
HP41 CONTOUR ROM

© ÁNGEL M. MARTIN – MAY 2024 PAGE 1 OF 77

HP-41 Contour ROM

Advanced 41Z / SandMath Apps – Vol. 3

Ángel M. Martin Cañas. May 2024

HP41 CONTOUR ROM

© ÁNGEL M. MARTIN – MAY 2024 PAGE 2 OF 77

This compilation revision 1.1.1

Copyright © 2024 Ángel Martin

Published under the GNU software license agreement.

Original authors retain all copyrights and should be mentioned in writing by any part utilizing this
material. No commercial usage of any kind is allowed.

Front cover image taken from: https://www.dreamstime.com/royalty-free-stock-photography-

mathematics-background-image20849947

Screen captures taken from V41, Windows-based emulator developed by Warren Furlow.

See www.hp41.org

https://www.dreamstime.com/royalty-free-stock-photography-mathematics-background-image20849947
https://www.dreamstime.com/royalty-free-stock-photography-mathematics-background-image20849947
http://www.hp41.org/

HP41 CONTOUR ROM

© ÁNGEL M. MARTIN – MAY 2024 PAGE 3 OF 77

1. Introduction
a. Introduction and credits 4

b. Table of Functions. 5

2. Complex Analysis applications

a. Contour Integration . 7

b. Integration Examples . 15

c. Complex Potentials . 19

d. Appendix. Delta-Wye Transform . 22

e. Mandelbrot Set Area Estimation . 24

3. Discrete Fourier Transform

a. Driver for 41Z functions 33

b. Fast Fourier Transform . 35

c. Bessel J and Y via continued fractions . 42

d. Nested Radicals . 59

e. Sigmoid and Einstein functions . 61

4. Advanced Z-SandMath
a. Newton and Halley methods revisited 46

b. Complex Step Differentiation Method . 47

c. Halley’s method for Complex Functions . 49

d. Arc Length of a Curve . 55

e. Surface Areas . 58

5. Recursive 2D-Solve and Integration
a. Recursive use of FINTG . 62

b. Recursive use of FROOT . 63

c. Examples . 64

d. MCODE Routines . 66

6. Number Theory functions

a. Binet Formulas . 71

b. Bell and Bernoulli Numbers . 73

c. Fibonacci Numbers . 74

d. Collatz’s Conjecture . 75

e. Pythagorean Triplets . 77

HP41 CONTOUR ROM

© ÁNGEL M. MARTIN – MAY 2024 PAGE 4 OF 77

Contour_ROM Manual

HP-41 Module

Introduction and Credits.

Welcome to the Contour ROM, gathering a few advanced math applications showcasing the prowess

of the SandMath and 41Z modules. You’ll find HP-41 versions of classic HP-15 advanced application

examples, such as the Contour Integration (which gives this ROM its very name) and the Complex

Potential, as well as several other state-of-the-art examples of the usability and effectiveness of the

calculator platform that may still surprise you after all these years – such as Valentín Albillo’s seminal

contribution on the Mandelbrot Set area estimation.

Other programs include additional applications of the SandMath and 41Z in root-finding and

differential geometry areas - see the Curve length, Surface of revolution, and areas under generic

surfaces.

And make sure you don’t miss the Fourier Transform sections, an elusive field for RPN calculators

successfully conquered by your trusty HP-41 companion. See the driver program for the 41Z MCODE

functions and the seminal version by Narmwon Kim, here enhanced with X-Mem file support.

Overlap with other ROMs

Several applications in this module have been taken from the Advantage Math ROM, some of them

for completion sake and other to round the selection in a more logical manner. Consequently, and

with some exceptions, they have been removed from the Advantage Math to avoid repetition.

Note that the use of the SandMath for FINTG and FROOT has been favored over the leaner “Solve &

Integrate” ROM. Reasons for that are several, mainly because other SandMath functions (such as

DERV) not available in the S&I ROM are also featured in the programs. That’s why the section dealing

with the Recursive use of FINTEG and FROOT has been included in this module again, no need to

plug the S&I ROM for those.

A few other utility functions are sprinkled throughout the module as well, be that on the FFT section

or in the others. Finally several number-theory applications are also included for completion sake.

Dependencies.

This ROM is designed for the HP-41CX O/S, obviously housed in Q-RAM-capable hardware devices like

Clonix/NoVRAM, MLDL_2k and others. Numerous programs rely on functions from the SandMath and

the 41Z modules, thus make sure they’re also installed – as well as the Library#4, required by these

two.

HP41 CONTOUR ROM

© ÁNGEL M. MARTIN – MAY 2024 PAGE 5 OF 77

Without further ado, here is a list of the functions in the Main FAT table.

XROM# Function Description Author

16.00 -Z-CONTOUR Section header
16.01 “ZLITG” Complex Line Integral HP Co. – Á. Martin
16.02 “ITG” Integrand function HP Co. – Á. Martin
16.03 “ ZCNTR” Contour Integral HP Co. – Á. Martin
16.04 “ITC” Integrand function HP Co. – Á. Martin
16.05 “ARC” R-Circle Contour and Derivative (F0 set) Á. Martin

16.06 “LIN” Line Contour and Derivative (F0 Set) Á. Martin
16.07 “FZ” Complex function - f(z) = exp(iz)/(z+1/z) Á. Martin
16.08 “ZCD” exp(-iz) / (1+z^2) - Cauchy Distribution Á. Martin
16.09 “ZL2” Ln z /(1+z^2)}^2 Á. Martin
10.10 “Z13” (z+1)/(z-1).(z-3) Á. Martin
16.11 “ZFLOW” Complex Flow Study HP Co. – Á. Martin

16.12 “ZFL” f(z) = P(z)-Yo - Function to Solve Á. Martin
16.13 “PZ” Complex Potential - P(z) = z + 1/z Á. Martin
16.14 “MBA” Mandelbrot Set Area Valentín Albillo
16.15 “D-Y” Delta-Wye Transform Á. Martin
16.16 “Y-D” Wye-Delta Transform Á. Martin

16.17 “PPL” Print Pythagorean Triplets Thomas Klemm
16.18 -ZFOURIER Section header
16.19 E3/E+ Pointer builder Á. Martin
16.20 EINS _ Einstein Functions 1-2-3 Á. Martin
16.21 SIGMD Sigmoid function Á. Martin
16.22 “JNYX” Bessel J and Y vía Continued Fractions Baillard-Martin

16.23 “=:” Subroutine for JYNX Baillard-Martin
16.24 “ZDFT+” Complex Discrete Fourier Transform Á. Martin
16.25 “ZIDFT+” Complex Inverse Discrete Fourier Transform A. Martin
16.26 “DFTZ” Direct Fourier Transform A. Martin
16.27 “IFTZ” Inverse Fourier Transform A. Martin

16.28 “FFT” Fast Fourier Transform Narmwon Kim
16.29 “IFF” Inverse Fast Fourier Transform Narmwon Kim
16.30 -2D-ITG/SLV Section header
16.31 ASWAP ALPHA swap around comma Á. Martin
16.32 CLAC Clear ALPHA from Comma W&W GmbH
16.33 “FITG2” Recursive Double Integration Á. Martin

16.34 “*2D” Auxiliary for FITG2 Á. Martin
16.35 “F1XY” Examle f1(x,y) Á. Martin
16.36 “F2XY” Example f2(x,y) Á. Martin
16.37 “FRT2” Recursive Root Finder f(x.y) Á. Martin
16.38 “*FG” Auiliary for FRT2 Á. Martin
16.39 “FG1” Example f1 and g1 Á. Martin

16.40 “FG2” Example f2 abd g2 Á. Martin
16.41 FNRM Finite Nested Radicals Martin-Baillard
16.42 INRM Infinite Nested Radicals Martin-Baillard
16.43 -SANDMATH+ Section header

16.44 “CLEN” Curve Length Á. Martin

16.45 *CL” Auxiliary for CLEN Á. Martin

16.46 “LNG” Arc Length of a Curve JM Baillard

16.47 “SRV” Area of Surface of Revolution JM Baillard

16.48 “SKS” Area of Surface JM Baillard

HP41 CONTOUR ROM

© ÁNGEL M. MARTIN – MAY 2024 PAGE 6 OF 77

16.49 “*RM” Romberg Routine JM Baillard

16.50 “XHALL” Halley’s Method for real roots Á. Martin

16.51 “XNWT” Newton Method for real roots Á. Martin

16.52 “ZNWT” Complex-Step-Differentiation for real roots Á. Martin

16.53 “ZROOT” Complex Root finder Albillo-Martin
16.54 BELL Bell Numbers Á. Martin
16.55 BN2 Bernouilly Numbers Á. Martin
16.56 BINETN Binet formula – Integer order Á. Martin

16.57 BINETX Binet formula – Real order Á. Martin
16.58 FIB Fibonacci Numbers Á. Martin
16.59 IFIB Inverse Fibonacci numbers Á. Martin
16.60 MLN Mutinomial Coefficients Martin-Baillard
16.61 ULAM Ulam’s Conjecture Á. Martin

16.62 FIB Sum of Fibonacci numbers Á. Martin

16.63 IFIB Sum of Inverse Fibonacci numbers Á. Martin

HP41 CONTOUR ROM

© ÁNGEL M. MARTIN – MAY 2024 PAGE 7 OF 77

Contour Integration on the HP-41.

What follows is just a quick adaptation of the parameterized complex integral examples from the HP-

15C Advanced Functions manual, see pages 73 and following.

Perhaps a little brute-force-ish, nevertheless a good example of a combined application of the 41Z

functions and the SandMatrix for the numerical integration task. Surely it is restricted to easy

contours like the straight line segments used in the example below, so the general-purpose case

(Residues theorem, analytical functions, etc.) remains a challenge to be cracked.

You can use FINTG to evaluate the contour integral here C is a curve in the

complex plane. First parameterize the curve C by:

z(t)= x(t) + i y(t) ; for t1 ≤ t ≤ t2.

Let G(t)=f(z(t)).z’(t). Then

These integrals are precisely the type that FINTG evaluates. Since G(t) is a complex function of a

real variable t, FINTG will sample G(t) on the interval t1 ≤ t ≤ t2 and integrate Re(G(t))—the value

that your function returns to the real X-register. For the imaginary part, integrate a function that

evaluates G(t) and uses RE<>IM to place Im(G(t)) into the real X-register.

Program #1. Integral along line segment [a, b]

The generalized program listed below evaluates the complex integral along the straight line from
a to b, where a and b are complex numbers such that Im(a)#Im(b). Hence, the parameterized
values z(t) use z = a + t.(b-a), with t1=0, t2=1.The program assumes that your complex function
subroutine has a global label and evaluates the complex function f(z), and that the limits a and b are
in the complex W- and Z- I and the
uncertainty ΔI are returned in the X- and Y-registers respectively.

The parameterization is for this case quite simple:

z(t) = a + t.(b-a), with t1=0, t2=1
z’(t) = (b-a)

This has the additional benefit that there’s no need to write a global label subroutines for either the
contour or the derivative curves.

Note that since the derivative of the contour is not dependent on t it could therefore be taken out of
the integral - however the requirement of using the imaginary part of the integrand advises to leave

the derivative inside.

HP41 CONTOUR ROM

© ÁNGEL M. MARTIN – MAY 2024 PAGE 8 OF 77

01 LBL “ZLITG+” Data entry .

02 “F(Z)? “ line segment

03 PMTA

04 ASTO 00 FName in R00

05 “Z1=?”

06 PROMPT saves a in ZR01

07 ZSTO 01 Re - R02, Im - R01

08 “Z2=?”

09 PROMPT b

10 ZRC- 01 (b-a)

11 GTO 00

12 LBL “ZLITG“ Cpx. Line Intg

13 ASTO 00 FName in R00

14 Z<>W a

15 ZSTO 01 saves a in ZR01

16 Z- (b-a)

17 LBL 00

18 ZSTO 02 saves (b-a) in ZR02

19 “ITG” integrands

20 0 t1 limit

21 ENTER^

22 1 t2 limit

23 SF 01 Imaginary parts

24 FINTG calculates Im (I,)

25 STO 07 saves Im(I) in R07

26 RDN

27 STO 09 saves Im(I) in R03

28 RDN same limits

29 CF 01 flag real parts

30 FINTG calculates Re(I,)

31 STO 06 saves Re(I) in R06

32 RDN

33 STO 08 saves Re(I) in R08

34 RCL 09 presents I in W

35 X<>Y

36 ZENTER^ saves I in W

37 RCL 07 presents I in Z

38 RCL 06

39 ZAVIEW shows result

40 TONE 2

41 RTN done.

42 LBL “ITG” Integrals

43 0 no Imaginary

44 X<>Y current t

45 ZRC* 02 (b-a).t

46 ZRC+ 01 a +(b-a).t

47 XEQ IND 00 f(a + (b-a).t)

48 ZRC* 02 f(z).z’(t)

49 FS? 01 Imaginary?

50 X<>Y yes, use it

51 END done.

To use ZLITG you need to write a subroutine to calculate the complex function f(z), place its global

label in ALPHA and the two complex integration limits that define the ends of the straight line that

your function will be integrated along in the complex stack levels W and Z.

The driver program ZLITG+ offers prompts to input the data sequentially, so it’s more convenient for

the casual user. Note that f(z) still must be written prior to executing the program.

Note that in this case z(t) = a + t.(b-a),

hence z’(t) = (b-a),

and thus, not depending on the real variable t, it can be taken out of the integral instead of being

part of the subroutine programming f(z). This facilitates the calculations and speeds up the execution.

