HP =Y {7 Moduol e
Complex Number Module for the HP-41

Revision N

User’s Manual and Quick Reference Guide

Written and developed by: Angel M. Martin
June 2013

417 User Manual Page 1 of 90

(c) Angel M. Martin - June 2013

This compilation, revision A.4.5.

Copyright © 2005-2013 Angel M. Martin

Published under the GNU software licence agreement.

The author wishes to thank the contributors to this project in various ways, as follows:

W. Doug Wilder, who wrote the code for the non-merged functions in program mode,
Hékan Thorngren for his assistance and advices on the Memory Buffer implementation,
Valentin Albillo, who wrote the original “PROOT” FOCAL program,

M. Lujan Garcia, who prepared the 41Z Keys overlay bitmap file,

Jean-Marc Baillard, a constant reference for all Math routines.

Some graphics taken from http://www.clarku.edu/~djoyce/complex, copyright 1999 by David E. Joyce.
Some graphics taken from http//www.wikipedia.org

Screen captures taken from V41, Windows-based emulator developed by Warren Furlow. See
http://www.hp41.org/

Original authors retain all copyrights, and should be mentioned in writing by any party utilizing this
material. No commercial usage of any kind is allowed.

417 User Manual Page 2 of 90

http://www.clarku.edu/%7Edjoyce/complex
http://www.hp41.org/

(c) Angel M. Martin - June 2013

Y

Tonh! & oof Contern*s.

0. Preamble: a Complex Relapse. 7
1. Introduction. 9
2. Complex Stack, number entering and displaying. 9
2.1 Rectangular vs. Polar modes 10
2.2 Data entry conventions 11
3. User interface enhancements. 12
3.1 Display and Conversion functions 12
3.2 Complex Natural Data entry 13
3.3 The Complex User Assignments 16
3.4 The Complex Keyboard 17
4, Stack and Memory functions. 20
4.1. Stack functions group 20
4.2. ZSTO Math function group 24
5. Complex Math. 25
5.1. Simple Arithmetic 25
5.2. Exponentials and Powers that be 27
5.3. Complex Logarithm 32
6. Complex Geometry 34
6.1 Basic functions 34
6.2 Complex Comparisons 37
7. Complex Trigonometry 40
7.1 Basic Functions 40
8. 2D-vectors or complex numbers? 43
8.1 Two parallel worlds 43

417 User Manual Page 3 of 90

(c) Angel M. Martin - June 2013

9. It's a Gamma world out there 44
9.1. Lanczos approximation 44
9.2. Digamma and LhGamma 46
9.3. Riemann’s Zeta function 48
10. Application programs 50
10.0. Delta-Wye Transformation 51
10.1. Solution to quadratic and cubic equations 52
10.2. Lambert W function 55
10.3. Multi-valued functions 56
10.4. Polynomial roots 58
10.5. Solutions to f(z)=0 60
10.6. Bessel Functions 64
10.7. Polylogarithm 69
10.8. Lerch Transcendent 70
10.9. Exponential Integrals 71
Appendices. 73
al.- Complex Buffer functions 73
a2.- Complex Keyboard key-maps 78
a3.- Formula compendium 79
a4.- Quick Reference Guide 80
a5.- Complex functions logic 84

417 User Manual

Page 4 of 90

(c) Angel M. Martin - June 2013

Appendix 0. — 41Z Launchers Map

The figure below shows the hierarchy and dependencies between all launchers. Note that only those
choices prompting to other levels are shown, not all prompting functions (like ZSTO, ZRCL, Z<>,
ZVIEW, ~IM/AG, etc.

B (=
=

?
EE --

— 7
([
m |

417 User Manual Page 5 of 90

(c) Angel M. Martin - June 2013

417 User Manual Page 6 of 90

(c) Angel M. Martin - June 2013

41Z Revision 4L — Complex Number Module for the HP-41

0. Preamble - A Complex Relapse.

The 41Z module was the author’s first project to use a combination of both MCODE and math
techniques put together in service of a dedicated purpose. The design of the complex stack in particular
was the subject of careful implementation and extensive testing — glad to say the effort has paid off
and that the design has worked well to date.

This new revision benefits from the usage of Library#4 — a dedicated ROM packed with MCODE
routines used frequently and repeatedly by several other modules (SandMath, PowerCL amongst
others). Library#4 is located in page 4, and must be present on the system for this version of the 41Z
module to work properly. All interaction occurs behind the scenes and transparently to the user.

There is a Library presence check made upon the Calculator ON event, showing an error message if it's
not found - but otherwise the library is completely invisible to the user. Refer to the appropriate
instructions manual for installation details. For compatibility reasons, make sure you have revision "H”
or higher of the Library#4 ROM.

Changing the original code to take advantage of the library took some effort, but the benefits of doing
so have been twofold:

0. The revised code is more robust and better structured,
1. Alot of room is recovered and can be used for new functionality.

Putting the reclaimed room to a worthwhile use required dealing with the FAT limitation. The 41Z
Module already had 128 functions, meaning that both FAT's were used up — therefore further
consolidation and changes to the functions were needed to allow for the new additions.

This is a summary of the most important changes:

1. Added nine new functions to the module, all in the High-Level math section. Seven of them are
to calculate the Error function and the Exponential, Sine, Cosine (and their Hyperbolic
counterparts) integrals — ZHGF, ZERF, ZEI, ZCI, ZHCI, ZSI, and ZHSI - all using the
Hypergeometric Function method. The remaining two are ZLI2 and ZLIN, to calculate the
Polylogarithm. All of them work with complex arguments.

2. Removed the least relevant functions ZIMAG, ZREAL, ZHALF, and ZDBL — easily replaceable
by equivalent combinations of standard functions.

3. Usage of section headers, so they can be called in FOCAL programs to perform actual
calculations. This is the case for =ZVECTOR (which performs ZGPRD), -ZSTACK (which does
HARMN) and —HL ZMATH (which performs 2/ X-1). These “hidden” functions are only used
in dedicated sections of the module, and FOCAL programs.

4. Double-duty usage of the new function ZHGF — the Complex Hypergeometric Function (written
by Jean-Marc Baillard). In RUN mode it is a new function launcher, grouping the functions that
implement this calculation method. In PRGM mode however it “just” performs the actual

execution work.
cHOF ESHIOIR_
USER a &

417 User Manual Page 7 of 90

(c) Angel M. Martin - June 2013

5. Double-duty usage of the Bessel auxiliary function ZBS#, now effectively performing (via
control flags to decide the case) the same tasks done before by the ZBS and ZBS2 functions.
This is used by all the other Bessel functions, for 1 and 2". kinds.

6. Removal of the ZMTV entry from the FAT — the function still exists as it was (calculates all the
solutions of the multi-value functions), but it has been incorporated to the ZNEXT launcher.
More on this later on.

7. Adopted the general convention to always use MCODE headers for all functions, even for those
which really are FOCAL programs. This improves readability, reduces the code size, and
facilitates coding them as extensions to the launchers. The drawback is that the 41 OS
interprets the programs to be in PRIVATE mode and therefore you won't be able to see the
steps. Use the program listings within this manual instead. Their names are in BLACK font color
to differentiate them from the native MCODE ones, which are in BLUE.

8. And last but not least, numerous improvements in the code all throughout the module,
rearranged sections and overall improvement in the usability of the functions - notably
NXTNRT prompts when called from the ZNEXT launcher; now allows using the top two key
rows for index shortcuts 1-10.

Warning: due to all those function removals and additions, this version of the 41Z module has a
different function arrangement in the FATSs. If you have written your own programs using 41Z functions
they will not match the new XROM id#’s and therefore will need to be re-written. At this point in the
game this is highly unlikely, but just in case this is to be observed.

Note also that (contrary to the SandMath or PowerCL modules) there isn't any “sub-functions” group

in the 41Z_4L module. There simply wasn’t enough room available for that, and also the Library#4 was
already filled-up — with no room left for extensions to the scheme.

Note for Advanced Users:

Even if the 41Z_4L is an 8k module, it is possible to configure only the first (lower) page as an
independent ROM. This may be helpful when you need the upper port to become available for other
modules (like mapping the CL's MMU to another module temporarily); or permanently if you don't care
about the High Level Math (Special Functions) and 2D-Vectors sections.

Think however that the FAT entries for ZKBRD, ~IM/AG and the other function launchers are in the
upper page, so they’ll be gone as well if you use the reduced foot-print (4k) version of the 41Z.

Upper Page High-Level Math, Zvectors,
XROM #01 Function Launchers
Lower Page N

YROM #04 41Z main, Z-stack

Note however that it's not possible to do it the other way around; plugging only the upper page of the
module will be dysfunctional for the most part and likely to freeze the calculator— rather do not
attempt!

417 User Manual Page 8 of 90

(c) Angel M. Martin - June 2013

1. Introduction.

Complex Number handling is perhaps one of the very few areas where the HP-41 didn't have a
comprehensive set of native functions, written in machine code and so taking advantage of the speed
and programming enhancements derived from it. While both the Math Pack and the Advantage Rom
provide FOCAL programs for complex number treatment, neither of them could be properly consider as
a full function set to the effect of, for instance, the powerful Matrix handling functions contained in the
Advantage Rom (in turn an evolution of those implemented in the CCD Module).

The 41Z module provides a significant number of functions that should address the vast majority of
complex number problems, in a user-friendly context, and with full consistency. To that goal this
manual should also contribute to get you familiar with their usage and applications, hopefully learning a
couple of new things and having some fun during the process.

The implementation provided in this 8k-module is a third-generation code, building on the initial 41Z
ROM released by the author in April 2005 — and on the previous version released in 2009. Numerous
improvements have been added to the initial function set, notably the addition of a 4-leve/ complex
stack, a POLAR mode, and a fully featured complex mode keyboard. Memory management is facilitated
by prompting functions that deal with complex arguments, like ZSTO, ZSTO Math, ZRCL, Z<>, and
ZVIEW - all of them fully programmable as well.

2. Complex Stack, number entering and displaying.

A four-level complex stack is available to the user to perform all complex calculations. The complex
stack levels are called U, V, W, and Z — from top to bottom. Each level holds two real numbers, the
imaginary and real parts of the corresponding complex number. Besides them, a “LastZ” complex
register § temporarily stores the argument of the last executed function.

417 Complex Stack
b11 non-Zero The complex stack uses a dedicated buffer in main memory. It is
b10 U - created and maintained by the 41Z module and its operation should
b9 - be transparent to the user. This buffer is independent from the real
bh& v - stack (X, Y, Z, and T registers) but it's important however to
b7 - understand how they interact with each other. A complex number
b6 W T uses two real stack levels (like X and Y), but a single complex stack
b5 z level (like Z or W). The figure on the left shows the relationship
b4 7 Y between the complex and real stacks, which is automatically
b3 X maintained upon function execution, as we'll see later on.
02 (s) -
b1 L
b0 Header

The real stack is used to enter the complex number values, real and imaginary parts. The input
sequence varies depending on the method used but all functions will expect the imaginary part in the Y
register and the real part in the X register. More about this later.

The contents of complex and real stack levels are automatically synchronized before and after each
complex operation is performed. This may just involve real levels X,Y and complex level Z if it's a
monadic (or unary) operation requiring a single complex argument, or may also involve real levels Z,T
and complex level W if it's a dual operation requiring two complex arguments.

417 User Manual Page 9 of 90

(c) Angel M. Martin - June 2013

Monadic functions will assume that the real numbers in X,Y are the most up-to-date values for the
real and imaginary parts of the complex argument. They will overwrite the contents of complex level Z.
This allows quick editing and modification of the complex argument prior to executing the function.

Dual functions will assume that the second argument is stored in W, that is level 2 of the complex
stack, and will thus ignore the values contained in real stack registers Z, 7. Note that because the real
stack overflows when trying to hold more than four different values, it is not a reliable way to input two
complex numbers at once.

The design objective has been to employ as much as possible the same rules and conventions as for
the real number stack, only for complex numbers instead. This has been accomplished in all aspects of
data entering, with the exception of automated complex stack lift: with a few exceptions, entering two
complex numbers into the complex stack requires pressing ZENTER” to separate them.

Once again: entering two complex numbers into the complex stack is accomplished by executing
ZENTERA” to separate the first and second complex number. Exceptions to this rule are the other
complex-stack lifting functions, such as GEUZ, ZRCL, ZRPL~, IMAGINE, ~ZIMAG, ~ZREAL,
AIM/AG, and the “Complex Keypad'. Here the left-side symbol “"~" (SHIFT-N) represents an input
action.

2.1 Rectangular vs. Polar forms.

The HP-41 sorely lacks a polar vs. Rectangular mode. This limitation is also overcome on the 41Z
module, with the functions POLAR and RECT to switch back and forth between these modes. It uses
an internal flag in the complex buffer, not part of the 41 system flags. The operation is simplified in
that complex numbers are always stored in their rectangular (or Cartesian) form, z=x+yi. So while all
functions expect the argument(s) in rectangular form, yet the results are shown in the appropriate
format as defined by the POLAR or RECT mode. (The notable exception is ZPOL, which always returns
the value in Polar form). Note also that the POLAR mode is directly affected by the angular mode as
well, as it occurs with real argument values.

(a,b) =a+jh =rL0

>

a

Note: The POLAR display of the complex number requires an additional R-P conversion after the result
is calculated in Cartesian form. The Polar form is temporarily stored in the Real stack registers T,Z —
which have no active role in the Complex Stack and therefore can always be used as scratch. Once
again, no changes are made to either X,Y registers or Complex stack level Z.

417 User Manual Page 10 of 90

(c) Angel M. Martin - June 2013

2.2 Data Entry Conventions

And how about complex number entering? Here the world divides in two camps, depending on whether
the sequence is: “"Re(z), ENTER”, Im(2)” — like on the HP-42S -, or its reverse: “Im(2), ENTERA,
Re(2)” — like on the HP-32/33S and other FOCAL programs -. With the 41Z module you can do it either
way, but it's important to remember that regardless of how you introduce the numbers, all functions
expect the imaginary part in the Y real-stack register and the real part in the X real-stack register.

Fast data entry will typically use the sequence Im(z) , ENTER”, Re(z), followed by the complex
function. This is called the “Direct” data entry, as opposed to the “Natural” data entry, which would first
input the real part. The 41Z module includes the function *AIM/AG" that can be used to input the
number using the “Natural” convention (reversed from the Direct one).

Its usage is the same as the "“i"-function on the HP-35s, to separate the real and the imaginary parts.
The sequence is completed by pressing ENTER” or R/S, after which the imaginary part will be left in
the Y register and the real part in the X register as explained before.

(Incidentally, the 42S implementation of the complex stack isn't suitable for a true 4-level, since the
COMPLEX function requires two levels prior to making the conversion!)

Other functions and special functionality in the 41Z module can be used as shortcuts to input purely
real or imaginary numbers more efficiently. For instance, to enter the imaginary unit one need only
press: 1, ZIMAG” (which is also equivalent to executing the IMAGINE function) — or simply
“ZKBRD, Radix, 1" using the “complex keypad”. And to enter 4 as a complex number, just press: 4,
ZREALA - or simply "ZKBRD, 4" using the “complex keypad”.

Incidentally, the 42S implementation fails short from delivering a true 4-level stack, due to the
COMPLEX function and the fact that it requires two stack levels to be available to combine the complex
number. In this regard the 41Z solution is a better one.

1
COMPLEX %
ST0, |RCLI |R¥
ALPHA LAST x
ENTER Xz

BET SOLYER o

A 7

b J 4

- 1

€>

Two (opposite) alternatives to data entry: COMPLEX key on the 42S, and ” i” key on the 35S

417 User Manual Page 11 of 90

(c) Angel M. Martin - June 2013

3. User interface enhancements.

Table-3.1: Functions to enhance the user interface.

Index | Function | Group Description

1 ZK?YN Usability Activates and deactivates the Complex Assignments

2 ZKBRD Usability Accesses most of the 41Z functions plus special features
3 ZAVIEW | Display Views complex nhumber in X,Y

4 POLAR Display Displays complex numbers in Polar form

5 RECT Display Displays complex numbers in Rectangular form

6 ~IM/AG | Usability Inputs Imaginary Part (or Argument) of complex number

These functions facilitate the showing of the complex number on the display, and the conversion
between the polar and rectangular forms. They enhance the usability by supplying a system to handle
the lack of native complex number treatment capabilities of the calculator.

3.1 Display mode and conversion functions.

| ZAVIEW | Complex number AVIEW | Uses ALPHA registers | |

Shows the contents of the complex stack level Z in the display, using the current complex display mode
(POLAR or RECT).:

RECT: Re(2) + J Im(2) ; where Re(2) is stored in register X and Im(2) in register Y.
POLAR: Mod(z) <| Arg(z); shown but not stored in the X, Y stack registers (!)

Note that ZAVIEW uses the ALPHA register, thus the previous contents of the M, N and O registers will
be lost.

The displaying will respect the current DEG, RAD, or GRAD angular mode (in POLAR form), the current
FIX, SCI or ENG settings, as well as the number of decimal places selected on the calculator. Note that
“J" precedes the imaginary part, as this improves legibility with real-life complex numbers, with decimal
imaginary parts.

For a simplified visualization, ZAVIEW won’t show decimal zeroes if the number is an integer.
This is done automatically regardless of the number of decimal places selected in the calculator; so one
can immediately tell whether the real or imaginary parts are true integers as opposed to having some
decimal content hidden in the least significant places not shown.

i A i A ra
9+dS Qaad+4d5a88
USER FRAD USER RAD
Versus:

ZAVIEW will extract common factor if both the real and imaginary parts are equal:

UZER RAD USER FRAD

=S¢ i-d’] ENEEEDE l
or also:

Executing the functions POLAR and RECT will also display the complex number currently stored in X,Y

417 User Manual Page 12 of 90

(c) Angel M. Martin - June 2013

POLAR Sets POLAR mode on Displays number Shows in SET mode
RECT Sets RECT mode on Displays number Shows in SET mode
ZPOL Convert to Polar Converts X,Y to POLAR | Always shows in POLAR
ZREC Convert to Rectangular Converts X,Y to RECT Shows in SET mode

ZPOL Converts the complex number in the Z stack level from rectangular to polar mode. If executed in
run mode, the display shows the value of its magnitude (its module) and its argument, as follows:

Mod < Arg ; where:

Mod = |z| and Arg=a [Zz= |z|* eMia]

The argument value will be expressed in the angular settings currently selected: DEG, RAD, or GRAD.

T
r i Y . | i
-5 i-4d: La 12 135
USER RAD USER
d equals k |
= A
e 142,36 e 1L 158
USER RAD or also USER GRAD

ZREC is the reciprocal function, and will convert the complex number in Z (assumed to be in polar
form) to rectangular form, showing it on the display (in run mode) in identical manner as ZAVIEW.

In fact, if it weren't because of the displaying capabilities, these two functions will be identical to the
pair R-P and P-R, standard on the calculator. Recognizing this, they're assigned to the very same
position as their real counterparts on the Complex User keyboard.

Notice that contrary to the POLAR and RECT functions (which only display the values), ZPOL and
ZREC perform the actual conversion of the values and store them in the stack registers (complex and
real). This is also very useful to enter complex numbers directly in polar form, simply using the
sequence: (direct data entry: Angle first, then modulus):

Arg(z), ENTER”, |z|, ZREC -> Re(z) + J Im(2)

3.2 Complex Natural Data Entry.

This function belongs to its own category, as an automated way to input a complex number using the
“Natural” data entry convention: Real part first, Imaginary part next. Its major advantage (besides
allowing the natural data entry sequence) is that jt performs a complex stack lift upon completion of
the data entry, thus there's no need to use ZENTER” to input the complex number into the complex
stack. That alone justifies its inclusion on the 41Z module.

AIM/AG _ | Inputs Im(z)/Arg(z) Part | Does Stack Lift | Prompting function |

The function will prompt for the imaginary part (or the argument if in POLAR mode) of the complex
number being entered. The design mimics that on the HP-35S calculator, and it's used as a way to
separate the two complex parts during the complex number data entering.

A few important considerations are:

417 User Manual Page 13 of 90

(c) Angel M. Martin - June 2013

e The real part (or module) must be introduced right before calling it, so it's in X during the
data entry.

e The keyboard is redefined to allow for numeric digits, RADIX, CHS and EEX as only alid
keys.

e The radix symbol used (comma or dot) is controlled by the user flag 28.

e Only one RADIX character will be allowed in the mantissa — and none in the exponent.

e Only nine digits will be used for the mantissa, and two in the exponent. ~IM/AG will not
check for that during the input process, but exceeding entries will simply be ignored.

Only one EEX can exist in the imaginary part - AIM/AG will check for that.

e Only one CHS can be used for the mantissa sign, ~IM/AG will check for that.

e Multiple CHS can be used for the exponent sign, but AIM/AG will apply the arithmetic
rules to determine the final sign as follows: odd number is negative, even number is
positive.

e Pressing Back Arrow will remove the last entry, be that a number, Radix, EEX or CHS. If
the entry is the first one it will cancel the process and will discard the real part as well.

e The sequence must be ended by pressing ENTER” or R/S.

e The display cue is different depending on the actual complex mode (RECT or POLAR), and
it's controlled automatically.

e Upon completion, the complex number is pushed into the Z complex stack level, and
placed on the X,Y real stack registers as well following the same 41Z convention: real part
in X and imaginary part in Y. The complex stack is lifted and the real stack is synchronized
accordingly.

The screens below show usage examples in RECT and POLAR modes:

[P R T S v e A T e L W e e IR] [~ 7]
A T ha* i A T ha* i i
L T T R £ 41l USS,EE" -
USER RAD o USER RAD
L: until finally:
] [— T o
AL £ ARLD 4 255
. USER GRAD PRGM
USER SRAD ending as:

Note: To extract the numeric value from the input string, ~"IM/AG executes the same code as the X-
function ANUM. All conversion conventions will follow the same ANUM logic. Suffice it to say that the
implementation of AIM/AG is not absolute perfect and you can trip it up if that's what you really want
— but it should prevent likely errors that could yield incorrect results. It's a very convenient way to
meet this need solving the diverse issues associated with its generic character.

If the input string doesn't yield any sensible numeric result, the message "SYNTAX ERROR” is briefly
shown in the display, and the stack is restored to its status prior to executing ~IM/AG.

AIM J-E- SYNTHX ERRFROR
1]

USER RRD a0 USER RAD

will trigger:

Some apparently incorrect syntax constructions will however be properly interpreted by ~IM/AG,
returning a valid imaginary part. This is for instance the case with multiple negative signs in the
exponent, or decimal values after negative sign in the mantissa. Such is the flexibility of the ANUM
function!

417 User Manual Page 14 of 90

(c) Angel M. Martin - June 2013

Example: Vector Load addition (taken from the 35s User Guide):-

We start by setting POLAR and DEG modes, then using the ~IM/AG function three times will set the
three complex numbers on the complex stack, and finally simply execute the complex addition function
Z+ twice:

Y POLAR, DEG

L . 185, ~AIM/AG, 62, ENTER"
2 185 b2y 62 170, ~IM/AG, 143, R/S
100, ~IM/AG, 261, R/S

170 1b.2y 143° Ly Z+,Z2+
Result: -> 178,9372 <) 111,1489

Or in Rectangular mode (as it's saved in
L3 XY):
RECT -> -64,559 + J166,885

100 by 261°

Note the following points:

e We used indistinctly ENTER” and R/S to terminate the complex number entry.

¢ No need to store intermediate results as the complex buffer can hold up to four levels.

e We didn't need to use ZENTER” to push the complex numbers into the complex stack
because the stack-lift was performed by ~IM/AG.

With regard to the data entry sequence, one could have used ZREC instead of ~IM/AG — albeit in
that case it would have been in “direct mode”, as opposed to the more intuitive natural convention. It
also requires pressing ZENTER” to push each number into the complex stack.

This is the keystroke sequence and partial results (assuming we're in POLAR mode)

62, ENTER”, 185, ZREC, ZENTERA -> 185 <)62

143, ENTERA, 170, ZREC, ZENTERA -> 170 <)143

261, ENTERA, 100, ZREC -> 100 <)-99

Z+, Z+ -> 178,9372 <) 111,1489

One last remark about data displaying vs. data entry.- As it was explained before, ZPOL will
convert the complex number into Polar coordinates, and it will be displayed in POLAR form even if
RECT mode is selected. This is the single one exception all throughout the 41z module, and it will only
work immediately after pressing ZPOL but not for subsequent executions of ZAVIEW - which always
expects the number is stored in rectangular form, and therefore will show an incorrect expression.

417 User Manual Page 15 of 90

(c) Angel M. Martin - June 2013

3.3 The Complex User Assignments.

The 41Z module provides a convenient way to do user key assignments in masse. Given the
parallelisms between the real and complex number functions, the natural choice for many of the
functions is “predetermined” to be that of their real counterparts.

A single function is used for the mass-assignment (or de-assignment) action:

| ZK?YN | Complex User Assignments | | Prompting function

ZK?YN automates the assignment and de-assignment of 37 functions. It prompts for a Yes/No answer,
as follows:

Answering “Y” will assign the complex functions to their target keys
Answering “N” will de-assign them, and

Pressing “Back Arrow” will cancel the function.

Any other key input (including ON) will be ignored.

The assignment action will be indicated by the message “Z-KEYS: ON” or “Z-KEYS OFF” in the display
during the time it takes to perform, followed by “PACKING” — and possibly “TRY AGAIN” should the
enough number of memory registers not exist.

