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Contour_ROM Manual
HP-41 Module

Introduction and Credits.

Welcome to the Contour ROM, gathering a few advanced math applications showcasing the prowess
of the SandMath and 41Z modules. You'll find HP-41 versions of classic HP-15 advanced application
examples, such as the Contour Integration (which gives this ROM its very name) and the Complex
Potential, as well as several other state-of-the-art examples of the usability and effectiveness of the
calculator platform that may still surprise you after all these years — such as Valentin Albillo’s seminal
contribution on the Mandelbrot Set area estimation.

Other programs include additional applications of the SandMath and 41Z in root-finding and
differential geometry areas - see the Curve length, Surface of revolution, and areas under generic
surfaces.

And make sure you don’t miss the Fourier Transform sections, an elusive field for RPN calculators
successfully conquered by your trusty HP-41 companion. See the driver program for the 41Z MCODE
functions and the seminal version by Narmwon Kim, here enhanced with X-Mem file support.

Overlap with other ROMs

Several applications in this module have been taken from the Advantage Math ROM, some of them
for completion sake and other to round the selection in a more logical manner. Consequently, and
with some exceptions, they have been removed from the Advantage Math to avoid repetition.

Note that the use of the SandMath for FINTG and FROOT has been favored over the leaner “Solve &
Integrate” ROM. Reasons for that are several, mainly because other SandMath functions (such as
DERV) not available in the S&I ROM are also featured in the programs. That's why the section dealing
with the Recursive use of FINTEG and FROOT has been included in this module again, no need to
plug the S&I ROM for those.

A few other utility functions are sprinkled throughout the module as well, be that on the FFT section
or in the others. Finally several number-theory applications are also included for completion sake.

Dependencies.

This ROM is designed for the HP-41CX O/S, obviously housed in Q-RAM-capable hardware devices like
Clonix/NoVRAM, MLDL_2k and others. Numerous programs rely on functions from the SandMath and
the 41Z modules, thus make sure they're also installed — as well as the Library#4, required by these
two.
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Without further ado, here is a list of the functions in the Main FAT table.

XROM# Function Description Author

16.00 -Z-CONTOUR Section header

16.01 “ZUTG” Complex Line Integral HP Co.—A. Martin
16.02 “TG” Integrand function HP Co.—A. Martin
16.03 “ZCNTR"” Contour Integral HP Co.—A. Martin
16.04 “TC” Integrand function HP Co.—-A. Martin
16.05 “ARC” R-Circle Contour and Derivative (FO set) A. Martin

16.06 “LIN” Line Contour and Derivative (FO Set) A. Martin

16.07 “FZ” Complex function - f(z) = exp(iz)/(z+1/z) A. Martin

16.08 “zcD” exp(-iz) / (1+z”2) - Cauchy Distribution A. Martin

16.09 “712” Ln z /( 1+z/2)}*2 A. Martin

10.10 “713” (z+1)/(z-1).(z-3) A. Martin

16.11 “ZFLOW” Complex Flow Study HP Co.—A. Martin
16.12 “ZFL” f(z) = P(z)-Yo - Function to Solve A. Martin

16.13 “Pz" Complex Potential - P(z)=z+1/z A. Martin

16.14 “MBA” Mandelbrot Set Area Valentin Albillo
16.15 “D-Y” Delta-Wye Transform A. Martin

16.16 “Y-D” Wye-Delta Transform A. Martin

16.17 “PPL” Print Pythagorean Triplets Thomas Klemm
16.18 -ZFOURIER Section header

16.19 E3/E+ Pointer builder A. Martin

16.20 EINS _ Einstein Functions 1-2-3 A. Martin

16.21 SIGMD Sigmoid function A. Martin

16.22 “INYX” Bessel J and Y via Continued Fractions Baillard-Martin
16.23 =" Subroutine for JYNX Baillard-Martin
16.24 “ZDFT+” Complex Discrete Fourier Transform A. Martin

16.25 “ZIDFT+” Complex Inverse Discrete Fourier Transform A. Martin

16.26 “DFT2” Direct Fourier Transform A. Martin

16.27 “IFT2” Inverse Fourier Transform A. Martin

16.28 “FFT” Fast Fourier Transform Narmwon Kim
16.29 “IFF” Inverse Fast Fourier Transform Narmwon Kim
16.30 -2D-ITG/SLV Section header

16.31 ASWAP ALPHA swap around comma A. Martin

16.32 CLAC Clear ALPHA from Comma W&W GmbH
16.33 “FITG2” Recursive Double Integration A. Martin

16.34 “*2D” Auxiliary for FITG2 A. Martin

16.35 “F1XY” Examle f1(x,y) A. Martin

16.36 “F2XY” Example f2(x,y) A. Martin

16.37 “FRT2” Recursive Root Finder f(x.y) A. Martin

16.38 “¥EG” Auiliary for FRT2 A. Martin

16.39 “FG1” Examplefl and g1 A. Martin

16.40 “FG2” Example f2 abd g2 A. Martin

16.41 FNRM Finite Nested Radicals Martin-Baillard
16.42 INRM Infinite Nested Radicals Martin-Baillard
16.43 -SANDMATH+ Section header

16.44 “CLEN” Curve Length A. Martin

16.45 *CL” Auxiliary for CLEN A. Martin

16.46 “LNG” Arc Length of a Curve JM Baillard

16.47 “SRV” Area of Surface of Revolution JM Baillard

16.48 “SKS” Area of Surface JM Baillard
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dz f(z) =2miRes[ f(2)],_,

16.49 “*RM” Romberg Routine JM Baillard
16.50 “XHALL” Halley’s Method for real roots A. Martin
16.51 “XNWT” Newton Method for real roots A. Martin
16.52 “ZNWT” Complex-Step-Differentiation for real roots A. Martin
16.53 “ZROOT” Complex Root finder Albillo-Martin
16.54 BELL Bell Numbers A. Martin
16.55 BN2 Bernouilly Numbers A. Martin
16.56 BINETN Binet formula — Integer order A. Martin
16.57 BINETX Binet formula — Real order A. Martin
16.58 FIB Fibonacci Numbers A. Martin
16.59 IFIB Inverse Fibonacci numbers A. Martin
16.60 MLN Mutinomial Coefficients Martin-Baillard
16.61 ULAM Ulam’s Conjecture A. Martin
16.62 ZFIB Sum of Fibonacci numbers A. Martin
16.63 2IFIB Sum of Inverse Fibonacci numbers A. Martin
Im(z) ,
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> e
o \
¥
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|
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Contour Integration on the HP-41.

What follows is just a quick adaptation of the parameterized complex integral examples from the HP-
15C Advanced Functions manual, see pages 73 and following.

Perhaps a little brute-force-ish, nevertheless a good example of a combined application of the 41Z
functions and the SandMatrix for the numerical integration task. Surely it is restricted to easy
contours like the straight line segments used in the example below, so the general-purpose case
(Residues theorem, analytical functions, etc.) remains a challenge to be cracked.

You can use FINTG to evaluate the contour integral Jff {(z)dz  here Cis a curve in the
complex plane. First parameterize the curve C by:

z(t)= x(t) + 1 y(t) ; for tl <t <t2.
Let G(t)=f((1)).Z(t). Then J::f (z)dz = fff'(ﬂdf
= j“ "Re(G(1)dt +1i j“ Im(G(r))dt

These integrals are precisely the type that FINTG evaluates. Since G(t) is a complex function of a
real variable t, FINTG will sample G(t) on the interval t1 < t < t2 and integrate Re(G(t))—the value
that your function returns to the real X-register. For the imaginary part, integrate a function that
evaluates (£) and uses RE<>IM to place Im( () into the real X-register.

b
Program #1. Integral along line segment [a, b] I= _|. f(z)d=

The generalized program listed below evaluates the complex integral along the straight line from
a to b, where g and b are complex numbers such that Im(a)#Im(b). Hence, the parameterized
values z(t)use z = a + t.(b-a), with t1=0, t2=1.The program assumes that your complex function
subroutine has a global label and evaluates the complex function f(z), and that the limits @aand b are
in the complex W- and Z-registers, respectively. The complex components of the integral - 7 and the
uncertainty A7 are returned in the X- and Y-registers respectively.

The parameterizationis for this case quite simple:

z(t) = a + t.(b-a), with t1=0, t2=1
Z'(t) = (b-a)

This has the additional benefit that there’s no need to write a global label subroutines for either the
contour or the derivative curves.

Note that since the derivative of the contour is not dependent on t it could therefore be taken out of

the integral - however the requirement of using the imaginary part of the integrand advises to leave
the derivative inside.
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26 RDN
] 01 LBL"ZLITG+" Dataentry. 27 STO 09 saves Im(AI) in R03
02 “F(Z)? w line segment 28 RDN same limits
03 PMTA 29 CF 01 flag real parts
04 ASTO 00 FName in ROO 30 FINTG calculates Re(I, A)
05 “Z1=?" 31 STO 06 saves Re(I) in R06
06 PROMPT saves a in ZR01 32 RDN
07 ZSTO 01 Re - R02,Im - RO1 33 STO 08 saves Re(Al) in RO8
08 “Z22=?" 34 RCL 09 presents Al in W
09 PROMPT b 35 X<>Y
10 ZRC- 01 (b-a) 36 ZENTERA saves Al in W
11 GTO 00 37 RCL 07 presents Iin Z
12 LBL“ZLITG"  Cpx. Line Intg 38 RCL 06
13 ASTO 00 FName in ROO 39 ZAVIEW shows result
14 Z<>SW a 40 TONE 2
15  2STOO01 saves a in ZRO1 41 RTN done.
16 Z- (b-a)
17 LBL 00 | 42 LBL"ITG" Integrals
18 ZSTO 02 saves (b-a) in ZR02 43 0 no Imaginary
19 “TG” integrands 44 X<>Y current t
20 0 t1 limit 45 ZRC* 02 (b-a).t
21 ENTERA 46 ZRC+ 01 a +(b-a).t
22 1 t2 limit 47 XEQ IND 00 f(a + (b-a).t)
23 SF 01 Imaginary parts 48 ZRC* 02 f(z).z'(t)
24  FINTG calculates Im (I, A) 49 FS? 01 Imaginary?
25 STO 07 saves Im(I) in RO7 50 X<>Y yes, use it
51 END done.

To use ZLITG you need to write a subroutine to calculate the complex function f(z), place its global
label in ALPHA and the two complex integration limits that define the ends of the straight line that
your function will be integrated along in the complex stack levels W and Z.

The driver program ZLITG+ offers prompts to input the data sequentially, so it's more convenient for
the casual user. Note that f(z) still must be written prior to executing the program.

