Total Rekallz Dare to Comparez Warp_Core

The Total Rekall 220 Module
OWarp_Core€ RevisiorK6

RCL Math and Full Stack Tests for the 4P
IncludingFiXALLmode for accurate number display
& Auto-Complete Advanced XEQ Mode

ETH
=|

siN‘l cesl tan-t
e - n| -
l'f? F57

VIEW

LAZTx

FIXALL “ LASTF STVIEW

REY. 19842828]

USER RAD

Written and programmed by Angel Martin
April 19, 2020

© Angel Martin z April 2020 Pagel

Total Rekallz Dare to Comparez Warp_Core

This compilation revision 4.1.1

Copyright © 2014-2020 Angel Martin

Published under the GNU software license agreement.

Original authors retain all copyrights, and should be mentioned in writing by any part utilizing this
material. No commercial usage of any kind is allowed.

Screen captures taken from V41, Windows-based emulator developed by Warren Furlow.
Seewww.hp41l.org

Acknowledgments. - Thanks to the MCODE pioneers and grand masters who pubished their work in
PPC Journal and other sources, such as Ken Emery (and alterego Skiwd), Clifford Stern, Doug Wilder,
Hakan Thorngren, Frits Ferwerda and Nelson F. Crowle amongst others for their powerful functions,
real examples of solid MCODE programning.

Many thanks to Greg J. McClure and Poul Kaarup for their contributed functions in the auxiliary FAT.

Everlasting thanks to the original developers of the HEPAX and CCD Modules real landmark and
seminal references for the serious MCODER and the 41system overall. With their products they
pushed the design limits beyond the conventionally accepted, making many other contributions pale
by comparison.

© Angel Martin z April 2020 Page2

http://www.hp41.org/

Total Rekallz Dare to Comparez Warp_Core

WARP_CORE 2020
HP-41 Modul e

Table of Contents

1. What 6s Ne w0ievisionshe 20

a. Auto-Complete Mode.co it o 9

b. Universal EXecute., 14
c. Accessing Subfunctions 15
d. Enhanced ASCII File Editor. 18

2. TheiDare to Compareo Edition.

a. Generallntroductioniii . 22
b. The Subfunction CATalog......, 23
c. Managing Auxiliary FATS.t 24
d. Stack ComparisonsMain Launcher. 25

3. TheaiTot al Rekall 0 Editi on

a. TheTotal RCLDilemma.covviiiinonn. 26
b. Programmable arguments Look-up Table 27
c. Direct Register Comparisons.uuiuiiiunnnnn. 28
d. GeneraltPurpose Comparison.covinn.nn. 29
e. GeneralPurpose Exchange. 30
f. Value Comparison with selected variable 31

i. Example: Data Registers BubbleSort. 32
g. InverseISGand DSEmodes.oviinn.. 33

i. Example: Congruence Equation 35
h. The Double Indirection: a solution in search of a problem 37
i. Going over the top: Multiple Indirection 37

i. Example: Bubble sort w/out Data Movement. 38
j. Appendix. Atripto Memory Line 39

4. Advanced System Utilities

a. Dynamic ALL mode displaying. 39
b. Stack Shuffling and selective clearing. 41
c. Shadow Buffer Reqisters Storage. 43
d. Buffer Header: warping around SELECT. 44
e. Finding the X-needle in the REGhaystack............... 45
f. Playing with Key Assignments 46
g. Saving Status Registers in XMemory 47
h. XROMCodes and FunctionID# Codes 48
i. Saving and Restoringthe RTN Stack. 49
jo LIEO XFunctions. 50
k. Loading Multi-byte instructions 52
I. Appendix. - Internal Data Field structure 55
m. Appendix.- Dare to Compare: 102 functions at your fingertips .. 56

© Angel Martin z April 2020 Page3

Total Rekallz Dare to Comparez Warp_Core

Figure O: Interaction between the different function lau nchers.

FIXALL |[=—
| ROMZHEX _
HEX2ROM _
AIRCL _ SEL?]
(RCL_) NEXT
PREV B
it coner X, ¥;,T:, Z
RC- < _ _ M:, M:, O, P
RC* s<>__ a, b:,c,di e
RC.IF _ L ﬂ.] }'
RKL _ STK: _
LASTF
WF_
bRCL _ Ws _
bsTO _ FCAT
bVIEW _
bX<> _ | SHFL__ _ _ _
| sTVIEW
Ne<I>Y
A<>S8T < | SAVEST _ _
ST<>RG _ _ | GETST_ _

Figure 1. RKL Hot keys (left) and Main Overlay (right).

p— p— I _cee” TAN " '
nmnm T
R .
N , ‘ ! GTe [T\
‘ ' el ‘ . n
«
2 @ Y 1
1* \I o@
\ _) J
F8?
LASTFA STVIEW 1

LASTe

FIXALL

Tete) Rebell 2um hpdq 0a

© Angel Martin z April 2020 Page4

Total Rekallz Dare to Comparez Warp_Core

Summary Function Table.

Function Description Input DependencyType Author

0 -WARP CORE-Lib#4 Check & Splash none Lib#4 MCODE Angel Martin
1 ED+ Enhanced ASCII Fiditor FName in ALPHA Lib#4 MCODE Hpc¢ AMartin
2 XEQ+ Auto-Complete Mode Initial letter, hot keys Lib#4 MCODE Angel Martin
3 7?CASE __ iscasevalue Value in prompt / Next Line Lib#4 MCODE Angel Martin
4 RKL_ Enhanced RCL function Prompts for RG#. Lib#4 MCDE Angel Martin
5 RG__ RCL Subtraction RG# in prompt / Next Line Lib#4 MCODE Angel Martin
6 RC+_ RCL Addition RG# in prompt / Next Line Lib#4 MCODE Angel Martin
7 RC*__ RCL Multiply RG# in prompt / Next Line Lib#4 MCODE Angel Martin
8 RC/__ RCL Divide RG# in prompt / Next Line Lib#4 MCODE Angel Martin
9 RCr__ RCL Power RG# in prompt / Next Line Lib#4 MCODE Angel Martin
10 RIND2 w/ [Lb5 Lb5 & RG#inprompt/NextLine Lib#4 MCODE Angel Martin
11 SELCT selects variable RG# in pmpt / Next Line Lib#4 MCODE Angel Martin
12 SHFL _ Stack Shuffle five stack regs in prompt Lib#4 MCODE Angel Martin
13 SIND2 _ _ {¢h Lb5 Lb5 06 RG#inprompt/NextLine Lib#4 MCODE Angel Martin
14 ST<>RG __ Stack Exchange RG# in promp/ Next Line Lib#4 MCODE Angel Martin
15 A<>RG_ _ Alpha Exchange RG# in prompt / Next Line Lib#4 MCODE Ken Emery
16 WF#__ Subfunction Launcher by inde; Index at the prompt Lib#4 MCODE Angel Martin
17 WF$ _ Subfunction Launcher by Nam Name inprompt Lib#4 MCODE Angel Martin
18 Y<>_ _ Swap Y and Register RG# in prompt / Next Line Lib#4 MCODE Greg McClure
19 Z<>_ Swap Z and register RG# in prompt / Next Line Lib#4 MCODE Angel Martin
20 T<>_ Swap T and register RG# in prompt / Next Line Lib#4 MCODE Angel Martin
21 L<>_ Swap L and register RG# in prompt / Next Line Lib#4 MCODE Angel Martin
22 M<>_ Swap M and register RG# in prompt / Next Line Lib#4 MCODE Angel Martin
23 N<>_ Swap N and register RG# in prompt / Next Line Lib#4 MCODE Angel Martin
24 O<>_ Swap O and register RG# in prompt / Next Line Lib#4 MCODE Angel Martin
25 P<>_ Swap P and register RG# in prompt / Next Line Lib#4 MCODE Angel Martin
26 Q<> Swap Q and register RG# in prompt / Next Line Lib#4 MCODE Angel Martin
27 -STKTST Function Builder Prompts for Reg and operatiorLib#4 MCODE Angel Martin
28 ?0=__ Equal to Zero Test RG# in prompt / Next Line Lib#4 MCODE Angel Martin
29 ?0# _ _ Different from Zero Test RG# in prompt / Next Line Lib#4 MCODE Angel Martin
30 ?0<_ _ Greater than Zero test RG# in prompt / Next Line Lib#4 MCODE Angel Martin
31 ?0<=_ _ Greater than/Equal to Zero TeRG# in prompt / Next Line Lib#4 MCODE Angel Martin
32 ?0>_ _ Less than Zero Test RG# in prompt / Next Line Lib#4 MCODE Angel Martin
33 ?0>=_ _ Less than/ Equal to Zero Test RG# in prompt / Next Line Lib#4 MCODE Angel Martin
34 ?2X= Equal to X test RG# in prompt / Next Line Lib#4 MCODE Angel Martin
35 ?X#_ _ Different from X test RG# in prompt / Next Line Lib# MCODE Angel Martin
36 ?X<_ _ Greater than X test RG# in prompt / Next Line Lib#4 MCODE Angel Martin
37 X<= Greater than/Equal to X test RG# in prompt / Next Line Lib#4 MCODE Angel Martin
38 ?2X>_ _ Less than X Test RG# in prompt / Next Line Lib# MCODE Angel Martin
39 2X>=_ _ Less than or equal to X test RG# in prompt / Next Line Lib#4 MCODE Angel Martin
40 ?Y= Equal to Y test RG# in prompt / Next Line Lib#4 MCODE Angel Martin
41 ?YH#_ _ Different from Y test RG# in prompt / Next Line Lib#4 MCODE Angel Martin
42 ?Y< _ _ Greater than Y test RG# in prompt / Next Line Lib#4 MCODE Angel Martin
43 ?Y<= Greater than or equal to Y testRG# in prompt / Next Line Lib#4 MCODE Angel Martin
44 ?Y>_ Less than Y Test RG# in prompt / Next Line Lib#4 MCODE Angel Martin
45 ?Y>= Less than or equal to Y test RG# in prompt / Next Line Lib#4 MCODE Angel Martin
46 ?Z= _ Equal to Z test RG# in prompt / Next Line Lib#4 MCODE Angel Martin
47 ?7#H _ _ Different from Z test RG# in prompt / Next Line Lib#4 MCODE Angel Martin
48 ?Z< _ _ Greater than Z test RG# in prompt / Next Line Lib#4 MCODE Angel Martin
49 ?7Z<= Greater than or equal to Z testRG# in prompt / Next Line Lib#4 MCODE Angel Martin
50 7?7Z>_ _ Less than Z Test RG# in prompt / Nextihe Lib#4 MCODE Angel Martin
51 ?Z>= Less than or equal to Z test RG# in prompt / Next Line Lib#4 MCODE Angel Martin
52 ?T=_ Equal to T test RG# in prompt / Next Line Lib#4 MCODE Angel Martin
53 ?T# Different from T test RG# in prompt / Nextine Lib#4 MCODE Angel Martin

© Angel Martin z April 2020

Page5

Total Rekallz Dare to Comparez Warp_Core

Function Description Input DependencyType Author

54 ?T<_ _ Greater than T test RG# in prompt / Next Line Lib#4 MCODE Angel Martin
55 ?T<=_ _ Greater than or equal to T testRG# in prompt / Next Line Lib#4 MCODE Angel Martin
56 ?T>_ _ Less than T Test RG# in prompt / Net Line Lib#4 MCODE Angel Martin
57 ?2T>=_ Less than or equal to T test RG# in prompt / Next Line Lib#4 MCODE Angel Martin
58 ?L=__ Equal to L test RG# in prompt / Next Line Lib#4 MCODE Angel Martin
59 ?L#_ _ Different from L test RG# in prompt / Bxt Line Lib#4 MCODE Angel Martin
60 “?L<_ Greater than L test RG# in prompt / Next Line Lib#4 MCODE Angel Martin
61 ?Ll<=_ _ Greater than or equal to T testRG# in prompt / Next Line Lib#4 MCODE Angel Martin
62 ?2L>_ Less than L Test RG# in prompt Next Line Lib#4 MCODE Angel Martin
63 7?L>=_ Less than or equal to L test RG# in prompt / Next Line Lib#4 MCODE Angel Martin

This module also includedaage set of sukfunctions arranged in an Auxiliary FAT, as follows:

0 -STK SWAPS Section Heaer Lib#4 MCODE Angel Martin
1 a<>_ Swap a and register RG# in prompt / Next Line Lib#4 MCODE Angel Martin
2 b<>__ Swap b and register RG# in prompt / Next Line Lib#4 MCODE Angel Martin
3 c<> Swap ¢ and register RG# in prompt / Next Line Lib#4 MCODE Angel Martin
4 d<>_ Swap d and register RG# in prompt / Next Line Lib#4 MCODE Angel Martin
5 e<> Swap e and register RG# in prompt / Next Line Lib#4 MCODE Angel Martin
6 <> Swap | and register RG# in prompt / Next Line Lib#4 MCODE Angel Martin
7 M=_ _ Equal to M test RG# in prompt / Next Line Lib#4 MCODE Angel Martin
8 ME_ Different from M test RG# in prompt / Next Line Lib#4 MCODE Angel Martin
9 M<_ _ Greaterthan M test RG# in prompt / Next Line Lib#4 MCODE Angel Martin
10 ?M<=_ _ Greaterthan or equal to M test RG# in prompt / Next Line Lib#4 MCODE Angel Martin
11 ?2M>_ _ Lesghan M Test RG# in prompt / Next Line Lib#4 MCODE Angel Martin
12 ?2M>=_ Lesghan or equal to M test RG# in prompt / Next Line Lib#4 MCODE Angel Martin
13 ?2N=_ _ Equal to N test RG# in prompt / Next Line Lib#4 MCODE Angel Martin
14 ?N#_ _ Different from N test RG# in prompt / Next Line Lib#4 MCODE Angel Martin
15 ?N<_ _ Greaterthan N test RG# in prompt / Next Line Lib#4 MCODE Angel Martn
16 ?N<=_ _ Greaterthan or equal to N test RG# in prompt / Next Line Lib#4 MCODE Angel Martin
17 ?2N>_ _ Lesghan N Test RG# in prompt / Next Line Lib#4 MCODE Angel Martin
18 ?2N>=_ Lesghan or equal to N test RG# in prompt / Next Line Lib#4 MCE Angel Martin
19 ?20=__ Equal to O test RG# in prompt / Next Line Lib#4 MCODE Angel Martin
20 ?0# _ _ Different from O test RG# in prompt / Next Line Lib#4 MCODE Angel Martin
21 ?20<_ _ Greaterthan Otest RG# in prompt / Next Line Lib#4 MCODE AngelMartin
22 ?70<=_ _ Greaterthan or equal tadOtest RG# in prompt / Next Line Lib#4 MCODE Angel Martin
23 720> _ _ Lesghan O Test RG# in prompt / Next Line Lib#4 MCODE Angel Martin
24 ?20>=_ _ Lesghan or equal toOtest RG# in prompt / Next Line Lib#4 MCODE Angel Martin
25 ?P=_ _ Equal to P test RG# in prompt / Next Line Lib#4 MCODE Angel Martin
26 ?P#_ _ Different from P test RG# in prompt / Next Line Lib#4 MCODE Angel Martin
27 ?P<_ _ Greaterthan P test RG# in prompt / Next Line Lib#4 MCODE Angel Martin
28 ?P<=_ _ Greaterthan or equal to P test RG# in prompt / Next Line Lib#4 MCODE Angel Martin
29 ?P>_ LesghanP Test RG# in prompt / Next Line Lib#4 MCODE Angel Martin
30 ?P>=_ Lesghan or equal to P test RG# in prompt / Next Line Lib#4 MCODE Angel Martin
31 ?2Q=_ _ Equal to Q test RG# in prompt / Next Line Lib#4 MCODE Angel Martin
32 2% Different from Q test RG# in prompt / Next Line Lib#4 MCODE Angel Martin
33 ?2Q0<_ Greaterthan Q test RG# in prompt / Next Line Lib#4 MCOIE Angel Martin
34 ?7Q<=_ _ Greaterthan or equal to Q test RG# in prompt / Next Line Lib#4 MCODE Angel Martin
35 ?2Q> Lesghan Q Test RG# in prompt / Next Line Lib#4 MCODE Angel Martin
36 ?20Q>=_ Lesghan or equal to Q test RG# in prompt / Nexthé Lib#4 MCODE Angel Martin
37 -SELECT ENS Section Header

