
Y90 Microprocessor
 Technical Manual

Disclaimer

Systemyde International Corporation reserves the right to make changes at any time, without notice, to
improve design or performance and provide the best product possible. Systemyde International Corporation
makes no warrant for the use of its products and assumes no responsibility for any errors which may appear
in this document nor does it make any commitment to update the information contained herein.

Systemyde International Corporation products are not authorized for use in life support devices or systems
unless a specific written agreement pertaining to such use is executed between the manufacturer and the
President of Systemyde International Corporation. Nothing contained herein shall be construed as a recom-
mendation to use any product in violation of existing patents, copyrights or other rights of third parties. No
license is granted by implication or otherwise under any patent, patent rights or other rights, of Systemyde
International Corporation. All trademarks are trademarks of their respective companies.

Every effort has been made to ensure the accuracy of the information contain herein. If you find errors or
inconsistencies please bring them to our attention. In all cases, however, the Verilog HDL source code for
the Y90 design defines “proper operation”.

Copyright © 2010, 2012, 2013, 2016 Systemyde International Corporation. All rights reserved.

Notice:

“Z80”, “Z180” and “Zilog” are registered trademarks of Zilog, Inc. All uses of these terms in this document
are to be construed as adjectives, whether or not the noun “microprocessor”, “CPU” or “device” are actually
present.

Table of Contents

1. Introduction ...3

2. Features ...5

3. Pin Descriptions ..7

4. External Timing19

5. Instruction Set ...47

6. Memory Management Unit (MMU) ..149

7. Interrupt Control ...157

8. DMA Request Control ..159

9. Wait State Control ...161

10. Watch-Dog Timer ..163

11. System Status ...167

12. Real-Time Interrupt (RTI) Generator ...175

13. Top Level Verilog Code ..179

14. HDL Compile Options ...183

Revison History

Date Changes Page(s)

03/04/2010

Added ext_status_bus and ext_status_rd to MPU version.
Added MPU version timing diagrams.
Added Z80/Z180 compile option for CCF instruction.
Changed timing for MLT to increase overall clock speed
Changed opcode for LDMS instruction.
Changed timing for some new instructions.
Added dma_req Status compile option.
Added wait_req Status compile option.
Added RTI Status.
Added RTI Generator discussion, diagrams.

Ch 3 and Ch 11
Ch 4
Ch 5
Ch 5
Ch 6
Ch 6
Ch 11
Ch 11
Ch 11
Ch 12

03/27/2010
Updated dma_req timing diagram.
Added HDL Compile Option descriptions.

Ch 4
Appendix 1

04/08/2010 Signal values during dma_ack, halt_tran and sleep_tran Ch 3 & Ch 4

04/12/2010 Signal values during HALT and SLP instructions. Ch 5

06/03/2010 Added Top Level Verilog chapter Ch 13

10/11/2012 Updates to System Status Block Ch 11

10/16/2012
Changed all MMU and System Status instructions so that they do
not sample interrupts.

Ch 6 and Ch 11

10/22/2012 Fixed Typos in interrupt table 156

11/10/2012 Added nmiack_tran output Ch 3

11/14/2012 Edits to pin descriptions. Ch 3

12/17/2012 Clarify Trap, RTI and System Status operation Ch 4, Ch 11, Ch 12

08/06/2013 Added int_req_en bus, nmi_addr bus to MPU version Ch 3, Ch 4

01/16/2015 Fixed typo in MLT instruction encoding 104

3

Introduction

This book documents the operation of the Y90 microprocessor. The Y90 design is sup-
plied in Verilog HDL and can be implemented in any technology supported by a logic
synthesis tool that accepts Verilog HDL. Included in the design package is a test bench
that exercises all instructions, flag settings, and representative data patterns. The test pat-
terns should achieve at least 95% fault coverage.

The Y90 CPU was designed in a clean-room environment and is an upgrade of the Zilog
Z80 and Z180 microprocessors. Only publicly available documentation was used to create
this design so there may be minor differences where the public documentation is mislead-
ing or lacking. The instruction execution times are not identical between the two designs.
The Y90 CPU operates with a consistent two-clock-cycle machine cycle, while the Z80
and Z180 microprocessors use machine cycles that vary from three to seven clock cycles.

The Y90 design, depending on the version, may not implement all of the instructions, fea-
tures or operating modes of the Z80 architecture. The specific differences are covered in
the various appendices.

This document should always be used as the final word on the operation of the Y90 CPU,
but it is useful to refer to the Zilog documentation if the description given here is too cryp-
tic. The Z80 architecture is over thirty years old, so it is assumed that it is already at least
somewhat familiar to the reader.

The Y90 CPU is accompanied by full design documentation, in the form of a large spread-
sheet, which describes nearly every facet of the internal operation of the processor. This
provides knowledgeable users the opportunity to customize the design for unique applica-
tion requirements.

The Y90 design is available in three versions: the Y90 CPU consists of the processor only,
while the Y90 MPU surrounds the processor with a number of modules to support opera-
tion with an RTOS. This includes a memory management unit, an interrupt controller, a
DMA request controller, a watch-dog timer, real-time interrupt for time slicing, and vari-
ous fault monitors. The third version, called the Y90-180, contains the peripheral func-
tions present in the original Zilog Z180. This version of the design is described in a
separate document.

4

5

Features

* Fully functional synthesizable Verilog HDL version of the Z80 CPU or Z180 CPU

* Vendor and technology independent

* Software compatible with several industry-standard processors

* 189 instructions (more with optional modules)

* Eight addressing modes

* 64K byte (up to 256M byte with optional paged MMU) memory addressing capability

* Separate 64K byte I/O address space

* 16 bit ALU with bit, byte and BCD operations

* Powerful vectored interrupt capability with separate interrupt vector input bus

* Static, fully synchronous design uses no 3-state buses

* Uniform 2 clock-cycle machine cycle

* Memory interface matches common FPGA and ASIC memory timing

* Separate I/O bus, compatible with AMBA Peripheral Bus

* Illegal instruction detection, optional write-protect and execute-protect

* State machines include optional illegal state detection

* Full design documentation included

* Verilog simulation and test suite included

* Optional modules (interrupt, bus control, system status, real-time interrupt)

6

Shown below are the registers visible to the programmer. The main registers have both a
primary and an alternate version. The primary register set consists of A, F, B, C, D, E, H,
and L, while the alternate register set consists of A', F', B', C', D', E', H', and L'. At any
given time only one bank is active, and care must be used when switching between banks,
as there is no way for the programmer to check which bank is active. The accumulator, A,
is the destination for all 8-bit arithmetic and logic operations, while the Flag register F
contains the flag results of arithmetic and logic operations. The other general-purpose reg-
isters can be paired, BC or DE or HL, to form 16-bit registers. There are two index regis-
ters, IX and IY, used for indexed addressing mode. The I register holds the upper eight bits
of the interrupt vector table address for use in Interrupt Mode 2. The R register is left over
from the original Z80 architecture, where it was used to hold a refresh address for
DRAMs. In the Y90 it is just another general purpose register. The Stack pointer, SP,
holds the address of the stack, and the Program Counter, PC, holds the address of the cur-
rently executing instruction.

A F

B C

D E Main Register Bank

H L

IX

IY

A’ F’

B’ C’ Alternate Register Bank

D’ E’

H’ L’

I R Special Function Registers

SP

PC

7

Pin Descriptions

The Y90 design does not attempt to match the signals or timing present on either the Z80
microprocessor or the Z180 microprocessor. Rather, the interfaces and signals are opti-
mized for use in either an ASIC or an FPGA.

Memory and I/O use separate address and data buses in addition to the separate control
signals. The memory bus is designed to match typical ASIC and FPGA memory timing,
although it can be used with stand-alone memory devices just as easily. A separate inter-
rupt vector bus is provided for use with an interrupt controller. If desired, this interrupt
vector bus can be tied to either the memory or I/O input bus for operation more closely
resembling that of the original Z80 and Z180.

The interface signals for the Y90 CPU are detailed below. Note that all inputs except the
two resets are sampled by the rising edge of the clock and all outputs change in response
to the rising edge of the clock.

clearb (input, active-Low) The Master (test) Reset signal is used to initialize all of the
flip-flops that are not initialized by the user reset signal. Most user-visible reg-
isters are not affected by the user reset, so this signal allows full initialization
for testing and simulation. This is an asynchronous signal that should be used
for Power-On Reset.

clkc (input, active-High) The CPU Clock connects to all flip-flops in the design.

dma_ack (output, active-High) The DMA Acknowledge signal is activated to indicate
that the processor has halted to allow another bus master to use the bus. The
iack_tran, io_addr_out, io_data_out, io_tran, mem_addr_out,
mem_data_out, mem_tran, nmiack_tran, reti_tran and t1 signals are all
inactive (Low) during this time. The processor will signal dma_ack while in
the Halt or Sleep state without de-asserting the halt_tran or sleep_tran sig-
nals. Interrupts are not sampled while the dma_ack signal is active, so the exit
from a coincident Halt or Sleep state will be deferred until the dma_ack sig-
nal is no longer active.

dma_req (input, active-High) The DMA Request signal requests that the processor halt to
allow another bus master to transfer data on the bus. The processor only

8

releases the bus between instructions, rather than between individual bus
transactions.

en_prftch (input, active-High). The Enable Prefetch signal enables the prefetch operation.
Although the prefetch mode can be changed dynamically, it is recommended
that this signal be tied either High or Low. The prefetch mechanism increases
performance by prefetching an opcode byte during any address calculation
time. Only the prefix byte (0xCB, 0xDD, 0xED or 0xFD) of a multi-byte
instruction can actually be used after being prefetched.

fault_detect (output, active-High) The Fault Detect output is activated when an illegal
state is detected in the main state machine. The main state machine uses a
modified one-hot encoding, so the parity of a valid state is always even.
Whenever the main state has odd parity an upset has occurred and this output
will be activated.

halt_tran (output, active-High) The Halt Transaction signal is activated by the Halt
instruction. While in the Halt state the CPU freezes and waits for an interrupt.
The iack_tran, io_addr_out, io_data_out, io_tran, mem_addr_out,
mem_data_out, mem_tran, nmiack_tran, reti_tran and t1 signals are all
inactive (Low) during this time.

iack_tran (output, active-High) The Interrupt Acknowledge Transaction signal is acti-
vated to identify an interrupt acknowledge bus transaction for an enabled
Maskable Interrupt request. During an interrupt acknowledge the interrupt
vector data bus is sampled, although the sampled value is only used in Inter-
rupt Mode 0 or 2 with a maskable interrupt request.

inst2_trap (output, active-High) The Instruction Byte 2 Trap signal is activated during an
interrupt acknowledge bus transaction if the interrupt acknowledge is due to
the fetch of an illegal instruction during in the second byte of a two-byte
opcode. This information can be used, along with the PC value written to the
stack during the interrupt acknowledge sequence, to pinpoint the location of
the illegal instruction.

inst3_trap (output, active-High) The Instruction Byte 3 Trap signal is activated during an
interrupt acknowledge bus transaction if the interrupt acknowledge is due to
the fetch of an illegal instruction during in the second byte of a three-byte
opcode. This information can be used, along with the PC value written to the
stack during the interrupt acknowledge sequence, to pinpoint the location of
the illegal instruction.

int_req (input, active-High) The Interrupt Request signal is the maskable interrupt
request. Maskable interrupts can be enabled and disabled under program con-

9

trol. This interrupt request is not latched, so it should remain active until an
interrupt acknowledge transaction occurs.

io_addr_out (output, 16-bit bus) The I/O Address Output bus carries the address of the I/
O port during an I/O transaction. To save power, this bus holds the current
value until the next I/O transaction or until the dma_ack signal is activated.

io_data_in (input, 8-bit bus) The I/O Data Input bus is sampled during the various I/O
input instructions. A separate bus allows peripherals to be connected without
loading the memory data bus.

io_data_out (output, 8-bit bus) The I/O Data Output bus carries the output data for I/O
output instructions. To save power, this bus holds the current value until the
next I/O transaction or until the dma_ack signal is activated.

io_read (output, active-High) The I/O Read signal indicates the direction of data transfer
during I/O transactions. High signals read and Low signals write. This signal
is valid only during I/O transactions, and is held Low at all other times.

io_strobe (output, active-High) The I/O Strobe signal is one clock cycle wide (in the
absence of Wait states) and identifies the data transfer clock cycle for I/O
transactions.

io_tran (output, active-High) The I/O Transaction signal is activated for all I/O transac-
tions.

ivec_data_in (input, 8-bit bus) The Interrupt Vector Data Input bus is sampled during
interrupt acknowledge transactions. If the interrupt acknowledge was for a
maskable interrupt and the CPU is in Interrupt Mode 2, this vector is used as a
pointer in the interrupt vector table to find the starting address of the interrupt
service routine. In Interrupt Mode 0 the vector is a one-byte RST instruction.

ivec_rd (output, active-High) The Interrupt Vector Read signal is one clock cycle wide (in
the absence of Wait states) and identifies the data transfer clock cycle for
interrupt acknowledge transactions.

mem_addr_out (output, 16-bit bus) The Memory Address Output bus carries the address
during memory read and write transactions. This bus is driven with all zeros
while the dma_ack signal is active.

mem_data_in (input, 8-bit bus) The Memory Data Input bus is sampled during memory
read transactions. A separate bus allows peripherals to be connected without
loading the memory data bus.

10

mem_data_out (output, 8-bit bus) The Memory Data Output bus carries the output data
for memory write transactions. This bus holds the current value until the next
I/O transaction or until the dma_ack signal is activated.

mem_rd (output, active-High) The Memory Read signal is one clock cycle wide (in the
absence of Wait states) and identifies the data transfer clock cycle for memory
read transactions.

mem_tran (output, active-High) The Memory Transaction signal is activated for memory
read and write transactions. The mem_tran signal is active during the Halt
state but is inactive during the Sleep state and while the dma_ack signal is
active.

mem_wr (output, active-High) The Memory Write signal is one clock cycle wide (in the
absence of Wait states) and identifies the data transfer clock cycle for memory
write transactions.

nmiack_tran (output, active-High) The NMI Acknowledge Transaction signal is acti-
vated to identify an interrupt acknowledge bus transaction for a Non-
Maskable Interrupt request.

nmi_req (input, active-High) The Non-Maskable Interrupt Request signal unconditionally
interrupts the CPU. This request is internally latched, so that it can be as short
as one clock cycle wide.

resetb (input, active-Low) The User Reset signal is used to initialize all state flip-flops
and some user registers (the I, R, PC and SP registers). This is an asynchro-
nous signal.

reti_tran (output, active-High) The Return From Interrupt transaction signal is activated
immediately after the second stack read transaction during the Return From
Interrupt (RETI) instruction. This signal may be used by an external interrupt
controller to re-enable interrupts, for example.

sleep_tran (output, active-High) The Sleep Transaction signal is activated by the Sleep
instruction. While in the Sleep state the CPU freezes and waits for an inter-
rupt. The iack_tran, io_addr_out, io_data_out, io_tran, mem_addr_out,
mem_data_out, mem_tran, nmiack_tran, reti_tran and t1 signals are all
inactive (Low) during this time.

t1 (output, active-High) The T1 signal is active during the first clock cycle of a bus trans-
action. This signal is inactive during the Halt and Sleep states.

11

wait_req (input, active-High) The Wait Request signal temporarily halts the CPU, usually
to wait for memory access time to be met. The wait request is not honored
while the dma_ack, halt_tran or sleep_tran signals are active.

The interface signals for the Y90 MPU are detailed below. Many signals are common to
the two versions, but this version adds a significant number of system-level features.

clearb (input, active-Low) The Master (test) Reset signal is used to initialize all of the
flip-flops that are not initialized by the user reset signal. Most user-visible reg-
isters are not affected by the user reset, so this signal allows full initialization
for testing and simulation. This is an asynchronous signal that should be used
for Power-On Reset.

clkc (input, active-High) The CPU Clock connects to all flip-flops in the design.

dma_ack_bus (output, 8-bit bus, active-High) This bus is composed of eight individual
DMA Acknowledge signals, only one of which will be active at a time. A
dma_ack_bus signal is activated to indicate that the processor has halted to
allow another bus master to use the bus. The iack_tran, io_addr_out,
io_data_out, io_tran, mem_addr_out, mem_data_out, mem_tran,
nmiack_tran, reti_tran and t1 signals are all inactive (Low) during this time.
The processor can activate a dma_ack_bus signal while in the Halt or Sleep
state without de-asserting the halt_tran or sleep_tran signals. Interrupts are
not sampled while a dma_ack_bus signal is active, so the exit from a coinci-
dent Halt or Sleep state will be deferred until no dma_ack_bus signal is
active.

dma_req_bus (input, 8-bit bus, active-High) This bus is composed of eight individual
DMA Request signals. A DMA Request signal requests that the processor halt
to allow another bus master to transfer data on the bus. The processor only
releases the bus between instructions, rather than between individual bus
transactions.

drq_act_lim (input, 5-bit value) The DMA Request Active Limit value sets the limit for
the amount of time that a DMA may control the bus. The clock cycle limit is
sixteen times this value, and a zero value disables the limit check. This value
can be either static or controlled by an external I/O port.

drq_idl_lim (input, 5-bit value) The DMA Request Idle Limit value sets the minimum
amount of time that the processor will execute between granting the bus for
DMA. The clock cycle limit is sixteen times this value, and a zero value dis-

12

ables this function. This value can be either static or controlled by an external
I/O port.

drq_timeout (output, active-High) The DMA Request Time-out signal is activated for
one clock cycle whenever the clock cycle limit for DMA control of the bus is
reached. External logic may use this information to accumulate performance
information, or as a DMA fault indicator.

en_prftch (input, active-High). The Enable Prefetch signal enables the prefetch operation.
Although the prefetch mode can be changed dynamically, it is recommended
that this signal be tied either High or Low. The prefetch mechanism increases
performance by prefetching an opcode byte during any address calculation
time. Only the prefix byte (0xCB, 0xDD, 0xED or 0xFD) of a multi-byte
instruction can actually be used after being prefetched.

exec_inh (input, active-High) The Execute Inhibit signal is sampled during the t1 time of
fetch transactions for the first byte of an instruction. A trap is generated if this
signal is sampled active at this time. This is accomplished by jamming an
0xC7 (RST 0) on the data bus into the CPU in response to the instruction
fetch. Because only the fetch of the first byte of an instruction samples the
exec_inh signal, a multi-byte instruction that starts in an execute-enabled
region will execute properly, but if the next in-line instruction is in an exe-
cute-protected region it will cause a trap. The execute-inhibit function works
identically with or without prefetch being enabled.

ext_stat_bus (input, 8-bit bus, active-High) This bus is composed of eight individual
External Status signals. The state of this bus is sampled during the t1 time of
the instruction that reads the System Status Block. These signals will typically
be used to report on the health of other parts of the system. Since the
ext_stat_bus is only sampled for the read of the System Status Block, any
transient conditions that contribute to this status must be latched externally.

ext_stat_rd (output, active-High) The External Status Read signal is activated when the
System Status Block has been read. This signal can be used to clear any
latches associated with signals contributing to the ext_stat_bus status.

fatal_detect (output, active-High) The Fatal Detect output is activated whenever an unre-
coverable error is detected, and remains active until the next Reset. There are
only two unrecoverable errors: First, when the exec_inh signal is activated for
an instruction fetch in Page 0. Second, when the wr_inh signal is activated
during a stack write. Both circumstances will lead to an infinite loop of traps.
The fatal_detect signal forces a reset of the device to prevent this infinite
loop.