HP41 CONTOUR ROM

© ÁNGEL M. MARTIN – MAY 2024 PAGE 9 OF 77

Example 1. Approximate the integrals:

These integrals decay very slowly as x approaches infinity and therefore require a long

interval of integration and a long execution time. You can expedite this calculation by

deforming the path of integration from the real axis into the complex plane. According to

complex variable theory, these integrals can be combined as

 with:

This complex integral, evaluated along the line x=1 and y≥ 0, decays rapidly as y increases — like
exp(-y). To use the previous program to calculate both integrals at the same time, we write a
subroutine to evaluate f(z). This result I is calculated much more quickly than if I1 and I2 were
calculated directly along the real axis. .

01 LBL “FZ”

02 ZENTER^
03 ZINV 1/z
04 LASTZ z
05 Z+ z+1/z
06 ZINV 1/(z+1/z)
07 Z<>W z
08 Z*I can be replaced with {X<>Y, CHS}

09 ZEXP exp(iz)
10 Z* f(z)
11 END

Approximate the complex integral by integrating the function from a = 1 + 0i to b = 1 + 6i using a
FIX 3 display format to obtain three significant digits. (The integral beyond 1 + 6i doesn't affect the
first three digits.)

0, ENTER^, 1, ZENTER^, 6, ENTER, 1, puts the lower limit in W and the upper one in Z

ALPHA, “FZ”, ALPHA, XEQ “ZLITG“ =>

Z<>W =>

This result I is calculated much more quickly than if I1 and I2 were calculated directly along the real

axis.

Using FIX 6 instead returns after a substantially longer time:

And here the upper limit does have an impact, for instance moving it up to b=1+7i:

HP41 CONTOUR ROM

© ÁNGEL M. MARTIN – MAY 2024 PAGE 10 OF 77

Program #2.- Extension to a more general contour.

The next step is an extension of this method to more general contours, beyond the straight-line

(vertical or not) segment used before. For this we’ll need to program the different contour sections as

parameterized formulas of the real variable t, i.e. z(t) in the contour, with t going from an initial (lower)

value of the parameter t1, to a final (upper) value t2.

Besides that parameterized curve we’ll also need its derivative as another component of the complex

integral equivalent once the change of variable is applied: G(t) = f(z(t)).z’(t).

Therefore we see that in principle three global labels are going to be required – although the

parameterized equations are likely to be rather simple ones given the nature of the usual contours used

for these integrals – typically line segments and circle arcs.

Let’s see as example the integral of the previous function f(z) but this time using as contour the arc of

circumference with radius R and centered at z=1, taken in a direct (counter-clockwise) direction from

z1 = 1+ R to z2= 1+ Ri

z(t) = 1 + R.exp(it) with t in the interval [0, /2]

z’(t) = i.R exp(it)

The program #2 in next page is a straightforward extension of the previous one, with the obvious

difference this time that within the integrand routine we call the parameterized z’(t) and multiply its

value by the value of the function f(z(t)) as required by the definition G(t) formula.

The program has a data input section where the names of the three global labels are saved in data

registers R00, R01, and R02 using the OS/X utility function PMTA. Also the value of the radius R and

the parameterized integration limits are required at this stage.

Then the runtime main body starts at LBL C – which assumes all input values have been already

entered. The arrangement will be convenient to do repeated calculations with different values of the

radious R, as the point we’re really after is checking whether the integral values decrease with

R, hinting at a final zero result when R goes to an infinite limit.

The function f(z) was already taken into account by the “FZ” routine in the first example, so it won’t be

repeated in the listings below – refer to the previous example if needed.

HP41 CONTOUR ROM

© ÁNGEL M. MARTIN – MAY 2024 PAGE 11 OF 77

LBL "ZCNTR" main driver program 1

"FZ? " global LBL name 2

 PMTA for f(z) routine 3

ASTO 02 saved in R02 4

"Z(T)? “ global label name 5

PMTA for z(t) routine 6

ASTO 00 saved in R00 7

"Z'(T)? “ global LBL name 8

PMTA for z'(t) routine 9

ASTO 01 saved in R01 10

“Z0=?” anchor point 11

PROMPT 12

ZSTO 05 saved in ZR05 13

"R=?" value of radius 14

PROMPT ignore if not needed 15

STO 03 saved in R03 16

"T1^T2=?" integration limits 17

PROMPT for parameter t 18

STO 05 t2 saved in R05 19

X<>Y 20

STO 04 t1 saved in R04 21

LBL C for repeat use 22

RCL 04 lower limit t1 23

RCL 05 upper limit t2 24

"ITC" integrand routine 25

SF 01 flags Imaginary parts 26

FINTG does integration 27

STO 06 Im(I) in R06 28

X<>Y 29

STO 07 30

CF 01 flags Real parts 31

RCL 04 lower linit t1 32

RCL 05 upper limit t2 33

FINTG does the integration 34

STO 08 saves Re(I) 35

X<>Y 36

STO 09 37

RCL 07 38

X<>Y 39

ZENTER^ 40

RCL 06 Im(I) 41

RCL 08 Re(I) 42

ZAVIEW shows result 43

TONE 2 44

RTN done. 45

LBL "ITC” Integrand routine 46

STO 08 saves t in R08 47

XEQ IND 00 calculates z(t) 48

XEQ IND 02 f(z(t)) 49

ZENTER^ saves f(z) in W 50

RCL 08 recalls t 51

XEQ IND 01 calculates z'(t) 52

Z* z’(t).f(z(t)) 53

FS? 01 Imaginary? 54

X<>Y yes, take Im part 55

END done. 56

And finally the parameterized curves are programmed as follows:

01 LBL "ZP" derivative z’(t)

02 0 pure imaginary (0+it)
03 ZEXP exp(it)

04 RCL 03 R
05 ST* Z
06 * R.exp(it)
07 Z*I i.R.exp(i.t)

08 RTN

09 LBL "ZT" parameterized z(t)

10 XEQ “ZP” opportunistic

11 Z/I undoes Z*I
12 ZRCL 05 adds anchor
13 Z+ a + R.exp(i.t)
14 END done.

HP41 CONTOUR ROM

© ÁNGEL M. MARTIN – MAY 2024 PAGE 12 OF 77

Example 2.- Obtain the integral results for the different values of R=1, R=10, R=100, and R=1000

and see if they show a decreasing trend as R increases.

Radius Re(Intg) Im(Intg) Magnitude

1

10

100

1000

Finally let’s close the circle (pun intended) using the general-purpose program #2 to re-calculate the

first example, where the contour in this case is the straight segment: z(t) = a + (b-a).t with 0 ≤ t ≤ 1

01 LBL “LP” derivative

02 6 (b-a)
03 ENTER^
04 0
05 RTN 0 + 6i

06 LBL “LT” contour

07 XEQ “LP” 0 + 6.i

08 RCL 08 t
09 ST* Z t.(b-a)
10 * 0 + t.(b-a)
11 1 a
12 +
13 RTN a + t.(b-a)

XEQ “ZCNTR” with FZ, LT, and LP as global labels, plus t1=0 and t2=1 (R can be ignored)

Using FIX 4 it gives the same result as before,

Result:

Combining Curve and Derivative

In order to reduce the number of global labels in the ROM (where FAT space is always at a premium),
the programs in the module has been modified to use flag F00 to determine whether to calculate the
contour (F0 clear) or its derivative (F0 set). The main program will manage the status of F00
appropriately, setting and clearing F00 appropriately before calling the (now combined) parameter
curve routines. Besides that, the prompt for the derivative subroutine “Z’(T)” has been eliminated –
freeing register R01 for other purposes.

This changes the previous routines listing into the following version:

01 LBL “LT/LP” single entry

02 FC? 00

03 GTO 00

04 LBL 01 derivative

05 6

06 ENTER^

07 0 (b-a)

08 RTN

09 LBL 00 contour

10 XEQ 01 (b-a)

11 RCL 08 t

12 ST* Z

13 * t.(b-a)

14 ZRCL 05 a

15 Z+ a+t.(b-a)

16 END.

HP41 CONTOUR ROM

© ÁNGEL M. MARTIN – MAY 2024 PAGE 13 OF 77

And likewise for the arc of circumference contour:

01 LBL "ZT/ZP" single FAT entry)

02 FC? 00 derivative?
03 GTO 00 no, branch off

04 LBL 01 derivative

05 0 pure imaginary (0+it)
06 ZEXP exp(it)
07 RCL 03 R
08 ST* Z
09 * R.exp(it)

10 Z*I i.R.exp(i.t)
11 RTN

12 LBL 00 parameterized z(t)

13 XEQ 01 opportunistic
14 Z/I undoes Z*I
15 1 adds anchor
16 + 1+R.exp(i.t)
17 END done.

Program #3.- Final consolidated version

Rewriting the data entry section and using PMTK in the OS/X Module we can combine both cases in a

single program, as listed below. This has the advantage of using the same integrand routine for both

cases (ITG and ITC), and thus saves one more FAT entry in the module. Note that iy uses PMTK in the

OS/X module to select the case, either ARC (“Ä”) or LINE (“L”) – and even a custom contour denoted

by “X”, which would need its custom routine to compute the curve and its derivative.

01 LBL “ZCNTR+”

02 “FZ? “

03 PMTA f(z) Name
04 ASTO 00
05 “TYPE ALX”
06 PMTK either 1 0r 2
07 GTO IND X dispatch choice

08 LBL 03

09 “Z(T)? “
10 PMTA contour name

11 ASTO 01
12 GTO 00 merge

13 LBL 02 ine segment

14 “Z1=?”
15 PROMPT
16 ZSTO 01
17 “Z2=?”
18 PROMPT
19 ZRC- 01

20 ZSTO 02
21 0 initial param
22 ENTER^
23 1 final param
24 “LIN” contour name
25 GTO 00 merge

26 LBL 01 Circular ARC

27 “A=?”
28 PROMPT

29 STO 02 Aux. Param.
30 “R=?”

31 PROMPT
32 STO 03 Circle radius

33 “T1^T2=?”
34 PROMPT
35 STO 05 final angle
36 X<>Y
37 STO 04 initial angle
38 X<>Y final angle
39 “ARC” contour name

40 LBL 00 merged code

41 ASTO 01
42 “ITC” integrand

43 LBL C

44 SF 01 imaginary
45 FINTG
46 STO 07 Im(ITG)
47 RDN
48 STO 09 (Im)

49 RDN same limits!
50 CF 01 real part
51 FINTG
52 STO 06 Re(ITG)
53 X<>Y
54 STO 08 (Re)

55 RCL 09 (Im)
56 X<>Y
57 ZENTER^
58 RCL 07 Im(ITG)

59 RCL 06 Re(ITG(
60 ZAVIEW show result

HP41 CONTOUR ROM

© ÁNGEL M. MARTIN – MAY 2024 PAGE 14 OF 77

61 TONE 0

62 RTN

63 LBL “ITC” integrand

64 STO 08 current t
65 CF 00 contour
66 XEQ IND 01 contour z(t)
67 XEQ IND 00 complex f(z)
68 ZSTO 05 save for later
69 RCL 08 current t
70 SF 00 derivative

71 XEQ IND 01 z’(t)
72 ZRC* 05 f(z).z’(t)
73 FS? 01 imaginary?
74 X<>Y yes, oblige
75 END done

01 LBL “ARC” circular

02 0
03 ZEXP exp(i.t)
04 RCL 03 R

05 ST* Z

06 * R.exp(i.t)
07 X<>Y do Z*I
08 CHS i.R.exp(i.t)
09 FS?C 00 derivative?
10 RTN yes, return
11 CHS no, undo Z*I
12 X<>Y R.exp(i.t)
13 RCL 02 anchor point
14 + a+R.exp(i.t)

15 RTN

16 LBL “LIN” line segment

17 ZRCL 02 (b-a)
18 FS?C 00` derivative?
19 RTN yes, return
20 RCL 08 t
21 ST* Z
22 * t.(b-a)

23 ZRC+ 01 a+t.(b-a)
24 END

Where the last two routines are the combined contour & derivative calculation for the cases of a
circular arc and a straight line segment,

See the registers used in the table below:

Register # ZLITG ZCNTR - LINE ZCNTR - ARC
R00 f(z) - function Name

R01 unused Z(t) - Contour Name
R02 Re(z1) Anchor point A
R03 Im(z1) Radius R
R04 Re(z2-z1) t1
R05 Im(z2-z1) t2

R06 Re(Intg)
R07 Im(Intg)
R08 Re(Delta)
R09 Im(Delta)
R10 unused Re(z’(t))

R11 unused Im(z’(t))

Thanks to this common register mapping across the three programs we’ll be able to use subroutines

valid for all applicable cases, therefore saving further space in the ROM.

HP41 CONTOUR ROM

© ÁNGEL M. MARTIN – MAY 2024 PAGE 15 OF 77

Examples from Wikipedia: https://en.wikipedia.org/wiki/Contour_integration

Example 1 – Unit circle

A fundamental result in complex analysis is that the contour integral of f(z)=1/z is 2πi, where the path

of the contour is taken to be the unit circle traversed counterclockwise (or any positively oriented
Jordan curve about 0). In the case of the unit circle |z|=1 there is a direct method to evaluate the
integral

Example 2 – Cauchy distribution.