Note that ZK?YN is selective: any other key assignment not part of the complex functions set will not
be modified.

Keycode Unshifted Keys Shifted Keys
11 S+ ZHYP 5- INXT
12 10X ZINV YR Waz
13 SQRT Z5QRT xh2 Zn2
14 LOG ZLOG 104% FALOG
15 LM ZLHN ety ZEXP
21 Remy F==\\ CLs ITRP
22 RDN ZRDM % ZRUP
23 SIN Z5IN ASIN ZASIN
24 COs ICOS ACOS FACOS
23 TAN FTAN ATAN FZATAN
33 STO Z5TO LBL nia
34 RCL FRCL GTC nia
41 ENTER" AING CAT ZENTER®
42 CHS n/a 15G INEG
44 EEX nia CLx CLZ
a1 - Z- x=y? I=\W?
61 + I+ xe=y? I=WR?
71 * il x»y? =7
&1 ! i) x=07? =07
83 , nia LASTx LASTZ
84 RIS ZAVIEW VIEW IVIEW

Table 3.3. Complex key assignments done by ZK?YN

417 User Manual Page 16 of 90

(c) Angel M. Martin - June 2013

3.4 The Complex Keyboard.

As good as the user assignments are to effectively map out many of the 41Z functions, this method is
not free from inconveniences. Perhaps the biggest disadvantage of the Complex Assignments is that it's
frequently required to toggle the user mode back and forth, depending on whether it's a complex or a
real (native) function to be executed.

Besides that, the Complex Assignments consume a relative large number of memory registers that can
be needed for other purposes. Lastly, there are numerous 41Z functions not included on the user
assignments map, and no more “logical” keys are available without compromising the usability of the
calculator.

To solve these quibbles, the 41Z module provides an alternative method to access the majority of the
complex functions, plus some unique additional functionality. It's called the Complex Keyboard,
accessed by the function ZKBRD: a single key assignment unleashes the complete potential of the
module, used as a complex prefix, or in different combinations with the SHIFT key and with itself.

Figure 3.4. Complex Keyboard overlay (with ZKBRD assigned to Sigma+).
On the left: the version for V41. On the right, for i41CX

e s e ES 2’(] EZI S-SWHTI 2L

el) | B8 (N o o A

RAD

% Rt Sim-? CO3-Y HTAND

M

R+ 2| SIN CO3 TAN T

az H [i
ZK7 LELSGN GTO L2 BST

. XEQ 570 © RCL 55T
K $ L t M ==

CAT tIMG ISGCHNJ RTN xT CLX/A

PRGM ALPHA

;_‘r.l? w* - c2 7B 10%E 10E ex p '
/% LOG| LN

it 8 o D E

CLIRX%I % R# SIN-1 COS-1 TAMN-1
%Y R+ | SIN| COS| TAN|
F S H 1 J T
ASN ZK? LELSGN GTO .Z _BST

(=] STO| RCL SST|

K L M

-

ENMTER ¢ CHS EEX

N o P
X=¥7 SFNRM CF MOD
T
R
BEEP ZT

41MMG ISE CMNJ RTM xZ2 CcLX/A
CHS| EEX] -« |

SF_NRM
7
R
BEEP ZT

a

v

FIX RND SCI INT ENG FRC

- 3

=
rs

ZVIEW
R/S]|
= SPACE
HF-417 KEYS
© 2009 M. Lujén Garcia.

The 41Z overlay can be downloaded from the HP-41 archive website, at:
http://www.hp41.org/LibView.cfm?Command=View&ItemID=893

To use it with V41 emulator, replace the original file “/arge.bmp’ in the V41 directory with the 41Z
bitmap file, after renaming it to the same file name.

417 User Manual Page 17 of 90

http:/www.hp41.org/LibView.cfm?Command=View&ItemID=893%20

(c) Angel M. Martin - June 2013

Here’s how to access all the functions using ZKBRD:

a.- Direct functions. Simply press “Z" as a prefix to denote that the next function will operate on a
complex argument, and not on a real one. These functions don’t have any special marks, as they
correspond to the standard functions on the HP-41 keyboard. There are twenty 41Z functions directly
accessible like these.

Examples: Pressing Z, LN will execute ZLN; pressing Z, COS will execute ZCOS, etc...
Pressing Z, + will execute Z+; pressing Z, R/S will execute ZAVIEW,

b.- Shifted functions. Press “Z" followed by the SHIFT key. These functions are either marked in
blue when different from the standard SHIFTED ones, or just marked in yellow as part of the standard
HP-41 keyboard (like x=y?, which will execute Z=W? if the pressed key sequence is this: Z, SHIFT,
X=y?

Examples: pressing Z, SHIFT, LN will execute ZEXP; pressing Z, SHIFT, SIN will execute ZASIN,
Pressing Z, SHIFT, R/S will execute ZVIEW (a prompting function itself).

There are thirty-one 417 functions accessible using this SHIFTED method.

¢.- Dual (alternate) functions. Press “Z" twice as a double prefix to access the dual complex
functions and many others. These functions are marked in red, on the right side of each available key.

Examples:. Pressing Z, Z, 7 will execute ZWDET; pressing Z, Z, 5 will execute ZWCROSS, , and so
on with all the “red-labeled” keys.

Pressing Z, Z, ENTER” will execute ZREPL; pressing Z, Z, Z will execute Z<>U

There are twenty-five 417 functions accessible using this Dual method.

d.- Multi-value functions. As a particular case of the dual functions case above, the ZNEXT function
group is enabled by pressing “2" twice and then SHIFT. This group is encircled on the keyboard
overlay, and sets the five multi-value functions as follows: NXTASN, NXTACS, NXTATN, NXTLN, and
NXTNRT (this one will also prompt for the root order, as an integer number 0-9).

Notice that pressing SHIFT while in the NEXT section toggles the display to "ZBSL". Use it as a shortcut
to access the different Bessel functions of first and second kind provided in the 41, as follows: ZIBS,
ZIBS, ZKBS, and ZYBS. — as well as EIZ/1Z, a particular case of Spherical Hankel h1(0,z).

e.- Hyperbolic functions. Press “Z" followed by SHIFT twice to access the three direct hyperbolics.
Pressing SHIFT a third time will add the letter “"A” to the function name and will enable the inverse
functions. This action toggles with each subsequent pressing of SHIFT. (Watch the 41Z building up the
function name in the display as you press the keys...)

Example: Pressing Z, SHIFT, SHIFT, SHIFT, SIN will execute ZASINH

f.- Complex Keypads. Press “Z" followed by a numeric key (0 to 9) to enter the corresponding digit
as a complex number in the complex stack. Pressing “Z" followed by the Radix key, and then the
numeric key will input the digit as an imaginary number as opposed to as a real number into the
complex stack. This is a very useful shortcut to quickly input integer real or imaginary values for
complex arithmetic or other operations (like multiplying by 2, etc.)

417 User Manual Page 18 of 90

(c) Angel M. Martin - June 2013

Pressing Z, XEQ calls the function ~IM/AG for the Natural Data entry. This is obviously not shown on
the keyboard — which has no changes to the key legends for un-shifted functions. Note that there are
three different ways to invoke ~IM/AG, as follows:

XEQ, ALPHA, SHIFT, N, I, M, /, A, G, ALPHA -> the standard HP-41 method, or:
Z, SHIFT, ENTER™ -> shown in blue in the overlay, or:
Z, XEQ -> not shown.

Other keystrokes. The 41Z module takes control of the calculator keyboard when ZKBRD is
executed. Available keys are determined by the partial key sequence entered, as defined on the 41Z
Keys overlay and as explained above. Pressing USER or ALPHA will have no effect, and pressing ON
at any time will shut the calculator off. The back arrow key plays its usual important role during data
entering, and also undoes the last key pressed during a multi-shifted key sequence. Try it by yourself
and you'll see it's actually easier than giving examples on how it works here.

In summary: a complete new keyboard that is accessed by the “Z" blue prefix key. This being the only
requisite, it's a near-perfect compromise once you get used to it — but if you don't like it you can use
the User Assignments , the choice is yours.

The figure below shows the main different modes of the ZKBRD function, the real cornerstone of the
41Z module:

SHIFT 7 SHIFT, SHIFT
£ - — = |EHA -
SHIFT

UsSER USER ISER SHIFT

RADI

._.
M
I
Fd
C.
|

USER USER

LN
~-r

S5 T _ L BSL _

USEFR
ZKBR SHIFT USER SHIET USER SHIFT

Press the Back-arrow key to bring the command chain back to the starting point (ZKBRD). Pressing it
twice shows “"NULL" and cancels out the sequence.

Pressing non-relevant keys (i.e. those not supposed to be included in the corresponding mode) causes
the display to blink, and maintain the same prompt (no action taken).

417 User Manual Page 19 of 90

(c) Angel M. Martin - June 2013

4. Stack and Memory functions.

Let Z and W be the lower two levels of the complex stack, and zand wtwo complex numbers stored in
Z and W respectively. Z = Re(z)+ j Im(z); W = Re(w) + j Im(w)

Note the use of " to express the imaginary unit, instead of “i* . This isn't done to favor those EE’s in
the audience (you know who we are), but rather due to the displaying limitations of the 41 display: no
lower-case letters for either i or j, and better-looking for the last one in caps.

Note also that despite their being used interchangeably, the complex stack register *Z2" — in bold font —
and the real stack register “Z"” — in regular font — are not the same at all.

Table-4.1: Stack and memory function group.

Index | Function Name Description

1 ZTRP Re(z2)<>Im(z) Exchanges (transposes) Re and Im for number in level Z.
2 ZENTER" Complex ENTER" Enters X,Y into complex level Z, lifts complex stack.
3 ZREPL Complex Stack Fill Fills complex stack with value(s) in X,Y

4 ZRDN Complex Roll Down Rolls complex stack down

5 ZRUP Complex Roll Up Rolls complex stack up

6 ZREAL™ Inputs real Z Enters value in X as real-part only complex number

7 ZIMAG” Inputs imaginary Z Enters value in X as imaginary complex number

8 Z<>W Complex Z<>W Swaps complex levels Z and W

9(*) | Z<>ST_ _ | Complex Z<> level Swaps complex levels Z and any stack level (0-4)
10(*) | ZRCL _ _ Complex Recall Recalls complex nhumber from memory to level Z

11 (*) | ZSTO _ _ Complex Storage Stores complex number in Z into memory

12 (%) | 2Z<>_ _ Complex Exchange Exchanges number in level Z and memory

13 (*) | ZVIEW _ _ | Complex Display Shows Complex number stored in memory register

14 CLZ Clears Level Z Deletes complex level Z

15 CLZST Clears Complex Stack | Clears all complex levels U, V, W, and Z

16 ZREAL Extracts real part Removed. Replace with: X<>Y, CLX, X<>Y

17 ZIMAG Extracts Imag part Removed. Replace with: CLX

18 LASTZ Last number used Recovers the last complex number used

(*) Note: These functions are fully programmable. When used in a program their argument is taken
from the next program line, see below for details.

4.1 Stack and memory functions group.

Let’s start with the individual description of these functions in more detail, beginning with the simplest.

| ZTRP | Z Transpose | Does Re <>Im | |

This function’s very modest goal is to exchange the real and imaginary parts of the complex number
stored in the Z level of the complex stack.

Hardly a worthwhile scope, you'd say, considering that the standard function X<>Y does the same
thing? Indeed it is quite similar (and as such it’s logically assigned to the shifted X<>Y key). But it's not
quite the same, as in run mode ZTRP also shows on the display the complex number after transposing
their real and imaginary parts. Besides, as it was mentioned in the introduction, this function may play
an important role during data entry: it is the one to use when entering the real part first, as per the
following sequence: Re(2), ENTER”, Im(z), ZTRP

417 User Manual Page 20 of 90

(c) Angel M. Martin - June 2013

Thus its use is analogous to the "COMPLEX" function on the HP-42S, also required to enter the complex
number in the stack, from its two real components. Note that the other, alternative data entering
sequence doesn't require using ZTRP, although the order of the real and imaginary parts is reversed
(and arguably less intuitive): Im(2), ENTER”, Re(2). Either one of these two is entirely adequate
once you become familiar with it and get used to using it - it's your choice.

ZENTER” Enters X,Y into levels Z, W | Does Stack lift

ZRPLAN Fills complex stack

ZENTERA enters the values in X,Y as a complex number in the Z stack level, and performs stack lift
(thus duplicates Z into W as well — and U is lost due to the complex stack spill-over). As said in the
introduction, a/ways use ZENTER” to perform stack lift when entering two (or more) complex
numbers into the complex stack. This is required for the correct operation of dual complex functions,
like Z+, or when doing chain calculations using the complex stack (which, unlike the real XYZT real
stack, it does NOT have an automated stack lift triggered by the introduction of a new real number).

ZENTER* ZREPL

b10 b8 b4

b9 41/5 v b7 | b3

b8 b6 b4

b7 v f‘ F b5 | b3

b6 b4 b4

w w

b5 <|/j b3 b3
¥ b4 b4 b4 ¥
KEW b3 £ b3 |° b3 v Eﬂ X

ZRPL~ simply fills the complex stack with the values in the real registers X,Y. This is convenient in
chained calculations (like the Horner method for polynomial evaluation). If executed in run mode it also
displays the number in Z. This is in fact a common characteristic of all the functions in the 41z
module, built so to provide visual feedback on the action performed.

ZREAL" Enters X in Z as (x+j0) Does Stack Lift

ZIMAGA Enters Xin Z as (0+jX) Does Stack Lift

These functions enter the value in X either as a purely real or purely imaginary number in complex
form in the Z stack level, and perform stack lift. If executed in run mode it also displays the number in
Z upon completion.

CLz Clears complex stack level Z

CLZST Clears complete complex stack

ZREAL Extracts Real part from Z Removed. X<>Y, CLX, X<>Y
ZIMAG Extracts Imaginary part from Z Removed. CLX

Use these four functions to partially or completely clear (delete) the contents of the complex stack Z
level, or the complete complex stack. No frills, no caveats. The real stack will also be cleared
appropriately.

417 User Manual Page 21 of 90

(c) Angel M. Martin - June 2013

Z<>ST (*) Exchanges Z and Stack Level# =0,1,2,3,4 Prompting function
Z<>V Exchanges Z and V
Z<>W Exchanges Z and W

(*) Fully programmable, see note in previous page.

Use these functions to swap the contents of the Z and U/V/W levels of the complex stack respectively.
As always, the execution ends with ZAVIEW in run mode, displaying the new contents of the Z
register.(which is also copied into the XY registers).

b6
w b5
b4
z b3
| LASTZ | Recalls last number used to Z | Does Stack Lift | |

Similar to the LASTX function, LASTZ recalls the number used in the immediate preceding operation
back to the Z level of the complex stack. A complex stack lift is performed, pushing the contents of Z
up to the level W, and losing the previous content of U.

b10 0 b3
b9 f b7
b3 b6
b7 v f‘ ’3 b5
] b4
b5 fw b3 W
b4 b2
b3 £ b1 £
b2 S b2

b1 b1

52l € -

The majority of functions on the 41Z module perform an automated storage of their argument into the
LastZ register, enabling the subsequent using of LASTZ. This will be notated in this manual when
appropriate under each function description.

Example: to calculate [(z> + z)/2] simply press: ZSQRT, LASTZ, Z+, ZHALF

Example: Calculate the following expression without using any data registers:

F(z) = Ln [z + SQR(z"2 + 1)], for z= 20+20i

Solution:

20, ENTER”, ZRPL -> puts 20+20i in all 4 levels of the complex stack
Z~2, 1, ZREALA, Z+ -> could have used 1, +"” as a more direct method
ZSQRT, Z+, ZLN -> 4,035+30,785

Congratulations! You just calculated the hyperbolic arcsine of (20+20i).

417 User Manual Page 22 of 90

(c) Angel M. Martin - June 2013

ZRDN Rolls complex stack down

ZRUP Rolls complex stack up

Like their real stack counterparts, these functions will roll the complex stack down or up respectively. If
executed in run mode it also displays the number in Z. Real stack registers will be synchronized
accordingly.

ZRUP ZRND

b10 U b8 b10 U b4
b9 b7 b9 b3
ba b6 ba b10
b7 v b5 by v b9
b b4 b6 b&
b3 w b3 b5 w b7
b4 7 b10 b4 7 b6
b3 b9 b3 b5

Be aware that although ZRDN and ZRUP do not perform stack lift, they update the Z complex register
with the values present in X,Y upon the function execution. This behavior is common across all 41Z
functions.

ZVIEW _ _ Displays Complex Register value Prompting function

<> __ Exchanges Z and complex register Prompting function

Like its real counterparts, these functions view or exchange the content of the complex stack level Z
with that of the complex storage register given as its argument. Two standard storage registers are
used, as per the above description.

Rnn+1
Rnn

ZRCL _ _ Recall from Complex Register | Does Stack lift Prompting function
2STO _ _ Store in Complex Register Prompting function

Like their real counterparts, these functions are used to Recall or store the complex number in Z from
or into the complex register which number is specified as the function’s argument. In fact two (real)
storage registers are used, one for the imaginary part and another for the real part. This means that
CRnn corresponds to the real storage registers Rnn and R(nn+1).

ZSTO ZRCL
Y b4 b4 Y

Rinn+1)
Rnn

417 User Manual Page 23 of 90

(c) Angel M. Martin - June 2013

ZRCL will perform complex stack lift upon recalling the contents of the memory registers to the Z stack
level. Also note that, following the 41Z convention, ZSTO will overwrite the Z level with the contents of
X,Y if these were not the same. This allows walk-up complex data entering.

These functions are fully programmable. \When in program mode (either running or SST execution),
the index input is ignored, and their argument is taken from the following program line after the
function. For this reason they are sometimes called non-merged functions. In fact, the number
denoting the argument can have any combination of leading zeroes (like 001, 01, 1 all resulting in the
same). Moreover, when the argument is zero then such index following line can be omitted if any non-
numeric line follows the function. This saves bytes.

This implementation was written by W. Doug Wilder, and it is even more convenient than the one used
by the HEPAX module for its own multi-function groups.

Similar to the real counterparts, keys on the first two rows can be used as shortcut for indexes 1-9.
Note that indirect addressing is also supported (say ZRCL IND _ _) pressing the SHIFT key — in
RUN mode only (i.e. not programmatically). In program mode you can make use of the fact that the
indirect addressing is nothing more that adding 128 to the address, thus it can be handled by
simply adding such factor to the index in the second program line.

Also note that despite being possible to invoke, their logic doesn't support the use of the stack
registers. (ZRCL ST _); and certainly neither the combination of both, indirect and stack addressing
(ZRCL IND ST _ _). If you use these, unpredicted (and wrong) results will occur. The same can be
said if you press the arithmetic keys (+, -, *, /): simply don‘t.

Lastly, a NONEXISTENT message will be shown if the storage register is not available in main memory.
Registers can be made available using the SIZE function of the calculator.

4.2. ZSTO Math function group.

ZST+ _ Recall from Complex Register Prompting function
2ST- _ Store in Complex Register Prompting function
ZsT* _ Recall from Complex Register Prompting function
ZST/_ _ Store in Complex Register Prompting function

The newest addition to the 41Z function set.- allow storage math in a concise format, saving bytes and
programming steps in FOCAL programs. Their equivalence with standard functions would have to be
done using four steps, and disturbing the Complex Stack as follows:

1.- ZENTERA,

2.- Z<>(nn)

3.- MATH (Z+, Z-, Z*, Z/)
4.- Z<>(nn)

Functions are fully programmable using the non-merged technique. These functions can also be
accessed using the Z-keyboard from its own dedicated launcher, pressing [Z 1, [A] and then .

LST -+ %

UZER RAD 24

417 User Manual Page 24 of 90

(c) Angel M. Martin - June 2013

5. Complex Math.

Complex numbers are much more than a simple extension of the real numbers into two dimensions.
The Complex Plane is a mathematical domain with well-defined, own properties and singularities, and it
isn't in the scope of this manual to treat all its fundamental properties. On occasions there will be a
short discussion for a few functions (notably the logarithms!), and some analogies will be made to their
geometric equivalences, but it is assumed throughout this manual that the user has a good
understanding of complex numbers and their properties.

5.1. Arithmetic and Simple Math.

Table-5.1:- Arithmetic functions.

Index | Function | Formula Description

1 Z+ Z=W+z Complex addition

2 z- Z=wW-z Complex subtraction

3 Z* Z=w*z Complex multiplication

4 Z/ Z=w/z Complex division

5a ZINV Z=1/z Complex inversion, direct formula

5b 1/z Z=1/r e~(-iArg) | Complex inversion, uses TOPOL

6 ZDBL z=2%z Removed. Replace with: 2, ST* Z, *

7 ZHALF z=2/2 Removed. Replace with: 2. ST/ Z, /

8 ZRND Z=rounded(z) Rounds Z to display settings precision
9 ZINT Z=Int(2) Takes integer part for Re(z) and Im(z)
10 ZFRC Z=Frc(2) Takes fractional part for Re(z) and Im(z)
11 ZPI* Z=zn Simple multiplication by pi

Here's a description of the individual functions within this group.

Z+ Complex addition Z=w+z Does LastZ
Z- Complex subtraction Z=W-z Does LastZ
z* Complex multiplication Z=w*z Does LastZ
Z/ Complex division Z=w/z Does LastZ

Complex arithmetic using the RPN scheme, with the first number stored in the W stack level and the
second in the Z stack level. The result is stored in the Z level, the complex stack drops (duplicating U
into V), and the previous contents of Z is saved in the LastZ register.

ZINV Direct Complex inversion Z=1/z Does LastZ

1/Z Uses POLAR conversion Z=1/r e”(-iArg) Does LastZ

Calculates the reciprocal of the complex number stored in Z. The result is saved in Z and the original
argument saved in the LastZ register. Of these two the direct method is faster and of comparable
accuracy — thus it's the preferred one, as well as the one used as subroutine for other functions.

This function would be equivalent to a particular case of Z/, where w=1+0j, and not using the stack
level W. Note however that Z/ implementation is not based on the ZINV algorithm [that is, making
use of the fact that : w/z = w * (1/z)], but based directly on the real and imaginary parts of both
arguments.

417 User Manual Page 25 of 90

(c) Angel M. Martin - June 2013

Example. Calculate z/z using ZINV for z=i

We'll use the direct data entry, starting w/ the imaginary part:

1, ENTERA, 0, ZINV -> 0-j1
LASTZ -> 0+j1
Z* -> 1+j0

Note that /nteger numbers are displayed without decimal zeroes, simplifying the visual display of the
complex numbers.

ZDBL Doubles Z 7=2%z Does LastZ

ZHALF Halves Z Z=12/2 Does LastZ

These two functions are provided to save stack level usage and programming efficiency. The same
result can also be accomplished using their generic forms (like Z* and Z/, with w=2+0j), but the
shortcuts are faster and simpler to use.

Example. Taken from the HP-41 Advantage manual, page 97.
Calculate: z1/(z,+23); for: z;=(23+13i); z,=(-2+i), and zz3=(4-3i)
If the complex stack were limited to 2 levels deep, we would need to calculate the inverse of the

denominator and multiply it by the numerator, but using the 4-level deep complex stack there’s no
need to resort to that workaround. We can do as follows:

13, ENTER, 23, ZENTER” -> 23+j13
1, ENTER”, 2, CHS, ZENTER” -> -2+j1

3, CHS, ENTER”, 4, Z+ > 2(14)
z/ -> 2,500+j9

Note that 41Z agutomatically takes common factor when appropriate, and that integer numbers are
displayed without decimal zeroes to simplify the visuals display of the complex numbers. Non-integers
are displayed using the current decimal settings, but of course full precision (that is 9 decimal places) is
always used for the calculations (except in the rounding functions).

ZRND Rounds Complex number Z=Rounded(z) Does LastZ
ZINT Takes integer parts Z=Int[Re(z)+jInt[Im(z) | Does LastZ
ZFRC Takes Fractional parts Z=Frc[Re(z)+jFrc[Im(z) | Does LastZ

These functions will round, take integer part or fractional part both the real and imaginary parts of the
complex number in Z. The rounding is done according to the current decimal places specified by the
display settings.

ZPI* | Multiplies by pi | Z=n*z | Does LastZ |

Simple multiplication by pi, used as a shortcut in the Bessel FOCAL programs. Has better accuracy than
the FOCAL method, as it used internal 13-digit math.

417 User Manual Page 26 of 90

(c) Angel M. Martin - June 2013

5.2. Exponential and powers that be.

Table-5.2: Exponential group.

Index | Function | Formula Description

la ZEXP Z=REC(e”x, y) Complex exponential (method one)
1b enz See below Complex Exponential (method two)

2 Zn2 Z=REC(r"\2, 2a) Complex square

3a ZSQRT Algebraic Formula Principal value of complex square root
3b SQRTZ Z=REC(r"1/2, 0/2) Principal value of complex square root
4 w/z Z=e"z*Ln(w) Complex to complex Power

5 W~1/z Z=eN1/z*Ln(w) Complex to reciprocal complex Power
6 X2 Z=e"z*Ln(x) Real to complex power

7 X~ 1/Z Z=e"z*Ln(x) Real to reciprocal complex power

8 "X Z=e"x*Ln(z) Complex to real Power

9 ZM1/X Z=e"1/x*Ln(z) Complex to reciprocal real Power

10 ZALOG Z=e”z*Ln(10) Complex decimal power

11 NXTRTN | Z=z*e”j 2n/N Next value of complex nth. Root

Looking at the above formula table it's easy to realize the importance of the exponential and
logarithmic functions, as they are used to derive many of the other functions in the 41Z module. It is
therefore important to define them properly and implement them in an efficient way.