13

fault_detect (output, active-High) The Fault Detect output is activated when an illegal
state is detected in the main state machine. The main state machine uses a
modified one-hot encoding, so the parity of a valid state is always even.
Whenever the main state has odd parity an upset has occurred and this output
will be activated. The fault_detect signal forces a reset of the device.

halt_tran (output, active-High) The Halt Transaction signal is activated by the Halt
instruction. While in the Halt state the CPU freezes and waits for an interrupt.
The iack_tran, io_addr_out, io_data_out, io_tran, mem_addr_out,
mem_data_out, mem_tran, nmiack_tran, reti_tran and t1 signals are all
inactive (Low) during this time.

iack_tran (output, active-High) The Interrupt Acknowledge Transaction signal is acti-
vated to identify an interrupt acknowledge bus transaction. An interrupt
acknowledge occurs in response to an enabled Maskable Interrupt request.
During an interrupt acknowledge the interrupt controller supplies an interrupt
vector for the maskable interrupt.

iack_wait_lim (input, 5-bit value) The Interrupt Acknowledge Wait Limit value sets the
limit for the number of Wait states during an interrupt acknowledge transac-
tion. This value is used directly, and a zero value disables the limit check. This
value can be either static or controlled by an external I/O port.

int_ack_bus (output, 16-bit bus, active-High) This bus is composed of sixteen individual
Interrupt Acknowledge signals. One int_ack_bus signal is activated during
the interrupt acknowledge transaction to indicate exactly which interrupt
request is being acknowledged. The active int_ack_bus signal can be used to
clear the interrupt condition if desired.

int_req_bus (input, 16-bit bus, active-High) This bus is composed of sixteen individual
Interrupt Request signals. The Interrupt Request signal is the maskable inter-
rupt request, and is enabled using the corresponding Interrupt Enable signal.
Maskable interrupts are globally enabled and disabled under program control.
This interrupt request is latched, so it does not need to remain active until an
interrupt acknowledge transaction occurs. Each interrupt request latch is
cleared automatically by the corresponding Interrupt Acknowledge signal.

int_req_en (input, 16-bit bus, active-High) This bus is composed of sixteen individual
Interrupt Enable signals. The Interrupt Enable signals provide a way to control
the Maskable Interrupt requests via external hardware. These signals also pro-
vide a means to clear the interrupt request latches outside of the normal Inter-
rupt Acknowledge clear, by temporarily disabling the Interrupt Request.

14

io_addr_out (output, 16-bit bus) The I/O Address Output bus carries the address of the I/
O port during an I/O transaction. To save power, this bus holds the current
value until the next I/O transaction or until the dma_ack signal is activated.

io_data_in (input, 8-bit bus) The I/O Data Input bus is sampled during the various I/O
input instructions. A separate bus allows peripherals to be connected without
loading the memory data bus.

io_data_out (output, 8-bit bus) The I/O Data Output bus carries the output data for I/O
output instructions. To save power, this bus holds the current value until the
next I/O transaction or until the dma_ack signal is activated.

io_read (output, active-High) The I/O Read signal indicates the direction of data transfer
during I/O transactions. High signals read and Low signals write. This signal
is valid only during I/O transactions, and is held Low at all other times.

io_strobe (output, active-High) The I/O Strobe signal is one clock cycle wide (in the
absence of Wait states) and identifies the data transfer clock cycle for I/O
transactions.

io_tran (output, active-High) The I/O Transaction signal is activated for all I/O transac-
tions.

io_wait_lim (input, 5-bit value) The I/O Transaction Wait Limit value sets the limit for
the number of Wait states during an I/O transaction. This value is used
directly, and a zero value disables the limit check. This value can be either
static or controlled by an external I/O port.

ivec_offset (input, 3-bit value) The Interrupt Vector Offset value is used to create the
interrupt vector generated by the interrupt controller. In interrupt mode 2 this
value is the three most-significant bits of the interrupt vector. In Interrupt
Mode 0 this value selects which RST instruction to return during the interrupt
acknowledge (0x0 is RST 0, 0x1 is RST 8, and so on). This value can be either
static (the typical case), controlled by an external I/O port, or modified by the
pending interrupt.

mem_addr_out (output, 16-bit bus) The Memory Address Output bus carries the address
during memory read and write transactions. This bus is driven with all zeros
while the dma_ack signal is active.

mem_data_in (input, 8-bit bus) The Memory Data Input bus is sampled during memory
read transactions. A separate bus allows peripherals to be connected without
loading the memory data bus.

15

mem_data_out (output, 8-bit bus) The Memory Data Output bus carries the output data
for memory write transactions. This bus holds the current value until the next
I/O transaction or until the dma_ack signal is activated.

mem_rd (output, active-High) The Memory Read signal is one clock cycle wide (in the
absence of Wait states) and identifies the data transfer clock cycle for memory
read transactions.

mem_tran (output, active-High) The Memory Transaction signal is activated for memory
read and write transactions. The mem_tran signal is active during the Halt
state but is inactive during the Sleep state and while the dma_ack signal is
active.

mem_wait_lim (input, 5-bit value) The Memory Transaction Wait Limit value sets the
limit for the number of Wait states during a memory transaction. This value is
used directly, and a zero value disables the limit check. This value can be
either static or controlled by an external I/O port.

mem_wr (output, active-High) The Memory Write signal is one clock cycle wide (in the
absence of Wait states) and identifies the data transfer clock cycle for memory
write transactions.

nmiack_tran (output, active-High) The NMI Acknowledge Transaction signal is acti-
vated to identify an interrupt acknowledge bus transaction for a Non-
Maskable Interrupt request.

nmi_addr (input, 16-bit bus) The Non-Maskable Interrupt Address bus provides the logi-
cal address of the NMI service routine. The original Z80/Z180 vectored an
NMI request to address 0x0066, so this address should be supplied on this bus
if compatibility is required.

nmi_req (input, active-High) The Non-Maskable Interrupt Request signal unconditionally
interrupts the CPU. This request is internally latched, so that it can be as short
as one clock cycle wide.

ref_clock (input, asynchronous) The Reference Clock signal provides an external time
reference for an operating system. The Real Time Interval is automatically
synchronized to this signal. If this signal is not present the rti_default value is
used to set the period for the rti_pulse signal. If the ref_clock signal is lost,
the last automatically-generated value continues.

reset_bus (input, 2-bit bus, asynchronous edge-triggered) This bus consists of two inde-
pendent Reset Request signals. Each of these signals is digitally filtered to
detect a transition. A valid transition on either signal (where the level change
persists for at least eleven clock cycles) causes a User Reset.

16

resetb (output, active-Low) The User Reset signal is generated in the System Status block
from the various possible reset sources (reset_bus, fatal_detect, fault_detect
and wdt_timeout). This signal is synchronous with the falling edge of clkc
and is guaranteed to be at least three clock cycles wide.

rti_default (input, 24-bit value) The Real Time Interval Default value sets the period for
the rti_pulse signal in the case there is no ref_clock or when the automatic
rti_pulse generation is disabled. This value will be used until two valid
ref_clock transitions have been recognized, at which time the automatically-
generated period will be used.

rti_divisor (input, 7-bit value) The Real Time Interval Divisor value sets the number of
rti_pulse signals during one period of the ref_clock signal. This value is used
directly, and a zero value disables the automatic generation of the rti_pulse
signal.

rti_pulse (output, active-High) The Real Time Interval Pulse signal is active for one clock
cycle at the Real Time Interval rate.

rti_synced (output, active-High) The Real Time Interval Synced signal is active while the
automatic rti_pulse generation is active.

sleep_tran (output, active-High) The Sleep Transaction signal is activated by the Sleep
instruction. While in the Sleep state the CPU freezes and waits for an inter-
rupt. The iack_tran, io_addr_out, io_data_out, io_tran, mem_addr_out,
mem_data_out, mem_tran, nmiack_tran, reti_tran and t1 signals are all
inactive (Low) during this time.

t1 (output, active-High) The T1 signal is active during the first clock cycle of a bus trans-
action. This signal is inactive during the Halt and Sleep states. It is also inac-
tive while dma_ack is active.

wait_iack (input, active-High) The Interrupt Acknowledge Wait Request signal tempo-
rarily halts the processor during interrupt acknowledge transactions. This sig-
nal is sampled only during interrupt acknowledge transactions.

wait_io (input, active-High) The I/O Wait Request signal temporarily halts the processor
during I/O transactions. This signal is sampled only during I/O transactions.

wait_mem (input, active-High) The Memory Wait Request signal temporarily halts the
processor during memory transactions. This signal is sampled only during
memory transactions.

17

wait_timeout (output, active-High) The Wait Request Time-out signal is activated when-
ever the clock cycle limit for Wait states is met. External logic may use this
information to accumulate performance information, or as a fault indicator.

wdt_lim (input, 8-bit value) The Watch-Dog Timer Limit value sets the time-out period,
in multiples of 2^20 clock cycles, for the Watch-Dog Timer. This value can be
either static or controlled by an external I/O port. A value of “n” selects “n+1”
multiples of 2^20 clock cycles for the time-out period. This value is sampled
by the WDRES instruction.

wr_inh (input, active-High) The Write Inhibit signal is sampled during the t1 time of all
memory write transactions, and if active the mem_wr signal is suppressed
during the transaction. A trap is also generated. This is accomplished by jam-
ming an 0xC7 (RST 0) on the data bus into the CPU in response to the next
instruction fetch.

18

19

External Timing

The Y90 CPU uses a uniform two-clock-cycle machine cycle. This consistent timing sim-
plifies the design of logic external to the CPU makes it easier to track the state of the CPU.

The memory interface timing and signals are designed to make it easy to interface to stan-
dard ASIC and FPGA memories. It uses separate read and write strobes.

The I/O interface is very close to the AMBA Peripheral Bus (APB) to allow connection to
APB peripherals with a minimum of logic. It uses a single strobe with a separate direction
control. The only difference relative to the APB is the setup time for the write data. In the
APB the write data is setup one clock before the strobe; in this interface the write data
changes coincident with the leading edge of the strobe. In most cases this will not be a
problem.

The separate interrupt vector bus provides an easy way to connect to the optional interrupt
controller. The interrupt vector bus is used for Mode 0 and Mode 2 maskable interrupts, so
if these modes are not used the vector input bus can be tied to ground and the vector strobe
output ignored.

In the diagrams below only the relevant signals are shown for each transaction. All other
signals are either inactive or hold the previous value. Note that only one of the transaction
identifiers (mem_tran, io_tran, iack_tran, nmiack_tran, reti_tran, halt_tran and
sleep_tran) can be active at a time. If all are inactive, an idle bus transaction (usually for
address calculation) is in progress. If prefetch is enabled most address calculation idle
transactions are replaced by memory transactions. The dma_ack signal also indicates that
the bus is idle, in response to the dma_req signal. The dma_ack signal can be active
while either halt_tran or sleep_tran is active.

The wait_req input is only sampled for memory, I/O and interrupt acknowledge transac-
tions and is ignored in all other cases. Wait states will disrupt the two-clock-cycle machine
cycle rule. If this feature is important but wait states must be used, two wait states per
transaction is recommended. If memory access time is an issue it might be better to stretch
the first clock cycle of a transaction rather than add Wait states. The uniform two-clock
machine cycle makes it relatively straightforward to do this.

20

Memory Read

The figure below shows the memory read transaction, without Wait states and with one
Wait state. Memory read transactions are used for both instruction and data fetch. There is
no separate instruction/data status indicator, although this status exists internally if it is
needed.

lkc

em_addr_out

em_data_in

em_tran

em_rd

ait_req

T1 T2

Valid

Valid

1

T1 T2

Valid

Valid

Tw

21

Memory Write

The figure below shows the memory write transaction, without Wait states and with one
Wait state.

lkc

em_addr_out

em_data_out

em_tran

em_wr

ait_req

T1 T2

Valid

Valid

1

T1 T2

Valid

Valid

Tw

22

I/O Read

The figure below shows an I/O read transaction, without Wait states and with one Wait
state.

lkc

o_addr_out

o_data_in

o_read

o_strobe

ait_req

T1 T2

Valid

Valid

1

T1 T2

Valid

Valid

Tw

o_tran

23

I/O Write

The figure below shows an I/O write transaction, without Wait states and with one Wait
state.

lkc

o_addr_out

o_data_out

o_tread

o_strobe

ait_req

T1 T2

Valid

Valid

1

T1 T2

Valid

Valid

Tw

o_tran

24

Interrupt Acknowledge

The figure below shows the interrupt acknowledge transaction, without Wait states and
with one Wait state.

lkc

vec_data_in

ack_tran

vec_rd

ait_req

T1 T2

Valid

1

T1 T2

Valid

Tw

25

Prefetch

The figure below shows a typical instruction (a memory write) without the prefetch
enabled and with the prefetch enabled. The prefetch logic uses address calculation
machine cycles to look at the next opcode byte. If this opcode byte is one of the "prefix"
bytes (0xCB, 0xDD, 0xED or 0xFD) the logic buffers this byte and will not re-fetch it
when the current instruction completes. Only these four prefix bytes will be buffered, even
though there are other multi-byte opcodes. Attempting to prefetch for every multi-byyte
opcode would be significantly more complicated, with marginal performance improve-
ment.

In practice, enabling the prefetch can improve execution time by about 5%, although this
obviously depends on the exact code being executed. If Wait states are being used prefetch
may not provide any performance gain, because of the Wait states added when prefetching
bytes that may later be discarded.

Note that even though an instruction may execute faster when the prefetch is enabled, this
instruction will still complete at the same time. However, the next instruction (the one
with the first byte prefetched) will complete earlier. This is shown in the diagrams below.

The prefetch can be enabled and disabled on the fly, because the en_prftch signal is sam-
pled during the t1 time of the fetch of the first byte of an instruction.

If exec_inh is sampled active during the prefetch the byte is ignored. This causes the byte
to be fetched normally at the end of the current instruction and the normal execute inhibit
operation (substitution of RST 0) to commence.

26

clkc

mem_addr_out

mem_data_in

t1

mem_tran

mem_rd

mem_wr

mem_data_out

T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1

PC+2 PC+3

write data

PC PC+2

T2 T1

PC+4PC+1

Ignoredexecuteexecute

mem addr

executeexecute

clkc

mem_addr_out

mem_data_in

t1

mem_tran

mem_rd

mem_wr

mem_data_out

T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1

PC+3 PC+4

write data

PC PC+2

T2 T1

PC+5PC+1

bufferexecuteexecute

mem addr

executeexecute

inst at PC

inst at PC+2

inst at PC+4

inst at PC

inst at PC+2

inst at PC+4

27

Illegal Instruction (2nd byte) Trap

The timing of an undefined second byte opcode trap is shown below. The fetch of the
undefined opcode is followed by three machine cycles that flush the pipeline and rewind
the Program Counter, an interrupt acknowledge with the inst2_trap signal active, and two
writes to push the PC of the undefined opcode to the stack. The processor then jumps to
location 0x0000 and starts fetching instructions.

In the case of the Y90 CPU the inst2_trap information should be latched outside the CPU
to distinguish this case from both the inst3_trap case and the normal reset case. The start
of the illegal instruction in this case is the stacked PC value minus one.

The Y90 MPU latches the inst2_trap information as well as both the logical and physical
address of the offending byte. This information is available in the System Status Block.

clkc

mem_addr_out

mem_data_in

t1

mem_tran

mem_rd

mem_wr

iack_tran

T1 T2 T1

mem_data_out

T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1

SP-1 SP-2

PC+1 (low byte)PC+1 (high byte)

PC+1PC

trap

PC+2 PC

T2 T1

0000

inst2_trap

IgnoredIgnored

ivec_data_in

ivec_rd

Ignored

28

Illegal Instruction (3rd byte) Trap

The timing of an undefined third byte opcode trap is shown below. The fetch of the unde-
fined opcode is followed by the normal Read cycle (all three-byte instructions use indexed
addressing), two machine cycles that flush the pipeline and rewind the Program Counter,
an interrupt acknowledge with the inst3_trap signal active, and two writes to push the PC
of the undefined opcode to the stack. The processor then jumps to location 0x0000 and
starts fetching instructions.

In the case of the Y90 CPU the inst3_trap information should be latched outside the CPU
to distinguish this case from both the inst2_trap case and the normal reset case. The start
of the illegal instruction in this case is the stacked PC value minus two.

The Y90 MPU latches the inst3_trap information as well as both the logical and physical
address of the offending byte. This information is available in the System Status Block.

clkc

mem_addr_out

mem_data_in

t1

mem_tran

mem_rd

mem_wr

iack_tran

T1 T2 T1

mem_data_out

T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1

SP-1 SP-2

PC+2 (low byte)PC+2 (high byte)

PC+3PC+2

disp

IX+d or IY+d PC+2

T2 T1

0000

inst3_trap

trap

PC+4

Ignored

ivec_data_in

ivec_rd

Ignored

29

Execute Inhibit Trap

The timing of an Execute Inhibit trap is shown below. The fetch of the first byte of an
opcode in an execute-protected page causes the CPU to execute an RST 0 instruction in
place of the offending instruction. This means there is no interrupt acknowledge transac-
tion associated with the Execute Inhibit trap. Software should use the address latched in
the System Status Block to determine the source of the trap, because the stack contents
point to the byte after the one that caused the trap.

clkc

mem_addr_out

mem_data_in

t1

mem_tran

mem_rd

mem_wr

exec_inh

T1 T2 T1

mem_data_out

T2 T1 T2 T1 T2 T1

SP-1 SP-2

PC+1 (low byte)PC+1 (high byte)

PC+1PC 0000

Ignored

trap address PC

(CPU sees 0xC7)

30

Execute Inhibit Trap & Fatal Error

The exec_inh signal should never be active for an address is Page 0. This will lead to a
fatal error condition because the response to the trap is to jump to address 0x0000, leading
to an infinite loop of traps. The Y90-MPU activates the fatal_detect signal in the case of
an Execute Inhibit trap in Page 0, updates the System Status Block and generates the
resetb signal. The timing of the fatal_detect signal is shown in the diagram below.