The integral

which arises
 in probability theory as a scalar multiple of the characteristic function of the Cauchy distribution)
resists the techniques of elementary calculus. We will evaluate it by expressing it as a limit of contour
integrals along the contour C that goes along the real line from −a to a and then counterclockwise
along a semicircle centered at 0 from a to −a. Take a to be greater than 1, so that the imaginary unit i
is enclosed within the curve. The contour integral is

Since eitz is an entire function (having no singularities at
any point in the complex plane), this function has
singularities only where the denominator z2 + 1 is zero.
Since z2 + 1 = (z + i)(z − i), that happens only where
z = i or z = −i. Only one of those points is in the region

bounded by this contour. The residue of f(z) at z = i is:

According to the residue theorem, then, we have

According to Jordan's lemma, if t > 0 then the integral along the arc of circumference tends to zero as
R tends to infinite. Therefore, if t > 0 then

https://en.wikipedia.org/wiki/Contour_integration
https://en.wikipedia.org/wiki/Probability_theory
https://en.wikipedia.org/wiki/Characteristic_function_(probability_theory)
https://en.wikipedia.org/wiki/Cauchy_distribution
https://en.wikipedia.org/wiki/Calculus
https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Imaginary_number
https://en.wikipedia.org/wiki/Residue_theorem
https://en.wikipedia.org/wiki/File:ContourDiagram.png

HP41 CONTOUR ROM

© ÁNGEL M. MARTIN – MAY 2024 PAGE 16 OF 77

A similar analysis can be made for values t<0, leading to the final consolidated result shown below:

If t = 0 then the integral yields immediately to real-valued calculus methods and its value is

Example 3 – Squared Logarithm

This example treats a type of integral of which

To calculate this integral, one uses the
function

And to avoid singularities in the integration

path we use the branch of the logarithm
corresponding to − < arg z ≤ .

We will calculate the integral of f(z) along the
keyhole contour shown at right. As it turns
out this integral is a multiple of the initial

integral that we wish to calculate and by the
Cauchy residue theorem (there are two poles
at z=i and z=-i) we have

 2i.(Res{I, -i}) = -^2

Let R be the radius of the large circle, and r the radius of the small one. We will denote the upper line
by M, and the lower line by N. As before we take the limit when R → ∞ and r → 0. The contributions
from the two circles vanish.

In order to compute the contributions of M and N we set z = −x + iε on M and z = −x − iε on N, with
0 < x < ∞: Replacing z by hose values and performing some simplification we obtain:

and after isolating the sought for integral it gives

HP41 CONTOUR ROM

© ÁNGEL M. MARTIN – MAY 2024 PAGE 17 OF 77

we’ll see that the chosen branch of the logarithm is a rather relevant point for a proper usage of the
ZLN function. That, together with the winding direction being clock-wise, must be taken into account to

obtain he correct results!

Application with the module functions.

The module includes global labels for straight segments - defined by the two complex points at its end -
and circumferences centered in 0 and with a radius R. Choosing initial and final angles is the way to
provide a general-purpose arc, such as the one used in the previous example with initial angle zero and

final angle /2.

The module also includes the complex functions routines for the examples described above:

 LBL “1/Z” for the first example

 LBL “ZCD” for the Cauchy distributions
 LBL “ZLN2” for the keyhole contour example

Combining these resources is therefore a simple task.

Example 1 - Keystrokes,

A straightforward case for which we have both the complex function and the contour:

XEQ “ZCNTR”
“1/Z”, R/S ?
“RC”, R/S
0, R/S
1, R/S
0, PI, 2, *, R/S

X<>y, FIX 9

Note that the „A“ parameter is irrelevant for this example, so zero is as good as any other value

Example 2 - Keystrokes

Here the routines can be used to verify that the contribution of the semi-circumference tends to zero as
its radius increases, i.e. similar to the analysis made at the beginning of this section.

Running if for the cases R=10, R-100, R-1,000 and R=10,0000 we compile the following table:

Radius Result Magnitude

10

100

1.000

10.000

HP41 CONTOUR ROM

© ÁNGEL M. MARTIN – MAY 2024 PAGE 18 OF 77

XEQ “ZCNTR”
“ZCD”, R/S
“RC”, R/S
0, R/S will repeat for different radius
1, R/S
0, PI, 2, /, R/S

Repeating for R=100, 1,000 and 10,000 is as simple as modifying the radius value in data register R03
and executing the program from the local label “C”, as shown below:

100, STO 03, XEQ C
1000, STO 03, XEQ C
10000, STO 03, XEQ C
etc…

Example 3 - keystrokes

Here too the contribution of the module is limited to the verification of the diminishing results in the
outer and inner circles of the keyhole contour. It is left to the reader for practice…

This contour and the choice of the branch of the logarithm introduce two points for consideration.

 The first one is that the contour winds in clockwise direction, therefore the sign changes when
compared to the “natural” convention.

 The second is the function ZLN in the 41Z module uses the principal branch of the logarithm,
which removes the negative semi-axis and therefore it is the appropriate one for this example.
This is mentioned just to alert you that it may not always be the case, depending on the case.

Program Listings

01 LBL “1/Z”

02 ZINV
03 RTN

04 LBL “ZLN2” {Ln z /(1+z^2)}^2

05 ZLN
06 LASTZ
07 Z^2
08 1
09 +
10 Z/
11 Z^2

12 RTN

13 LBL “ZCD” Cauchy Distr

14 ZENTER^ exp(-i.t.z) / (1+z^2)
15 X<>Y
16 CHS i.z
17 RCL 02 argument “ t”
18 ST* Z
19 * i.t.z

20 ZEXP exp(i.t.z)
21 Z<>W
22 Z^2 z^ 2
23 1
24 + 1+Z^ 2
25 Z/ exp(-i.t.z) / (1+z^2)
26 RTN

27 LBL “RC” R-Circle

28 0 0+i.t
29 ZEXP exp(it)
30 RCL 03 get radius
31 ST* Z
32 * R.exp(i.t)
33 FC?C 00 derivative?
34 RTN no, return
35 X<>Y yes, multiply by i
36 CHS i.R.exp(i.t)

37 END done

HP41 CONTOUR ROM

© ÁNGEL M. MARTIN – MAY 2024 PAGE 19 OF 77

Complex Potentials.

What follows is just a quick adaptation of the complex potentials examples from the HP-15C Advanced

Functions manual, see pages 76 and following.

Conformal mapping is useful in applications associated with a complex potential function. The

discussion that follows deals with the problem of fluid flow, although problems in electrostatics and

heat flow are analogous.

Consider the potential function P(z). The equation Im(P(z)) = c defines a family of curves that are

called streamlines of the flow. That is, for any value of c, all values of z that satisfy the equation lie

on a streamline corresponding to that value of c. To calculate some points zk on the streamline, specify

some values for xk and then use FROOT to find the corresponding values of yk using the equation

Im(P(xk + iyk)) = c.

If the xk values are not too far apart, you can use yk-1 as an initial estimate for yk. In this way, you

can work along the streamline and calculate the complex points zk = xk + iyk. Using a similar

pocedure, you can define the equipotential lines, which are given by

Re(P(z)) = c.

The program listed below is set up to compute the values of yk from evenly spaced values of xk. You

must provide a subroutine labeled with a global label in memory that places Im(P(z)) in the real X-

register. The program uses inputs that specify the step size h, the number of points n along the real

axis, and z0 = x0 + iy0, the initial point on the streamline. You must enter n, h, and z0 into the Z-, Y-,

and X-registers before running the program.

The program computes the values of zk and stores them in data file in X-Mem in the form ak1 = xk-1

and ak2 = yk-1 for k = 1, 2, ... , n. Data entry includes prompting for the flow conditionas and allows

for either streamlines or equipotentials to be computed. In addition to the 41Z module to define the

complex flow, and the Solve & Integrate module (for FROOT, hence the ancilliary subrout ine “ZFL” for

the equation to solve), the AMC_OS/X module is required for PMTA and PMTK. The listing below also

includes the potential flow example “PZ” given by: P(z) = z + 1/z

One special feature of this program is that if an xk value lies beyond the domain of the streamline (so

that there is no root for _ to find), then the step size is decreased so that xk approaches the boundary

where the streamline turns back. This feature is useful for determining the nature of the streamline

when yk isn't a single-valued function of xk. If h is small enough, the values of zk will lie on one branch

of the streamline and approach the boundary. (The second example below illustrates this feature.)

HP41 CONTOUR ROM

© ÁNGEL M. MARTIN – MAY 2024 PAGE 20 OF 77

01 LBL “ZFLOW”

02 “FNAME? “ function name
03 PMTA
04 ASTO 08
05 “#N=?” data points
06 PROMPT
07 STO 09
08 “H=?” step size
09 PROMPT

10 STO 04
11 “Z0=?” initial point
12 PROMPT enter IM in Y, Re in X
13 ZSTO 00 saved in {R00, R01}
14 “TYPE? SV” stream/velocity
15 PMTK
16 CF 00 default is streamlines
17 2
18 X=Y? chose “V”?

19 SF 00 flags velocity

20 LBL C main section

21 RCL 09 number of points
22 ST+ X double size
23 “ZFL” data file name
24 SF 25
25 PURFL purge if there
26 CF 25

27 CRFLD create it (again)
28 CLX
29 SEEKPTA sets pointer to top
30 RCL 09 # of points
31 E
32 – n-1
33 E3/E+ 1,00(n-1)
34 STO 07 ` save counter
35 ZRCL 00 initial point

36 STO 02 x0 in R02
37 SAVEX and in data file
38 X<>Y
39 STO 03 y0 in R03
40 SAVEX and in data file
41 X<>Y restore order
42 XEQ IND 08 compute function
43 STO 05 save result

44 LBL 02

45 RCL 04 h
46 RCL 07 counter
47 INT index k
48 * k.h
49 RCL 02 xk
50 + xk+1 = xk+k.h
51 STO 06
52 RCL 03 yk as guess1

53 ENTER^ and as guess2
54 FROOT
55 GTO 04 root found!
56 4 if not, adjust search
57 ST/ 04 new # of points
58 ST* 07 new step size
59 GTO 02 try again

60 LBL 04 root was found

61 RCL 06

62 VIEW X show Re(xk+1)
63 SAVEX and save in file
64 RDN
65 STO 03 make yk = yk+1
66 VIEW X show Im(xk+1)
67 SAVEX and save in file
68 ISG 07 increase counter
69 GTO 02 do next if not last

70 CLX
71 SEEKPT set pointer to top
72 RTN done.

73 LBL “ZFL” ancillary routine

74 RCL 06 Yk in Y, xk in Xk
75 XEQ IND 08 compute P(z)
76 RCL 05 xk ot yk
77 – subtract it
78 RTN done.

79 LBL “PZ” example potential

80 ZENTER^
81 ZINV
82 Z+
83 FC? 00 streamline?
84 X<>Y yes, get Im part
85 END

Let’s see next a couple of examples to check the program

.

HP41 CONTOUR ROM

© ÁNGEL M. MARTIN – MAY 2024 PAGE 21 OF 77

Example-1: Calculate the streamline of the potential P(z) = 1/z + z passing through z = −2 + 0.1i .

Using nine data points and a step size of 0.1 we obtain the results shown below...

Example-2: For the same potential as the previous example, P(z) = 1/z + z, compute the velocity

equipotential line starting at z = 2 + i and proceeding to the left.

We\ll try with n = 6 and h = −0.5. (Notice that h is negative, which specifies that xk will be to the

left of x0)

Example-1 Results Example-2 Results

xk yk

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

The example-2 results show the nature of the top branch of the curve (the heavier dashed line in the

graph for the previous example). Note that the step size h is automatically decreased in order to follow

the curve-rather than stop with an error-when no y-value is found for x < 1.86.

To review the results you could set user flag 21 to halt the displaying while the calculations are being

made, or alternatively review the values saved in the data file with the utility listed below:

01 LBL “DFED”

02 FLSIZE
03 1
04 –
05 E3
06 /` 0.00(n-1)

07 LBL 00

08 SEEKPT
09 GETX get current
10 X<>Y index to X

11 “D”
12 ARCLI
13 >”=”
14 X<>Y value to X
15 ARCL X
16 CF 22 set data entry flag
17 FC? 08 edit mode?
18 >”?” yes, add question mark
19 PROMPT

20 FC?C 22 was data entered?

21 GTO 02 no, branch off
22 FS? 08 yes, edit mode?
23 GTO 01 no, skip over
24 X<>Y yes, prepare stage
25 RDN
26 X<>Y get pointer
27 SEEKPT set pointer
28 X<>Y new value
29 SAVEX save it in file

30 LBL 02

31 X<>Y

32 LBL 01

33 ISG X increase counter
34 GTO 00 loop for next
35 ”DONE”
36 AVIEW
37 CLA
38 END

xk yk

2.0000

1.8750

1.8672

1.8452

1.8647

1.8646

HP41 CONTOUR ROM

© ÁNGEL M. MARTIN – APRIL 2024 PAGE 22 OF 77

41Z Application: Delta-Wye Transformation.

Here’s a token of appreciation for the EE folks in the audience – using the 41Z to tackle a classic:
Delta-Wye impedance transformation for 3-phase systems.

The expressions to use are as follows:

Examples.

Compute the Delta impedances equivalent to the Wye configuration given by:

z1 = 1+2i, z2=3+4i, and z3=5+6i

We type:

CF 00, GTO “Y-D”

2, ENTER^, 1, ZENTER^

4, ENTER^, 3, ZENTER^

6, ENTER^, 5, XEQ C

ZRDN

ZRDN

and for the reverse direction we take advantage that the three values are already in the complex

stack, thus there’s no need to re-enter them.

SF 00, XEQ C

ZRDN

ZRDN

HP41 CONTOUR ROM

© ÁNGEL M. MARTIN – APRIL 2024 PAGE 23 OF 77

The simple program below is all there is to it – behold the power of the 41Z complex stack in action
:-)

Note that to reduce the number of FAT entries, the version in this ROM has replaced the global
label DYD with the local label C, to be used as a soft key assignment.