The 41Z module includes two different ways to calculate the complex exponential function. The first
one is based on the trigonometric expressions, and the second one uses the built-in polar to
rectangular routines, which have enough precision in the majority of practical cases. The first method is
slightly more precise but takes longer computation time.

ZEXP Complex Exponential Z=REC(e”x, y) Does LastZ

enz Complex Exponential Trigonometric Does LastZ

One could have used the rectangular expressions to calculate the result, as follows:
enz =ex *(cosy +isiny), thus: Re(z) = eN(x) *cosy ; and: Im(z) = e™(X) * siny

and this is how the function e~Z has been programmed. It is however more efficient (albeit slightly
less precise) to work in polar form, as follows:

since z= x+iy, then e~z = e (x+iy) = e”x * eNiy,

and to calculate the final result we only need to convert the above number to rectangular form.

Example.- Calculate exp(z2), for z=(1+i)

1, ENTER~A, ZENTERA -> 1(1+j)
2, CHS, Z~AX -> 0-j0,500
ZEXP -> 0,878-j0,479

Another method using WAZ and the complex keypad function (ZREAL”):

1, ENTER”, ZENTER”
2, CHS, ZREAL”
WAZ, ZEXP

-> 1(14j)
-> -2+j0
-> 0,878-j0,479

417 User Manual Page 27 of 90

(c) Angel M. Martin - June 2013

or alternatively, this shorter and more efficient way: (leaves W undisturbed)
1, ENTER”, Z~A2, ZINV, ZEXP -> 0,878-j0,479
Note how this last method doesn’t require using ZENTER” to terminate the data input sequence, as

the execution of monadic functions will automatically synchronize the complex stack level Z with the
contents of the real X,Y registers.

"2 Complex square Z=REC(r"2, 2a) Does LastZ
ZSQRT Complex square root Algebraic Formula Does LastZ
SQRTZ Complex square root Z=REC(r"1/2, 0/2) Does LastZ

Two particular cases also where working in polar form yields more effective handling. Consider that:

N2 = |z|N2 * eN2ia, and:
Sqrt(z) = z~1/2 = Sqgrt(|z]) * eNia, where a=Arg(z),

It is then simpler first converting the complex number to its polar form, and then apply the individual
operations upon its constituents, followed by a final conversion back to the rectangular form.

Note that this implementation of ZSQRT only offers one of the two existing values for the square root
of a given complex number. The other value is easily obtained as its opposite, thus the sum of both
square roots is always zero.

Such isn't exclusive to complex arguments, for the same occurs in the real domain — where there are
always 2 values, x1 and —x1, that satisfy the equation SQRT[(x1)"2].

As with other multi-valued functions, the returned value is called the principal value of the function. See
section 6 ahead for a more extensive treatment of this problem.

w2z Complex to complex Power Z=eNz¥Ln(w)] Does LastZ

WA1/z2 Complex to reciprocal Power | Z=e”[Ln(w)/z] Does LastZ

The most generic form of all power functions, calculated using the expressions:

wAz = exp[z*Ln(w)], and
wA1/z = exp[Ln(w) / Z]

The second function is a more convenient way to handle the reciprocal power, but it's obviously
identical to the combination ZINV, WA Z,

Example: calculate the inverse of the complex number 1+2i using WAZ:- Then obtain its reciprocal
using ZINV to verify the calculations.

2, ENTER”, 1, ZENTERN number stored in level W (also as: 1, ENTER”, 2, ZTRP)

0, ENTERA, -1 exponent —1 stored in level Z (also as: -1, ENTER”, 0, ZTRP)
WAZ result: 0,200-j0,400

ZINV result: 1,000+j2

Note that the final result isn't exact — as the decimal zeroes in the real part indicate there’s a loss of
precision in the calculations.

417 User Manual Page 28 of 90

(c) Angel M. Martin - June 2013

X Complex to real power Z=e"N[x*Ln(z)] Does LastZ
Z~1/X Complex to reciprocal real Z=e[Ln(z)/x] Does LastZ
X/ Z Real to complex power Z=eMN[z*Ln(x)] Does LastZ
X~1/2Z Real to reciprocal complex Z=e/1/z*Ln(x)] Does LastZ
ZALOG 10 to complex power Z=ez*Ln(10)] Does LastZ

These five functions are calculated as particular examples of the generic case WAZ. Their advantage is
a faster data entry (not requiring inputting the zero value) and a better accuracy in the results

Z~1/X is identical to: 1/X, ZAX
X~1/Z is identical to: RDN, ZINV, R", X~2

Data entry is different for hybrid functions, with mixed complex and real arguments. As a rule, the
second argument is stored into its corresponding stack register, as follows:

e x into the real stack register X for ZAX and Z~1/X
e zinto the complex stack register Z for X~AZ and X~1/2

The first argument needs to be input first, since this is an RPN implementation.

Because ZALOG is a monadic function, it expects z in the stack level Z, and thus it doesn't disturb the
complex stack.

Example: Calculate (1+2i)~3 and 3/ (1+2i)

2, ENTER”, 1, ZENTER#, 3, Z*X results: (1+2i)"3 = -11-2 j
2, ENTER”, 1, ZENTER#, 3, X~ Z results: 3~(1+2i) = 1+0j

Example: Verify the powers of the imaginary unit, as per the picture below.- You can use either Z”X,
with z=(0+i) and x=1,2,3,4,5; or alternatively WAZ, with w=(0+i) and z=(1+0i), (2+0i), (3+0i), etc.

_
zi \-"’1[||in[lication
2i s
5. l?l] I
FlT=1
ir Z
i?= -1 i‘= 1 s
:] : % 5 \ { 3 3
[_\ /
A OWEES . it
DWERS 1 3 :32 i
fio s
(— ;-1 2if zi’

This keystroke sequence will quickly address the even powers:

0, ENTER”, 1, ZTRP -> 0+ij1 i
ZN2 -> -1+30 i2=-1
ZN2 -> 1+130 it=1

417 User Manual Page 29 of 90

(c) Angel M. Martin - June 2013

Whilst this will take care of the rest (and also in general):

0, ENTERA, 1, ZTRP -> 0+ij1 [
3, ZAX -> 0-ij1 P =i
LASTZ -> 0+ij1

5, Z~AX -> 0+ij1 =i

Note in this example that for enhanced usability Z”~ X stores the original argument in the LastZ register,
even though it wasn't strictly located in the Z level of the complex stack. The same behavior is
implemented in X~ Z.

Alternatively, using WAZ and ZREPL.:

1, ENTER”, 0, ZREPL -> 0+ij1 [

0, ENTERA, 2, WAZ -> -1+i0 i?=-1
ZRDN -> 0+ij1 i

0, ENTER”, 3, WAZ -> 0-jl =i
ZRDN -> 0+ij1 [

0, ENTER™, 4, WAZ -> 1+ij0 it=1
ZRDN -> 0+ij1 [

0, ENTERA, 5, WAZ -> 0+ij1 P=i

Examples.- Calculate the value of: z = 2~1/(1+i); and z=(1+i)"1/2
These two have a very similar key sequence, but they have different meaning:

Solution: 1, ENTER”, ENTERA, 2, X~1/Z
Solution: 1, ENTER”, ENTERA, 2, ZA1/X

-> 1,330 - J0,480
-> 1,099 + j0,455

NXTNRT | Next value of Nth. Root | Z=20%e”j 2x/N | 20 is the principal value |

In its general form, the solution to the Nth. Root in the complex plane admits multiple solutions. This is
because of its logarithmic nature, since the logarithm is a multi-valued function (see discussion in next
section).

ZA1N = e~[Ln(z)/N] = e~[Ln(|z])+i(at+2m)]/N = er[Ln(|z])+ia]/N * e~j 27/N

From this we derive the general expression: Next(z~1/N) = z~1/N *e”~(j 2= /N)
thus there are N different Nth. Roots, all separated by (2r over N). See the geometric interpretation on
section 7 ahead for further discussion on this.

When executed in a program or RUN mode, data entry for this function expects N in the X register, and
zin the Z complex stack level. However when the Complex Keyboard shortcut is used, the index N is
prompted as part of the entry sequence — a much more convenient way.

HoER Shortcut: Z, Z, SHIFT, SQRT

417 User Manual Page 30 of 90

(c) Angel M. Martin - June 2013

Example:- Calculate the two square roots of 1.

0, ENTERA, 1, ZENTERA, 2, ZA1/X -> 1+j0
2, NXTNRT (plus ZRND) -> -14j0

Note that the previous root is temporarily stored in the LastZ register:
LASTZ -> 1+4j0 (previous root)

See section 9 for a general application program to calculate the n different Nth. Roots of a complex
number

Example.- Calculate the three cubic roots of 8.

Using “direct” data entering: [Im(z), ENTER”, Re(z)]

0, ENTER”, 8, ZENTERA, 3, ZA1/X -> 240
3, NXTNRT -> -1,000+j1,732
3, NXTNRT -> -1,000-j1,732

Note: for this example use the Complex Keyboard ZKBRD to execute NXTNRT, as follows:

Z, Z, SHIFT, SQRT, and then input 3 at the last prompt.

Example: Calculate both quadratic roots of 1+2i.

2, ENTERA, 1, ZSQRT gives the first root: z=1,272+0,786 j
2, NXTNRT gives the second root: z=-1,272-0,786 j
2, NXTNRT reverts to the first, principal value, of the root.

This verifies that both roots are in fact on the same straight line, separated 180 degrees from each
other and with the same module.

Example: Calculate the three cubic roots of 1+2i.

2, ENTER”, 1, ZENTERA inputs z in the complex stack level Z

3, 1/X, Z~X gives the main root: z=1,2204+0,472 j
3, NXTNRT gives the second root: z=-1,018+0,82 j
3, NXTNRT give the third and last: z=-0,201-1,292 j

In the next section we'll discuss the logarithm in the complex plane, a very insightful and indeed
interesting case study of the multi-valued functions.

417 User Manual Page 31 of 90

(c) Angel M. Martin - June 2013

5.3. Complex Logarithm.

Table-x: Logarithm group.

Index | Function | Formula Description

1 ZLN Z=Ln|z|+ia Principal value of natural logarithm
2 ZLOG Z=Ln(z)/Ln10 Principal value of decimal logarithm
3 ZWLOG Z=Ln(z)/Ln(w) Base-w logarithm of z

4 NXTLN Z=z+2nj Next value of natural logarithm

The first thing to say is that a rigorous definition of the logarithm in the complex plane requires that its
domain be restricted, for if we defined it valid in all the plane, such function wouldn’t be continuous,
and thus neither holomorfic (or expressible as series of power functions).

This can be seen intuitively if we consider that:

Im
Since: z = |z|*eNip, then: A
Lnz = Ln |z| + Ln (e?ip) = Ln(|z]) + ip |4 SEEERELE :Z
But also
z = |z|*eNi (p+2n) = |z|*eNi (p +4n)=.... = |z|*eNi (p +2r n) /--"'_"‘H

o

Then we’d equally have multiple values of its logarithm, as follows: |" @ : . Re
Ln(z) = Ln(|z|) + ip = Ln(|z|)+i (p+2n) = Or generally: *\ 0 /; X

Ln z = Ln|z|+i (p+2r n); where n is a natural number. —

To deal with this multi-valued nature of the function, mathematicians define the different branches of

the complex logarithm, - log, — as the single one and only logarithm which argument is comprised
between (o -r) and (a +=), thus within the open interval] o -n, a+n [

Its domain isn't the whole complex plane,
but it excludes a semi-straight line, centered
at the origin, that forms an angle a with the _
real axis, as shown in the picture. Such set is Cutplane=10_,=C —H_
called the “torn” or cut complex plane at
angle o.”. Thus the principal value of the
logarithm really should be called Logy, as it
tears (or cuts) the complex plane by the real
negative semi-axis, or otherwise a. =0. This ot T o

numbers, and when those need to be subject
of its application, a different cut should be

i
means it is NOT defined for any negative //f .,
chosen. [
Therefore all arguments should be comprised \
between 180 and —180 degrees, as it would oL =Tt
correspond to this definition of “Log,".

In practicality, the values calculated by ZLN
always lie within this interval, since they use
the internal routines of the calculator,

[TOPOL] and [TOREC]. Branch: H .

417 User Manual Page 32 of 90

(c) Angel M. Martin - June 2013

The angle o should not be confused with the base of the logarithm, which is always the number e —
that is, there are natural logarithms.

(See http://en.wikipedia.org/wiki/Branch point for a more rigorous description of this subject).

After this theoretical discussion, let's see the functions from the 41Z module:-

| ZLN | Natural logarithm | Z=Ln|z|+ia | Does LastZ

Calculates the principal value of the natural logarithm, using the expression:
Lnz=Ln|z| +iy, where y = Arg(z) belongs to J-r, =]
Example: check that: z=Ln(e”z), for z=(1+i) and z=(2+4i)

1, ENTERA, ZEXP, ZLN -> 1,000+j1,000
4, ENTERA, 2, ZEXP, ZLN -> 2-2,283

How do you explain the last result? Is it correct? Try executing NXTLN (see below) on it...

NXTLN -> 2+4j4,000 - that's more like it!

| ZLOG | Decimal logarithm | Z=Ln(z)/Ln10 | Does LastZ

Calculates the principal value of the decimal logarithm using the expression:
Log z = Ln z / Ln(10)
Example: check that: z=Log(107z), for z=(1+i) and z=(2+4i)

1, ENTERA, ZALOG, ZLOG -> 1(14)
4, ENTER”, 2, ZALOG, ZLOG -> 2+j1,271

How do you explain the last result? Is it correct? Have you found a bug on the 412?

| ZWLOG | Base-W Logarithm | Z=Ln(z)/Ln(w) | Does LastZ

General case of ZLOG, which has w=10. This is a dual function,

logz=Lnz/Lnw

| NXTLN | Next Natural logarithm | Z=20+2n] | 20 is the principal value |

Calculates the next value of the natural logarithm, using the expression:
Next(Ln z) = Ln(z) + 2x j
So the different logarithms are “separated” 2= in their imaginary parts. This works both “going up” as

well as “going down”, thus each time NXTLN is executed two values are calculated and placed in
complex levels Z and W. You can use Z<>W to see them both.

417 User Manual Page 33 of 90

http://en.wikipedia.org/wiki/Branch_point

(c) Angel M. Martin - June 2013

6. Complex geometry.

The next set of functions admits a geometrical interpretation for their results. Perhaps one of the
earliest ways to approach the complex numbers was with the analogy where the real and imaginary
parts are equivalent to the two coordinates in a geometric plane.

Table-6.1: Complex geometric group.

Index | Function | Formula Description

1 ZMOD |z| =SQR(x"2+y”"2) Module or magnitude of a complex number
2 ZARG o =ATAN(y/x) Phase or angle of a complex number

3a ZNEG Z=-z Opposite of a complex number

3b ZCHSX Z=(-1)"x*z Opposite (by X) of a complex number

4 ZCONJ Z=XY]j Conjugated of a complex number

5 ZSIGN Z=z/|z| Sign of a complex humber

6 ZNORM Z=|z|"2 Norm of a complex number

7 Z*1 Z=z7%i Rotates z 90 degrees counter clockwise

8 Z/1 Z=zfi Rotates z 90 degrees clockwise

In fact, various complex operations admit a geometrical interpretation. An excellent reference source
for this can be found at the following URL: http://www.clarku.edu/~djoyce/complex.

Let’s see the functions in detail.

ZMOD Module of z [z|=SQR(X"N2+y"2) Does LastZ

ZARG Argument of z a=ATAN(y/X) Does LastZ

This pair of functions calculates the module (or magnitude) and the argument (or angle) of a complex
number, given by the well-known expressions:

|z| = SQR(X* +y*)
o = ATAN(y/x)

Since they use the internal [TOPOL] routine (like R-P does), the argument will always be given between
180 and —180 degrees (or equivalent in the selected angular mode).

The result is saved in the complex Z register, and the real X,Y stack levels — as a complex number with
zero imaginary part. The original complex number is stored in the LastZ register. The other complex
stack levels W, V, U aren't disturbed.

These functions display a meaningful description when used in run mode, as can be seen in the
pictures below, for z= 5+4 j and RAD mode.

i zhMHd 3 dLz-db 15
USER 12 USER RAD 12

417 User Manual Page 34 of 90

http://www.clarku.edu/%7Edjoyce/complex.

(c) Angel M. Martin - June 2013

| ZNORM | Norm of z | 11Z]|=]z]~2 | Does Lastz

This function calculates the norm of a complex number, also known as the square of its module”
llz|| = |z|*; thus: Znorm = x* + y?

When executed in run mode, the display shows a meaningful representation for it, like in the example
below, also forz=4+5j:

| ZSIGN | Module of z | Z=27/|7| | Does LastZ |

This function calculates the sign of a complex number. As an extension to the SIGN function for the
real domain, it is a complex number with magnitude of one (i.e. located on the unit circle), that
indicates the direction of the given original number. Thus obviously: Zsign =z / |z|

A
e £
N
ign y=In@)
a |
|
17Z I —
)y
|
|
|
z3

The figure above shows the unit circle and the relative position in the complex plane for the opposite (-
z), conjugate (zc), and opposite conjugate (-zc) of a given nhumber z.

Note that the inverse of z (1/z) will be located inside of the unit circle, and over the direction defined by
the negative of its argument [-Arg(z)]

Note that if z happens to be a cubic root of another number (i.e. Z*), then the other two roots (z, and
z3) will have the same module and be located at 120 degrees from each other, on the red circle line.

417 User Manual Page 35 of 90

(c) Angel M. Martin - June 2013

ZNEG Opposite of z Z=-7 Does LastZ
ZCHSX Opposite of z by X Z=(-D)"x *z Does LastZ
ZCONJ Conjugate of z Z=X-Y j Does LastZ

This pair of functions calculate the opposite- or the multiple-opposite by (-1)"x — and the conjugate of
a complex number z=x+y i, as follows:

z=-x—-yI, and Z =x-yI

See the figure below for the geometric interpretation of ZNEG and multiplication by real numbers:

214
3z
|:1-‘.'r.'.l| mu“iples (:l[a 2. ’r
i o« W .2 | 2
g C(:mplex nu F"HEIZ'F i _—
.~
il —W -lT _22
Z*1 Multiply by i Z=7*i Rotates z 90 deg ccw
Z/1 Divide by i Z=zfi Rotates z 90 deg cw

The main role of these two functions is as subroutines for the trigonometric set, and they are also
provided for completion sake. Their geometric interpretation is a 90 degrees rotation of the complex
number either clockwise or counter-clockwise respectively.

These functions are used as subroutines for several others, like the direct and inverse trigonometric.
The dependencies between hyperbolic and trigonometric ultimately involves multiplication by i, which is
really a matter of swapping the real and imaginary parts, with the appropriate sign change in each
case.

417 User Manual Page 36 of 90

(c) Angel M. Martin - June 2013

6.2 Complex Comparisons.

The 41Z module includes a comprehensive set of comparison checks, based on the complex numbers
themselves and their modules (for relative position in the complex plane). Checks for purely real or
imaginary cases are also provided. The main utilization for these functions is in program mode, as
conditional decisions under program control based on the different values.

Table 6.2. Complex comparisons function group.

Index | Function Formula Description

1 2=0? Is z=07? Checks if z is zero

2 Z#0? Is z#0? Checks if z is not zero

3 2=1? Is z=i? Checks if z is the imaginary unit

4 Z=W? Is z=w? Checks if z and w are the same

5 Z=WR? Is z=w rounded? Checks if rounded z and rounded w are the same
6 Z#W? Is z#w? Checks if z and w are different

7 ZUNIT? Is |z]=1? Checks if z is on the unit circle

8 ZIN? Is |z]<1? Checks whether z is inside the unit circle

9 Z0UT? Is |z|>1? Checks whether z is outside the unit circle
10 ZREAL? Is z a real number? Checks whether Im(z)=0

11 ZIMAG? Is z true imaginary? | Checks whether Re(z)=0

12 ZINT? Is z true integer? Checks whether Im(z)=0 and FRC[Re(z)]=0

It's well know that, contrary to real numbers, the complex plane isn't an ordered domain. Thus we can't
establish ordered relationships between two complex numbers like they are done with real ones (like
x>y, X<y?, etc.).

There are however a few important cases that can also be used with complex numbers, as defined by
the following functions.- As it is standard, they respond to the “do if true’ logic, skipping the next
program line when false.

Z=W-? Compares z with w Are they equal?
ZH#HW? Compares z with w Are they different?
Z=WR? Compares z with w rounded | Are they equal?
Z2=0? Compares z with zero Are they equal?
Z#0? Compares z with zero Are they different?
Z=I? Compares z with i Are they equal?

The first two functions compare the contents of the Z and W stack levels, checking for equal values of
both the real and imaginary parts.

Z=w iff Re(z)=Re(w) and Im(z)=Im(w)
The third function, Z=WR? Will establish the comparison on the rounded values of the four real
numbers, according to the current display settings on the calculator (i.e. number of decimal places

shown). This is useful when programming iterative calculations involving conditional decisions.

Rnd(z) = Rnd(w) iff rnd[Re(z)]=rnd[Re(w)] and rnd(Im(z)] = rnd[Im(w)]

417 User Manual Page 37 of 90

(c) Angel M. Martin - June 2013

The remaining three functions on the table are particular applications of the general cases, checking
whether the Z complex stack level contains zero or the imaginary unit:

z=0 iff Re(z)=0 and Im(z)=0
z=i iff Re(z)=0 and Im(z)=1

Some of the inverse comparisons can be made by using standard functions, as follows:

- use X#0? To check for Z#0? Condition
- Use X#0? To check for Z#I? Condition

ZUNIT? Checks if z is on the unit circle
ZIN? Checks if |z| <1
Z20UT? Checks if |z|>1

These three functions base the comparison on the actual location of the complex number referred to
the unit circle: inside of it, on it, or outside of it. The comparison is done using the number’s modulus,

Unit Circle
. cos(@+0) + 7 sin(0+¢)
) | 5
4.' . W
————— - cos¢+ ising
-1 ; i 1.k
| |
v . S
™,
_‘; ~ocosO+ [sind

as a measure of the distance between the number and the origin.

Example. For z=4+5j , calculate its sign and verify that it's located on the unit circle:

5, ENTER”, 4, ZSIGN, - result: Zsign = 0,62+0,78 j
ZUNIT? - result: “YES”
DEG, POLAR - result: 1,00 < 51,34 (in degrees)

In program mode the behavior is ruled by the “do if true” rule, skipping the next line if false.

417 User Manual Page 38 of 90

(c) Angel M. Martin - June 2013

[

/ . W

T
|

Reciprocal
1/z F
a nA
(.:Uﬁilr]:1’[(:
-+ Z
ZREAL? Checks if z is purely real
ZIMAG? Checks if z is purely imaginary
ZINT? Checks if z is an integer

The first two functions check whether the complex number is purely a real or imaginary number.
Do not mistake these comparison functions with the other pair, {ZREAL and ZIMAG}, which cause the
number to change to become either real or imaginary — nor with {ZREAL” and ZIMAG”}, which are
used to input complex numbers of the selected type based on the value stored in the real stack level X.
The third one extends the scope of ZREAL?, adding the condition of being a true integer number:

- ZINT? True means ZREAL? True, and FRC(Re(z))=0

Do not mistake it with ZINT, which causes the complex number to have no decimal figures in BOTH its
real and imaginary parts — therefore it’s result not a Real number

ZINT? Is used in the FOCAL programs to calculate Bessel Function, as a quick an effective way to
determine if the order is integer — which triggers different expressions for the formulas.

Like it occurs with any built-in comparison function, there’s no action taken on the original number,
which will remain unchanged.

417 User Manual Page 39 of 90

(c) Angel M. Martin - June 2013

7. Complex Trigonometry.

Table 7.1. Complex trigonometry function group.

Index | Function Formula Description

1 ZSIN sin z = -i *sinh (iz) Complex Sine

2 ZCO0S cos z = cosh (iz) Complex Cosine

3 ZTAN tan z = -i * tanh (iz) Complex Tangent

4 ZHSIN sinhz=1/2 * [erz — eN-Z] Complex Hyperbolic Sine

5 ZHCOS coshz = 1/2 * [eNz + eN-Z] Complex Hyperbolic Cosine

6 ZHTAN tanh z = (e~z-e”-z)/(e”z+e”N-z) | Complex Hyperbolic Tangent

And their inverses:

7 ZASIN asin z = -i * asinh (iz) Complex Inverse Sine

8 ZACOS acos z = nf2 — asin z Complex inverse Cosine

9 ZATAN atan z = -i * atanh (iz) Complex Inverse Tangent

10 ZHASIN asinh z = Ln[z + SQ(z"2 + 1)] Complex Inverse Hyperbolic Sine
11 ZHACOS acosh z = Ln[z + SQ(z"2 - 1)] Complex Inverse Hyperbolic Cosine
12 ZHATAN atanh z = 1/2 * Ln[(1+2)/(1-2)] Complex Inverse Hyperbolic Tangent

This section covers all the trigonometric and hyperbolic functions, providing the 41Z with a complete
function set. In fact, their formulas would suggest that despite their distinct grouping, they are nothing
more than particular examples of logarithm and exponential functions (kind of "logarithms in disguise?.