It is assumed here that the reset will clear whatever condition lead to signalling exec_inh
during a Page 0 access. If this is not the case an infinte loop of traps can still result.

clkc

mem_addr_out

mem_data_in

t1

mem_tran

mem_rd

mem_wr

exec_inh

T1 T2 T1

mem_data_out

T2 T1

PC+1PC (in Page 0) 0000

Ignored

trap address PC

(CPU sees 0xC7)

T2 T1

0001

fatal_detect

resetb

00

31

Write Protect Trap

The timing of a Write Protect trap is shown below. The attempt to write to a write-pro-
tected page causes the CPU to execute an RST 0 instruction in place of the next instruc-
tion. This means there is no interrupt acknowledge transaction associated with the Write
Protect trap. Software should use the address latched in the System Status Block to deter-
mine the source of the trap, because the stack contents point to an address in the instruc-
tion after the one that caused the trap.

clkc

mem_addr_out

mem_data_in

t1

mem_tran

mem_rd

mem_wr

wr_inh

T1 T2 T1

mem_data_out

T2 T1 T2 T1 T2 T1 T2 T1

SP-1 SP-2

PC+2 (low byte)PC+2 (high byte)

PC+2PC+1 0000

Ignored

Write Address

Write Data

inhibited

trap address Write Address

(CPU sees 0xC7)

32

Write Protect Trap & Fatal Error

The wr_inh signal should never be active for a stack write. This will lead to a fatal error
condition because the response to the trap is to push an address to the stack and jump to
address 0x0000, leading to an infinite loop of traps. The Y90-MPU activates the
fatal_detect signal in the case of a Write Protect trap during a stack write, updates the
System Status Block and generates the resetb signal. The timing of the fatal_detect signal
is shown in the diagram below.

It is assumed here that the reset will clear whatever condition lead to signalling wr_inh
during a stack write. If this is not the case an infinte loop of traps can still result.

clkc

mem_addr_out

mem_data_in

t1

mem_tran

mem_rd

mem_wr

wr_inh

T1 T2 T1

mem_data_out

T2 T1 T2 T1

PC+2PC+1 0000

Ignored

Stack Address

Write Data

inhibited

trap address Stack Address

(CPU sees 0xC7)

fatal_detect

resetb

00

T1 T2

0001

33

Non-maskable Interrupt

The timing of a non-maskable interrupt acknowledge transaction is shown below. The
nmi_req input cannot be masked by software. This input must be sampled active by a ris-
ing edge of clkc to be recognized by the processor, but does not need to remain active until
the interrupt acknowledge transaction. In fact, to prevent an endless loop of acknowl-
edges, the nmi_req input must be de-asserted before the start of the fetch of the first
instruction of the service routine. The acknowledge sequence consists of an aborted
instruction fetch, the interrupt acknowledge, and two writes to push the contents of the
program counter onto the stack. Execution then begins at the address provided on the
nmi_addr bus (shown as 0x0066 in the figure) with an instruction fetch. The non-
maskable interrupt service routine must end with the RETN instruction to properly restore
the state of the interrupt enable flag prior to the non-maskable interrupt.

clkc

mem_addr_out

mem_data_in

t1

mem_tran

mem_rd

mem_wr

nmiack_tran

mem_data_out

T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1

SP-1 SP-2

PC (low byte)PC (high byte)

PC-2 PC

T2 T1

0066

nmi_req

PC-1

Ignoredexecuteexecute

ivec_data_in

ivec_rd

Ignored

34

Interrupt Mode 0

The timing of a Mode 0 maskable interrupt acknowledge is shown below. The int_req
signal needs to remain active until the interrupt acknowledge transaction. The acknowl-
edge sequence consists of an aborted instruction fetch, the interrupt acknowledge, and two
writes to push the contents of the program counter onto the stack. Execution then begins at
the restart address specified by the RST instruction fetched during the interrupt acknowl-
edge with an instruction fetch.

The use of an RST instruction is enforced by the hardware, which only uses bits 5-3 of the
ivec_data_in bus to create one of the eight possible RST instructions.

clkc

mem_addr_out

mem_data_in

t1

mem_tran

mem_rd

mem_wr

iack_tran

mem_data_out

T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1

SP-1 SP-2

PC (low byte)PC (high byte)

PC-2 PC

T2 T1

RST

int_req

PC-1

Ignoredexecuteexecute

ivec_data_in

ivec_rd

RST n

35

Interrupt Mode 1

The timing of a Mode 1 interrupt acknowledge cycle is shown below. The int_req input
needs to remain active until the interrupt acknowledge transaction. The acknowledge
sequence consists of an aborted instruction fetch, the interrupt acknowledge, and two
writes to push the contents of the program counter onto the stack. Execution then begins at
address 0x0038 with an instruction fetch.

clkc

mem_addr_out

mem_data_in

t1

mem_tran

mem_rd

mem_wr

iack_tran

mem_data_out

T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1

SP-1 SP-2

PC (low byte)PC (high byte)

PC-2 PC

T2 T1

0038

int_req

PC-1

Ignoredexecuteexecute

ivec_data_in

ivec_rd

Ignored

36

Interrupt Mode 2

The timing of a Mode 2 maskable interrupt acknowledge is shown below. The int_req
input needs to remain active until the interrupt acknowledge transaction. The acknowledge
sequence consists of an aborted instruction fetch, the interrupt acknowledge, an address
calculation cycle, two reads of the interrupt vector table and two writes to push the con-
tents of the program counter onto the stack. The processor automatically jumps to the
address fetched from the interrupt vector table for the service routine. The upper eight bits
of the interrupt vector table starting address are held in the I register in the processor. Note
that the vector must be an even number. That is, the least significant bit of the vector must
be a zero.

clkc

mem_addr_out

mem_data_in

t1

mem_tran

mem_rd

mem_wr

iack_tran

mem_data_out

T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1

Vector TablePC-2 PC

T2 T1

Vector Table+1

int_req

PC-1

Ignoredexecuteexecute

ivec_data_in

ivec_rd

vector

T1 T2 T1

SP-1 SP-2

PC (low byte)PC (high byte)

T2 T1

start

T2

msblsb

37

The interrupt controller in the Y90 MPU necessarily samples the int_req_bus inputs, and
then goes into the edge-detect latch, which changes the timing slightly. The diagram
below illustrates this change for Interrupt Mode 2. Also shown is the timing of the
int_ack_bus and the int_prio_out signals.

Although Interrupt Mode 2 is the preferred mode for use with the interrupt controller, the
design allows the use of any interrupt mode. In Interrupt Mode 0 or 1 it will be necessary
to use the int_ack_bus signals to externally latch the information about which interrupt is
being acknowledged. This is because Interrupt Modes 0 and 1 will branch to a common
interrupt service routine, rather than the individual routines possible in Interrupt Mode 2.

clkc

mem_addr_out

mem_data_in

t1

mem_tran

mem_rd

mem_wr

iack_tran

mem_data_out

T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1

Vector TablePC-2 PC

T2 T1

Vector Table+1

int_req

PC-1

Ignoredexecuteexecute

ivec_data_in

ivec_rd

vector

T1 T2 T1

SP-1 SP-2

PC (low byte)PC (high byte)

T2 T1

start

T2

msblsb

int_req_bus

int_ack_bus

int_prio_out

38

DMA Request/Acknowledge

The timing of a DMA request and acknowledge is shown below. Note that like an inter-
rupt, the dma_req signal is only sampled at the end of instructions. This guarantees that
all instructions are atomic.

The delay from the dma_req signal to the dma_ack signal is always at least one bus
cycle, irrespective of whether the processor is running, in the Halt state or in the Sleep
state. This implies that it is more efficient to transfer multiple bytes each time that the
dma_req signal is activated.

The dma_req signal can be asserted during the Halt or Sleep states. In this case the active
dma_req signal will take precedence over int_req or nmi_req and inhibit either of these
signals from causing an exit from the Halt or Sleep state. Once the dma_req signal is
deasserted any pending or future interrupt request will cause the exit from the Halt or
Sleep state.

clkc

mem_addr_out

mem_data_in

t1

mem_tran

mem_rd

dma_req

dma_ack

mem_data_out

T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1

PC-2 PC

T2 T1

PC-1

Ignoredexecuteexecute

T1 T2 T1 T2 T1

PC+1

T2

execute

PC0x00000

0x00000

0x00000

0x00000io_data_out

io_addr_out

39

The DMA request controller in the Y90 MPU necessarily samples the dma_req_bus
inputs, which changes the timing slightly. The diagram below illustrates this change. Also
shown is the timing of the dma_ack_bus and the dma_prio_out signals. In particular,
note that the leading edge of the dma_ack_bus signals are delayed by one clock cycle
from the normal dma_ack timing. The timing of the trailing edge of these signals is not
affected.

clkc

mem_addr_out

mem_data_in

t1

mem_tran

mem_rd

dma_req

dma_ack

mem_data_out

T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1

PC-2 PC

T2 T1

PC-1

Ignoredexecuteexecute

T1 T2 T1 T2 T1

PC+1

T2

execute

dma_req_bus

dma_ack_bus

drq_prio_out

0x00000 PC

0x00000

0x00000

0x00000io_data_out

io_addr_out

40

Halt state

The Halt state is entered when the HALT instruction is executed, as shown below. In the
Halt state the processor freezes, for an unlimited number of two clock cycle machine
cycles, with the halt_tran output active. The only way to exit the Halt state is with either
an interrupt (either nmi_req or int_req) or via reset. Note that int_req can only be used to
exit the Halt mode if interrupts are enabled when the HALT instruction is executed. The
timing for exiting the Halt state with an interrupt is also shown below.

If the Halt state is exited by an interrupt, the processor will resume instruction execution
(after the interrupt service routine) at the address of the instruction following the HALT
instruction. The minimum width of the halt_tran signal is two clock cycles.

The Halt state in this design is slightly different from that in the Z80 or Z180 microproces-
sors. In those designs the processor continues to fetch the Halt instruction during the Halt
state, leading to continued power dissipation. Since this operation requires the special step
of “rewinding” the PC, no attempt was made to match this operation. Rather, the Halt state
and the Sleep state are essentially identical, reducing the power consumption to a mini-
mum by minimizing the number of signals that are transitioning during these states.

The Halt state differs from the Sleep state only for the case where interrupts are disabled.
In the Halt state, if interrupts are disabled only the nmi_req or a reset (from any of the
various sources) will cause an exit from this state. In the Sleep state if interrupts are dis-

clkc

mem_addr_out

mem_data_in

t1

mem_tran

mem_rd

iack_tran

halt_tran

mem_data_out

T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1

PC

T2 T1

int_req

PC+1

Ignored0x76

T1 T2 T1 T2 T1

SP-1

T2

0x0000

0x0000

0x0000

0x0000

io_addr_out

io_data_out

PC+1

41

abled a rising edge on the int_req will force an exit from the Sleep state, with execution
continuing with the instruction following the SLP instruction.

42

Sleep state

The Sleep state is entered when the SLP instruction is executed, as shown below. In the
Sleep state the processor freezes, for an unlimited number of two clock cycle machine
cycles, with the sleep_tran output active. The only way to exit the Sleep state is with
either an interrupt (either nmi_req or int_req) or via reset. The int_req signal can be used
to exit the Sleep mode irrespective of whether or not interrupts are enabled when the SLP
instruction is executed.

The timing for exiting the Sleep state with an enabled interrupt or non-maskable interrupt
is shown below. In this case the processor will resume instruction execution (after the
interrupt service routine) at the address of the instruction following the SLP instruction.

clkc

mem_addr_out

mem_data_in

t1

mem_tran

mem_rd

iack_tran

sleep_tran

mem_data_out

T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1

PC

T2 T1

int_req

PC+1

Ignored0x76

T1 T2 T1 T2 T1

SP-1

T2

0x0000

0x0000

0x0000

0x0000

io_addr_out

io_data_out

PC+1

43

In the case where the Sleep state exit is caused by a maskable interrupt while interrupts are
disabled the processor merely resumes execution at the address of the instruction follow-
ing the SLP instruction, without going through an interrupt service routine. Note that the
minimum width of the sleep_tran signal is two clock cycles.

clkc

mem_addr_out

mem_data_in

t1

mem_tran

mem_rd

iack_tran

sleep_tran

mem_data_out

T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1

PC

T2 T1

int_req

PC+1

0x76

T1 T2 T1T2

PC+20x0000

0x0000

PC+1

io_addr_out 0x0000

io_data_out 0x0000

44

Reset

The Reset state is entered immediately when the resetb signal goes Low, independent of
the current state, and this state continues until the first rising edge of clkc after the resetb
signal is de-asserted. At this rising edge there is a one clock cycle transient state to set up
the internal pipeline controls, and on the next clock the processor begins fetching the first
instruction from address 0x0000.

Software starting at location 0x0000 must be able to distinguish between reset, execution
of an RST 0 instruction, a trap, or watch-dog time-out. All of these cases cause the Pro-
gram Counter to be reset to 0x0000. In the case of the Y90 MPU this information is avail-
able in the System Status Block.

The minimum width of the resetb signal is set by the flip-flops used in the design. The
setup time for the resetb signal to the rising edge of the clkc signal is likewise determined
by the flip-flops used in the design.

The clearb signal has the same timing requirements as the resetb signal. The clearb sig-
nal should only be used in the power-on case, and only affects those flip-flops not affected
by the resetb signal.

clkc

Tany Tr

t1

T1

resetb

mem_addr_out 0000

Ts

mem_data_out 00

io_addr_out 0000

io_data_out 00

mem_tran

mem_rd

other outputs

45

In the case of the Y90 MPU the resetb signal is an output, generated from the reset_bus
input signals or internal error conditions. The reset_bus input signals are synchronized
and filtered to generate the resetb signal synchronous with the falling edge of the clkc sig-
nal.

A transition, of either polarity, on either reset_bus signal, will generate the resetb signal.
But this change-of-state on a reset_bus signal must persist for at least ten clock cycles for
the resetb signal to be generated. Any pulse shorter than ten clock cycles will not pass the
digital filter. The timing for the generation of the resetb signal is shown in the diagram
below.

clkc

reset_bus

sync output

reset_pls

resetb

filter 000 001 003 007 00F 01F 03F 07F 0FF 1FF 3FF 7FF FFF

46

47

Base Instruction Set

This chapter presents the assembly language syntax, addressing modes, flag settings,
binary encoding, and execution time for the base Y90 instruction set. The entire instruc-
tion set is presented in alphabetical order.

The assembly language syntax is identical to that used by the original Zilog assembler.
Different assembler programs may or may not use identical syntax. The syntax is pre-
sented generically at the beginning of each instruction, with the details presented for each
addressing mode later in each entry.

The operation of each instruction is specified in a format similar to Verilog HDL for min-
imum ambiguity, but no descriptive text or examples are included.

The effect of the instruction on each flag is listed, with a brief description. Normally the
flags are updated by the main operation of the instruction, but for some complex instruc-
tions different flags may be affected by different parts of the instruction. This is specified
in the description. The flags are organized as below in the F (Flag) register:

These flags have the following meanings:

S Z U5 H U3 P/V N C

Flag Meaning
S Sign (a copy of the MSB of the result).

Z Zero (indicating that the result was zero).

U5 Unused Bit 5 (an unused Flag register bit).

H Half-Carry (carry out of the lower nibble, used for BCD math).

U3 Unused Bit 3 (an unused Flag register bit).

P/V
Parity/Overflow (parity of the result, or arithmetic overflow; depends
on the instrcuction)

N Negative (add/subtract flag, necessary for BCD math)

C Carry (arithmetic carry, or shift linkage bit)

48

Fields in the instruction are listed using shortcuts for common fields. These shortcuts
should be self-explanatory in most cases, but will be detailed here for completeness.

The most common field in the instruction specifies a CPU register, employing the follow-
ing encoding:

Word registers are similarly encoded, although the exact encoding depends on the instruc-
tion:

The execution time for instructions is always a multiple of two clocks. Any number in
parentheses is the execution time when the prefetch is enabled, via the en_prftch signal
into the core. When enabled, the prefetch operation uses any address calculation time to
look at the first byte of the next instruction. If this instruction byte can be pre-decoded the
byte will be buffered for use when the current instruction finishes. This results in the exe-
cution time in parentheses. Only instructions that require more than one machine cycle to
execute can be pre-decoded.

rrr Register Selected
000 B

001 C

010 D

011 E

100 H

101 L

111 A (Accumulator)

dd, ss, tt, xx or yy dd, ss Register tt Register xx Register yy Register
00 BC BC BC BC

01 DE DE DE DE

10 HL HL IX IY

11 SP AF SP SP

49

ADC
Add With Carry

Notes:

1. The rrr field uses the standard register select encoding

2. y = 0 selects IX and y = 1 selects IY

ADC A, src src: R, IM, IR, X

Operation: A <= A + src + CF

Flags: S: Set if result is negative; cleared otherwise.

Z: Set if result is zero; cleared otherwise.

H: Set if arithmetic carry out of bit 3; cleared otherwise.

P/V: Set if arithmetic overflow; cleared otherwise.

N: Cleared.

C: Set if arithmetic carry out of bit 7; cleared otherwise.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: ADC A, r 10001rrr 2

IM: ADC A, n 11001110 4

----n---

IR: ADC A, (HL) 10001110 6 (4)

X: ADC A, (IX+d) or ADC A, (IY+d) 11y11101 10 (8)

10001110

----d---

50

ADC
Add With Carry (Word)

Notes:

1. The ss field uses the standard word register encoding.

ADC HL, src src: RR

Operation: HL <= HL + src + CF

Flags: S: Set if result is negative; cleared otherwise.

Z: Set if result is zero; cleared otherwise.

H: Set if arithmetic carry out of bit 11; cleared otherwise.

P/V: Set if arithmetic overflow; cleared otherwise.

N: Cleared.

C: Set if arithmetic carry out of bit 15; cleared otherwise.

Addressing
Modes

Assembly Syntax Encoding Clocks

RR: ADC HL, ss 11101101 4

01ss1010

51

ADD
Add

Notes:

1. The rrr field uses the standard register select encoding.

2. y = 0 selects IX and y = 1 selects IY

ADD A, src src: R, IM, IR, X

Operation: A <= A + src

Flags: S: Set if result is negative; cleared otherwise.

Z: Set if result is zero; cleared otherwise.

H: Set if arithmetic carry out of bit 3; cleared otherwise.

P/V: Set if arithmetic overflow; cleared otherwise.

N: Cleared.

C: Set if arithmetic carry out of bit 7; cleared otherwise.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: ADD A, r 10000rrr 2

IM: ADD A, n 11000110 4

----n---

IR: ADD A, (HL) 10000110 6 (4)

X: ADD A, (IX+d) or ADD A, (IY+d) 11y11101 10 (8)

10000110

----d---

52

ADD
Add (Word)

Notes:

1. The ss, xx and yy fields use the standard word register select encodings.

ADC dst, src dst: HL, IX, IY

src: RR

Operation: dst <= dst + src

Flags: S: Unaffected.

Z: Unaffected.

H: Set if arithmetic carry out of bit 11; cleared otherwise.

P/V: Unaffected.

N: Cleared.

C: Set if arithmetic carry out of bit 15; cleared otherwise.

Addressing
Modes

Assembly Syntax Encoding Clocks

RR: ADD HL, ss 00ss1001 2

ADC IX, xx 11011101 4

01xx1001

ADC IY, yy 11111101 4

01yy1001

53

AND
Logical AND

Notes:

1. The rrr field uses the standard register select encoding.

2. y = 0 selects IX and y = 1 selects IY

AND A, src src: R, IM, IR, X

Operation: A <= A & src

Flags: S: Set if result is negative; cleared otherwise.

Z: Set if result is zero; cleared otherwise.