38 ?S= Equal to S test Data in sel and target Lib#4 MCODE Angel Martin
39 ?S# Different from S test Data in sel and target Lib#4 MCODE Angel Martin
40 ?S< Greaterthan S test Data in sel antarget Lib#4 MCODE Angel Martin

© Angel Martin z April 2020

Page6

Total Rekallz Dare to Comparez Warp_Core

41 ?S< Greaterthan or equal to S test Data in sel and target Lib#4 MCODE Angel Martin

42 ?2S> Lesghan S Test Data in sel and target Lib#4 MCODE Angel Martin

43 ?S>=_ Lesghan or equal to S test Data in sebnd target Lib#4 MCODE Angel Martin

44 NEXT increment selection SEL variable Lib#4 MCODE Angel Martin

45 PREV decrement selection SEL variable Lib#4 MCODE Angel Martin

46 S<>_ Swap Selected & Target Regs Target Reg in prompt Lib#4 MCODE Angel Marin

47 SEL? Shows the selected variable SEL variable Lib#4 MCODE Angel Martin

48 SRCL Recalls Value in Selected var None Lib#4 MCODE Angel Martin

49 SSTO Stores value in selected var Value in X Lib#4 MCODE Angel Martin

50 SVIEW Shows Selected var contisn SEL variable Value Lib#4 MCODE Angel Martin

51 -WARP ENS Shows Splash Screen none Lib#4 MCODE Nelson F. Crowle
52 A<>ST Exchange Alpha & Stack Values in ALPHA and stac Lib#4 MCODE Angel Martin

53 AIRCL _ _ Integer ARCL Prompts for rg# Lib#4 MCODE Angel Martin

54 AUXFAT Shows pages w/ Aux FAT none Lib#4 MCODE Angel Martin

55 bRCL _ Buffer reg recall buffer reg# (15) Lib#4 MCODE Angel Martin

56 bSTO _ Buffer reg Storage buffer reg# (15) Lib#4 MCODE Angel Martin

57 bVIEW _ Buffer Reg View Bufferreg# (15) Lib#4 MCODE Angel Martin

58 bX<>_ Buffer Reg Exchange buffer reg# (15) Lib#4 MCODE Angel Martin

5 [/ t, . bY (CopiesBank# Bank#, frorato pages Lib#4 MCODE Angel Martin

60 CSST Continuous SST Has hot Keys Lib#4 MCODE Phil Trih

61 DETEXT Decode Text Lines Program Name in ALPHA - MCODE Ross Wentworth
62 DSNEX Decrement and Skip if not Eque Value in X Lib#4 MCODE Angel Martin

63 FINDX Find register containing X Value in X Lib#4 MCODE Angel Martin

64 FIXALL Activates Fix ALL mode none Lib#4 MCODE Angel Martin

65 GETST _ _ Get Status Regs from File # Regs, FileName Lib#4 MCODE Angel Martin

66 HEX2ROM A_:_ From Hex code to ROM# Hex code Lib#4 MCODE Greg McClure
67 ISLEX Increment and Skip if Equal Value in X Lib#4 MCODE Angel Martin

68 KAFLP _ Flips ALL Key assignments none Lib#4 MCODE Angel Martin

69 KYFLP _ Flips Key assignments Pressed key Lib#4 MCODE Angel Martin

70 ALASTF _ Prompts for FName to add Buffer #9 Lib#4 MCODE Angel Martin

71 LASTF? Starts LastF review Hot keys, Buffe #9 Lib#4 MCODE Angel Martin

72 POPRTN Pop RTN stack from Buffer None Lib#4 MCODE Poul Kaarup

73 PUSHRTN Push RTN stack to buffer none Lib#4 MCODE Poul Kaarup

74 ROM2HEX_ _:_ From ROM# to Hex Code ROM id# Lib#4 MCODE Greg McClure

75 RTN? Tests for pnding RTNs YES/NO, skips if False Lib#4 MCODE Doug Wilder

76 RTNS Number of pending RTNs Pust in X, Lifts Stack Lib#4 MCODE Angel Martin

77 SAVEST _ Save Status Regs #Regs, FileName Lib#4 MCODE Angel Martin

78 SFLNCH _ Subfunction Launchetauncher Page# in Prompt Lib#4 MCODE Angel Martin

79 ST<S Swap Stack anfRegs none Lib#4 MCODE Nelson F. Crowle
80 STVIEW Full Stack View None Lib#4 MCODE Angel Martin

81 X<I>Y Exchange IND(X) & IND(Y) Values in X, Y Lib#4 MCODE NelsonF.Crowle
82 X=YZ? Doude Comparison Valuesin X, Y, Z Lib#4 MCODE Ken Emery

83 X=YZT? Triple Comparison Values in Stack Lib#4 MCODE Poul Kaarup

84 - 9v W Uy Executes CAT1 function Values in buffer Lib#4 MCODE Angel Martin

85 XEQ$ _ Universal Execute Prompts for Name Lib#4 MCOIE Angel Martin

86 CAT+ _ Subfunction CATALOG has HOT keys Lib#4 MCODE Angel Martin

87 ALPHB Alphabetize Sorts alphabetically Lib#4 MCODE Poul Kaarup

88 LODB_ _ Load Bytes in RAM Byte codes in prompts Lib#4 MCODE Nelson F. Crowle
89 LODB+_ _ Load Byes in RAM Byte Codes in prompts Lib#4 MCODE Nelson F. Crowle
90 METRON Metronome Beats per min in X Lib#4 MCODE Nelson F. Crowle
91 RCB RecallSregs Data in Stack Lib#4 MCODE Ken Emery

92 STGS Sto Stack t®Regs Data inSRegs Lib#4 MCODE Mark Power

93 POP POP LIFO Launcher showsl:A:F:X:Z:T:R Lib#4 MCODE Doug Wilder

94 PUSH PUSH LIFO Launcher showsl:A:F:X:Z:T:R Lib#4 MCODE Doug Wilder

95 PROMT Variable Prompt Number of fields in X Lib#4 MCODE Nelson F. Crowle

: New functions in the Bank-Switched versions

© Angel Martin z April 2020

Page7

[z Dare to Comparez Warp_Core

Total Rekal

ﬂ*

QU 198407 SN ﬂ

—

AMNISNT (OSLANNLY -
B o - T
£4507 Koy
S mduf onuopy
xoaa
v || NG
SIIBXT (0S4
uonvaawng prowony [FY
EIRSTTURENT S 0 | I L
Sy eioeds mduy
JRYT [BUI] OIS XN HAING
| soseur 9.3 p—
oflf won sy
S .
VHATV QNI sy
z3dvg o) duny
8304 MOMALT AN I
' . B\ 5, N

UONDSIADN +OTX

nediwo) -omy

Page8

© Angel Martin z April 2020

Total Rekallz Dare to Comparez Warp_Core

What 6s ne2@i Wanrr g hG@or2®o edi ti on
1. The Auto-completemode | xeQ+

I f youbve been following the evolution of the ATotal _
important new things of a major revision li kethisonei and you wondt be disappointe
edition includes the all-new, long-awaited, Auto-Complete mode for XEQ functions.

When you call the XEQ+ function a new mode of execution opens up to the user; one where instead
of spelling the complete function names at the alpha prompt, only the first initial letter is entered and
the calculator does the rest for you i with a few control hot -keys to navigate the complete system

(CAT fioln)page #3 up to the top in page #F for the plug -in modules, and page #1 for the native

OSfunctions(i n CATO®63)

Thisisakint o t hec dimpulteot ed6 functionality popular on other s
selection of those available functions in the current ROM configuration. Because of the finite number

of possible options (with an absolute total maximum of 630 functions w hen all pages are filled up

with modules each having 64 entries in their FATS), limiting the auto -completion to the first character

is not a shortcoming, but a practical design criteria to keep the code size and execution times within

reasonable parameters.

Using Auto-Complete.

In short: the function XEQ+ starts a new mode by prompting for an initial character letter or number.
When that selection is made and after a short search time (negligible on the CL for sure) it presents
all functions currently available in the bus that begin with that letter - commencing the search in
page#3 up until page #F. The listing can be done manually (or continuous (), and
several navigation keys are included: jump page, back-up page, next function, previous function, next
letter, previous letter.

The initial prompt is ready to look in the plug -in section of the system bus, i.e. from page #3 up to
page #F (15). This is indicated by a double-quotes character in the display. Note that this
representation changes automatically to a single-quotes character if the target function is located in

theO/ S, i .e. for the i nYoudavusethefUSERKeYitotoggle betweerChth:o 3
XEE" Az A <EQ - Az
USER 1 | <> USER 1

For XROM functions, loth MCODE functions and FOCAL programs will be shown:

USER

XEGQ" ALENG XEGY TERGWP
1 1

Once you've locked on your target function simply press to execute it, or [] to assign it
to the key of your choice. If youére not sure this is your choice (sa

ones exist), pressing will show you some vital signs of the function, such page# and XROM id#

REG" RLENDG L PLo"d XRZ549 1
USER 1 USER

<-->

Pressing the| ENTER | navigation key, you can change the letter sought to the next one alphabetical,
always starting at the current page and moving upwards.

© Angel Martin z April 2020 Page9

Total Rekallz Dare to Comparez Warp_Core

Manually Changing the Searched Page.

You can move up or down one page using the or EI control keys. If no target exists in the next
page using the engine will keep looking look in pages above it, but not so using EI for the
previous page. Eventually if no function starting with the selected letter exists , a left-justified
information message NIMATCHb)e therarrertt functios wllpersist. (You
can also force the searched page by using the \@ or i Rlkey, éndihputting the initial page to
start the search from. The same upwards/downwards behavior applies when there are no target
functions in a forced page location, using the or D control keys for pages jumping, or the
key for a forced destination:

oo NO MATCH

USER USER RAD 1

Functions from CATO63

The native OS functions are fully supported by the Auto-Complete engine. You can access the OS
areaeitherbytypi n0p , i 2or dilrectly at the p @,ormecmaﬁipg trigger
the page# using D while a function from pg# 3 is shown (provided that such first letter is also

available in the OS group, as per the previous descriptions).

In case you wonder, page#4 is simply skipped over, while pages 0-1-2 (indistinctly) default to
page#1l to include t hei s@thigfon8tiorfalityrincludésahe standasd fumctohsl
of the calculator (such as BEEP,FACT,MOD, SDEV, etc.). This support includes their inclusion on the
LASTF list for quick access of recently executed functions.

Back-door to the Standard XEQ

The key is also active as a hot key to invoke the native XEQ function. Use it if you want to

revert to the standard OS method to accessnumeric labels or a local label (A-H, a-e) within a user

program, or to spell the function name in ALPHA mode; by pressing ALPHA and then spell the name
asusualHowever this method i sUniversal Escoutee reasse dveidl Ib yb & hdee sfic r i
later on.

Typing in Special Characters.

Lower case characters (a€), numbers and all other key -able special chars are accessed using the

shifted keys in the standard ALPHA keyboard. Another option is provided pressing the key at the

main prompt, to use special charactersi even if not key-able but allowed in function names. This

makes it possible to sear chnof, ort hfeu ricdtbavkearddgeesee s st ar i n
or all the little men just to name a few.

XEQ" - ‘ XEQ_ oy

USER 1 o N USER
. N2EO0L

Automated enumeration.

I f youdbd rather see an automated emidishav\tallon of the o
functions meeting those criteria up u ntil the end of the bus. You can quit the listing at any time

pressing any key, and then press or to perform the action once halted.

Note that (with the exception of the native OS group), functions are not listed in alphabetical order,
butin sequentialorder,as t heydre found in the respective FATOs o
the calculator. The only condition is that they all begin with the letter chosen at the initial prompt.

© Angel Martin z April 2020 Pagel0

Total Rekallz Dare to Comparez Warp_Core

Sub-functions are included in the search.

The latest revisions of the WARP module provide the capability to also include the sub-functions in
the search, thus they will be shown when the first -letter criteria are met. In case you are not familiar
with them, this is a special functionality present in several adv anced modules than breaks the 64-
function FAT barrier of the O/S. - see the list below for details.

Sub-functions are structured in Auxiliary FATs, different from the main FAT atop of each module page.
Since they are not included in the main FATS, the O/S knows nothing about them and therefore they
are not accessible by the standard XEQ function. This means they needanother way to be invoked i
and typically each of those advanced modules has at least a dedicated launcher. More about this later,
i n tUhiwersafiExecuted secti on.