HP41 CONTOUR ROM

© ÁNGEL M. MARTIN – APRIL 2024 PAGE 24 OF 77

Mandelbrot Set Area estimation

Saving the best for last, here is a brilliant example of RN’s utilization provided by Valentín Albillo’s

excellent articles on the estimation of the Mandelbrot set area on the HP-42 and Free42 (see here:

HP Article VA040a - Boldly Going - Mandelbrot Set Area (42S).pdf)

Quoting sections or copying parts of that article is bound to do the reader and the article itself a

huge disservice, so you’re encouraged to read the original – included in this manual in its entirety.

Thanks to Valentín for graciously granting permission to do so.

Porting it to the HP-41 platform was relatively straight-forward, once the function set was enhanced

to deal with the required utilities. Obviously the HP-41 has its own limitations compared to the HP-

42S and more so to Free42, however it does a good-enough job aided by the 41Z_Complex

Number Module, needed for the complex math functions required by the program.

Here’s the program listing on the HP-41 w/ the 41Z Module.

 01 *LBL "MBA"

 02 2.5
 03 STO 06
 04 2

 05 STO 07
 06 1.2
 07 STO 08

 08 0.25
 09 STO 09

 10 1
 11 SEEDT
 12 "POINTS=?"

 13 PROMPT
 14 STO 04
 15 STO 00

 16 256
 17 "#ITERS=?"

 18 PROMPT
 19 STO 05
 20 CLX

 21 STO 02
 22 "EVERY=?"

 23 PROMPT
 24 STO 03
 25 CF 21

 26 "WORKING..."
 27 AVIEW
 28 CF 00

 29 X#0?

 30 SF 00

 31 *LBL 00

 32 RCL 05

 33 STO 01
 34 FS? 00
 35 XEQ 03

 36 RNDM
 37 RCL 06
38 *

 39 RCL 07
 40 -

 41 RNDM
 42 RCL 08
43 *

 44 X<>Y
 45 ZRPL^
46 ZSIGN

 47 ZENTER^
48 RCL 07

49 -
 50 Z-
 51 ZMOD

 52 RCL 09
53 *
 54 Z<>W

 55 ZMOD
56 X<>Y

57 RDN

 58 X<Y?
59 GTO 02
60 SIGN

 61 ZRUP
 62 RCL Z
 63 -

 64 ZMOD
 65 RCL 09

66 X>Y?
 67 GTO 02
 68 ZRUP

69 ZRPL^

 70 *LBL 01

 71 Z^2

 72 Z+
 73 ZMOD
 74 RCL 07

 75 X<=Y?
76 GTO 04

77 ZRDN
 78 LASTZ
79 DSE 01

 80 GTO 01

 81 *LBL 04

 82 ISG 02

 83 *LBL 02

 84 VIEW 00

 85 DSE 00

 86 GTO 00

 87 *LBL 03

 88 RCL 00

89 RCL 03
 90 MOD
 92 X#0?

 93 RTN
 94 CLA
 95 RCL 04

 96 RCL 00
 97 -

 98 X=0?
 99 RTN
100 AINT

101 "`->"
102 RCL 02
103 AINT

104 PROMPT
105 RCL Y

106 /
107 6
108 *

109 "AREA="
110 ARCL X
111 AVIEW

112 END

https://albillo.hpcalc.org/articles/HP%20Article%20VA040a%20-%20Boldly%20Going%20-%20Mandelbrot%20Set%20Area%20(42S).pdf

HP41 CONTOUR ROM

© ÁNGEL M. MARTIN – APRIL 2024 PAGE 25 OF 77

HP41 CONTOUR ROM

© ÁNGEL M. MARTIN – APRIL 2024 PAGE 26 OF 77

HP41 CONTOUR ROM

© ÁNGEL M. MARTIN – APRIL 2024 PAGE 27 OF 77

HP41 CONTOUR ROM

© ÁNGEL M. MARTIN – APRIL 2024 PAGE 28 OF 77

HP41 CONTOUR ROM

© ÁNGEL M. MARTIN – APRIL 2024 PAGE 29 OF 77

HP41 CONTOUR ROM

© ÁNGEL M. MARTIN – APRIL 2024 PAGE 30 OF 77

HP41 CONTOUR ROM

© ÁNGEL M. MARTIN – APRIL 2024 PAGE 31 OF 77

HP41 CONTOUR ROM

© ÁNGEL M. MARTIN – APRIL 2024 PAGE 32 OF 77

HP41 CONTOUR ROM

© ÁNGEL M. MARTIN – APRIL 2024 PAGE 33 OF 77

Discrete Fourier Transform

This module includes several programs related to the DFT subject.

 The first one is just a driver for the functions ZDFT and ZIDFT included in the 41Z

module, used to input the data points throughout the execution. This driver program was

not included in the 41Y due to the lack of enough available space.

 The second one is a FOCAL equivalent to the MCODE implementation in the 41Z , therefore

should be equivalent to the first one only considerably slower of course.

 The third one is a Fast Fourier Transform implementation written by Narmwon Kim, and

published in the US Users’ Library

Program #1.- Driver for ZDFT and ZIDFT in the 41Z module.

01 LBL “ZDFT+”

02 CF 00

03 GTO 00

04 LBL “ZIDFT+”

05 SF 00

06 LBL 00

07 “#PTS=?”

08 PROMPT

09 E3/E+ build pointer

10 STO 00

11 ZINPT data entry

12 LBL 04

13 RCL 00 control word

14 FC? 00 direct?

15 ZDFT direct DFT

16 FS? 00 inverse?

17 ZIDFT inverse DFT

18 RCL M number of pts.

19 E3/E+ build pointer

20 STO 00 inputl word

21 RDN results word

22 ZOUTP data output

23 RTN done.

24 LBL C Undo

25 0

26 TF toggles F0

27 RCL 00 bbb.eee

28 FRC 0.eee

29 E3

30 * eee

31 ST+ X 2.(eee)

32 ENTER^

33 ENTER^

34 E6

35 / 0.000|2.(eee)

36 + 0.000|2.(eee)

37 2.002

38 + (e+2),002|(2e)

39 REGMOVE

40 GTO 04

41 END

In addition to facilitating the data entry process, this program offers the option to undo the last

transformation to verify that the results obtained were correct, by doing the inverse calculation

again which should equal the same original data set. If you want to use such option simply press

R/S after all points have been outputted, or press XEQ C at any time afterwards. Note that function

TF in the OS/X module is used here to toggle the status of user flag F00.

HP41 CONTOUR ROM

© ÁNGEL M. MARTIN – APRIL 2024 PAGE 34 OF 77

Program #2.- A FOCAL counterpart.

The FOCAL program below is a rough equivalent of the MCODE function. Execution times for this
program are about four to five times longer than the MCODE counterpart.

01 LBL "ZDFT"

02 CF 01
03 GTO 00

04 LBL "ZIDFT"

05 SF 01

06 *LBL 00

07 STO 00 N
08 E3/E+

09 STO M(5) j,00N

10 *LBL 01 outer loop

11 VIEW M(5)
12 RCL 00 N
13 STO N(6)
14 E3/3+
15 STO O(7) k,00N
16 RCL 5(M) j,00N
17 INT j

18 ST+ N(6) dest: ZR(N+j)
19 E
20 - j-1
21 PI
22 *
23 ST+ X(3) 2p.(j-1)
24 RCL 00 N
25 / 2p.(j-1)/N
26 STO 01

27 CLZ

28 ZSTO IND N(6) reset destination

29 *LBL 02 inner loop

30 RCL 0(7) k,00N
31 INT k
32 E
33 - k-1
34 RCL 01 2p.(j-1)/N
35 * 2p.(j-1)(k-1)/N

36 FC? 01
37 CHS
38 E
39 P-R
40 ZRC* IND O(7)
41 ZST+ IND N(6)
42 ISG O(7) next k
43 GTO 02 loop back
44 FC? 01

45 GTO 00
46 ZRCL IND 01
47 RCL 00
48 ST/ Z
49 /
50 ZSTO IND 01

51 *LBL 00

52 ISG M(5) next j
53 GTO 01 loop back

54 END

Note that contrary to the functions in the 41Z, this program will not check that enough data
registers are available. If not, the “NONEXISTENT” message will be presented; adjust the size and
try again. Make sure complex data register ZR00 is not used to store the sample – which must start
at ZR01. This is because (real) data registers R00 and R01 are used for scratch calculations by

these functions.

Program #3. – Fast and Furious.

Last in this section is an enhanced version using extended memory for the data storage of the

contribution to the User’s Library by Narmwon Kim (reference 008068C) with a Fast Fourier

Transform program, using the well-known Cooley & Tuckey FFT algorithm. Some of the original UPL

forms reproduced here, but the program listing is more elaborate for the additional features.

HP41 CONTOUR ROM

© ÁNGEL M. MARTIN – APRIL 2024 PAGE 35 OF 77

HP41 CONTOUR ROM

© ÁNGEL M. MARTIN – APRIL 2024 PAGE 36 OF 77

HP41 CONTOUR ROM

© ÁNGEL M. MARTIN – APRIL 2024 PAGE 37 OF 77

HP41 CONTOUR ROM

© ÁNGEL M. MARTIN – APRIL 2024 PAGE 38 OF 77

Using Extended functions makes this program easier to use and provides a more stable repository

for the different data sets, which are saved as data files in X-Mem.

HP41 CONTOUR ROM

© ÁNGEL M. MARTIN – APRIL 2024 PAGE 39 OF 77

Example. Do the transformation for the following data set:

{ 1, 1+j, 3, 3+j }

The first time we’ll not be using an existing data file for the data set, even if it already exists -

therefore we’ll choose “N” to the pertinent question if it appears:

XEQ “FFT

“N” ?

4, R/S `

1, ENTER, 0, RS

1, ENTER^, 1, R/S

3, ENTER^, 0, R/S

3, ENTER^1, R/S

R/S

R/S

R/S

R/S

At this point the data file FFT contains the four results for a more permanent repository, one that

can even be used to obtain the inverse and check the accuracy of the programs:

XEQ “IFF”

“Y”

R/S

R/S

r/s

R/S

Note: When the use of the data file is selected the program expects the pointer to be set at the first

element. This is normally the case, as both FFT and IFF will leave it in that setting – but if you

manually alter the pointer then an END OF FL error message will probably come up. You can make

sure with the sequence ‘FFT” . 0, SEEKPTA before running the programs.

HP41 CONTOUR ROM

© ÁNGEL M. MARTIN – APRIL 2024 PAGE 40 OF 77

01 *LBL "IFF"

02 SF 00

03 GTO 03

04 *LBL "FFT"

05 CF 00

06 *LBL 03

07 RAD

08 CF 29
09 SIZE?
10 "FFT"

11 SF 25
12 FLSIZE

13 FC?C 25
14 GTO 03
15 CF 01

16 "USE FL? YN"
17 PMTK
18 E

19 -
20 X#0?