Their usage is simple: the argument is taken from the complex-Z level and a/ways saved on the LastZ
register. The result is placed on the complex-Z level. Levels W, V, U are preserved in all cases,
including the more involved calculations with ZTAN and ZATAN (those with the devilish names), for
which extensive use of scratch and temporary internal registers is made.

The formulas used in the 417 are:

sinh z = 1/2 * [e* — 7]
coshz = 1/2 * [e* + €7]
tanh z = (e°— e?)/(e* + €7)

sin z = -i *sinh (iz)
cos z = cosh (iz)
tan z = - i * tanh (iz)

asinh z = Ln[z + SQ(Z* + 1)]
acosh z = Ln[z + SQ(z* - 1)]
atanh z = 1/2 * Ln[(1+2)/(1-2)]

asin z = -i * asinh (iz)
acosz =n /2 —asinz
atan z = -i * atanh (iz)

So we see that interestingly enough, the hyperbolic functions are used as the primary ones, also when
the standard trigonometric functions are required. This could have also been done the other way
around, with no particular reason why the actual implementation was chosen.

Example. Because of their logarithmic nature, also the inverse trigonometric and hyperbolic functions
will be multi-valued. Write a routine to calculate all the multiple values of ASIN z.

01 LBL "ZASIN” 08 ZRCL 15 ZAVIEW

02 ZASIN 09 ZNEG 16 PSE

03 ZSTO 10 ZSTO 17 E

04 ZAVIEW 11 RCL 02 18 ST+ 02

05 E 12 PI 19 GTO 00

06 STO 02 13 * 20 END

07 LBL 00 14 +

417 User Manual Page 40 of 90

(c) Angel M. Martin - June 2013

The 41Z module now also includes new functions to calculate next values for complex ASIN, ACOS and
ATAN, as follows: NXTASN, NXTACS, and NXTATN. Using the first one the program above changes
to this very simplified way:

01 LBL "ZASINZ2” 04 ZAVIEW 07 END
02 ZASIN 05 NXTASN
03 LBL 00 06 GTO 00

EQ =
The key map is shown in the figure on the right, and can be El I__*L

accessed using: ASINH ATANH

ACOSH
SINH [cosH) {1anH
o [SHIFT] for the direct ones, and E] Q Q
. , [SHIFT], [SHIFT] for the inverses.

Using the general expressions we can obtain the multiple values of a given function from its principal
value “2" of a given function, as follows:

Ln(k)=Ln + 2kx J

asin(k)=(-1)"k * asin + kn
Z+27m j acos(k)=+/- acos +2kn

atan(k) = atan +knx

Z+m z+2n z4+3rn Z+4n

B Z4nj
-Z -z+2n Z+4n e -z+6n
______ e e —
-Z-1 2t Z+3rn : Z+5n -z+7n
7
z, e

N -k
-OTl

- the multiple values for ASIN(z) -in green squares- are placed on the two straight lines parallel
to the x axis, y=Im[ASIN(z)] and y=—Im[ASIN(z)], and are separated at intervals of 2= length
on each line.

417 User Manual Page 41 of 90

(c) Angel M. Martin - June 2013

- the multiple values for ACOS(z) —in yellow circles— are placed on the same two straight lines,
and are separated at intervals of 2x length on each line.

- the multiple values for ATAN(z) —in brown triangles- are placed on the upper of those straight
lines, separated at intervals of = length on it.

- the multiple values for Ln(z) —in blue squares- are placed on the vertical straight line
x=Re[LN(z)], and separated at intervals of 2r length on it.

- the three different values for z1/3 are placed in the circle r=|z|~1/3, and are separated at
120 degrees from each other (angular interval).

NXTASN Next Complex ASIN Does LastZ
NXTACS Next Complex ACOS Does LastZ
NXTATN Next Complex ATAN Does LastZ

Let z0 be the principal value of the corresponding inverse trigonometric function. Each of these three
functions returns two values, z1 and z1’ placed in complex stack levels Z and W. z1 will be shown if the
function is executed in RUN mode. You can use Z<>W to see the value stored in W (that is, z1")

The NEXT values z and z1' are and given by the following recursion formulas:

Next ZASIN:

Z1 =20+ 2 pi
Z1'=-Z0 + pi
Next ZACOS:
Z1 =270+ 2 pi
Z1' =-70 + 2 pi
Next ZATAN:
Z1=70 + pi
Z1'= 70 - pi

The figure on the right plots the multi-valued
imaginary part of the complex logarithm function,
which shows the branches. As a complex number z
goes around the origin, the imaginary part of the
logarithm goes up or down:

For further information on multi-valued complex functions see the following excellent reference:
http://en.wikipedia.org/wiki/Branch point

Note: See section 9 ahead for further details on multi-valued functions, with the FOCAL driver program
ZMTV (ZmulTiValue) that calculates all the consecutive results of the eight multi-value functions.

417 User Manual Page 42 of 90

http://en.wikipedia.org/wiki/Branch_point

(c) Angel M. Martin - June 2013

8. 2D-vectors or complex numbers?

One of the common applications for complex numbers is their treatment as 2D vectors. This section
covers the functions in 41Z that deal with vector operations between 2 complex numbers.

Table 8.1. 2D vectors function group.

Index | Function Formula Description

1 ZWANG Arg(ZW) = Arg(Z) — Arg(W) Angle between 2 vectors

2 ZWDIST IW-Z| = SQR[(Wx-Zx)"2 — (Wy- | Distance between 2 points
Zy)"2]

3 ZWDOT Z*W = ZxX*Wx + Zy*Wy 2D vector Dot product

4 ZWCROSS | Z x W = |z| *|w] *Sin(Angle) 2D vector Cross product

5 ZWDET [ZW] = Wx*Zy — Wy*Zx 2D determinant

6 ZWLINE a=(Y1-Y2) / (X1-X2) Equation of line through two points
b=Y2 — a*X2

These functions use W and Z levels of the complex stack, leaving the result in level Z after performing
complex stack drop. The original contents of Z is saved in the LastZ register.

The following screen captures from V41 show the different displays for these functions:

Let z = 4 <45 degrees, and w= 3 <75 degrees .

45, ENTERN, 4, ZREC -> 2,828(1+j)
ZREPL [dont forget or Z will be overwritten]
75, ENTER”, 3, ZREC -> 0,776 + 2,898]

2) ZWANG,- angle defined between both vectors (in degrees in this case)
2) ZRDN, LASTZ, ZWDIST — distance between both complex numbers

dlm=38 P R T
WSER and USER 12

The angle will be expressed in the selected angular unit.

2) ZRDN, LASTZ, ZWDOT - dot product of both vectors
4. ZRDN, LASTZ, ZWCROSS - magnitude of the cross product of both vectors

ZEW=- 12392 TXH-5
USEH d USER
an

5. ZRDN, LASTZ, ZWDET - magnitude of the determinant of both vectors
6. ZRDN, LASTZ, ZWLINE - equation of the straight line linking both points

Vo-Buaifx+9c7

USEH

and

(*) Note that despite having a simpler formula, ZWDET shows less precision than ZWCROSS.

417 User Manual Page 43 of 90

(c) Angel M. Martin - June 2013

9. It's a Gamma/Zeta world out there.

This section describes the different functions and programs included on the 41Z that deal with the
calculation of the Gamma and Zeta functions in the complex plane. A group of five functions in total,
two completely written in machine code and three as FOCAL programs, plus a couple of example
application programs to complement it.

Table 9.1. Gamma function group.

ZGAMMA Complex Gamma function for z#-k, k=integer Does LastZ
-HL ZMTH Auxiliary Product PROD[(z+n); n=1,..6] | Does LastZ
ZPSI Complex Digamma (Psi) see below FOCAL program
ZLNG Gamma Logarithm see below FOCAL program
ZZETA Complex Riemann Zeta For z#1 FOCAL program

ZGAMMA uses the Lanczos approximation to compute the value of Gamma. An excellent reference
source is found under http://www.rskey.org/gamma.htm, written by Viktor T. Toth. Remark that
ZGAMMA is implemented completely in machine code, even for Re(z)<0 using the reflection formula
for analytical continuation.

For complex numbers on the positive semi-plane [Re(z)>0], the formula used is as follows

0 = 75122.6331530
g,2" 0= 80916.6278952

[[z) = 2247 (z + 5_5)“05 PRty g = 36308.2951477
l_Lliz +) O = 8687.24529705

#=0. Qe = 1168.92649479

i Os = 83.8676043424

I'(l1-2)T(z) = sin (72) Qo = 2.5066282

And the following identity (reflection formula) is used for numbers in the negative semi-plane:
[Re(z)<0]: which can be re-written as: I'(z) * I'(-z) = -n / [2*Sin(= z)]

For cases when the real part of the argument is negative [Re(z)<0], ZGAMMA uses the analytical
continuation to compute the reflection formula — all internal in the MCODE and transparent to the user.
Example 1.- Calculate T(1+i)

1, ENTER”, ZGAMMA -> "RUNNING...”, followed by -> 0,498-j0,155

Example 2.- Verify that T'(1/2) = SQR(r)

0, ENTER”, 0.5, ZGAMMA -> 1,772 +j0
PI, SQRT, ZREALA, Z- -> -2,00E-9 + jO
Example 3.- Calculate T'(-1.5+i)

1, ENTER#, 1.5, CHS, ZGAMMA -> 0,191 +j0,174

417 User Manual Page 44 of 90

http://www.rskey.org/gamma.htm

-

(c) Angel M. Martin - June 2013

-> 2,400E-9+j3,000E-10

Page 45 of 90

¥=Tx

0 and negative integers.

The graphic below (also from the same web site) shows Gamma for real arguments. Notice the poles at
X

TN
ﬁ‘.e,.e.w.m A N
AV @.v-*.ﬁ%td.

o

A0
A

The following graphic showing the module of the Complex Gamma function is taken from
http://en.wikipedia.org/wiki/Gamma function.- Note the poles at the negative integers and zero.

NG+l |

Use ZLNG to calculate G(1+i) and compare it with the value obtained by ZGAMMA

1, ENTER”, ZGAMMA, LASTZ, ZLNG, ZEXP, Z-

417 User Manual

Example.

http://en.wikipedia.org/wiki/Gamma_function

(c) Angel M. Martin - June 2013

Program listings.-

The two FOCAL programs listed below calculate the Digamma and the Gamma functions for complex
arguments. The first one is an example using the asymptotic approximation as described below, whilst
the second one is an extension of the MCODE function ZGAMMA, using the reflection formula for
arguments with Re(z)<1 (programmed in turn as another MCODE function, ZGNZG).

01 LBL "ZPSI" | 2% I | 01 |LBL "7G" |
02 ZREPL 277 N 02 ZENTER»
03 TE3 281X 03 XY
04 STO O 29 ZREAL~ 04 X#0?
05 CLZ 30 Z- 05 GTO 00 —
06 LBL 00 Hr 06 XY
v F==\W 32 0,1 v X=07
08 RCL O 33+ 08 GTO 00 —>
09 INT M 09 INT
10 + B 10 LASTX
11 ZINV 36 - 11 X#Y?
12 I+ KTy i 12 GTO 00 —>
13 15G O /s 12 13 0
14 GTO 00 39 = ZREAL~ 14 17X
15 Z5TO 40 U 15 LBL 00 <«
16 1 41 ZRCL (0D) 16 ZRDN
17 Z<=W 42 | |ZILN 17 CF 00
18 8 43 | |LASTZ 18 X<0?
19 + 44 |ZHALF 19 SF 00
20 ZINV 45 I+ 20 FS? 00
21 Z5TO (00) 46 I 21 INEG
22 72 47 IRCL 22 ZGAMMA
23 ZREPL 48 1 23 FC? 00
24 20 49 I 24 GTO 01
25 ZREAL~ 50 ZAVIEW 25 LASTZ

51 END 26 ZGNZG

27 Z<=W
for x=8 28 i)

Psix) = In 3 - 1/(2x) -1/{12x%) + 1/(120x*) - 1/(252x%) + 1/(240x%) 29
together with the relationship: Psi(x+1) = Psi{x) + 1/x 30 ZAVIEW
3 END

Approximation for Digamma when x>8

1 1 { 1
V(z) =log(z) — 5~ 755 + 150,7 ~ 359.6 T ¢ (IS)

programmed as: u~2{[(u~2/20-1/21)u~2 + 1/10Ju~2-1}/12—-[Lnu + u/2],

where u=1/x; and using the following precision correction factor when x<8
1
U(x+1)="V(x)+ .

The next expression shows Stirling’s approximation for Gamma:

[2 1\
['(z) = ; Jz\/zsmh + 2005 |

417 User Manual Page 46 of 90

(c) Angel M. Martin - June 2013

The following two programs calculate the Logarithm of the Gamma function for complex arguments.
The first one uses the Stirling approximation, with a correction factor to increase the precision of the
calculation. This takes advantage of the ZGPRD function, also used in the Lanczos approximation.

1 1
2InT(z) ~ In(27) — 1 21 1 inh -4+ ——)—-2),
nI'(z) ~ In(27) nz+z(nz-+ n(zsm z+81[]2,5))

correction factor: LnG(z) = LnG(z+7) — Ln[PROD(z+k) | k=1,2..6]

The second one applies the direct definition by calculating the summation until there’s no additional
contribution to the partial result when adding more terms. In addition to being much slower than the
Stirling method, this is also dependent of the display precision settings and thus not the recommended
approach. It is not included on the 41Z but nevertheless is an interesting example of the utilization of
some of its functions, like Z=WR? And the memory storage registers, ZSTO and ZRCL.

Inl'(z) = —yz—Inz + Z E —In (1 + %H

01 |LBL "ZING" | | 01 |LBL "ZING2"|

02 |7 02 Max ZREGZ | Size

03 |+ 03 5TO 02 A y

04 ZS5TO0 (00) 04 RDN r 3

05 Text-0 NoP | 05 | |ZSTO (00) 0 rFo-

06 |6 06 XEQUO05 r 3

07 CHS 07 [LBL 00 1 ro-

08 77X 03 | ZENTER~ r =

09 810 09 XEQ 05 2 ro

10 ST/ Z 10 Is r 5

1 ! 11 Z=WR? 3 r g

12 ZRCL (00) 12 GTO 02 r 10

13 ZINV 13 GTO 00 4 F o1

14 ZSINH 14 r i

15 | ZRCL {00) 15 ZRCL (00) 5 r 13

16 |I* 16 ZLN r 1

17 I+ 17 £- 6 4ET:

18 ZLN 18 |ZRCL {00) r T

19 ZRCL (00) 19 0,5772156649 7 Foq7

20 ZLN 20 5T 7 r 18

21 ZDBL 21 8 F 1o

22 I+ 22 £- r =0

23 2 23 |ZAVIEW 9 F o

24 - 24 RTN r 55

25 ZRCL (00) 25 |LBL 05 10 r 53

2% I 26 |ZRCL (00) r o1

27 ZRCL (00) 27 RCL 02 11 ros

28 ZLN 28 ST/ Z

29 - 29 f

i P 30 |ZENTER~

31 5T+X 311 The table on the right shows the
32 LN 32 |+ correspondence between the
33| |+ 33 |ZLN complex register number(CRnn)
34 ZHALF 34 Z and the required SIZE in the
38 ZRCL (00) 35 ! calculator. Note that a minimum of
36 Text-0 NOP 36 ST+ 02 " .

37 7 37 RDN SI_ZE 003 is required for CROO to
8 - 38 END exist.

39 ZGPRD

40 ZLN

4 -

42 ZAVIEW

43 END

417 User Manual Page 47 of 90

(c) Angel M. Martin - June 2013

Riemann’s Zeta function.

Included in the 41Z is an implementation of the Borwein algorithm to calculate the Zeta function.
Considering the task at hand this does an excellent job, providing accurate results in acceptable
execution times. Obviously won't win the speed contest, nor will it help you find non-trivial zeroes
outside of the critical strip ©

Example: calculate {(2)

2, ZREAL™, ZZETA -> 1,645+30
FIX 9 -> 1,644934066

The program is a modified version of JM Baillard's ZETAZ, written for complex arguments — only
adapted to use the 41Z complex stack and related functions. See the program listing in next page if
interested. The algorithm is summarized as follows:

1. For the case Re(2)<0.5 , 2 formulas may be used

C(2) = ¢(1-2z) 27z w™(z-1) sin(n(z/2)) T'(1-2)

&(2) = ¢(1-2) n™N(z-1/2) T((1-2)/2) | T(2/2)

2. If Re(z) >=0.5

&(z) = x(2) / (1-27(1-2))
where:
v (2) = Z{(-1)"k/k"~z}, k=0,1,2,...

is calculated by:
x (2) = (-1/dn) Z{(-1)~k (dk-dn)/(k+1)"z}, k=0 to n-1

where:
dk = n Z{(n+j-1)! 47)/((n-)'(2)'}, j=0 to k
with an error:
| e| <= (3/(3+sqrt(8))™n) [1+2 Im(z) Jexp [p Im(z) / 2]
Note that dk is calculated using the following approach:
dk = e(0)+e(1)+...+e(k)
where : A
6
e(0)=1 and

2(n"2 =jn2) e(d) a
e(j+1) =

[(1+))(2j+1)]

417 User Manual Page 48 of 90

(c) Angel M. Martin - June 2013

FOCAL program for ZZETA:- Uses R0O to R11. No Flags used.

[o1 LBL "ZZETA" | " 51 ST+ X "101 xm2

" 02 X=0? " 5 LN1+X " 102 RCL 10
" 03 GTO 00 " 53 + " 103 DSE X
"o s " 54 3E10 " 104 NOP

" 05 CHS " 55 LN "105 xm2

" 06 ZAVIEW " 56 + "106 -

" 07 RTN " 57 8 "107 sT+x
[o8 lBLoO <— | " 58 SQRT " 108 /

" 09 CF 00 " 59 3 " 109 STO 03
" 10 ZSTO 03 RO6 - Re(2) " 60 + "110 sT+05
"1 ZSTO 00 RO7 - Im(2) " 61 LN "1 DSE 10
"1)5) / " 112 GTO 01
" 13 X<=Y? " 63 INT " 113 RCL 05
" 14 GTO 00 " 64 E "114 s1/08
" 15 SF 00 " 65 + "115 sT/09
" 16 SIGN " 66 STO 10 "116 RCLO7
" 17 ; " 67 STO 02 " 117 CHS

" 18 ZNEG RO6: -Im(z) | 68 LASTX " 118 STO 11
" 19 ZSTO 03 RO7:0,5-Re(z) | 69 STO 11 " 119 RCL 06
" 20 XEQ 00 " 70 STO 03 "120 cHs
"1 ZRCL 00 " STO 05 "1 2
"» ZNEG " n CHS " 122 LN

" 23 E " 73 X<>Y T3 ok

" 24 + " 74 yAX "124 E
T D " 75 CHS " 125 RAD

" 26 ST/ 2 " 76 STO 04 " 126 P-R

" 27 / " 77 X " 127 ENTERA
" 28 ZGAMMA " 78 STO 08 " 128 DEG
"9z " 79 STO 09 "129 E

" 30 ZRcLOO [80 LBLO1 "130 sT+#11
31 5 " 81 ZRCL 03 T131 -

"3 ;) ZNEG 132 RCL 11
"33 Pl " 83 RCL 10 "133 2nx1
" 34 XAZ " 84 XAZ T34 sT*z
" 35 z* g RCL 05 " 135 X<> T
" 36 ZRCL 00 " 86 RCL 04 "136 STHT
37 N " g7 CHS " 137 ST+T
" 38 ST/ 2 " g3 STO 04 " 138 RDN

" 39 / " g9 * "139 o+

" 40 ZGAMMA " 90 ST* 7 "140 zsT/04
"4 z/ " a1 * "141 zRcLo4
e ZAVIEW) ZST+ 04 " 142 FC? 00
" 43 RTN " 93 RCL 10 "143 zZAVIEW
[a4 LBLOO €« Y ENTERA " 144 END

" 45 Pl " o5 ST+Y

T4 D " 9 ST* Y

i 47 / r 97 -

" 48 RCL 06 Re(2) " 98 RCL 03

" 49 ABS " 99 *

" 50 ST* Y " 100 RCL 02

417 User Manual Page 49 of 90

(c) Angel M. Martin - June 2013

10. Application programs.

Most of the following functions in the 41Z are in reality FOCAL programs (the exceptions being ZAWL
and ZHGF), included as application examples because of their applicability and as a way to illustrate
actual programming of the complex number functions of the module.

Index | Function Description Author

0 ZWYE Delay-Wye Conversions AM

1 ZQRT Roots of Quadratic equation AM

2 ZCRT Roots of Cubic equation AM

3 ZMTV Multi-valued functions AM

4 ZPROOT Roots of a polynomial of any degree Valentin Albillo
5 ZSOLVE Solves f(z)=0 by secant method AM

6 ZWL Lambert-W function JM Baillard & AM
7 ZAWL Inverse of Lambert-W AM

8 ZLIN Polylogarithm AM

8b ZLI2 Dilogarithm AM

9 ZLRCH Lerch Transcendent Function AM

10 ZHGF Hypergeometric Function JM Baillard

Note 0.- Program ZWYE is not included in the module, all the others are.

Note 1.- All of these functions appear on CAT'2 as M-Code entries, instead of as FOCAL programs. This
is achieved by using a clever technique shown by W. Doug Wilder (author of the BLDROM), which
allows cleaner and convenient program listings (no ugly "XROM" description before the program title).

These programs cannot be copied into main memory using COPY. Another drawback is that they are
interpreted as PRIVATE by the 41 OS, nor could they be “looked-up” using GTO + global LBL, since
there’s no global LBL for them.

Note 2.- In version 9L the FAT entry for ZMTV was removed — the same functionality exists accessed
via the launcher menus. Refer to the following sections for details.

Note 3.- The Hypergeometric Function is the preferred method used for the calculation of the
Exponential Integrals and the Error function — which have been programmed as simple FOCAL
examples of the former. See the descriptions in the SandMath module users’ Manual for additional
reference.

Note 4.- The programs supplied for the Polylogarithm and Lerch functions are simplified and necessarily
non-rigorous, not using contour integrals or residues. See the references below for a formal treatment
of the problem, clearly exceeding the scope of this manual.-

http://rspa.royalsocietypublishing.org/content/459/2039/2807.full.pdf
http://rspa.royalsocietypublishing.org/content/463/2080/897.full.pdf

417 User Manual Page 50 of 90

http://rspa.royalsocietypublishing.org/content/459/2039/2807.full.pdf
http://rspa.royalsocietypublishing.org/content/463/2080/897.full.pdf

(c) Angel M. Martin - June 2013

10.0.- EE’s Time: Delta-Wye Transformation.

To open this section of the manual here’s a token of appreciation for the EE audiences — using the 41Z
to tackle a classic: Delta-Wye impedance transformation for 3-phase systems. The simple program
below is all there is to it — behold the power of the 41Z complex stack in action :-)

Delta <-> Why conversions |

LBL "D-Y [LBL "DYD" |
SF 00 ZRCL 00 Za / Zab
GTO 00 ZRCL 01 Zb / Zbc
LBL "Y-D [z+ Za+Zb / Zab+Zbc
CF 00 FC? 00
LBL 00 GTO01 —
"Za" ZRCL 02 Zab
FS? 00 Z+ Zab+Zbc+Zca
- ZINV 1/(Zab+Zbc+Zca)
lnf=p" |zRPLA
IPROMPT IZRcL 00 Zab
[2ZSTO00 |ZRCLO2 Zca
"Zb" zZ* ZabZca
FS? 00 z* Za = ZabZca
"l Z<>W 1/(Zab+Zbc+Zca)
o-=2n 1ZRCL 01 Zbc
lpROMPT 2Rt 00 Zab
lzsto01 Iz ZabZbc
"Zc" 723 Zb = ZabZbc/(Zab+Zbc+Zca)
FS? 00 ZRUP 1/(Zab+Zbc+Zca)
e ZRCL 02 Zca
|"[-=2" |ZRCL 01 Zbc
|PROMPT z* ZbcZca
281002 1Z* Zc = ZbcZca/(Zab+Zbc+Zca)
XEQ "DYD" RTN
ZSTO 02 lBLO1 €
ZRDN LASTZ zb
ZSTO 01 ZRCL 00 Za
ZRDN z* zazb
ZSTO 00 ZRCL 02 Zc
ZRDN z/ Zazb/Zc
ZRDN Z+ Zab = Za+Zb+ZaZb/Zc _ ZyZ,
ZVIEW 00 ZRCL 01 Zb 1 Z +Z,+E,
ZVIEW 01 ZRCL 00 Za
ZVIEW 02 z/ Zb/Za 7o g
RTN ZRCL 02 Zc 4 I 4+Z,+Z,
Z* ZbZc/Za
LASTZ Zc Z, = Zay
Z+ Zc+ZbZc/Za Za + Ea + Zc
ZRCL 01 zb
Z+ Zb+Zc+ZbZc/Za
ZRCL 00 Za
ZRCLO1 Zb A fac C A G
z/ Za/Zb Y
ZRCL 02 Zc by Fhe Za Zc
z* Zazc/zb Zab™, —
LASTZ Zc Zh
Z+ Zc+ZaZc/Zb B
ZRCL 00 Za
7+ Za+Zc+ZaZc/Zb
RTN

417 User Manual Page 51 of 90

http://www.smps.us/delta-wye.gif
http://skat.ihmc.us/rid=1133627262078_2141500301_4802/AC Delta-Wye.bmp

(c) Angel M. Martin - June 2013

10.1 Solution of quadratic and cubic equations.

ZCRT Roots of cubic equation Main routine
ZQRT Roots of quadratic equation | Main routine
ZQUAD Driver for ZCRT Application Program Not included

ZQRT Solves the roots of a quadratic equation with complex coefficients, as follows:
C:*Z2+ C, ¥z + C3 = 0; where Cy, C,, G5, and z are complex numbers
By applying the general formula:

21, =[-C +/- SQR(CZZ —4C*C3)] /2*Cy

Example 1.- find out the roots of (1+i)*z? + (-1-i)*z + (1-i) =0

XEQ “ZQUAD" ‘az"2+bZ+c=0" followed by:
“IMARE a=?