Module Aux FAT Location Launchers # Sub-functions
417 Deluxe Middle of Lower page ZF$, ZF# 62
AMC_OS/X Middle of page XF$, XF# 22
CL XMem Manager Middle of page YFS$, YF# 22
Formula Evaluation Middle of page SF$, SF 24
GJM ROM Middle of page GIM$, GIM# 24
HEPAX_ 4H Top of Bank3, Middle of bani3 HEPAXXF$ 21 +25
HR16C Simulator Middle of page 163, 16# 62
PowerCL Extreme Top of Bank3, Top of banid XQB, XQ2% 89+89
SandMath 4x4 Middle of Uppempage SF$ SF# 117
SandMatrix Middle of Lower page SM$, SM# 63
WARP_Core Middle of page WF$, WF# 100
Total System Indistinct XEQ$ 704

Table 1: Advanced Modules w/ Auxiliary FATs

The sub-functions are found whether they are located in (1 :) an Auxiliary FAT or (2:) a Banked FAT
atop the page 1 and (3:) in the combination of both situations, i.e. an auxiliary FAT located at the
middle of a banked page . Thislastcase is only used by t heelativ& PAX
interest because it just includes the replica of the X-Functionsi only meaningful for non-CX systems.

The representation of the Sub-functions found during the enumeration is different from that of the
(standard) Main functions: the single or double quotes character used by native and XROM nain
functions respectively is replaced by:

1 Anunderscore character if the sub-function is in the auxiliary FAT (middle of the page)
1 Anoverscore character when the sub-function is atop of a banked page, and
1 A colon/overscore character when the sub-function is atop of a second banked page

See below the examples showing main function BFCAT and sub-function DCTXT (both from the
AMC_OSXmnodule), and with sub -functions BFVIEW and BANKS? from the PowerCIl_Extreme
module (in banks 3 and 4 respectively):

RESU"IFCHT REG_JC T RT
USER 1 | . USER
Main function Auxiliary FAT
RELSD T 3RV IEW REGTIANKS?
USER 1) USER 1
Banked FAT, bk#3 Banked FAT, bk#4

modul e

Note that the same punctuati on c¢ onv énfotmationscreess. used i

© Angel Martin z April 2020 Pagell

n

Total Rekallz Dare to Comparez Warp_Core

Executing Sub-functions.

For complete location information of a sub -function we need to know its index# within the Auxiliary

FAT, and the address location of said Aux. FATi whi ch, youbd rwmbmhbleanked may

page as well . Wi th that i nfor mat irammpoiatertohhand it és poss
beginning of the sub-function code for manual execution.

However, that met hod wfonetdrineadoto e entered into & prograns la that
instance the information required besides its index# within the Aux. FAT is the a ctual sub-function
launcher code. This is exactly how sub-functions are entered in a program directly from the XEQ+
prompt, which does all the legwork identifying the suitable launcher and proceed ing by inserting two
program steps with the launcher code and the index, as non-merged parameter.

You shoul d alSsaching foreAciary FAED fisecti on to | earn more abou
to get familiar for the sub -functions AUXFAT and SFLNCH, very handy tools to manage t hese
advanced structures across the entire system bus.

The Extended LASTF facility.

The [XEQ operation will also add the executed function automatically to the enhanced LASTF facility,
which now will hold up to five entries (say,Last F now kdt-fain @;s).0Thecstorage includes
both Main functions from the O/S or plug -in modules and Sub -functions from auxiliary FATS, either
in the main bank or in a bank -switched one. It is performed automatically and needs no user
intervention. Two new utilities allow the user to review and execute these (LASTF”") , plus a manual
mode to enter main functions into the list if so desired (*"LASTF) .

1 Thefirsttimeyou press the radi x LASTH sybefunétioneThisgiveso ki ng t he
you the opportunity to re -access the last five functions stored in the buffer, simply use the
[SST] key to scroll the list, then press XEQ to execute it.

REG" R ST IARATE
USER 1 g USER 1

LS5 7. IRTE LS T ARV IEW
USER 1 E USER 1

1 Pressing the radix key a second time invokes the "LASTF sub-function, which shows an
editable field to manually enter a function name for its inclusion in the Last -Five buffer - from
where you can access it using the method described above.

! QT AYIEYN ' ALASTFE _
1

USEFR UZEFR ALPHA

I'tés therefore ithepsaobrfunationswilt oalso berstoredin the L ASTF buffer .
This universal coverage guarantees that *any* command accessed via the XEQ+ facility is logged in
the Lasf-5 buffer. The only restriction is that the plug -in modules are not moved n=between accesses
to the LASTF facility.

Implementing this coveragewasnét trivial, and it definiteliy ran in
a lot of complex code to cover fringe cases 1 but the user experience is much more complete in this
way.

© Angel Martin z April 2020 Pagel2

Total Rekallz Dare to Comparez Warp_Core

Understanding the Main Function Search process.

The promptalway s s hows

the fndomai

1 Asingle quote indicates OS area:

1 Double quotes indicate the I/O bus:

1 Underscore denotessub-functions in Auxiliary FATS
1 Overscore denotes sub-functions in Banked FATs

n o

XE

bl ock used f
XEQ ©
XEQ 0o
XEQ
Qo /') XEQ: ¢

or t

The search always starts in page #3 i which holds the extended functions FAT in the CX. If no
functions starting with the target letter exist in that FAT, then the search continues in page#5, and
keeps going up until page #F. Once that end is reached, the original prompt is shown if still no
targets ar e f oun eoyeratthiepointt her eds no

r

ol |

When a function is found you can list the following starting with the same letter using [SST], which
will automatically increase the page within the domain block when the current FAT is completed. This
means it will show functions either within the OS, or within the 1/0O bus but not across the divide!

You can also move back to the previous function using [BST], which will also move back to the
previous page when the top of FAT has been reached. Notethati t 0 s
always starts at the first byte within the page , but moving backwards the code needs to determine
the end of the FAT in the previous page - by reading the number of functions in its second byte.

OS / CAT 3

[BST
[SS

e a

sy to

know

FAT #7

/4

FAT #8

/ FTAT# 9

L

The figure above does not show Auxiliary or Banked FATS, yet the same functionality exists with
them for the most part. There are, however, two important difference s between the [SST] and [BST]

enumeration features.

91 The first one occurs when a gap is in-between pages; i.e. t h e r meinpty @age or a blank
(page with no FAT), or no functions meeting the target criteria). In that situation the
be skipped moving upwards (the code will keep trying pages up until page #F is reached) but

cr ossed . Notethattlge same eonsideratiah applies to

the [+] and [-] navigation keys: going upwards will skip blank pages (gaps), but moving

thegapwo n dt

downwards will not.

be

gap will

1 The other important difference has to do with the sub -functions. The rule is that Auxiliary
FATSs are always included in the search, on either directioni but Banked FATs are only
scanned going upwards. Therefore sub-functions in Auxiliary FATs will be enumerated in both
directions i but those in Banked FATs will be skipped going backwards.

Remember that you can always force the page# to look within, either by moving sequentially to the
next/previous page (with a target letter present in both pages in the [-] case), or by jumping directly
to a specific page# using [EEX]. This is how you can move to the OS area, i.e. pages #0 to #2:
either by pressing [-] while a function from page #3 is locked -on, or by jumping directly to any of the

first three pages (0-2).

© Angel Martin z April 2020

Pagel3

he seal

that t

Total Rekallz Dare to Comparez Warp_Core

2.- TheUniversal Execute xeqs

The Auto-Compl et e mode is a very powerful way to finavigat
functions and sub-functions using only the initial letter of their names. This is often speeder and

more convenient that the standard { XEQ, ALPHA } approach of the O/S i which requires typing

correctly the complete name, - needed to be fully known by the user.

But each situation is different and sometimes it may be more convenient to use the direct full -name
spelling method. The trouble child here are the sub-functions, invisible to the O/S and therefore not
seen by the native XEQ functioni r egar dl ess of iits prowess, which aren

The sol ut i o Wniiersal Bxdeeei nfe wn XBQB, avinich allows you to type main function
names, as well as sub-function names i located either in Auxiliary FATs or in Banked-switched FATSs !
Therefore knowing the dedicated launcher to access a particular sub-function is no longer needed,
freeing up the casual user from t hat requirement for t he complete utilization of the full potential of

the system.

AccessingXEQ#$ is as simple as pressing the| ALPHA| key at the XEQ+ prompt, or during the
enumeration of the selected (sub)function. Once you do it the display will change t o an editable field
and ALPHA will be active for the typing of the name:

.1 .l

i -7 i
" (L] ! H.f_ " E LA 5 -
USEF 1 ALPHA USER 1 ALFHA
Note: BecauseXEQ$ isitselfasub-f uncti on, ité6s also possible to acces

function Launchers i either numerically with WF# and its index# = 085 , or alphabetically with WF$.

XEQ$ supports manual (interactive) execution and Program entry of (sub)functions in a FOCAL
programinRAMi pretty much | ike itsXEQpavi gatoro counterpart

The (sub)function search commences scanning the OS and the plugin bus for matches, i.e. pretty

much like the native XEQ except that FOCALLabels in RAM programswill be ignored. If the name

isnét found the code will sequentially scan al/l bus 7
scan their contents for a suitable match. During the process the display shows an information

message as seen below

CERARCH . ¥+, . NO MATOHM]
i

USER 1 ALPHA
. . perhaps: © HSER |

LASTF support of XEQ$

The most beneficial aspect of the universal execute is possibly that all functions invoked will be added

to the LAST-5buffer f or | ater accessibility. This includes OS
functions or FOCAL programs from pluggedin module. Having them saved in the buffer can become

very handy during long programs data entry.

But t her ékéiswastbercaseinthe XEQ+ Ainavi gat or dunammsfeundt usiogb
XEQ$ are also included in the LAST-5 buffer as mentioned before.

Caveat Emptor. Note that the latest revisions of the modules listed in Table -1 are needed for the
Universal Execute to work withsub-f unct i ons. Ol der revisions wi l|l trig
but other than that shouldnd tause any harmful disruptions to the system.

© Angel Martin z April 2020 Pagel4

Total Rekallz Dare to Comparez Warp_Core

Sub-function access.

Thewaysub-f uncti ons are accessed depends on whetshder
directly in manual mode.

1 In PRGM mode the sub-function needs two program steps, the first one with the
corresponding sub-function launcher and a second one with the index in the auxiliary FAT.
't 6s t her e fX&@Q+efaclitpto identifytthle dauncher (in the main bank of the current
page), and figure out its corresponding index within the Auxiliary FAT.

This works flawlessly even if there are two Auxiliary FATSs in different banks, like it happens in the
PowerCL_Extreme and the HEPAX_4H madles (see diagram below) i automatically selecting the
appropriate of the two launchers. This is a very robust implementation, and the program steps

entered will work as long as the module is plugged in the calculator - regardless of which_page .
Not bad, if you think about it.

1 Inthe manual case the XEQ+ facility will simply send the program pointer to the address
where the code for the called function starts, be that in a main bank or in a banked -switched
one (circumstance that will require activating th e target bank previously too). This will start
the execution of the sub -function.

This case is not as foolproof however; consider for example that you access the sub-function
BANKED in the PowerCL_Extreme with the module plugged in page #7. As explained before, the
sub-function current address will be stored in the LAST-5 buffer for ulterior access via LASTF, but
|l etds say you relocate t he Pobeweeq landthendccéssthet o
LASTS5 engine: what will be the consequence? The wrong address is stored and will potentially

play some havoc. Not a very | i kel y sotaly mpassibe artd therafogeh ,
itds good tib know about

BANKED FAT

BANKED FAT BANKED FAT

Bnk#4 Bnk#4

Bnk#3 Bnk #3

Bnk £2 Bnk 22
Bank #1 Bank#1

HEPAX_4H POWER_CL

© Angel Martin z April 2020 Pagel5

t heyd

a diff

but it

Total Rekallz Dare to Comparez Warp_Core

Note for MCODEtrs.

The table below shows the information stored in the LAST-5 register fields depending on the type of

function. This information is stored there when executing the function using either XEQ+ or XEQ$,
and will later be processed by the LASTF” facility to show the (su b)-function name and XROM data
upon request.

Type C[MS] C[M] C[S&X]
O/S Mainframe 0o i----- 1ADRY it - -n
XROM Main Function 0o ft----- FADR ACDED
Sub-Function bk# (0-3) ir----- FADR 0000

Remarks:

T AFADRO unct itdred6f rFABRdelmess, and not theivhiemcti onds
could be obtained from AFADR calling the [GTADRS5] routine in the Library#4. Her e t he #AFO
character represents the page# (or fA1ld6 for the O/
character is either zero (for mainFATs and banked FATS atop the page
in whichever bank.

1 ACDB are the three rightmost characters of the function HEX code, which is obtained from
fFADRO calling the [FNCODE] routine located at OXp6EA. Having this is \ery valuable when it
comes to execute the function: wedll <call [RAK70]
plug-in module containing the function were to be relocated between the initial XEG action
and the re-call via LASTS5.

You may wonder why the information for sub-functions stored in the LAST-5 buffer is the FAT

address, instead of the combination of its launcher code plus the index#. After all, such alternative is

used in PRGM mode, so why couldné6t it abudbe be t he met
needed is to fill the A.X field with the index# (in hex) and send the program pointer to the launcher

function itself, right?

That would certainly work if the implementation had followed the standard method defined in the O /S

to prompt for the i ndex parameter (using the upper bits of the function titte chars) ¢ but not such
luck! As it turns out this is a self -inflicted problem because most of the sub-function launchers do

not use said standard O/S method, but a custom one that mimics the same f unctionality but also

allows for ALPHA key pressingi to switch to the launcher by name version i whi ch i snét possi bl
the OS method.

For example using WF# in the Warp module, you can either enter an index number of press
to switch to the text entry mode:

Wi wHFS
USER RAD USER RAD HLPHA

Note that is automatically active when entering in the WF$ prompt (this saves one
keystrike). Note as well that pressing again without any characters typed in will use the
current text in ALPHA instead. This is a subtle enhancement but very useful to harmonize the
standard and enhanced methods.

© Angel Martin z April 2020 Pagel6

Total Rekallz Dare to Comparez Warp_Core

Overlays and Underlays.

The XEQ+ mode is a new way to navigate the variable environment of the calculator that doesn &
require you know the exact function spelling, nor that you do the actually typing of the letters T but
itdéds much more than an alternative) for machines with

The picture on the right shows the available hot keys
at different stages of the operation. Some are active at
t he i niot ipald ipA*:_Z for special
character input; whilst others are applicable to the
shown selectioni such INFO, XEQ, and ASN.

Use the back arrow key to restart the process or to
cancel out to the OS.

Thekey is used to tlrigg
Executed, XEQ$. Utgpethe t i f
complete (sub)function name directly at the prompt,
which enables ALPHA automatically.

The key is also active as a hot key to revert to
the nativel XEQ function. Use it if you want to revert to
the standard OS method to spell the function name in
ALPHA mode, simply pressPRGM,ALPHA and then
spell the name as usual.

The operation is very dynamic and therefore not easy

to describe with a static overlay. The best way to learn
is by using it a few tim es. Seeing is believing: try it out
and chances are soon itoél.Arehlkeceperme one of your favorit

Module Dependencies.