21 GTO 03
22 SF 01
23 RDN

24 ENTER^
25 ENTER^

26 2
27 /
28 STO 04

29 RDN
30 GTO C

31 *LBL 03

32 "#POINTS=?"
33 PROMPT

34 STO 04
35 ST+ X
36 "FFT"

37 SF 25
38 PURFL
39 CF 25

40 CRFLD
41 17

42 +
43 X>Y?
44 PSIZE

 45 *LBL C

46 CLX

 47 SEEKPTA
 48 RCL 04

 49 STO 08
 50 LOG

 51 2
 52 LOG

 53 /
 54 FIX 8
 55 RND

 56 STO 05
 57 FRC
 58 STO 00

 59 FACT

 60 *LBL 01

 61 "Z"
 62 RCL 00
 63 ARCLI

 64 "`=? Re^IM"
 65 RCL 05
 66 STO 01

 67 RCL 00
 68 STO 03

 69 CLX
 70 STO 02

 71 *LBL 05

 72 RCL 03
 73 ENTER^

 74 ENTER^
 75 2
 76 /

 77 INT
 78 STO 03
 79 ST+ X

 80 -
 81 RCL 02

 82 ST+ X
 83 +
 84 STO 02

 85 DSE 01
 86 GTO 05
 87 17

 88 RCL 02

 89 ST+ X
 90 +
 91 STO 06

 92 E
 93 +

 94 STO 07
 95 FC? 01
 96 PROMPT

 97 FC? 01
 98 GTO 00

 99 GETX
100 GETX

101 *LBL 00

102 STO IND 07
103 X<>Y

104 STO IND 06
105 1
106 ST+ 00

107 DSE 08
108 GTO 01

109 1
110 STO 03
111 STO 02

112 *LBL 15

113 2
114 RCL 03

115 Y^X
116 STO 01

117 RCL 02
118 STO 08
119 CLX

120 STO 09
121 PI

122 ST+ X
123 FC? 00
124 CHS

125 RCL 01
126 /
127 RCL 02

128 P-R
129 STO 10

130 X<>Y
131 STO 11
132 RCL 02

133 STO 12

134 *LBL 16

135 RCL 12
136 STO 00

137 *LBL 02

138 RCL 02
139 15

140 RCL 00
141 ST+ X

142 +
143 STO 13

HP41 CONTOUR ROM

© ÁNGEL M. MARTIN – APRIL 2024 PAGE 41 OF 77

144 +
145 STO 14

146 LASTX
147 RCL 01

148 +
149 STO 15
150 RCL 02

151 +
152 STO 16
153 RCL IND 15

154 RCL 08
155 *

156 RCL IND 16
157 RCL 09
158 *

159 -
160 STO 06
161 RCL IND 15

162 RCL 09
163 *

164 RCL IND 16
165 RCL 08
166 *

167 +
168 STO 07
169 RCL IND 14

170 RCL 07
171 -

172 STO IND 16
173 RCL IND 13
174 RCL 06

175 -
176 STO IND 15

177 RCL IND 13
178 RCL 06
179 +

180 STO IND 13
181 RCL IND 14
182 RCL 07

183 +
184 STO IND 14

185 RCL 01
186 ST+ 00

187 RCL 04
188 RCL 00

189 X<=Y?
190 GTO 02

191 RCL 10
192 RCL 08
193 *

194 RCL 11
195 RCL 09
196 *

197 -
198 RCL 08

199 RCL 11
200 *
201 RCL 09

202 RCL 10
203 *
204 +

205 STO 09
206 X<>Y

207 STO 08
208 RCL 02
209 ST+ 12

210 RCL 01
211 2
212 /

213 RCL 12
214 X<=Y?

215 GTO 16
216 RCL 02
217 ST+ 03

218 RCL 05
219 RCL 03

220 X<=Y?
221 GTO 15
222 BEEP

223 CLX
224 STO 00
225 17

226 STO 08
227 18

228 STO 09
229 RCL 04

230 STO 01
231 0

232 SEEKPT

233 *LBL 11

234 RCL IND 09
235 RCL IND 08
236 FC? 00

237 GTO 06
238 RCL 04
239 /

240 X<>Y
241 LASTX

242 /
243 X<>Y

244 *LBL 06

245 FIX 8
246 ZRND
247 SAVEX

248 X<>Y
249 SAVEX

250 X<>Y
251 FIX 3
252 ZAVIEW

253 "`Z"
254 RCL 00
255 ARCLI

256 "`="
257 -3

258 AROT
259 PROMPT
260 RCL 02

261 ST+ 00
262 2

263 ST+ 08
264 ST+ 09
265 DSE 01

266 GTO 11
267 CLX
268 SEEKPT

269 END

HP41 CONTOUR ROM

© ÁNGEL M. MARTIN – APRIL 2024 PAGE 42 OF 77

Direct Bessel fns. via Continued Fractions

The SandMath contains a very competent set of Bessel functions, both for the direct (J, Y) and the
modified kinds (I, K). The implementation is a hybrid of MCODE and Focal routines, really optimized

for the applicable valid range of the functions.

And therein lays the only caveat: that implementation does a direct sum of the alternating terms of
the series, which isn’t valid for asymptotic cases, where either the order or the argument (or their
sum!) are very large. To palliate this, the SandMath also includes an iterative approach for JNX, using
recurrence formulas – but alas, the execution time can be really long.

Is there another way to skin this cat? Well as it turns out yes, at least for the non-modified cases
there’s a very intriguing approach based on continued fractions, which after all are another way to

iterate for the solution – only that we can take advantage of the MCODE implementation in both the
SandMath and the 41Z Modules, because there are two different continued fractions involved, one of
them in the complex variable – even for the real Bessel J case!

Here too the routine is a direct modification of Jean-Marc Baillard’s FOCAL program available on his
web site (cf #5 in http://hp41programs.yolasite.com/bessel.php), adapted to use the MCODE
functions CF2V and ZCF2V instead of the FOCAL subroutines – faster and shorter code. A real beauty
to see the SandMath and 41Z joining forces to crack this one!

The formulas used are as follows:

With p + i.q = -1/(2x) + i + (i/x) [(0.52 - n2)/(2x + 2i + (1.52 - n2)/(2x + 4i +))]

 and gn= -1/(((2n + 2)/x) - 1/(((2n + 4)/x) -))

Then, calling D = the denominator of the second continued fraction:

Jn(x) = sign(D) [(2q/(x.Pi)) / (q2 + (p - gn - n/x)2)] 1/2

Yn(x) = [(p - gn - n/x)/q] Jn(x)

One must pay careful attention to the data registers requirements by these functions for the
successions used to define the continued fractions, which are programmed under the global labels “#”
for the real one and ‘=” for the complex one.

Example: Calculate the Bessel J and Y of order 100 for the argument x=100

According to Wolfram Alpha the results are:

and:

http://hp41programs.yolasite.com/bessel.php

HP41 CONTOUR ROM

© ÁNGEL M. MARTIN – APRIL 2024 PAGE 43 OF 77

Which sure enough is what we obtain (with ten digit precision) using our routine:

100, ENTER^, XEQ “JYNX” =>
X<>Y

Program Listing:

01 LBL "JYNX"

02 STO 01
03 X<>Y
04 STO 13
05 "="
06 CLST
07 ZENTER^
08 .
09 RCL 01
10 SF 02
11 ZCF2V
12 RCL 02
13 STO 01
14 ST/ Z
15 /
16 E
17 +
18 STO 10
19 X<>Y
20 CHS
21 RCL 01
22 ST+ X
23 1/X
24 -
25 STO 09
26 "="
27 0
28 RCL 01
29 CF 02
30 CF2V
31 CHS

32 RCL 09
33 +
34 RCL 13
35 RCL 01
36 /
37 -
38 STO 11
39 RCL 10
40 R-P
41 LASTX
42 ST+ X
43 PI
44 RCL 01
45 *
46 /
47 SQRT
48 X<>Y
49 /
50 RCL 05
51 SIGN
52 *
53 STO 12
54 RCL 11
55 *
56 RCL 10
57 /
58 RCL 12
59 CLD
60 RTN

61 LBL "="

62 FC? 02

63 GTO 00
64 RCL 12
65 ST+ X
66 RCL 02
67 ST+ X
68 ZENTER^
69 RCL 12
70 0.5
71 -
72 X^2
73 RCL 13
74 X^2
75 -
76 0
77 X<>Y
78 RTN

79 LBL 00

80 X<>Y
81 STO 05
82 X<>Y
83 RCL 02
84 RCL 13
85 +
86 ST+ X
87 RCL 01
88 /
89 -1
90 END

Note: ensure that the module is plugged in a page before the SandMath. This is required because

there is another global label “=” in the SandMath and we don’t want the routine to use the incorrect
one for the calculation! (besides, this would result in NONEXISTENT, so you’ll know right away).

HP41 CONTOUR ROM

© ÁNGEL M. MARTIN – APRIL 2024 PAGE 44 OF 77

Nested Radicals of m-th order.

FNRM and INRM are MCODE functions to calculate finite and infinite Nested Radicals or root-order
m. The definition of the radical is given in a user-provided function under a global label, to generate
the n terms that contribute to the radical R(n).

 For the finite case the calculation ends when all the terms are provided and used in the

radical.
 For the infinite case, a series of finite radicals of increasing sizes are computed until two of

them are equal. This means R(n) = R(n+1), for a given n large enough.

An initial size n0 needs to be provided by the user, which ideally is a balance between the radical

size and the number of subsequent radicals to calculate: the larger the radical the longer calculation
time, but the less number of radicals likely to calculate.

STACK INPUTS OUTPUTS

Y k

X no NR

ALPHA F.NAME /

FNRM and INRM use data registers {R00 – R05} as well as user flags UF 001 and UF 01. Refrain

from using these resources in the definition of your radicand functions. Note that both the root order

m and the term n are available for your user function to use – even if normally only n is used. This

allows for more elaborate expressions in the definitions.

For example, let’s calculate the value of an infinite nested radical with f(n) = n, as per the expression
below:

For the case n=1 this happens to be the golden ratio = ½ (1+sqr(5)

A trivial user program like this: {LBL “PH”, 1, RTN}, say we set FIX 9 and then we type:

2, ENTER^ 4, XEQ “INRM”_ PH” => 1.618033989

Using cubic roots instead we’ll obtain the “Plastic” Constant:

3, ENTER^, 4, XEQ “INRM”_”PH => 1.324717957

Example2.Calculate the cubic and quartic root nested radicals for the function F(n) = n^4

Using n0=4 and the trivial user function {LBL “NR4”, X^2, X^2, END} we get:

4, ENTER^, 4, XEQ “INRM”_”NR4” =>1.325706774 quartic case

3, ENTER^, 4, XEQ “INRM”_”NR4” =>1.551416993 cubic case

HP41 CONTOUR ROM

© ÁNGEL M. MARTIN – APRIL 2024 PAGE 45 OF 77

Example 3. Calculate the square nested radical for the function F(n) = n {LBL “NR1”, RTN”}

 2, ENTER^, 4, XEQ “INRM”_”NR1” =>1.757932757

Programmer’s notes.

These functions use a special technique to call user-programs within the MCODE. This technique was
developed by Greg McClure for the Derivatives and Continued fractions (DERV and CF2V) applications
available in both the SandMath and the 41Z, and has been ported here as well. The method requires
ancillary housekeeping functions to manage the transitions between User- and M-Code. These
auxiliary functions are stealth under the FAT section headers, as they don’t require any user
interaction or utilization beyond its automated purpose.

Execution flow:

1. Search for User function using [ASRCH]
2. Save its RAM address (in data register)
3. Prepare variables and check data regs available
4. transfer to FOCAL stub code (call to [XMR20]

a. add address to FOCAL RTN stack with [SAVRTN]
b. execute user function via [XGI07] (but can’t use XEQ IND nn !!)
c. return to MCODE, popping the FOCAL RTN with [XRTN]

5. Loop back to task #3 as needed

Where tasks 4.a, 4.b and 4.v are performed by XQRTN, a dedicated (stealth) function used in the
FOCAL stub. It is called twice, controlled by UF 00 to determine which one of the tasks to perform:

 -FOCAL stub code -

01 SF 00
02 XQRTN - first time does 4.a and 4.b

03 CF 00
04 XQRTN - second time does 4.c

HP41 CONTOUR ROM

© ÁNGEL M. MARTIN – APRIL 2024 PAGE 46 OF 77

Newton and Halley Methods Revisited

The idea of using the MCODE functions in the SandMath and the 41Z is also at the heart of these
final applications. This time we’ll use the first & second derivatives function DERV as an auxiliary tool
to calculate the derivatives of the function whose roots we’re trying to obtain, directly and without

any additional conditioning regardless of the function in case.

The formulas involved are well known:

 ;

As usual, you need to provide the boundaries [a, b] in the Y,X registers and the function name in
ALPHA. The user is required to program the function in a FOCAL routine under a global label, which
cannot use data registers R00 to R08 as explained below.

Remember that DERV uses R00 to R04 (see the documentation in the SandMath manual for details),
and in addition to these the routines use R05 for the function global label name, and R06 – R08 to
save the initial guesses and as scratch. As it’s already customary, the successive approximations to

the root will be displayed if user flag 10 is set.

 *LBL "XNWT" 1
 CF 01 2
 GTO 01 3

 *LBL "XHALL" 4
 SF 01 5
 *LBL 01 6
 ASTO 05 7
 X<>Y 8
 STO 08 9
 X<>Y 10
 *LBL 00 11
 FS? 10 12
 VIEW X 13
 STO 06 14
 XEQ IND 05 15
 STO 07 16

 RCL 08 17
 RCL 06 18
 DERV 19
 FC? 01 20
 ST/ 07 21
 FS? 01 22
 XEQ 02 23
 RCL 06 24
 RCL 06 25
 RCL 07 26
 - 27
 X#Y? 28
 GTO 00 29
 CLD 30
 RTN 31
 *LBL 02 32

X^2 33
ST+ X 34
RCL 07 35
RCL 01 36
* 37
- 38
1/X 39
RCL 07 40
* 41
RCL 00 42
* 43
ST+ X 44
STO 07 45
END 46

This really can’t get any shorter; my kinda routine that clearly showcases that with a powerful engine
behind doing the heavy lifting (DERV in this case) the rest is a downhill trip.

Example: obtain a root for the equation below, which we program easily as shown. Then we use

some obviously non-optimal guesses to stress the algorithm:

{ LBL “X1”, CBRT, LASTX, 4, +, *, END }, and then

ALPHA,”X1”, ALPHA, 1, 2, XEQ “XNWT” =>
Or:` 1, 2, XEQ “XHALL” =>

HP41 CONTOUR ROM

© ÁNGEL M. MARTIN – APRIL 2024 PAGE 47 OF 77

Newton’s Method with Complex Step Differentiation.

And the proverbial last but not least is reserved for the “complex step derivative” method to calculate
real function derivatives, just as a quasi-magical application of complex variables. Complex step
differentiation is a technique that employs complex arithmetic to obtain the numerical value of the
first derivative of a real valued analytic function of a real variable, avoiding the loss of precision
inherent in traditional finite differences. This is then used n Newton’s method in the usual way.

We're concerned with an analytic function. Mathematically, that means the function is infinitely

differentiable and can be smoothly extended into the complex plane. Computationally, it probably
means that it is defined by a single "one line" formula, not a more extensive piece of code with if
statements and for loops.

Let F(z) be such a function, let x0 be a point on the real axis, and let h be a real parameter.

Expand F(z) in a Taylor series off the real axis.

F(x0+ih) = F(x0) + i.hF’(x0) − h2F’’(x0)/2! – ih3F(3)/3! +...

Take the imaginary part of both sides and divide by h

. F’(x0) = Im(F(x0+ih))/h + O(h2)

Armed with the 41Z arsenal of functions it ’s very likely that your real function can be programmed as
an equation in the complex variable too. Then all it takes is to calculate the value of said complex

function in a complex point close to the real argument x0, offset by a very small amount in the

imaginary axis ih. The program expects the function name in ALPHA and the values of h and x0 in

the Y,X stack registers, and it returns the real derivative value in X. It uses data registers R00 to R02.