1, ENTER”, R/S “IMARE b=?

1, CHS, ENTER”, R/S “IMARE c=?

1, CHS, ENTERA, 1, R/S "RUNNING...” followed by:
“ 1,300+j0,625"

R/S * -0,300-j0,625"

We can see that both roots are NOT conjugate of each other, as it occurs with real coefficients.

Note that ZQUAD is just a driver for ZQRT, which expects the three complex coefficients stored in
levels V, W, and Z of the complex stack. Note also that no memory registers are used, and all
calculations are performed using exclusively the complex stack. The core of the program is from lines
16 to 37, or just 21 programming steps to resolve both roots.

Program listing.-
1 LBL "ZQUAD" | | 12| |PROMPT 23 | |ZHALF 34 I+
2 "aZA2+bZ+c=0" 13 | |"RUNNING..." 24 | |INEG 35 ZRDN
3 AVIEW 14 | AVIEW 25 |ZENTERA 36 I+
4 PSE [15 LBL"ZQRT" | | 26 | ZENTERA kT 7RUP
5 "IMARE a=?" 16 | |ZENTERA 27 |Im2 38 SF 21
6 PROMPT 17 | | IRUP 28 | |IRUP 39 ZAVIEW
7 | |TENTER* 18 | |7/ 29 |1 40 Z<>W
8 "IM*RE b=?" 19 | LASTZ 30 | ZSQRT 41 CF 21
9 PROMPT 20 ZRUP 31 | | ZENTERA 42 ZAVIEW
10 | | ZENTER* 21 Z<=W 32 | INEG 43 END
11 | ["IM*RE c=?" 2 1 33 | |ZRUP

Example 2. Obtain the three roots of (1+2i) z~23 - (2-i)z—-3i=0

We type: 2, ENTER®, 1,[2], 0, ZENTERA, 1, ENTER, 2, CHS, [2], [,], 3, ZNEG
to obtain the three solutions in the complex stack, as follows:

XEQ “ZCRT” > z1 =-0,117-30,910
ZRDN > z2 = -0,922+11,047
ZRDN -> z3 = 1,039-10,136

417 User Manual Page 52 of 90

(c) Angel M. Martin - June 2013

Two ways to skin the third-degree Equation Cat.

The programs below show two alternative solutions for the third degree equation roots. Note the
existing symmetry between them, in fact identical until step 31. The version on the left is the
implemented in the 41Z module. Both use a variation of the Cardano-Vieta formulas involving some
trigonometry tricks that notably reduce the number of steps.

1 LBL"ZCRT" Main version LBL "ZCRT2" iternative Version
2 ZRUP a3 ZRUP a3
3 2/ a0/a3 z/ a0/a3
4 ZSTO (00) a0’ ZSTO (00) a0’
5 ZI<5W al I<>W al
6 LASTZ a3 LASTZ a3
7 7/ al/a3 zZ/ al/a3
8 ZSTOO01 a1’ 2STO 01 a1’
9 ZRUP a2 ZRUP a2
10 LASTZ a3 LASTZ a3
11 z/ a2/a3 z/ a2/a3
16 3 3
17 ST/ Z ST/ Z
18/ /
19 ZSTO 02 a2'/3 2STO 02 a2'/3
12 I"N2 a272/9 2 a272/9
13 3 3
14 ST* Z ST* Z
15 * a272 /3 * a272 /3
20 Z- al-a2722 /3 Z- al-a272 /3
21 ZRCL02 a2 /3 ZRCL 02 a2 /3
22 ZI"3 a273/27 "3 a273/27
23 ZDBL 2 a213 /27 ZDBL 2 a213 /27
24 ZRCLO1 al ZRCL 01 al
25 ZRCL 02 a2/3 ZRCL 02 a2/3
26 Z¥ al*a2 /3 Z* al*a2 /3
27 Z- (a243/27)- (a1*a2/3) Z- (a243/27)- (a1*a2/3)
28 ZRCL (00) a0 ZRCL (00) a0
29 Z+ g = a0 + (273 /27)- (a1*a2/3) Z+ g = a0+ (a273 /27)- (a1*a2/3)
30 ZHALF q/2 ZHALF q/2
31 Z<>5W b Z<>W P
32 3 -3
33 ST/ Z ST/ 2
34/ p/3 / -p/3
35 2/ 3g/2p z/ -30/2p
36 LASTZ b/3 LASTZ -p/3
37 ZSQRT sqr(p/3) ZSQRT sqr(-p/3)
38 2STO (00) 2STO (00)
39 2/ 3a/2p / sqr(p/3) z/ -3a/2p / sqr(-p/3)
40 ZHASIN ZASIN
41 3 3
42 ST/ 2 st/ Z
43 f 1/3 asin|] /
44 ZRPLM Fill complex stack ZRPLN Fill complex stack
45 ,002 ,002
46 STO 02 STO 02
47 RDN RDN
| 48 LBL0O2 Data output loop LBL 02 Data output loop
49 RCLO02 RCL 02
417 User Manual Page 53 of 90

(c) Angel M. Martin - June 2013

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

INT
120

D-R

%

ST+2
RDN
ZHSIN
ZRCL (00)
Z*

ZDBL
ZNEG
ZRCL 02
Z-
ZAVIEW
ZRUP
ISG 02
GTO 02
END

2k /3

ladd to imaginary part
tidy up stack

a2/3

Show progress...
lsave in Z-stack
Increase counter
Go for next

done

INT
120

D-R

*

+

ZSIN
ZRCL (00)
Z*

ZDBL
ZRCL 02
Z-
ZAVIEW
ZRUP
ISG 02
GTO 02
END

2k /3

ladd to real part

a2/3

lsave in Z-stack
Increase counter
Go for next
done

As you can see the density of 41Z functions is remarkable. The 41Z complex function set and complex
stack enables the programmer to treat complex calculations as though they used real numbers, not
worrying about the real or imaginary parts but working on the complex number as single entity. In fact,
exercising some care (notably to ensure complex stack lift), you could almost translate one-to-one
many FOCAL programs by replacing the standard functions with the equivalent complex ones. That's
why it's important that the function set be as complete as possible, and that the complex stack

implementation follows the same RPN conventions.

- 3

417 User Manual

Page 54 of 90

(c) Angel M. Martin - June 2013

10.2 Lambert W function.

ZWL Lambert W(z) FOCAL program

ZAWL Inverse of Lambert-W z* enz Does LastZ

These two functions provide a dedicated way to compute the Lambert-W function and its inverse.
The FOCAL program uses an iterative method to compute W(z), using z0=1+Ln(z) as initial guess for
Re(z)>0, and simply z0=(1+ i) elsewhere.

This program is based on a real-mode version written by JM Baillard, just applying the seamless
transposition method provided by the 41Z module. In the vast majority of cases convergence is
provided for all complex arguments, with 8-decimal digits accuracy. It uses the Z=WR? Function on
FIX 8 mode to determine that two consecutive iterations are equal.

The inverse function is a simple product: W(z) = z * e~z.

Not worth the FAT entry, you say? For one thing, doing it in MCODE allows for 13-digit accuracy in the
results. Besides how often will you forget the exact formula? Better safe than sorry...

LBL "ZWL" [
2=0?

GTO 00

ZSTO (00)

E

+

2=0?

1SG Y(2)

ZIN

FIX 8

IBLO1 <
ZREPL
ZNEG
ZEXP
ZRCL (00)
Z*

Z-
Z<>W

E

+

z/

zZ- /1 T = —
Z=WR? ' ’
GTO 00)
GTO 01 ' i
LBLOO €«———
FIX 3

ZAVIEW

END

W 00N U B WN|=

=
o

[
=

NNNNNRRRRRR R R
B WNRPOWOKODNOGOUWUMAWN

N
(6]

N
[e)]

N N
[o IR N

N
(o]

Another version using SOLVE is listed in section
10.5.1, with slightly more accurate results , but
significantly slower execution and a few trouble
spots (near 1/e and -1/e).

417 User Manual Page 55 of 90

(c) Angel M. Martin - June 2013

10.3 Multi-valued Functions.

| ZMTV | Multi-valued functions | | |

This program calculates all possible values for the multi-valued functions, including the n different N™
roots of a complex number, all the inverse trigonometric and hyperbolic, plus the logarithm itself
(source of all the multi-valued scenarios).

Due to the 64-function limit of the 41 ROM FAT structure. these routines are all part of a common entry
into the module catalog. To access it you use the ZNEXT prompt, followed by the key — i.e:

WA, ["A"], [SHIFT], ["K"]

When invoked, the program prompts a menu of choices as follows:

A — ASIN B — ACOS C: Nth. Root D: ATAN E: Ln
a — HSIN b.- HACOS d.- HATAN

SH TH N TH LU

USER

Or more succinctly:

For each case the program will calculate the principal value followed by all the other values with each
subsequent pressing of [R/S]. Remember that the top keys need to be free from user assignments for
this scheme to work, as per the 41 OS conventions.

All trigonometric functions expect zinto the Z level of the complex stack. Data entry is the same for all
of them except for the n-th root, which expects N in the real-stack register X, and zin Z. Only the first
N values will be different, running into cyclical repetition if continued.

This is a simple program, mostly written to document an example for the 41Z functions. Use it to get
familiar with these concepts, and to understand fully the NXT function set as well.

Example: Obtain all values of ASIN [Sin(1+j)]

1, ENTERA, ZSIN -> 1,298+j0,635
ZMTV ->"S:HC:HN: T:HL:"
-> 1,000+j1

R/S -> 2,142-j1

R/S -> 7,283+j1

R/S -> 8,425-j1

etc...

Alternatively, using the NXTASN function:
Note that here we start with the first value of the function, i.e. 1+j

1, ENTERA, NXTASN -> 7,238+j1

Z<>W -> 2,142-j1
NXTASN -> 8,425-j1
NXTASN -> 14,708-j1

417 User Manual Page 56 of 90

(c) Angel M. Martin - June 2013

Program listing.- Alternative version, superseded in revision 4L.

Note the use of flag 22 for numeric entry: the catalog of functions will display continuously until one
choice is made, (expected between 1 and 8), and all initial prompting will be skipped.

[1 LBL"ZMTV" | " 48 | LBL93 " 95 [LBL92 |
F2 CF22 F 49 ZASIN ¥ 96 ZHACOS
"3 [LBL20 | " 50 zSTO Y97 GTO07 —m—>
4 "FCN#=?1-8 " 51 ZAVIEW " 98 [LBL96 |
5 AVIEW F 52 E 99 ZHATAN
6 PSE ¥ 53 STO 02 "100 [LBL 06 B
7 PSE F 54 LBL 03 101 ZAVIEW
] FC? 22 ¥ 55 ZRCL 102 PSE
9 GTO 90 ¥ 56 ZNEG 103 PI
F10 INT F 57 ZSTO F104 +
11 ABS " 58 RCL 02 105 GTOO06
12 90 Y59 Pl "106 | LBL97 |
F13 + " 60 * 107 ZLN
"14 RDN 61+ "108 | LBL 07 |
15 SF25 F 62 ZAVIEW 109 ZAVIEW
16 [GTOINDT | " 63 PSE "110 PSE
17 GTO20 F 64 E 111 NXTLN
18 [LBL90O <«—} 65 ST+02 "112 GTOO07
19 CF21 " 66 GTOO03 "113 | LBL98
F20 "1:-ZACOS" F 67 LBL 91 114 CFo0O
21 AVIEW " 68 ZACOS 115 "N=?"
22 PSE F 69 ZSTO 116 PROMPT
23 ["2:-ZACOSH" 70 ZAVIEW 117 ABS
24 AVIEW 71 E 118 INT
25 PSE F 72 STO 02 119 Xx=0? zeroth. Root?
26 "3:-ZASIN" F 73 LBL 01 120 RTN
27 AVIEW F 74 ZRCL 121 STOO00
28 PSE 75 RCL 02 122 E
29 |"4:- ZASINH" " 76 ST+X 123 - N-1
30 AVIEW 7 PI 124 sTOO1
31 PSE F 78 * 125 X=0?
32 "5:-ZATAN" F 79 STO 03 126 SF00 unit root?
33 AVIEW " 80 + 127 E
34 PSE F 81 ZAVIEW 128 + N
35 |"6:-ZATANH" F 82 PSE 129 1/X 1N
36 AVIEW F 83 ZRCL 130 z~X main value
37 PSE ! ZNEG 131 SF21
38 "7:-ZLN" F 85 RCL 03 132 ZAVIEW
39 AVIEW ¥ 86 + 133 FS?C00
40 PSE F a7 ZAVIEW 134 GTO08 —
F41 "8:-Z 1N" " 88 PSE "135 | LBL 05 1
42 AVIEW F 89 E 136 RCL 00
43 PSE " 90 ST+ 02 137 NXTNRT
44 GTO20 o1 GTO 01 138 ZAVIEW
¥45 [LBLO95 " 92 | LBLY94 "139 DSEO1
46 ZATAN " 93 ZHASIN 140 GTOO5
47 GTOO06 94 GTOO7 "141 [LBL08 = <« 1
142 CF21
143 END
417 User Manual Page 57 of 90

(c) Angel M. Martin - June 2013

10.4 Roots of Complex Polynomials.

| ZPROOT

| Roots of Polynomials

| By Valentin Albillo |

This program calculates all the roots of a polynomial of degree n, and with complex coefficients. It is

therefore the most general case of polynomial root finders that can possibly be used, as it also will
work when the coefficients are real.

This program is a wonderful example of FOCAL capabilities, and very well showcases the versatility of
the HP-41C (even without the 41Z module). It was first published on PPC Technical Notes, PPCTN — the
journal of the Australian chapter of the PPC.

1__LBL "ZPROOT" 44 | CFO00 87 E3 130 | [GTO 02
2 | SIZE? 45 | CHS 88 ST+ 01 131 | |RCL 08

3 | "DEGREE=?" 46 STO 04 89 RCL03 132 ST*Z

4 | PROMPT 47 | FIX2 90 STOIND 05 133 %

5 STOZ 48 RND 91 RCL 04 134 DSE 08

6 ST=X 2N 49 FIX6 92 STOIND 06 135 | |GTO 02
7 50 | X#0? 93 DSE00 136 RTN
8+ 2N+11 51 | GTO01 — 94 | GTOO06 137 [[LBL 00

9 | Xs=Y? 52 | SIGN 95 TONES5 138 | ZENTERA
10 | PSIZE 53 STO 04 9 RCLO1 139 |RCL 04

11 | RCLZ 54 [[IBLOT +— 97 INT 140 RCL 03

12 STO 00 N 55 | RCL 00 98 E1 141

13 | STO03 N 56 | STO 08 99 - 142 |RCL IND 05
14 | 9,008 57 | SFO1 100 E3 143 F5? 01
15+ 56 | XEQ 11 101 144 | RCL 08

16 STO 01 N+9.008 = 59 R 102 ST-05 145 F5? 01

17 | STO 05 N+9,008 | 60 @ UX 103 FIX3 146 *

18 | X<»Y 2N+11 61 STOO7 104 SF21 147+

19 | E 62 X==Y 105 [_LBL 10 148 FS? 00

20 - 2N+10 63 | CHS 106 1SG 00 149 | STO IND 05
21 | sTOO02 2N+10 64 | STOO08 107 NOP 150 X<=Y

22 | STO06 65 CFO01 108 RCL IND 06 151 | RCL IND 06
23 FIX0 66 | XEQ 11 109 RCL IND 05 152 FS? 01

24 CF29 67 | ZENTER* 110 ZAVIEW 153 | RCL 08

25 [[LBLO5 68 RCL 08 111 DSE 06 154 F5? 01

26 | "IM*RE[" N 69 | RCL 07 112 DSE 05 185 *

27 | ARCL 03 70 PR 113 GTO 10 156 |+

8 | "@-=7" o 114 CF 21 157 | [FS? 00

29 PROMPT 72 | ST.03 115 SF29 158 | STO IND 06
30 | STOIND 05 73 X==Y 116 RTN 159 X<=Y

31 XY 74 ST-04 17 160 FS? 01

32 STOINDO6 N-1 75 | ZRND 118 RCL 01 161 | DSE 08

33 DSE03 76 | Z#0? 119 STO 05 162 [LBL02 <——
M XesY 77 GTON 120 RCL 02 163 | DSE 06

35 | DSE 06 78 | FIX0 121 STO 06 164 | DSE 05

36 | DSE 05 79 | | "FOUND ROOT#" 122 FC? 01 165 | GTO 00

37 | GTO05 80 ARCL 00 123 GTO 13 166 END

38 | RCL 03 81 | AVIEW 124 E3

39 [[LBL 06 82 | SF00 125 ST+05

40 | "SOLVING...” 83 | XEQ11 126

41 | AVIEW 84 | E 127 RCL IND 06

42 | SF25 85 | ST+05 128 RCL IND 05

43 | SF99 86 | ST+06 129 FC? 01

417 User Manual Page 58 of 90

B —

(c) Angel M. Martin - June 2013

Example 1.- Calculate the three roots of: x>+ x>+ x + 1

XEQ “ZPROOT” -> “DEGREE=?"
3, R/S -> “IMARE (3)=?"
0, ENTERA, 1, R/S -> “IMARE (2)=?"
0, ENTER”, 1, R/S -> “IMARE (1)=?"
0, ENTER”, 1, R/S -> “IMARE (0)=?"
0, ENTERA, 1, R/S -> “SOLVING...”

-> “FOUND ROOT#3", and “SOLVING...”
-> “FOUND ROOT#2”, and “SOLVING...”
-> “FOUND ROOT#1”

> -5850E-14-j1 (thatis, -i)

S 5,850E-14+j1 (thatis, i)

S -14j1,170E-13 (thatis, -1)

Example 2.- Calculate the four roots of: (1+2i)*z* + (-1-2i)*2® + (3-3i)*z? +z—-1

XEQ “ZPROOT” -> “DEGREE=?"
4, R/S -> “IMARE (4)=?"
2, ENTERA, 1, R/S -> “IMARE (3)=""

2, CHS, ENTER”, 1, CHS, R/S -> “IMARE (2)=?"
3, CHS, ENTER”, CHS, R/S -> “IMARE (1)=""
0, ENTER”, 1, R/S -> “IMARE (0)=?"
0, ENTER”, 1, CHS, R/S -> "SOLVING...”
-> “"FOUND ROOT#4", and “SOLVING...”
-> “"FOUND ROOT#3", and “SOLVING...”
-> “FOUND ROOT#2”, and “SOLVING...”
-> “FOUND ROOT#1"”
2> 1,698+30,802 R/S
= -0,400-J0,859 R/S
= 0,358+J0,130 R/S
= -0,656-10,073

The four solutions are: z;= 1,698 +0,802j or: 1,878 <) 25,27
z, =-0,400 - 0,859j or: 0,948 <)-114,976
z3= 0,358 + 0,130j or: 0,381 <) 9,941
z, =-0,656-0,073j or: 0,660 <)-173,676

Root Finders Launcher - all together now.

A convenient grouping of the previous applications provides access to the root finders for the first,
second, third and n-th. degree polynomials, as well as the general-purpose ZSOLVE. To access it just

press:
SPRT L3NS
&, [A], [H], [SHIFT] S .

The first-degree option is for function ZWLINE - not strictly a root finder but being such a simple case
it's convenient to have it also in the group.

For ZQRT and ZCRT the coefficients are expected to be in the complex stack prior to the execution —
whilst ZPROOT and ZSOLVE will prompt for the required entries.

Note that the [SHIFT] key toggles between this launcher and the Exponential Integrals one, see section
10.7 later in the manual.

417 User Manual Page 59 of 90

(c) Angel M. Martin - June 2013

10.5 Solution to f(z)=0.

The next application uses the Secant Method to obtain roots of a complex equation, given two
estimations of the solution. A general discussion on root-finding algorithms is beyond the scope of this
manual — this example is intended to show the capabilities of the 41Z module, in particular how
programming with complex numbers becomes as simple as doing it for real numbers using the native
function set.

See the following link for further reference on this subject (albeit just for real variable):
http://en.wikipedia.org/wiki/Secant method

The secant method is defined by the recurrence
relation:

Ty — Tp—1

f(Iﬂ) - f(In—l)

which will be calculated until there's no
significant contribution to the new value — as
determined by the function Z=WR?.

f(zn).

Tpil = Ty —

Program listing:-

As it's the case with this type of programs, the
accuracy of the solution depends of the display
settings, and the convergence (i.e. likelihood to

ﬁnc.i a. I’OOt) will depend on the initial The first two iterations of the =ecant method. The red &
estimations.

curve gshows the function fand the blue linez are the
zecants.

The program works internally with &8-digit
precision, therefore will largely benefit from the turbo-mode settings on V41 to dramatically reduce the
execution time.

1 LBL "ZSOLVE" | 20 | |Z==W 38 I

2 FS? 06 21 | Z5TO (00) 40

3 GTO06 —— 22 | XEQIND 06 41 | INEG

4 AON 23 | [z5TO 42 | [ZRCL

5 "F. NAME=?" 24 |2 43

6 PROMPT 25 | LBL 01 44 | I+

7 AOFF 26 | [ZRCL 45 | ZENTER*
8 ASTO 06 271 46 | [7<>

g PREC=? 28 | XEQIND 06 47 N

10 PROMPT 29 | ZREPL 48 | I=WR?
11 FIXIND X 30 | [z== 49 = GTO 02
12 ["Z1=? (Y*X)" |2 50 GTOO1
13 PROMPT 2 I 51 [[IBL02 -«
14 | |ZENTER~ 33 | I#0? £2 FC?06
16 |"Z2=7 (Y*X)" 4 | U £3 | FIX3

16 PROMPT 35 | [ZRCL £4 = FC?06
17 | LBLO6 < 6|1 55 | IAVIEW
18 [z5TO 37 | |ZENTERA 56 END

19 |1 38 | Z<=(00)

417 User Manual Page 60 of 90

(c) Angel M. Martin - June 2013

User flag 06 Is for subroutine usage: when set, the data input will be skipped. In that case the relevant
data is expected to be in the appropriate registers, as follows:

CRO03= Initial estimation z1,

CRO4 = initial estimation z2

R12 = Function’s name,

FIX set manually to required precision.

Example 1.- Calculate one root of the equation: Sinh(z) + z~A2 +pi=0

Which we easily program using 41Z functions as follows:
LBL “ZT", ZHSIN, LASTZ, Z~2, Z+, PI, +, END.

Using the initial estimations as z0=0, and z1=1+i, we obtain:
Root = -0,27818986 + j 1,81288037

Example 2.- Calculate two roots of the equation: e”(z) =z
programmed as follows: LBL “ZE", ZEXP, LASTZ, Z-, END

using the estimations: {z0=-1-j & z1=1+j} - note that both roots are conjugated!

Rootl = 0,3181315 + j 1,3372357
Root2 = 0,3181315 - j 1,3372357

Example 3.- Calculate the roots of the polynomials from section 10.1 and 10.3:

P2 = (1+i)*z? + (-1-i)*z + (1-i) - re-written as: z[(-1-i)-z(1+i)} + (1-i)
P3=Z22+22+z+1 - re-written as: z[1+z(1+2)] +1
P4 = (1+2i)*z* + (-1-2i)*2® + (3-3i)*z* + z—-1

- re-written as: z{1+z[(3-3i)-z[(1+2i)-z(1+2i)]]}-1

Use the following estimations for the P4 example:-

{z0=-1-j ; z1=1+j} for root #1, {z0=1+j ; zZ1=2+2j} for root #2,
{z0=-2j; z1= 2j} for root #3, {z0= 4j; z1=5j} for root #4

ZSOLVE Register Usage.

Notice that to avoid register incompatibilities ZSOLVE uses registers R06 — R12. This allows its direct
application it to calculate zeroes of functions using the lower register range (which is the typical case),
like the Exponential integral and associates, which in turn all use registers R0O0 — R05. So there’s no
need to use cumbersome REGMOVE program steps with its memory-hungry control words.

