until another SELCT statement is used. This will

allow you to make repeat comparisons without the need to have to recall the reference in every
instance ï and also without the need to have bo th the reference and the variable in the stack.

For example, to compare the value of data register R05 with the values 1,2,3 youôll use these
instructions, which can be interspersed amongst all your program code (note that thereôs no need for

an ñEND SELECTò-like instruction):

SELCT 05 loads the reference in buffer
?CASE 1 tests if R05=1?

Yes
No

é
?CASE 2 tests if R05=2?

Yes

No
é.

?CASE 3 tests if R05=3?
Yes

No

é
Note that the comparison value is directly provided in the prompt, and that a ñby referenceò

comparison is not allowed (i.e. using a data register instead).

As the question mark would suggest, ?CASE is a typical test function that will follow the ñdo if true /

skip if falseò rules when running in a program ï or show the familiar ñYES/NOò in manual mode.

Remember not to place a non-merged function directly *after* a test function ï doing so will create a
problem as the OS does not recognize the non-merged steps as part of a single function!

Total_Rekall ɀ Dare to Compare ɀ Warp_Core+

© Ángel Martin ɀ April 2020 Page 30

General-Purpose Exchange with SELCT / S<>

In a parallel implementation to the previous subject, you can also use the SELCT schema combined

with the sub-function S<> to perform a data register exchange directly, i.e. with no need to bring
either of their contents to the stack ï which is so left undisturbed.

The advantages are clearly seen: the stack is not altered, and the same selected variable-register can
be used for both case-equal comparison and register-exchanges. Both together offer possibilities to

the smart FOCAL programmers, never too late to learn new tricks ; -)

 Defines the selected variable-register Defines the target register to exchange.

Like SELCT itself, S<> also supports indirect addresses, Stack addresses and combination of both ï

thus you could do flexible register exchanges, such as: IND ST M <> IND 34 .

Here too the same table of parameters shown in figure-1 applies ï refer to that table for details.
Remember that the indirect reference will change if you alter the content of the register that h olds

the register pointer.

Showing the selected variable.

If youôre not sure of which is the selected variable you can press [R/S] at either o f these functionôs

prompts to invoke the SEL? Function ï which recalls its number to the display (but not to the X -
register).

¶ SEL? shows the value currently selected. If no selection has been mede the value shown is
4,095. Note that the selection of a variable does not require that the register exists at that

point ï the existence checks will be done when trying to access the contents of said register.

Note that, like ?CASE described before, if no register variable has been previously selecter then the

exchange will use the X register as a default ï and in that instance the number returned if you press
[R/S] at the pro mpt will be 4,095.

Increasing and Decreasing the selected variable.

These sub-functions are related to the variable selected by SELCT, as follows:

¶ NEXT and PREV increment and decrement the selected variable by one. No decrement will

occur if the selection is R00. No changes will be made if no selection exists (which defaults to

Stack ñXò). These functions are very useful during program control for sequential access to
different registers as selected variables.

Remark that NEXT/PREV have effect on t he register number stored in the buffer header (i.e. the ñSò

variable), but not on the register contents. Also that if an indirect or stack register is selected then

the next/previous value is dictated by the ñnaturalò register sequence, i.e. Stack_L comes after
Stack_X, etc.

Total_Rekall ɀ Dare to Compare ɀ Warp_Core+

© Ángel Martin ɀ April 2020 Page 31

Value Comparison tests with selected variable.

Similarly, using the provided sub-functions you can compare the contents of the selected variable

with any ñtargetò register of your choice entered at the prompt. Like all tests functio ns in manual
mode ñYES/NOò is shown depending on the true/false condition; and in a running program one

program line will be skipped when false, or when true it will continue with the line following the sub -
function merged lines (which thereôll be three of them as these are sub-functions!).

Note that the equal -to comparison ?S= is different from ?CASE; in both instances it is the content of

the selected register what gets used as first value, but the second value differs: in th e equal-to case it
is the content of the target register being compared, whereas for ?CASE the comparison is against

the value provided at the prompt.

Letôs for example compare the contents of data registers R04 and R05. If we choose R05 as the
selected variable, then R04 becomes the ñtargetò to compare against, i.e. showing all the parameters

as non-merged program steps:

01 SELCT (05) 01 SELCT (05)

02 5 02 5
03 WF# 03 WF#

04 39 04 41
05 4 ?S< 04 05 4 ?S> 04

06 Yes 06 yes
07 No 07 no

The surrogate Stack Register ñSò.

All the variable comparison functions, as well as the exchange S<> and ?CASE have been grouped

under its own section within the main launcher ïSTKT. Either by pressing òóSò or moving about the
stack registers letters using [SST] , the surrogate S-register screens offer the same functionality as the

standard stack registers, as shown in the pictures below:

 ă-Ą

Note how this U/I has the same look & feel as the other stack registers. The fact that all the choices

are sub-functions is completely transparent to the user ï with the only exception of the need to

manually add the parameter line in a program as described before in the manual .

Total_Rekall ɀ Dare to Compare ɀ Warp_Core+

© Ángel Martin ɀ April 2020 Page 32

Connecting ñSò with RKL

We have just seen that even though ñSò isnôt a proper stack register it can certainly be handled as if it
were. This metaphor has been extended (but not stretched) to include support for ñSò as option of

the RKL prompt, when the radix key is used for the stack registers. Thus, the contents of the current

selected register can be recalled in this way ï which also includes the IND addressing and the RKL
math operations as well.