LBL "ZNWT" 1
 ASTO 02 2
 ZSTO 00 3
 LBL 00 4
FS? 10 5
VIEW 00 6
ZRCL 00 7
XEQ IND 02 8
X<>Y 9

 / 10
 RCL 01 11
 * 12
 ST- 00 13
 RND 14
 X#0? 15
 GTO 00 16
 RCL 00 17
 END 18

What’s remarkable is that with just one execution of the complex function we calculate both the real
function’s value (the real part) and its derivative (the imaginary part with correction) at the same
time. Note also the clever use of complex data register C00 to store z0 = x0 +ih, and then how it
keeps calculating the complex function value until two successive iterations are equal for the current
FIX selected in the calculator.

You can tell something’s remarkable when the root-finding routine is almost shorter than the equation
used to program the function!

HP41 CONTOUR ROM

© ÁNGEL M. MARTIN – APRIL 2024 PAGE 48 OF 77

Time now for some examples. The first one just a simple polynomial to try our hand with the new
method, taken from the MoHPC forum: https://www.hpmuseum.org/forum/thread-6667.html

Calculate the three roots of the third degree polynomial: x³–x²–x+0,5 = 0

We program the equation as shown below:

01 LBL “Z3”

02 Z^3
03 LASTZ
04 Z^2
05 Z+

06 Z-

07 .5
08 +
09 END

And type:
ALPHA, “Z1”, ALPHA
,01, ENTER^, 0, XEQ “ZNWT” =>
.01, ENTER^, 2, XEQ “ZNWT” =>

.01, ENTER^, -2, XEQ “ZNWT“ =>

And then a more elaborate example adapted from the seminal reference:
https://blogs.mathworks.com/cleve/2013/10/14/complex-step-differentiation/

The blog uses the function F(x) given below, which does not have any real roots:

For our purposes let’s calculate the roots of, say g(x) = F(x) –

01 LBL “Z2”

02 ZEXP
03 LASTZ
04 ZSIN
05 LASTZ
06 ZCOS
07 3
08 Z^X

09 Z<>W
10 3
11 Z^X
12 Z+
13 Z/
14 PI
15 -
16 END

And type:

ALPHA, “Z2”, ALPHA
,01, ENTER^, 1, XEQ “ZNWT” =>

https://www.hpmuseum.org/forum/thread-6667.html
https://blogs.mathworks.com/cleve/2013/10/14/complex-step-differentiation/

HP41 CONTOUR ROM

© ÁNGEL M. MARTIN – APRIL 2024 PAGE 49 OF 77

Halley’s Method for Complex Functions

To complement the choices already available in the 41Z (programs ZSOLVE and ZHALL), a third

program is included in the Contour module as well.

This program is based on Valentín Albillo’s article “Going back to the roots”, where he presented an

HP-35S solution to the problem. The final version shown here was aided by a first port to the HP-41

platform by Vincent Weber, contributed to the MoHP forum

see: https://www.hpmuseum.org/forum/thread-21615.html) and

https://albillo.hpcalc.org/articles/HP%20Article%20VA031%20-%20Boldly%20Going%20-

%20Going%20Back%20to%20the%20Roots.pdf)

User instructions:

Just type in ALPHA the name of the global label the function has been programmed under, and the

guess value in stack registers Y,X (i.e. complex stack level Z), then call the program. After a while

the root found is presented in the displat. Execution time depends on the initial guess value and the

number of decimal places used for the precision setting.

Example: obtain one root for the expression f(z) = z ẑ –

We program the function under LBL “ZZ” as follows:

01 LBL “ZZ”

02 ZENTER^

03 W^Z

04 PI

05 –

06 END

Next, we enter a guess value (imaginary part in Y, real part in X), and call ZROOT.

After a while the result is shown in the display

ALPHA, “ZZ”, ALPHA

0, ENTER^, 1, XEQ “ZROOT”

verification: XEQ “ZZ”

The program is listed below. Being a port from another machine I decided to leave parts

unchanged, not using 41Z functions in them to maintain the original ideas. Nevertheless the

MCODE 41Z functions are profusely used all throughout the code, contributing to a faster execution

and more accurate results.

https://www.hpmuseum.org/forum/thread-21615.html
https://albillo.hpcalc.org/articles/HP%20Article%20VA031%20-%20Boldly%20Going%20-%20Going%20Back%20to%20the%20Roots.pdf
https://albillo.hpcalc.org/articles/HP%20Article%20VA031%20-%20Boldly%20Going%20-%20Going%20Back%20to%20the%20Roots.pdf

HP41 CONTOUR ROM

© ÁNGEL M. MARTIN – APRIL 2024 PAGE 50 OF 77

Program listing.

01 *LBL "ZROOT"

 02 ZSTO 00
 03 ASTO 02
 04 E-4
 05 STO 10
 06 X^2
 07 STO 11
 08 ,5

 09 STO 03

 10 *LBL 02

 11 ZRCL 00
 12 XEQ IND 02
 13 RCL 03
 14 ST/ Z
 15 /
 16 ZSTO 02
 18 RCL 10
 19 ST+ 00
 20 ZRCL 00
 21 XEQ IND 02
 22 ZSTO 03
 24 RCL 10
 25 ST- 00
 26 ST- 00
 27 ZRCL 00
 28 XEQ IND 02
 29 ZSTO 04
 31 ZRC+ 03
 33 ZRC- 02
 35 RCL 11

 36 ST/ Z

 37 /
 38 ZRCL 03
 40 ZRC- 04

 42 RCL 10
 43 ST+ 00
 44 ST/ Z
 45 /

 46 RCL 03
 47 ST* Z
 48 *
 49 ZSTO 04
 51 Z/

 52 ZSTO 03
 54 ZRC* 02
 56 ZRC/ 04
 58 1
 59 -

 60 CHS
 61 X<>Y

 62 CHS
 63 X<>Y
 64 RCL 03

 65 Z^X
 66 1

 67 -
 68 ZRC/ 03
 70 ZST+ 00
 71 ZRC/ 00
 72 R-P

 73 RCL 11

 74 X<Y?
 75 GTO 02
 76 ZRCL 00

 77 R-P
 78 RDN
 79 STO 08
 80 SIN

 81 ABS
 82 RCL 11
 83 X<=Y?
 84 GTO 03
 85 RCL 08

 86 COS
 87 ENTER^
 88 ABS
 89 X#0?
 90 /

 91 RCL 01
 92 RCL 00

 93 R-P
 94 X<>Y
 95 RDN

 96 *
 97 STO 00

 98 *LBL 03

 99 ZRCL 00
100 ZAVIEW
101 END

Note that the line numbers reflect the non-merged character of some 41Z functions, taking two

standard lines (that have been merged in the listing).

© ÁNGEL M. MARTIN – APRIL 2024 PAGE 51 OF 77

Sigmoid and Einstein functions,

SIGMD calculates the Sigmoid of the argument in x. This function is relevant in machine learning

and data mining fields. It is defined as:

The result is placed in X and the original argument is saved in LastX. Y,Z,T are untouched and no

data registers are used either.

Examples:

1, XEQ “SIGMD =>

2, XEQ “SIGMD =>

The Sigmoid function is also known as the Standard Logistics function, which will appear linked to

the Logistics Map in the discrete domain – refer to the CHAOS Module for additional applications.

Derivative and Integral of the Sigmoid function.

The derivative is known as the density of the logistic distribution:

Conversely, its antiderivative can be computed by the substitution u = 1+e^x , since f(x) = u’/ u, so

(dropping the constant of integration)

https://en.wikipedia.org/wiki/Logistic_distribution
https://en.wikipedia.org/wiki/Antiderivative
https://en.wikipedia.org/wiki/Integration_by_substitution
https://en.wikipedia.org/wiki/Constant_of_integration

© ÁNGEL M. MARTIN – APRIL 2024 PAGE 52 OF 77

In artificial neural networks, this is known as the softplus function and (with scaling) is a smooth

approximation of the ramp function, just as the logistic function (with scaling) is a smooth approximation

of the Heaviside step function.

Finally, SIGMD is a rather simple function. The MCODE listing is shown below.

Here’s a minimalistic FOCAL routine for the derivative and the antiderivative:

01 LBL “SGD”

02 SIGMD

03 ENTER^

04 CHS

05 E

06 +

07 *

08 RTN

09 LBL “SGI”

10 SIGMD

11 LN1+X

12 END

Einstein functions.

Typically four functions are considered under this classification, as follows:

https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Softplus
https://en.wikipedia.org/wiki/Ramp_function
https://en.wikipedia.org/wiki/Heaviside_step_function

© ÁNGEL M. MARTIN – APRIL 2024 PAGE 53 OF 77

Clearly E4(x)= E2(x) – E3(x), thus no dedicate function for it exists in the module.

The module uses a prompting field for a parameter value from 1 to 3 to select the specific function

to calculate. Any input larger than 3 will calculate E3(x), whereas entering zero returns a DATA

ERROR message. Besides that, in program mode you need to add the parameter as a second

program line after EINS

See below the graphics for these in the range x around the origin

E1(x) has an inflection point at:

which can be solved numerically to give x=+/-2.34694130...

Example: Calculate E1, E2, and E3 for x = 1

1, XEQ “EIN” ,1 =>

1, XEQ “EIN” ,2 =>

1, XEQ “EIN” ,3 =>

Example: Calculate E1(E2(E3(x))), and E3(E2(E1(x))) for x = 1

1, EINS-1, EINS-2, EINS-3 =>

1, EINS-3, EINS-2, EINS-1 =>

© ÁNGEL M. MARTIN – APRIL 2024 PAGE 54 OF 77

Arc Length of a Curve defined by y = f(x)

-The arc length of the curve y = f(x) (a < x < b) is given by

The module includes two programs to calculate the arc length. The first one “CLEN” is a direct (i.e.

brute-force) application of this formula using FINTG and DERV in the SandMath. It clearly is

simpler to program but foreseeably with longer execution time than a dedicated approach. It also

requires a second FAT entry for the auxiliary program that defines the integrand, as you can see in

the program listing below.

To use this program, just type the function’s program label name in ALPHA, and enter the

integration limits a in Y, b in X.

01 LBL “CLEN”

02 ASTO 05

03 “*CL”

04 FINTG

05 RTN

06 LBL “*CL”

07 CLA

08 ARCL 05

09 0.1

10 X<>Y

11 DERV

12 X^2

13 E

14 +

15 SQRT

16 END

As always, FINTG determines the precision of the result by the number of decimal places set in the

calculator. Using FIX 9 yields the maximum accuracy but takes the longest time to compute it.

The second one "LNG" doesn't use this formula and so it avoids the calculation of dy/dx . It simply

applies Pythagoras' theorem. “LNG”was written by Jean-Marc Baillard, and it is included in his

DERIVE+ module, see: http://www.hp41.org/LibView.cfm?Command=View&ItemID=1315

Data Registers: • R00 = Function name

 (Register R00 is to be initialized before executing "LNG")

R01 = a R04 to R07: temp "

R02 = b R20, R21, are used by "ROM

R03 = L

Flag: F02 is cleared

Subroutines: "ROM" , plus a program that takes x in X-register and returns f(x) in X-register

 STACK INPUT OUTPUT

 Y a /

 X b L(a,b)

http://www.hp41.org/LibView.cfm?Command=View&ItemID=1315

© ÁNGEL M. MARTIN – APRIL 2024 PAGE 55 OF 77

Example: Calculate the arc length of the curve y = ln x 1 < x < 3

 01 LBL "T"
 02 LN
 03 RTN

Manual data entry:

ALPHA , "T", ASTO 00, ALPHA

FIX 4, 1, ENTER^, 3,

Using the direct approach:

XEQ “CLEN” >>>>

---Execution time = 1m 35s---

Using the iterative approach in manual way, skipping the data entry prompts:

GTO "LNG", XEQ C >>>> ---

Execution time = 75s---

Notes:

The HP41 displays the successive approximations

The precision depends on the display format: for instance, FIX 6 would be faster but less accurate.

The exact result is L = 2.301987535 (rounded to 9 decimals)

 The program listing below includes the Arc Length and the Surgace of Revolution described in

next section – both can be combined into a single application with considerable byte savings.

The program starts with a data entry section, prompting for the required information on the

function and integration limits. You can skip these steps if you prefer a manual data entry using the
soft-Label “C”

Note the use of function PMTA in the OS.X module to enter the function’s global label name. It can
be replaced by { AON, PROMPT, AOFF} as well.