417 User Manual Page 61 of 90

(c) Angel M. Martin - June 2013

The programs below can be used to obtain the roots as per the examples given before:

{(1+)*2% + (-1-)*z + (1-) =0 (1+2i)*z? + (-1-201%2° + (3-3)*2F +z -1

1 LBL " 72" | I LBL "74" | [7 IBL "74" |
2 ZREPL 2 ZREPL 2 ZREPL
3 1 3 2 3 4
4 ENTER* 4 ENTER* 4 InX
5 Z 5 1] ZENTER*
B ZENTER* B iy B i
7 -1 7 LASTZ 7 ENTER”
g ENTER* g Z-] 1
9 I+ 9 Z 9 iy
10 Z 10 ZENTER* 10 I==W
1 ZENTER* " 3 " 3
12 -1 12 ENTER* 12 A
13 ENTER* 13 CHS 13 ZENTER
14 CHS 14 I+ 14 2
14 I+ 14 Z 14 ENTER
16 END 16 1 16 -1
17 + 17 iy
2Z2+22+2+1 |2 18 | |2+
1 LBL " Z3" | 19 1 19 I==W
2 ZREPL 20 - 20 n2
3 1 1 END 21 ZENTER
4 + 22 3
5 iy Mote the nsage of stack-ifting 23 ENTER
G 1 functions to separate entries 24 CHS
7 + (LASTZ and ZENTER*) 25 iy
g Z 25 I+
9 1 2 I+
10 + 23 1
1 END 29 -
30 END

Lastly, a few other excellent programs written by Jean-Marc Baillard address the general solution to the
equation f(z)=0. They don't use functions from the 41Z module, but are mentioned here for their
obviously close related content. The programs can be found at the following link:
http://www.hpmuseum.org/software/41/41cmpxf.htm

Logarytmiczna pochodna funkcji Gamma
ir(x) Funkcja dzeta Riemanna (&)

[469]

4

417 User Manual Page 62 of 90

(c) Angel M. Martin - June 2013

10.5.1. Application example;- Using ZSOLVE to calculate the Lambert W function.

In this example we see a few techniques applied together, combining the capabilities of the 41Z in a
convenient way. The solution is a direct application of the definition, requiring very simple extra
programming — albeit with the logical slow performance.

The Lambert W function is given by the following functional equation:

z = W(z) e¥®, for every complex number z.

Which cannot be expressed in terms of elementary functions, but can be properly written with the
following short program:

1 LBL "ZWL" The complex value is expected to be in the Z complex stack level, and
2 Z5TO X,Y registers upon initialization. Set the FIX manually for the required
3 4 precision.

4 ZLH

5 ZENTER* Because ZSOLVE uses all the complex stack levels and registers 0 to
B E 6 (Note: this was changed in revision 4L — see pg. 59) , the argument
7 + is saved in the complex register 4 — corresponding to real registers 8
8 SF 06 and 9, thus a SIZE 10 or higher is required (see register
g "L correspondence map below).

10 ASTO 06

11 ZS0LVE We solve for W(z)=z, using as the function initial estimations the
12 ZAVIEW logarithm of the same argument and the same point plus one,
13 RTH perhaps not a refined choice but sufficient to ensure convergence in
14 | LBL "W" | the majority of cases. Some calculated values are:

15 ZEXP

16 = |LASTZ W(0)=0

17 i W (1) =Q=0.56714329. ..

18 | |ZRCL Wie)=1

19 4 W(—1) =~ —-0.31813 — 1.33723¢

20 Z-

21 END

This example is not meant to compete with a dedicated program using an iterative algorithm, yet it
showcases the versatility of the approach. The obvious speed shortcomings are diminished when ran
on the 41CL or modern emulators like V41.

The Taylor series of Wo around 0 is given by: w [x]
ﬂ}ﬂ 1 1 —

Wo(Z a” —

n=1 0.5 T

Another technique (somehow a brute-force g / i - - —
approach) would employ this definition to calculate e

successive terms of the summation until their
contribution to the sum is negligible. This method |

would only be applicable within the convergence |
region.

5]
]
=

See the following links for further references on the Lambert W function:
http://en.wikipedia.org/wiki/Lambert W function
http://mathworld.wolfram.com/LambertW-Function.html

417 User Manual Page 63 of 90

(c) Angel M. Martin - June 2013

10.6 Bessel functions.

This section represents an interesting “tour de force’ within the 41Z module — taking the humble 41
system to the realm of true high-level math. Use it or leave it, it's all a matter of choice — but
programming techniques and valid algorithms are always interesting, despite its obvious speed
shortcomings.

Index | Function Description

1 ZJBS Complex Bessel J function First kind

2 ZIBS Complex Bessel I function First kind

3 ZBS Subroutine for all J, I and K,Y First & Second Kind
4 ZKBS Complex Bessel K function Second kind

5 ZYBS Complex Bessel Y function Second kind

6 ZLIN Complex Polylogarithm

7 EIZ/1Z Spherical Hankel first kind order zero

8 ZSHK1 Spherical Hankel first kind

7 ZSHK2 Spherical Hankel second kind

See the paper “Bessel functions on the 41 with the SandMath Module’ by the author, for an extensive
description of the (real-number) Bessel Functions on the 41 system. In fact, following the “do it as its
done with real numbers’ standard philosophy of the 41Z module, the complex versions of these
programs are very similar to those real-number counterparts described in said paper.

The formulae used are as follows:

J(n,2) == {Ux | k=1,2,...} * (2/2)" | T(n+1)
U(K) = -U(k-1) * (2/2) k(k+n)
u@O) =1

Yn(x) = [Jn(x) cos(nm)) - J.n(x)] / sin(nm))
Kn(X) = (1/2) [1-n(X) - In(x)) / sin(nm)) |
n#...-3;-2;-1;0;1;2;3..

Like for the real arguments case, there is one auxiliary functions ZBS#, used to perform intermediate
calculations needed by the main programs: ZJIBS, ZIBS (first kind), and ZYBS, ZKBS (second kind).
Other auxiliary functions are:

e ZGEU Euler’'s gamma constant as a complex number, and
e HARMN to obtain the harmonic number of a given integer: (uses “-ZSTACK")

H(n) = Z [1/K] |k=1,2...n (*)
The expressions used to calculate the results are different for integer orders (remember the
singularities of Gamma), requiring special branches of the main routines. For that reason two other

functions have been added to the 417 as follows:

e ZINT? to determine integer condition, and
e ZCHSX to simplify calculation of z*(-1)"k

Both the function order and the argument are complex numbers, which are expected to be on complex
stack levels W (order) and Z (argument) prior to the execution of the function. The result is placed on
the Z-level complex stack.

Below are the program listings for each particular case.-

417 User Manual Page 64 of 90

(c) Angel M. Martin - June 2013

a) Bessel Functions of the first kind. Uses R0O0 — R08. Uses Flags 0-1

[1 LBL ZJBS |
2 CF00
3 G000 —
[4 LBL ZIBS |
5 SF00
8 [LBLoO <«]
8 CFO1
8 ZoW
9 I1ZINT?
10 IxEQo05
11 Z<W
12 ZHALF
13 XROM "ZBS
14 |Fs?01
15 RCLO1
16 1FS?01
17 \ZCHSX
18 LBLO4 <«
19 ZAVIEW
20 RTN
21 |BL05
22 |X<0?
23 |SFo1
24 |ABS
25 RTN
[26 LBL"ZBS" |
27 Z#0?
28 GTO00 —
29 Z=w?
30 E
31 GTO04
32 [LBLOO <« |
33 -ZSTACK
34 ZSTO 01
35 Z<>W
36 ZSTOO00
37 E
38 ZREAL
39 ZSTOO02
40 ZSTOO03
41 STOM
42 | LBLO02 |
43 ~ ZRCL 01
44 72
45 ZRCL 02
46 FC?00
47 = ZNEG

running...
(z2)

n

n

1

1+J0
1+J0
1+J0
k=1

z/2)"2
Uk-1

48 Z* n

49 ZRCL 00 n

50 RCL M k

51 + n+k

52 LASTX k

53 ST*Z k(n+k)

54 *

55 zl

56 ZSTO 02 U(k)

57 ZRCL 03 SUM(k-1)

58 Z+ SUM(k)

59 ZENTER®

60 Z<> 03 SUM(k-1)

61 Z=W?

62 GTo01 —

63 E

64 ST+M k=k+1

65 GTO 02

66 |[LBLO1 <«— |

67 ZRCL 00 n

68 INCX Je+y
69 |CF02 1
70 |X<0? |
71 ISFO02 i
72 1X<0? i
73 \ZNEG z k
74 ZGAMMA

75 FC? 02

76 GTO00 —

77 LASTZ -z

78 ZGNGZ

79 Z<>W

80 yd}

81 LBLOO <— |

82 zl

83 ZRCL 01 (z/2)

84 ZRCL 00 n

85 wnrz (z/2)*n

86 z*

87 END

CR0O0-n

CRO1 - Z/2

CRO2 - Uk

CRO03 - SUM

CRO04 - result

Examples:- Calculate JBS(1+i, -1-i) and IBS(-0.5+i; 1-0,5i)

1, ENTER”, ZENTER”, ZNEG, ZIBS

1, ENTER*, 0,5, CHS, ZENTER”, ENTER”, 1, ZIBS

-8,889 + j 2,295
3,421 +j 1,178

417 User Manual

Page 65 of 90

(c) Angel M. Martin - June 2013

b) Bessel functions of the second kind. Uses RO0 — R08. Uses flags 0-2

[1 LBL"ZB1" [SUM{f(n,x)} F'1 LBL"zB2" [SUM{g(nx)}
2 CLz Y2 CLz
3 ZSTOO02 Jn/In 3 zsTOO3 reset partial SUM
4 ZSTOO04 SUM Y4 RCLOO ABS(n)
5 STOO01 k=0 5 X=0? n=07?
6 [LBLO2 H "6 RIN skip it
7 XEQ10 summing term 7 DECX
8 7=0? x=07? 8 E3
9 |GTO 01 — :|ignore term 9 / 0,00(n-1)
10 ZRCLO4 | | S(k-1) 10 STOO8
11 z+ S(k) "11 | LBLO5 |
12 ZENTER? 12 ZRCLO1 x/2
13 7<>04 13 RCLOS8 k,00(n-1)
14 7=W? are they equal? 14 INT
15 RTN Final result(s) 15 STOO1 k
16 | LBLO1l < | 16 ST+X 2k
17 E increase index 17 RCL 00O n
18 ST+01 k=k+1 18 - 2k-n
19 [GTOO02] Y19 z°X (x/2)(2k-n)
20 [|LBL 10 Function to Sum "20 RCLO0O n
21 ZRCLO1 x/2 21 RCLO1 k
22 RCLO1 K 220 - n-k
23 ST+X 2k 23 DECX n-k-1
24 RCLO0O n 24 FACT (n-k-1)!
25 + 2k+n 25 RCLO1 k
26 77X (x/2)*(2k+n) 26 FACT k!
27 ZENTER? 271 (n-k-1)!/ K!
28 RCLO1 K 28 sT*Z
29 FACT k! 29 » [**]
30 | LASTX k 30 FC?00 is it Yn?
31 RCLOO n 31 GTO00 —
32+ k+n 32 RcLO1 k
33 FACT (k+n)! 33 ZCHSX (-1)*k * term
34+ k!* (k+n)! 734 [LBLOO <« | |
35 ZREAL 35 ZRCL 03
36 7z k-th. Term 36 7+
37 FS?00 is it Kn? 37 zSTOO3
38 GTO00 — 38 I1SGO08
39 RCLO1 k 39 GTOO05 (k+1),00(n-1)
40 ZCHSX [term]* (-1)"k 40 ZRCLO3
41| LBLOO < ~ ~ "41 FC?00 is it Yn?
42 17<>02 ZST+ 02 i 42 RTN
43 1ZRCL 02 f 43 RCLOO n
44 |zZ+ f(k) + SUM(k-1) ! 44 7CHSX SUM#(-1)*n
45 17<>02 Jn/In ~ ! 45 END
46 ZENTERA
47 RCLO1 k
48 HARMN H(k)
49 LASTX k Note: functions DECX and INCX
50 RCL 00 n can be replaced by standard
51 + k+n FOCAL sequences:
52 HARMN H(k+n)
53 |+ H(k)+H(k+n) DECX=1, -
54 ZREAL INCX=1, +
55 7*
56 END
417 User Manual Page 66 of 90

(c) Angel M. Martin - June 2013

[1 LBL"ZYBS" [Integer Index
2 CF00
3 GTO00 —
[4 LBL"ZKBS"
5 SF00
6 [[LBLOO <
7 ZHALF
8 ZSTOO1 (@2)
9 ZoWw
10 ZINT?
11 GTOO05
12 Zo>W
13 XROM "ZBS"
14 FS?00
15 GTO00 —
16 ZRCL 00
17 Pl
18 ST*Z
19 *
20 ZCOS
21z
22 | LBLOO <
23 ZSTO04
24 ZRCL 00 n
25 ZNEG -n
26 ZRCL 01 (@2)
27 XROM " ZBS"
28 ZRCL 04
29 Z<>W
30 z
31 ZRCL 00 -n
32 ZNEG n
33 Pl
34 ST*Z
35 *
36 ZSIN
37 7
38 FC?00
39 |GTO03 — Exit
40 Pl
a1 "2
42 |
43 CHS
44 ST*Z
45 *
46 [GTO03 <— |Exit

The formulae used for integer orders are as follows:

47|

LBL 05

integer orders

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

CFO1
X<07?
SFO1

negative

ABS

STO 00
XROM "ZB2"
ZNEG

ZSTO 03
XROM "ZB1"
ZRCL 03
Z<>W

Z-

ZRCL 01

ZLN

GEU

+

ZRCL 02

Z*

ZDBL

Z+

FC? 00

[SUM¥(-1)"n]

to obtain both!

x/2

Ln(x/2)

g

g+Ln(x/2)
J(n,x) or I(n,x)
[}*JIN(nx)

K(n,x)/Y(n,X)
is itYn?

GTO04 —— |FINAL STEPS

RCL 00
INCX

ZCHSX
ZHALF

n
(n+1)
K(n,x)* (-1)*(n+1)

[GTO03 —

Exit

75 LBL04 <

Yn

76
77
78
79

80 |GTO 03—

81
82

PI
ST/ Z

/

FC? 01

RCL 00
ZCHSX

negative index?

:l Exit
n

83|

LBL 03 <«

84
85
86

ZSTO 03
ZAVIEW
END

T Ya(x) = 2[y + Ln x/2]1 3n(x) = 2 (-1)* fi(n,x) = = gi(n,x)
(1™ 2Kn(x) = 2 [y + Ln x/2] In(x) - fil(n,x) = (-1)" T (-1)* gi(n,x)

gk (n,x) = (x/2)

2k-n

[(n-k-1)!' / k!] ; k=0,2,...(n-1)

fie (0%) = 0¢/2)° [H(K) + H(n+K)] / [K! (n+K)1] : k=0,1,2,.....

417 User Manual

Page 67 of 90

(c) Angel M. Martin - June 2013

Example:- Calculate KBS(-0.5+i; 1-0,5i)

1, ENTERA, 0,5, CHS, ZENTER",

ENTER”, 1, ZKBS > 0,348 +j 0,104
Example:- Calculate YBS(-1,-1)

0, ENTERA, 1, CHS, ZENTERA,
ZYBS > -0,781+j0,880

This last example shows how even real arguments can yield complex results.

Example.- Calculate JBS and IBS for (1+2i, -1-3i)

2, ENTER”, 1, ZENTER”
3, CHS, ENTER#, 1, CHS, ZIBS > 35,813 -j 191,737

2, ENTER”, 1, ZENTER”
3, ENTER%, 1, ZNEG, ZIBS > - 257,355 -j12,633

Note: Using the Complex Keyboard shortcuts the Bessel function group can be accessed pressing SHIFT
when the NEXT indicator is shown, as per the following sequence:

Z, Z, [SHIFT], [SHIFT] -> then [I], [3], for ZIBS and ZJBS or [K], [L] for ZKBS and ZYBS.

The same group can be used to access ZWL & ZAWL (Complex Lambert and its inverse) and EIZ/1Z,
the Spherical Hankel function of first kind and order zero h'¥ (0,2)

ENXT _ 350 _
USER then SHIFT: UZER SHIFT

The key maps below summarizes all the special assignments in the [BSSL] (left) and [NEXT] (right)
groups. Notice that the mnemonics h(1)n and h(2)n correspond to the ZSH1 and ZHS2 functions.
Note as well the inclusion of the “alternative” versions SQRTZ, e~Z and 1/Z in the [NEXT] group — so
you can quickly compare them with the main functions for accuracy and speed.

REOE 2 EAEREE
oY Yea Yo = (=)
AEAE EAaE

417 User Manual Page 68 of 90

(c) Angel M. Martin - June 2013

10.7 Polylogarithm.

The Polylogarithm (also known as Jonquiére's function) is a special function Lis(z) that is defined by the
infinite sum, or power series

[a] .
zF 22 2

LiS(Z): E:’Z_FE_'_?_F

k=1

Only for special values of the order s does the Polylogarithm reduce to an elementary function such as
the logarithm function. The above definition is valid for all complex orders s and for all complex
arguments z with |z| < 1; it can be extended to |z| = 1 by the process of analytic continuation. See the
reference: http://people.reed.edu/~crandall/papers/Polylog.pdf

The implementation of the Polylogarythm is a very rudimentary one, more as an example of direct
porting of the real variable routine than anything else. It's based on Jean-Marc’s version, that can be
found at: http://hp41programs.yolasite.com/dilogarithm.php

Both parameters can be complex numbers, although the series representation used forces the condition
that z must be inside the unit circle, that is |z|]<1. The program will stop with an error message if
|z|>1. Note also that this method is not valid either for points on the unit circle, |z|=1. You can use
function ZLI2 for the dilogarithm, which also works in this case.

In terms of its usage, s is expected to be in level-2 of the complex stack (W), and z in level-1 (Z). Let's
see a couple of examples.

Example 1. Calculate Li(2; 0.3+0.4i) 01 LEL "ZLIN"
02 [*jZf=1"
0, ENTERN, 2, ZENTERA > 2+10 03 |ZOUT?
(the Z-keypad version: [JE&], 2 does the same easier) 04 PROMPT
05 |Z5TO 01
.4, ENTERA, .3, XEQ “ZLIN" - 0,166+10,560, 06 |T<sW
07 |Z5TO 02
or with FIX 9 settings: 08 |CLX
Re = 0,326456748 0z |STOO6
Im = 0,565254656 10 E
11 |Z5TO 00
12 oz
Example 2. Calculate Li(1+i, 0.3+0.4i) 13 |LBLO1
14 |ZENTER™
1, ENTERA, .ZENTERA > 1(1+)) 15 |ZRCLOO
.4, ENTERA, .3, XEQ “ZLIN” - 0,326+10,565 16 |ZRCLO1
17 |Z-
or with FIX 9 settings: 18 |ZSTO 0D !
Re = 0,326456748 1% I1SG 06 !
Im = 0,565254656 20 NOP !
21 |ZRCLO2 |
As you can see the program listing doesn't get any easier — so |22 | RCLOG
despite its limitations (long execution time, no analytic continuation) |23 KnZ
it's worthwhile including in the module. 4 |2
25 I+
Note that ZLIN is a FOCAL program, and therefore the argument z |26 | Z#w?
won't be saved in the LastZ complex register. 7 |GTOD1
28 |ZAVIEW
2% |END

417 User Manual Page 69 of 90

(c) Angel M. Martin - June 2013

10.8 Lerch Transcendent Function.

The Lerch Transcendent function can be seen as an extension of the Polylogarithm, and therefore it's

easy to modify the previous program to the more general case — adding a third argument “o” as
follows:

f n

O(z,5,a) =" i

n=>0 (n + Q)S .

note that contrary to the Polylogarithm case, the summation starts at n=0; not at n=1. This would
represent an issue if the power function returned a DA7A ERROR condition for zero exponent (the zero-
th. term being z”~0 / 0/s. However the 41Z implementation returns zero for this case, and therefore we
can use the same program to calculate both the Polylogarithm and Lerch function — taking o.=0 for the
additional argument in Lis:

Li(s, z) ~= Lerch (z, s, 0)

To be sure the above expression is just a programming trick, but it's not mathematically correct. The
proper relationship between both functions is given by:

Lis(2) = 2®(z, 5, 1).

Example 1. Calculate 01 LBL "ZLRCH"
02 "|z[>1"
®(0.3+0.41 ;3+41i; 1+2i) 03 ZouT?
04 PROMPT
4, ENTERA, 3, ZENTERA > 3+)4 05 zsToo01 x
2, ENTERA, 1, ZENTER” > 1412 o oy
A A\l ” -
.4, ENTERA, .3, XEQ “ZLRCH" - 7,658-]1,515, 08 7570 00 0= 1
. . 09 ZRDN
or with FIX 9 setlggg_s. S 658150105 10 75TO 02 a
- 11 Z<>W
Im =-1,515114367 12 7570 03 s
13 ZNEG -s
14 WAz 1/a%s
Notice the input order convention for the arguments, with 15 LBLOL | s(k-2)
z always entered last, in the Z-level of the complex stack. g ZRCL 01 X
17 ZRCL 00 x*(k-1)
18 z* X7k
Other useful relationships also involving the Lerch 19 ZSTO 00
Transcendent functions are shown below: 20 ZRCL 02 a+k-1
21 E
Riemann Zeta: (*) 22 ST+05
C(S) = {[)[1151 1)_ 23 + a+k
S ! 24 ZRCL 03 s
. 25 WAz (a+k)"s
Legendre Chi: . . 26 z/ x*k / (a+k)"s
Xnl2) =27 "2®(27,n,1/2). 27z Sk
28 ZHWR?
29 GTO 01
(*) The convergence is very slow, thus using the dedicated 30 ZAVIEW
ZZETA program is a much more convenient approach. 31 END

417 User Manual Page 70 of 90

(c) Angel M. Martin - June 2013

10.9 Exponential Integrals.

New in revision 4L, this section groups the Exponential Integral and related functions — all calculated
using the Hypergeometric function representation.

Index | Function Description

1 ZHGF Complex Hypergeometric function Author: Jean-Marc Baillard
2 ZEI Complex Exponential Integral

3 ZCI Complex Cosine Integral

4 ZHCI Complex Hyperbolic Cosine Integral

5 ZSI Complex Sine integral

6 ZHSI Complex Hyperbolic Sine Integral

7 ZERF Complex Error function

The key enabler for this group is of course the MCODE implementation of the Complex Hypergeometric
function ZHGF — written by Jean-Marc Baillard. See the excellent web-site at:
http://hp41programs.yolasite.com/complexhypergeo.php

The rest of the functions are easily obtained as simple and short FOCAL programs, using the well-know
equivalence expressions. Their argument is a complex number, taken from the Z-level of the complex
stack (XY registers). In terms of usability they are grouped in their own launcher, invoked by pressing
[H] at the 2" prompt; that is:

7HGF ESHCIRF
A, (AL, [H] > S o e .
Examples.-

Calculate erf(1+i) and Ei(1+i)

1, ENTER”, [lE, [A], [H], [*R"] > 1,316+J0,190
1, ENTER”, 4, [A], [H], ["E”] > 1,765+12,388

Calculate Ei, Ci, Si and their hyperbolic counterparts for the same argument z=(1+i)

1, ENTER, [, [A], [H], ["S"] > 1,104+J0,882
1, ENTER”, (&4, [A], [H], ["H”] > 0,882+]1,104
1, ENTER, |4, [A], [H], ["C”"] > 0,882+J0,287
1, ENTER, (4, [A], [H], [*I”] > 0,882+]1,284

$_~1_c_|_l'.11 || Im[Ei{z)]

See the program listing in next page, showing the economy of programming when using a power horse
like ZHGF to do all the heavy lifting for you.

417 User Manual Page 71 of 90

(c) Angel M. Martin - June 2013

FOCAL Listing.: Exponential integrals. Uses RO0 — R05

01 LBL"ZERF" | 01 LBL"ZEI"
02 ZENTERA 02 E
03 zm2 03 sToo1
04 E 04 STOO02
05 STOO1 05 E
06 15 06+
07 sTOO02 07 STOO03
08 CLX 08 STOO04
09 E 09 ENTERA
10 RA 10 RA
11 RA 11 RA
12 ZHGF 12 ZHGF
13 LASTZ 13 LASTZ
14 ZNEG 14z
15 ZEXP 15 LASTZ
16 z* 16 GToo1
17 z* h7 BL"zCI" |
18 PI 18 SFO0
19 SQRT 19 Grooo
20 1/X R0 LBL"ZHCI" |
21 ST+X 21 CFO0
22 ST*z 2 LBLOO |
23 * 23 ZENTERA
24 ZAVIEW 24 ZHALF
25 END 25 ™2

26 FS?200
01 LBL"ZSI" | 27 INEG
02 SFOO 28 ZENTERA
03 GTOO00 29 E
04 LBL"ZHsI" | 30 sToO01
05 CF00 31 sTOO02
06 LBLOO | 32 CX
07 ZENTERA 33 2
08 ZHALF 34 STOO03
09 272 35 STO04
10 FS?00 36 1.5
11 ZNEG 37 STOO5
12 .5 38 ST+X
13 sToo01 39 RA
14 3 40 RA
15 * 41 ZHGF
16 STOO02 42 z*
17 STO03 43 ZoW
18 CLX 44 LBLO1
19 E 45 ZIN
20 ENTERA 46 2+
21 2 47 GEUZ
22 RA 48+
23 RA 49 ZAVIEW
24 ZHGF 50 END
25 7%
26 ZAVIEW
27 END

417 User Manual Page 72 of 90

(c) Angel M. Martin - June 2013

Appendix 1.- Complex Buffer functions.