H: Set.

P/V: Set if parity of result even; cleared otherwise.

N: Cleared.

C: Cleared.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: AND A, r 10100rrr 2

IM: AND A, n 11100110 4

----n---

IR: AND A, (HL) 10100110 6 (4)

X: AND A, (IX+d) or AND A, (IY+d) 11y11101 10 (8)

10100110

----d---

54

BIT
Bit Test

Notes:

1. The rrr field uses the standard register select encoding.

2. y = 0 selects IX and y = 1 selects IY.

3. The bbb field uses normal binary encoding.

4. For the original Z80, the S and C flags are undefined.

BIT b, src src: R, IR, X

Operation: Z <= ~src[b]

Flags: S: Unaffected.

Z: Set if tested bit is zero; cleared otherwise.

H: Set.

P/V: Unaffected.

N: Cleared.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: BIT b, r 11001011 4

01bbbrrr

IR: BIT b, (HL) 10100110 8 (6)

01bbb1110

X: BIT b, (IX+d) or BIT b, (IY+d) 11y11101 10

11001011

----d---

01bbb110

55

CALL
Call Subroutine

CALL dst dst: DA

Operation: SP <= SP - 2

(SP) <= PC

PC <= dst

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

DA: CALL mn 11001101 10

----n---

----m---

56

CALL
Conditional Call Subroutine

Notes:

CALL cc, dst dst: DA

Operation: if (cc = true) begin

 SP <= SP - 2

 (SP) <= PC

 PC <= dst

 end

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

DA: CALL cc, mn 11fff100 10/6

----n--- (taken/not taken)

----m---

1. Mnemonic Encoding (fff) Meaning Flag case

NZ 000 Non-zero Z = 0

Z 001 Zero Z = 1

NC 010 Non-carry C = 0

C 011 Carry C = 1

PO 100 Parity Odd P/V = 0

PE 101 Parity Even P/V = 1

P 110 Plus S = 0

M 111 Minus S = 1

57

CCF
Complement Carry Flag

Notes:

1. The default operation of the H flag for this instruction matches that of the original Z80 CPU. The original
Z180 CPU behaves differently, clearing the H flag for this instruction. To enable Z180 compatibility, use
the ‘define Z180_CCF option in the Verilog source code file version.v.

CCF

Operation: CF <= ~CF

Flags: S: Unaffected.

Z: Unaffected.

H: Copy of previous value of Carry flag.

P/V: Unaffected.

N: Cleared.

C: Set if previous Carry flag was zero; cleared otherwise.

Addressing
Modes

Assembly Syntax Encoding Clocks

IM: CCF 00111111 2

58

CP
Compare

Notes:

1. The rrr field uses the standard register select encoding

2. y = 0 selects IX and y = 1 selects IY

CP A, src src: R, IM, IR, X

Operation: A - src

Flags: S: Set if result is negative; cleared otherwise.

Z: Set if result is zero; cleared otherwise.

H: Set if arithmetic borrow out of bit 3; cleared otherwise.

P/V: Set if arithmetic overflow; cleared otherwise.

N: Set.

C: Set if arithmetic borrow out of bit 7; cleared otherwise.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: CP A, r 10111rrr 2

IM: CP A, n 11111110 4

----n---

IR: CP A, (HL) 10111110 6 (4)

X: CP A, (IX+d) or CP (IY+d) 11y11101 10 (8)

10111110

----d---

59

CPD
Compare and Decrement

CPD

Operation: A - (HL)

HL <= HL - 1

BC <= BC - 1

Flags: S: Set if result of compare is negative, cleared otherwise.

Z: Set if result of compare is zero; cleared otherwise.

H: Set if arithmetic borrow out of bit 3 during compare; cleared otherwise.

P/V: Set if result of BC decrement is non-zero; cleared otherwise.

N: Set.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

CPD 11101101 10 (8)

10101001

60

CPDR
Compare, Decrement and Repeat

Notes:

1. This instruction can be interrupted after each iteration. The address saved on the stack in this case is the
address of this instruction, allowing completion of the instruction after the interrupt service routine.

2. Interrupts are sampled during each memory read operation.

CPDR

Operation: A - (HL)

HL <= HL - 1

BC <= BC - 1

repeat if BC != 0 and A - (HL) != 0

Flags: S: Set if result of compare is negative, cleared otherwise.

Z: Set if result of compare is zero; cleared otherwise.

H: Set if arithmetic borrow out of bit 3 during compare; cleared otherwise.

P/V: Set if result of BC decrement is non-zero; cleared otherwise.

N: Set.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

CPDR 11101101 8 + 4i

10111001

61

CPI
Compare and Increment

CPI

Operation: A - (HL)

HL <= HL + 1

BC <= BC - 1

Flags: S: Set if result of compare is negative, cleared otherwise.

Z: Set if result of compare is zero; cleared otherwise.

H: Set if arithmetic borrow out of bit 3 during compare; cleared otherwise.

P/V: Set if result of decrementing BC is non-zero; cleared otherwise.

N: Set.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

CPI 11101101 10 (8)

10100001

62

CPIR
Compare, Increment and Repeat

Notes:

1. This instruction can be interrupted after each iteration. The address saved on the stack in this case is the
address of this instruction, allowing completion of the instruction after the interrupt service routine

2. Interrupts are sampled during each memory read operation.

CPIR

Operation: A - (HL)

HL <= HL + 1

BC <= BC - 1

repeat if BC != 0 and A - (HL) != 0

Flags: S: Set if result of compare is negative, cleared otherwise.

Z: Set if result of compare is zero; cleared otherwise.

H: Set if arithmetic borrow out of bit 3 during compare; cleared otherwise.

P/V: Set if result of decrementing BC is non-zero; cleared otherwise.

N: Set.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

CPIR 11101101 8 + 4i

10110001

63

CPL
Complement

CPL

Operation: A <= ~A

Flags: S: Unaffected.

Z: Unaffected.

H: Set.

P/V: Unaffected.

N: Set.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

CPL 00101111 2

64

DAA
Decimal Adjust Accumulator

Notes:

DAA

Operation: A <= Decimal Adjust A

Flags: S: Set if result is negative; cleared otherwise.

Z: Set if result is zero; cleared otherwise.

H: See table below.

P/V: Set if result has even parity; cleared otherwise.

N: Unaffected.

C: See table below.

Addressing
Modes

Assembly Syntax Encoding Clocks

DAA 00100111 2

Instruction
C before

DAA
A[7:4]

before DAA
H before

DAA
A[3:0]

before DAA
Number

added to A
C after
DAA

0 0-9 0 0-9 00 0

0 0-8 0 A-F 06 0

0 0-9 1 0-3 06 0

ADC, ADD or INC 0 A-F 0 0-9 60 1

0 9-F 0 A-F 66 1

0 A-F 1 0-3 66 1

1 0-2 0 0-9 60 1

1 0-2 0 A-F 66 1

1 0-3 1 0-3 66 1

0 0-9 0 0-9 00 0

DEC, NEG, SUB or SBC 0 0-8 1 6-F FA 0

1 7-F 0 0-9 A0 1

1 6-F 1 6-F 9A 1

65

DEC
Decrement

Notes:

1. The rrr field uses the standard register select encoding

2. y = 0 selects IX and y = 1 selects IY

DEC dst dst: R, IR, X

Operation: dst <= dst - 1

Flags: S: Set if result is negative; cleared otherwise.

Z: Set if result is zero; cleared otherwise.

H: Set if arithmetic borrow out of bit 3; cleared otherwise.

P/V: Set if arithmetic overflow; cleared otherwise.

N: Set.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: DEC r 00rrr101 2

IR: DEC (HL) 00110101 8 (6)

X: DEC (IX+d) or DEC (IY+d) 11y11101 12 (10)

00110101

----d---

66

DEC
Decrement (Word)

Notes:

1. The dd field uses the standard word register encoding.

DEC dst dst: RR, IX, IY

Operation: dst <= dst - 1

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

RR: DEC dd 00dd1011 2

IX, IY DEC IX or DEC IY 11y11101 4

00101011

67

DI
Disable Interrupt

Notes:

1. Interrupts are last sampled during the machine cycle that fetches this instruction.

DI

Operation: IFF1 <= 0

IFF2 <= 0

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

DI 11110011 2

68

DJNZ
Decrement, Jump if Non-zero

Notes:

1. Relative to the address of this instruction, the jump range is -126 to +129. Relative to the address of the
next instruction, the jump range is -128 to +127.

DJNZ e

Operation: B <= B - 1

if (B != 0) PC <= PC + e (where PC is the PC of this instruction)

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

DJNZ e 00010000 6

--(e-2)-

69

EI
Enable Interrupt

Notes:

1. Interrupts are first sampled during the fetch of the next instruction. If an interrupt is pending this instruc-
tion fetch will be ignored and an interrupt acknowledge cycle started.

EI

Operation: IFF1 <= 1

IFF2 <= 1

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

EI 11111011 2

70

EX
Exchange with Top-of-Stack

Notes:

1. y = 0 selects IX and y = 1 selects IY

EX (SP), src src: HL, IX, IY

Operation: (SP) <=> L or IXL or IYL

(SP+1) <=> H or IXH or IYH

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

EX (SP), HL 11100011 12 (10)

EX (SP), IX or EX (SP), IY 11y11101 14 (12)

11100011

71

EX AF, AF’
Exchange Accumulator

Notes:

1. No data is actually moved. Instead the registers are renamed.

EX AF, AF’

Operation: AF <=> AF’

Flags: S: Replaced by alternate flag.

Z: Replaced by alternate flag.

H: Replaced by alternate flag.

P/V: Replaced by alternate flag.

N: Replaced by alternate flag.

C: Replaced by alternate flag.

Addressing
Modes

Assembly Syntax Encoding Clocks

EX AF, AF’ 00001000 2

72

EX
Exchange (Word)

EX DE, HL

Operation: DE <=> HL

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

EX DE, HL 11101011 2

73

EXX
Exchange Register Bank

Notes:

1. No data is actually moved. Instead the registers are renamed.

EXX

Operation: BC <=> BC’

DE <=> DE’

HL <=> HL’

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

EXX 11011001 2

74

HALT
Halt

Notes:

1. The CPU halts with an idle bus until an interrupt is requested. The address pushed to the stack during the
interrupt acknowledge is the address of the next instruction. During Halt the mem_addr_out and
io_addr_out are driven with 0x0000, and the mem_data_out and io_data_out are driven with 0x00.

HALT

Operation: activate Halt signal and wait for interrupt

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

HALT 01110110 4 + 2n

75

IM
Interrupt Mode

Notes:

1. Interrupt Mode 0 expects an RST instruction on the ivec_bus during the interrupt acknowledge cycle.
Only an RST instruction is allowed.

2. Interrupt Mode 1 always jumps to location 0x0038 in response to a maskable interrupt request.

3. Interrupt Mode 2 uses the interrupt vector returned on the ivec_bus during an interrupt acknowledge
cycle, along with the contents of the I register, to access an interrupt vector table in memory. The address
stored at the selected location in the interrupt vector table is the starting addess of the interrupt service rou-
tine. Note that the least-significant bit of the interrupt vector must be zero to account for the two-byte entries
in the interrupt vector table.

IM i

Operation: Set Interrupt Mode i

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

IM 0 11101101 4

01000110

IM 1 11101101 4

01010110

IM 2 11101101 4

01011110

76

IN
Input

IN A, src src: DA

Operation: A <= I/O(A:n)

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

IN A, (n) 11011011 8 (6)

----n---

77

IN
Input

Notes:

1. The rrr field uses the standard register select encoding

IN r, (C) dst: R

Operation: r <= I/O(BC)

Flags: S: Set if the input data is negative; cleared otherwise.

Z: Set if the input data is zero; cleared otherwise.

H: Cleared.

P/V: Set if the parity of the input data is even; cleared otherwise.

N: Cleared.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

IN r, (C) 11101101 8 (6)

01rrr000

78

IN0
Input (page 0)

Notes:

1. The rrr field uses the standard register select encoding

2. This instruction is not present in the original Z80, but is a feature of the Z180.

IN0 r, (n) dst: R

Operation: r <= I/O(0:n)

Flags: S: Set if input byte is negative; cleared otherwise.

Z: Set if input byte is zero; cleared otherwise.

H: Cleared.

P/V: Set if parity of input byte is even; cleared otherwise.

N: Cleared.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

IN0 r, (n) 11101101 10 (8)

00rrr000

----n---

79

INC
Increment

Notes:

1. The rrr field uses the standard register select encoding

2. y = 0 selects IX and y = 1 selects IY

INC dst dst: R, IR, X

Operation: dst <= dst + 1

Flags: S: Set if result is negative; cleared otherwise.

Z: Set if result is zero; cleared otherwise.

H: Set if arithmetic carry out of bit 3; cleared otherwise.

P/V: Set if arithmetic overflow; cleared otherwise.

N: Cleared.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: INC r 00rrr100 2

IR: INC (HL) 00110100 8 (6)

X: INC (IX+d) or INC (IY+d) 11y11101 12 (10)

00110100

----d---

80

INC
Increment (Word)

Notes:

1. The dd field uses the standard word register encoding.

INC dst dst: RR, IX, IY

Operation: dst <= dst + 1

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

RR: INC ss 00dd0011 2

IX, IY INC IX or INC IY 11y11101 4

00100011

81

IND
Input and Decrement

Notes:

1. For the original Z80, the S, H and P/V flags are undefined.

IND

Operation: (HL) <= I/O(BC)

B <= B - 1

HL <= HL -1

Flags: S: Unaffected.

Z: Set if result of decrementing B is zero; cleared otherwise.

H: Unaffected.

P/V: Unaffected.

N: Set.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

IND 11101101 10 (8)

10101010

82

INDR
Input, Decrement and Repeat

Notes:

1. This instruction can be interrupted after each iteration. The address saved on the stack in this case is the
address of this instruction, allowing completion of the instruction after the interrupt service routine

2. Interrupts are sampled during each I/O read operation.

3. For the original Z80, the S, H and P/V flags are undefined.

INDR

Operation: (HL) <= I/O(BC)

B <= B - 1

HL <= HL -1

repeat if B != 0

Flags: S: Unaffected.

Z: Set if result of decrementing B is zero; cleared otherwise.

H: Unaffected.

P/V: Unaffected.

N: Set.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

INDR 11101101 8 + 4i

10111010

83

INI
Input and Increment

Notes:

1. For the original Z80, the S, H and P/V flags are undefined.

INI

Operation: (HL) <= I/O(BC)

B <= B - 1

HL <= HL + 1

Flags: S: Unaffected.

Z: Set if result of decrementing B is zero; cleared otherwise.

H: Unaffected.

P/V: Unaffected.

N: Set.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

INI 11101101 10 (8)

10100010

84

INIR
Input, Increment and Repeat

Notes:

1. This instruction can be interrupted after each iteration. The address saved on the stack in this case is the
address of this instruction, allowing completion of the instruction after the interrupt service routine

2. Interrupts are sampled during each I/O read operation.

3. For the original Z80, the S, H and P/V flags are undefined.

INIR

Operation: (HL) <= I/O(BC)

B <= B - 1

HL <= HL + 1

repeat if B != 0

Flags: S: Unaffected.

Z: Set if result of decrementing B is zero; cleared otherwise.

H: Unaffected.

P/V: Unaffected.

N: Set.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

INIR 11101101 8 + 6i

10110010

85

JP
Jump

Notes:

1. The indirect jumps use the contents of the register directly for the jump address.

JP dst dst: IM, IR

Operation: PC <= dst

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

IR: JP (HL) 11101001 4

JP (IX) or JP (IY) 11y11101 6

11101001

IM: JP mn 11000011 8

----n---

----m---

86

JP
Conditional Jump

Notes:

JP cc, mn

Operation: if (cc = true) PC <= mn

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

IM: JP cc, mn 11fff010 8 (taken)

----n--- 6 (not taken)

----m---

1. Mnemonic Encoding (fff) Meaning Flag case

NZ 000 Non-zero Z = 0

Z 001 Zero Z = 1

NC 010 Non-carry C = 0

C 011 Carry C = 1

PO 100 Parity Odd P/V = 0

PE 101 Parity Even P/V = 1

P 110 Plus S = 0

M 111 Minus S = 1

87

JR
Jump Relative

Notes:

1. Relative to the address of this instruction, the jump range is -126 to +129. Relative to the address of the
next instruction, the jump range is -128 to +127.

JR e

Operation: PC <= PC + e (where PC is the PC of this instruction)

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

JR e 00011000 6

--(e-2)-

88

JR
Conditional Jump Relative

Notes:

1. Relative to the address of this instruction, the jump range is -126 to +129. Relative to the address of the
next instruction, the jump range is -128 to +127.

JR cc, e

Operation: if (cc = true) PC <= PC + e (where PC is the PC of this instruction)

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

JR cc, e 001cc000 6 (taken)

--(e-2)- 4 (not taken)

1. Mnemonic Encoding (cc) Meaning Flag case

NZ 00 Non-zero Z = 0

Z 01 Zero Z = 1

NC 10 Non-carry C = 0

C 11 Carry C = 1

89

LD
Load Accumulator from Memory

LD A, src src: DA, IR

Operation: A <= src

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

DA: LD A, (mn) 00111010 10 (8)

----n---

----m---

IR: LD A, (BC) 00001010 6 (4)

LD A, (DE) 00011010 6 (4)

90

LD
Load Accumulator from Special Register

LD A, src src: special register

Operation: A <= src

Flags: S: Set if the contents of the Special Register is negative; cleared otherwise.

Z: Set if the contents of the Special Register is zero; cleared otherwise.

H: Cleared.

P/V: Loaded with the contents if the IFF2 interrupt enable flag.