01 *LBL "LNG"

 02 CF 02
 03 GTO 00

 04 *LBL "SRV"

 05 SF 02

 06 *LBL 00

 07 "FNAME? "
 08 PMTA

 09 ASTO 00
 10 "a^b=?"
 11 PROMPT

 12 *LBL C

 13 STO 02
 14 X<>Y

 15 STO 01
 16 1

 17 STO 20

 18 *LBL 11

 19 CLX

 20 STO 04
 21 RCL 02
 22 RCL 01

 23 STO 05
 24 -

 25 RCL 20
 26 STO 06
 27 /

 28 STO 03
 29 ST+ 05
 30 RCL 01

 31 XEQ IND 00
 32 STO 07

 33 *LBL 12

 34 RCL 05
 35 XEQ IND 00

 36 ENTER^
 37 ENTER^
 38 X<> 07

 39 ST+ Z
 40 -

 41 X^2
 42 RCL 03
 43 ST+ 05

 44 X^2
 45 +
 46 SQRT

 47 FS? 02
 48 *

© ÁNGEL M. MARTIN – APRIL 2024 PAGE 56 OF 77

 49 ST+ 04
 50 DSE 06

 51 GTO 12
 52 PI

 53 FS? 02
 54 ST* 04
 55 RCL 04

 56 XROM "*RM"
 57 X#0?
 58 GTO 11

 59 RDN
 60 STO 03

 61 RTN

 62 *LBL "*RM"

 63 RCL 20

 64 X<>Y
 65 SIGN
 66 ST* X

 67 X#Y?
 68 GTO 01

 69 STO 23

 70 LASTX
 71 STO 25

 72 GTO 03

 73 *LBL 01

 74 4
 75 STO 21
 76 25

 77 STO 22
 78 RCL 23
 79 STO 24

 80 LASTX
 81 ISG 23

 82 *LBL 02

 83 ENTER^
 84 ENTER^

 85 X<> IND 22
 86 -
 87 RCL 21

 88 4
 89 ST* 21

 90 SIGN

 91 ST+ 22
 92 -

 93 /
 94 +

 95 DSE 24
 96 GTO 02
 97 STO IND 22

 98 VIEW X
 99 RND
100 X<>Y

101 RND
102 X#Y?

103 GTO 03
104 RCL IND 22
105 0

106 RTN

107 *LBL 03

108 RCL 20

109 ST+ 20
110 END

The “*RM” routine could be replaced by FINTG as well…

Romberg Method

 Suppose that a sequence {Ln} tends to L as n tends to infinity and that the "errors" L -Ln are

nearly proportional to 1/n^2

 If we want to use Romberg method to estimate the limit L "RM" must be called by a program with

the following specifications:

 L must be stored in R20 at the beginning

 Then, a loop - say LBL 01 - calculates the value of Ln in X-register corresponding to n in R20

 The last instructions must be XEQ "ROM" X#0? GTO 01 RDN END

See the paragraphs above for several examples ("CRVL" "CRVLN" "LNG" "SRV" "SKS")

You can also use it for your own programs, provided that registers R20 R21 are not disturbed.

© ÁNGEL M. MARTIN – APRIL 2024 PAGE 57 OF 77

Area of a Surface of Revolution

The rotation of the curve y = f(x) (a < x < b) around x-axis generates a surface of revolution

given by

The program included in the module “SRV”was written by Jeam-Marc Baillard. "SRV" avoids the

calculation of dy/dx : the area of a truncated cone is used with Romberg method.

 Data Registers: • R00 = Function name

 (Register R00 is to be initialized before executing "SRV")

R01 = a R04 to R07: temp

R02 = b R20, R21, are used by "ROM"

R03 = A

Flag: F02 is set

Subroutines: "ROM" & 1 program that takes x in X-register and returns f(x) in X-register

 STACK INPUT OUTPUT

 Y a /

 X b A(a,b)

Example: The sin of revolution.

Evaluate the area of the surface of revolution generated by the rotation of the curve

 y = sin x (0 < x < pi) around the x-axis.

 01 LBL "T"
 02 SIN
 03 RTN

Using a manual approach that skips the data entry prompts:

ALPHA, "T" , ASTO 00

FIX 9, 0, ENTER^, PI,

GTO "SRV", XEQ C >>>> ---

Execution time = 168s---

Notes:

The HP41 displays the successive approximations. The precision depends on the display format: for

instance, FIX 6 would be faster but less accurate

-The exact result is A = 14.42359945 (rounded to 8 decimals).

© ÁNGEL M. MARTIN – APRIL 2024 PAGE 58 OF 77

Note that in this case the module doesn’t include the direct approach based on FINTG and DERV. If

you’re interested it’d be very simple to modify CLEN to do it, as follows:

01 LBL “SREV”

02 ASTO 05 function LBL

03 “*SR” integrand LBL

04 FINTG

05 PI

06 ST+ X 2.

07 *

08 RTN

09 LBL “*SR” integrand

10 STO 06 saves x in R06

11 CLA

12 ARCL 05

13 0.1 step size

14 X<>Y

15 DERV

16 X^2

17 E

18 +

19 SQRT partial value

20 X<> 06 x

21 XEQ IND 05 f(x)

22 RCL 06 previous value

23 * integrand

24 END

Using this ad-hoc program the results for example 1 are EXACTLY as follows:

ALPHA, “T”, ALPHA, 0, PI, XEQ “SREV” >>>

Reference: this web site is an excellent reference on this subject, also providing some examples to

check the programs described before.

https://math.libretexts.org/Courses/University_of_California_Davis/UCD_Mat_21B%3A_Integral_

Calculus/6%3A_Applications_of_Definite_Integrals/6.4%3A_Areas_of_Surfaces_of_Revolution

© ÁNGEL M. MARTIN – APRIL 2024 PAGE 59 OF 77

Area of a Surface defined by z = f(x,y)

"SKS" computes the area of a surface defined by: z = f(x,y) a < x < b , c < y < d

The result could be obtained by the double integral

 where fx = df/dx and fy = df/dy are the

partial derivatives with respect to x and y

respectively.

But "SKS" avoids the calculation of the partial

derivatives:

The intervals [a,b] and [c,d] are divided into n

parts, and the approximate area is the sum of

the areas of triangles.

"*RM" uses Romberg method to obtain more and

more accurate approximations.

Data Registers:

R00 = Function name

R01 = a R04 = d R06 to R16: temp

R02= b R05 = A R20, R21, are used by "ROM"

R03 = c

Subroutines: "*RM" plus a program that takes x in X-register & y in Y-register and returns f(x,y) in

X-register

 STACK INPUTS OUTPUTS

 T a /

 Z b /

 Y c /

 X d A

Example: Evaluate the area of the surface defined by

 z = (25 - x2 - y2)1/2 , 0 < x < 2 , 0 < y < 3

To get faster result, store 25 in an unused register, for instance R17, 25 STO 17

 01 LBL "T"

 02 X^2
 03 X<>Y

 04 X^2
 05 +

 06 RCL 17
 07 X<>Y
 08 -

 09 SQRT
 10 RTN

HP41 CONTOUR ROM

© ÁNGEL M. MARTIN – APRIL 2024 PAGE 60 OF 77

And using manual data entry:

 ALPHA, "T", ASTO 00, ALPHA

 FIX 6, 0, ENTER^, 2, ENTER^, 0, ENTER^, 3

 GTO "SKS", XEQ C >>>>

 ---Execution time = 5m06s---

Notes:

The HP41 displays the successive approximations

The precision depends on the display format: for instance, FIX 9 would give more accurate results

but with a much longer execution time as the price to pay for it.

With V41 & FIX 9 we get:

The exact result is A = 6.654396117

As usual with Romberg method, n is multiplied by 2 at each iteration, but here execution time is

multiplied by 4 because we are approximating a double integral.

HP41 CONTOUR ROM

© ÁNGEL M. MARTIN – APRIL 2024 PAGE 61 OF 77

Recursive Utilization of FINTG and FROOT.

Like the original SOLVE and INTEG did, both FROOT & FINTG in the SandMath support “crossed”

nested calls from one another, i.e. you can call FROOT from an integrand function being used by

FINTG, and you can call FINTG in the root-finding function definition for FROOT. However, it is not

possible to recursively call either one of these functions sequentially from within a FOCAL routine. Any

attempt to do so triggers the “RECURSION” error message and the execution aborts.

This ROM provides a set of MCODE functions and two FOCAL routines to overcome this limitation.

Each time FROOT/FINTG is executed it creates a dedicated memory buffer to store the application

data and to perform all the math. The basis of the recursive operation is the use of a secondary

memory area for the nested call of the function, not conflicting with the initial memory buffer created

in the first call. The main loop uses the initial buffer #14, and the operand function in turn creates a

secondary buffer #14 to use for the nested loop – deleting it after it’s complete.

In order to reuse the existing code, we’ll trick the OS changing the id# of the initial buffer #14 right

before the second call – not deleting it but cloaking it in the I/O Memory area of the calculator. The

operand function re-labels the buffer with id#13 (using function CLOAK), then the nested call to

FROOT/INTEG creates and uses a new buffer #14 to perform its task and deletes it upon completion

– returning the execution to the “operand” function FOCAL routine. Before the execution is returned

to the driver program, the cloaked buffer is re-issued as id#14 (using function EXPOSE) so things

can be picked up exactly where there were left off before calling the nested subroutine.

If you must know, all CLOAK and EXPOSE do is changing the buffer id#’ of the initial buffer created

in the first call to FROOT/INTEG - first from 14 to 13, and then back to 14. Prior to all this a third

function (RESET) is used to check for pre-existing buffers with id#13 – deleting it if found.

2D Driver Routines and Rules of Engagement.

The main programs for double integrals and system of 2 equations are FITG2 and FRT2. Each one

has an auxiliary routine associated with it, which acts as the first level operand function and issues a

second nested call for the integrand or the second equation appropriately, as follows:

For FITG2, the function name f(x,y) is expected in ALPHA, and the four integral limits in the stack in

the pattern “y1, y2, x1, x2” – (y1,y2) for the outer integral, and (x1,x2) for the inner one.

 The integrand function is to be programmed assuming x is in R01, and y in the stack.

For FRT2, both function names are expected to be in Alpha separated by comma (like “F1,F2”), and

the guesses entered in the stack, with the pattern “x1, x2, y1, y2” - with (x1, x2) for f1(x,y) and (y1,

y2) for f(2(x,y).

 The second operand function f2(x,y) is executed first. It assumes x in R01 and y in the stack.

 The first operand function f1(x,y) assumes x in R01 and y in R02.

 You decide which one is F1 and F2 by their order in the ALPHA string

All buffer management is made automatically by the auxiliary routines *2D and*FG.

HP41 CONTOUR ROM

© ÁNGEL M. MARTIN – APRIL 2024 PAGE 62 OF 77

Routine Listings.

Here are the routine listings for your perusal. Notably FRT2 introduces more complexity to process

the function names – entered as comma-separated strings in ALPHA – and due to the indirect call to

f1(x,y) at the end of the auxiliary routine *FG - which is not required by *2D in the double

integration case, as it’s just one function involved. CLAC and ASWAP are borrowed from the ALPHA

ROM – and need the Library#4 present in the calculator. They’re only used for FRT2.

01 LBL "FRT2"

01 *LBL " FITG2"

 02 CLKEYS no keys assigned 02 CLKEYS no keys assigned

03 ASTO 00 save string 03 ASTO 00 save in R00

04 ASWAP swap around "," 04 STO 03 upper limit2

05 CLAC remove second 05 RDN

 06 ASTO 05 save in R05 06 STO 02 lower limit2

07 CLA

07 RDN
 08 ARCL 00 recall string 08 RESET reset buffers

09 CLAC remove second 09 "2D" first level operand

10 ASTO 00 save in R00 10 FINTG call first round

11 STO 04 upper guess2 11 RTN done

12 RDN

12 “NO SOL”
 13 STO 03 lower guess2 13 AVIEW

 14 RDN

14 RESET
 15 RESET reset buffers 15 RTN done.

16 "*FG" first level operand 16 *LBL "*2D"
 17 FROOT call first round 17 STO 01 Save x for later

18 GTO 00

18 CLOAK mask buffer id#

19 *LBL 01 Not found 19 RCL 02 lower limit2

20 RESET

20 RCL 03 upper limit2

21 “NO ROOT”

21 CLA
 22 AVIEW

22 ARCL 00 f(x,y)

23 *LBL 00 Found 23 FINTG nested call

24 RCL 02 y solution 24 EXPOSE re-issue buf id#

25 X<>Y arrange in stack 25 END ready

26 CLA appends
 27 ARCL 00 f1(x,y) name
 28 “|-,”

 29 ARCL 05
 30 RTN done(!)

 31 *LBL "*FG"
 32 STO 01 save x for later

 33 CLOAK mask buffer id#

 34 RCL 03 lower guess 2
 35 RCL 04 upper guess 2
 35 CLA

 36 ARCL 05 f2(x,y)

 37 FROOT nested call
 38 GTO 00 Foundyo, skip
 39 GTO 01 Not found!
 40 *LBL 00

 41 EXPOSE re-issue buf id#
 42 STO 02 Save yo result

HP41 CONTOUR ROM

© ÁNGEL M. MARTIN – APRIL 2024 PAGE 63 OF 77

43 XEQ IND 00 calculates f1(x,Yo)

 44 END

FITG2 uses registers {R00-R03} and leaves the results in X and R01. The function name is left in

ALPHA (6-chars max).

FRT2 uses registers {R00-R05} and leaves the results in the stack registers {X, Y} and {R01, R02}

for the 2-equation roots. The comma-separated function names string is left in ALPHA (6-chars max

for each name).

Comments.

The new functions to support the nested configuration are simplified versions of some general-

purpose buffer utilities, available in other extension modules as follows:

 RESET is equivalent to the sequence { 13, B?, CLB, RDN }

 CLOAK is equivalent to the sequence { 14.013 , REIDBF, RDN}

 EXPOSE is equivalent to the sequence: { 13.014 , REIDBF , RDN }

B? and CLB are available in the OS/X ROM, and REIDBF in the RAMPAGE ROM.

Using the simplified versions is more intuitive for math-oriented users, and besides it freed up some

space for additional examples in the SIROM.

While you can use RESET at any time (which will delete buff #13 if present, or do nothing if not

present), using CLOAK and EXPOSE will generally result in the error message “BUF ERR”. They’re

meant to be used only while buffer #14 exists, which is tightly controlled by the code in FINTG and

FROOT – and furthermore, the SIROM uses the I/O_PAUSE interrupt as a “search & destroy” for

buffer#14 at all times. Refer to the corresponding section in the SandMath manual to read more on

this subject.

Caveat emptor:

 There’s a price to pay for this buffer trickery, and that’s the loss of the USER key

assignments. As you can see in the listings above, the main routines call CLKEYS to make

the operation more reliable (this avoids spurious buffer errors due to memory overwrites).