Note however that in program mode the RKL instruction will be registered using the actual selected

register number as parameter in the second line ï not as a variable but as its actual value at the time
when the instruction is entered in the program .

You can, however, use the sub-function bRCL instead (with parameter zero) ï which will use the
selected register in a running program, and thus itôs completely equivalent to RKL ñSò also in program

mode. The caveat is the lack of IND and math operations in this case.

Using bRCL will be covered in a later section of the manual. For the tim e being just remember that,

both in manual and running program modes :

 =

Storing, Recalling and Viewing the contents of ñSò

You can always use the standard RCL, STO and VIEW instructions to recall, store and view the
contents, but that requi res knowing the value of the #SEL variable itself to use it as parameter. An

easier way is also available with the sub-functions SRCL, SSTO and SVIEW - which donôt need you
to have such knowledge beforehand. Therefore, hereôs another equivalence for you:

 =

The SRCL, SSTO and SVIEW sub-functions operate on the register which value is stored in #SEL.

Note: LŦ ȅƻǳ ǇǊŜŦŜǊ ƛǘΣ ǘƘŜ ά{έ ǇŀǊŀƳŜǘŜǊ ŘŜǎƛƎƴŀǘŜǎ ŀ ǎƻǊt of indirect destination of the operation ς
ŀǎ ƛǘΩƭƭ ǳǎŜ ǘƘŜ Řŀǘŀ ǊŜƎƛǎǘŜǊ ǿƘƛŎƘ ǾŀƭǳŜ ƛǎ ǎǘƻǊŜŘ ƛƴ І{9[ǾŀǊƛŀōƭŜΦ ¸Ŝǘ ƛǘΩǎ ŀƭǎƻ ǇƻǎǎƛōƭŜ ǘƻ ǳǎŜ Lb5 ƛŦ
ȅƻǳ ŀŎŎŜǎǎ ƛǘ Ǿƛŀ wY[Σ ƭƛƪŜ ƛƴ ά wY[Lb5 {έ ς which could also be considered as a double indirection
from a strict point f view.

Total_Rekall ɀ Dare to Compare ɀ Warp_Core+

© Ángel Martin ɀ April 2020 Page 33

Examples: Data Registers bubble-Sort

The programs below show two practical examples of the new functions for data register sorting. Note
the use of the non -merged program steps and the workaround required in the conditional tests to

avoid jumping in-between non-merged lines. The second main label uses the control word bbb.eee in

X to delimit the data registers range, whereas the first will use all the data registers currently
available in the calculator.

01 LBL ñSRTALLò all registers

02 SIZE? Get current size

03 DSE X get last reg index
04 E3 format it

05 /

06 LBL ñSRTRGXò bbb.eee in X

07 LBL 01 main loop
08 ENTER ̂ push cntôl word to Y

09 ENTER ̂ push it one more
10 SELCT (IND Y) select ind(bbb)

11 24 2

12 ISG X bbb+1
13 GTO 00 skip until end is reached

14 RTN all done.
15 LBL 00 inner loop

16 WF# (?S> = IND X) use the reverse test and a
17 41 forced GTO to avoid jumping

18 243 in between non-merged steps:

19 GTO 00 true, jump over
20 S<> (IND X) false, swap registers

21 243
22 LBL 00

23 ISG Y

24 SELCT (IND Y) update selected register
25 24 2 (cannot use NEXT !)

26 ISG X update comparison register
27 GTO 00 repeat inner loop

28 X<> Z recall control word
29 E-3 decrease upper limit

30 -

31 GTO 01 repeat main loop
32 END end of program

Another approach for the all -registers case is shown below, using the NEXT instruction to update the

selected register directly ï as opposed to the indirect way in the previous example.

01 LBL ñSRTALL2ò

02 SIZE?
03 DSE X

04 E3

05 /
06 LBL 01

07 SELCT (0)
08 ENTER ̂

09 ISG X

10 GTO 00

11 RTN

12 LBL 00
13 WF# (?S<= IND X)

14 40

15 243
16 GTO 00

17 S<> (IND X)
18 243

19 LBL 00

20 WF# (NEXT)

21 44

22 ISG X
23 GTO 00

24 X<>Y

25 E-3
26 -

27 GTO 01
28 END

Total_Rekall ɀ Dare to Compare ɀ Warp_Core+

© Ángel Martin ɀ April 2020 Page 34

Tinkering with ISG and DSE: complement modes.

In the previous examples we have used the ISG function to increase the pointer s to the data registers

being compared. The code is a bit inefficient because the termination conditions are the opposite to
the implemented in the standard ISG and DSE functions ï i.e. here we loop while the condition is

FALSE, which requires an additional GTO step to skip the RTN.

The complement functions are defined as follows:

¶ IS LEX ñIncrement X and Skip if Less or Equalò, and
¶ DSNEX ñDecrement X and Skip if Not Equalò.

In both cases they only work on the X register, which is expected to have a control word in the form
bbb.eeeii , like the standard ISG and DSE. If the increme nt is not given (zero) the default value used

is ii=1.