The Warp_Core module is a Library#4-aware module, and therefore requires the Library#4 (revision
R4 or higher) to be plugged in the calculator. It also requires the CX OS, as some CX internal routines
are used. If the Library#4 is missing or the machine is not a CX the errors will halt it to avoid likely
problems.

NO L IIFRRRY NDO CX/70658

UZER UZER

Also note that the Warp_Core is a bank-switched module: its foot-print is only 4k in the 1/O bus, yet

there are two 4k -pages involved holding the code. This is important to properly configure it using

hardware devices |like Clonx/ NoV_RAM or MWARPOD2k anBor th
it will automat ically be plugged using PLUG.

Note also that these modules are not compatible with page#6 i avoid plugging them in that location.

© Angel Martin z April 2020 Pagel7

Total Rekallz Dare to Comparez Warp_Core

3.- The Enhanced ASCII File Editoep+]

Below is the article posted in the hp-forum describing the Enhanced Editor as a patch for the CX OS.
Note that the version in the Warp_Core module does not require the patch, but the description is
applicable to the implementation here, which is a tad more complicated than the patch for the CX,
because it uses a port-dependent scheme, as obviously the module could be plugged in any of the
I/O external bus pages (8-F). This required changing the original ?NCXQ calls to three-byte calls,
with the unpleasant consequence of losing the C-register as valid parameter-passing resource.

As aresult, inthe Warp_Corethecodeus es the stack regi § whchméahsdo f or
that every time you call ED+ the contents of the LastX register will be lost. Make sure you make up
for this in your FOCAL programs if needed.

41CX: Adding Lower Case & Special Chars to ASCII File Editor.

The standard ASCII file Editan the 41CX has no support for lower case and other special
characters. As a consequence, those chars need to be entered first in ALPHA and then manually
transferred to the ASCII filasing APPCHR or APPREC; either way the user needs to exit the editor,
make the manual transfer, and call ED again.

With this patch entering lowarase and special characters is simply done by typing the designated
key from within ED itself, no need fontermediate cumbersome steps.

The special chars keyboard layout is the same one available for ALPHA mode on the OS/X Module
(and in turn on the original CCD Module) with USER off. There are two conceptual differences
though:

1. SinceED uses the USER ketp move the cursor one position to the left, #&tcannot be the
mode flag in this case. Activation of the lower case & special chars issdate@ing ALPHA off
instead.

2. With ALPHA switched off, the "nativeED uses the numeric keys to enter digitadix and the
unary minus sign. That is not changed, and therefore imposes a design for the rest of available
choices. This forces an inverted scheme for the layout compared to the OS/X, as follows:

1 Special characterare in the same positions as ie AS/X, but accessed using FBhifted
keys. The exception to this rule are the "little men" characters, which use letters [A], [B], [C],
and [K] instead.

1 Lowercase letterare accessed using SHIFTED keysom SHIFT-A for "a" thru SHIFFZ
for "z". Theonly exception being "I" and "m", which use the raiifted keys "L" and "M"
(as LBL and GTO are reserved for the insertion mode arid-gecord functions within ED).

Easier to use it than to describe @speciallyif you have the old CCD overlay at lthrThe important
thing is that none of the standard features or character leythé original ED are altered in any
way.

gy bAXThkmna_ 21! hel o M%_

© Angel Martin z April 2020 Pagel8

c

r

Total Rekallz Dare to Comparez Warp_Core

Patching theCX ROM.

All changes are confined within the baskitched page of the GExtended Functions, i.e.
ROM_5B. Fyou use the 4CL or an emulator capable of altering the OS sector (like V41), then all
you have to do is replace said ROM_5B with the new one containing the patch.

Patching instructiong.hree steps are necessary:

Step #1There are only three bytes¢hange in the original ED code, which is good news since that
code is 1,001 bytes long!. The bytes to change are located at Ox5F62, OX5EF0 and OX5EF1; where:

0x5F62 has a jumii-carry to address 5F51 (37F JC7d). The jump distance needs to be cleang
point at 5F4C instead, i.e.

5F62 357 JG22d

Ox5EFO0/F1 has a call to [BLINK] (265 , 020)his needs to be replaced with a raamditional jump
to address Ox5BF1:

5EF0 3C5 ?NC GO
5EF1 16E>5BF1

Step #2Next we need to add the following coaliethe jumpedo location (which is conveniently
empty in the original ROM), to process the kagsses and triage them accordingly:

ode:

5BDF 1BO POPADR get calling address
5BEO 170 PUSHADR keep it in RTN stack
5BE1 03C RCR 3 move pg# to C<3>
5BE2 0A6 A<>C S&X get absolute TBL adr
5BE3 1BC RCR 11 rotate to ADR field
5BE4 066 A<>B S&X put reference in A[S&X]
5BE5 11A A=C M preserve this address
5BE6 330 FETCH S&X read KEYCODE

5BE7 2E6 ?C#0 S&X value non-zero?
5BES8 14D ?NC GO NO, Skip one line and RTN
5BE9 032 ->0C53 [SKIP1]

5BEA 23A C=C+1 M add offset until
5BEB 366 ?A#C S&X are they different?
5BEC 01B JNC +03 no, exit loop

5BED 23A C=C+1 M next addr field

5BEE 3BB JNC -09 loop back

5BEF 330 FETCH S&X get func. address
5BFO 3EO RTN and return

5BF1 066 A<>B S&X sought -for value
5BF2 130 LDl S&X beginning of table
5BF3 3F9 CON: [LWRCAS]

5BF4 1F6 C=C+C XS "6F9"

5BF5 106 A=C S&X start of table

5BF6 37D ?NC XQ search ADDRIin table
5BF7 16C - >5BDF [SRCHR1]

5BF8 02B JNC +05 [GOTCHA]

5BF9 265 ?NC XQ blink screen

5BFA 020 - >0899 [BLINK]

5BFB 3C9 ?NC GO return to main code
5BFC 17A - >5EF2 [CURSR2]

© Angel Martin z April 2020 Pagel9

Total Rekallz Dare to Comparez Warp_Core

5BFD 106 A=C S&X replaced char#
5BFE 075 ?NC GO take over from here
5BFF 17A ->5E1D [VALID1]

Step #3The code aboveelies on a character table that needs to be added to the ROM. We do this
in another empty section, not to disturb any existing ce@ds follows:

Code:

56F9 041 shift - "A" 5726 077 "w"

56FA 061 "a" 5727 058 shift -"6"
56FB 042 shift -"B" 5728 078 X"

56FC 062 "b" 5729 059 shift -"Y"
56FD 043 shift -"C" 572A 079 "y

56FE 063 "c" 572B 05A shift -"1"
56FF 044 shift -"D" 572C 07A "z"

5700 064 "d" 572D 03D shift - "2"
5701 045 shift -"E" 572E 10C "m"

5702 065 "e" 572F 03F shift - "3"
5703 046 shift - "F" 5730 021 "l

5704 066 "f 5731 020 shift -"0"
5705 047 shift -"G" 5732 101 "pi"

5706 067 "g" 5733 064 "D"

5707 048 shift -"H " 5734 05B "I

5708 068 "h" 5735 065 "E"

5709 049 shift -"l " 5736 05D "

570A 069 "j 5737 07E "E

570B 04A shift -"J " 5738 01F "spat "
570C 06A " 5739 025 "G"
570D 04B shift - "K" 573A 040 "@"

570E 06B "k 573B 01D "H"

570F 04C "Lt 573C 023 T

5710 06C " 573D 03C "

5711 04D "M" 573E 028 ("

5712 06D "m" 573F 03E "J"

5713 04E shift - "N" 5740 029 "

5714 06E "n" 5741 05E "N

5715 04F shift -"O" 5742 027 o
5716 06F "0" 5743 024 "p

5717 050 shift - "P" 5744 022 oo
5718 070 "p" 5745 02D o

5719 051 shift -"Q" 5746 05F .

571A 071 "g" 5747 02B e

571B 052 shift - "7" 5748 026 "&"

571C 072 "rt 5749 02A A

571D 053 shift -"8" 574A 060 "t

571E 073 "s" 574B 02F "y

571F 054 shift -9" 574C 05C "\

5720 074 "t 574D 02C shift - radix
5721 055 shift - "U" 574E 03B

5722 075 "u" 574F 03F shift - "?"
5723 056 shift - 4" 5750 021 "I

5724 076 "W" 5751 03A shift -"/"
5725 057 shift - "5" 5752 100 upper "

5753 000 <end of table>

That's all there's to it folksenjoy your enhanced ED+ !

© Angel Martin z April 2020 Page20

Total Rekallz Dare to Comparez Warp_Core

PS. With this enhancement, it's possible to enter any formula expression used by the Formula
Evaluation module directly in an ASCII record. Reféradollowing for details:
http://www.hpmuseum.org/forum/thread862...evaluation

PPS. To *visualize* the lowease letters in the LCD you need to adealfnut machine, and also
apply the patch provided by dFarnier in the following link:
http://www.hpmuseum.org/cgisys/cgiwrap/...?read=1205

WARPTop-Level Overlay.

Besides the one for the XEQ+ facility, the WARP module also hasa top-level overlay, which obviously
includes an entry for the enhanced Text Editor ED+ , the SELCT/CASE functionsthe General Stack
Comparisons facility STKT, as well as many other functions and sub-functions from the module. All
of these will be described in the following sections of the manual.

This overlay is somehow different from the standard concept because it also fosters a few functions
from the Formula Evaluation module. Why is that? Because combining these two modules makes a
lot of sense from the programmability and synergy standpoint, really taking the 41 environment to
new realms.

The functions from the Formula Evaluation
are as follows:

<> Da» Car der @«

LOADB INPUT LE SHOW

IF, ELSE, ENDIF ; evaluated on formula
expressions

DO, WHILE ; evaluated on formula

IND* bSTO bRCI DX «»

ISLEX DSNEX

PUSH

© Angel Martin z April 2020

expressions

LET=, GET= ; for direct assignment of
variables to the Shadow buffer registers
(very similar to bSTO and bRCL indeed).

It comes without saying that clicking on
these functions without the Formula_Eval
module plugged in will only show t he
corresponding XROM codes but no actual
execution will take place. You can however
use them to enter them in a user program of
course.

Page21

http://www.hpmuseum.org/forum/thread-8622.html?highlight=formula+evaluation
http://www.hpmuseum.org/cgi-sys/cgiwrap/hpmuseum/articles.cgi?read=1205

Total Rekallz Dare to Comparez Warp_Core

Generallntroductioni 6 Dar e t o Compar eo

Welcome to unexplored territories, a journey taking the venerable hp-41 platform to places it
probably hasn't been before: meet the " Dare 2 Comparée version of the Total_Rekall module, with
the following new bells & whistles:

1 Enbhanced launchers and function prompts that interact with one another and are "aware" of
previous choices. Refer to the sketch in previous pages for details.

1 Added a secondary FAT with85 sub-functions, amongst them all test functions on the stack
registers {M-Q} i to complement {T to L} impleme nted as main functions).

1 Automatic entering for main functions of non-merged arguments as second program lines.
For instance: Z<=T? . This feature was a must, after | learned how to do during the
development in the CLXPREGS module.

1 For sub-functions, a triple-non-merged argument scheme using three program steps. For
instance: M>=IND Z? , whereby only the third parameter is entered manually.

1 Added functions SELCT and ?CASE T a pseudo SLECTCASE implementation that allows
compari son of a negistef incdudingdahle steeloand iridireet).defined by SELCT
and stored in the buffer - with a hard value (integer) entered at the ?CASE prompt.

1 New direct register exchange (not using the stack) between the register selected by SELCT
and the target chosen by S<> , also supporting indirect, stack and combination of both.
Features housekeeping utilities like NEXT, PREV, and SEL? to show, increment and
decrement the selected register variable. Useful for program algorithms to save explicit re -
selections.

91 Direct comparison to zero for any register (direct, indirect, stack), with the "Zero -group"
functions. For instance: ?0# 23

1 Implements the " emergency storage buffer" with five data registers in case you r un out of
regular ones. You can store, recall, view and Exchange the buffer registers with the X register
at any time. Also you can use this buffer with functions PUSHRTN and POPRTN to extend
the RTN stack length.

1 An all-new stack shuffle function SHFL, that allows altering the five main stack registers
XYZTLaccording to a register pattern entered as a five-field prompt in manual mode, or in an
ALPHA string during program execution. Selective register clearingis also possible using zero
as the register description in the strings.

1 New functions to search for Auxiliary FATs (AUXFAT) and their corresponding launchers
(SFLNCH) 7 help you manage the advanced features in the system.

Very tricky stuff, and not simple to make it all tick at unison - but the results are nothing short of
amazing if | may say it. Reading this manual should help you digest the new functionality and
apply it to practical examples as well.

Note: To make all these additions and enhancements possible it was needed to remove the UMS

(Unit Management System) from the previous version of the Total Rekall module. The UMS with

Constants Library is available in the PowerCL and PowerCl_Extreme modules. The UMS without

the constants | ibrary is also available in the ded
41CL (say what? atemporarys i t uati on hopeful |l yé)

© Angel Martin z April 2020 Page22

Total Rekallz Dare to Comparez Warp_Core

The SubFunction Catalg. { [CAT+ |}

CAT+ provides usability enhancements for admin and housekeeping. It_invokes the sub-function
CATALOG;with hot-keys for individual function launch and general navigation. Users of the POWERCL

Modul e
in the

wi || already

be

f ami

Il i ar

wi t hwhich is fact resedésu r e s |,

Li br ar y # 4otharrmddulest likeshe SamdMsite ahd agdMatrix as well.

The hot-keys and their actions are listed below:

[RIS]:

[SST/BST]:

[SHIFT]
[XEQ]:

[ENTER”]:

[<-]:

One limitation of the sub-f unct i ons

halts the enumeration

moves the listing one function up/down

: sets the direction of the listing forwards/backwards
direct execution of the listed function i or entered in a program line

back-arrow cancels the catalog

scheme

moves to the next/previous se ction depending on SHIFT status

t hat youol I

S mam real

functions, they cannot be assigned to a key for the USER keyboard Typing the full name (or entering
its index at the WF# _ _ _ prompt) is always required. This can become annoying if you want to
implementation certainly minimizes
this issue for repeat executions of the last sub-function called, without a dedicated key assignment

repeatedly execute a given sub- function.

required.