This appendix lists the buffer handling functions included in the 41Z, and thus are not related to the
Complex Number treatment per se. This set is only useful to diagnose problems or to bypass the

normal execution of the module’s “standard” functions, therefore its usage is not recommended to the

A\Y

casual user (i.e. do it at your own risk!).

|Function Description Input Output

-HP 417 Initializes Z Buffer None Buffer created

CLzZB Clears Z buffer None Buffler cleared

L1=XY? Is L1 equal to XY? None Y/N, skip if false

Li<>L Swap L1 & Level Level# as suffix levels exchanged
L1<>LX Swap L1 & Level level in X levels exchanged
L2=7T? Is L2 equal to ZT? None Y/N, skip if false

L2>ZT Copies L2 into ZT None L2 copied to ZT

LVIEW _ \View Level Level# as suffix Transposed value!
LVIEWX \View level by X level in X Transposed value!
PREMON Copies XY into LO and finds Zbuffer |Re(z) in X; Im(z) inY |none

PSTMON Copies XY into L1 and synch's up Complex stack Z Re(z) in X; Im(z) in Y
RG>ZB _ Copies registers to Z buffer Reg# as suffix data copied from registers
ST>ZB Copies real stack to L1 & L2 None stack copied to buffer
XY>L _ Copies XY into Level Level# as suffix XY copied to LEVEL
XY>LO Copies XY into LO Re(z) in X; Im(z) inY [XY copied to LO

XY>L1 Copies XY into L1 Re(z) in X; Im(z) inY [XY copied to L1

ZB>RG _ _ copies buffer to registers Reg# as suffix data copied to registers
ZB>ST Copies L1 & L2 into real stack None buffer copied to Stack
ZBDROP Drops Z buffer one level None levels dropped

ZBHEAD Z buffer Header info None header register in ALPHA
ZBLIFT Lifts Z buffer one level None buffer lifted

ZBSHOW Shows Z Buffer None shows header & all levels

(*) Items highlighted in yellow indicate prompting functions.

Buffer layout. The complex buffer has 5 levels, labelled LO to L4; that's 10 memory registers plus the
header and footer registers — for a total of 12 registers. The function names in this group use the Level
number (LO to L4) to identify each level, as opposed to the U, V, W, and Z notation employed in
previous sections of the manual.

Buffer Layout Buffer Details

b11 non-zero The buffer has 12 memory registers
b10 L4 (U) . Buffer registers are labeled b0 to b11
b9 - Header iz located at the boftom

b& L3 (V) . A non-zero register is at the top

b7 . Each Level uses wo bulfer registers
b6 L2 (W) T | Levelsare labeled LOto L4

b5 i

b4 Y

L1(Z

b3 2) X

: ; LO(S) L

b0 Header

The buffer header (b0 register) is placed at the lowest memory address. It contains the buffer id#, its
size, and its initial address (when it was first created — no updates if it's re-allocated later on).

417 User Manual Page 73 of 90

(c) Angel M. Martin - June 2013

Buffer creation is done automatically by the 41Z module upon power on (when the 41 awakes from
deep sleep), using the corresponding poll point in the module. The contents of the real stack registers
XYZT is copied into the buffer levels L1 & L2 upon initialization.

The buffer is maintained by the 41 OS, which handles it when modifying the layout of main memory —
either changing the SIZE settings, or modifying the user key assignments. The buffer id# is 8, and thus
should be compatible with any other memory buffer that uses a different id# (an example of which are
the TIMER alarms, with id#=10).

Should for any reason the buffer get damaged or erased (like when using the function CLZB), the
message “NO Z-STACK” would appear when trying to execute any of the 41Z module functions. 7o
manually re-create the complex buffer simply execute the first function in the module, "-HP 412" -
either by using XEQ or the Complex Keyboard sequence “Z, SHIFT, Z". This requires at least 12
memory registers to be available or the error message "NO ROOM” will be shown.

Because the buffer can be dynamically re-allocated by the 41 OS upon certain circumstances, it's not
possible to store its address to be reused by the functions. Every 412 function would first seek out the
buffer address prior to proceeding with its calculation. Fortunately this takes very little overhead time.

Buffer synchronization with the appropriate real-stack levels is also performed automatically by the
41Z functions, as follows:

- In the input phase (pre-execution), monadic functions will copy the XY contents into level L1
prior to executing their code. Dual functions will do the same for the second argument Z, and
will use the current contents of the L2 level as first argument W.

- In the output phase (post-execution) the results will be placed in the complex buffer levels and
then copied to the real stack registers as appropriate: XY for monadic functions, and XZYT for
dual functions.

That's the reason why the real stack should just be considered as a scratch pad to prepare the data
(like doing math on the real values), as only levels X,Y will be used. You must use ZENTER” to push
the W argument into the complex level L2. In other words: real stack registers T,Z will be ignored!

The same consideration applies when performing chain calculations: because there’s no automated
complex stack lift, the result of a monadic function would be overwritten by the subsequent input
unless it is first pushed into the complex stack, using ZENTER” or another 41Z function that does
stack lift.

Example. Calculate Ln(1+i) + (2-i)

The following sequence use the direct data entry, entering Im(z) first.
1, ENTER”, ZLN, ZENTER”, 1, CHS, ENTERA, 2, Z+ -> 2,347-j0,215

Some functions perform stack lift by default, and thus ZENTER is not required before them.

They are as follows:

e LASTZ

e ZRCL _ _

e ZREAL~ (also when using the complex real keypad, Z plus digit key)

e ZIMAG* (also when using the complex imaginary keypad, Z, radix, plus digit key)
e AIM/AG - probably the most intricate function in the module

417 User Manual Page 74 of 90

(c) Angel M. Martin - June 2013

The following sequence uses natural data entry - entering Re(z) first - as an alternative method for the
previous example. Note that because "IMG does stack lift, it's not necessary to use ZENTER”

1, ~IMG, 1, R/S, ZLN, 2, ~"IMG, 1, CHS, R/S, Z+ -> 2,347-j0,215

Buffer synchronization with the real stack registers can be tested and forced using the following
functions in this group:

L1=XY? - Tests for the first buffer level and XY registers
XY>L1 - Copies X,Y into level L1

L2=ZT? - Tests for second buffer level and Z, T registers
L2>ZT - Copies L2 into registers Z, T

ST>ZB - Copies real stack XYZT to buffer levels L1 & L2
Z/B>ST - Copies L1 & L2 to the real stack XYZT

To dump the complete contents of the complex buffer into memory registers and back you can use
these two complementary functions:

Z/B>RG - Copies complex buffer to memory registers
RG>ZB - Copies memory registers to complex buffer

Note that RG>ZB won't check for valid header data, thus it expects the contents to be correct — like
with a previously execution of ZB>RG. Remember that the header register is a non-normalized
number (NNN), thus do not recall it using RCL or X<>.

Other functions to manipulate the contents of the buffer levels are:

L1<>L - swaps buffer level L1 and level given by prompt

L1<>LX - swaps buffer level L1 and level input in X

XY>L0O - copies registers X,Y into buffer level LO (used to save arguments into LastZ)
XY>L - copies registers X,Y into buffer level given by prompt

ZBDROP - drops contents of complex buffer one level (used during ZRDN)

ZBLIFT - lifts contents of complex buffer one level (used by ZRUP, ZENTER” and others)

All these functions act on the complex buffer, but will not display the “resulting” complex number (i.e.
will not trigger ZAVIEW upon completion). To see (view) the contents of the buffer levels without
altering their position you can use the following functions:

LVIEW - prompts for level number (0 — 4)

LVIEWX - expects level number in X

ZBSHOW - lists the contents of all buffer levels
ZBHEAD - shows in Alpha the decoded buffer header

Note that with these functions all complex level contents will be shown transposed, that is: Im(z) + j
Re(2).

417 User Manual Page 75 of 90

(c) Angel M. Martin - June 2013

finally, the other two functions are auxiliary and mainly used to perform action between the two lower
and upper 4k-pages within the 41Z module: (*)

PREMON - Finds Z Buffer address, Copies XY into LO and checks X,Y for ALPHA DATA

PSTMON - Copies the Z complex level into X.Y

(*) Note: FAT entries for these two functions were removed in newer versfons of the module.

Because of its relevance and importance within the 41Z module, the following section lists the buffer
creation and interrogation routines — pretty much the heart of the implementation. Consider that they
are called at least twice every time a function is executed and you’ll appreciate their crucial role in the

whole scheme!

USER

PIM JUHE-M .
3

[0 10%

LOG

]

COs

ZK7 LBL SGN [GTO iz

- |an. STO +| RCL
S L M

CAT 1TIMG

ENTER ¢ 1

ISGCNJ RTN XT CLX/A
CHS EEX =

1] P

SF NRM CF MOD F57 ARG

T

BEEP:2T

SPACE

HP-41Z KEYS

417 User Manual

Page 76 of 90

(c) Angel M. Martin - June 2013

Remember that the buffer is refreshed (or created) each time the calculator is turned on, and that it
gets reallocated when key assignments or other buffers (like timer alarms) are made - yet it's
theoretically possible that it gets “unsynchronized” or even lost altogether, and therefore the
assignment to the —HP 41Z function as well.

1 |BUFFER |symcn2 AS96 [soc PT=0 _ _ __ __|Synch2: write XVZT into [b3-be] |

2 BUFFER (from ugper) [As57 1130 LDIs&x !

3 BUFFER Ageg |03 comM:3] X regoddress |

4 BUFFER 4995|146 | A=A:C SEX pointer to b3 T

5 BUFFER | ASSA (270 RAM SELECT select stack reg |

B BIFFER ABOE i 266 C=C-1 58X gdecreqse stock pointer i
AGSC iDEE C<>B ALL Store stock pointer in B I

b6 2 T ASSD iﬁas READ DATA stock valus i

b5 Z ASSE \DAE A<= ALL swap stack value and bk address 1

ba N ¥ asse l270 RAM SELECT select bk !

b3 X 43a0 loAE A<=CALL swap bk address and stock value |
ABAL 12F0 WRIT DATA WIITE STaCk volue into bk |

13 |BUFFER AOAZ 166 | A=A+l SEX bik+1) address i

14 |BUFFER 4343 |DEE C<»BALL restore stack oddress i

15 BUFFER ASA4 3DC PT=PT+1 i

16 BUFFER AGAS 054 ?PT=4 loop 4 times i

17 BUFFER ABAG 13A3 |INC-12d ——— | - B

18 BUFFER AGAT 3E0 RTM

1 INITIALIZE Header ASAR 04AB e

2 INITIALIZE Header ADAD 014 ugn

3 INITIALIZE Header AGAR 031 ugn

4 INITIALIZE Header AQAB 034 g

5 INITIALIZE Header ASAC 020 o

b INITIALIZE Header ASAD 010 p Check for Librory#4 first, then

7 INITIALIZE Header AQAE 008 “H" Create 10 buffer 880C000...

B INITIALIZE Header AOAF 02D = - unless it's aiready there

g INITIALIZE -HP 417 A9BO 04E C=0 ALL Programmable!

10 INITIALIZE ASE1L 15C PT=6

11 INITIALIZE ASEZ 110 LD@PT- 4 put "4000" in ADR field

12 ASE3 330 FETCH S&x

13 first we must check for Libgd ASB4 1o0e o A=CEEX | put byrein AfS&X] B

14 because [CHKBUF] resides A9B5 |130 LDI S&X [

15 in there (1} ASB6 023 con: signature vaive o

16 ASET 366 PAHC SEX are they different?

17 INITIALIZE ASEBE OBB |[INC+23d —— no, next thing

18 INITIALIZE ASED 320 DSPTOG display ON

15 INITIALIZE ASBA 1302 PNC X Enabie & Clear Disp

20 INITIALIZE ASEB 080 ->20F0 [CLLCDE]

21 INITIALIZE ASBC 3BD NEC Xa Message Line

22 INITIALIZE ASBD |0IC ->07EF [MESSL]

23 INITIALIZE ASBE O0E "N

24 INITIALIZE ASEF 0OF "g"

25 INITIALIZE ASCD 020 m

26 INITIALIZE AoC1 ooc g

27 INITIALIZE ASC2 009 "y "N LIBRARY"

28 INITIALIZE ASC3 002 "g"

25 INITIALIZE AGCA 012 "R"

30 INITIALIZE ASCS 001 A"

31 INITIALIZE AOCE 012 "R"

32 INITIALIZE ASCT 219 "y

33 INITIALIZE AGCE 300 PNC X Left Justified format

34 ASCY gaC -=2BF7 JLEFTJ]

35 halting here means the rest ASCA 108 SETF B

S6 of polling points won't be done! |ABCB 201 PNCXO

37 ASCC 070 ->1C80 [MS5G105]

38 INITIALIZE ASCD {3ED PNC GO HALT execution

38 INITIALIZE AGCE 084 -> 22FB [ERR110]

417 User Manual Page 77 of 90

(c) Angel M. Martin - June 2013

40 INITIALIZE |NE>{T ASCF
41 INITIALIZE ABD0
42 INITIALIZE |15TACK A9D1
43 INITIALIZE ASDZ |0OB COM: 8 Buffer id# in C{0} |
ASD3 PNC XQ Check for Buffer
bi1 non-Zers ASD4 5 ->43A4 [CHKBF4]
b10 14 - ASD5 DA3 INC +20d Not Found - Create it I
b9 - ABDE 038 READ DATA reload id# in MS field
be 13 ADDT 20C PT=13
b7 T ASDE : LD@PT- 8 Buffer id#
b& 2 z ADDY 2F0 WRIT DATA
b5 ¥ ADDA 375 PORT DEF: 0.- write XYZT into [b3-b6]
bd 11 X ASDB i".J'SC xa to initialize L1 & L2
b3 ASDC {196 2A9%6 | | fmwery _
b2 L0 L ASDD ilﬂﬂ LDI S&X A[S8X] holds h7 address |
ASDE D04 CON:A . |egssaror |
bO Header ABDF 206 C=C+A SEX b11 addr
ASED 270 RAM SLCT non-zero the last buffer reg
57 INITIALIZE ADEL 2F0 WRIT DATA this should do it
58 INITIALIZE ADE2 04E C=0 ALL
59 INITIALIZE ASE3 270 RAM SLCT Select Chip0
&0 INITIALIZE ADE4 cC PFSET 13 Exit if PRG Running
&1 INITIALIZE ADES 360 PCRTN
G2 INITIALIZE ADER 3AD PORT DEF: Show X.Y
63 INITIALIZE ASET 08C GO {Respects ZMODE)
£ INITIALIZE ADER 024 -=AC2A [ZAVIEW]
&5 INITIALIZE CREATE ADE9D 066 Ac>B 5B A—— First free reg. address (from .END.}
66 INITIALIZE ADEA 04E C=0 ALL
67 INITIALIZE ADEB 270 RAM SLCT Select Chip0
&8 INITIALIZE ASEC 285 PNC XQ
69 INITIALIZE ADED 014 ->0541 [MEMLFT]
70 |INITIALIZE AGEE 106 (A=CS&X_ | |numberof‘freeregs”
71 INITIALIZE ADEF | 130 LDI S&X Must be at least 12 free regs. I
72 |INITIALIZE ASFO j0OC _gON:il2 [(header + 5 complex stack fevels) __
73 INITIALIZE ASF1 306 PAC SEX Enough Memory 7
74 INITIALIZE ADF2 330 CGO Show “No Room™ msg
75 INITIALIZE ADF3 0c3 -=30CF [NORMER]
76 INITIALIZE ADF4 1] Be»C S8X First free reg. address (from .END.}
77 INITIALIZE AGFS 270 RAM SLCT select buffer header
78 INITIALIZE ASFE 106 A=C 58X buffer address in A S&X
79 INITIALIZE ADFT o P13 4 B
BO INITIALIZE ADFE i21I:I| LD@PT- 8 Buffer id# i
Bl INITIALIZE ADFD i21I:II LD@PT- 8 Buffer id# I
B2 INITIALIZE AOFA 010 LC@PT- 0 Buffer size '
33 [INITIALIZE wrs BTG - 200 !
B4 INITIALIZE ADFC 2F0 WRIT DATA Store Header Reg
B5 INITIALIZE ADFD 2EB INC -35d A9CA
1 BUFFER NOBUFER ADFE 215 PNC XQ Build Msg - all cases
2 BUFFER ASFF OFC ->3F85 [APRMSG2]
3 BUFFER AADD 00F "W
4 BUFFER AAD1 00F "0
5 BUFFER AAD2 020 .
& BUFFER AAD3 014 "
7 BUFFER AADS 020 - MSE: "NO Z-STACK"
B BUFFER AADS 013 g
9 BUFFER AADE 014 T
10 BUFFER AADT 001 A"
11 BUFFER AADE 003 "
12 BUFFER AADG 208 K"
13 BUFFER | AADA 1F1 NC G0 Left!, Show and Hait
14 BLIFFER AADB OFE -=3F7C [APEREX]

Notice how we finish with ZAVIEW to show the current complex number in the stack upon buffer
creation. [CHKBUF] does not create the buffer, but reads its address into register A and the content of
the header into register C.

417 User Manual Page 78 of 90

(c) Angel M. Martin - June 2013

Appendix 2. Complex Keyboard key maps.

The following table shows the detailed key map supported by the ZKBRD complex keyboard function

launcher.

Level Function Level Function
L1 wvJ]v Name L v [v Name
z ZINV z o -HP 417
z ZSQRT z YAX WAz
z 7L0G z XA2 702
z ZLN z 107X ZALOG
z zZ<>W z enX ZEXP
z ZRDN z X<>Y ZTRP
z ZSIN z RDN ZRUP
z zcos z ASIN ZASIN
z ZTAN z ACOS ZACOS
z AIMG _ z ATAN ZATAN
z ZSTO_ _ z ASN ZK?YN
z ZRCL _ _ z LBL ZSIGN
z z<>__ z GTO Vil
z ZENTERM z CAT AIMG _
z ZNEG z ISG ZCONJ
z 77X z RTN XAZ
z z- z CLX cLz
z Z+ z X=Y? Z=W?
z z* z SF ZNORM
z z z CF ZMOD
z 20-29 z FS? ZARG
z ZAVIEW z X<=Y? Z=WR?
z B 2J0-239 z BEEP ZTONE
z z WA1/Z z PR ZREC
z z zPs| z R-P zPOL
Z | Z ZLNG z X>Y? z=1?
z z enz z FIX ZRND
z z 7>V z scl ZINT
z z ZQRT z ENG ZFRC
z z ZIMAG! z =0? z=0?
z z ZREALA z PI ZGAMMA
z z pd] z LASTX LASTZ
z | 2 CLSTZ Z [VIEW] o |AVEW__
z z ZRPL z SIN ZSINH
z z 71X z cos ZCOSH |
z z ZHW? z TAN ZTANH |
z z ZWDET z SIN |zASINH |
z z ZWDIST z cos |zacosH |
z z ZWANG z | AN fzatang |
z z ZREAL? z z SQRT ZNXTNRT _
z z ZIN? z z LN ZNXTLN
z z ZWCROSS z z SIN ZNXTASN
z z ZIMAG? z z cos ZNXTACS
z z ZUNIT? Al | TAN| |ZNXTATN
z z ZWLINE z z LOG |zKBS |
z z 2407 z z LN |zvBs |
7| = ZouT? z z cos |zBs i
7 | = ZWDOT z z TAN |zJBS |
z z z<>U z z SN |zwL |

Z___Z N SQRT|EZIZ |
417 User Manual Page 79 of 90

(c) Angel M. Martin - June 2013

Appendix 3.- Formula Compendium.

Elementary complex numbers and functions — By W. Doug Wilder.

417 User Manual Page 80 of 90

(c) Angel M. Martin - June 2013

,I:=1,,l—|.=E'rE=|...-'""H.'I" _,I:==E-r’=|.£|.ﬂ.'l"=—|. —III:=.|I:'I
E=ReZ) = jlm[Z) =x+ jr=re™ = rs08 =roodl = jreirf F=E = Jxt ey B =tan ¥/ x)
Z=Z"=x—jyp=re’ =rs-8 Z4+ 2 =2Re(T) 22 =j2Im{Z)
(22 =22, (220 =22 (ZJZ) =212, (Z+2) =2 +Z (Z-2Z) =2 -Z
2L =122, ZIZ|=1Z|/|2Z, 2L =122 F= = =x" 1y
Z +Z P=(Z 4 ZNZ 2V =22 + +Z T 42T =|Z 4 2RAZ TN+ |2, F
o+ ..=={I|-'-.!|'=:I-'-_,I'{}|-'-}=] ‘l:I_ﬁz:{Il_)4+ ¥ - ¥:) Lpri 5 A+ L;
L, =(xx, —RR)+ flxp, +px) ="‘|r2"":{ﬂl "Ez:l =""|"‘:."'E'M.L'm::I Re(l/£ -:I = Rell/ £)
Z 12, =xx, + 0 + AR —x 000G + ¥)= r J{'E —8,) Zh=(x— ="+)= Ir
L =lxp +pp)+jlxp, -yl =resB. 8 =2 i & jdwid (£, £, =10 vectors)
F=x -y + jlop=r™ £ ="M | principal)
m=3.14159 26535 BOT93 23846 264 . g gt e=2. 7182818284 59045 23536 028 ...
et =g = Sy =emay + jeminy ghgh =gl (55 =™ (- <B 2x)
e =1le® &P =Z e¥ =can(Z)+ jrinl) e* =coshi £+ sinh(Z) = oosl J5) — jsin{)
InZ =Inr+ M@= In,jf 2 jraml(pix) & flnm e N—)y =(sinZ & joosZV Z =R E)
ZnZ, =nZ I +InZ, =In{ZZ) i) = e e =2
I =gt Lngﬂ?=h1?"|n.-:.| Inj=0+ jm/2 Inl=0 m{—-1)=0+ fx
o o l e s
‘i:{" =agf! —e"’z ae™ ia =a’Ina ‘iln:{:— je‘zd.'-': = j—:ln:{
al O aF ab £ P £
z zx 7 2 z- -1y
ef=le—r—a /... I .-"=—(—(s (Re(Z)=0)
1t 3l Z+l) 3\ Z+ 5h +1
sinZ =(—ji2Ne™ —&™) =(—ji e -1/e¥) gin™' & =—_,r'|n{_,r':-£-=~..||l—:-£=|
cosZ = (1) 2e® +e7) =(1/ 2" +1/ &™) og™ 3=—_,r'|n{.'-£--1.||32 —l]
; - - | ; i [1+4 2 [| iz
tanZ =—j — ==j tan™' = —Ln| ——— tan;' (£, /£ 1=~ jIn e B e
F N - F FI_._ N 1 F
¥4 e £ 1 2 l-jZ]
;ea.v.'d =—sind %.ﬂn:{ = sz jmv.'dﬂ = sind j.'rjn..'-i df =—con i
E S T Pl pd fr)
.vfn.'-:::-:—d—--d——d—--... mv.'-::l—d—a-d——d—-....
s T a4 6l
simhZ =(1/ 2" — &) = — jsin{ jZ) sinh™ Z = In{.'-ﬂ . O 1]
coshZ =(1/2)e" + &%) = cos{ jZ) cash™ Z =In| Z + 27 1)
e —e° e”-l (+ L
tanh & = = =— jtan{ |£ tanh™ =—|:n
Fret emql UL - Z
cosd =cosx coshy— jsinx sinh y sind =sinxcoshy+ fcosx sinhy

417 User Manual Page 81 of 90

Appendix 4.- Quick Reference Guide. The tables in the following four pages list all 41Z functions in alphabetical order.