Using ISLEX instead of ISG X in the example programs will change the code to this:

06 LBL ñSRTRGXò bbb.eee in X

07 LBL 01 main loop
08 ENTER ̂ push cntôl word to Y

09 ENTER ̂ push it one more
10 SELCT (IND Y) select ind(bbb)

11 242

12 WF# (ISLEX) bbb+1
13 67

14 RTN all done if (bbb+1) > eee
15 LBL 00

16 é

And similarly, in SRTALL2:

 06 LBL 01
07 SELCT (0)

08 ENTER ̂

09 WF# (ISLEX) bbb+1
10 67

11 RTN all done if (bbb+1) > eee
12 LBL 00

13 é

Another approach to deal with this contingency would have been using the SKIP function, available
in some extension modules. When placed in the TRUE position it basically defeats the ñdo if trueò rule,

shifting th e decision by one program step:

ISG X

True
False

é

ISG X

SKIP
False

é

ISLEX

(Un) True
(Not) False

é

Total_Rekall ɀ Dare to Compare ɀ Warp_Core+

© Ángel Martin ɀ April 2020 Page 35

Have we re-invented these wheels?

Certainly thereôs some overlap between the new functions and the set included in the CX X-Functions,

as shown in the table below:

CX-Function X=NN? X#NN? X<NN? X<=NN? X>NN? X>=NN?

TotalRekall ?X=IND Y ?X# IND Y ?X< IND Y ?X<= IND Y ?X> IND Y ?X>= IND Y

However, the similarit ies end there - as the new functions expand the number of choices beyond the

ñIND Yò case, have a prompting U/I and perhaps most importantly they donôt require altering the

contents of the stack to perform the comparisons. Also in terms of byte usage both schemes are
comparable, as the CX functions require at least one byte in Y to be used for register argument.

In terms of the Data Register exchange, there are also a couple of alternatives within the standard CX
functions or other modules to perform equivalent actions, such as:

¶ Rnn <> Rkk can be done with: { nn.0kk, REGSWAP }

¶ Rnn <> Rkk is also possible with X<I>Y , with ñnnò in Y and ñkkò in X (or vice-versa).

Which depending on the data register numbers may be more or less favorable in terms of byte count;

see for example exchanging R10 and R25 below using the three approaches:

SELCT 10 10,025 10, ENTER^

S<> 25 REGSWAP 25, X<I>Y

8 bytes, no stack 8 bytes, X used 7 bytes, both X,Y used

Compatibility with o ther Prompt Lengthener alternatives.

A more interesting comparison can be made with the other implementation of the Extended Prompts,

like the ZENROM does using the EEX key, or even the Prompt Lengthener feature in the AMC_OS/X

Module using the ON key.

For these two implementations, the second byte of the RCL is added to the same instruction in a
program, i.e. RCL 111 will be displayed as ñRCL Jò, and similarly RCL 127 will show as ñRCL eò. This

is clearly more efficient in byte usage; however it does not support the RCL arithmetic operations
allowed by this module.

Note that the OS/X Prompt lengthener is only tri ggered with the standard OS-provided functions, and
therefore wonôt appear at the custom prompt offered by ñRKL _ _ò or ñRIND2 _ _ò; nor by the

ZENROMôs after you have pressed the EEX key, i.e. ñRCL 1_ _ò. Pressing the ON key in those

instances will just turn the machine off.

But you can have it both ways: if you have the OS/X Module plugged in (as every power user

should :-) you can take advantage of this method by pressing again the XEQ key at the RKL _ _

prompt: as mentioned before, this will rev ert to the standard RCL _ _, and then press ON to extend

the field to three digits and enter ñ1xxò directly.

Total_Rekall ɀ Dare to Compare ɀ Warp_Core+

© Ángel Martin ɀ April 2020 Page 36

Say what, one-thousand registers?

It is also possible to press the EEX key while the OS/X extended prompt is up, which would add

another field to it and so appearing to allow choices of data registers above 999 ï if it werenôt for the
fact that such a thing canôt physically exist on the normal machine (the 41CL is a different story) . See

for example the examples below, calling for a data re gister above 1,900:

If you did that in PRGM mode, say entering 1900 in the prompt, surprisingly the end result turns out

to be ñRCL Gò ï which equals RCL 108. This can be explained by the (apparently unrelated) fact that

MOD(1900, 128) = 108, i.e. weôve gone full circle in data registers parlance.

Program Example ï Congruence Equation

The program below is a direct translation of the original written by Thomas Klemm for the HP -42.
See http://www.hpmuseum.org/forum/thread -1116.html

It solves for x in the equation : A * x = B mod N

The only changes pertain to the RCL math steps located at lines 14, 19, 22, and 68: simply add the

register number as a second line after the RCL function as detailed in the table shown in page 7. (You

can omit it on the case of zero).

Example : 5 * x = 3 mod 17

Solution : 5, ENTER, 3, ENTER, 17, XEQ "CONG" => 4

http://www.hpmuseum.org/forum/thread-1116.html

Total_Rekall ɀ Dare to Compare ɀ Warp_Core+

© Ángel Martin ɀ April 2020 Page 37

The Double Indirection: A solution in search of a problem?

Arguably a double indirection capability may be seen more as an extravaganza than as a useful

feature. After all, how many times have you encountered a situation where the indirect index was
itself depending on another variable, and doing so in a counter-like fashion?

Well those situations do exist, more often than none and with increased likelihood as you get into
advanced algorithms and matrix applications ï but I wonôt tire you with examples; rather here are

functions SIND2 and RIND2 , which perform a double STO/RCL IND IND _ _

Enough to make your head spin a little? ï Then you should try the TRIPLE indirection, available when
you hit the shift key at that stage, ie:

SIND2 IND _ _ = STO IND IND IND _ _
RIND2 IND _ _ = RCL IND IND IND _ _

These functions use two (or three if SHIFTED) standard data registers to hold the argument s of the

data register where the value is to be recalled from (RIND2) or stored into (SIND2). Better keep your

register maps handy!