Note that in this case z(t) =a +t.(b-a),
hence 7'(t) = (b-a),

and thus, not depending on the real variable t, it can be taken out of the integral instead of being
part of the subroutine programming f(z). This facilitates the calculations and speeds up the execution.
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Example 1. Approximate the integrals: [r COSX

These integrals decay very slowly as x approaches infinity and therefore require a long
interval of integration and a long execution time. You can expedite this calculation by
deforming the path of integration from the real axis into the complex plane. According to
complex variable theory, these integrals can be combined as

I+ g~ .
Il—ifngl El- dz fl@)=——0
. =z+1/= ) z+1/z

with:

This complex integral, evaluated along the line x=1 and y= 0, decays rapidly as y increases — like
exp(-y). To use the previous program to calculate both integrals at the same time, we write a
subroutine to evaluate f(z). This result 7is calculated much more quickly than if /1 and 2 were
calculated directly along the real axis. .

|01 LBL“FZ”
02  ZENTERA

03 ZINV 1/z

04 LASTZ z

05 Z+ z+1/z

06 ZINV 1/(z+1/2)

07 Z<>W z

08 Z*1 can be replaced with {X<>Y, CHS}
09 ZEXP exp(iz)

10 Z* f(z)

11 END

Approximate the complex integral by integrating the function froma =1+ 0i tob =1+ 6i usinga
FIX 3 display format to obtain three significant digits. (The integral beyond 1 + 6i doesn't affect the
first three digits.)

0, ENTER”, 1, ZENTERA, 6, ENTER, 1, puts the lower limit in W and the upper one in Z

ALPHA, “FZ”, ALPHA, XEQ"“ZLITG" = -4+ dB3HZ
Z<>W = Qa4 <+

This result I is calculated much more quickly than if I1 and I2 were calculated directly along the real
axis.

Using FIX 6 instead returns after a substantially longer time: -~ #.324Y 358+ A3 82454

And here the upper limit does have an impact, for instance moving it up to b=1+7i:

I- -43242b1+JA4HZ2B4
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Program #2.- Extension to a more general contour.

The next step is an extension of this method to more general contours, beyond the straight-line
(vertical or not) segment used before. For this we'll need to program the different contour sections as
parameterized formulas of the real variable t, i.e. z(t) in the contour, with t going from an initial (lower)
value of the parameter t1, to a final (upper) value t2.

Besides that parameterized curve we'll also need its derivative as another component of the complex
integral equivalent once the change of variable is applied: G(t) = f(z(t)).Z’(t).
Therefore we see that in principle tAree global labels are going to be required — although the

parameterized equations are likely to be rather simple ones given the nature of the usual contours used
for these integrals — typically line segments and circle arcs.

Let's see as example the integral of the previous function f(z) but this time using as contour the arc of
circumference with radius R and centered at z=1, taken in a direct (counter-clockwise) direction from
z1=14+R to z2=1+Ri

z(t) = 1 + R.exp(it) with t in the interval [0, /2]
Z'(t) = i.R exp(it)

1+iR |
2(t) = 1+ R. et Clx :]{ —° __ i,
2 2+ 1)z

'R

Tat)=Re* +1, 0<t<

2| =

0 1 1+R

The program #2 in next page is a straightforward extension of the previous one, with the obvious
difference this time that within the integrand routine we call the parameterized z'(t) and multiply its
value by the value of the function f(z(t)) as required by the definition G(t) formula.

The program has a data input section where the names of the three global labels are saved in data
registers R00, R01, and R02 using the OS/X utility function PMTA. Also the value of the radius R and
the parameterized integration limits are required at this stage.

Then the runtime main body starts at LBL C — which assumes all input values have been already
entered. The arrangement will be convenient to do repeated calculations with different values of the
radious R, as the point we're really after is checking whether the integral values decrease with
R, hinting at a final zero result when R goes to an infinite limit.

The function f(z) was already taken into account by the “FZ" routine in the first example, so it won't be
repeated in the listings below — refer to the previous example if needed.
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O 00O NO U1 B WN -

N NN NNNNNNRRRRRPRRRPRRP R
0N O U S WNROWLVOWOWNOOD U WNRL O

LBL "ZCNTR" main driver program
"FzZ? " global LBL name
PMTA for f(z) routine
ASTO 02 savedin RO2

"Z(T)? “ globallabel name
PMTA for z(t) routine
ASTO 00 saved in ROO

"Z(T)? “ global LBL name
PMTA for z'(t) routine
ASTO 01 saved in RO1

“20="?" anchor point
PROMPT

ZSTO 05 saved in ZR05

"R=?" value of radius
PROMPT ignoreif not needed
STO 03 savedin RO3
"T1rT2=?" integration limits
PROMPT for parametert

STO 05 t2 saved in RO5
X<>Y

STO 04 t1 saved in RO4

LBL C for repeat use
RCLO4 lower limit t1
RCLO5 upperlimitt2

"ITc" integrand routine
SF 01 flags Imaginary parts
FINTG doesintegration
STO 06 Im(l) in RO6

X<>Y

STO 07 saves B(Im(l))
CFO01 flags Real parts
RCLO4 lower linit t1
RCLO5 upperlimitt2
FINTG doesthe integration
STO 08 saves Re(l)

X<>Y

STO 09 saves B(Re(l))
RCLO7 B(Im(1))

X<>Y Bl(Re(l))

ZENTERA pushesllin level W
RCLO6 Im(1)

RCLO08 Re(l)

ZAVIEW shows result

TONE 2

RTN done.

‘ LBL "ITC” Integrand routine
STO 08 saves tin RO8
XEQ IND 00 calculates z(t)
XEQ IND 02 f(z(t))

ZENTERA saves f(z) in W
RCLO8 recallst

XEQ IND 01 calculates z'(t)
Z* Z'(t).f(z(t))

FS? 01 Imaginary?
X<>Y yes, take Im part
END done.

And finally the parameterized curves are programmed as follows:

01 LBL "ZP" derivative '(t) |
02 0 pureimaginary (O+it)
03 ZEXP exp(it)

04 RCLO3 R

05 ST*Z

06 * R.exp(it)

07 Z*I i.R.exp(i.t)

08 RTN
|09 LBL "ZT" parameterized z(t) ‘
10 XEQ “ZP” opportunistic

11 Z/I undoes Z*|

12 ZRCL 05 addsanchor

13 Z+ a + R.exp(i.t)

14 END done.
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Example 2.- Obtain the integral results for the different values of R=1, R=10, R=100, and R=1000
and see if they show a decreasing trend as R increases.

Radius Re(Intg Im(Intg) Magnitude
1 ~d AT E-a AT E-d | 2 -AEsns
10 HEHT E-df aMEd E-dd | (D -aaBEYY
100 -HAHT E-dd HET4d E-dd | 1229y
1000 “HAH D E-UM AHVR E-UM | (2 -RAA A

Finally let’s close the circle (pun intended) using the general-purpose program #2 to re-calculate the
first example, where the contour in this case is the straight segment: z(t) =a + (b-a).t with 0 <t<1

[01  LBL“LP” derivative | 08  RCLO8 t
02 6 (b-a) 09 ST*Z t.(b-a)
03 ENTERA 10 * 0 +t.(b-a)
04 0 11 1 a
05 RTN 0+ 6i 12+

|06  LBL“LT” contour ‘ 13 RTN a+t.(b-a)
07  XEQ“LP” 0+6.i

XEQ"ZCNTR" with FZ, LT, and LP as global labels, plus t1=0 and t2=1 (R can be ignored)

Using FIX 4 it gives the same result as before,
Resut: ZIT = -8@4324+J2A44HZ

Combining Curve and Derivative

In order to reduce the number of global labels in the ROM (where FAT space is always at a premium),
the programs in the module has been modified to use flag FOO to determine whether to calculate the
contour (FO clear) or its derivative (FO set). The main program will manage the status of FOO
appropriately, setting and clearing FOO appropriately before calling the (now combined) parameter
curve routines. Besides that, the prompt for the derivative subroutine “Z'(T)” has been eliminated —
freeing register RO1 for other purposes.

This changes the previous routines listing into the following version:

[01  LBL“LT/LP” single entry \ 09 LBL 0O contour
02  FC?00 10 XEQ 01 (b-a)
03  GTOO00 11 RCLOS8 t

| 04  LBLO1 derivative \ 12 ST*Z
05 6 13 * t.(b-a)
06  ENTERA 14 ZRCLO5 a
07 O (b-a) 15 Z+ a+t.(b-a)
08  RTN 16 END.

© ANGEL M. MARTIN — MAY 2024 PAGE 12 OF 77



HP41 CONTOUR ROM

And likewise for the arc of circumference contour:

’ 01 LBL"ZT/zP" single FAT entry) ‘ 10 41 i.R.exp(i.t)

02 FC?00 derivative? 11 RN

03 GTO00 no, branch off | 12 1BLOO parameterized z(t) |
| 04 LBLO1 derivative 13 XEQO1 opportunistic

05 0 pure imaginary (0+it) 14 z)i undoes Z*

06 ZEXP expl(it) 151 adds anchor

07 RCLO3 R 16 + 1+R.exp(i.t)

08 ST*Z 17 END done.

09 * R.exp(it)

Program #3.- Final consolidated version

Rewriting the data entry section and using PMTK in the OS/X Module we can combine both cases in a
single program, as listed below. This has the advantage of using the same integrand routine for both
cases (ITG and ITC), and thus saves one more FAT entry in the module. Note that iy uses PMTK in the
0S/X module to select the case, either ARC (“A”) or LINE (L") — and even a custom contour denoted
by “X”, which would need its custom routine to compute the curve and its derivative.

[01  LBL“ZCNTR+” | 31 PROMPT
02 “FzZ?2 © 32 STO 03 Circle radius
03 PMTA f(z) Name gz ‘}‘)LIOAJPZ:?"
04  ASTO00
05 “TYPE ALX" gg )S(To 85 final angle
06  PMTK either 1 0r 2 <> o
07  GTOIND X dispatch choice gé )SZTO 84 }”'t'f' anlgle
<> inal angle
‘ 898 L;(I-})g?' ‘ 39 “ARC” contour name
10 PMTA contour name [ 40 LBL 00 merged code |
11 ASTO 01 41 ASTO 01
12 GTO 00 merge 42 “ITC” integrand
13 LBLO2 ine segment | [43 LBLC |
14 “Z71=?" 44 SF 01 imaginary
15 PROMPT 45 FINTG
16 ZSTO 01 46 STO 07 Im(ITG)
17 “Z2=?" 47 RDN
18 PROMPT 48 STO 09 A(Im)
19 ZRC- 01 49 RDN same limits!
20 ZSTO 02 50 CF 01 real part
21 0 initial param 51  FINTG
22 ENTERA 52 STO 06 Re(ITG)
23 1 final param 53 X<>Y
24 “LIN” contour name >4 STO 08 A(Re)
25 GTO 00 merge 55 RCL 09 A(Im)
|26  LBLO1 Circular ARC gf; éémﬂv
27 \\A=?II
58  RCLO7 Im(ITG)
28 PROMPT
29 STOM2 Aux. Param, > RCLO6 Re(ITG(

30 WR=?" 60 ZAVIEW show result
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61 TONE 0 05 ST*Z
62 RTN 06 * R.exp(i.t)
|63  LBL“ITC" integrand | 07 X<>Y do Z*1
64  STOO08 current t 08 CHS i.R.exp(i.t)
65 CF 00 contour 09 FS?C00 derivative?
66  XEQIND 01 contour z(t) 10 RTN yes, return
67  XEQIND 00 complex f(z) 11 CHS no, undo Z*I
68  ZSTOO05  save for later 12 X<>Y R.exp(i.t)
69 RCL 08 current t 13 RCL02 anchor point
70 SF 00 derivative 14+ a+R.exp(i.t)
71  XEQIND 01 Z'(t) 15 RTN
72 ZRC* 05 f(z).Z'(t) 16 LBL “"LIN” line segment
73 FS?01 imaginary? 17 ZRCLO2 (b-a)
74 X<>Y yes, oblige 18 FS?C00° derivative?
75 END done 19 RTN yes, return
20 RCL 08 t
21 ST*Z
|01 LBL“ARC” circular 22 % t.(b-a)
022 0 23  ZRC+ 01 a+t.(b-a)
03 ZEXP exp(i.t) 24 END
04 RCLO3 R

Where the last two routines are the combined contour & derivative calculation for the cases of a

circular arc and a straight line segment,

See the registers used in the table below:

Register # | ZLITG | ZCNTR-LINE | ZCNTR- ARC
ROO f(z) - function Name
RO1 unused | Z(t) - Contour Name
R0O2 Re(z1) Anchor point A
RO3 Im(z1) Radius R
RO4 Re(z2-71) t1
RO5 Im(z2-z1) t2
RO6 Re(Intg)
RO7 Im(Intg)
ROS8 Re(Delta)
RO9 Im(Delta)
R10 unused Re(Z'(t))
R11 unused Im(z’(t))

Thanks to this common register mapping across the three programs we’ll be able to use subroutines
valid for all applicable cases, therefore saving further space in the ROM.