(c) Angel M. Martin - June 2013

Function Description Formula Input Output Comments
1 [HP41z Initializes Complex Stack =XY; W=ZT inone Initializes Z buffer & ZAVIEW runs on CALC ON

2 |wnl/z Complex YA1/X wA1/z = exp(Ln w / Z) w in W; zin Z (XY) WAL1/z in Z (XY) Drops Buffer

3 |wAaz Complex YAX WAz = exp(z*Ln w) w in W; zin Z (XY) WAz in Z (XY) Drops Buffer

4 |Xn1/z Hybrid YAX a”r1/z = exp(1/ z¥Ln a) X in X reg; zinY,Z regs XAz in Z (XY) does LastZ

5 Xnz Hybrid YAX a”Z = exp(z*¥Ln a) X in X reg; zinY,Z regs XAz in Z (XY) does LastZ

6 [Z+ Complex addition (x1+x2) +i (y1+y2) w in W; zin Z (XY) w+z in Z (XY) Drops Buffer, LastZ
7 Z- Complex substraction W-z=w + (-z) w in W; zin Z (XY) w-z in Z (XY) Drops Buffer, LastZ
8 [z* Complex multiplication (x1*x2 - y1*y2) + i (x1*y2 + y1*x2) w in W; zin Z (XY) w*z in Z (XY) Drops Buffer, LastZ
9 z/ Complex division w/z=w *(1/z) w in W; zin Z (XY) w/z in Z (XY) Drops Buffer, LastZ
10 [zn1/X Hybrid YAX z71/n =r71/n * exp(i*Arg/n) X in X reg; zinY,Z regs zA1/x in Z (XY) does LastZ

11 Z~2 Complex XA2 272 = A2 * exp(2i*Arg) zin Z (XY) z/2 in Z, (XY) does LastZ

12 zn~3 Cubic power z=2"3 zinZ(IminY, ReinX) result in Z (XY) more accurate than Z2X
13 Z~X Hybrid YAX z*n = r*n * exp(i*n*Arg) X in X reg; zinY,Z regs zx in Z, (XY) does LastZ

14 z=0? Is z=0? is z=0? zin Z (XY) YES/NO (skips if false)

15 Z=I? Is z=I? is z=i? zin Z (XY) YES/NO (skips if false)

16 [Z=W? Is z=w? is z=w? w in W; zin Z (XY) YES/NO (skips if false)

17 [Z=WR? are z & w equal if rounded? is Rnd(z)=Rnd(w)? w in W; zin Z (XY) YES/NO (skips if false)

18 Z#0? is z equal to zero? is z#0? zin Z (XY) YES/NO (skips if false)

19 Z#HW? Is z equal to w? is z=w? w in W; zin Z (XY) YES/NO (skips if false)

20 [ZACOS Complex ACOS acos z = pi/2 - asin z zin Z (XY) acos(z) in Z (XY) does LastZ

21 [ZALOG Complex 107X er[z*In(10)] zin Z (XY) 107z in Z (X,Y) and ALPHA does LastZ

22 [ZASIN Complex ASIN asin z = -i * asinh (iz) zin Z (XY) asin(z) in Z, (XY) does LastZ

23 [ZATAN Complex ATAN atan z = -i * atanh (iz) zin Z (XY) atan(z) in Z (XY) does LastZ

24 [2COS Complex COS cos z = cosh (iz) zin Z (XY) cos(z) in Z (XY) does LastZ

25 [ZEXP Complex e”X erx * eA(iy) zin Z (XY) e’z in Z (XY) and ALPHA does LastZ

26 [ZHACOS Complex Hyp. ACOS acosh z = Ln[z + SQ(z/2 - 1)] zin Z (XY) acosh(z) in Z (XY) does LastZ

27 [ZHASIN Complex Hyp. ASIN asinh z = Ln[z + SQ(z"2 + 1)] zin Z (XY) asinh(z) in Z (XY) does LastZ

28 [ZHATAN Complex Hyp. ATAN atanh z =1/2 * Ln[(1+2)/(1-2)] zin Z (XY) atanh(z) in Z (XY) does LastZ

29 [ZHCOS Complex Hyp. COS coshz=1/2 * [erz + eP-2Z] zin Z (XY) cosh(z) in Z (XY) does LastZ

30 [ZHSIN Complex Hyp. SIN sinhz=1/2 * [erz - eN-2Z] zin Z (XY) sinh(z) in Z (XY) does LastZ

31 [ZHTAN Complex Hyp. TAN tanh z = (e*z-e”-z)/(e”z+el-z) zin Z (XY) tanh(z) in Z (XY) does LastZ

32 [ZIMAG? is Im(z)=0? is Im(z)=0? zin Z (XY) YES/NO (skips if false)

33 [ZIN? Is z inside the unit circle? is |z]<1? zin Z (XY) YES/NO (skips if false)

34 [ZINT? Checks if Z is an integer number |are Im(z)=0 and FRC[Re(z)]=07? zinZ(IminY, ReinX) YES/NO (skips if false) used in Bessel fncs

82

(c) Angel M. Martin - June 2013

Function Description Formula Input Output Comments
35 [ZINV Complex Inversion X/(XA2 + yA2) - i y/(xA2 + yA2) zin Z (XY) 1/zin Z (XY) and ALPHA does LastZ

36 [ZLN Complex LN In(z) = In(r) + i*Arg zin Z (XY) Ln(z) in Z (XY) does LastZ

37 [ZLOG Complex LOG log(z) = In(z)/In(10) zin Z (XY) Log(z) in Z (X,Y) does LastZ

38 [ZNEG Complex CHS -z=-x-1iy zin Z (XY) -zin Z (XY) does LastZ

39 ZOUT? Is z outside the unit circle? is |z]>1? zin Z (XY) YES/NO (skips if false)

40 [zZPI* |Product by pi z*p zin Z (XY) result in Z (XY) more accurate than FOCAL
41 [ZREAL? Is Re(z)=0? Is Re(z)=07? zin Z (XY) YES/NO (skips if false)

42 [ZRND Rounds Z to display settings rounded values to display zin Z (XY) Rounded Re & Im in Z (XY) does LastZ

43 [ZSIN Complex SIN sin z = -i *sinh (iz) zin Z (XY) sin(z) in Z (XY) does LastZ

44 [ZSQRT Complex SQRT (Direct) sqr(z)=sqr(r) * eM(i*Arg/2) zin Z (XY) main value of zA1/2 in Z (XY) does LastZ

45 [ZTAN Complex TAN tan z =-i* tanh (iz) zin Z (XY) tan(z) in Z (XY) does LastZ

46 [ZUNIT? Is z on the unit circle? is |z]=1? zin Z (XY) YES/NO (skips if false)

47 |-ZSTACK Section Header n/a inone IShows "Running..." msg

48 |CLZz Clears Z Re(z)=0=Im(z) none Z level (XY) cleared

49 |(CLZST Clears Z-Stack n/a none Z-Stack Cleared

50 [LASTZ Complex LASTX n/a none Last z in X,Y regs; Lifts Buffer

51 [ZAVIEW Shows Complex Z n/a zin Z (XY) Shows z in ALPHA

52 [ZENTERA Copies Z into the W register n/a zin Z (XY) Pushes z one level Up Lifts Buffer

53 [Z<> _ Complex Exchange n/a Regtt as suffix Exchanges Z with regs contents Prompting

54 [Z<>ST _ _ Exchanges Z and L# n/a z in XY, level# in prompt zinL#; L#inLL& XY Prompting

55 [ZTRP Exchanges Re(Z) and Im(Z) zTrp =y +iX zin Z (XY) Im(z) in X, Re(z) inY does LastZ

56 [Z<>W Exchange Zand W (L2) n/a w in W, zin Z (XY) zinl2&ZT winlL1&X,Y

57 RZIMAGA Enter imaginary number n/a Im(z) in X zero in X; Im(z) in Y Lifts Buffer

58 [ZRCL_ _ Complex RCL n/a Regtt as suffix z in X,Y - lifts stack Lifts Buffer, Prompting
59 [ZRDN Z-Stack Roll Down n/a Stack Levels Rolls Down stack Drops Buffer

60 [ZREALAN Enter Real numberin Z n/a Re(z) in X Re(z) in X;, Zeroin Y Lifts Buffer

61 [ZRPLA Replicates z in all levels L4=13=12=L1 zin Z (XY) z in all 4 levels Lifts Buffer

62 [ZRUP Z-Stack Roll Up n/a Stack Levels Rolls Up stack Lifts Buffer

63 [ZSTO _ _ Complex STO n/a Regtt as suffix Stores z in consequtive regs Prompting

64 [ZVIEW _ _ Complex View n/a Regtt as suffix Shows z in ALPHA Prompting

1 [MNM/AG _ Natural Data Entry Re A IM or r*arg Re(z) in X, Im(Z) as suffix iz in Z (XY), stack lifted Prompting, Lifts Buffer
2 1/z alternative ZINV (Uses TOPOL) 1/r * exp(-i arg) zin Z (XY) 1/zin XY registers and ALPHA does LastZ

3 |erz alternative ZEXP erz=eMx * (cosy+isiny) zin Z (XY) exp(z) in Z (XY) does LastZ

4 [E1Z/1z spherical hankel h1(0,z) h(l)(O,z) =exp(i*z) / i*z zin Z (XY) result in Z (XY) does LastZ

5 |NXTACS Next ACOS Value 21,2=+/-20+2p z0 in Z (XY) z1in W, z2 in Z (XY) does LastZ

6 |[NXTASN Next ASIN Value 21,2 =+/-20 + 2p/2 z0 in Z (XY) z1in W, z2 in Z (XY) does LastZ

83

(c) Angel M. Martin - June 2013

Function Description Formula Input Output Comments
7 |NXTATN Next ATAN value 21,2=20+/-p z0 in Z (XY) z1in W, z2 in Z (XY) does LastZ

8 |NXTLN Next Ln(z) next(k) = Ln(z) + 2kp J LN(z) in Z (XY) regs z1in W, z2 in Z (XY) does LastZ

9 |NXTRTN Next Complex Root next(k) = z*1/n * er(2kp/n J) nin X reg.; z*1/nin Z,Y regs 0 % eM2p/nl)in Z (XY) does LastZ

10 [SQRTZ Alternative SQRT (Uses TOPOL) sqr(z)=sqr(r) * er(i*Arg/2) zin Z (XY) main value of z21/2 in Z (XY) does LastZ

11 Zz*1 Multiplies by I (90 deg. Rotation) iz = -Im(z) + | Re(z) zin Z (XY) z*iin L1 & XY does LastZ

12 [ZCHSX Sign Change by X (-1)" * z X in Xreg;zinY,Zregs {(-1)*x * z} in Z (XY) does LastZ

13 [ZGEU Euler's gamma constant g=0,577215665 none g constant as complex Lifts Buffer

14 [ZK?YN Block Key Assignments n/a prompt-driven Makes / Removes assignments may do PACKING
15 [ZKBRD _ Complex keyboard launcher n/a Prompt-driven Launches function lprompting, launcher
16 [ZST+_ _ STO Addition R +z zin Z (XY) Adds z to complex register# lprompting

17 |2ST-_ _ STO Subtraction cR-z zin Z (XY) Subtract z from complex register# [prompting

18 [2ST* _ _ STO Multiply R *z zin Z (XY) Multiplies z to complex registert#f |prompting

19 [zST/_ _ STO Divide cR/z zin Z (XY) Divides complex register by z prompting

20 [ZWLOG Base-w Logarithm base win W, arg. InZ w in W, zin Z (XY) Drops Buffer, LastZ
21 |ZVECTOR Section Header n/a inone Displays Revision Number

22 |POLAR Sets POLAR mode on sets the Polar flag in Buffer none shows Re(z)+) Im(z)

23 [RECT Sets RECT mode on clears the Polar flag in Buffer none shows r <) arg

24 [ZARG Argument of Z atan(y/x) zin Z (XY) Arg(z) in X, (Y reg void) zeroes Y, LastZ

25 [ZCONJ Complex Conjugate conj =x-iy zin Z (XY) Inverts sign of Im(z) does LastZ

26 [ZMOD Module of Z |z|=sqr(x"2+y"2) zin Z (XY) Mod(z) in X, (Y reg void) zeroes Y, LastZ

27 [ZNORM Norm of Z (l.e. square of Module) |||z]]=]|z] ~2 zin Z (XY) (mod(z)*2) in X,Y zeroes Y, LastZ

28 [ZPOL Converts to Polar notation R-P zin Z (XY) Mod(z) in X; Arg(z) in Y does LastZ

29 [ZREC Convers to Rectangular notation |P-R Mod(z) in X; Arg(z) in Y Re(z) in X; Im(z) inY does LastZ

30 [ZSIGN Complex SIGN sign = z/|z| zin Z (XY) z/Mod(z) in X,Y does LastZ

31 [ZWANG Angle between Zand W arg(zw) = Arg(z) - Arg(w) zin Z (XY) ang(z,w) in X (Y void) Drops Buffer LastZ
32 [ZWCROSS Cross product of Zand W zxw=|z| *¥|w]| *Sin(Angle) win W, zin Z (XY) zxw in X (Y void) Drops Buffer LastZ
33 [ZWDET Determinant of Zand W |zw]| = x2*y1 - y2*x1 win W, zin Z (XY) det(z,w) in X (Y void) Drops Buffer LastZ
34 [ZWDIST Distance between Z and W |w-z| = SQR[(x2-x1)"2 - (y2-y1)"2] win W, zin Z (XY) dist(z,x) in X (Y void) Drops Buffer LastZ
35 ZWDOT Dot product of Zand W z*w = x1*x2 + y1*y2 win W, zin Z (XY) dot(z,w) in X, (Y void) Drops Buffer LastZ
36 [ZWLINE Line equation defined by Zand W |a=(y1-y2) / (x1-x2) w in W, zin Z (XY) y=ax+b in ALPHA; bin Y, ain X Drops Buffer LastZ
37 |HLZMATH ISection Header Calculates 2/x-1 X in X Result in X used in ZZETA

38 [ZAWL Inverse of Lambert W z* efz zin Z (XY) result in Z (XY) does LastZ

39 [ZBS# Bessel subroutine 1st./2nd. Kind |see manual, Flag 6 controls case winW, z/2inZ w in cROO, z/2 in cRO1 FOCAL

40 zCl Cosine Integral Ci(z) = -(z72/4) F»5(1, 1; 2, 2; 3/2, -z"2/4) |zin Z (XY) result in Z (XY) FOCAL

41 [ZCRT Complex Cubic Eqg. Roots Cubic ecuation roots A,B,C,D in Z-Stack roots in V, W, and Z (XY) levels FOCAL

42 [ZEl Exponential Integral Ei=y+In|z|+2z* F»(1,1; 2,2; 2) zin Z (XY) result in Z (XY) FOCAL

(c) Angel M. Martin - June 2013

Function Description Formula Input Output Comments
43 |ZERF Error Function erf(z) = 2z/sqr(m) er(-z”2) F11(1, 3/2; z*2) [zin Z (XY) result in Z (XY) FOCAL

44 ZGAMMA Complex G(z) for z#0, -1, -2... Lanczos approximation zin Z (XY) G(z) in Z (XY) uses reflection for Re(z)<0
45 ZHC Hyperbolic Cosine Integral Chi(z) = (z2°2/4) F15(1, 1; 2, 2; 3/2, 2°2/4) [zin Z (XY) result in Z (XY) FOCAL

46 [ZHGF Hypergeometric Function See manual see manual result in Z (XY) by Jean-Marc Baillard
47 [ZHSI Hyperbolic Sine Integral Shi(z) =z * Fy, (1/2, 3/2, 3/2, 2°2/4) zin Z (XY) result in Z (XY) FOCAL

48 [ZIBS Bessel | function see manual w in W, zin Z (XY) I(w,z) in Z (XY) FOCAL

49 [ZIBS Bessel J function see manual w in W, zin Z (XY) U(w,z) in Z (XY) FOCAL

50 [ZKBS Bessel K function see manual w in W, zin Z (XY) K(w,z) in Z (XY) FOCAL

51 [2L12 Dilogarithm Li(2,z) = X(z"k /k”2); k=1,2... zin Z (XY) result in Z (XY) by Jean-Marc Baillard
52 [ZLIN Polylogarithm Li(s,z) = Z(z"k /krs); k=1,2... order win W; arg.zinZ result in Z (XY) FOCAL

53 [ZLNG Gamma Logarithm function Stirling method w/ correction zin Z (XY) result in Z (XY) FOCAL

54 [ZLRCH Lerch Transcendent Fi(z,s,a) = Z[z"k /(k+a)?s]; k=,0,1... s,a,z in U, W, and Z(XY) result in Z (XY) FOCAL

55 [ZPROOT Roots of complex polynomials Iterative Prompt-driven roots in W and Z (XY) levels by Valentin Albillo

56 [ZPSI Complex Digamma IApproximation zin Z (XY) Psi(z) in X,Y regs. And ALPHA FOCAL

57 [ZQRT Complex Quadratic Eq. Roots Quadratic ecuation roots A,B,C in Zstack Calculates roots of equation FOCAL

58 [ZSHK1 Spherical Hankel h1 h(l)(w,z) orderwin W; arg.zinZ result in Z (XY) FOCAL

59 [ZSHK2 Spherical Hankel h2 h(z)(w,z) order win W; arg.zinZ result in Z (XY) FOCAL

60 [zsI Sine Integral Si(z) = 2 * Fy, (1/2, 3/2, 3/2, -22/4) zin Z (XY) result in Z (XY) FOCAL

61 [ZSOLVE Solves for F(z)=0 Newton's method Fnc. name in RO6 Calculates one root for f(z) FOCAL

62 [ZWL Lambert W function see manual zin Z (XY) W(z) in Z (XY) FOCAL

63 [2YBS Bessel Y function see manual win W, zin Z (XY) Y(w,z) in Z (XY) FOCAL

64 [ZZETA Riemann Zeta function Borwein Algorithm zin Z (XY) result in Z (XY) by Jean-Marc Baillard

85

(c) Angel M. Martin - June 2013

1 [ZBUFFER Section Header n/a None None

2 |CLzB Clears Z buffer n/a None buffler cleared

3 |L1=XY? is L1 equal to XY? n/a None Y/N, skip if false

4 |L1<>L Swap L1 & Level n/a Level# as suffix levels exchanged Prompting

5 [L1<>L2 Swap L1 & L2 n/a None levels exchanged

6 [L1<>L3 Swap L1 & L3 n/a None levels exchanged

7 [Li<>L4 Swap L1 & L4 n/a None levels exchanged

8 [L1<>LX Swap L1 & Level n/a level in X levels exchanged

9 |L2=ZT? is L2 equal to ZT? n/a None Y/N, skip if false

10 L2>ZT Copies L2 into ZT n/a None L2 copied to ZT

11 |LVIEW _ View Level n/a Level# as suffix [Transposed value! Prompting
12 |LVIEWX View level by X n/a level in X Transposed value!

13 PREMON Copies XY into LO and finds Zbuffer |n/a Re(z) in X; Im(z) in Y none

14 PSTMON Copies XY into L1 and synch'sup |n/a Re(z) in X; Im(z) in Y None

15 RG>ZB _ Copies registers to Z buffer n/a Reg# as suffix data copied from registers Prompting
16 [ST>ZB Copies real stackto L1 & L2 n/a None stack copied to buffer

17 XY>L _ Copies XY into Level n/a Level# as suffix XY copied to LEVEL Prompting
18 [XY>LO Copies XY into LO n/a Re(z) in X; Im(z) in Y XY copied to LO

19 XY>L1 Copies XY into L1 n/a Re(z) in X; Im(z) in Y XY copied to L1

20 [ZB>RG _ _ copies buffer to registers n/a Reg# as suffix data copied to registers Prompting
21 [ZB>ST Copies L1 & L2 into real stack n/a None buffer copied to Stack

22 [ZBDROP Drops Z buffer one level n/a None levels dropped Drops Buffer
23 [ZBHEAD Zbuffer Header info n/a None header register in ALPHA

24 [ZBLIFT Lifts Z buffer one level n/a None buffer lifted Lifts Buffer
25 [ZBVIEW Shows Z Buffer n/a None shows header & all levels FOCAL

26 |-B UTILS Section Header n/a None None

27 B? Does buffer exist? n/a buffer id# in X 'YES/NO (skips if false) CCD Module
28 PBLIST lists all buffers existing n/a none list in Alpha D. Yerka

29 BLNG? Buffer length n/a buffer id# in X buffer size in X CCD Module
30 BX>RG copies buffer to registers n/a buffer id# in X data copied into ROO to end David Assm
31 [CLB Clear buffer n/a buffer id# in X Clears buffer from memory CCD Module
32 |FINDBX finds buffer address n/a buffer id# in X buffer address in X D. Yerka

33 MAKEBX makes buffer in RAM n/a (id#,size) in X buffer created D. Yerka

34 RG>BX copies registers to buffer n/a Data in ROO to Rnn Copied to Buffer David Assm

(*) Buffer functions have been moved to the BUFFERLAND Module, under a dedicated section for the 417 case.

86

(c) Angel M. Martin - June 2013

Appendix 5.- Buffer logic function table.

O© 0N O O WN P

W NDNDNDNNNNNMNNMNNRPRPRERPPRPEPRPERPERPRERERPREPR
O ©W O NO O A, WNPFP O OOWOWNOO OM~wWwNDNLPRERO

Pre-Exec . Post-Exec
Alphain XY | XYto L0 | XYto L1l ! Buffer LIFT | L2->2ZT Buffer DROP ! XYinto L1 | L1,2->XYZT | ZAVIEW

-HP-41 7 Initialize Buffer yes no yes ! no no no | no no yes

wrz Power yes yes no | no yes PREDUAL yes ! yes yes yes POSTDUAL
Z+ Addition yes yes no : no yes PREDUAL yes ! yes yes yes POSTDUAL
Z- Substraction yes yes no : no yes PREDUAL yes ! yes yes yes POSTDUAL
z* Multiply yes yes no no yes PREDUAL yes | yes yes yes POSTDUAL
Z/ Divide yes yes no : no yes PREDUAL yes i yes yes yes POSTDUAL
ZWANG Angle between yes yes no : no yes PREDUAL yes i yes yes no PSTDUAL-2
ZWCROSS | Cross Product yes yes no 1 no yes PREDUAL yes ' yes yes no PSTDUAL-2
ZWDET Determinat yes yes no : no yes PREDUAL yes ! yes yes no PSTDUAL-2
ZWDIST Distance yes yes no : no yes PREDUAL yes ! yes yes no PSTDUAL-2
ZWDOT Dot Product yes yes no 1 no yes PREDUAL yes | yes yes no PSTDUAL-2
ZWLINE Line Equation yes yes no : no yes PREDUAL yes i yes yes no PSTDUAL-2
Z=W? is Z=W? yes no yes : no yes PREDUL-2 no i no no no

Z=WR? is Z=W round? yes no yes 1 no yes PREDUL-2 no ' no no no

ZHW? is Z not W? yes no yes : no yes PREDUL-2 no ! no no no

Z=0? is Z Zero? yes no yes | no no PREMON-2 no ! no no no

Z#07? is Z not zero? yes no yes 1 no no PREMON-2 no | no no no

Z=1? isZ=i? yes no yes : no no PREMON-2 no i no no no

ZREAL? Is Z real? yes no yes : no no PREMON-2 no i no no no

ZIMAG? Is Z imag? yes no VES\\ no no PREMON-2 no ' no no no

ZIN? |Z|<1? yes no yes : no no PREMON-2 no ! no no no

Z0UT? |Z|>1? yes no yes : no no PREMON-2 no ! no no no

ZUNIT? |z|=1? yes no yes i no no PREMON-2 no | no no no

xXhz Hybrid Power yes yes no : no no PREMON no i yes yes yes POSTMON
zr2 2 yes yes no : no no PREMON no i yes yes yes POSTMON
"X Z"X yes yes no 1 no no PREMON no ' yes yes yes POSTMON
ZACOS ACOS yes yes no : no no PREMON no ! yes yes yes POSTMON
ZACOSH ACOSH yes yes no : no no PREMON no ! yes yes yes POSTMON
ZALOG 107z yes yes no 1 no no PREMON no | yes yes yes POSTMON
ZASIN ASIN yes yes no : no no PREMON no i yes yes yes POSTMON

87

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

ASINH
ATAN
ATANH
X-Yj
COos
COSH
2*Z
ErZ
Z/2

1/z
Ln(Z)

Log(2)

-Z

rounded Z
Sign(2)

SIN

SINH
Square Root
TAN

TANH
Re<>Im
Zarg

1Z|

1Z|~2
Rectangular
Polar Notation
alternate ZEXP
function
hybrid power
rotation
rotation

Next ASIN
Next ACOS
Next ATAN

yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes

yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes

(c) Angel M. Martin - June 2013

no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no

no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no

88

no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no

PREMON
PREMON
PREMON
PREMON
PREMON
PREMON
PREMON
PREMON
PREMON
PREMON
PREMON
PREMON
PREMON
PREMON
PREMON
PREMON
PREMON
PREMON
PREMON
PREMON
PREMON
PREMON
PREMON
PREMON
PREMON
PREMON
PREMON
PREMON
PREMON
PREMON
PREMON
PREMON
PREMON
PREMON
PREMON
PREMON

no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no

yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes

yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes

yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
no

no

no

yes
yes
yes
yes
yes
yes
yes
yes
yes
yes

POSTMON
POSTMON
POSTMON
POSTMON
POSTMON
POSTMON
POSTMON
POSTMON
POSTMON
POSTMON
POSTMON
POSTMON
POSTMON
POSTMON
POSTMON
POSTMON
POSTMON
POSTMON
POSTMON
POSTMON
POSTMON
POSTMON
POSTMON
PSTMON-2
PSTMON-2
PSTMON-2
POSTMON
POSTMON
POSTMON
POSTMON
POSTMON
POSTMON
POSTMON
POSTMON
POSTMON
POSTMON

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

(c) Angel M. Martin - June 2013

NXTLOG Next LN yes yes no no no PREMON no i yes yes yes POSTMON
NXTNRT Next Nth. Root yes yes no : no no PREMON no : yes yes yes POSTMON
ZAVIEW Output Z yes no no : no no no i no no yes

CLz Clear Z no no no no no no ' yes yes yes POSTMON
ZIMAG Clear Re(2) no yes no : no no no ! yes yes yes POSTMON
ZREAL Clear Im(z) no yes no | no no no ! yes yes yes POSTMON
CLZST Clear Zstack no no no ! no no no | no yes yes PSTMON-3
<> Exchange yes no no : no no PREMON no i yes yes yes POSTMON
Z<>W Exchange Stack yes no yes : no no PREMON-2 no i no yes yes PSTMON-3
Z<>R Exchange Stack yes no yes 1| no no PREMON-2 no ! no yes yes PSTMON-3
Z2<>S Exchange Stack yes no yes : no no PREMON-2 no ! no yes yes PSTMON-3
LASTZ last argument yes no yes | yes no PREMON-2 no ! no yes yes PSTMON-3
ZR™ Roll Up Zstack yes no yes | yes no PREMON-2 no | no yes yes PSTMON-3
ZRCL Recall to Z yes no yes : yes no PREMON-2 no i yes yes yes POSTMON
IMAGINE inputs Im(2) yes no yes : yes no PREMON-2 no i yes yes yes POSTMON
ZENTER? Enter level yes no yes | yes no PREMON-2 no ' no yes yes PSTMON-3
ZREAL" Input number yes no no yes no PREMON no ! yes yes yes POSTMON
ZIMAG" Input number yes no no yes no PREMON no I yes yes yes POSTMON
ZRDN Roll Down ZSTK yes no yes 1 no no PREMON-2 yes i no yes yes PSTMON-3
ZREPL Replicates Z yes no yes : no no PREMON-2 no i no yes yes PSTMON-3
ZSTO Stores Z yes no yes ! no no PREMON-2 no ! no yes yes PSTMON-3

89

	This compilation, revision A.4.5.
	Copyright © 2005-2013 Ángel M. Martin