Going over the top: Multiple Indirection

Interesting things happen if you keep pressing the [SHIFT] key - as these functions support a

multiple indirection pattern that allows redirect ing the target registers as many as 10 levels (and
beyond). The function prompt will change to reflect the current level, with a combination of even

values and their IND options. For example, pressing [SHIFT] at the RIND2 IND _ _ prompt will bump
the counter to:

, and then: ,
Followed by the screens shown below in a continuous sequence:

, and then:

Example: assuming the following registers contain the values shown below:

R10 = 0;
R00 = 3;
R03 = 5;
R05 = 7;

R07 = p

Then we have:

RCL 10 = 0
RCL IND 10 = 3
RIND2 10 = 5
RIND2 IND 10 = 7

RIND4 10 = p
RIND4 IND 10 = 5
RIND6 10 Ґ т Σ ŜǘŎΧ

Note that this functionality is restricted to manual mode only, and when this function is used in a
running program itôll be limited to a double indirection (or triple in the IND case).

Total_Rekall ɀ Dare to Compare ɀ Warp_Core+

© Ángel Martin ɀ April 2020 Page 38

Application Example: Bubble Sort without data movement. (By Greg McClure)

;

; FIXED SORT -- Gregory J. McClure

;

; Does a non - destructive bubble sort of registers specif ied in another

; set of consecutive pointer registers. The data to sort is not moved,

; but the pointer registers will be changed to reflect the numeric

; order (ascending) of the values indirectly pointed to by them.

; R00 thru R02 are used by the progra m.

;

; Example: R03 - R06 contain 10, 12, 15, 18.

; R10, R12, R15, R18 contain the data to sort (4, 3, 2, 1).

; X contains 3.006 as descriptor of pointer register set, then SORT is run.

; When done, SORT will change R03 - R06 to contain 18, 15, 12, 10.

; R10, R12, R15, R18 will be unchanged.

;

01 LBL "SORT"

02 LBL 10

03 STO 00 ; 1ST VALUE POINTER

04 STO 01 ; 2ND VALUE POINTER

05 ISG 01

06 STO 02 ; SAVE 1ST POINTER

07 LBL 00

08 RIND2 ; TTRKALL DOUBLE IND READS

09 1

10 X>Y?

11 GTO 01 ; SKIP SWAP

12 RCL IND 00 ; RECALL POINTERS

13 RCL IND 01

14 STO IND 00 ; REVERSE POINTERS

15 X<>Y

16 STO IND 01

17 LBL 01

18 ISG 00 ; BUMP VALUE POINTERS

19 ISG 01

20 GTO 00 ; MORE TO COMPARE

21 RCL 02 ; GET CURRENT POINTERS SET

22 E - 3

23 -

24 ENTER^

25 INT

26 1.001

27 *

28 X=Y?

29 GTO 02 ; DONE

30 RCL 02

31 GTO 10

32 LBL 02

33 "DONE"

34 AVIEW

35 END

Total_Rekall ɀ Dare to Compare ɀ Warp_Core+

© Ángel Martin ɀ April 2020 Page 39

Appendix.- A trip down to Memory Lane.

From the HP-41 Userôs Handbook.-

Total_Rekall ɀ Dare to Compare ɀ Warp_Core+

© Ángel Martin ɀ April 2020 Page 40

Say what, a Dynamic Display? The FIX ALL functionality.

Much more than a cosmetic affair, the ability to present only the non -zero decimal digits of a number

has the value to provide additional information on the result: to the limit of the calculator resolution
there are no further meaningfu l digits after the shown ones.

The FIX all feature is activated when you execute FIXALL (no arguments needed), and remains
active until you change the display setting again using the standard FIX, SCI, or ENG functions.

Note that the representation will apply to the mantissa of the numbers, even if their exponents

exceed E9; obviously limited by the numeric range of the calculator ï which for the HP-41 is:

] -1 E100, -1 E-100 [{+}] 1 E-100, 1 E100 [

In case youôre curious, the algorithms used by FIXALL are described below. Youôre also encouraged

to check the SandMath Manual ï an excellent reference for the design criteria for the RCL math
functions. Note also that contrary to the SandMathôs case, on this module the I/O_SVC interrupt

polling technique is not used to link the standard RCL function with its extensions or the RCL Math

sub-functions. No need for that, since a dedicated RKL replacement is used instead of the native one
and our code takes complete control of the keyboard actions.

Formulas used ï A general algorithm.

BCD numbers on the 41 platform are represen ted in the registers using the following convention:

 "s|abcdefghij|xyz" ,

with one digit for the mantissa sign, 10 digits for the mantissa, one for the exponent sign and two for

the exponent. This enables a numeric range between +/ - 9,999999999 E99, with a "whole" around
zero defined by the interval:] -1E-99, 1 E99[

Let z# = number of mantissa digits equal to zero, starting from the most significant one (i.e. from
PT=3 to PT=12). Then the fix setting to use is a function of the number in X , represented as follows:

1. If number >=1 (or x="0") - Let XP = value of exponent (yz). Then we have:

 FIX = max { 0 , [(9-z#) + XP] }

2. If number < 1 (or x="9") - Let |XP| = (100 ï xyz) . Then we have:

FIX = min { 9 , [(9-z#) + |XP|] }

Total_Rekall ɀ Dare to Compare ɀ Warp_Core+

© Ángel Martin ɀ April 2020 Page 41

Stack Shuffling and selective clearing. { SHFL }

There are several functions in the native set to handle the stack registers, and certainly this module
adds its dose of extensions and additions to the set, with the swap functions in particular being the

best exponent. Many ways to skin this cat, but just in case you longed for more abstraction the

function SHFL provides a general-purpose way to perform bulk stack alterations in a very conv enient
manner.