© ANGEL M. MARTIN — MAY 2024 PAGE 14 OF 77



HP41 CONTOUR ROM

Examples from Wikipedia: https://en.wikipedia.org/wiki/Contour_integration

Example 1 — Unit circle

A fundamental result in complex analysis is that the contour integral of f(z)=1/z is 2ni, where the path
of the contour is taken to be the unit circle traversed counterclockwise (or any positively oriented
Jordan curve about 0). In the case of the unit circle |z|=1 there is a direct method to evaluate the
integral

1 2 1 _ 2 2
_dz:f —_ée‘tdt:t‘/ ldtzét(w=(2?r—{])i:2m'
c z o e 0 0

Example 2 — Cauchy distribution.

The integral / x gitr
oo T2+ 1

dx

which arises

in probability theory as a scalar multiple of the characteristic function of the Cauchy distribution)
resists the techniques of elementary calculus. We will evaluate it by expressing it as a limit of contour
integrals along the contour C that goes along the real line from —ato a and then counterclockwise
along a semicircle centered at 0 from ato —a. Take ato be greater than 1, so that the imaginary unit /
is enclosed within the curve. The contour integral is

E-z'tz
- dzl
]c; 22 +1

Since e is an entire function (having no singularities at

any point in the complex plane), this function has

singularities only where the denominator z2 + 1 is zero.

Since z2 + 1 = (z + i)(z — i), that happens only where

z=1i or z = -i. Only one of those points is in the region -a > > a

bounded by this contour. The residue of f(z) atz =i is:
itz

es't:—: Eitz E—t
=lim(z — i) ————— = lim - = —.
2241 (z—i)(z+1) =viz+i 2i

lil.;[}(z —i)f(z) = lzitﬁ(z — 1)

According to the residue theorem, then, we have

oot
/ f(2) dz = 2mi Res,—; f(2) = 21r'i,62—, = me~’.
P

2

According to Jordan's lemma, if t > 0 then the integral along the arc of circumference tends to zero as
R tends to infinite. Therefore, if t > 0 then

oo it
e
/ S — dx = me '.
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A similar analysis can be made for values t<0, leading to the final consolidated result shown below:

[ Eﬂ.:r
f ——dz = me M,
e 2+ 1

If £= 0 then the integral yields immediately to real-valued calculus methods and its value is =

Example 3 — Squared Logarithm

This example treats a type of integral of which

> ]
[T
0 (1+z?)

To calculate this integral, one uses the

function Y
2
log z M
f(z) = ; ) ¢ /|
1+z . -
And to avoid singularities in the integration N

path we use the branch of the logarithm
correspondingto —n <argz < r.

N

We will calculate the integral of f(z) along the
keyhole contour shown at right. As it turns
out this integral is a multiple of the initial
integral that we wish to calculate and by the
Cauchy residue theorem (there are two poles
at z=i and z=-i) we have

2x.i.(ZRes{I, -i} ) = -t 2
Let R be the radius of the large circle, and r the radius of the small one. We will denote the upper line
by M, and the lower line by N. As before we take the limit when R — oo and r — 0. The contributions
from the two circles vanish.

In order to compute the contributions of M and N we set z = —x + ieon M and z = —x — ig on N, with
0 < x < oo: Replacing z by hose values and performing some simplification we obtain:

(L f) s == i

and after isolating the sought for integral it gives
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= logz T
[7
o (14 22) 4

we'll see that the chosen branch of the logarithm is a rather relevant point for a proper usage of the
ZLN function. That, together with the winding direction being clock-wise, must be taken into account to
obtain he correct results!

Application with the module functions.
The module includes global labels for straight segments - defined by the two complex points at its end -
and circumferences centered in 0 and with a radius R. Choosing initial and final angles is the way to
provide a general-purpose arc, such as the one used in the previous example with initial angle zero and
final angle =/2.
The module also includes the complex functions routines for the examples described above:
e LBL"“1/Z" for the first example
e LBL"“ZCD" for the Cauchy distributions
e LBL"“ZLN2" for the keyhole contour example
Combining these resources is therefore a simple task.

Example 1 - Keystrokes,

A straightforward case for which we have both the complex function and the contour:

XEQ “ZCNTR” FZ%7

“1/Z", R/S T2

“RC", R/S H="

0, R/S R="

1,R/S Ti27T2=%

0,PL 2, * R/S ~ZHd5E - ({+dbhJHA
X<>y, FIX 9 beHI (HSHAH

Note that the ,, A" parameter is irrelevant for this example, so zero is as good as any other value

Example 2 - Keystrokes

Here the routines can be used to verify that the contribution of the semi-circumference tends to zero as
its radius increases, i.e. similar to the analysis made at the beginning of this section.

Running if for the cases R=10, R-100, R-1,000 and R=10,0000 we compile the following table:

Radius Result Magnitude

A (VATA 0. (TA (VA TA -7 N
10 {72 PR I VA 7K B S VA P B A A LA By A PO B |
100 L A 20 = i
1.000 A A (20 =
10.000 EeMEd AR - Y 2= tHI5E-Y
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XEQ “ZCNTR" FZ7

“ZCD", R/S Z(T) P

“RC"”, R/S H="

0, R/S R=%" will repeat for different radius
1, R/S TIATZ2 ="

0, Pl 2,/,R/S 2, (P2+4B 120

Repeating for R=100, 1,000 and 10,000 is as simple as modifying the radius value in data register R03
and executing the program from the local label “C”, as shown below:

100, STO 03, XEQ C
1000, STO 03, XEQ C
10000, STO 03, XEQ C
etc...

Example 3 - keystrokes

Here too the contribution of the module is limited to the verification of the diminishing results in the
outer and inner circles of the keyhole contour. It is left to the reader for practice...

This contour and the choice of the branch of the logarithm introduce two points for consideration.

» The first one is that the contour winds in clockwise direction, therefore the sign changes when
compared to the “natural” convention.

» The second is the function ZLN in the 41Z module uses the principal branch of the logarithm,

which removes the negative semi-axis and therefore it is the appropriate one for this example.
This is mentioned just to alert you that it may not always be the case, depending on the case.

Program Listings

o1  LBL“1/z” | 20  ZEXP exp(i.t.z)
21 Z<>W
02 ZINV el s
03 RTN
[04  LBL'ZLN2" {lnz/(1+z°2)}*2 | ;3} i Lzn
05 ZIN 5 z/ exp(-i.t.2) / (1+2°2)
06 LASTZ % RN
VAN
387 f 2 |27 LBL"RC”  R-Circle |
09 + 28 0 O+i.t
10 z/ 29 ZEXP exp(it)
11 ZA2 g(])_ §'|(E>||<_ §3 get radius
12 RTN
- pe . 32 * R.exp(i.t)

13 LBL"ZCD" Cauchy Distr | 33 FC2C00 derivative?
14 ZENTERN exp(-i.t.z) / (1+z72) 34 RTN no. return
ig )C(;S> Y . 35 X<>Y yes, multiply by i

-2 . 36 CHS i.R.exp(i.t)
17 RCL 02 argument * t 37 END done
18 ST*Z
19 * i.t.z
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Complex Potentials.

What follows is just a quick adaptation of the complex potentials examples from the HP-15C Advanced
Functions manual, see pages 76 and following.

Conformal mapping is useful in applications associated witha complex potential function. The
discussion that follows deals with the problem of fluid flow, although problems in electrostatics and
heat flow are analogous.

Consider the potential function P(z). The equation Im(P(z)) = c defines a family of curves that are
called streamlines of the flow. That is, for any value of c, all values of z that satisfy the equation lie
on a streamline corresponding to that value of c. To calculate some points zk on the streamline, specify
some values for xk and then use FROOT to find the corresponding values of yk using the equation

Im(P(xk+ iyk)) = c.

If the xk values are not too far apart, you can use yk-1 as an initial estimate for yk. In this way, you
can work along the streamline and calculate the complex points zk = xk + iyk. Using a similar
pocedure, you can define the equipotential lines, which are given by

Re(P(z)) =c.
T Re(Plz)) =c¢
S =, SR !
- /\ I~ Im(P(z)=¢
+ } ' n X
——— ——
_—I\»\k—/)//__
/ NN LX \
7 \\._—:/ \ \

The program listed below is set up to compute the values of yk from evenly spaced values of xk. You
must provide a subroutine labeled with a global label in memory that places Im(P(z)) in the real X-
register. The program uses inputs that specify the step size h, the nhumber of points n along the real
axis, and z0 = x0 + iy0, the initial point on the streamline. You must enter n, h, and z0 into the Z-, Y-,
and X-registers before running the program.