The LAST Function

Launchers and Last Function functionalitywr# |, |WFs$ |}

This module i

ncludes full

support
executions of the same function (i.e. to execute again the last-executed function), without having to
type its name or navigate the different launchers to access it. The implementation is not universal 7 it
only covers functions invoked using the dedicated launchers, but not those called using the
mainframe XEQ function. The following table summarizes the launchers that include this feature:

for t he ALASTFO

Module Launchers LASTF Method

Dare2Compare -STKT Captures (sub)fnc id#
RKL Captures (sub)fnc id#
WF$ Captures fnc NAME
WF# Captures (sub)fnc id#
CAT+ (XEQQ Captures (sub)fnc id#

LASTF Operati

ng Instructions

The Last Function feature is triggered by pressing the radix key (decimal point - the same key used
by LastX) at the AST:
display, quickly followed by the last-function name. Keeping the key depressed for a while shows
MNULWO and cancels the
as a program step if programmable, or directly executed if not programmable.

0

a |

prompt .s hWmeBTRt hbirsi effelayt uirne tihse

action.

n RUN mode

the functdi

Ifnolast-f uncti on record yet eNOLASTB, i
to store the last function id#

NO LHSTF No Uk
USER USER

© Angel Martin z April 2020

Page23

on

Y

functi on

shehewnor | mesbagbufif
c NOBYK® iisnntoegagp.resent ,

Total Rekallz Dare to Comparez Warp_Core

Searching for Auxiliary FATS |AUXFAT |, | SFLNCH |}

With the spread of advanced modules, ités become <chal
auxiliary F A-TudctonshTm lassist anghissubject, the WARP _Core adds two new
functions as described below.

Sub-function Launcher-launcher (no typo).

SFLNCH will scan the page entered at the prompt for Auxiliary FAT. If one is found, the
corresponding sub-function launcher will be launched, offering the user to type the sub -function
name. For example, for the Warp_Core itself:

SFLNCH _ WFS _]
ALPHA

USER = | USER

The input will be restricted from #6 to #F, as those are the only pages that may have a secondary

FAT. Typing any other character will simply be ignored by the function, and the prompt will persist.

I f t meor enbdul e plugged in the chosen page, or if the |
messab@ROMi @NOFAT® correspondingly.

The search starts at the top of the page, looking for code structure common to all sub -function
facilities, involving the consecutive presence of several MCODE instructions. Note that depending on
the actual location of those instructions within the 4k page the search time may be long.

When the sub-function launcher code is found the function will transfer the execution to it, presenting
the ALPHA prompt for the sub-function name spelling. If no launcher code is found, the function will
s h o wNGMATCH message.

NO MHATLCH

UZER

[4

Enumeration of Pages with SecondaryFATs

AUXFAT will scan the calculator bus looking for auxiliary FATs in all the pages, starting with pg# 6. A
list will be compiled and presented when the scanning has completed (i.e. all pages until pg# F have
been searched).

For example, with the WARP Core and the Formula_EVAL modules plugged in, the function returns
the following result (which is helpful to find out on which pages are meaningful for SFLNCH):

g:A

USER

AUXFAT wi | | Afseed the secondary FAT fr om -dwickedfpagewer CL, e
It will not however see the original HEPAX secondary FATs.Note also that AUXFAT is itself a sub-
function, and therefore needs to be called using WF$ (or WF# with index #045)

WFS HUXFHT_

USER ALFHA

© Angel Martin z April 2020 Page24

Total Rekallz Dare to Comparez Warp_Core

The main Function Launcheri stkT]}

Considering the number and nature of the funbaions ir
launcher method has been once again the chosen approach. You can access any of the stack swaps
and test functions with a few keystroke-s using a sing

The driving parameter for the function is the stack register,thus t he expect e®&T idOnput at
main prompt is to be the corresponding stack register letter {X, Y, Z, T, L, M, N, O, P, Q,} i which will
be placed on the left side of the display in a second prompt to chose the specific action to perform.

Once the stack register is chosen, the second prompt offers a selection of options in a menu-like
fashion with two screens toggled by the SHIFT key to fit the seven choices available:

TE o — A ’ 1Dru' A ._H L .
L £ A = E = L L £ A = L
4

L]
USER 2 .3 _A | USER SHIFT 2 4

Once the individual register is selected, a common feature in all functions is that the prompt accepts
IND _ _, and ST _ arguments using the SHIFT and RADIX keys as with the native OS implementation.
The combined IND ST _is also allowed of course.

Dynamic Register Update t KEXT0 ¢hoice.

Pressing the [SST] key will update the function builder main prompt; changing the source register
sequentially in a cyclic sequence each time is pressed This saves time and keystrokes, making it
easier to use in spite of its comprehensive functionality. Note also that pressing the back-arrow will
revert back to the main prompt, requesting a register to start the process.

Where are the upper status registers? {fiadto fed}

All 16 stack register swaps are available, either as main functions or in the auxiliary FAT as sub
functions. This is the case of the upper stack registers {a -e}, that can be accessed directly from the
main launcher pressing the corresponding top-row key. Just be careful with these!!

Because of their relative small practical application, the tests of the upper status registers were
replaced by the Zero-testing set, You can still use them as the second argument at the stack
addressing prompt, for instance you could do: T<>a, or: Z<> c if wanted.

Speci al Guest fAZer oo

In addition to the 10 stack registers ment i oned before you can al so eni

iSTA prompt t o i-compatsen testhuaction & sooconsidered it to be the invited guest
to the stack for these purposes. Not e this i s not Data Register ROO,
comparison.

Reversed Logic RPN?

Contrary to the standard native functions on the 41 OS, all the individual test comparison functions

feature the question mark at the beginning of its name. This is just a nomenclature choice but has no

bearing on the actual operation of the functions. In a program the
applies if the test result i's nNYEDNGD umes whgesawilin
triggered for the True/False cases as usual

© Angel Martin z April 2020 Page25

Total Rekallz Dare to Comparez Warp_Core

ThefiTotal Rekald Dilemma { [RKL]}

One of the obvious shortcomings of the HP-41 OS is the lack of RCL math functions: even if they are
less necessary than the STO math and perhaps easily replaced by combination of other standard
functions, it is a sore omission that has been the previous subject of different implementation

attempts to close that gap.

The first component is naturally the addition of individual RCL math functions, like RC+, RC-, RC*
and RC/ . These can be written without much difficulty, even supporting INDirect register addressing,
but with two major restrictions:

1. Operating in manual mode only, and
2. Excluding the Stack registers from the register sources.

The first limitation can be overcome using the non -merged function approach, whereby the argument
of the function in a program is given in the next program line following it. This is stack -neutral so
doesndt interfere with the intermediate calculations.

To solve the stack addressing one needs to resort to heavier wizardry, basically writing extra code to
replace the OS handling of the prompting in these functions i which is based on the PTEMP bits of
the function name. The custom prompting is therefore completely under the control of the function,
and not facilitated by the OS. It is arguably a small net benefit compared to the r equired effort, but
as the only remaining challenge it was well worth tackling down.

Once the technique was developed it was relatively easy to apply to other functions, like the stack

exchange and comparison testsi if you can you envision instructions li k e : AY<> | ND Mo, or
to give just two examples. Unfortunately, the Library#4 was already full, so the subroutines are only

available on this module.

RCL Math on steroids The Extended RKL Launcher.

I n addition to the f ooperatiorisghisanodulea mdudes REC"i, fortimeeRiedalk
Power function T which will calculate the REGth. power of the value in X, i.e. X= eNRG# * In X).

The other additional case is AIRCL, which will append to ALPHA the integer part of the value stored
in the data register. It also supports the stack and indirect values, such as IND ST X.

All RCL functions feature a prompt lengthener to directly access registers in the 100-111 range. You
can activate this by pressing the | EEX| key at any of their prompts. Not e t hat from 112 and
be either accessing Stack registers or INDrect addresses, as shown in the next pages (see table 1.1)

FEIH' v T R T N 'Erl'_g_-rnrﬂ T
e i e 4t [Lo i F% ir i -

UZER USER

In terms of usability, note that you can switch amongst the five RCL math functions pressing the
corresponding arithmetic key at their prompt. You can also revert back to the RKL function simply
pressing the [SST] key twice during any of their prompts (this toggles between the RKL group and
the main launcher described in the following section).

To save program bytes, RKL will automatically revert to the standard RCL when entered as a program
step. Lastly, you can manually revert to the native RCL pressing the [XEQ key again at its prompt.
When you do this in program mode the standard OS is used for efficient line entering of the standard
cases, i.e. RCL 27 in a single program step as opposed to using the nonmerged approach. More on
this subject later on.

© Angel Martin z April 2020 Page26

Total Rekallz Dare to Comparez Warp_Core

Programmability: arguments Loekp Table

All functions and sub-functions are fully programmable. When entered into a program the argument
will be automatically entered as a second program line after the main function . This line will not be
executed; rather the function will read the value during the program execution. Note also that this
works seamlesdy for direct data registers up to R111, with no need for manual adjustment for
extended range, INDirect and Stack register arguments (refer to the table below for details).

For INDirect registers 80 Hex (or 128 dec) is automatically added to the register number.

Examples: Z<>|ND 25 => |Z<> | followed by 152

RC/IND 16 => |RC/| followed by 144
For Stack arguments 70 Hex (or 112 dec) is automaticallyaddedt o t he fAStack i ndexo
Examples: Z<>T => |Z<> | followed by 112 (T index = 0)

RC+Y => |RC+] followed by 114 (Y index = 2)

For combined INDirect Stack arguments, FO hex (or 240 dec) is automatically added to the stack
index, or 240 decimal

Examples: Z<>IND Z -> followed by 241
RC*INDM => followed by 243

The table below shows the transition zones graphically:

Argument | Shown as: Argument | Shown as: Argument | Shown as:
100 00 112 T 124 b
101 01 113 Y4 125 c
102 A 114 Y 126 d
103 B 115 X 127 e
104 C 116 L 128 IND 00
105 D 117 M 129 IND 01
106 E 118 N 130 IND 02
107 F 119 ©) 131 IND 03
108 G 120 P 132 IND 04
109 H 121 Q 133 IND 05
110 I 122 [- 134 IND 06
111 J 123 a 135 IND 07

Table 1: Register index mapping.

A few exceptions to the rule.

A couple of functions in the module do not allow stack arguments in their prompt s. These functions
are A<>RG and ST<>RG . You can use any register number and INDirect addressing but not Stack
registers as the destination 7 neither the combination IND ST even if it is possible to invoke it. These
functions use the standard method provided by the OS to build the prompts, which as it was
mentioned before lacks the complete flexibility offered by the newer functions.

Warning: Be aware that the merged lined will not be automatically created for these two functions. If
you enter them in a program, you must add the argument manually as an additional program step.

© Angel Martin z April 2020 Page27

n

un

Total Rekallz Dare to Comparez Warp_Core

Direct Register Comparisons.

A fact that may be easily overlooked is that besides doing intra-stack register comparisons, these
functions also allow direct comparison of any of the main stack registers with any data register in
RAM. Furthermore, the Zero group allows direct comparison with zero on any data register as well,
not just the stack.

This provides more flexible programming choices, saving programming steps and keeping the stack
unal tered as thereds no need to bring the register co

Some examples:

?X< 13 =>is R13 > X? ?0# 05 =>is RO5 different from zero?
?T>=16 =>isR16 <=T7? ?0> 11 =>is R11 lessthan zero?

Example: Armed with these new functions bubble-sorting the stack is a fairly simple task:

0l LBL ASTSRT 06 ?2Z> (T) 11 Y<> (2)
02 X>Y? 07 z<> (1) 12 X>Y?
03 X<>Y 08 X>Y? 13 X<>Y
04 ?Y> (2) 09 X<>Y 14 END
05 Y<> (2) 10 ?Y> (2)

Be aware that in program mode the function arguments will be automatically added as non-merged
steps T this will be described in the following pa ges.

Stack Exchange vs. Test Functions

There is no fundamental difference in the eligible stack registers for exchange functionality vs. direct
comparisons. Al | the status r eg-ls #{I®rhave the sameset, atthough srhea z y
functions are in the main FAT, and some others are in the Auxiliary FAT. This is again due to the
limited number of entries in the FAT, w hich imposed some selection between registers, based on
likely importance and usability.

In terms of the functionality, t he table below shows the available choices for a direct approach, and
which ones are only available indirectly, as a second argument of the particular function.

Register Exchange Tests Register | Exchange Tests
X Main Main Q Main Sub-fcn
Y Main Main | - Sub-fcn Indirect
z Main Main a Sub-fcn Indirect
T Main Main b Sub-fcn Indirect
L Main Main c Sub-fcn Indirect
M Main Sub-fcn d Sub-fcn Indirect
N Main Sub-fcn e Sub-fcn Indirect
O Main Sub-fcn noo n/a Main
P Main Sub-fcn Rnn Main Indirect

Lastly, non-stack Data Register swapping is missing from this set, b u t itds n-oitt 6fsortgloa t e

subject of the next sections.

© Angel Martin z April 2020 Page28

Total Rekallz Dare to Comparez Warp_Core

GeneratPurpose Comparison with SELCT / ?CASE

Perhaps the most versatile approach for register comparison is provided by the combination of
functions SLCT and ?CASE. With them you can test any register (chosen using SELCT) against a
fixed integer value 7 which is provided as the argument for ?CASE.

The variable chosen by SELCT is stored inthe header of buffer id#7 (the same one used for the
i e mer ge nc yinfamaton)aTdis may be a direct data register number, a stack register (adds
70 Hex), an indirect register (adds 80 Hex), or the combination of both (adds FO Hex). Refer to the
table in previous section for details. This is done automatically by the function, totally transparent to
the user.

SELC T INDI -

UZER

SELCT ST L

UZER

In program mode the variable for SELCT and the comparison value for 2CASE will be introduced as
non-merged lines in program step following the main function i which is consistent with the other

functions seen before that use the same schema. Note that comparison values are positive integers
only.

If no variable has been selected previously, ?CASEwill default to the X register (i.e. id# 73 Hex or
115 decimal i again no need for you to be concerned with that detail). Pressing [VIEW] at the SLCT
prompt will show you the current variable stored in t he buffer.

The variable will therefore continue to be in effect until another SELCT statement is used. This will
allow you to make repeat comparisons without the need to have to recall the reference in every
instance i and also without the need to have bo th the reference and the variable in the stack.

For exampl e, to compare the value of data register
instructions, which can be interspersed amongst all
an 0 ENILT-8kE induction):

SELCT 05 loads the reference in buffer
?CASE 1 tests if R0O5=1?
Yes N
No
é »
?CASE 2 tests if R0O5=2? > PrAGE
Yes USER
No .
e .
?CASE 3 tests if RO5=3? _J
Yes
No
é
Note that the comparison value is directly eprovi dec
comparison is not allowed (i.e. using a data register instead).