, i.e:

SHFL prompts for five stack register letters, including the main XYZTL registers, or the Alpha
registers MNOP, or even the Q register. Once the prompt is filled the contents of the main stack will

be changed to reflect the sequence defined in the prompt. A few examples will clarify:

SHFL: XYZTL leaves things unchanged ï i.e. the ñdo nothing in 10 bytesò choice.

SHFL: YZTXL performs the equivalent to RDN
SHFL: TXYZL is equivalent to the standard R^

SHFL: XXXXL fills the stack (except L) with the value in X

Other combinations will require two or more standard instructions, or may not be easily possible

without adding several of them ï especially if you include the ALPHA registers to the choices. In this
regard, the prompt allows Q(9) and the ALPHA registers as inputs, but a few considerations must be

made:

- Register M is always used by the master string itself.

- Registers N,O,P are widely available.
- Remark that youôll be doing the equivalent to STO, but not to ASTO

- Register Q(9) is usually compromised, as itôs used as scratch by the OS

Finally, and continuing with the óZEROò theme as surrogate stack option - you can also use the digit
zero ñ0ò in the input prompts. This has the effect of clearing the corresponding stack register during

the execution of the function. For example:

SHFL: 00000 is equivalent to CLST, STO L
SHFL: YX00L is equivalent to X<>Y, RDN, RDN, CLX, RDN, CLX, RDN, RDN

SHFL: ZZT0P copies Z to X,Y, T to Z, clears T and puts P in the LastX

Entering this function in a program will follow the standard rule, i.e. the SHFL instruction will be
placed in a single program step. You need to remember to manually add the master string as ALPHA

step in the instruction *before* it. Note that a DATA ERROR message will come up (and the program
execution will stop) should that string contain any invalid character ï but it will ignore characters

beyond the fifth one starting from the RIGHT of the ALPHA registers.

Checking the results.

For a quick check of the results you can use the sub-function STVIEW for an enumeration of the

stack registers in L-X-Y-Z-T sequence ï a nice complement to help you keep your bearings at all
times. STVIEW is accessible pressing [R/S] at the main STK: launcher.

Total_Rekall ɀ Dare to Compare ɀ Warp_Core+

© Ángel Martin ɀ April 2020 Page 42

The ñShadow Stackò concept.

The underpinnings of SHFL take full advantage of the ñemergency storageò buffer ï whereby the
stack registers are first copied to the buffer registers in the sequence defined by the master string,

and then theyôre copied back to the stack in the ñdefaultò natural sequence X-Y-Z-T-L. This is the

most effective way (code-wise) to perform the shuffle, and speed -wise it adds no significant penalty
speed wise.

As a lateral thinking, you can use this design feature to intently make a ñshadowò copy of the stack in

the buffer ï in case youôd want to restore all the contents after some operation (like a UNDO

instruction would perform), or simply as a safety backup. To make this even more convenient, the
SHFL function has a hot -key that introduces the default sequence {XYZTL} for you, no need to type

it up. Simply press the [RADIX] key at the initial prompt (with the five fields shown) and enjoy the
show.

To restore the original values, just use bRCL on the buffer registers following this arrangement:

X ï bR5
Y ï bR4

Z ï bR3
T ï bR2

L ï bR1

Example. The following example was provided by Didier Lachieze. A subroutine using only the stack
to calculate the sum of the proper divisors of the number in X, it returns this sum i n X and the initial

number in Y.
 X Y Z T
01* LBL ƧDVSM n
02 1 1 n
03 ƧXYXXƨ 1 n 1 1
04 SHFL
05* LBL 05
06 NEXT T - n s d
07 ƧYYZTƨ n n s d
08 SHFL
09 RC/ T n/d n s d
10 ?x< T
11 GTO 10
12 FRC? n/d n s d
13 GTO 10
14 ?X# T n/d n s d
15 RC+ T
16 ST+ Z
17 GTO 05
18* LBL 10
19 x<> Z s n n/d d
20 END

The first occurrence at steps 03/04 is replacing the two instructions STO Z, STO T, and the second

occurrence at steps 07/08 is also replacing two instructions: CLX, RCL Y. Note that for step 12 youôd
need the function FRC?, available in the SandMath module - or an equivalent function from your own

sources.

Total_Rekall ɀ Dare to Compare ɀ Warp_Core+

© Ángel Martin ɀ April 2020 Page 43

Shadow Buffer Registers Storage.

If youôve ever run out of data registers and wished there was a ñback-doorò mechanism to use in

emergencies, then you should find this section interesting. Th ese functions operate on a I/O buffer
(with id#7) located below the .END. and above the Key assignment area.

The buffer holds five extra registers for standard data storage, labeled bR1 to bR5 (therefore thereôs
no bR0 to speak of). Just enter the index for the extended register in the prompt and the data will be

stored, recalled, or exchanged with the stack X-register ï as if they were standard data registers.