N: Cleared.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

LD A, I 11101101 4

01010111

LD A, R 11101101 4

01011111

91

LD
Load Memory from Accumulator

LD dst, A dst: DA, IR

Operation: dst <= A

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

DA: LD (mn), A 00110010 10 (8)

----n---

----m---

IR: LD (BC), A 00000010 6 (4)

LD (DE), A 00010010 6 (4)

92

LD
Load Memory with Immediate

Notes:

1. y = 0 selects IX and y = 1 selects IY

LD dst, n dst: IR, X

Operation: dst <= n

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

IR: LD (HL), n 00110110 6

----n---

X: LD (IX+d), n or LD (IY+d), n 11y11101 10

00110110

----d---

----n---

93

LD
Load Memory from Register

Notes:

1. The rrr field uses the standard register select encoding

2. y = 0 selects IX and y = 1 selects IY

LD dst, r dst: IR, X

Operation: dst <= r

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

IR: LD (HL), r 01110rrr 6 (4)

X: LD (IX+d), r or LD (IY+d), r 11y11101 10 (8)

01110rrr

94

LD
Load Memory from Register (Word)

Notes:

1. The ss field uses the standard word register encoding.

LD (mn), src src: HL, RR, IX, IY

Operation: (mn) <= src

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

HL: LD (mn), HL 00100010 12 (10)

----n---

----m---

RR: LD (mn), ss 11101101 14 (12)

01ss0011

----n---

----m---

IX, IY: LD (mn), IX or LD (mn), IY 11y11101 14 (12)

00100010

----n---

----m---

95

LD
Load Register

Notes:

1. The rdr, rsr and rrr fields use the standard register select encoding

2. y = 0 selects IX and y = 1 selects IY

LD r, src dst: R, IM, IR, X

Operation: r <= src

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: LD rd, rs 01rdrrsr 2

IM LD r, n 00rrr110 4

----n---

IR: LD r, (HL) 01rrr110 6 (4)

X: LD r, (IX+d) or LD r, (IY+d) 11y11101 10 (8)

01rrr110

----d---

96

LD
Load Register Immediate (Word)

Notes:

1. The dd field uses the standard word register encoding.

2. y = 0 selects IX and y = 1 selects IY

LD dst, mn dst: RR, IX, IY

Operation: dst <= mn

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

IM: LD dd, mn 00dd0001 6

----n---

----m---

LD IX, mn or LD IY, mn 11y11101 8

00100001

----n---

----m---

97

LD
Load Register (Word)

Notes:

1. The dd field uses the standard word register encoding.

LD dst, (mn) dst: RR, IX, IY

Operation: dst <= (mn)

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

DA: LD HL, (mn) 00101010 12 (10)

----n---

----m---

LD dd, (mn) 11101101 14 (12)

01dd1011

----n---

----m---

LD IX, (mn) or LD IY, (mn) 11y11101 14 (12)

00101010

----n---

----m---

98

LD
Load Special Register from Accumulator

LD dst, A dst: special register

Operation: dst <= A

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

LD I, A 11101101 4

01000111

LD R, A 11101101 4

01001111

99

LD
Load Stack pointer

Notes:

2. y = 0 selects IX and y = 1 selects IY

LD SP, src src: HL, IX, IY

Operation: SP <=src

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

LD SP, HL 11111001 2

LD SP, IX or LD SP, IY 11y11101 4

11111001

100

LDD
Load and Decrement

LDD

Operation: (DE) <= (HL)

BC <= BC - 1

DE <= DE - 1

HL <= HL -1

Flags: S: Unaffected.

Z: Unaffected.

H: Cleared.

P/V: Set if result of decrementing BC is non-zero; cleared otherwise.

N: Cleared.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

LDD 11101101 10 (8)

10101000

101

LDDR
Load, Decrement and Repeat

Notes:

1. This instruction can be interrupted after each iteration. The address saved on the stack in this case is the
address of this instruction, allowing completion of the instruction after the interrupt service routine

2. Interrupts are sampled during each memory read operation.

LDDR

Operation: (DE) <= (HL)

BC <= BC - 1

DE <= DE - 1

HL <= HL -1

repeat if BC != 0

Flags: S: Unaffected.

Z: Unaffected

H: Cleared.

P/V: Set if result of decrementing BC is non-zero; cleared otherwise.

N: Cleared.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

LDDR 11101101 8 + 4i

10111010

102

LDI
Load and Increment

INI

Operation: (DE) <= (HL)

BC <= BC - 1

DE <= DE + 1

HL <= HL + 1

Flags: S: Unaffected.

Z: Unaffected.

H: Cleared.

P/V: Set if result of decrementing BC is non-zero; cleared otherwise.

N: Cleared.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

LDI 11101101 10 (8)

10100000

103

LDIR
Input, Increment and Repeat

Notes:

1. This instruction can be interrupted after each iteration. The address saved on the stack in this case is the
address of this instruction, allowing completion of the instruction after the interrupt service routine

2. Interrupts are sampled during each memory read operation.

LDIR

Operation: (DE) <= (HL)

BC <= BC - 1

DE <= DE + 1

HL <= HL + 1

repeat if BC != 0

Flags: S: Unaffected.

Z: Unaffected.

H: Cleared.

P/V: Set if result of decrementing BC is non-zero; cleared otherwise.

N: Cleared.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

LDIR 11101101 8 + 4i

10110000

104

MLT
Multiply

Notes:

1. The ss field uses the standard word register encoding.

2. This is an unsigned multiply.

3. A compile-time option exists to change the execution time to 4 clock cycles. This option should only be
selected if the technology supports fast carry chains, as it uses a parallel 8x8 multiplier.

4. This instruction is not present in the original Z80, but is a feature of the Z180.

MLT src src: R

Operation: src <= srch * srcl

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: MLT ss 11101101 14

01ss1100 (note 3)

105

NEG
Negate

NEG

Operation: A <= 0 - A

Flags: S: Set if result is negative; cleared otherwise.

Z: Set if result is zero; cleared otherwise.

H: Set if arithmetic borrow out of bit 3; cleared otherwise.

P/V: Set if arithmetic overflow (A was 0x80 before inst); cleared otherwise.

N: Cleared.

C: Set if arithmetic borrow out of bit 7 (A was not 0x00 before inst); cleared otherwise.

Addressing
Modes

Assembly Syntax Encoding Clocks

NEG 11101101 4

00100100

106

NOP
No Operation

NOP

Operation: none

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

NOP 00000000 2

107

OR
Logical OR

Notes:

1. The rrr field uses the standard register select encoding

2. y = 0 selects IX and y = 1 selects IY

OR A, src src: R, IM, IR, X

Operation: A <= A | src

Flags: S: Set if result is negative; cleared otherwise.

Z: Set if result is zero; cleared otherwise.

H: Cleared.

P/V: Set if parity of result is even; cleared otherwise.

N: Cleared.

C: Cleared.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: OR A, r 10110rrr 2

IM: OR A, n 11110110 4

----n---

IR: OR A, (HL) 10110110 6 (4)

X: OR A, (IX+d) or OR A, (IY+d) 11y11101 10 (8)

10110110

----d---

108

OTDM
Output and Decrement Multiple

Notes:

1. This instruction is not present in the original Z80, but is a feature of the Z180.

OTDM

Operation: I/O(0,C) <= (HL)

B <= B - 1

C <= C - 1

HL <= HL -1

Flags: S: Set if the result of decrementing B is negative; cleared otherwise.

Z: Set if result of decrementing B is zero; cleared otherwise.

H: Set if there is a borrow out of bit 3 while decrementing B; cleared otherwise.

P/V: Set if the parity of the result of decrementing B is even; cleared otherwise.

N: Set if the byte transferred is negative; cleared otherwise.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

OTDM 11101101 10 (8)

10001011

109

OTDMR
Output, Decrement Multiple and Repeat

Notes:

1. This instruction can be interrupted after each iteration. The address saved on the stack in this case is the
address of this instruction, allowing completion of the instruction after the interrupt service routine

2. Interrupts are sampled during each memory read operation.

OTDMR

Operation: I/O(BC) <= (HL)

B <= B - 1

C <= C - 1

HL <= HL -1

repeat if B != 0

Flags: S: Set if the result of decrementing B is negative; cleared otherwise.

Z: Set if result of decrementing B is zero; cleared otherwise.

H: Set if there is a borrow out of bit 3 while decrementing B; cleared otherwise.

P/V: Set if the parity of the result of decrementing B is even; cleared otherwise.

N: Set if the byte transferred is negative; cleared otherwise.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

OTDMR 11101101 8 + 4i

10011011

110

OTDR
Output, Decrement and Repeat

Notes:

1. This instruction can be interrupted after each iteration. The address saved on the stack in this case is the
address of this instruction, allowing completion of the instruction after the interrupt service routine

2. Interrupts are sampled during each memory read operation.

3. For the original Z80, the S, H and P/V flags are undefined.

OTDR

Operation: I/O(BC) <= (HL)

B <= B - 1

HL <= HL -1

repeat if B != 0

Flags: S: Unaffected.

Z: Set if result of decrementing B is zero; cleared otherwise.

H: Unaffected.

P/V: Unaffected.

N: Set.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

OTDR 11101101 8 + 4i

10111011

111

OTIM
Output and Increment Multiple

Notes:

1. This instruction is not present in the original Z80, but is a feature of the Z180.

OTIM

Operation: I/O(BC) <= (HL)

B <= B - 1

C <= C + 1

HL <= HL + 1

Flags: S: Set if the result of decrementing B is negative; cleared otherwise.

Z: Set if result of decrementing B is zero; cleared otherwise.

H: Set if there is a borrow out of bit 3 while decrementing B; cleared otherwise.

P/V: Set if the parity of the result of decrementing B is even; cleared otherwise.

N: Set if the byte transferred is negative; cleared otherwise.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

OTIM 11101101 10 (8)

10000011

112

OTIMR
Output, Increment Multiple and Repeat

Notes:

1. This instruction can be interrupted after each iteration. The address saved on the stack in this case is the
address of this instruction, allowing completion of the instruction after the interrupt service routine

2. Interrupts are sampled during each memory read operation.

3. This instruction is not present in the original Z80, but is a feature of the Z180.

OTIMR

Operation: I/O(BC) <= (HL)

B <= B - 1

C <= C + 1

HL <= HL + 1

repeat if B != 0

Flags: S: Set if the result of decrementing B is negative; cleared otherwise.

Z: Set if result of decrementing B is zero; cleared otherwise.

H: Set if there is a borrow out of bit 3 while decrementing B; cleared otherwise.

P/V: Set if the parity of the result of decrementing B is even; cleared otherwise.

N: Set if the byte transferred is negative; cleared otherwise.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

OTIMR 11101101 8 + 4i

10010011

113

OTIR
Output, Increment and Repeat

Notes:

1. This instruction can be interrupted after each iteration. The address saved on the stack in this case is the
address of this instruction, allowing completion of the instruction after the interrupt service routine

2. Interrupts are sampled during each memory read operation.

3. For the original Z80, the S, H and P/V flags are undefined.

OTIR

Operation: I/O(BC) <= (HL)

B <= B - 1

HL <= HL + 1

repeat if B != 0

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Set if result of decrementing B is zero; cleared otherwise.

N: Cleared.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

OTIR 11101101 8 + 4i

10110011

114

OUT
Output

OUT dst, A dst: DA

Operation: I/O(A:n) <= A

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

OUT (n), A 11010011 8 (6)

----n---

115

OUT
Output

Notes:

1. The rrr field uses the standard register select encoding

OUT (C), r src: R

Operation: I/O(BC) <= r

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

OUT (C), r 11101101 8 (6)

01rrr001

116

OUT0
Output (page 0)

Notes:

1. The rrr field uses the standard register select encoding

2. This instruction is not present in the original Z80, but is a feature of the Z180.

OUT0 (n), r src: R

Operation: I/O(0,n) <= r

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

OUT0 (n), r 11101101 10 (8)

00rrr001

----n---

117

OUTD
Output and Decrement

Notes:

1. For the original Z80, the S, H and P/V flags are undefined.

OUTD

Operation: I/O(BC) <= (HL)

B <= B - 1

HL <= HL -1

Flags: S: Unaffected.

Z: Set if result of decrementing B is zero; cleared otherwise.

H: Unaffected.

P/V: Unaffected.

N: Set.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

OUTD 11101101 10 (8)

10101011

118

OUTI
Output and Increment

Notes:

1. For the original Z80, the S, H and P/V flags are undefined.

OUTI

Operation: I/O(BC) <= (HL)

B <= B - 1

HL <= HL + 1

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Set if result of decrementing B is zero; cleared otherwise.

N: Cleared.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

OUTI 11101101 10 (8)

10100011

119

POP
Pop from Stack

Notes:

1. The tt field uses the standard word register encoding.

2. y = 0 selects IX and y = 1 selects IY

POP dst dst: RR, IX, IY

Operation: dst[lsb] <= (SP)

dst[msb] <= (SP+1)

SP <= SP + 2

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

RR: POP tt 11tt0001 8 (6)

IX, IY POP IX or POP IY 11y11101 10 (8)

11100001

120

PUSH
Push to Stack

Notes:

1. The tt field uses the standard word register encoding.

2. y = 0 selects IX and y = 1 selects IY

PUSH src src: RR, IX, IY

Operation: (SP-1) <= src[msb]

(SP-2) <= src[lsb]

SP <= SP - 2

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

RR: PUSH tt 11tt0101 8 (6)

IX, IY PUSH IX or PUSH IY 11y11101 10 (8)

11100101

121

RES
Bit Reset

Notes:

1. The rrr field uses the standard register select encoding.

2. y = 0 selects IX and y = 1 selects IY.

3. The bbb field uses normal binary encoding.

RES b, dst src: R, IR, X

Operation: dst[b] <= 0

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: RES b, r 11001011 4

10bbbrrr

IR: RES b, (HL) 10100110 10 (8)

10bbb1110

X: RES b, (IX+d) or RES (IY+d) 11y11101 12 (10)

11001011

----d---

10bbb110

122

RET
Return from Subroutine

RET

Operation: PC[lsb] <= (SP)

PC[msb] <= (SP+1)

SP <= SP + 2

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

RET 11001001 10

123

RET
Conditional Return from Subroutine

Notes:

RET cc

Operation: if (cc = true) begin

 PC[lsb] <= (SP)

 PC[msb] <= (SP+1)

 SP <= SP + 2

 end

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

RET cc 11fff000 10 (taken)

2 (not taken)

1. Mnemonic Encoding (fff) Meaning Flag case

NZ 000 Non-zero Z = 0

Z 001 Zero Z = 1

NC 010 Non-carry C = 0

C 011 Carry C = 1

PO 100 Parity Odd P/V = 0

PE 101 Parity Even P/V = 1

P 110 Plus S = 0

M 111 Minus S = 1

124

RETI
Return from Interrupt

Notes:

1. This instruction activates the dedicated RETI signal out of the core.

RETI

Operation: PC[lsb] <= (SP)

PC[msb] <= (SP+1)

SP <= SP + 2

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

RETI 11101101 12

01001101

125

RETN
Return from Non-Maskable Interrupt

RETN

Operation: PC[lsb] <= (SP)

PC[msb] <= (SP+1)

SP <= SP + 2

IFF2 <= IFF1

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

RETN 11001001 12

01000101

126

RL
Rotate Left

Notes:

1. The rrr field uses the standard register select encoding.

2. y = 0 selects IX and y = 1 selects IY.

RL src src: R, IR, X

Operation: {CF, src} <= {src, CF}

Flags: S: Set if result is negative; cleared otherwise.

Z: Set if result is zero; cleared otherwise.

H: Cleared.

P/V: Set if parity of result is even; cleared otherwise.

N: Cleared.

C: Data from bit 7.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: RL r 11001011 4

00010rrr

IR: RL (HL) 10100110 10 (8)

00010110

X: RL (IX+d) or RL (IY+d) 11y11101 12 (10)

11001011

----d---

00010110

127

RLA
Rotate Left Accumulator

RLA

Operation: {CF, A} <= {A, CF}

Flags: S: Unaffected

Z: Unaffected.

H: Cleared.

P/V: Unaffected.

N: Cleared.

C: Data from bit 7.

Addressing
Modes

Assembly Syntax Encoding Clocks

RLA 00010111 2

128

RLC
Rotate Left Circular

Notes:

1. The rrr field uses the standard register select encoding.

2. y = 0 selects IX and y = 1 selects IY.

RLC src src: R, IR, X

Operation: {CF, src} <= {src, src[7]}

Flags: S: Set if result is negative; cleared otherwise.

Z: Set if result is zero; cleared otherwise.

H: Cleared.

P/V: Set if parity of result is even; cleared otherwise.

N: Cleared.

C: Data from bit 7.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: RLC r 11001011 4

00000rrr

IR: RLC (HL) 10100110 10 (8)

00000110

X: RLC (IX+d) or RLC (IY+d) 11y11101 12 (10)

11001011

----d---

00000110

129

RLCA
Rotate Left Circular Accumulator

RLCA

Operation: {CF, A} <= {A, A[7]}

Flags: S: Unaffected

Z: Unaffected.

H: Cleared.

P/V: Unaffected.

N: Cleared.

C: Data from bit 7.

Addressing
Modes

Assembly Syntax Encoding Clocks

RLCA 00000111 2

130

RLD
Rotate Left Digit

RLD

Operation: {A, (HL)} <= {A[7:4], (HL), A[3:0]}

Flags: S: Set if A is negative after the operation; cleared otherwise.

Z: Set if A is zero after the operation; cleared otherwise.

H: Cleared.

P/V: Set if parity of A is even after the operation; cleared otherwise.

N: Cleared.

C: Unaffected

Addressing
Modes

Assembly Syntax Encoding Clocks

RLD 11101101 10 (8)

01101111

131

RR
Rotate Right

Notes:

1. The rrr field uses the standard register select encoding.

2. y = 0 selects IX and y = 1 selects IY.

RR src src: R, IR, X

Operation: {src, CF} <= {CF, src}

Flags: S: Set if result is negative; cleared otherwise.

Z: Set if result is zero; cleared otherwise.

H: Cleared.

P/V: Set if parity of result is even; cleared otherwise.

N: Cleared.

C: Data from bit 0.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: RR r 11001011 4

00011rrr

IR: RR (HL) 10100110 10 (8)

00011110

X: RR (IX+d) or RR (IY+d) 11y11101 12 (10)

11001011

----d---

00011110

132

RRA
Rotate Right Accumulator

RRA

Operation: {A, CF} <= {CF, A}

Flags: S: Unaffected

Z: Unaffected.

H: Cleared.

P/V: Unaffected.

N: Cleared.

C: Data from bit 0.

Addressing
Modes

Assembly Syntax Encoding Clocks

RRA 00011111 2

133

RRC
Rotate Right Circular

Notes:

1. The rrr field uses the standard register select encoding.

2. y = 0 selects IX and y = 1 selects IY.

RRC src src: R, IR, X

Operation: {src, CF} <= {src[0], src}

Flags: S: Set if result is negative; cleared otherwise.

Z: Set if result is zero; cleared otherwise.

H: Cleared.

P/V: Set if parity of result is even; cleared otherwise.

N: Cleared.

C: Data from bit 0.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: RRC r 11001011 4

00001rrr

IR: RRC (HL) 10100110 10 (8)

00001110

X: RRC (IX+d) or RRC (IY+d) 11y11101 12 (10)

11001011

----d---

00001110

134

RRCA
Rotate Right Circular Accumulator

RRCA

Operation: {A, CF} <= {A[0], A}

Flags: S: Unaffected

Z: Unaffected.

H: Cleared.

P/V: Unaffected.

N: Cleared.

C: Data from bit 0.

Addressing
Modes

Assembly Syntax Encoding Clocks

RRCA 00001111 2

135

RRD
Rotate Right Digit

RRD

Operation: {A, (HL)} <= {A[7:4], (HL)[3:0], A[3:0], (HL)[7:4]}

Flags: S: Set if A is negative after the operation; cleared otherwise.

Z: Set if A is zero after the operation; cleared otherwise.

H: Cleared.

P/V: Set if parity of A is even after the operation; cleared otherwise.

N: Cleared.