The program computes the values of zk and stores them in data file in X-Mem in the form akl = xk-1
and ak2 = yk-1 for k =1, 2, ..., n. Data entry includes prompting for the flow conditionas and allows
for either streamlines or equipotentials to be computed. In addition to the 41Z module to define the
complex flow, and the Solve & Integrate module (for FROOT, hence the ancilliary subroutine “ZFL" for
the equation to solve), the AMC_OS/X module is required for PMTA and PMTK. The listing below also

includes the potential flow example “PZ” given by: P(2) =z + 1/z

One special feature of this program is that if an xk value lies beyond the domain of the streamline (so
that there is no root for _ to find), then the step size is decreased so that xk approaches the boundary
where the streamline turns back. This feature is useful for determining the nature of the streamline
when yk isn't a single-valued function of xk. If h is small enough, the values of zk will lie on one branch
of the streamline and approach the boundary. (The second example below illustrates this feature.)
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| 01 LBL"ZFLOW” | 44 LBL 02
02 “FNAME?" function name 45 RCL 04 h
03 PMTA 46 RCL 07 counter
04 ASTOO08 47 INT index k
05 “#N=?" data points 48 * k.h
06 PROMPT 49 RCL02 xk
07 STO 09 50 + xk+1 = xk+k.h
08 “H=?" step size 51 STO 06
09 PROMPT 52 RCLO3 yk as guessl
10 STO 04 53 ENTERA and as guess2
11 “z0=?" initial point 54 FROOT
12 PROMPT enter IMinY, Rein X 55 GTO 04 root found!
13 ZSTO 00 saved in {R00, RO1} 56 4 if not, adjust search
14 “TYPE? SV” stream/velocity 57 ST/ 04 new # of points
15 PMTK 58 ST* 07 new step size
16 CF 00 default is streamlines 59 GT0 02 try again
17 2 | 60 LBL 04 root was found
18 X=Y? chose “V"? 61 RCL 06
19 SF00 flags velocity 62 VIEW X show Re(xk+1)

[ 20 LBLC main section 63 SAVEX and save in file
21 RCLO09 number of points 64 RDN
22 ST+ X double size 65 STO 03 make yk = yk+1
23 “ZFL" data file name 66 VIEW X show Im(xk+1)
24 SF 25 67 SAVEX and save in file
25 PURFL purge if there 68 ISG 07 increase counter
26 CF 25 69 GTO 02 do next if not last
27 CRFLD create it (again) 70 CLX
28 CLX 71 SEEKPT set pointer to top
29 SEEKPTA sets pointer to top 72 RTN done.
30 RCL09 # of points | 73 LBL"ZFL”  ancillary routine
31 E 74 RCL 06 Ykin 'Y, xk in Xk
32 - n-1 75 XEQIND 08  compute P(z)
33 E3/E+ 1,00(n-1) 76 RCL05 xk ot yk
34 STO07° save counter 77 — subtract it
35 ZRCL 00 initial point 78 RTN done.
36 STO 02 x0 in RO2 — :
37 SAVEX and in data file | 79 LBL PZA example potential
38 X<>Y 80 ZENTER

. 81 ZINV
39 STO 03 y0 in RO3 82 7+
40 SAVEX and in data file .
41 X<>Y restore order 83 FC200 streamline?
. 84 X<>Y yes, get Im part

42 XEQIND 08  compute function 85 END
43 STO 05 save result

Let’s see next a couple of examples to check the program
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Example-1: Calculate the streamline of the potential P(z) = 1/z + z passing through z=-2 + 0.1i.
Using nine data points and a step size of 0.1 we obtain the results shown below...

Example-2: For the same potential as the previous example, P(z) =1/z + z, compute the velocity
equipotential line starting at z=2 +i and proceeding to the left.
Welll try with n = 6 and h = -0.5. (Notice that h is negative, which specifies that xx will be to the

left of xo)

Example-1 Results Example-2 Results
xk yk
-20 | 21888 Xk vk
-15 RELE 2.0000 WA
1.0 ZUWEY 1.8750 Vi A
05 I 1.8672 o tas e
00 LELE) 18452 | Z@AGM
05 | D9 IE | 1.8647 BEEYY
1.0 ZUUGY 1.8646 s
15 voiaM A

2.0 oA

The example-2 results show the nature of the top branch of the curve (the heavier dashed line in the
graph for the previous example). Note that the step size h is automatically decreased in order to follow
the curve-rather than stop with an error-when no y-value is found for x < 1.86.

To review the results you could set user flag 21 to halt the displaying while the calculations are being
made, or alternatively review the values saved in the data file with the utility listed below:

01 LBL"DFED"”

02 FLSIZE 21 GTOO02 no, branch off
03 1 22 FS? 08 yes, edit mode?
04 - 23 GTO 01 no, skip over
05 E3 24 X<>Y yes, prepare stage
06 / 0.00(n-1) 25 RDN _
’ 07 LBL 00 26 X<>Y get pointer
27 SEEKPT set pointer
08 SEEKPT
28 X<>Y new value
09 GETX get current 29 SAVEX save it in file
10 X<>Y index to X
11 D" | 30 LBL 02 \
12 ARCLI 31 X<>Y
13 >"=" | 32 LBLO1 |
14 X<>Y value to X 33 ISG X increase counter
15 ARCLX 34 GTO 00 loop for next
16 CF 22 set data entry flag 35 "DONE”
17 FC? 08 edit mode? 36 AVIEW
18 >"?" yes, add question mark 37 CLA
19 PROMPT 38 END
20 FC?C 22 was data entered?
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41Z Application: Delta-Wye Transformation.

Here's a token of appreciation for the EE folks in the audience — using the 41Z to tackle a classic:
Delta-Wye impedance transformation for 3-phase systems.

The expressions to use are as follows:

N3
Hb Ha
M, R, M,

R\ R; + Ro Ry + Ry Ry R, = Ry R
R, = R, R, + Ry, + R,

R — EREiR; + R: Ry + Ry R Ry = 1, e
b= R, R, + R, + R,

o R, Rg + RgRg + R3R1 Ry = RaRh
R"— - RE ’ R;; + le + Rc

Examples.

Compute the Delta impedances equivalent to the Wye configuration given by:
z1 = 1+42i, z2=3+4i, and z3=5+6i
We type:

CF 00, GTO"“Y-D”

2, ENTER”, 1, ZENTER”

o
4, ENTERA, 3, ZENTERA R
6, ENTER, 5, XEQC LIEB 4+ L BYE
ZRDN 2 LWHaa+d2 (220
ZRDN WS Y+ T

and for the reverse direction we take advantage that the three values are already in the complex
stack, thus there’s no need to re-enter them.

SF 00, XEQC S222+db
ZRDN 208 +44
ZRDN t+dd

© ANGEL M. MARTIN —APRIL 2024

PAGE 22 OF 77



HP41 CONTOUR ROM

The simple program below is all there is to it — behold the power of the 41Z complex stack in action

Delta <-» Wye conversions |

1 LBL"D-Y [ 01 1BL DYD" |

2  |sFoo " 02 ZRCLOD Za / Zab

3 GTOO0D " 03 zZRC:OL Zo+Zb / Zab+Zbe

4  LBL"Y-D ' oa  FCPo0

5 CFOD " s GTO 01

6  LBLOD [ 05  ZRC+02 Zab+Zbc+Zca

7 "za" " 07 7nv 1/(Zab+Zbe+Zen)

8  Fs700 " 08 ZRPIA

N " 0@ ZRCLOD Zab
10 i “=p= !: 10 IRC* 02 ZabZca
11 |PROMPT !' 11 z* Za = ZabZca
12 jzsT000 , 12 LW 1/(Zab+Zbec+Zca)
13 =z 13 ZRCLO1 Zbe
14 Fs?00 " 14 zRC*00 ZabZbe
15 e 15 e 7h = ZabZbe/(Zab+Zbe+Zon)
16 D= ¥ 16  zRuP 1/(Zab+Zbe+Zen)
17 ! PROMPT .' 17 ZRCL 02 Zea
18 lzstoor ' 18 zRen ZbcZca
19 “Fc" T z* Zc = ZbcZoa/(Zab+Zbo+Zoa)
20 Fs700 " 2 RTN
21 et AT |
22 =2 fr = LASTZ Zb
23 IPROMPT ' 23 zRC*00 ZaZb
24 jzstooz 7 22 zRG/ D2 ZaZb/Zc
25 | XEQ "DYD" 3 zs Zab = Za+Zb+ZaZb/7c
26 I5TO 02 26 IRCL 01 Zh
27  ZRDN " 27 zRCjOD Zb/Za
28 Z5TO 01 T ZRC* 02 ZhZc/Za
29 ZRDN " 29 LASTZ Zr
30 zsTO 00 " 30 zs Zr+ZbZc/7a
Kh ZRDN Y IRC+ 01 Zh+Zc+Zhic/Za
32  ZRDN " 32 zRCLOD Za
33 ZVIEW 00 " 33 zZR/OL Za/7b
34 IVIEW 01 T IRC* 02 ZaZc/Zh
35 IVIEW 02 ' 35 LASTZ Zc
6 RN " 3 1+ Ze+Z0Ze/Zh

" 37 ZRC:00 Za+Ze+Z0Ze/Zh
" 38 END

Note that to reduce the number of FAT entries, the version in this ROM has replaced the global
label DYD with the local label C, to be used as a soft key assignment.

_________________________________________________________________________________________________________|
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Mandelbrot Set Area estimation

Saving the best for last, here is a brilliant example of RN’s utilization provided by Valentin Albillo’s
excellent articles on the estimation of the Mandelbrot set area on the HP-42 and Free42 (see here:

HP Article VA040a - Boldly Going - Mandelbrot Set Area (42S).pdf)

Quoting sections or copying parts of that articleis bound to do the reader and the article itselfa
huge disservice, so you're encouraged to read the original — included in this manual in its entirety.
Thanks to Valentin for graciously granting permission to do so.

Porting it to the HP-41 platform was relatively straight-forward, once the function set was enhanced
to deal with the required utilities. Obviously the HP-41 has its own limitations compared to the HP-
42S and more so to Free42, however it does a good-enough job aided by the 41Z_Complex
Number Module, needed for the complex math functions required by the program.

Here's the program listing on the HP-41 w/ the 41Z Module.

01 *LBL "MBA" 29 X#0? 57 RDN 85 DSE 00
02 2.5 30 SF 00 58 X<Y? 86 GTO 00
03 STO 06 31 *LBL 0O 59 GTO 02 87 *LBL 03
04 2 32 RCLO5 60 SIGN 88 RCL 00
05 STO 07 33 STO 01 61 ZRUP 89 RCLO3
06 1.2 34 FS? 00 62 RCLZ 90 MOD
07 STO 08 35 XEQ 03 63 - 92 X#0?
08 0.25 36 RNDM 64 ZMOD 93 RTN
09 STO 09 37 RCLO6 65 RCL O3 94 CLA
10 1 38 * 66 X>Y? 95 RCL 04
11 SEEDT 39 RCLO7 67 GTO 02 96 RCL 00
12 "POINTS=?" 40 - 68 ZRUP 97 -
13 PROMPT 41 RNDM 69 ZRPL" 98 X=0?
14 STO 04 42 RCLOS 70 *LBL 01 99 RTN
15 STO 00 43 * 71 202 100 AINT
16 256 44 X<>Y 72 7+ 101 "->"
17 "#ITERS=?" 45 ZRPLA 73 ZMOD 102 RCL 02
18 PROMPT 46 ZSIGN 74 RCLO7 103 AINT
19 STO 05 47 ZENTERA 75 X<=Y? 104 PROMPT
20 CLX 48 RCLO7 76 GTO 04 105 RCLY
21 STO 02 49 - 77 ZRDN 106 /
22 "EVERY=?" 50 Z- 78 LASTZ 107 6
23 PROMPT 51 ZMOD 79 DSE 01 108 *
24 STO 03 52 RCLO09 80 GTO 01 109 "AREA="
25 CF21 53 * | 81 *LBLO4 110 ARCL X
26 "WORKING..." 54 Z<>W 32 15G 02 111 AVIEW
27 AVIEW 55 ZMOD ‘ 23 *LBL 02 112 END
28 CFO00 56 X<>Y

84 VIEW 00
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Boldly Going - Mandelbrot Set Area

© 2020 Valentin Albillo

Welcome to a new article m my “Boldly Going” zenes, this ttme stamng the Mandelbrot zet and the difficult task of
computing an accurate eshmation of its area. The task 15 fzught with difficulties and 1t's been attacked with really powerful
hardware (think 4 GPUz). complex software and extremely long computation imes (think 35 days) but all that work has
produced only about 8§-9 comect dizits. Here I'll attempt the feat using just my trusty HP calculators, many orders of
maznitude slower and less capable but nevertheless I'll manage to get about 5-6 comrect digits mn nmch shorter tumes.