¶ bRCL _ recalls to the X register the content of the extended reg. which index is provided in

the prompt, or in the next program line if used in a running program.

¶ bSTO _ stores the X-register in the extended reg. given in the prompt, or in the next
program line if used in a running program.

¶ bVIEW _ shows the contents of the buffer register with index given in the prompt.

¶ bX<> _ exchanges the contents of the X-register and the buffer reg. which index is

provided in the prompt, or in the next program line if used in a running program.

It you try to enter a non-valid index number (basically anything except 1,2,3,4,5) the prompt will be

maintained (without an error condition) until you either cancel the function or enter a valid v alue. In
program mode this would show a NONEXISTENT message and the execution will halt ï so be careful

when you enter t he parameter- which has to be done manually for all sub-functions, and therefore

should always be within valid range.

You can navigate amongst these four functions using the RCL, STO, CHS and R/S keys

A Triple-duty buffer.

Besides the emergency storage registers, this buffer is also used for other two important purposes

within this module as described below:

1. Buffer registers bR1 and bR2 are shared by the RTN stack functions PUSHRTN and

POPRTN, so be careful not to override their content if both features need to be used
together.

2. All five buffer registers are used as temporary storage place by the stack shuffle function
SHFL ï as the most efficient way to re -arrange the stack registers on-the-fly (the ñshadow

stackò as itôs been referred to sometimes).

Total_Rekall ɀ Dare to Compare ɀ Warp_Core+

© Ángel Martin ɀ April 2020 Page 44

Buffer Header: warping around SELECT.

In a daring move, hereôs where the emergency buffer and the Selected variable merge. As mentioned

before, the buffer header contains the information of the currently selected variable, i.e. the data
register index marking such selection.

It was said in the previous section that the only valid input parameters for the buffer storage
functions were 1 to 5; but even if thatôs conceptually correct it isnôt entirely true: extending the

definition to also include the value zero in the prompts, we can use the four functions described
before to work on the selected register as well.

Itôs not the contents of the buffer header register which gets invoked, but the data register currently
under the selection setup ï as pointed to by the marker in the header. It is as if the register bR0 was

an automatic INDirect operator for the four basic action: STO, RCL, VIEW and Exchange.

 Therefore:

¶ bRCL 0 recalls the value of the selected register to the X register in the stack.

¶ bSTO 0 stores the value in the X register in the selected register,

¶ bVIEW 0 shows the content of the selected register, i.e. is equivalent to SVIEW ,

¶ bX<> 0 exchanges the selected value contents with that in X, therefore itôs equivalent
to S<> ST_X - but coming the other way around.

In case you didnôt notice it , the value zero for any sub-function parameter doesnôt need to get
explicitly entered in the program ï thus itôs sufficient to just enter the sub-function without a non -

merged second line. The only restriction is that the program step following it cannot be a number ï

which would be interpreted as its parameter otherwise.

So there you have it, yet another way to skin this cat ï an interesting twist to the scheme, in case
you wondered how much interconnectivity can we get between the different functionality areas of the

module.

Remember: the buffer will be created the first time you need it to save/retrieve data to/from the

extended registers, or call the RTN stack backup functions, or perform a stack shuffle or choose a

variable for SLCT/?CASE operation. This is the reason why you may notice a slighter longer execution
time the first time this is done.

 Storage RTN Stack
Shadow
Stack

fifth bR5 - Shadow-X
fourth: bR4 - Shadow-Y
third: bR3 - Shadow-Z
second: bR3 reg 10(a) Shadow-T
first: bR1 reg 11(b) Shadow-L
header: SEL# pointer - -

Warning: This buffer is not automatically created by the module on start -up, so the data it contains
will not survive a power -on/off cycle. This also applies to the selected variable used by SLCT.

Total_Rekall ɀ Dare to Compare ɀ Warp_Core+

© Ángel Martin ɀ April 2020 Page 45

Finding the X-needle in the REG-haystack.

For those times when youôd like to know if a certain value is stored in the data register, the sub-
function FINDX (a.k.a. XF# 63) is available to do a cursory comparison looking for a match with the

value in the X-register. All data registers are checked, starting with R00 until the last one depending
on the current SIZE. The error message NONEXISTENT will be shown if the calculator SIZE is zero.

The function returns the number of the first data register found that contains the same value as the

X-Register. If none is found, the function puts -1 in X to signify a no -match situation. The stack is

lifted so the sought for value will be pushed to th e Y-register upon completion.

Listed below are two FOCAL routines that do the same job as FINDX ï albeit slower and using
auxiliary stack registers. Itôs interesting to compare the standard approach with the alternate one

using the SELCT variable for indirect comparisons.

01 [.[ά·Cb5έ
02 SIZE?
03 E
04 ς
05 E3
06 /
07 SELCT (IND X)
08 243
09 LBL 00
10 WF# (?S= Y)
11 68
12 114
13 GTO 02
14 ISG X
15 GTO 00
16 CLX
17 -1
18 RTN
19 LBL 02
20 INT
21 END

01 [.[άCb5·έ
02 SIZE?
03 E
04 ς
05 E3
06 /
07 LBL 00
08 ?Y= (IND X)
09 243
10 GTO 02
11 ISG X
12 GTO 00
13 CLX
14 -1
15 RTN
16 LBL 02
17 INT
18 END

Table 3 ï Stack manipulation examples from ñCalculator Tips & routinesò, pg 26 ï by John E. Dearing.