As the question mark would suggest, 7CASEi s a typical test function that
skip if falseo rul es iwhershrouwn rnihreg fiami dniglemodefirYaEnS/ NOO i

Remember not to place a non-merged function directly *after* a test function i doing so will create a
problem as the OS does not recognize the non-merged steps as part of a single function!

© Angel Martin z April 2020 Page29

Total Rekallz Dare to Comparez Warp_Core

GeneratPurpose Exchange with SELCT / S<>

In a parallel implementation to the previous subject, you can also use the SELCT schema combined
with the sub-function S<> to perform a data register exchange directly, i.e. with no need to bring
either of their contents to the stack i which is so left undisturbed.

The advantages are clearly seen: the stack is not altered, and the same selected variable-register can
be used for both case-equal comparison and register-exchanges. Both together offer possibilities to
the smart FOCAL programmers, never too late to learn new tricks ; -)

SELC T - Sy INDT ST L
USER USER
Defines the selected variable-register Defines the target register to exchange.

Like SELCT itself, S<> also supports indirect addresses, Stack addresses and combination of bothi
thus you could do flexible register exchanges, such as: IND ST M <> IND 34.

Here too the same table of parameters shown in figure-1 applies i refer to that table for details.
Remember that the indirect reference will change if you alter the content of the register that h olds
the register pointer.

Showing the selected variable.

I f youdr of whiohtis the geleeted variable you can press [R/S] at eitheroft hese functi on
prompts to invoke the SEL? Function T which recalls its number to the display (but not to the X -
register).

1 SEL? shows the value currently selected. If no selection has been mede the value shown is
4,095. Note that the selection of a variable does not require that the register exists at that
point T the existence checks will be done when trying to access the contents of said register.

Note that, like ?CASE described before, if no register variable has been previously selecter then the
exchange will use the X register as a default i and in that instance the number returned if you press
[R/S] at the prompt will be 4,095.

Increasing and Decreasing the selected variable.
These sub-functions are related to the variable selected by SELCT, as follows:

1 NEXT and PREV increment and decrement the selected variable by one. No decrement will
occur if the selection is R00. No changes will be made if no selection exists (which defaults to
Stack AXo0) . These functions are very useful duri
different registers as selected variables.

Remark that NEXT/PREVhave effect on the registernumberst or ed i n the buffer heade
variable), but not on the register contents. Also that if an indirect or stack register is selected then

thenext/pr evi ous value is dictated by tkekcomesafterur al 0 regi s
Stack_X, etc.

© Angel Martin z April 2020 Page30

Total Rekallz Dare to Comparez Warp_Core

ValueComparisortess with selected variable.

Similarly, using the provided sub-functions you can compare the contents of the selected variable
with any i t a r rggisterdof your choice entered at the prompt. Like all tests functio ns in manual
mode AYES/N@ is shown depending on the true/false condition; and in a running program one
program line will be skipped when false, or when true it will continue with the line following the sub -

function merged 1| i nes tlemlasthede are bub-furetions!). be t hree of
PG GT R
USER USER
PHL T C PS4 IND __
USER USER

Note that the equal-to comparison ?S= is different from ?CASE; in both instances it is the content of
the selected register what gets used as first value, but the second value differs: in th e equal-to case it
is the content of the target register being compared, whereas for 7CASE the comparison is against
the value provided at the prompt.

Let 6s f orompmare thenqoritemts af data registers R04 and RO5. If we choose RO5 as the
selectedvari abl e, then RO04 becomes t hshowing althg patametetso compar
as non-merged program steps:

01 SELCT (05) 01 SELCT (05)
02 5 02 5

03 WFK# 03 WF#

04 39 04 41

05 4 ?S< 04 05 4 ?S> 04
06 Yes 06 yes

07 No 07 no

The surrogate Stack Register nASo.

All the variable comparison functions, as well as the exchange S<> and ?CASE have been grouped

under its own section within the main launcher 1 STKT.Ei t her bydé $& emwrsi mgveng about
stack registers letters using [SST], the surrogate S-register screens offer the same functionality as the

standard stack registers, as shown in the pictures below:

USER USER SHIFT

B £ZN = Z= £ 'D'S: £y d sz N
. L3 -A |

Note how this U/l has the same look & feel as the other stack registers. The fact that all the choices
are sub-functions is completely transparent to the user i with the only exception of the need to
manually add the parameter line in a program as described before in the manual .

© Angel Martin z April 2020 Page31

Total Rekallz Dare to Comparez Warp_Core

Connecting i Swiith RKL

We have justseenthateven t hough AS0 isndt a proper stack regis
were. This metaphor has been extended (but not stretec
the RKL prompt, when the radix key is used for the stack registers. Thus, the contents of the current

selected register can be recalled in this way 7 which also includes the IND addressing and the RKL

math operations as well.

FHL 'S RC+"IND S

USER USER

Note however that in program mode the RKL instruction will be registered using the actual selected
register number as parameter in the second line i not as a variable but as its actual value at the time
when the instruction is entered in the program .

You can, however, use the sub-function bRCL instead (with parameter zero) i which will use the

selected register in a running progr am, and thus itds
mode. The caveat is the lack of IND and math operations in this case.
Using bRCL will be covered in a later section of the manual. For the tim e being just remember that,
both in manual and running program modes:
RKL 'S —_bRLCL 8
USER — USER
Storing, Recalling and Viewing the contents of 7

You can always use the standard RCL, STO and VIEW instructions to recall, store and view the
contents, but that requi res knowing the value of the #SEL variable itself to use it as parameter. An
easier way is also available with the sub-functions SRCL, SSTOand SVIEW -whi ch dondét need vy

to have such knowl edge b eénotheeehquivalahce forydun er ef or e, her eds
RKL 'S — SFRCL
USER — USER

TheSRCLSST@nd SVIEWsubfunctions operate on the register which value is stored in #SEL.

Note:L ¥ @2dz LINBFSNI AGX 0 Kt®f indifect destihabidn of $ié dptatidRS a A Iy |
la AGQff dzasS U(KG&SRARAlI ANBRBIRISN BKADKIBNRLF 6f S | §
@82dz 0O0S&aa Al DA lF¢which polld dlsa He Sondidgreddas andduble ihdirestiod €

from a strict point f view.

© Angel Martin z April 2020 Page32

Total Rekallz Dare to Comparez Warp_Core

Examples Data Registers bubble-Sort

The programs below show two practical examples of the new functions for data register sorting. Note
the use of the non-merged program steps and the workaround required in the conditional tests to
avoid jumping in-between non-merged lines. The second main label uses the control word bbb.eee in
X to delimit the data registers range, whereas the first will use all the data registers currently
available in the calculator.

01 LBLASRTA|LLO® all registers

02 SIZE? Get current size

03 DSE X get last reg index

04 E3 format it

05 /

06 LBL i RTRGXJ bbb.eee in X

07 LBLO1 main loop

08 ENTER~M push cntdél word to Y
09 ENTERM push it one more

10 SELCT (IND Y) select ind(bbb)

11 242

12 ISG X bbb+1

13 GTO 00 skip until end is reached

14 RTN all done.

15 LBL 0O inner loop

16 (WF# (?S>=IND X) use the reverse test and a
17 |41 forced GTO to avoid jumping
18 [243 in between non-merged steps:
19 GTO 00 true, jump over

20 S<> (INDX) false, swap registers

21 243

22 LBLOO

23 ISGY

24 SELCT (IND Y) update selected register
25 242 (cannot use NEXT !)

26 ISG X update comparison register
27 GTOO00 repeat inner loop

28 X<> Z recall control word

29 E-3 decrease upper limit

30 -

31 GTOO01 repeat main loop

32 END end of program

Another approach for the all-registers case is shown below, using the NEXT instruction to update the
selected register directly 1 as opposed to the indirect way in the previous example.

01 LBL ASRBALL 11 RTN 21 44

02 SIZE? 12 LBL 00 22 ISG X
03 DSE X 13 |WF# (?S<= IND X) 23 GTO 00
04 E3 14 140 24 X<>Y
05 / 15 [243 25 E-3
06 LBLO1 16 GTO 00 26 -

07 SELCT (0) 17 S<> (IND X) 27 GTOO1
08 ENTERA 18 243 28 END
09 ISG X 19 LBL 00

10 GTO 00 20 WF# (NEXT)

© Angel Martin z April 2020 Page33

Total Rekallz Dare to Comparez Warp_Core

Tinkering with ISG and DSE: complement modes.

In the previous examples we have used the ISG function to increase the pointer s to the data registers
being compared. The code is a bit inefficient because the termination conditions are the opposite to
the implemented in the standard ISG and DSE functionsi i.e. here we loop while the condition is
FALSE, which requires an additional GTO step to skip the RTN.

The complement functions are defined as follows:

T ISLEX A ncrement X and Skip if Less or Equal 6, and
T DSNEX idDecrement X and Skip if Not Equal o.

In both cases they only work on the X register, which is expected to have a control word in the form
bbb.eeeii, like the standard ISG and DSE. If the increme nt is not given (zero) the default value used
is ii=1.

Using ISLEX instead of ISG X in the example programs will change the code to this:

06 LBL i RTRGXd bbb.eee in X

07 LBLO1 main loop

08 ENTERM push c¢cntél word to Y
09 ENTER? push it one more

10 SELCT (IND Y) selectind(bbb)

11 242

12 WF# (ISLEX) bbb+l

13 67

14 RTN all done if (bbb+1) > eee

15 LBL 0O

16 é

And similarly, in SRTALL2:

06 LBLO1

07 SELCT (0)

08 ENTER?

09 WF# (ISLEX) bbb+l

10 67

11 RTN all done if (bbb+1) > eee
12 LBL 0O

13 é

Another approach to deal with this contingency would have been using the SKIP function, available
in some extension modules. When placed in the TRUE pc
shifting th e decision by one program step:

ISG X ISG X ISLEX
True SKIP (Un) True
False False (Not) False
é é é

© Angel Martin z April 2020 Page34

Total Rekallz Dare to Comparez Warp_Core

Have we re-invented these wheels?

Certainly therebs some overl ap bet ween t RRunctioesw
as shown in the table below:

CXFunction | X=NN? X#NN? X<NN? X<=NN? X>NN? X>=NN?
TotalRekall | ?X=IND Y | ?2X#INDY | ?2X<INDY | ?X<=INDY | ?2X>INDY | ?X>=IND Y

However, the similarities end there - as the new functions expand the number of choices beyond the
fIND YO case, have a prompting U/l and perhaps most importantly t h e y ckquinebattering the
contents of the stack to perform the comparisons. Also in terms of byte usage both schemes are
comparable, as the CX functions require at least one byte in Y to be used for register argument.

In terms of the Data Register exchange, there are also a couple of alternatives within the standard CX
functions or other modules to perform equivalent actions, such as:

1 Rnn<>Rkk can be done with: { nn.Okk, REGSWAP }
1 Rnn<>Rkk is also possible with X<I>Y , with finndi n Y kkom& (ofivice-versa).

Which depending on the data register numbers may be more or less favorable in terms of byte count;
see for example exchanging RLO and R25 below using the three approaches:

SELCT 10 10,025 10, ENTERA
S<> 25 REGSWAP 25, X<I>Y
8 bytes, no stack 8 bytes, X used 7 bytes, both X,Y used

Compatibility with other Prompt Lengthener alternatives.

A more interesting comparison can be made with the other implementation of the E xtended Prompts,
like the ZENROM doesusing the key, or even the Prompt Lengthener feature in the AMC_OS/X

Module using the key.

For these two implementations, the second byte of the RCL is added to the same instruction in a
program,i.e. RCL1 11 wi | | be displayed as ARCL Jo, aThi
is clearly more efficient in byte usage; however Jjt does not support the RCL arithmetic operations
allowed by this module.

Note that the OS/X Prompt lengthener is only tri ggered with the standard OS-provided functions, and
t her ef orappeawat nthé tcustom prompt of f er eRKL by o ARIND2 0 ; or hy the
ZENROMbG6s after yo eyei.e.p”ereCsLs_edld._ t hRer e keygin thokee
instances will just turn the machine off.

But you can have it both ways: if you have the OS/X Module plugged in (as every power user
should :-) you can take advantage of this method by pressing again the | XEQ| key at the RKL _
prompt: as mentioned before, this will rev ert to the standard RCL _ _, and then press | ON| to extend

funct.

S

mi | a

the field to three digits and enter fAlxxo directly.

© Angel Martin z April 2020 Page35

Total Rekallz Dare to Comparez Warp_Core

Say what, one-thousand registers?

It is also possible to press the key while the OS/X extended prompt is up, which would add

another field to it and so appearing to allow choices of data registers above 9997 i f it wer enot
fact that such a t hiomtige nemahniathing (the 4lCLdsaaldiffeyent stary) sSee

for example the examples below, calling for a data re gister above 1,900:

Roo 19_ Roo InND 19__

If you did that in PRGM mode, say entering 1900 in the prompt, surprisingly the end result turns out
t o be fiRMBith edbidls RCL 108. This can be explained by the(apparently unrelated) fact that

f

0

MOD(1900, 128) =108, i .e. webve gone full <circle in data regi

Program Examplei Congruence Equation

The program below is a direct translation of the original written by Thomas Klemm for the HP -42.
See http://www.hpmuseum.org/forum/thread -1116.html

It solves for x in the equation : A *x =B mod N

The only changes pertain to the RCL math steps located at lines 14, 19, 22, and 68: simply add the
register number as a second line after the RCL function as detailed in the table shown in page 7. (You
can omit it on the case of zero).

B0 { 104-Bute Prom 3 27 RCL 86 S5 RCL 88
B1PLEL "CONG" 28 RCLx 92 56 KEQ @1
B2 STO 96 29 - 57 STO @88
B3 STO @2 30 STO @3 58 RCL @7
B4 Rl 31 X267 59 K67
S STO @1 32 GTO @7 68 GTO 94
86 R4 33 ECL B84 61 RCL @89
a7 STO a3 24 RCL @] 62 RTH
88 CLA 35BLEL @2 &3MLEL 81
B9 STO 84 36 STO 88 64 ENTER
19 1 37 CLX 6SPLEL @@
11 STO 85 38 STO @9 66 RCL 86
12pLBEL 87 39 ROY 67 RCL ST 2
13 RCL 02 48 STO @7 68 RCL+ ST 2
14 RCL+ 03 41PLEL 04 69 K<{Y?
15 IP 42 2 78 RTH
16 STO B6 43 + 71 R
17 RCL 85 44 ENTER e =
13 XEG 82 45 1P 73 +
15 RCL- 04 46 STO @7 74 END
28 +/- 47 -
21 %<7 48 X=87
22 RCL+ 0@ 49 GTO @85
23 X{> @5 56 RCL @83
24 STO B4 51 RCL a9
25 RCL 8= o2 XER B8a
26 H<> B2 52 STO @9

S4pLEL 85

Example : 5*x=3mod 17

Solution : 5, ENTER 3, ENTER 17, XEQ"CONG" => 4

© Angel Martin z April 2020 Page36

http://www.hpmuseum.org/forum/thread-1116.html

Total Rekallz Dare to Comparez Warp_Core

The Double Indirection: A solution in search of a problem?