Introduction

The Mandelbrot set (M for short) is the most well-known fractal of all, an amazing mathematical object which
mystified everyone since its discovery by B. Mandelbrot ca. 1975 and subsequent popularization in the August
1985 1ssue of Scientific American. There 1s an mcredible amount of readily available literature dealing with all
aspects of M from the very basic to the most advanced so I'll refer the reader to it and won't discuss them here.

M has a fractal boundary which encloses a finite area whose
precise value is stll an open question. and an estimation of it is
what this article is all about. To wit, there are several ways to try
and estimate the area, including’:

o the Monte Carlo approach, where a large number of
random points are generated within some enclosing box, and a
tally is kept of how many belong to M, which is then used to
compute the estimation.

e the pixel-counting approach. where finer and finer gnds are
averaged to tally the number of gnd points belonging to M.

e the rheorenical approach. where a large number of terms of

u an exact formula converging (extremely slowly) to the area of M
. are evaluated and added up to get an estimate.

The Monte Carlo approach has some advantages (such as not being prone to potential aliasing problems as may

happen with equally-spaced gnds) and disadvantages. the main one being that as 1s typical of standard Monre

Carlo approaches, to get one more cormect digit (1.e.. increasing the resolution 10x) the number of generated

pixels would need to be increased 100x, which would result in approximately 100x the running time. It also
requires a very good. non-biased random number generator with a large cycle (at least several billions long).

The pivel-counting approach has been widely used For example, back m 2012 R. Munafo launched an 8-day
run to calculate almost 17 trillion pixels (at 2.4 million px/sec) to get an estimated area of 1.506591856 with
an estimated error of 0.0000000256.

Later. T. Férstemann used some powerful hardware (Intel Core i7 2600K CPU. 2x GPU Radeon HD 3970 for a
total of 4 GPUs with 1600 stream processors each, 350W under load) and software (Mathemarica 8.0.4.0 under
Windows 7, ATI dnver Catalyst 11.2 with AMD Stream SDK 2.3 and installation of a C-compiler [Jisual Studio
2011] for Mathematica) running for 35 days straight with a gnd size of 2,097,152 for a total of
87,960,930,222,520 calculated pixels (at more than 29 million px/sec and depths starting at § 389,934,592
iterations) to get an eshmated area/error of 1.50659188492 and 0.0000000028, ten times better than Munafo’s.

! Other methods include the g-atom method, used by J. Hill to zet a lower bound which 15 close to the pixel counting
methods. He included the arez of all components up to peniod 16 (main cardioid 15 P1, main disk 15 P2), and all of period 16
but one. and zot an area of 1.506303622, whach differs from Forstemann’s by ~ 0.0002833 (0.019%).

1
_________________________________________________________________________________________________________|

© ANGEL M. MARTIN —APRIL 2024 PAGE 25 OF 77



HP41 CONTOUR ROM

Finally, the theorefical approach uses Laurent Series. in particular a specific one introduced by Ewing and
Schober. which allows computing the area of M by evaluating an infinite series of the form:

w

Mw” =7 (l—gn.bnz)
g

where b, are the coefficients of the Laurent series. the first ones being by =-1/2, by = 1/8, by =-1/4, by = 15/12§,
bs=0, by =-47/1024, etc. For a fimte number of terms this formula always gives an upper bound of the area but
despite its mathematical elegance it is absolutely unsuitable to compute the area as it converges incredibly slowly.
with an estimated 6.4.10" terms needed to get just one correct digit and more than 10" terms to get fwo !

Matter of fact. Ewing ef al used 500,000 terms (b0 ~ 5.5221313-107") in 1990 to get an estimated area of
1.72 and later in 2014 Bitmer of al used 5,000,000 terms (whose b, coefficients took 3 months to compute,
B sovonnn ~ 8.0532-107"") and got an estimation of 1.68288.

To complicate the matter even further. this theoretical approach seems to converge to a value between 1.60 and
1.70 while the empincal approaches (Monte Carlo and pixel counting) give estimates around 1.50659. This
might be due to the fact that the boundary of M has Hausdorff dimension 2 and thus might have positive (1.e.,
non-zero) area, which would account for the discrepancy as none of the empirical approaches can ever generate
and calculate pomts or pixels exactly belonging to M’s boundary, so their potential contribution to the area
would never be included in the computation. As of 2020, this is still in the realm of speculation but nevertheless
it seems quite plausible’.

Boldly going ...

As stated in the Infroducrion above, the purpose of this article is to use nothing but my trusty HP calculators
(whether 1n physical or virtual form) to try and compute an estimation as accurate as possible (say 5-6 correct
digits) for M’s area In reasonable times: less than half an hour for a virtual calc. a day or two at most for a
physical one), which is no mean feat.

In view of the above described hardware. software and computation time requirements, it's clear that
accomplishing my goal will require a good algorithm and pretty optimized code. As this is an informal Article,
not a formal research paper. I'll adopt a Machiavellian approach ( “The Ends Justify the Means”) and I'll nux
sound mathematical optimizations with more informal heuristics as required.

To begin with. I'll use a Monte Carlo approach, generating a suitably large number N of random points within a
rectangular box which completely encloses M. and counting how many actually belong to M. The sought-for
area will then be proportional to the count. To make the task manageable I'll use the following optimizations:

e Each point (x,)) will be generated as a random complex number z within a rectangular box enclosing M.
Actually. the leftmost extreme of M is at x = -2. the righmost extreme is at x = 0.471185334933396+. the
topmost extreme 1s at y = 1.122757063632597+ and the downmost extreme is at y = -1.122757063632597~.

e As M is symmetric. I only need to compute the area of the top half and the total area of M will then be twice
this value. This means that I can use a smaller rectangular box with x ranging from -2 to 0.5 and with y
ranging from @ to 1.2 and I'll generate all random complex points = within that box.

» Each randomly generated complex z has to be tested for inclusion in M. which 1s done via the usual escape
time algorithm: start with zp = (0,0) and ¢ = z, then iteratively compute zp—; = z,; + ¢ until either the
absolute value of z, = 2, in which case z escapes te infinity and so definitely does not belong to M. or else a
max. number of iterations is reached and z is considered to belong to M and the count is increased by 1.

' D. Allingham (see References) wrote: “B. Mandelbrot himself conjetures that the boundary of the set may have Hausdorff
dimension 2, which would imply that it actually contributes to the area.”

_________________________________________________________________________________________________________|
© ANGEL M. MARTIN —APRIL 2024 PAGE 26 OF 77



HP41 CONTOUR ROM

e As computing whether every z belongs to M is a very time-consuming iterative process (which will reach the
maximum number of iterations if z actually belongs to M) we can try and avoid it altogether for those z
which we can easily ascertain in advance as belonging to M without performing any iterations. That’s the
case for those z either in the main cardioid (below left) or in the largest circular bud (main disk, below right):

e

e The main cardioid’s area 1s 3x/8 = 1. 178097+ (about 75.20% of the total area). while the main disk has an
area of x/16 = 0.196350+, (another 13.03%) and their combmed total is 7x/16 = 1.374447—_ which already
accounts for 91.23%; of the total area of M so we need to compute just the remaining 8.77%. thus the
expensive iterative process will be executed in full less than 9%z of the time, a considerable savings.

e To wit. if we can quickly check whether a given z belongs or not to the main cardioid or the main disk we’ll
save lots of mnning time and as it happens. indeed we actually can. using just a few steps for the RPN
version or just 2 lines of code for the BASIC version.

® As for those points not belonging to either the main cardioid or the main disk. checking whether they belong
to some other minor disks or cardioids quickly becomes more expensive and complicated than performing
the K 1terations. which will proceed faster if K is relatively small. say 236 iterations max.

However. this will adversely affect the accuracy because there will be points which do not escape to infimty
in 256 iterations but would if performmg 512 iterations, say, and the same would happen with a bigger K.
there will always be points (i.e.: those sufficiently close to the boundary) which will require more iterations
than any limit we might specify in advance and so those points would be miscounted as belonging to M
while actually they don’t. Nevertheless. there will be fewer of them as K grows bigger. which will help
increase the accuracy but negatively impact the nmning time.

e I'll attempt to alleviate this dilemma by calculating a large number N of random points but using a relatively
low maximum number of iterations. say K = 256, which will speed the computation as desired. To increase
the accuracy, I'll apply afterwards a correction factor to the resulting area. which will be heunstically

computed like this: we’ll choose a suitably smaller number of random points N7 <= N and we’ll obtain the
count of the points belonging to M using first £ = 236, then K = 1024 1terations. The resulting correction
factor would then be:

feorr = countygrg / countyss

Simple as it is. this non-rigorous. heuristic approach works quite nicely and will allow us to use a relatively
low number of max. iterations without actually compromising the obtained accuracy too much.

e In short. my algorithm will rely on: {a) rigorous math (statistically-sound Monte Carle method, tight box,
symmetry, main cardioid and disk detection, etc.). (bJ nonngorous heunstics (the correction factor) and last
but not least (¢c) a little luck. When dealing with random numbers you always need a little luck. as the
sequence 7,7,7, ... has the same probability as any other more random-looking sequence. In practice this
means that the results might be worse than average or befter than average and the latter case 1s the lucky part.

-
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Program Listing for the HP42s*

0l | LBL "amM" | 26| cF 2z 51 | 2B3 76 | eTO oo Uses:
2.3 "Horking." H<Y? LEL 03
STO 0€ AVIEW GTO 04 RCL OC - 95 s1eps (199 bytes)
2 CF 00 SIGN RCL 03 -flags 00, 21
05 | 3T0 07 30 | x#02 35 | RCL+ 3T 2 | 80 | MoD - labeiz 00-04
1.2 3T 0o 223 ¥#0? - registers 00-09
STO 08 LEL 00 RCL 08 RIN - sets RECT mode
0.25 RCL 05 Y2 CLa - @y angular mode
STO 0% STO 0L GTC 04 RCL 04
10| 1 35| z22 00 60 | Rt 85 | rcL- oo
3EED XEQ 03 RCL 07 x=07? Registers:
"Poincs?" RAEN RCE 'ST2Y RTN
PROMPT RCLx 06 LBL 01 AIP 00:  N-loop index
STO 04 RCL- 07 12 |-"-»" 01-  K-loop index
15 | sT0 00 40 | maxw 65 | Rez+sT 2 | 90 | RCL 02
> _ 02: M (count)
2z¢ RCL: 0E 283 AIP
"Iters2" COMPLEX X2¥? RCL= ST ¥ 03: evem P
PROMET ENTER GTO 02 5 64- N (Epoints)
3TO 0% ENTER ¥<» ST L x 05: X (2iterations)
20 | crx 45 | s1ew 70 | DSE 01 95 |'"'-1Area~' % 25 '
sTO 02 RCL- 07 GTC 01 ARCL ST X pr—
"Every2" RCLx ST L LBL 04 AVIEW
PROMET 253 186 02 98 | mm o8- 12
3TO 03 RCLx 03 LBL 02 09: 025
25 | RECT J0 | ¥y 75| D3E 00

Program details

Steps 01-31- main entry point:  initialization® and prompting input from the user. { 31 seps }

Steps 32-36: start of the main loop. { 5 steps }

Steps 37-44: generation of a random point within the box. plus 2 copies on the stack. { § steps }

Steps 43-33: checking whether the point belongs to the main cardioid (thus. to M). {9 steps }

Steps 54-39: checking whether the point belongs to the main disk (thus, to M). { 6 steps }

Steps 60-71: checking whether the point belongs elsewhere in M (iterations). { 12 stegps }

Steps 72-73: if the pomt does indeed belong to M, increment the count. { 2 steps }

Steps 74-76: decrement the number of points yet to generate/check and loop until no more left. { 3 steps }
Steps 77-98: output routine, displays either the intermediate results and/or the final result. {22 steps }

! To enter text lines use the ALPHA menu; | is the Append character and LF 1s the Line Feed character, which can be
found at the end of the second row of the PUNC submenu of the ALPHA menu.