Total_Rekall ɀ Dare to Compare ɀ Warp_Core+

© Ángel Martin ɀ April 2020 Page 46

Playing with Key Assignments.

This module includes a couple of brand-new KA-related routines that you may find interesting. Their
mission is to flip the key assignments on a given key or for the complete keyboard ï so that the

shifted and un-shifted assignments are mutually toggled.

¶ KAFLP toggles all key assignments ï turning shifted ones into non -shifted, and vice-versa.

This will only leave unassigned keys unchanged, but will reverse the assignments if only one

assignment exists for the keys.

¶ KYFLP_ prompts for a key to perform the same task on an individual key basis. The prompt

includes the back-arrow key but will ignore the toggle keys (ON/USER & PRGM/ALPHA)

In case you wonder why bother with this functionality, having the ability to toggle a keyôs USER key
assignments becomes very handy if you have two function launchers assigned to that key.

A good example is with the SandMath, SandMatrix and 41Z modules ï the three of them ñcompetingò

for prime time on the [S+] key. Flipping the assignments will save you a lot of [SHIFT] key pressings

to access the functions within those launchers.

Total_Rekall ɀ Dare to Compare ɀ Warp_Core+

© Ángel Martin ɀ April 2020 Page 47

 Saving Status Registers in X-Memory.

You can use sub-functions SAVEST and GETST to make backup copies of the status registers into X-

Memory files, and to restore their contents back to the status area. The functions prompt for the
number of status registers to include in those back -up files, which must be at least one and not more

than 16. In manual operation the function wonôt allow you to enter values above 16 (first prompt

must be 0/1; second prompt 0 -6). If you use ñ00ò then the complete 16 registers will be used instead.

For example if you just want to save the stack registers { T,Z,Y,X, and L} then youôd enter ñ05ò in the
prompt (since the count always starts with register T as the first one). The file name is expected to

be in ALPHA - thus register M (and possibly N) would be partially used by the function itself.

Exercise caution when the upper stack registers are included, which will have dramatic effect in your

program pointer and RTN stack in register a(11) and b(12); or stack assignments in registers | -(10)
and e(15). Also donôt underestimate the ability of a bad cold start in register c(12) to cause a

MEMORY LOST condition when treated roughly.

These functions are programmable. In a running program the file name is expected in ALPHA, and

the number of status registers is taken from the program line after the sub-functionôs index (must be
added manually) ï which wonôt be entered into the X register but as the prompt value instead. Yes,

thatôs right: a triple non-merged lines case!

Note: The Status files have a dedicated file type in X-Memory. If youôre using
the AMC_OS/X Module, then their entries will be marked with the óTò prefix

during the enumeration:

See the figure on the right showing the Stack register
allocation within the X-Mem Data file. This particular
example only goes up to 8(P), but in general you can
save all the status registers, until 15(e) inclusive.

Appendix. Duplicates in other Modules.

Some functions are also available in other advanced modules, as shown below:

Function Available in: And also in:

GETST RAMPage ROM PowerCL

SAVEST RAMPage ROM PowerCL

KAFLP RAMPage ROM XROM ROM

PUSHRTN XROM ROM RECOURSE Module

POPRTN XROM ROM RECOURSE Module

ROM2HEX XROM ROM GJM ROM

HEX2ROM XROM ROM GJM ROM

AIRCL ALPHA ROM SandMath

SHFL Formula EVALUATION

File End Marker

Register P(8)

Register O(7)

Register N(6)

Register M(5)

Register L(4)

Register X(3)

Register Y(2)

Register Z(1)

Register T(0)

FL Header Reg

FL Name Reg

Total_Rekall ɀ Dare to Compare ɀ Warp_Core+

© Ángel Martin ɀ April 2020 Page 48

XROM to-and-from HEX bytes. (by Greg McClure)

Sometimes it is needed to translate between XROM indents (##,##) and the FOCAL bytes that

represent the XROM function (Ax, xx). Function HEX2ROM prompts HòA_ò_ _ and expects three
additional hex digits (of which the first canôt be > 7). On successful entry of the 3rd hex digit the

corresponding XROM value will be displayed in the form: ñXROM_ _ , _ _ò .

Function ROM2HEX does the reverse. It prompts ROM: _ _ , _ _ and expects four decimal values

(of which max for the first pair is 31, and max for the second pair is 63). On successful entry of the
4th decimal digit the corresponding hex bytes will be displayed in the form: ñHEXô_ _:_ _ò

If at any time during entry for any of these function the opposite function is desired, pressing the ñHò

key will switch to the opposite routine (ROM2HEX <> HEX2ROM) ï going back to the beginning of

the data entry sequence.

< -->

Note that the se functions are intelligent enough to discard illegal combinations of input values during

the parameter entry ï so you canôt enter non-existing choices. This is of course non-withstanding the
synthetic two-byte OS functions, but thatôs an entirely different subject.

Note that the result string is not placed in ALPHA ï but you may use the function DTOA to move it

there. Once the resulting string is in ALPHA it can be further used for register storage or any other
string manipulation you r equire.

The table below shows the correspondences between the XROM id# and the HEX codes. Note that
the first 64 entries are used by some synthetic multi -byte mainframe functions.