C: Unaffected

Addressing
Modes

Assembly Syntax Encoding Clocks

RRD 11101101 10 (8)

01100111

136

RST
Restart

Notes:

RST v

Operation: SP <= SP - 2

 (SP) <= PC

 PC <= v

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

RST v 11vvv111 8

1. Mnemonic Encoding (vvv) Restart Address

0 000 0x0000

0x8 001 0x0008

0x10 010 0x0010

0x18 011 0x0018

0x20 100 0x0020

0x28 101 0x0028

0x30 110 0x0030

0x38 111 0x0038

137

SBC
Subtract With Carry

Notes:

1. The rrr field uses the standard register select encoding

2. y = 0 selects IX and y = 1 selects IY

SBC A, src src: R, IM, IR, X

Operation: A <= A - src - CF

Flags: S: Set if result is negative; cleared otherwise.

Z: Set if result is zero; cleared otherwise.

H: Set if arithmetic borrow out of bit 3; cleared otherwise.

P/V: Set if arithmetic overflow; cleared otherwise.

N: Cleared.

C: Set if arithmetic borrow out of bit 7; cleared otherwise.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: SBC A, r 10011rrr 2

IM: SBC A, n 11011110 4

----n---

IR: SBC A, (HL) 10011110 6 (4)

X: SBC A, (IX+d) or SBC A, (IY+d) 11y11101 10 (8)

10011110

----d---

138

SBC
Subtract With Carry (Word)

Notes:

1. The ss field uses the standard word register encoding.

SBC HL, src src: RR

Operation: HL <= HL - src - CF

Flags: S: Set if result is negative; cleared otherwise.

Z: Set if result is zero; cleared otherwise.

H: Set if arithmetic borrow out of bit 11; cleared otherwise.

P/V: Set if arithmetic overflow; cleared otherwise.

N: Cleared.

C: Set if arithmetic carry out of bit 15; cleared otherwise.

Addressing
Modes

Assembly Syntax Encoding Clocks

RR: SBC HL, ss 11101101 4

01ss0010

139

SCF
Set Carry Flag

CCF

Operation: CF <= 1

Flags: S: Unaffected.

Z: Unaffected.

H: Cleared.

P/V: Unaffected.

N: Cleared.

C: Set.

Addressing
Modes

Assembly Syntax Encoding Clocks

SCF 00110111 2

140

SET
Bit Set

Notes:

1. The rrr field uses the standard register select encoding.

2. y = 0 selects IX and y = 1 selects IY.

3. The bbb field uses normal binary encoding.

SET b, dst src: R, IR, X

Operation: dst[b] <= 1

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: SET b, r 11001011 4

11bbbrrr

IR: SET b, (HL) 10100110 10 (8)

11bbb1110

X: SET b, (IX+d) or SET b, (IY+d) 11y11101 12 (10)

11001011

----d---

11bbb110

141

SLA
Shift Left Arithmetic

Notes:

1. The rrr field uses the standard register select encoding.

2. y = 0 selects IX and y = 1 selects IY.

SLA src src: R, IR, X

Operation: {CF, src} <= {src, 0}

Flags: S: Set if result is negative; cleared otherwise.

Z: Set if result is zero; cleared otherwise.

H: Cleared.

P/V: Set if parity of result is even; cleared otherwise.

N: Cleared.

C: Data from bit 7.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: SLA r 11001011 4

00100rrr

IR: SLA (HL) 10100110 10 (8)

00100110

X: SLA (IX+d) or SLA (IY+d) 11y11101 12 (10)

11001011

----d---

00100110

142

SLP
Sleep

Notes:

1. The CPU halts, with an idle bus, until an interrupt is requested. During Sleep the mem_addr_out and
io_addr_out are driven with 0x0000, and the mem_data_out and io_data_out are driven with 0x00.

2. In the case of an NMI or enabled maskable interrupt the address pushed to the stack during the interrupt
acknowledge is the address of the next instruction.

3. If interrupts are disabled a maskable interrupt request during Sleep causes the CPU to resume execution
with the next instruction. This saves time when restarting from Sleep.

4. This instruction is not present in the original Z80, but is a feature of the Z180.

SLP

Operation: activate SLEEP signal and wait for interrupt

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

SLP 11101101 6 + 2n

01110110

143

SRA
Shift Right Arithmetic

Notes:

1. The rrr field uses the standard register select encoding.

2. y = 0 selects IX and y = 1 selects IY.

SRA src src: R, IR, X

Operation: {src, CF} <= {src[7], src}

Flags: S: Set if result is negative; cleared otherwise.

Z: Set if result is zero; cleared otherwise.

H: Cleared.

P/V: Set if parity of result is even; cleared otherwise.

N: Cleared.

C: Data from bit 0.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: SRA r 11001011 4

00101rrr

IR: SRA (HL) 10100110 10 (8)

00101110

X: SRA (IX+d) or SRA (IY+d) 11y11101 12 (10)

11001011

----d---

00101110

144

SRL
Shift Right Logical

Notes:

1. The rrr field uses the standard register select encoding.

2. y = 0 selects IX and y = 1 selects IY.

SRL src src: R, IR, X

Operation: {src, CF} <= {0, src}

Flags: S: Set if result is negative; cleared otherwise.

Z: Set if result is zero; cleared otherwise.

H: Cleared.

P/V: Set if parity of result is even; cleared otherwise.

N: Cleared.

C: Data from bit 0.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: SRL r 11001011 4

00111rrr

IR: SRL (HL) 10100110 10 (8)

00111110

X: SRL (IX+d) or SRL (IY+d) 11y11101 12 (10)

11001011

----d---

00111110

145

SUB
Subtract

Notes:

1. The rrr field uses the standard register select encoding

2. y = 0 selects IX and y = 1 selects IY

SUB A, src src: R, IM, IR, X

Operation: A <= A - src

Flags: S: Set if result is negative; cleared otherwise.

Z: Set if result is zero; cleared otherwise.

H: Set if arithmetic borrow out of bit 3; cleared otherwise.

P/V: Set if arithmetic overflow; cleared otherwise.

N: Cleared.

C: Set if arithmetic borrow out of bit 7; cleared otherwise.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: SUB A, r 10010rrr 2

IM: SUB A, n 11010110 4

----n---

IR: SUB A, (HL) 10010110 6 (4)

X: SUB A, (IX+d) or SUB A, (IY+d) 11y11101 10 (8)

10010110

----d---

146

TST
Test

Notes:

1. The rrr field uses the standard register select encoding

2. This instruction is not present in the original Z80, but is a feature of the Z180.

TST src src: R, IM, IR

Operation: A & src

Flags: S: Set if result is negative; cleared otherwise.

Z: Set if result is zero; cleared otherwise.

H: Set.

P/V: Set if parity of result is even; cleared otherwise.

N: Cleared.

C: Cleared.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: TST r 11101101 4

00rrr100

IM: TST n 11101101 6

01100100

----n---

IR: TST (HL) 11101101 8 (6)

00110100

147

TSTIO
Test I/O

Notes:

1. This instruction is not present in the original Z80, but is a feature of the Z180.

TSTIO n

Operation: I/O(0,C) & n

Flags: S: Set if result is negative; cleared otherwise.

Z: Set if result is zero; cleared otherwise.

H: Set.

P/V: Set if parity of result is even; cleared otherwise.

N: Cleared.

C: Cleared.

Addressing
Modes

Assembly Syntax Encoding Clocks

TSTIO n 11101101 10

01110100

----n---

148

XOR
Logical Exclusive-OR

Notes:

1. The rrr field uses the standard register select encoding

2. y = 0 selects IX and y = 1 selects IY

XOR A, src src: R, IM, IR, X

Operation: A <= A ^ src

Flags: S: Set if result is negative; cleared otherwise.

Z: Set if result is zero; cleared otherwise.

H: Cleared.

P/V: Set if parity of result is even; cleared otherwise.

N: Cleared.

C: Cleared.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: XOR A, r 10101rrr 2

IM: XOR A, n 11101110 4

----n---

IR: XOR A, (HL) 10101110 6 (4)

X: XOR A, (IX+d) or XOR A, (IY+d) 11y11101 10 (8)

10101110

----d---

149

Memory Management

The Y90 MPU includes a tightly integrated Memory Management Unit (MMU). This
MMU expands the 64K byte logical address space of the processor to a physical address
space of up to 256M bytes. The logical address space (the address visible to the program-
mer) is divided into sixteen pages of 4K bytes each, using the four most-significant bits of
the logical address as the page identifier. The page identifier is used to access a sixteen-
entry by sixteen-bit dedicated memory, with the sixteen data bits serving as the upper
physical address bits. This translation, from logical address to physical address, occurs
automatically for every memory access. I/O addresses are not translated by the MMU.

The MMU registers are initialized by reset to values that correspond to “no translation”.
That is, the MMU register used for logical address page 0xN is intiialized to 0x000N.
Thus, if the MMU is never loaded with different values the logical address and physical
address are effectively identical.

Although the MMU handles 28-bit physical addresses, it is anticipated that in most cases a
20-bit pysical address will be sufficient. To account for this fact the MMU registers are
divided, with the upper eight bits loaded separately from the lower eight bits. This cuts the
time necessary to reprogram the MMU in half when a 1M byte physical address space is
sufficient. Of course the full MMU register width is still accessable; it just takes longer to
swap the MMU context in this case.

The entire set of MMU registers is buffered. This means that the MMU continues to oper-
ate, with the same context, while the next MMU context is being loaded. It also means that
if the next MMU context is preloaded the actual context swap can be very fast.

Rather than using I/O locations to control the MMU registers, the MMU is accessed using
dedicated instructions. This removes the possibility of DMA inadvertently reprogramming
the MMU. It also makes reprogramming the MMU significantly faster, cutting in half the
number of required bus transactions. Dedicated instructions also require less setup and
CPU register resources than I/O instructions.

A total of six instructions are used by the MMU. One instruction swaps the MMU regis-
ters with the buffer registers. One instruction does a block load of the upper eight bits of
the buffer registers, while another does a block load of the lower eight bits of the buffer
registers. A separate instruction does a block load of the lower eight bits of the buffer reg-

150

isters followed by a context swap. There are also two instructions that read the values in
the two sections of the buffer registers.

All of these block instructions are atomic, meaning that they cannot be interrupted by
either an interrupt or a DMA transfer. In addition, these instructions do not sample inter-
rupts upon completion, making it possible to load the entire MMU without interruption or
load the MMU and Jump without worring about an intervening interrupt or DMA request.

The following pages detail the MMU instructions.

151

LDM
Load Multiple

Notes:

1. This instruction does not sample interrupts. The following instruction is guaranteed to be executed.

LDM (HL),src src: MMU, MMUH

Operation: count <= 0

loop: (HL) <= MMUbuffer[count]

 HL <= HL + 1

 count <= count + 1

 repeat loop if count != 16

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

LDM (HL),MMU 11101101 40

10000010

LDM (HL),MMUH 11101101 40

10010010

152

LDM
Load Multiple

Notes:

1. This instruction does not sample interrupts. The following instruction is guaranteed to be executed.

LDM dst, (HL) dst: MMU, MMUH

Operation: count <= 0

loop: MMUbuffer[count] <= (HL)

 HL <= HL + 1

 count <= count + 1

 repeat loop if count != 16

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

LDM MMU,(HL) 11101101 42

10000000

LDM MMUH,(HL) 11101101 42

10010000

153

LDMS
Load Multiple and Swap

Notes:

1. This instruction does not sample interrupts. The following instruction is guaranteed to be executed.

LDMS dst, (HL) dst: MMU

Operation: count <= 0

loop: MMUbuffer[count] <= (HL)

 HL <= HL + 1

 count <= count + 1

 repeat loop if count != 16

MMU <=> MMUbuffer

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

LDMS MMU,(HL) 11101101 42

10001000

154

SWAP
Swap MMU context

Notes:

1. This instruction does not sample interrupts. The following instruction is guaranteed to be executed.

SWAP

Operation: MMU <=> MMUbuffer

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

SWAP 11101101 8

01111111

155

As mentioned previously, not all of the MMU register data has to be used as memory
addresses, or at all. For example, one bit of the upper byte of MMU data can be used as a
Write-Protect bit by connecting the corresponding mem_addr_out bit directly to the
wr_inh input. This will inhibit the mem_wr signal for any write transaction in the corre-
sponding memory page and generate a Trap.

Another bit of the upper byte of MMU data can be used as an Execute Protect bit by con-
necting the corresponding mem_addr_out bit directly to the exec_inh input. This will
cause any Instruction Fetch transaction in the corresponding memory page to generate a
Trap.

Systems that use a boot ROM overlayed with RAM can used two bits of the upper byte of
MMU data to control the routing of the mem_rd and mem_wr signals to the two memo-
ries using external gating controlled by the corresponding mem_addr_out bits. Since the
upper byte of MMU data is initialized to 0x00, a Low on one bit should enable the
mem_rd to be routed to the boot ROM rather than the overlay RAM. The other bit does
the same thing for the mem_wr signal. Then the overlay RAM can be enabled for writes
and the boot ROM copied using a block move instruction. Once the overlay RAM is
loaded the MMU data can be modified to enable the mem_rd signal to be routed to the
overlay RAM, effectively disabling the boot ROM. A reset will automatically revert to the
boot ROM, but it can also be restored via software by reporgramming the upper bytes of
the MMU.

Both the MMU buffer and the active MMU registers are initialized for no translation. This
allows upper bytes of the MMU data to be initialized to fixed values in cases where they
are not used for addresses. Simply load the upper bytes of the buffer, swap the context,
and the reload the upper bytes of the buffer with the same data. Then if only the lower
bytes of the MMU registers are used no further action is ever necessary.

The table below shows a memory structure of MMU data when using only 20-bit memory
addressing:

Address Data

(HL+0xF) page F mem_addr_out[19:12]

(HL+0xE) page E mem_addr_out[19:12]

. .

. .

. .

(HL+1) page 1 mem_addr_out[19:12]

(HL) page 0 mem_addr_out[19:12]

156

The table below shows a memory structure of MMU data when using full 28-bit memory
addressing, assuming that the MMU is to be loaded by a LDM MMUH,(HL) followed by
a LDM MMU,(HL):

Caution must be exercised if mapping Page 0. This is due to the fact that, although they
both jump to logical address 0x0000, a reset and a trap affect the MMU contents differ-
ently. Reset always initializes the MMU registers for no translation, so Page 0 will be
fetched from physical address 0x000000. But a trap does not affect the MMU contents,
meaning that Page 0 (and all other pages) will still be mapped.

Address Data

(HL+0x1F) page F mem_addr_out[19:12]

(HL+0x1E) page E mem_addr_out[19:12]

. .

. .

. .

(HL+0x11) page 1 mem_addr_out[19:12]

(HL+0x10) page 0 mem_addr_out[19:12]

(HL+0xF) page F mem_addr_out[27:20]

(HL+0xE) page E mem_addr_out[27:20]

. .

. .

. .

(HL+0x1) page 1 mem_addr_out[27:20]

(HL) page 0 mem_addr_out[27:20]

157

Interrupt Control

The Y90 MPU includes an interrupt controller that is optimized for use with Interrupt
Mode 2. The interrupt controller supports sixteen interrupt inputs and can easily be cas-
caded to a total of up to 128 interrupt inputs. The controller automatically prioritizes the
interrupt requests and returns the vector for the highest-priority pending interrupt during
the interrupt acknowledge cycle.

The controller contains an Interrupt-Under-Service (IUS) bit for each interrupt. The
appropriate IUS bit is set during the interrupt acknowledge cycle, and this IUS bit then
inhibits all lower-priority interrupts from being requested. However, higher-priority inter-
rupts can still be requested and serviced.

The interrupt service routine ends with an RETI instruction, and this instruction clears the
highest-priority IUS bit that is set, automatically re-enabling lower-priority interrupts. As
long as all interrupt service routines end with an RETI instruction the hardware in the
interrupt controller(s) automatically take care of all interrupt prioritization.

The interrupt controller is designed to be easily cascaded. The example Verilog HDL code
below shows the cascade of two interrupt controllers. The int_prio_in and int_prio_out
buses (they’re two bits wide) take care of the interrupt request and IUS prioritization. The
ivec_offset must be different for each instance, because this value is the three most-signif-
icant bits of the interrupt vector for the instance.

The int_req signals and ivec_data_out buses require no multiplexing, but are merely
OR’ed together and connected to the corresponding Y90 processor inputs.

int_ctl INT_1 (.int_ack_bus(int_ack_bus[31:16]),
 .int_prio_out(int_prio_out_1), .int_req(int_req_1),
 .ivec_data_out(ivec_data_out_1),
 .clkc(clkc), .iack_tran(iack_tran),
 .int_prio_in(2’b11),
 .int_req_bus(int_req_bus[31:16]),
 .ivec_offset(3’b001), .ivec_rd(ivec_rd),
 .resetb(resetb), reti_tran(reti_tran));

int_ctl INT_0 (.int_ack_bus(int_ack_bus[15:0]), .int_prio_out(),
 .int_req(int_req_0), .ivec_data_out(ivec_data_out_0),
 .clkc(clkc), .iack_tran(iack_tran),

158

 .int_prio_in(int_prio_out_1),
 .int_req_bus(int_req_bus[15:0]),
 .ivec_offset(3’b000), .ivec_rd(ivec_rd),
 .resetb(resetb), .reti_tran(reti_tran));

assign int_req = int_req_1 | int_req_0;
assign ivec_data_out = ivec_data_out_1 | ivec_data_out_0;

The ivec_offset value may be fixed, as shown in the above example, or controlled via an
external I/O register defined by the user.

Although Interrupt Mode 2 is the preferred mode for use with the interrupt controller, the
design allows the use of any interrupt mode. In Interrupt Mode 0 or 1 it will be necessary
to use the int_ack_bus signals to externally latch the information about which interrupt is
being acknowledged. This is because Interrupt Modes 0 and 1 will branch to a common
interrupt service routine, rather than the individual routines possible in Interrupt Mode 2.

The value returned during Interrupt Acknowledge transactions on the ivec_data_out bus
is different depending on the interrupt mode, according to the table below:

In Interrupt Mode 1 the value on the ivec_data_out bus is ignored. In Interrupt Mode 0
the data returned is one of the eight RST instructions. It is not advisable to use the RST 0
instruction, as that will vector through location 0x0000, which is in common with the reset
and trap cases.

bit Interrupt Mode 2 Interrupt Mode 1 Interrupt Mode 0

7 ivec_offset[2] 1 1

6 ivec_offset[1] 1 1

5 ivec_offset[0] ivec_offset[2] ivec_offset[2]

4 4-bit binary code
for

highest priority
interrupt pending

ivec_offset[1] ivec_offset[1]

3 ivec_offset[0] ivec_offset[0]

2 1 1

1 1 1

0 0 1 1

159

DMA Request Control

The Y90 MPU includes a DMA request controller and DMA request limiter. The control-
ler supports eight DMA request (dma_req) inputs and can easily be cascaded to any num-
ber of DMA request inputs. The controller automatically prioritizes the DMA requests and
routes the DMA acknowledge (dma_ack) signal from the processor to the highest-priority
requestor. The controller uses a fixed priority-resolution scheme, so the DMA requests
must be connected appropriately.

The controller contains a DMA-Under-Service (DUS) bit for each request. The DUS bit is
set by the dma_ack signal from the processor, and inhibits all lower-priority requests
from being acknowledged. During the time that the dma_ack signal is active, the control-
ler automatically switches between DMA requests as necessary according to the request
priority. Only one DUS bit will be active at a time.