You can save them in an X-Mem file using SAVEKA and then recover them with GETKA after

the fact (both functions are also available in the AMC_OS/X ROM).

 These routines are not fast, their interest is in the methodology - not optimized for speed to

say the least. If you need faster responses, then the SandMath provides dedicated MCODE

functions for many of these and yet some more.

 Bear in mind that the INTEG-based method to define special functions is not an efficient one

from the mathematical standpoint, but it is a godsend for engineering problems. Also FROOT

is not perfect or fool-proof either, so choosing a good initial guess is of high importance. If

FRT2 fails to find a root (in either variable), it’ll present the error message “NO ROOT” –

Change the limits and try again.

HP41 CONTOUR ROM

© ÁNGEL M. MARTIN – APRIL 2024 PAGE 64 OF 77

The following examples should provide a good overview into the details of the programming.

Example 1. Calculate the integral of the Bessel Jn function, ITJ(1,3) = INT (0,3) { J(1,t).dt}

using the integral definition as reference:

Program Code is below. Note that you don’t need to worry about the buffer management, that’s done

automatically by the driver routines all transparently to the user.

As mentioned before, speed is not this method’s forte. Even on V41 in turbo mode it’ll take a good 75

seconds to return 1.260052 (in FIX 6). This was not the goal of the example, but to clarify the

general guidelines and showcase the conceptual approach. If you want a fast result you’re

encouraged to use JBS in the SandMath, or even better the ITJ (sub)function also in the SandMath,

which uses the Generalized, Regularized Hypergeometric function for the calculation – a world of

differences…

Comment. This particular example is of course much better dealt with using the well-known

expression between the Bessel function J1 and J0 shown below (proving once again that it’s always

good to check your math before embarking in long and winding paths):

thus:

Here’s an interesting plot showing

the integral function of J1(x)

between]-15 . 15[

01 LBL "ITJB" 13 LBL " *JN" inner variable t in stack

02 X<>Y order n to X 14 RAD angular mode

03 STO 04 order saved in R04 15 RCL 04 get order

04 CLX lower outer limit 16 * n.t

05 X<>Y upper outer limit 17 X<>Y inner variable t

06 0 lower inner limit 18 SIN sin t

07 PI upper inner limit 19 RCL 01 outer variable

08 "*JN" function name 20 * x.sin t

09 XROM " ITG2" double integration 21 - n.t - x.sin t
10 PI adjust factor 22 COS cos (n.t - x.sin t)

11 / final result 23 END integrand complete.

12 RTN done.

HP41 CONTOUR ROM

© ÁNGEL M. MARTIN – APRIL 2024 PAGE 65 OF 77

Example 2. Calculate the solution for the system of non-linear equations below:

f1(x,y) = x - sin(x + y) Solution: x = 0,935082064

f2(x,y) = y - cos(x - y) y = 0,998020058

The equations are programmed as shown below. Note how the convention is observed, with the y

value assumed in the stack for the second function and in R02 for the first one; whilst x is always

assumed in R01 for both functions. The solutions are obtained in about 3 seconds (FIX 9) using V41

in Turbo mode.

ALPHA, “FG1,FG2” , ALPHA, ENTER^, 2, ENTER^, 1, ENTER^, 2, CF 01, XEQ “FRT2”

01 LBL “FG1” 2 sets combined

02 RCL 01 x

03 FS? 01

04 GTO 01

05 RAD example #3

06 RCL 02 y

07 + x+y

08 SIN sin(x+y)

09 RCL 01 x

10 - -x+sin(x+y)

11 RTN

12 LBL 01 example #2

13 X^2 x^2

14 RCL 02 y

15 X^2 y^2

16 + x^2+y^2

17 5

18 – x^2+y^2-5

19 RTN

20 LBL “FG2” 2 sets combined

21 FS? 01

22 GTO 01

23 RAD example #3

24 CHS -y

25 RCL 01 x

26 +

27 COS cos(x-y)

28 X<>Y y

29 – -y+cos(x-y)

30 RTN

31 LBL 01 example #2

32 X^2 y^2

33 CHS -y^2

34 RCL 01 x

35 X^2

36 + x^2 – y^2

37 3

38 –

39 END

© ÁNGEL M. MARTIN – APRIL 2024 PAGE 66 OF 77

Note: to save main FAT entries the example #2 and #3 function sets included in the ROMS have

been combined to use a single global label for both sets, aided by the user flag F1 to determine
which set would be computed. CF 01 – uses F1(x,y) and F2(x,y) ; SF 01 – uses G1(x,y) and

G2(x,y)

Obviously this approach won’t be needed with your own examples, which will likely have one global

label per set of two functions – i.e. not combined with more sets.

Example 3. Obtain the roots for the system of two equations below (available as “FG1” and “FG2”

with F1 clear)

g1(x,y) = x^2 + y^2 -5 Solution: x = 2

g2(x,y) = x^2 -y^2 - 3 y = 1

This is an interesting case because FRT2 not only is much slower (as we knew it was going to be),

but also fails to find a root using initial guesses equal to the solutions, i.e. x0 = 2, y0=1.

Other Examples.

Let’s use Valentín Albillo’s neat examples from DataFile for Double Integrals - as follows:

;

See the original article for details, available at:

http://web.archive.org/web/20110906135412/http://membres.multimania.fr/albillo/calc/pdf/DatafileVA024.pdf

© ÁNGEL M. MARTIN – APRIL 2024 PAGE 67 OF 77

The results are: I1 = 8/3 = 2.6666666

I2 = Ln(25/24) = 0.040821

I3 = 1,321.275779

© ÁNGEL M. MARTIN – APRIL 2024 PAGE 68 OF 77

Appendix: MCODE listing for dedicated functions

© ÁNGEL M. MARTIN – APRIL 2024 PAGE 69 OF 77

© ÁNGEL M. MARTIN – APRIL 2024 PAGE 70 OF 77

Binet Formulas

Function Description Input Output

BINETN Binet formula for integers n in X f(n)
BINETX Binet formula for real values x in X f(x)
MLN Multinomial Coefficient n in Y, k in X C(n,k)

 BINETN implements the well-known Binet formula for integer input values. The result is

the n-th Fibonacci number obtained directly without any

iterations.

Example: Calculate f(9)

9, XEQ “BINETN” =>

 BINETX implements an extension for non-integer real input values to calculate the

interpolated Fibonacci numbers. This provides an easy expression for the determination
that guarantees real values also for the interpolated

Fibonacci numbers:

Example: Calculate f()

PI, XEQ “BINETX” =>

See below the graphical representation of Binet(x) for arguments between [-5 . 5]

Obviously, the values for integer arguments coincide with the natural Fibonacci number,

since the term cos(n) is equal to +/- one.

https://www.wolframalpha.com/input/?i=plot+fibonacci%28x%29+between+-5+and+5

© ÁNGEL M. MARTIN – APRIL 2024 PAGE 71 OF 77

In fact, this modified formula produces the real parts of the complex results obtained applying

Binet’s formula directly with complex arguments – where the term -^-n clearly yields a result in

the complex domain: (-^(-n) = exp(-n . ln (-))

Note: You can refer to the 41Z Module manual for the complex case, implemented in that module

with the function ZFIB.

Multinomial Coefficients. { MLN } (See JM Baillard’s reference page.)

Multinomial coefficients are an extension of the Binomial coefficient, using multiple indexes instead

of two. For example, if “k” is the number of variables we have:

P = (n1 , n2 , nk) ! = n ! / (n1! n2! nk!) ; where n = n1 + n2 + + nk

The function MLN expects the input values stored in data registers starting in R01, The number of

variables “k” is entered in the stack’ X-register.

Example: Calculate (76 , 107 , 112 , 184) !

16 STO 01 24 STO 02 41 STO 03 48 STO 04

4 XEQ "MLN" => P =

http://hp41programs.yolasite.com/multinomial.php

© ÁNGEL M. MARTIN – APRIL 2024 PAGE 72 OF 77

Bell and Bernoulli Numbers

Function Description Input Output

BELL Bell Numbers Index n in X n-th. Bell number

BN2 Bernoulli Numbers Index n in X n-th. Bernoulli number

Bell Numbers. {BELL } (See JM Baillard’s reference page)

In combinatorial mathematics, the Bell numbers count the possible partitions of a set, i.e. the Bell

number Bn counts the number of different ways to partition a set that has exactly n elements .

Bell numbers are defined by the iterative sequence below:

B(0) = 1 and

B(n+1) = {k=0..n} Cn,k B(k) if n > 1

 where Cnk = n!/ [k!(n-k)!] are the binomial coefficients.

Examples:

10, XEQ “BELL” =>

89, XEQ “BELL” =>

Bernoulli Numbers{ BN2 } (see JM Baillard reference page)

The Bernoulli numbers could be computed by the relations:

B(0) = 1 ;

B(0) + Cn+1,1 B(1) + Cn+1,2 B(2) + + Cn+1,n B(n) = 0

where Cnk = n!/ [k!(n-k)!] are the binomial coefficients

If the convention B1=−1⁄2 is used, this sequence is also known as the first Bernoulli numbers; with

the convention B1=+1⁄2 is known as the second Bernoulli numbers. Except for this one difference,

the first and second Bernoulli numbers agree. Since Bn=0 for all odd n>1, and many formulas only

involveeven-index Bernoulli numbers, some authors write Bn instead of B2n.

Example:

10, XEQ “BN2” =>B(10) =

Note however that this recurrence relation is unstable, and the results are quite inaccurate for large

n. The generating function below is often used to avoid that:

http://hp41programs.yolasite.com/bell.php
http://hp41programs.yolasite.com/bernouilli.php

© ÁNGEL M. MARTIN – APRIL 2024 PAGE 73 OF 77

Fibonacci Numbers

Function Description Input Output

FIB Fibonacci Numbers Index n in X n-th. Fibonacci number

FIBI Inverse Fibonacci Index n in X n-th/ inverse Fibonacci

FIB Sum of Fibonacci Range n in X Sum[fib(n)]

 IFIB Sum of Inverse Fibonacci Range n in X Sum[1/fib(n)]

Fibonacci Numbers { FIB , FIBI }

These functions calculate the Fibonacci andthe Fibonacci Inversenumbers using the well-known

recurrent relationship:

f(0) = 0 ,

f(1) = 1;

f(n) = f(n-2) +f(n-1)

And the "Fibonacci Inverse" defined as

f’(0) = 0

f’(1) = 1

f'(n) = 1/f('n-2) + 1/f'(n-1).

Note that this is *not* the same as the inverse of Fibonacci, which would simply be 1/F(n)

Examples:

10, XEQ “FIB” =>55.00000000 ; LASTX, XEQ : FIBI” =>0.683299104

25, XEQ “FIB” => 75,025.00000 ; LASTX, XEQ “FIBI” =>0.707165965

Sum of Fibonacci numbers { FIB , FIBI}

Here we’re calculating the sum of the first n Fibonacci numbers, starting at f(0)=0 until f(n).

An interesting fact is the sum of the first Fibonacci numbers with odd index up to f(2n−1) is the 2n-

th. Fibonacci number, and the sum of the first Fibonacci numbers with even index up to f(2n) is the

(2n+1)-th. Fibonacci number minus 1:

Moreover, the general expression below relates the sum to the sequence value:

{0..n)F(n) = f(n+2)-1

Example:

15, XEQ “FIB” =>

Verifying the formula above:

17, XEQ “FIB” =>

Example:

15, XEQ “FIBI” =>

© ÁNGEL M. MARTIN – APRIL 2024 PAGE 74 OF 77

Collatz conjecture. { ULAM }

(see: https://en.wikipedia.org/wiki/Collatz_conjecture)

ULAM shows the successive values in the Collatz conjecture, starting with the argument in X.

It is completely off-topic subject but it sorts of happened while preparing this manual – what an

excuse, uh?

The ULAM function does a complete path starting with the value in X, all the way until the end

when “1” is reached using the well-known Ulam’s (or Collatz’s) algorithm:

 If odd, multiply by three and add one

 If even, divide by two

The function will take the integer part of the absolute value of the number in X. Then all

intermediate values are briefly shown, and the total number of “nodes” is left in X upon completion.

The starting number is left in X.

Examples:

41, XEQ “ULAM” -> generates a sequence of 109 numbers

 22, ULAM -> generates a sequence of 15 numbers

The sequence for n = 27, listed below, takes 111 steps (41 steps through odd numbers), climbing

as high as 9232 before descending to 1.

27, 82, 41, 124, 62, 31, 94, 47, 142, 71, 214, 107, 322, 161, 484, 242, 121, 364, 182, 91, 274, 137, 412, 206,

103, 310, 155, 466, 233, 700, 350, 175, 526, 263, 790, 395, 1186, 593, 1780, 890, 445, 1336, 668, 334, 167,

502, 251, 754, 377, 1132, 566, 283, 850, 425, 1276, 638, 319, 958, 479, 1438, 719, 2158, 1079, 3238, 1619,

4858, 2429, 7288, 3644, 1822, 911, 2734, 1367, 4102, 2051, 6154, 3077, 9232, 4616, 2308, 1154, 577, 1732,

866, 433, 1300, 650, 325, 976, 488, 244, 122, 61, 184, 92, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8,

4, 2, 1 (sequence A008884 in the OEIS)

Histogram of total stopping times for the numbers 1 to 108. Total stopping time is on the x axis,

frequency on the y axis.

https://en.wikipedia.org/wiki/Collatz_conjecture

© ÁNGEL M. MARTIN – APRIL 2024 PAGE 75 OF 77

MCODE listing

The calls to [WAIT4L] ensure compatibility with the SY-41CL – slowing down the output for the user to

catch a glimpse of the enumerated values.