Arguably a double indirection capability may be seen more as an extravaganza than as a useful
feature. After all, how many times have you encountered a situation where the indirect index was
itself depending on another variable, and doing so in a counter-like fashion?

Well those situations do exist, more often than none and with increased likelihood as you get into
advanced algorithms and matrix applications i b u t I wonot t i r e; raghertherenaret h e x a m|
functions SIND2 and RIND2 , which perform a double STO/RCL INDIND _

Enough to make your head spin a little? i Then you should try the TRIPLE indirection, available when
you hit the shift key at that stage, ie:

SIND2 IND __
RIND2 IND _ _

STOIND IND IND _
RCLIND IND IND _ _

These functions use two (or three if SHIFTED) standard data registers to hold the argument s of the
data register where the value is to be recalled from (RIND2) or stored into (SIND2). Better keep your
register maps handy!

Going over the top: Multiple Indirection

Interesting things happen if you keep pressing the [SHIFT] key - as these functions support a
multiple indirection pattern that allows redirecting the target registers as many as 10 levels (and
beyond). The function prompt will change to reflect the current level, with a combination of even
values and their IND options. For example, pressing [SHIFT] at the RIND2 IND _ _ prompt will bump
the counter to:

[PIHL“{ - }D[INDY INI __ }
USER 0 , and then USER a ’
Followed by the screens shown below in a continuous sequence:

RINIGE _ _ | |[9:n35 INT __]

(]
USER 1]
, and then HSER &

Example: assuming the following registers contain the values shown below:

R10 =0; RCL 10 =0

ROO = 3; RCLIND10 = 3

R0O3 =5; RIND210 5

RO5 =7; RIND2ND 10 = 7

RO7 = RIND4O = p

RIND4ND 10 = 5
Then we have: RIND610 r T b3 S oOx

Note that this functionality is restricted to manual mode only, and when this function is used in a

running program itdéll be Iimited to a doubjle indi

© Angel Martin z April 2020 Page37

Total Rekallz Dare to Comparez Warp_Core

Application Example: Bubble Sort without data movement. (By Greg McClure)

' FIXED SORT - Gregory J. McClure

; Doesanon - destructive bubble sort of registers specif

; set of consecutive pointer registers. The data to sort is not moved,
; but the pointer registers will be changed to reflect the numeric

; order (ascending) of the values indirectly pointed to by them.

; ROO thru RO2 are used by the progra m.

; Example: RO3 - R06 contain 10, 12, 15, 18.
; R10, R12, R15, R18 contain the data to sort (4, 3, 2, 1).

; X contains 3.006 as descriptor of pointer register set, then SORT is run.
; When done, SORT will change R03 - RO6 to contain 18, 15, 12, 10.

; R10, R12, R15, R18 will be unchanged.

01 LBL "SORT"

02 LBL 10

03 STO 00 : 1ST VALUE POINTER
04 STO 01 : 2ND VALUE POINTER
051SG 01

06 STO 02 : SAVE 1ST POINTER

07 LBL 00

08 RIND2 : TTRKALL DOUBLE IND READS
091

10 X>Y?

11 GTO 01 ; SKIP SWAP

12 RCL IND 00 ; RECALL POINTERS
13 RCL IND 01

14 STO IND 00 ; REVERSE POINTERS
15 X<>Y

16 STO IND 01

17 LBL 01

18 ISG 00 : BUMP VALUE POINTERS
19 I1ISG 01

20 GTO 00 : MORE TO COMPARE
21 RCL 02 : GET CURRENT POINTERS SET
22E-3

23 -

24 ENTER?

25 INT

26 1.001

27 *

28 X=Y?

29 GTO 02 : DONE

30 RCL 02

31 GTO 10

32 LBL 02

33 "DONE"

34 AVIEW

35 END

ied in another

© Angel Martin z April 2020

Page38

Total Rekallz Dare to Comparez Warp_Core

Appendix A trip down to Memory Lane

FromtheHP-4 1 User 6s-Handbook.

Automatic Primary Extended
Memory Data Storage Data Storage
Stack Registers Registers
The standard
HP-41C has You can add up to four memory modules,
63 (Byp-Fe) bringing the total to 100 primary and 219
If all memory modules where primary storage extended storage registers.

allocated to storage registers, TEgISters.

each additional module would

account for the following register
addresses:

The Function

a3

The Indirect Address Reqister
Fas 10.0000

The Desired Fegister
(Fecalled into the X-register)

Fin 2.5400

Arthmetic can be perfonmed upon the contents of all storage registers by executing followed by the
artthrnetic fanction followed in turn by the register address. For example:

Cpertion Result

01 Mutnber in X-register 15 added to the contents of register Eqy, and the
sum 15 placed mto Eqy. The display execution form of this iz [s1+]

[-]0z Mumber m X-regster 1z subtracted from the contents of register Eaz,
and the difference iz placed into Egz. The display execution form of
thiz 15 [sT-]

0= Mumber in X-register 15 multipled by the contents of register Eqz, and
the product iz placed into Faz The display execution form of this is
BT:]

[+]04 Mumber m Eqpgq 15 dinded by the number m the X-register, and the

gquotient is placed inte Eqq. The display execution form of this 15 [s732]

© Angel Martin z April 2020 Page39

Total Rekallz Dare to Comparez Warp_Core

Say what, a Dynamic Display? The FIXLAfunctionality.

Much more than a cosmetic affair, the ability to present only the non -zero decimal digits of a number
has the value to provide additional information on the result: to the limit of the calculator resolution
there are no further meaningfu | digits after the shown ones.

The FIX all feature is activated when you execute FIXALL (no arguments needed), and remains
active until you change the display setting again using the standard FIX, SCI, or ENG functions.

Note that the representation will apply to the mantissa of the numbers, even if their exponents
exceed E9; obviously limited by the numeric range of the calculator 7 which for the HP-41 is:

] -1E100,-1E-100[{+}] 1E-100,1E100[

I n c as ecuryoosutideralgorithms used by FIXALL are describedb e | o w. Youdbre also en
to check the SandMath Manual i an excellent reference for the design criteria for the RCL math

functions. Note alsot h at contrary to the SandMathds <case, on t
polling technique is not used to link the standard RCL function with its extensions or the RCL Math

sub-functions. No need for that, since a dedicated RKL replacement is used instead of the native one

and our code takes complete control of the keyboard actions.

Formulas usedi A general algorithm.

BCD rumbers on the 41 platform are represented in the registers using the following convention:
"s|labcdefghij|xyz" ,

with one digit for the mantissa sign, 10 digits for the mantissa, one for the exponent sign and two for

the exponent. This enables a numeric range between +/- 9,999999999 E99, with a "whole" around

zero defined by the interval:] -1E-99, 1 E99[

Let z# = number of mantissa digits equal to zero, starting from the most significant one (i.e. from
PT=3 to PT=12). Then the fix setting to use is a function of the number in X , represented as follows:

1. If number >=1 (or x="0") - Let XP = value of exponent (yz). Then we have:
FIX=max {0, [(9z#) + XP]}
2. If number <1 (or x="9") - Let|XP|=(100 i xyz).Then we have:

FIX=min {9, [(9z#) + |[XP|]}

© Angel Martin z April 2020 Page40

Total Rekallz Dare to Comparez Warp_Core

Stack Shufflingnd selective clearing{ [sHFL]}

There are several functions in the native set to handle the stack registers, and certainly this module
adds its dose of extensions and additions to the set, with the swap functions in particular being the
best exponent. Many ways to skin this cat, but just in case you longed for more abstraction the

function SHFL provides a general-purpose way to perform bulk stack alterations in a very conv enient
manner.

SHFLD - - - - SHFEL Z2Z2TOF

USER :
l.e: HSER

SHFL prompts for five stack register letters, including the main XYZTL registers, or the Alpha
registers MNOP, or even the Q register. Once the prompt is filled the contents of the main stack will
be changed to reflect the sequence defined in the prompt. A few examples will clarify:

SHFL: XYZTL leavesthingsunchangedi i . e. t he fido nothing in
SHFL: YZTXL performs the equivalent to RDN

SHFL: TXYZL is equivalent to the standard R"

SHFL: XXXXL fills the stack (except L) with the value in X

Other combinations will require two or more standard instructions, or may not be easily possible
without adding several of them i especially if you include the ALPHA registers to the choices. In this
regard, the prompt allows Q(9) and the ALPHA registers as inputs, but a few considerations must be
made:

- Register M is always used by the master string itself.

- Registers N,O,P are widely available

- Remark that youol|l be doi ngoASTOe equi val ent
- RegisterQ9i s wuswually compromised, as itbés wused

10

t o
as

Finally, and continuing with the -Yaukdh@Bo useh/eaigit as

zero A00 I n t hihis hastpeetfect pfrcleavimy the corresponding stack register during
the execution of the function. For example:

SHFL:00000 is equivalentto CLST, STO L
SHFL: YXOO0L is equivalent to X<>Y, RDN, RDN, CLX, RDN, CLX, RDN, RDN
SHFL: ZZTOP copies Zto X,Y, T to Z, clears T and puts P in the LastX

Entering this function in a program will follow the standard rule, i.e. the SHFL instruction will be
placed in a single program step. You need to remember to manually add the master string as ALPHA
step in the instruction *before* it. Note that a DATA ERRORmessage will come up (and the program

execution will stop) should that string contain any invalid character T but it will ignore characters

beyond the fifth one starting from the RIGHT of the ALPHA regsters.

Checking the results.
For a quick check of the results you can use the sub-function STVIEW for an enumeration of the

stack registers in L-X-Y-Z-T sequence i a nice complement to help you keep your bearings at all
times. STVIEW is accessible pressing [R/S] at the main STK: launcher.

© Angel Martin z April 2020 Page41l

byt

STO
scr

S

u

r

Total Rekallz Dare to Comparez Warp_Core

The AShadow Stackod concept

The underpinnings of SHFLt ake f ul | advantage of t hiewhérebyjnthe gency s
stack registers are first copied to the buffer registers in the sequence defined by the master string,

and then theydre copied bac kturdl sequeniceeX-YsZ{T4.cTkis i$the t he Ad
most effective way (code-wise) to perform the shuffle, and speed -wise it adds no significant penalty

speed wise.

As a |l ateral thinking, you can use this design featur
the buffer T i n case youdd want to restore al(ke atUNBPO cont ent
instruction would perform), or simply as a safety backup. To make this even more convenient, the

SHFL function has a hot-key that introduces the default sequence {XYZTL} for you, no need to type

it up. Simply press the [RADIX] key at the initial prompt (with the five fields shown) and enjoy the

show.

To restore the original values, just use bRCL on the buffer registers following this arrangement:

X7 bR5
YT bR4
Zi bR3
T71 bR2
L7 bR1

Example. The following example was provided by Didier Lachieze A subroutine using only the stack
to calculate the sum of the proper divisors of the number in X, it returns this sum i n X and the initial
numberin Y.

X Y Z T
01* LBL 2DVSM n
02 1 1 n
03 &2XYXX% 1 n 1 1
04 SHFL
05* LBL 05
06 NEXTT - n S d
07 &eYYZE n n S d
08 SHFL
09 RQC T n/d n S d
10 2x< T
11 GTO 10
12 FRQ@ n/d n S d
13 GTO10
14 2X# T n/d n S d
15 RC+T
16 ST+ Z
17 GTOO05
18* LBL 10
19 x<> Z S n n/d d
20 END

The first occurrence at steps 03/04 is replacing the two instructions STO Z, STO T, and the second
occurrence at steps 07/08 is also replacing two instructions: CLX, RCLY.Not e t hat for step
need the function FRC?, available in the SandMath module - or an equivalent function from your own

sources.

© Angel Martin z April 2020 Page4?2

Total Rekallz Dare to Comparez Warp_Core

ShadowBufferRegisters Storage.

I f youdve ever run out of data r-egosdbemsechadi swsinshed !
emergencies, then you should find this section interesting. These functions operate on a I/O buffer
(with id#7) located below the .END. and above the Key assignment area.

The buffer holds five extra registers for standard data storage, labeled bR1to bR5 (t her ef ore t he
no bRO to speak of). Just enter the index for the extended register in the prompt and the data will be
stored, recalled, or exchanged with the stack X-register i as if they were standard data registers.

1 DbRCL _ recalls to the X register the content of the extended reg. which index is provided in
the prompt, or in the next program line if used in a running program.

1 bSTO _ stores the X-register in the extended reg. given in the prompt, or in the next
program line if used in a running program.

1 bVIEW _ shows the contents of the buffer register wittdex given in the prompt.

1 bX<>_ exchanges the contents of the X-register and the buffer reg. which index is
provided in the prompt, or in the next program line if used in a running program.

It you try to enter a non-valid index number (basically anything except 1,2,3,4,5) the prompt will be
maintained (without an error condition) until you either cancel the function or enter a valid v alue. In
program mode this would show a NONEXISTENTmessage and the execution will halt i so be careful
when you enter the parameter- which has to be done manually for all sub-functions, and therefore
should always be within valid range.

bRCL LSTO

| USER | USEFR

by IEM bXZn
USER USER

You can navigate amongst these four functions using the RCL, STO, CHS and R/S keys

A Triple-duty buffer.

Besides the emergency storage registers, this buffer is also used for other two important purposes
within this module as described below:

1. Buffer registers bR1 and bR2 are shared by the RTN stack functions PUSHRTN and
POPRTN, so be careful not to override their content if both features need to be used
together.

2. All five buffer registers are used as temporary storage place by the stack shuffle function
SHFL i as the most efficient way to re -arrange the stack registers on-the-f | y (t he fAshadc
s t a c k 6 beangeferrad o sometimes).

© Angel Martin z April 2020 Page43

Total Rekallz Dare to Comparez Warp_Core

Buffer Header: warping around SELECT

In a daring move, hereb6s where the emer gemengiondduf fer a
before, the buffer header contains the information of the currently selected variable, i.e. the data
register index marking such selection.

It was said in the previous section that the only valid input parameters for the buffer storage
functions were 1 to 5; but even if t haxktédhdngthe ncept ua
definition to also include the value zero in the prompts, we can use the four functions described

before to work on the selected register as well.

ltds not the contents of the buffer header register
under the selection setup i as pointed to by the marker in the header. It is as if the register bRO was
an automatic INDirect operator for the four basic action: STO, RCL, VIEW and Exchange.