* The initalization part stores four small constants in storage registers Ry.-R;y because of speed considerations. Smmply
having the constants as program lines and performuing the relevant anthmetic operations takes two program steps each and 15
much slower than using recall anthmetic, which just takes a single step and 15 faster as well As these operations are part of
the man loop, every speed zain 15 essential when bemng repeated many thousands of mes.

Also, to save a register and a program step the constant 2 15 stored just in Ry, then used at 3 different locations i the program,
but the very first use at step 30 depends on the enclosing box x-range being from -2 to 0.5. If using a different box x-range
this constant mught change and would need to be stored in 1ts own regster, say R . the other mstances remaiming unaltered.
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Usage Instructions
The program accepts the number X of points to generate, the maximum number of iterations K. and whether you
want to display intermediate results every F points or just the final estimation for the area.

The program doesn’t automatically compute/apply any correction factor, that’s left at the discretion of the user to
decide whether and how to compute it since there’s no optimal approach valid for all N and K, there’s plenty of
leeway. Of course, the program will greatly assist in computing it, as we’ll see in the main nun below.

To compute an estimation of the area of M proceed as follows:

"AM" — Poinis” { asks for the number of poinis fo generaie, N |
N —+ Tters? { asks for the max.num. of iterations’, K. Default=236, just press }
K — Evary? { asks if you want to display intermediate results every P points”:

if vou don t and just want the final result, simply press }
P —+ Point p —=Countp | the intermediate tally of points generated and resulting counts }
Area ~Area p { the intermediate estimations of the area }

—+ Point 3y =County  { the final tally of points generated and resulting count }
Area ~Area { the final estimation of the area }

Further Considerations
To choose the number of points N and max. tterations E, we’ll take into account the following considerations:

# Both the comectness of the estimated area and the nmming time depend on N and E, the larger the better
as far as the estimated area is concerned but the longer the munning fime will be. Alse, whether you're
using a physical HP425/DM42 or a virtual HP425 and its underlying OF (i05, Android, Windows, Mac,
Limux, other) and hardware, all of it will greatly influence the choice of caleulation parameters.

Generally speaking, a physical original HP425 will be the slowest by far, and this will limit the nnming
times allowable without depleting the batteries, probably 1-2 days at most. The DM42 15 ~100x faster
and can use an USE power source, so it can mun the program for much longer. Some experimentation
will be required, starting at a low value of N, K (say N = 1,000 and K = 256) and noting the nmming
time. Then it’s possible to select how big N and K should be, as the time will be proportional to both.

* On the other hand, a virtual HP425 will be orders of magnitude faster. For instance, using Freed
ECD on an Android mid-range Samsung tablet (as done below) will generate and check about 1,000
peints per second at 256 max. iterations per point. This means I can use N = 300,000 points and £ =
256 max. iterations, say, and get the result in less than 10 nun. Using a faster version of Freed and'or a
faster emmlator/ 25/ hardware combmation can easily get results even 10x or 100x faster.

* Increasing the number of iterations K will always reduce the estimated area because performing more
iterations weeds out points that never escaped to infinity when using K iterations, and thus were
mcluded in the count, but actually did escape when using more iterations and so weren't included now.

® However, increasing the number of points N while leaving K fixed results in estimated areas which
overshootundershoot the area, slowly converging to the correct value of the area for that number of
iterations, Mg, not to the comrect area of M, which would be the value for infinite iterations.

#  This can be remedied by using a correction facior, which uses Ej ; to extrapolate K- as we’ll see below.

! The pumber of iterations doese’t need to be a power of 2 (236, 512, ). it can be any pesitive integer (say 1,000, 637, ..}

® If you enter a positive integer value P, the intermadizte results will be displayed every P points as well as the final result
once all N pomts have been generated. P doesn't need to divide evenly into N, the final result will be displayed regardless. If
P iz (lno mtermediate results will be shown, which will mean faster execufion but you won't be able to monitor progress.

* Freed? is a fantastic fres simulation of the HP425 created by Thomas Oltken for many operating systems (Windows. Mac
05, Android, i05, Limux, ete.) which also muns at the heart of SwissMicros physical D42 calenlator. It nuns many hundrad
times faster than a phy=ical HP425 and features vastly increased available R4AM, 34-digit BCD precizion and mouch more.
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Sample runs
Let’s see several examples. We'll asume display mode for all results that follow.

Example 1
For starters. let’s estimate M’s area using N = 10,000 points and K = 256 iterations. showing just the final result.

"AM"  — Points?
10000 —  Iters? { we'll use 256 iters. which is the default so just press [R/ }
— Every? { we just want the final result so just press [R/ }
— 10000 —=2572 { the final tally: 10,000 points generated, 2,572 landed in M }

Area ~1.54320 { the estimated area of M, just two correct digits, err=2.43%, 11" }

Example 2
Let’s improve the estimation using N = 10,000 points and X = 512 iterations. showing results every 2,000 pomts.

TAM” — Points?
10000 — [lters?
512 — Every?
2000 [R/S| — 2000511  Area~153300 { the first intermediate result }

— 4000 —=1041 Area~156150 { the 2* intermediate result }
— 6000 —=1561 Area~1.56100 { the 3™ intermediate result }
— 8000 =2053 Area~153975 { the 4™ intermediate resulr }
— 10000 —=2560 Area~1.53600 { final resulz, still 2 corvect digits but erv=1.95%, 19"}

The Ultimate Run

Now for the real McCoy. Taking the above considerations into account and as I'll be using a virtual HP425
(Free42 BCD for Android) mmning on a mid-range Samsung tablet. I'll use half a million points and a low 256
iterations for speed but I'll also compute and apply a correcrion factor to try and increase the precision. I'll
compute this correction factor first, using 5x fewer pomts than the maimn run but 4x more iterations. as follows:

Jeorr = Area00000,1024 / Areajooooe 256

where Area y ;- means computing the area using N points and X iterations. Let’s proceed to compute fop

“AM” —  Points? { we'll use 5x less points, just 100,000 )
100000 —  lters? { we'll use first 1,024 iterations }
1024 — Eveny? { we won t be monitoring progress }

— 100000 —25312 Area~151872  { the value of Areazooosgto2¢ [ 54577}
{ we store it for later use }

"AM” —  Points? { as above, sdll just 100,000 }
106000 —  Iters? { now we 'll use 256 iterations, so just press [R/ }
—  Every? { we won t be monitoring progress either }

— 100000 —=25501 Area~1.53006  { the value of Areajpopop25s [1°58"7}

{ R10 now contains the ¢. factor -- 0.99258853 )
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Now it’s time for the the main computation, to which we’ll afterwards apply the just calculated (and stored)
correction factor. This will take less than 10 min_ in all and we’ll monitor progress ...

TAMT — Points? we 'll use the full 500,000 poinis }

{ poinis.

300000 — Iters? { we'll use 256 iterations, so just press @}
— Every? { we'll monitor progress every 100,000 poinis }

100000 — 100000 —=25501  Area~1.53006  { the first intermediate result [1°58"] }

— 500000 —=126486 Area-1.51783  { the main result, which in itself has err ~ 0.75%
before applying the correction factor [ 9'47"] }

Fmally. let’s apply to the just computed area in the display the correcrion factor previously computed and stored:
—  1.50658 { more precisely, 1.50658 263 vs. Forstemann’s 1.50659_188 }

which is my final computed estimation for the area of M and 1t's comrect to 6 digits within less than one ulp (unit
m the last place). It differs from Forstemann’s 8§-million-pixels-calculated-at-8.6-billion-iterations-per-pixel
result by just ~ 0.00000925. an emror of ~ 0.000614%.

He got an estimated area accurate to 9 comect digits (within possibly a couple ulps or three) 1n 35 days at great
expense (both the costly hardware and the 35-day electricity bill). while I got 6 correct digits in less than 20 min.
(actually 17°30" = 947" for the main computation plus 5'45" + 1°58" for the correcrion factor computation) at
negligible expense. so point made. Not bad, 1snt 1t ?

Where to go now

As this is an informal article and the point has already been made, we could really call it a day and move on. But
if we were willing to, there’s a number of further techniques to consider in order to improve the accuracy and/or
reduce the computation times. For instance. among other possibilities:

e We can avoid wasting time generating and checking random points in blank areas (~75% of the enclosing
box used here) where no part of M is. by subdividing M inte a number of rectangular boxes (9 in the sample
partition below) and then computing the total count as the sum of the counts in each individual box.

It is important to distribute the total
mumber of points N among the boxes
proportionally to the area of each box so
that the density of points 1s the same.
Otherwise we would be adding areas
computed with different precisions and
this is wasteful as the resulting sum will
be no more accurate than the least
accurate area.

To implement this, the program must be
converted into a subprogram with no
prompting and no output. which accepts the dimension of each box and the number of points Nj to use and
returns the count to a mam program which first inputs the number of points N and max. iterations X from the
user and then calls the subprogram with the coordinates and the N; for each box. then adds up the retumed
counts and computes and outputs the total area. There’s no overhead and large blank areas are thus avoided

Also. the process is faster for each box because some time-consuming checks are avoided altogether:

) Box 1 only needs to check i1f points belong to the main cardioid, but forfeits the check for the disk.
Box ? only needs to check if points belong to the main disk. but forfeits the check for the cardioid.
all remaining boxes forfeit both checks, which significantly speeds the process.

I
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e The correction factor could be mproved like this: we’ll choose a suitable number of random points N and
we’ll obtain the count of the points belonging to M for an increasing max number of iterations. say for K =
256, 512, 1024, 2048, etc.. We'll then analyze the counts obtained and roughly extrapolate what the expected
count would be for K = cc. The resulting correction factor would then be:

feorr = county, / countiss

which will presumably get us a more accurate estimation. For instance. for N = 100,000 points we get:

K 256 a1 1024 2,048 4,096 8192 ©

)

count g 25,501 25,352 23,312 23,277 25,261 25,254

Now we simply use some extrapolation or curve fitting technique to try and estimate countp_

® We can use pariodicity checking within the iterations to detect loops and abort the iterations early.

® We can add a check for the secondary disk (the one in box 3 in the partition above) or even other u-atoms.
¢ And so on and so forth _.. and what about the area of orher fractals (Mandelbar, Burning Ship, ...) ?