XROM id#

Hex Code XROM id#

Hex Code XROM id#

Hex Code XROM id#

Hex Code

XROM 00 A0:00-:3F XROM 08 A2:00-:3F XROM 16 A4:00-:3F XROM 24 A6:00-:3F

XROM 01 A0:40-:7F XROM 09 A2:40-:7F XROM 17 A4:40-:7F XROM 25 A6:40-:7F

XROM 02 A0:80-:BF XROM 10 A2:80-:BF XROM 18 A4:80-:BF XROM 26 A6:80-:BF

XROM 03 A0:C0-:FF XROM 11 A2:C0-:FF XROM 19 A4:C0-:FF XROM 27 A6:C0-:FF

XROM 04 A1:00-:3F XROM 12 A3:00-:3F XROM 20 A5:00-:3F XROM 28 A7:00-:3F

XROM 05 A1:40-:7F XROM 13 A3:40-:7F XROM 21 A5:40-:7F XROM 29 A7:40-:7F

XROM 06 A1:80-:BF XROM 14 A3:80-:BF XROM 22 A5:80-:BF XROM 30 A7:80-:BF

XROM 07 A1:C0-:FF XROM 15 A3:C0-:FF XROM 23 A5:C0- :FF XROM 31 A7:C0-:FF

Total_Rekall ɀ Dare to Compare ɀ Warp_Core+

© Ángel Martin ɀ April 2020 Page 49

Saving and Restoring the RTN Stack. (by Poul Kaarup)

The return stack can hold up to six addresses for subroutines, which is adequate for the vast majority

of user code programs. Should that not suffice, the pair of functions described below can be used to
extend that limit up to 12 addresses, effectively doubling he return capacity of the OS.

¶ PUSHRTN saves the current RTN stack into a memory buffer (with id#=7). Once save d, the

current RTN stack is cleared (reset anew) so you have six more levels for your program.

¶ POPRTN restores from the buffer the RTN stack saved previously, effectively overwriting the

current one at the moment of calling this call.

The program pointer (PC) and the first two pending return addresses are stored in status registers
b(12), the third is stored as two halves on each register, and the remaining three in status register

a(11). Note that t hese functions will not save the Program Pointer information.

This is shown in the figure below:

a(11):

A D R 6 A D R 5 A D R 4 A D

13 12 11 10 9 8 7 6 5 4 3 2 1 0 nibble

b(12):

R 3 A D R 2 A D R 1 P C N T

13 12 11 10 9 8 7 6 5 4 3 2 1 0 nibble

Obviously these two functions are meant to be used as a pair, in combination. Note also that because
buffer#7 is used for the Stack shuffling too, you should refrain from calling SHFL and the direct

buffer access while the extended return addresses are held in bR1 and bR2.

Because these functions use the first two registers in the ñemergency bufferò, you can always use the

buffer recall function bRCL to inspect the contents of the *stored* RTN stack ï and compare it with
the *current* one, for example:

bRCL 1

RCL b

X=Y?

bRCL 2

RCL a

X=Y?

Two other functions dealing with the RTN stack are also available in the secondary FAT, as follows:

¶ RTN? Is a test function that checks whether there are pending returns in the stack. The
result is YES/NO, skipping the next line in a program when false.

¶ RTNS recalls the number of pending subroutine levels to the X register, which by definition
is an integer between 0 to six.

Total_Rekall ɀ Dare to Compare ɀ Warp_Core+

© Ángel Martin ɀ April 2020 Page 50

LIFO X-Functions. (by Doug Wilder)

The LIFO (Last In First Out) functions require extended functions memory to operate. The LIFO is

located only in the first file in extended memory and must have a minimum size of one register and a
maximum size of 120 registers. This structure allows maximum transfer speed, even faster than main

memory, and does not require register numbers.

LIFO initialization: Create a first file in extended memory (recommended size is 16 to 32 registers) or

if the first file currently in extended memory is of a suitable size, it may be used for the LIFO. Use a
sequence similar to: "BUFFER" 28 CRFLD (the name is arbitrary). The function LIFOINI converts the

first file in extended memory to the LIFO file type, any data in the file is unrecoverable.

If youôre using the AMC_OS/X Module (highly recommended), this is shown in a CAT#4 listing with an

ñLò character in the file type, i.e.:

LIFOINI :

Converts the first file in extended memory to LIFO structure and initialize pointers.

After LIFOINI has been successfully executed without error, the stack is ready for use. LIFOINI may

be executed again to reset the pointers. Idea lly, LIFOINI would be only executed from the keyboard,
however it may also be used in a main program, the uppermost or top driver program.

LIFO functions :

Z: is X and Y (complex data) , T: is Stack (XYZT), F: is Flags, A: is ALPHA, and R: is the RTN stack

If the stack lift is disabled, POPX and POPZ do not cause a lift, eg, CLX, POPZ does not modify the Z

and T registers. For multi-register push and pop functions, a ñLIFO LIMITò error leaves the stack in an
unknown state and the LIFO pointer is le ft in an unknown state. For POPA or POPF, if a ñDATA

ERRORò occurs the Alpha/Flag register has not been modified yet the LIFO pointer is left in an
unknown state.

Alpha data and Flag data are typed data, that is: one cannot pop numeric or Flag data into A lpha.

Stack data is not typed: any type of data may be poped into the XYZT stack.

With an LIFO it is possible to write user code subroutines which simulate monadic functions, for

example; do a push stack at entry, put the result in LASTX, then POPST and X<>L RTN.

It is also possible to write interrupting alarms which actually do something, they can push the

stack/LASTX/Alpha/Flags at entry and recover them at exit. Thankôs to HP for the forthought to not
interrupt a running program when the stack lift i s disabled.