Therefore:
T bRCLO recalls the value of the selected register to the X register in the stack.
1 bSTOO stores the value in the X register in the selected register,
T bVIEW 0 shows the content of the selected register, i.e. is equivalentto SVIEW ,
T bX<> 0 exchangest he sel ected value contentsvalentt h t hat

to S<> ST_X - but coming the other way around.

I n case ymtce it thel valig zero for any sub-function parameter doesnét need to
explicitly entered in the program i t hus it és suf fi ci e-fubctioh withouttaswan- ent er t
merged second line. The only restriction is that the program step following it cannot be a number i

which would be interpreted as its parameter otherwise.

So there you have it, yet another way to skin this cat T an interesting twist to the scheme, in case
you wondered how much interconnectivity can we get between the different functionality areas of the
module.

Remember: the buffer will be created the first time you need it to save/retrieve data to/from the
extended registers, or call the RTN stack backup functions, or perform a stack shuffle or choose a
variable for SLCT?CASE operation. This is the reason why you may notice a slighter longer execution
time the first time this is done.

Shadow
Storage RTN Stack Stack

fifth bR5 - ShadowX
fourth: bR4 - ShadowY
third: bR3 - ShadowZ
second: bR3 reg 10(a) | ShadowT
first: bR1 reg 11(b) | ShadowL
header: SEL# pointer - -

Warning: This buffer is not automatically created by the module on start -up, so the data it contains
will not survive a power-on/off cycle. This also applies to the selected variable used by SLCT.

© Angel Martin z April 2020 Page44

Total Rekallz Dare to Comparez Warp_Core

Finding the Xneedle in th®-haystack.

For

those t

i mes

when

youbd

i ke t

o know

i f -a

function FINDX (a.k.a. XF# 63) is available to do a cursory comparison looking for a match with the
value in the X-register. All data registers are checked, starting with ROO until the last one depending
on the current SIZE. The error message NONEXISTENTwill be shown if the calculator SIZE is zero.

The function returns the number of the first data register found that contains the same value as the
X-Register. If none is found, the function puts -1 in X to signify a no-match situation. The stack is
lifted so the sought for value will be pushed to th e Y-register upon completion.

Listed below are two FOCAL routines that do the same job as FINDX 71 albeit slower and using

auxiliary stack registers. 't 6s
using the SELCT variable for indrect comparisons.
011 . | a- Cbhb5¢ 01 [. | acC
02 SIZE? 02 SIZE?
03 E 03 E
04 ¢ 04 ¢
05 E3 05 E3
06 / 06 /
07 SELCT (IND X) 07 LBL 00
08 243 08 ?Y= (IND X)
09 LBL 00 09 243
10|WF# (?S=Y) 10 GTO 02
11|68 11 I1ISG X
12|114 12 GTO 00
13 GTO 02 13 CLX
14 1SG X 14 -1
15 GTO 00 15 RTN
16 CLX 16 LBL 02
17 -1 17 INT
18 RTN 18 END
19 LBL 02
20 INT
21 END

interesting

b5 ¢

to

Table37 St ac k

mani pul ati on

exampl es

f r o mbyiaha E. Dealing.t or

AYZT
XYTZ
AZYT
XZTY
XTYZ
ATZY

{orig. order)
X-Z, RDN, X-¥
RDN, X-¥Y, RY
¥-Y, RDN
Rt, X-Y
RDN, RDN, X-Z

The symbol "-" below stands

YXZT
YXTZ
YEZXT
YZTX
YTKZ
YTZX

for 'exchange’{X-Y for example means X# Y or X<>Y}.

X-Y
K-Z 3
A-Z,
RDN
RDN,
X-T,

RDN
X=-Y

A=Y, RCN
X=Y

ZXYT XY, X-Z TXYZ
ZXTY X=Y, RDN, X=Y ™ZY
ZYAT X=-Z TYXZ
ZYTX RDN, X-Y TYZX
ZTXY RDN, RDN TZXY
ZTYX X-Y, RDN, RDN TZYR

Rt

X=Y, X=T
X-Y, Rt

X-T

RDN, RDN, X-Y
RDN, X-Z

© Angel Martin z April 2020

Page45

certain

comp a

Tip

Total Rekallz Dare to Comparez Warp_Core

Playing with Key Assignments

This module includes a couple of brand-new KA-related routines that you may find interesting. Their
mission is to flip the key assignments on a given key or for the complete keyboard i so that the
shifted and un-shifted assignments are mutually toggled.

KEY 9

USER

1 KAFLP toggles all key assignmentsi turning shifted ones into non -shifted, and vice-versa.
This will only leave unassigned keys unchanged, but will reverse the assignments if only one
assignment exists for the keys.

17 KYFLP_ prompts for a key to perform the same task on an individual key basis. The prompt
includes the back-arrow key but will ignore the toggle keys (ON/USER & PRGM/ALPHA)

I n case you wonder why bother with this fUSBRKkey onal it
assignments becomes very handy if you have two function launchers assigned to that key.

A good example is with the SandMath, SandMatrix and 41Z modulesi t he t hree of them fico
for prime time on the [S+] key. Flipping the assignments will save you a lot of [SHIFT] key pressings
to access the functions within those launchers.

© Angel Martin z April 2020 Page46

Total Rekallz Dare to Comparez Warp_Core

Saving Status Registers iANkemory.

You can use sub-functions SAVEST and GETST to make backup copies of the status registers into X-

Memory files, and to restore their contents back to the status area. The functions prompt for the

number of status registers to include in those back-up files, which must be at least one and not more

than 16. In manual operation the function wo n 6 t all ow you to enter values
must be 0/1; second prompt0-6) . I f you use A000 then the complete 1

For example if you just want to save the stack registers {T,Z)Y,X,and} t hen youoObdinthent er A
prompt (since the count always starts with register T as the first one). The file name is expected to
be in ALPHA- thus register M (and possibly N) would be partially used by the function itself.

Exercise caution when the upper stack registers are included, which will have dramatic effect in your

program pointer and RTN stack in register a(11) and b(12); or stack assignments in registers | -(10)

and e(15). Al so donodt underestimate the ability of
MEMORYLOST condition when treated roughly.

These functions are programmable. In a running program the file name is expected in ALPHA, and

the number of status registers is taken from the program line after the sub-functiond s i (masebe
added manually) i whic h wondét be entered into the X re¥es,ster bu
that 6s r i ghinergedilinescasepl € non
, . i . File End Marker
Note: The Status files have a dedicated file type in X-Me mor vy . | f oOuUQT.E us T
the AMC_OS/X Module, then theire nt r i es wi | | be mar ke dRCQSeY RO ¢t hle 6To |
during the enumeration: Register O(7)
Register N(6)
I g T Register M(5)
USER Register L(4)
Register X(3)
See the figure on the iy showing the Stack register Register Y(2)
allocation within the XMem Data file. This particular Register Z(1)
example only goes up to 8(P), but in general you can Register T(0)
save all the status registers, until 15(e) inclusive. FL Header Reg
FL Name Reg
AppendixDuplicates in other Modules
Some functions are also available in other advanced modules, as shown below:
Function Available in: And also in:
GETST RAMRge ROM PowerCL
SAVEST RAMPage ROM PowerCL
KAFLP RAMPageROM XROM ROM
PUSHRTN XROM ROM RECOURSE Module
POPRTN XROM ROM RECOURSE Module
ROM2HEX XROM ROM GJM ROM
HEX2ROM XROM ROM GJM ROM
AIRCL ALPHA ROM SandMath
SHFL Formula EVALUATION

© Angel Martin z April 2020 Page47

Total Rekallz Dare to Comparez Warp_Core

XROM teandfrom HEX bytes. (by Greg McClure)

Sometimes it is needed to translate between XROM indents (##,##) and the FOCAL bytes that

represent the XROM function (Ax, xx). Function HEX2ROM prompts HO A _ 0and expects three
additionalhex digits (of which the first c a i dex diditehe > 7)) .
corresponding XROM value wWXROMbe djsplaed in the for
Function ROM2HEX does the reverse. It prompts ROM: __, and expects four decimal values

(of which max for the first pair is 31, and max for the second pair is 63). On successful entry of the

4" decimal digit the corresponding hex bytes will be displayedin t he H&X®m: 0 &
I f at any time during entry for any of theseHFuncti or
key will switch to the opposite routine (ROM2HEX <> HEX2ROM) i going back to the beginning of

the data entry sequence.

™ ha-
LI Pl iy —

USER

H"H_" _

UZER

<-->

Note that the se functions are intelligent enough to discard illegal combinations of input values during
the parameterentry i s 0 y ou ¢ a n &tisting ochbiees. This & of course nonwithstanding the
synthetictwo-byt e OS f unct i centielydiffterent subbjestat 6 s an

Note that the result string is not placed in ALPHA i but you may use the function DTOA to move it
there. Once the resulting string is in ALPHA it can be further used for register storage or any other
string manipulation you r equire.

The table below shows the correspondences between the XROM id# and the HEX codes. Note that
the first 64 entries are used by some synthetic multi-byte mainframe functions.

XROM id#

Hex Code

XROM id#

Hex Code

XROM id#

Hex Code

XROM id#

Hex ©de

XROM 00

A0:00:3F

XROM 08

A2:00:3F

XROM 16

A4:00:3F

XROM 24

A6:00:3F

XROM 01

A0:40:7F

XROM 09

A2:40:7F

XROM 17

A4:40:7F

XROM 25

A6:40:7F

XROM 02

A0:80:BF

XROM 10

A2:80:BF

XROM 18

A4:80:BF

XROM 26

A6:80:BF

XROM 03

AO0:CG:FF

XROM 11

A2:CO:FF

XROM 19

A4:.CO:FF

XROM 27

A6:CO:FF

XROM 04

Al1l:00:3F

XROM 12

A3:00:3F

XROM 20

A5:00:3F

XROM 28

A7:00:3F

XROM 05

Al:40:7F

XROM 13

A3:40:7F

XROM 21

A5:40:7F

XROM 29

A7:40:7F

XROM 06

Al1l:80:BF

XROM 14

A3:80:BF

XROM 22

A5:80:BF

XROM 30

A7:80:BF

XROM 07

Al:CG:FF

XROM 15

A3:CO:FF

XROM 23

A5:CO:FF

XROM 31

A7.CO.FF

© Angel Martin z April 2020

Page48

Total Rekallz Dare to Comparez Warp_Core

Saving and Restoring the RTN Stackoy Poul Kaarup)

The return stack can hold up to six addresses for subroutines, which is adequate for the vast majority
of user code programs. Should that not suffice, the pair of functions described below can be used to
extend that limit up to 12 addresses, effectively doubling he return capacity of the OS.

1 PUSHRTN saves the current RTN stack into a memory buffer (with id#=7). Once save d, the
current RTN stack is cleared (reset anew) so you have six more levels for your program.

1 POPRTN restores from the buffer the RTN stack saved previously, effectively overwriting the

current one at the moment of calling this call.

The program pointer (PC) and the first two pending return addresses are stored in status registers
b(12), the third is stored as two halves on each register, and the remaining three in status register
a(11). Note that these functions will not save the Program Pointer information.

This is shown in the figure below:

a(11):
A D R 6 A D 5 A D R 4 D
13121111101 9 8 7 6 5 4 3 2 1 0 | nibble
b(12):
R 3 A D 1 N
13 12| 12| 10 9 8 7 6 5 4 3 2 1 0 | nibble

Obviously these two functions are meant to be used as a pair, in combination. Note also that because
buffer#7 is used for the Stack shuffling too, you should refrain from calling SHFL and the direct
buffer access while the extended return addresses are held in bR1 and bR2.

Because these functions use the fird two registers inthe fie mer g e n ¢ y ob aarf dways ose they
buffer recall function bRCL to inspect the contents of the *stored* RTN stack i and compare it with
the *current* one, for example:

bRCL 1 bRCL 2
RCLb RCL a
X=Y? X=Y?

Two other functions dealing with the RTN stack are also available in the secondary FAT, as follows

1 RTN? Is a test function that checks whether there are pending returns in the stack. The
result is YES/NO, skipping the next line in a program when false.

1 RTNS recalls the number of pending subroutine levels to the X register, which by definition
is an integer between 0 to six.

© Angel Martin z April 2020 Page49

Total Rekallz Dare to Comparez Warp_Core

LIFO X-Functions (by Doug Wilder)

The LIFO (Last In First Out) functions require extended functions memory to operate. The LIFO is
located only in the first file in extended memory and must have a minimum size of one register and a
maximum size of 120 registers. This structure allows maximum transfer speed, even faster than main
memory, and does not require register numbers.

LIFO initialization: Create a first file in extended memory (recommended size is 16 to 32 registers) or
if the first file currently in extended memory is of a suitable size, it may be used for the LIFO. Use a
sequence similar to; "BUFFER" 28 CRFLD (the name is arbitrary).The function LIFOINI converts the
first file in extended memory to the LIFO file type, any data in the file is unrecoverable.

I f youdbre usi ng t highlykeddthmén8ed)XthisNbosskown irea QAT#4 listing with an
ALO character,ieion the file type
LIFD Lecd s
USER z
LIFOINI :

Converts the first file in extended memory to LIFO structure and initialize pointers.
After LIFOINI has been successfully executed without error, the stack is ready for use. LIFOINI may

be executed again to reset the pointers. Idea lly, LIFOINI would be only executed from the keyboard,
however it may also be used in a main program, the uppermost or top driver program.

LIFO functions

Z:is Xand Y (complex data) , T: is Stack (XYZT), F: is Hags, A: is ALPHA and R: is the RTN stack

If the stack lift is disabled, POPX and POPZ do not cause a lift, eg, CLX POPZ does not modify the Z
and T registers. For multi-register push and pop functions, a fLIFO LIMITO error leaves the stack in an
unknown state and the LIFO pointer is left in an unknown state. For POPA or POPF, if afDATA
ERROR occurs the Alpha/Flag register has not been modified yet the LIFO pointer is left in an
unknown state.

Alpha data and Flag data are typed data, that is: one cannot pop numeric or Flag data into A Ipha.
Stack data is not typed: any type of data may be poped into the XYZT stack.

With an LIFO it is possible to write user code subroutines which simulate monadic functions, for
example; do a push stack at entry, put the result in LASTX, then POPST and X<>L RTN.

It is also possible to write interrupting alarms which actually do something, they can push the
stack/ LASTX/ Al pha/ Fl ags at entry and recover them at
interrupt a running program when the stack lift i s disabled.

© Angel Martin z April 2020 Page50