The DMA request limiter performs two functions. First, it limits the total time that the
dma_ack signal can be active, preventing DMA requestors from hogging the bus. It does
this by de-asserting the priority-chain input to the highest-priority DMA bus controller.
The time limit for the dma_ack signals can be set, in multiples of 16 clock cycles, from 16
clock cycles to 512 clock cycles. This function can be disabled by setting this limit to zero.

The second function of the DMA request limiter sets the minimum inactive time for the
dma_ack signal, guaranteeing a minimum number of clock cycles available to the proces-
sor between DMA requests. It uses also uses the priority-chain input to inhibit DMA
requests. This time limit can be set from 16 to 512 clock cycles, in multiples of 16 clocks.
This function is disabled by setting the limit to zero.

The DMA request controller allows immediate pre-emption by higher-priority DMA
requests. If the DMA devices in the system cannot tolerate this type of operation all
higher-priority requests should be disabled whenever a dma_ack signal is active.

The DMA request limit should always be set high enough that it will only be activated in
the case of an error condition. This is because the limit function immediately de-asserts all
dma_ack signals and restores bus control to the processor, independent of any DMA
transfers in progress.

The DMA request controller is designed to be easily cascaded. The example Verilog HDL
code below shows the cascade of two controllers. The drq_prio_in and drq_prio_out

160

signals take care of the DMA request prioritization. The drq_prio_in signal of the high-
est-priority controller is connected to the output of the DMA request limiter.

The dma_req signals require no multiplexing, but are merely OR’ed together and con-
nected to the corresponding Y90 processor input.

drq_ctl DRQ_1 (.dma_ack_bus(dma_ack_bus[15:8]), .dma_req(dma_req_1),
 .drq_prio_out(drq_prio_out_1), .clkc(clkc),
 .dma_ack(dma_ack), .dma_req_bus(dma_req_bus[15:8]),
 .drq_prio_in(drq_prio_out_lim), .resetb(resetb));

drq_ctl DRQ_0 (.dma_ack_bus(dma_ack_bus[7:0]), .dma_req(dma_req_0),
 .drq_prio_out(), .clkc(clkc),
 .dma_ack(dma_ack), .dma_req_bus(dma_req_bus[7:0]),
 .drq_prio_in(drq_prio_out_1), .resetb(resetb));

assign dma_req = dma_req_1 || dma_req_0;

drq_lim DRQ_LIM (.drq_prio_out(drq_prio_out_lim),
 .drq_timeout(drq_timeout), .clkc(clkc),
 .dma_ack(dma_ack), .drq_act_lim(drq_act_lim),
 .drq_idl_lim(drq_idl_lim), .resetb(resetb));

The two time limits may be hard-coded or controlled by external I/O registers defined by
the user.

There is a status output (drq_timeout) from the DMA request limiter that is activated for
one clock cycle whenever the active time limit is reached and the bus is restored to the
processor. This signal can be used as a system diagnostic, for example, by counting these
occurances over time. The signal may also be used to indicate a fault in a DMA controller
that is causing the DMA to attempt to tie up the bus.

161

Wait Request Control

The Y90 MPU includes a Wait Request controller to prevent bus hang-ups. This controller
accepts and monitors three separate Wait Request inputs (wait_iack, wait_io and
wait_mem) for the different transaction types. The appropriate input is selected to create
the wait_req signal to the processor.

The controller limits the total time that the wait_req signal can be active to prevent a bus
hang-up. It does this by automatically de-asserting the wait_req signal into the processor
after a programmed time.

The time limit for the wait_iack, wait_io and wait_mem signals can be set from 1 to 31
clock cycles. The limit function can be disabled by setting the limit to zero. Each transac-
tion type has an independent setting. The three time limits may be hard-coded or con-
trolled by external I/O registers defined by the user.

There is a status output (wait_timeout) from the controller that is activated whenever the
active time limit is reached and the bus is restored to the processor. This signal can be used
as a system diagnostic, for example, by counting these occurrences over time. The signal
may also be used to indicate a fault in the logic that is generating the Wait requests.

The figure below shows the timing for a memory read cycle with a Wait state limit of
eight. There is one extra Wait state where the wait_timeout is asserted and the wait_req
is de-asserted to the processor.

clkc

mem_addr_out

mem_data_in

t1

mem_tran

mem_rd

wait_mem

mem_data_out

T2 T1 T2 T1 Tw Tw Tw Tw Tw Tw Tw Tw Tw Tw

wait_timeout

T1 T2 T1 T2 T1T2

1 2 3 4 5 5 7 8 9count

162

Note that the Wait controller can also be used to generate a specific number of Wait states
for each transaction type by tieing the corresponding Wait request signal active and rely-
ing on the limit function to de-assert the wait_req signal to the processor. Obviously in
this case the wait_timeout signal is not used. The limit value is sampled by the t1 signal,
so external logic can control the number of Wait states on a cycle-by-cycle basis (for dif-
ferent memory regions, for example). The minimum number of Wait states for this type of
operation is two (with a limit of one and the extra one from the wait_timeout signal).

163

Watch-Dog Timer

The Y90 MPU includes a Watch-Dog Timer to reset the processor in the case of run-away
code or an infinite loop. This timer is disabled after reset, and once enabled cannot be dis-
abled by software. Once enabled, software must periodically reset the timer before it times
out.

The time-out period is a multiple of 2^20 clock cycles. With a 10MHz system clock, for
example, this sets the minimum time-out period to roughly 104mS. The actual Watch-Dog
time-out period can be set from 1 to 256 times this period via the 8-bit wdt_lim value
(0x00 sets the limit to 1, 0x01 sets the limit to 2, and so on). This value may be hard-coded
or controlled by external I/O registers defined by the user.

Reseting the timer is a two-step process. First, the reset must be “armed”, and then the
actual watch-dog reset applied. The watch-dog reset must be applied within 256 clock
cycles of the “arm” or it will be ignored. Similarly, any further “arm” commands while the
time-out for the “arm” command is running will also be ignored. The two-step process
reduces the possibility of errant code reseting the watch-dog timer. Limiting the time that
the “arm” function is active does the same thing.

Rather than using I/O locations to control the watch-dog reset, the Watch-Dog Timer is
accessed using dedicated instructions. This removes the possibility of DMA inadvertently
interfering with the watch-dog function. It also makes reseting the timer simpler, because
dedicated instructions require less setup and CPU register resources than I/O instructions.

A total of two instructions are used by the Watch-Dog Timer. One instruction “arms” the
watch-dog reset function, while the other does the actual reset. The following pages detail
the Watch-Dog Timer instructions.

164

WDARM
Watch-Dog Timer Arm

Notes:

1. The WDT Arm Timer runs for 256 clock cyles and then stops.

WDARM

Operation: if (WDT Arm Timer not running) begin

 start WDT Arm Timer

 end

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

WDARM 11101101 4

01101110

165

WDRES
Watch-Dog Timer Reset

WDRES

Operation: if (WDT Arm Timer running) begin

 reset WDT Timer

 end

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

WDRES 11101101 4

01111110

166

167

System Status

The Y90 MPU includes a System Status controller to provide access to various pieces of
status information to the software. It does this via a 16-byte block of information that is
transferred to memory using a dedicated instruction. The structure of the System Status
Block is shown below:

The Trap Address information is the address that caused the last trap condition. The trap
could have been caused by an Illegal Instruction, an active exec_inh signal during the
fetch of the first byte of an instruction, or an active wr_inh signal during a memory write.
The specific cause of the trap is indicated in the Trap Status byte.

The Trap Address information is only updated by a trap condition, and is not affected by a
reset. The table below shows how the latched Trap Address information is related to the
address of the instruction that caused the trap:

Address Data

(HL+0xF) External Status

(HL+0xE) RTI Generator Status

(HL+0xD) wait_req Timeout Status

(HL+0xC) dma_req Timeout Status

(HL+0xB) Reserved (always 0x00)

(HL+0xA) Reserved (always 0x00)

(HL+0x9) Fault Physical Address [27:20]

(HL+0x8) Fault Physical Address [19:12]

(HL+0x7) Fault Logical Address [15:8]

(HL+0x6) Fault Logical Address [7:0]

(HL+0x5) Trap Physical Address [27:20]

(HL+0x4) Trap Physical Address [19:12]

(HL+0x3) Trap Logical Address [15:8]

(HL+0x2) Trap Logical Address [7:0]

(HL+0x1) Trap Status

(HL) Reset Status

168

The Fault Address information is the memory address present on the mem_addr_out bus
at the time that the fault_detect signal was activated. This information is only updated by
the fault_detect signal, and is not affected by reset.

The remaining individual status bytes are detailed below:

Trap condition Latched Trap Address Stack contents

2-byte Illegal Instruction address of the first byte of illegal
instruction

address of the first byte of illegal
instruction

4-byte Illegal Instruction address of the third byte of illegal
instruction

address of the third byte of illegal
instruction

Execute Inhibit address of the first byte of
execute-protected instruction

address of the byte following exe-
cute-protected first byte of instruc-

tion

Write Protect address of the write-protected byte address of the second byte follow-
ing the last byte of the instruction

that generated the trap

Reset Status (offset 0x0)

Bit(s) Value Description

7 0 No Fatal Detect since the last read.

1 A Fatal Detect has occurred since the last read.

6 0 No Fault Detect since the last read.

1 A Fault Detect has occurred since the last read.

5 0 No WDT Time-out since the last read.

1 A WDT Time-out has occurred since the last read.

4 0 No Power-On Reset since the last read.

1
A Power-On Reset has occurred. This bit will only be set for the first read after
the power-on condition, as this bit is set only by the clearb signal.

3 0 The reset_bus[1] signal is currently Low.

1 The reset_bus[1] signal is currently High.

2 0 The reset_bus[1] signal did not transition since the last read.

1 The reset_bus[1] signal transitioned since the last read.

1 0 The reset_bus[0] signal is currently Low.

1 The reset_bus[0] signal is currently High.

0 0 The reset_bus[0] signal did not transition since the last read

1 The reset_bus[1] signal transitioned since the last read.

169

Trap Status (offset (0x1)

Bit(s) Value Description

7:4 00 These bits are reserved and will always return zeros.

3 0 No Write Protect Trap since the last read.

1 Write Protect Trap since the last read

2 0 No Execute Protect Trap since the last read.

1 Execute Protect Trap since the last read.

1 0 No Illegal Instruction Trap (3rd byte) since the last read.

1 Illegal Instruction Trap (3rd byte) since the last read

0 0 No Illegal Instruction Trap (2nd byte) since the last read.

1 Illegal Instruction Trap (2nd byte) since the last read

dma_req Time-out Status (offset 0xC)

Bit(s) Value Description

7:0
This byte reports the dma_req Time-out status. The read of the System Status
Block clears the register. Two compile-time options, selected by a top-level
‘define value, are available: DREQ_LOG or DREQ_ACC.

_LOG

(default)

0x00 No dma_req time-out since the last read.

0x01 At least one dma_req time-out since the last read.

_ACC nn
The number of dma_req Timeouts since the last read of the System Status
Block. The count saturates at 0xFF.

wait_req Time-out Status (offset 0xD)

Bit(s) Value Description

7:0
This byte reports the wait_req Time-out status. The read of the System Status
Block clears the register. Two compile-time options, selected by a top-level
‘define value, are available: WAIT_LOG or WAIT_ACC.

_LOG

(default)

0x00 No wait_req time-out since the last read.

0x01 At least one wait_req time-out since the last read.

_ACC nn
The number of wait_req Timeouts since the last read of the System Status
Block. The count saturates at 0xFF.

170

The System Status Block can only be accessed via a dedicated instruction. This instruction
is detailed below:

RTI Generator Status (offset 0xE)

Bit(s) Value Description

7:6 These bits are reserved and will always return zeros.

5 Current state of the ref_clock signal (after two stages of synchronization).

4 0 The divider value calculated using the rti_divisor value is 1024 or greater.

1
The divider value calculated using the rti_divisor value is less than 1024. This is
not allowed, and a value of 1024 will be forced for the rti_divisor divider value
internally.

3 0
RTI Generator is free-running, having missed two or more successive ref_clock
rising edges.

1 RTI Generator is receiving a continuous ref_clock signal.

2 0
RTI Generator is not synchronized to the ref_clock signal. This is either because
the rti_divisor value is zero or one, disabling the sync function, or the RTI
Generator has not yet synchronized to the ref_clock signal.

1 RTI Generator is synchronized to the ref_clock signal.

1 0 The rti_default value is 1024 or greater.

1
The rti_default value is less than 1024. This is not allowed, and a value of 1024
will be forced for the rti_default internally.

0 0
RTI Generator is not using the rti_default value. This is either because the
rti_default value is zero, disabling this function, or the RTI Generator has
synchronized to the ref_clock signal.

1 RTI Generator is using the rti_default value.

External Status (offset 0xF)

Bit(s) Value Description

7:0

This byte reports the current state of the ext_stat_bus inputs, sampled during the
t1 time of the instruction reading the System Status Block. At the completion of
this instruction the ext_stat_rd signal is asserted for one clock cycle, in case
latches connected to the ext_stat_bus need to be cleared. This status byte can be
used to report on the health of other parts of the system.

171

LDM
Load Multiple

Notes:

1. This instruction does not sample interrupts. The following instruction is guaranteed to be executed.

2. Attempting to load the System Status Block to a write-protected page may corrupt the System Status
Block, depending on which write transactions are write-protected. In addition, since the write-protect trap
status bit is cleared at the end of this instruction, the fact that a write-protect trap occured during this instruc-
tion may not be latched even though the trap is generated.

LDM (HL),src src: SYS

Operation: count <= 0

loop: (HL) <= SysStat[count]

 HL <= HL + 1

 count <= count + 1

 repeat loop if count != 16

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

LDM (HL),SYS 11101101 40

10011010

172

A number of conditions cause the processor to begin execution at address 0x0000, and the
status block can be used to determine which condition occurred. Only the HL register pair
needs to be set up (with the memory address for writing the status block) to make this
determination. Determining the cause should proceeed in a specific order, because some
conditions will mean that parts of the status block do not apply or are not valid:

1. Test bit 6 of the Reset Status byte. If this bit is set a Fault Condition has been detected
by the hardware. Although a Fault Condition does not automatically vector
through location 0x0000, external logic should always initiate a reset in the case of
a Fault Condition, because after a Fault Condition nothing in the processor state
can be assumed to be valid. Proceed with the steps necessary to recover from a
hardware fault.

2. Test bit 4 of the Reset Status byte. If this bit is set a power-on condition (via the clearb
signal) has occurred and the software should proceed with the initial system con-
figuration.

3. Test bit 2 of the Reset Status byte. If this bit is set a transition on the reset_bus[1] sig-
nal caused a reset of the processor. The current state of the reset_bus[1] signal is
available in bit 3 of the Reset Status byte. Proceed with the appropriate initializa-
tion code.

4. Test bit 0 of the Reset Status byte. If this bit is set a transition on the reset_bus[0] sig-
nal caused a reset of the processor. The current state of the reset_bus[0] signal is
available in bit 1 of the Reset Status byte. Proceed with the appropriate initializa-
tion code.

5. Test bit 5 of the Reset Status byte. If this bit is set a WDT time-out has occurred, caus-
ing a reset. If the WDT was never enabled this step can be skipped. Proceed to
determine why software did not properly prevent the WDT time-out.

6. Test bit 7 of the Reset Status byte. If this bit is set a Fatal Error condition has occurred.
A Fatal Error condition is either a stack write to a write-protected page or an exe-
cute-inhibit trap in Page 0. Bits 3 and 2 of the Trap Status byte will indicate which
of these conditions caused the Fatal Error condition. In either case, the most likely
problem is with the programming of the MMU, although runaway stack writes
because of errant code is also a possibility. The Trap Address information provides
both the logical and physical address where the Fatal Error condition occurred.
The Fatal Error is a trap, so the address of the offending instruction is pushed to the
stack. However, this doesn’t help if the stack writes are in a write-protected page.

7. Test bit 3 of the Trap Status byte. If this bit is set a Write Protect trap occurred, where
software attempted to write to a protected page. The physical and logical address
of the offending write is stored in the Trap Address status bytes. Because this is a

173

trap condition, an address related to the offending instruction is pushed to the
stack, and can be retrieved from there.

8. Test bit 2 of the Trap Status byte. If this bit is set an Execute Inhibit trap occurred,
where software attempted to execute code in a protected page. The physical and
logical address of the offending instruction is stored in the Trap Address status
bytes. Because this is a trap condition, the address of the offending instruction is
also pushed to the stack.

9. Test bit 1 of the Trap Status byte. If this bit is set an Illegal Instruction trap occurred,
where software attempted to execute an illegal 4-byte instruction. The physical and
logical address of the offending instruction is stored in the Trap Address status
bytes. Because this is a trap condition, the address of the offending instruction is
also pushed to the stack.

10. Test bit 0 of the Trap Status byte. If this bit is set an Illegal Instruction trap occurred,
where software attempted to execute an illegal 2-byte instruction. The physical and
logical address of the offending instruction is stored in the Trap Address status
bytes. Because this is a trap condition, the address of the offending instruction is
also pushed to the stack.

11. If none of the preceeding tests are true, then either an RST 0 instruction causes the
branch to address 0x0000 or the software branched to this location. In the case of
an RST 0 instruction the return address will be on the stack. In general branches to
location 0x0000 should probably be avoided, because this location is used for so
many error conditions.

174

175

Real-Time Interrupt

The Y90 MPU includes a specialized timer for generating a Real-Time Interrupt (via the
rti_pulse signal) suitable for use as the “heartbeat” for a Real-Time Operating System
(RTOS). The rti_pulse signal may be either free-running or synchronized to an external
time reference. The timer that generates the rti_pulse signal consists of a 24-bit counter
that counts from a starting value down to one and then reloads. The reload condition is the
rti_pulse signal. Normally the rti_pulse signal will be connected to the nmi_req input.

The free-running timer option for the rti_pulse signal uses the 24-bit rti_default value as
the time constant. Power-on reset selects the free-running option, and this mode will
remain in effect until at least two rising edges on the ref_clock signal (which is the time
reference for the synchronized mode) have been recognized.

Normally the rti_default value will be constant, but it is certainly possible to modify it
using external logic. The minimum value for rti_default is 0x000400 (1024), to prevent
interrupt overload. This minimum is enforced by the hardware. The one exception to this
minimum value is a value of 0x000000, which disables the timer to lower power con-
sumption. The rti_default value is sampled when the power-on reset is removed and
every time that the timer counts down to zero.

The synchronized mode for the rti_pulse signal is automatically selected after two rising
edges on the ref_clock signal have been recognized. The rti_synced signal is activated
when synchronization is achieved. The synchronization logic divides the ref_clock period
into a number of equal-sized (+/- one CPU clock) periods for the rti_pulse signal.