Notes

I.  Quoting D. Allingham (see Rgferences below): “This method [Monts Carlo] was employed using Mathematica,
and gfter 20 hours and nearly 43,000 points being generated, the approximate area of the Mandelbrot set was
found 1o be 1.4880 10 4 decimal places.” Actually the result barely has 2 comect dizits and shows the amazing
progress made in the last 25 years. as now I've used an inexpensive tablet to run my virtual AP calculator’s 98-step
RPN program to calculate ~ 10x more points ~ 60x faster and got a result ~ 10,000x more accurate.

2. T've also wntten a 9-hne (334-byte) BASIC version of this RPN program for the HP-71B. Although the random
number generator 15 the same as the one Fresd2 uses, producing the exact same sequence of random numbers when
usmg the same seed (venfied up to 100 million consecutive random numbers when starting from the seed 1, as used
m the RPN program featured here). intemally the HP-7IB uses 15 dizats (12 digits avalable to the user ) while
Freed? has 34-dazit accuracy. which over many generated pomts and iterations tends to produce shghtly different
rezults, o the zample and mam runs given here mmght not produce the exact same results shown here.
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Discrete Fourier Transform

This module includes several programs related to the DFT subject.

e The first one is just a driver for the functions ZDFT and ZIDFT included in the 41Z
module, used to input the data points throughout the execution. This driver program was
not included in the 41Y due to the lack of enough available space.

e The second one is a FOCAL equivalent to the MCODE implementation in the 417 , therefore
should be equivalent to the first one only considerably slower of course.

e The third one is a Fast Fourier Transform implementation written by Narmwon Kim, and
published in the US Users'Library

Program #1.- Driver for ZDFT and ZIDFT in the 41Z module.

|01 LBL “ZDFT+” | 21 RDN results word
02 CF 00 22 ZOUTP data output
03 GTO 00 23 RTN done.
[04 LBL“ZIDFT+" | |24 LBLC Undo
05 SF00 25 0
| 06 LBL 00 | 26 TF ’E)%gbgles FO
27 RCLOO .eee

07 “#PTS=?"
08 PROMPT gg Féc 0.ece
09 E3/E+ build pointer 30 * cee
:.(:)l. i;g;?—? d 31 ST+ X 2.(eee)

ata entry 32 ENTERA
|12 LBL 04 33 ENTERA
13 RCL 0O control word 34 E6
14 FC? 00 direct? 35 / 0.000]2.(eee)
15 ZDFT direct DFT 36 + 0.000|2.(eee)
16 FS? 00 inverse? 37 2.002
17 ZIDFT inverse DFT 38 + (e+2),002|(2e)
18 RCLM number of pts. 39 REGMOVE
19 E3/E+ build pointer 40 GTO 04
20 STO 00 inputl word 41 END

In addition to facilitating the data entry process, this program offers the option to undo the last
transformation to verify that the results obtained were correct, by doing the inverse calculation
again which should equal the same original data set. If you want to use such option simply press
R/S after all points have been outputted, or press XEQ C at any time afterwards. Note that function
TF in the OS/X module is used here to toggle the status of user flag F0O.
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Program #2.- A FOCAL counterpart.

The FOCAL program below is a rough equivalent of the MCODE function. Execution times for this
program are about four to five times longer than the MCODE counterpart.

| 01 LBL"ZDFT" | 28 ZSTOIND N(6) reset destination
02 CFO1 29 *LBL 02 inner loop
03 GTO 00 30 RCLO(7) k,00N
|04 LBL"ZIDFT" | 31 INT k
05 SFO1 gg E 1
> ; ]
| 83 S.LF%LO%O N | 34 RCLO1 2p.(j-1)/N
35 * 2p.(-1)(k-1)/N
08 E3/E+ % FCr0l
09 STOM(5)  j,00N 3 oS
| 10 *LBLO1 outer loop | 38 E
11 VIEW M(5) 39 PR
12 RCLOO N 40 ZRC* IND O(7)
13 STO N(6) 41  ZST+ IND N(6)
14 E3/3+ 42 1SG O(7) next k
15 STOO(7) k,00N 43 GTO 02 loop back
16 RCL5(M) j,00N 44 FC?01
17 INT ] _ 45  GTO 00
18 ST+ N(6)  dest: ZR(N+j) 46  ZRCL IND 01
19 E _ 47 RCL 0O
20 - 1 48 ST/ Z
21 PI 49
22 * _ 50 ZSTOIND 01
23 ST+ X(3) 2p.(-1) (51 *BL OO
o F}CL 00 g'p G-I/ 52 1SG M(5) next j
2%  STO 01 ) 53 GTOO01 loop back
54 END
27 CLZ

Note that contrary to the functions in the 41Z, this program will not check that enough data
registers are available. If not, the *"NONEXISTENT” message will be presented; adjust the size and
try again. Make sure complex data register ZR0O is not used to store the sample — which must start
at ZRO1. This is because (real) data registers R00 and R01 are used for scratch calculations by
these functions.

Program #3. — Fast and Furious.

Last in this section is an enhanced version using extended memory for the data storage of the
contribution to the User’s Library by Narmwon Kim (reference 008068C) with a Fast Fourier
Transform program, using the well-known Cooley & Tuckey FFT algorithm. Some of the original UPL
forms reproduced here, but the program listing is more elaborate for the additional features.
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008680 PROGRAM DESCRIPTION I ., .

Program Title Fast Fourier transform I

Contributor's Name Narmwon Kim

Address 784 Laurel Walk, #B

City Goleta . State/Country CA . Zip Code 73117

Program Description, Equations, Variables L1118 program can be used to evaluate the discrete
Fourier transform (DFT) or inverse DFT (IDFT) of an N-point sequence of complex
numbers, where N must be a power of two, NEEH, and M is an integer of =< 7.

This program is an implementation of the radix-? decimation-in-time algorithm.
The input is first rearranged into "bit-reversed" order apnd then log,N stages of
"butterflies" are performed by program lines 67 to 176.

The DFT of {x(n)} is defined as

X(k) =E§é x(n)exp(-i2mk/N) ; k = 0,1,...,N=1
The IDFT is defined as

- : x(n) = (1IN)§ié X(k)exp(j2mk/N) ; n = 0,1,...N-1

Necessary Accessories  L11€ 2dditional memory modules according to the total registers;
TOT.REG = 62 + 2N

Operating Limits and Warnings
N must be a power of 2 and = 128 for the storage limit. We can use this program
to grasp the FFT algorithm and investigate the properties of DFT for N £ 16 reason-

ably. Above l6-point it takes much time to compute the FFT in this machine.

Reference(s) J-W. Cooley & J.W. Tukey, An Algorithm for the Machine Calculation of

Complex Fourier Series, Math. Comp., wol. 19, pp., 297-301, April 1965,

L.R. Rabiner & B. Gold, Theory and Application of Digital Signal Processing, Pren-
tice-Hall, Inc., Englewood Cliffs, N.J., 1975,

This peogram has been venlied orly wilh respoct it the rumercs BN green @ Program Descrpbon f User acosols and uses Mg pragram matenal AT HIS OWN RISK. in relance solsly upon b gen
mapechan of Ihe pragram matenal and winout reiance RN BNY FEpRESENIANGN O dESSrphon cONCaTnng the DIogFam matenal

NEITHEA HF NOR THE CONTRIBUTOR MAKES ANY EXFRESS DR IMPLIED WARRANTY OF ANY HIND wWiTH REGARD TO THIS PROGAAM MATERIAL. INCLUDING. BUT NOT LIBITED T4, THE
MELIED WARRAN TIES OF MERCHANTABILITY AND FITNESS FOR A PAATICULAR PURAPOSE. NEITHER HE MOR THE CONTRIBUTOR SHALL BE LINBLE FOR INCIDENTAL OR CONSECUENTIAL
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PROGRAM DESCRIPTION I1

Page , ofg

Sample Problem (Sketch if Desired)
Example 1: Find the DFT of a sequence, x(n) = ( 1, 1+, 3, 1-i ).
Example 2: Find the IDFT of a sequence, X(k) = ( 6, 0, 2, -4 ).
SOLUTION:
Input Function Display Commaents
* Insert a mempry module, load program and clear flhg 00 if set,
EXES%SIZEGES B
Example 1: XEQ)FFT POINTS=? Prompting N.
[ (R/3) X0=Ret IM? Prompting input points.
1 (ENTER?) 1.0000 Input the real part of x(0),
0 (RfS) X1=RetIM? and the imaginary part.
1 {ENTER# ) 1.0000 Input all points as prompting.
1 (R/S) ¥2=RetIM?
3 (ENTER* ) 3.0000
0 (R/S) X3=RetIM?
-1 (ENTER+) 1.0000
-1 (R/8) X0=6,000,0.000 Display of output points in the
(R/8) X1=0.000,0.000 form of complex-rectangular formaf
(R/3) X2=2.000,0.000 as X(k)=Real part,Imaginary part.
(R/S) ¥3=-4.000,0.000
Example 2: (XEQ) IFF POOINTS="
4 (R/S) X0=Ret TH? '
6 (ENTER# } &.000
0 (R/S) X1=Ret IM?
0 (ENTER*) 0.000
0 (R/3) ¥2=Ret TM?
2 (ENTERt) 2.000
0 (R/3) X3=Ret IM?
-4 (ENTERt) -4 .000
0 (R/S) X0=1.000,0.000
(R/8) ¥X1=1.000,1.000 Qutputs of Example 2.
(R/3) X2=3,000,0.000
QRIS X3=1.000,-1,000
R/S {R/5) to clear flag00.

__________________________________________________________________________________________________
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USER INSTRUCTIONS Page 3 of 8

SIZE: (17 + 2W)

{HP-41C)
STEP INSTRUCTIONS INPUT FUNCTION DISPLAY
1 Load program and initialize by CFOO0,if set.
2 Set SIZE to a given points, N. (XEQ) SIZE nmon
3 | Execute the program, FFT ) ] | (XEQ) FFT POINTS=?
or IFF, if TDFT. or| (XEQ) IFF POINTS=7
& Input the points, W, power of 2 & = 128, N (R/5) X0=RetIM?
5 Input the sequence in complex forms as Re.X(0) | (ENTEE+)
prompting. '0' must be input for the Im.X(0Q) | (R/S) Xl=Ret IM?
imaginary part of a real point. Re.X(l) | (ENTER%)
Im.X(1) | (R/S) K2=RetIM?
6 | Repeat step #5 until all the points have
been keyed in B ) Im.X(N-1)]| (R/5) X0=Re.,Im.
7 | Press (R/S) to see successive solutions /3 X1=Re.,Im.

properly labeled. All the solutions are

displayed ia FIX 3 format for nice views
The values of real part and imaginary
part of a solution are retained in the

stacks, X and Y respectively.
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Page 7 of £

REGISTERS, STATUS, FLAGS, ASSIGNMENTS

DATA REGISTERS STATUS

00  Seratch L size 17+2N  TOT. REG. £2+2N USER MODE
Scratch . ENG . FIX 3 sCl ON _ OFF ¥

Scratch ) : DEG RAD x  GRAD
. Scratch

. —
05 M : . INIT FLAGS
Index for Re.X(n) # S/C SET INDICATES CLEAR INDICATES

- Index for Im.X(n) . Q0 C IFF{inverse DFT) FFT(DFT)
Index 29 ¢ No decimal point.
Index

10  rIndex

Index

Index

Used

Used. .