The number of rti_pulse periods per ref_clock period is set by the rti_divisor value,
which may be either static or controlled by an external I/O port. The synchronization logic
counts the number of CPU clocks per ref_clock period according to the following formula
(where the remainder “R” is obviously less than rti_divisor):

 (ref_clock period)/rti_divisor = (rti_pulse period) + R

This calculation is done for each ref_clock period, and the results are used during the next
ref_clock period. This is why two ref_clock rising edges are required before the synchro-
nized mode is enabled. Rather than having one rti_pulse period that is longer by “R”

176

clock cycles, the first “R” periods of the rti_pulse signal are lengthened by one clock
cycle.

Since it is unlikely that the ref_clock period will be an exact multiple of CPU clocks, there
will always be some number of nanoseconds remaining at the end of an rti_divisor num-
ber of rti_pulse periods. This number of nanoseconds will always be less than the CPU
clock period and will effectively be added to the next ref_clock period for the next calcu-
lation. In this manner the calculation will always track the ref_clock period.

However, because of inevitable circuit asymmetries, jitter, or drift in the CPU clock and
jitter or drift in the ref_clock signal, it is possible for a phase error to accumulate over
time, causing the rti_pulse position to “drift” relative to the position of the ref_clock sig-
nal. To compensate for this possibility, there is an independent digital phase-locked loop
circuit that will always keep the relative positions of the ref_clock signal rising edge and
the generated rti_pulse signal within one CPU clock period of each other. This circuit will
adjust the last rti_pulse period in a ref_clock-relative frame by +/- one clock as required
to bring the rti_pulse to within one clock (before or after) the detected ref_clock signal
edge.

The continuous calculation, plus the digital phase-locked loop, allows the rti_pulse period
to track variations in either the ref_clock period or in the period of the CPU clock. In the
event that the ref_clock signal disappears the rti_default value will be used until
ref_clock signal rising edges are again detected. The rti_synced signal is deasserted if
three successive ref_clock edges are missed to indicate that the rti_pulse is being gener-
ated automatically without input from the ref_clock period.

The rti_pulse signal is offset (delayed) from the ref_clock signal by about thirteen clock
cycles. This is because the ref_clock signal passes through a digital filter that rejects
pulses less than eleven clock cycles wide, which leads to a delay in recognizing edges on
the ref_clock signal. The synchronization logic does not attempt to compensate for this
delay.

Setting the rti_divisor value to 0x01 forces the synchronization logic to pass the filtered
ref_clock edge-detect signal directly to the rti_pulse signal. In this case if the ref_clock
signal disappears, so will the rti_pulse signal.

Setting the rti_divisor value to 0x00 will disable the synchronized mode. This disable
function takes effect immediately, and the free-running option takes over (assuming that
the rti_default value is non-zero).

The 24-bit width of the timer used to generated the rti_pulse signal, the 7-bit width of the
rti_divisor value, the period of the ref_clock signal, and the CPU clock frequency deter-
mine the limits for the period of the rti_pulse signal. The table below shows some exam-
ples of these limits.

177

CPU clock ref_clock period rti_divisor rti_pulse period rti_pulse count

10 MHz 500mS 20 25mS 0x03D090

500mS 4 125mS 0x1312D0

1 S 50 20mS 0x030D40

1 S 5 200mS 0x1E8480

2 S 125 16mS 0x027100

30 MHz 500mS 80 6.25mS 0x02DC6C

500mS 20 25mS 0x0B71B0

1 S 100 10mS 0x0493E0

1 S 10 100mS 0x2DC6C0

2 S 125 16mS 0x075300

2 S 4 500mS 0xE4E1C0

178

179

Top-level Verilog

The Verilog code for the y90_mpu design is shown below to illustrate how the individual
modules connect.

/***/
/** **/
/** COPYRIGHT (C) 2012, SYSTEMYDE INTERNATIONAL CORPORATION, ALL RIGHTS RESERVED **/
/** **/
/** processor top level Rev 0.0 11/10/2012 **/
/** **/
/***/
module y90_mpu (dma_ack_bus, drq_timeout, ext_stat_rd, fatal_detect, fault_detect, halt_tran,
 iack_tran, int_ack_bus, io_addr_out, io_data_out, io_read, io_strobe,
 io_tran, mem_addr_out, mem_data_out, mem_rd, mem_tran, mem_wr, nmiack_tran,
 resetb, rti_pulse, rti_synced, sleep_tran, t1, wait_timeout, clearb, clkc,
 dma_req_bus, drq_act_lim, drq_idl_lim, en_prftch, exec_inh, ext_stat_bus,
 iack_wait_lim, int_req_bus, io_data_in, io_wait_lim, ivec_offset,
 mem_data_in, mem_wait_lim, nmi_req, ref_clock, reset_bus, rti_default,
 rti_divisor, wait_iack, wait_io, wait_mem, wdt_lim, wr_inh);

 input clearb; /* master (test) reset */
 input clkc; /* main cpu clock */
 input en_prftch; /* prefetch enable */
 input exec_inh; /* execute inhibit */
 input nmi_req; /* nmi request */
 input ref_clock; /* rti reference clock */
 input wait_iack; /* iack wait request */
 input wait_io; /* i/o wait request */
 input wait_mem; /* memory wait request */
 input wr_inh; /* memory write inhibit */
 input [1:0] reset_bus; /* system reset bus */
 input [2:0] ivec_offset; /* interrupt vector offset */
 input [4:0] drq_act_lim; /* dma_req active maximum */
 input [4:0] drq_idl_lim; /* dma_req idle minimum */
 input [4:0] iack_wait_lim; /* wait_iack active maximum */
 input [4:0] io_wait_lim; /* wait_io active maximum */
 input [4:0] mem_wait_lim; /* wait_mem active maximum */
 input [6:0] rti_divisor; /* rti divisor */
 input [7:0] dma_req_bus; /* dma request input bus */
 input [7:0] ext_stat_bus; /* external status bus */
 input [7:0] io_data_in; /* i/o input data bus */
 input [7:0] mem_data_in; /* memory input bus */
 input [7:0] wdt_lim; /* watchdog timeout limit (n+1 x 2^20-1 clocks) */
 input [15:0] int_req_bus; /* interrupt request input bus */
 input [15:0] int_req_en; /* interrupt request enable bus */
 input [15:0] nmi_addr; /* nmi service routine start address */
 input [23:0] rti_default; /* rti default period */
 output drq_timeout; /* dma request timeout */
 output ext_stat_rd; /* external status read */
 output fatal_detect; /* fatal error detect */
 output fault_detect; /* fault detect */
 output halt_tran; /* halt transaction */
 output iack_tran; /* interrupt acknowledge transaction */
 output io_read; /* i/o read enable */
 output io_strobe; /* i/o data strobe */
 output io_tran; /* i/o transaction */
 output mem_rd; /* memory read enable */
 output mem_tran; /* memory transaction */
 output mem_wr; /* memory write enable */
 output nmiack_tran; /* nmi acknowledge transaction */

180

 output resetb; /* internal (user) reset */
 output rti_pulse; /* rti (real-time interrupt) pulse */
 output rti_synced; /* rti is synced */
 output sleep_tran; /* sleep transaction */
 output t1; /* first clock of transaction */
 output wait_timeout; /* wait_req timeout pulse */
 output [7:0] dma_ack_bus; /* dma acknowledge output bus */
 output [7:0] io_data_out; /* i/o output data bus */
 output [7:0] mem_data_out; /* memory output data bus */
 output [15:0] int_ack_bus; /* interrupt acknowledge output bus */
 output [15:0] io_addr_out; /* i/o address bus */
 output [27:0] mem_addr_out; /* memory address bus */

 /***/
 /* */
 /* signal declarations */
 /* */
 /***/
 wire burst_done; /* burst done */
 wire dma_ack; /* dma acknowledge */
 wire dma_req; /* dma request */
 wire drq_prio_in; /* dma priority chain input */
 wire drq_timeout; /* dma request timeout */
 wire ext_stat_rd; /* external status read */
 wire fatal_detect; /* fatal error detected */
 wire fault_detect; /* illegal state detected */
 wire ftch_tran; /* inst fetch transaction */
 wire halt_tran; /* halt transaction */
 wire iack_tran; /* int ack transaction */
 wire imd2_reg; /* int mode 2 */
 wire inst2_trap; /* illegal 2-byte instruction */
 wire inst3_trap; /* illegal 3-byte instruction */
 wire int_req; /* interrupt request */
 wire io_read; /* i/o read enable */
 wire io_strobe; /* i/o data strobe */
 wire io_tran; /* i/o transaction */
 wire ivec_rd; /* interrupt vector enable */
 wire ld_if1; /* load inst byte 1 */
 wire ld_mem_addr; /* update memory address */
 wire mem_rd; /* memory read enable */
 wire mem_tran; /* memory transaction */
 wire mem_wr; /* memory write enable */
 wire mem_wr_c; /* memory write enable (cpu) */
 wire mmu_msb; /* msb select */
 wire mmu_swap; /* swap active/inactive line */
 wire mwr_tran; /* memory write transaction */
 wire nmiack_tran; /* nmi ack transaction */
 wire output_inh; /* disable cpu outputs */
 wire resetb; /* internal (user) reset */
 wire reti_tran; /* reti transaction */
 wire rti_pulse; /* rti pulse */
 wire rti_synced; /* rti is synced */
 wire sleep_tran; /* sleep transaction */
 wire stk_tran; /* stack transaction */
 wire t1; /* first clock of transaction */
 wire wait_req; /* wait request */
 wire wait_st; /* wait state identifier */
 wire wait_timeout; /* wait_req timeout pulse */
 wire wdt_arm; /* watchdog arm pulse */
 wire wdt_hit; /* watchdog hit pulse */
 wire wdt_timeout; /* watchdog timeout pulse */
 wire wr_brst; /* burst write */
 wire [1:0] ld_init; /* st mach init (sys, mmu) */
 wire [3:0] ctr_reg; /* burst/mlt counter */
 wire [3:0] log_addr_page; /* logical address page */
 wire [5:0] rti_stat_bus; /* rti status bus */
 wire [7:0] io_data_out; /* i/o output data bus */
 wire [7:0] ivec_data_in; /* interrupt vector bus */
 wire [7:0] mem_data_out; /* memory output data bus */
 wire [7:0] mmu_data; /* mmu read data */
 wire [7:0] mem_data_in_s; /* mem input data bus (sys) */
 wire [15:0] addr_reg_in; /* processor logical address */
 wire [15:0] int_ack_bus; /* int ack output bus */
 wire [15:0] io_addr_out; /* i/o address bus */
 wire [27:0] mem_addr_out; /* memory address bus */

 /***/
 /* */

181

 /* processor */
 /* */
 /***/
 y90_core CPU (.addr_reg_in(addr_reg_in), .burst_done(burst_done), .ctr_reg(ctr_reg),
 .dma_ack(dma_ack), .fault_detect(fault_detect), .ftch_tran(ftch_tran),
 .halt_tran(halt_tran), .iack_tran(iack_tran), .imd2_reg(imd2_reg),
 .inst2_trap(inst2_trap), .inst3_trap(inst3_trap),
 .io_addr_out(io_addr_out), .io_data_out(io_data_out),
 .io_read(io_read), .io_strobe(io_strobe), .io_tran(io_tran),
 .ivec_rd(ivec_rd), .ld_if1(ld_if1), .ld_init(ld_init),
 .ld_mem_addr(ld_mem_addr),
 .mem_addr_out({log_addr_page, mem_addr_out[11:0]}),
 .mem_data_out(mem_data_out), .mem_rd(mem_rd), .mem_tran(mem_tran),
 .mem_wr(mem_wr_c), .mmu_msb(mmu_msb), .mmu_swap(mmu_swap),
 .mwr_tran(mwr_tran), .nmiack_tran(nmiack_tran),
 .output_inh(output_inh), .reti_tran(reti_tran),
 .sleep_tran(sleep_tran), .stk_tran(stk_tran), .t1(t1),
 .wait_st(wait_st), .wdt_arm(wdt_arm), .wdt_hit(wdt_hit),
 .wr_brst(wr_brst), .clearb(clearb), .clkc(clkc), .dma_req(dma_req),
 .en_prftch(en_prftch), .frc_imd2(1'b0), .int_req(int_req),
 .io_data_in(io_data_in), .ivec_data_in(ivec_data_in),
 .mem_data_in(mem_data_in_s), .nmi_addr(nmi_addr), .nmi_req(nmi_req),
 .resetb(resetb), .wait_req(wait_req));

 /***/
 /* */
 /* memory management unit */
 /* */
 /***/
 mmu_pag MMU (.mmu_addr_out(mem_addr_out[27:12]), .mmu_data(mmu_data),
 .addr_reg_in(addr_reg_in[15:12]), .clkc(clkc), .ctr_reg(ctr_reg),
 .input_bus(mem_data_in_s), .ld_mem_addr(ld_mem_addr),
 .mmu_msb(mmu_msb), .mmu_swap(mmu_swap), .output_inh(output_inh),
 .resetb(resetb), .wr_brst(wr_brst));

 /***/
 /* */
 /* system management */
 /* */
 /***/
 sys_mgt SYS (.ext_stat_rd(ext_stat_rd), .resetb(resetb),
 .mem_data_in_s(mem_data_in_s), .mem_wr_s(mem_wr), .clearb(clearb),
 .burst_done(burst_done), .clkc(clkc), .ctr_reg(ctr_reg),
 .drq_timeout(drq_timeout), .exec_inh(exec_inh),
 .ext_stat_bus(ext_stat_bus), .fatal_detect(fatal_detect),
 .fault_detect(fault_detect), .ftch_tran(ftch_tran),
 .inst2_trap(inst2_trap), .inst3_trap(inst3_trap), .ld_if1(ld_if1),
 .ld_init(ld_init), .log_addr_page(log_addr_page),
 .mem_addr_out(mem_addr_out), .mem_data_in(mem_data_in),
 .mem_wr(mem_wr_c), .mmu_data(mmu_data), .mwr_tran(mwr_tran),
 .reset_bus(reset_bus), .rti_stat_bus(rti_stat_bus),
 .stk_tran(stk_tran), .t1(t1), .wait_timeout(wait_timeout),
 .wdt_timeout(wdt_timeout), .wr_inh(wr_inh));

 /***/
 /* */
 /* interrupt control */
 /* */
 /***/
 int_ctl INT_CTL (.int_ack_bus(int_ack_bus), .int_prio_out(), .int_req(int_req),
 .ivec_data_out(ivec_data_in), .clkc(clkc), .iack_tran(iack_tran),
 .imd2_reg(imd2_reg), .int_prio_in(2'b11), .int_req_bus(int_req_bus),
 .int_req_en(int_req_en), .ivec_offset(ivec_offset),
 .ivec_rd(ivec_rd), .resetb(resetb), .reti_tran(reti_tran),
 .wait_st(wait_st));

 /***/
 /* */
 /* dma request control */
 /* */
 /***/
 drq_lim DRQ_LIM (.drq_prio_out(drq_prio_in), .drq_timeout(drq_timeout), .clkc(clkc),
 .dma_ack(dma_ack), .drq_act_lim(drq_act_lim),
 .drq_idl_lim(drq_idl_lim), .resetb(resetb));

 drq_ctl DRQ_CTL (.dma_ack_bus(dma_ack_bus), .dma_req(dma_req), .drq_prio_out(),
 .clkc(clkc), .dma_ack(dma_ack), .dma_req_bus(dma_req_bus),
 .drq_prio_in(drq_prio_in), .resetb(resetb));

182

 /***/
 /* */
 /* real-time interrupt generator */
 /* */
 /***/
 rti_top RTI_GEN (.rti_pulse(rti_pulse), .rti_stat_bus(rti_stat_bus),
 .rti_synced(rti_synced), .clearb(clearb), .clkc(clkc),
 .ref_clock(ref_clock), .rti_default(rti_default),
 .rti_divisor(rti_divisor));

 /***/
 /* */
 /* wait-state limit */
 /* */
 /***/
 wait_lim WAIT_LIM (.wait_req(wait_req), .wait_timeout(wait_timeout), .clkc(clkc),
 .iack_tran(iack_tran), .iack_wait_lim(iack_wait_lim),
 .io_tran(io_tran), .io_wait_lim(io_wait_lim), .mem_tran(mem_tran),
 .mem_wait_lim(mem_wait_lim), .nmiack_tran(nmiack_tran),
 .resetb(resetb), .t1(t1), .wait_iack(wait_iack), .wait_io(wait_io),
 .wait_mem(wait_mem));

 /***/
 /* */
 /* watch-dog timer */
 /* */
 /***/
 wdt_top WDT_TOP (.wdt_timeout(wdt_timeout), .clkc(clkc), .wdt_arm(wdt_arm),
 .wdt_hit(wdt_hit), .wdt_lim(wdt_lim), .resetb(resetb));

 endmodule

183

HDL Compile Options

The Y90 design is configured by HDL compile options contained in the Verilog file called
version.v. These compile options are controlled by Verilog ‘define constructs, which are
the tested using the ‘ifdef keyword to select different sections of Verilog code for compi-
lation. In all but one case there are just two choices, and the code is set up so that if no
‘define is actually defined the default is selected. The available compile options are
described below.

The primary option selects between the Y90 CPU, the Y90 MPU and the Z180-compatible
version called the Y90-180, which is documented in a separate specification. This is the
only case where one of three options must be selected. The three options are:

Y90_CPU is the default selection, and selects a CPU-only implementation.

Y90_MPU selects the full MPU implementation, and all of the other compile options are
also available in this case.

Y90-180 selects the version compatible with the Z180. This version contains a segmented
MMU and the full complement of Z180 peripherals. This option is documented in a sepa-
rate specification.

The CCF option selects between the one documented difference (except for the Z180
instruction set additions) in the instruction operation for the Z80 and the Z180. The two
options are:

Z80_CCF is the default and selects the Z80-style operation for the H flag in the case of
the CCF instruction.

Z180_CCF selects the Z180-style operation for the H flag in the case of the CCF instruc-
tion.

The Multiply option is used only in the case of the Y90 CPU or Y90 MPU, and controls
the implementation of the multiply (MLT) instruction. The default case is slower, in terms
of clock cycles, but actually allows for a smaller clock cycle time. The two options are:

184

MUL_NORM is the default and selects the normal MLT implementation, which requires
14 clock cycles. This option should always be selected unless the technology provides for
fast parallel multipliers. This option should always be selected for FPGA implementa-
tions.

MUL_FAST reduces the MLT execution time to just 4 clock cycles, but requires that the
technology support fast multipliers. This option can be considered with ASIC implemen-
tations.

The DREQ option applies only to the Y90 MPU and controls the error logging of the
DMA request limit function. The two options are:

DREQ_LOG is the default and selects the option to merely log the occurance of a DMA
request time-out in the System Status Block.

DREQ_ACC selects the option to accumulate a count of the occurances of DMA request
time-outs in the System Status Block. This count is eight bits wide and saturates at 0xFF.

The WAIT option applies only to the Y90 MPU and controls the error logging of the Wait
request limit function. The two options are:

WAIT_LOG is the default and selects the option to merely log the occurance of a Wait
request time-out in the System Status Block.

WAIT_ACC selects the option to accumulate a count of the occurances of Wait request
time-outs in the System Status Block. This count is eight bits wide and saturates at 0xFF.