Used
| Used
(Beginning of
. data storages)

15

ASSIGNMENTS
FUNCTION KEY FUNCTION KEY

Using Extended functions makes this program easier to use and provides a more stable repository
for the different data sets, which are saved as data files in X-Mem.
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Example. Do the transformation for the following data set:
{1 1+j 3, 3+] }

The first time we'll not be using an existing data file for the data set, even if it already exists -
therefore we'll choose “N” to the pertinent question if it appears:

USE FLPOVIN

USER RAD PRGM
XEQ"FFT HGE FL7 YN
“N” HPROINTS=?
4, R/S A= Re/IM
1, ENTER, O, RS =7 Re7IM
1, ENTERA, 1, R/S =7 Re/IM
3, ENTERA, 0, R/S 3= Re/7IM
3, ENTER~1, R/S ZA-H+d?~
R/S L l==-2C (-
R/S [E2=-8-J
R/S Z3=--2C1+d)
R/S VLA v

At this point the data file FFT contains the four results for a more permanent repository, one that
can even be used to obtain the inverse and check the accuracy of the programs:

XEQ “IFF” HESE FLW YN
“y” 8- {(+dB8
R/S Z (= 1+
R/S 2= 3+48
r/s 3= I+
R/S LA

Note: When the use of the data file is selected the program expects the pointer to be set at the first
element. This is normally the case, as both FFT and IFF will leave it in that setting — but if you
manually alter the pointer then an END OF FL error message will probably come up. You can make
sure with the sequence ‘FFT” . 0, SEEKPTA before running the programs.

_________________________________________________________________________________________________________|
© ANGEL M. MARTIN —APRIL 2024 PAGE 39 OF 77



HP41 CONTOUR ROM

| 01 *LBL "IFF" | 49 STO 08 97 FC? 01
02 SE 00 50 LOG 98 GTO 00
03 GTO 03 51 2 99 GETX

| 04 *LBL "FFT" | 52 LOG 100  GETX
05 CFoO 53/ 101 *LBLOO

54  FIX8

o6 *LBLO3 | 5= RND 18; )S(ISY'NDW
07 RAD 56 STOO05 104  STO INDO6
08 CF29 57 FRC s 1
09 SIZE? 58  STO00 106 ST+ 00
10 N 59 FACT 107  DSE 08
11 SF25 60  *LBLOL | 108 GToO1
12 FLSIZE =R 0o 1
12 ECT;C 0235 62  RCLOO 110  STO 03
1c CFol 63  ARCLI 111  STO 02
16 "USE FL? YN 64 "=7RelIM’ (112 LIS
17 PMTK 65  RCLO5 113 2
18 E 66 STOO01 114  RCLO3
19 ) 67 RCL 00 115 YAX
20 XH#0? 68  STO03 116  STOO1
21 GTO 03 69 CLX 117 RCL 02
22 SF 01 70 STO 02 118 STO 08
53 RDN 71  *LBLO5 119  CLX
2 ENTERA 72 RCLO3 120 STO 09
75 ENTERA 73 ENTERA 121 Pl
26 ) 74  ENTERA 122 ST+X
27 / 75 2 123 FC? 00
28 STO 04 76 / 124 CHS
29 RDN 77 INT 125  RCLO1
30 GTO C 78 STO 03 126 /

(31 *1BLO3 ;3 ST+ X g; ECRL 02
;g pﬁ)ohl/ms_? 81  RCLO2 129 STO 10

82  ST+X 130 X<>Y
gg gf )?4 83  + 131  STO 11
36 . 84  STOO02 132 RCLO2
37 SF 25 85  DSE 01
38 DURFL 86  GTOO05 133 STO 12
39 CF25 87 17 (134 *1BLI6 |
40  CRFLD 88  RCLO2 135  RCL12
41 17 136 STO 00
2+ 89 ST+X [137  *BLO2 |
43 X>Y? 2(1) ;TO o 138 RCLO2
44 PSIZE o A 139 15
45  *LBLC 93 s 140  RCLOO
46 CLX 91 ST007 141 ST+X
47 SEEKPTA 95 £C? 01 142+
48  RCLO4 143 STO 13

96 PROMPT
_________________________________________________________________________________________________________|
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144 + 187 RCL 04 230 STO 01
145 STO 14 188 RCL 00 231 0
146 LASTX 189 X<=Y? 232 SEEKPT
147 RCLO1 190 GTO 02 | 233 *|BL 11 |
148 + 191 RCL 10 234 RCL IND 09
149 STO 15 192 RCL 08 235 RCL IND 08
150 RCL 02 193 * 236 FC? 00
151 + 194 RCL 11 237 GTO 06
152 STO 16 195 RCL 09 238 RCL 04
153 RCLIND 15 196 * 239 /
154 RCL 08 197 - 240 X<>Y
155 * 198 RCL 08 241 LASTX
156 RCLIND 16 199 RCL 11 242 /
157 RCL 09 200 * 243 X<>Y
158 * 201 RCL 09 | 244 *LBL 06
159 - 202 RCL 10
160 STO 06 203 * ;32 ;IF)((NSD
m gwes m o
163 * 206 X<V 248 XY
249 SAVEX
oo m o
166 * 209 ST+ 12 251 FIX 3
252 ZAVIEW
-
254 RCL 00
169 RCLIND 14 212 / 255 ARCLI
170 RCL 07 213 RCL 12 nn
171 - 214 X<=Y? 26 7=
257 -3
172 STO IND 16 215 GTO 16 258 AROT
173 RCLIND 13 216 RCL 02 259 PROMPT
174 RCL 06 217 ST+ 03 260 RCL 02
175 - 218 RCL 05 261 ST+ 00
176 STO IND 15 219 RCL 03 262 )
177 RCLIND 13 220 X<=Y? 263 ST+ 08
178 RCL 06 221 GTO 15 264 ST+ 09
179 + 222 BEEP 265 DSE 01
180 STO IND 13 223 CLX 266 GTO 11
181 RCLIND 14 224 STO 00 267 CLX
182 RCL 07 225 17 268 SEEKPT
183 + 226 STO 08 269 END
184 STO IND 14 227 18
185 RCLO1 228 STO 09
186 ST+ 00 229 RCL 04

_________________________________________________________________________________________________________|
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Direct Bessel fns. via Continued Fractions

The SandMath contains a very competent set of Bessel functions, both for the direct (J, Y) and the
modified kinds (I, K). The implementation is a hybrid of MCODE and Focal routines, really optimized
for the applicable valid range of the functions.

And therein lays the only caveat: that implementation does a direct sum of the alternating terms of
the series, which isn't valid for asymptotic cases, where either the order or the argument (or their

sum!) are very large. To palliate this, the SandMath also includes an iterative approach for JNX, using
recurrence formulas — but alas, the execution time can be really long.

Is there another way to skin this cat? Well as it turns out yes, at least for the non-modified cases
there’s a very intriguing approach based on continued fractions, which after all are another way to
iterate for the solution — only that we can take advantage of the MCODE implementation in both the
SandMath and the 41Z Modules, because there are two different continued fractions involved, one of
them in the complex variable — even for the real Bessel J case!

Here too the routine is a direct modification of Jean-Marc Baillard's FOCAL program available on his
web site (cf #5 in http://hp41programs.yolasite.com/bessel.php), adapted to use the MCODE
functions CF2V and ZCF2V instead of the FOCAL subroutines — faster and shorter code. A real beauty
to see the SandMath and 41Z joining forces to crack this one!

The formulas used are as follows:

With  p+i.q=-1/(2¥) + i+ (i/X)[ (0.52 - 02 )/(2x + 2i + ( 1.52- n2 )/( 2% + 4i + ... ) ) ]
and  g,= -1/(((2n+ 2)/x) - 1/(((2n + 4)/X) - .....))

Then, calling D = the denominator of the second continued fraction:

In(x) = sign(D) [ (29/(x.Pi))/(q*+ (p-Gn-n/x)*) ]
Yn(x) = [(P-gn-n/x)/q]In(x)

One must pay careful attention to the data registers requirements by these functions for the
successions used to define the continued fractions, which are programmed under the global labels ™ #”
for the real one and *=" for the complex one.

Example: Calculate the BesselJ and Y of order 100 for the argument x=100

According to Wolfram Alpha the results are:

J]ool 100)

Q 8 e A 6

0.096366673295861559674314024870401848311755419825021855917...

and:

_________________________________________________________________________________________________|
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Y100(100)

-0.16692141141757650654000649527875245114794564358645737649...

Which sure enough is what we obtain (with ten digit precision) using our routine:

100, ENTER”, XEQ “JYNX" => AdHYbhdbBL T4H
X<>Y - itbhYS 4 R

Program Listing:

| 01  LBL"JYNX" 32  RCLO9 63  GTOO00
02 STO 01 33 + 64 RCL 12
03 X<>Y 34 RCL 13 65 ST+ X
04  STO13 35 RCLO1 66  RCLO2
05 "=t 36/ 67  ST+X
06 CLST 37 - 68 ZENTERAM
07 ZENTERA 38 STO 11 69 RCL12
08 . 39 RCL10 70 05
09  RCLO1 40 R-P 1 -
10 SE02 41 LASTX 72 XA2
11 ZCF2V 42 ST+ X 73 RCL13
12 RCL 02 43 Pl 74 XA2
13 STO 01 44 RCLO1 75 -
14 sT/z 45 76 0
15 / 46 / 77 X<>Y
16 E 47 SQRT 78 RTN
17  + 48 XY 79  LBLOO
18 STO10 49 / 80 X<
19  X<>Y 50  RCLO5 81 STOO5
20 CHS 51 SIGN 82 X<V
21  RCLO1 52 % 83  RCLO2
22 ST+X 53 STO12 84  RCL13
23 1/X 54 RCL11 85 +
24 - 5 % 86  ST+X
25  STOO09 56 RCL10 87  RCLO1
26 =" 57/ 88 /
28  RCLO1 59  Cb 90 END
29 CF02 60 RTN
30 CFR2v [61  BL"="
31  CHS 62 FC?02

Note: ensure that the module is plugged in a page before the SandMath. This is required because
there is another global label “="in the SandMath and we don't want the routine to use the incorrect
one for the calculation! (besides, this would result in NONEXISTENT, so you'll know right away).
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Nested Radicals of m-th order.

FNRM and INRM are MCODE functions to calculate finite and infinite Nested Radicals or root-order
m. The definition of the radical is given in a user-provided function under a global label, to generate
the n terms that contribute to the radical R(n).

e For the finite case the calculation ends when all the terms are provided and used in the
radical.

e For the infinite case, a series of finite radicals of increasing sizes are computed until two of
them are equal. This means R(n) = R(n+1), for a given n large enough.

An initial size n0 needs to be provided by the user, which ideally is a balance between the radical

size and the number of subsequent radicals to calculate: the larger the radical the longer calculation
time, but the less number of radicals likely to calculate.

STACK  INPUTS OUTPUTS

Y k
X no NR
ALPHA  F.NAME /

FNRM and INRM use data registers {R00 — R05} as well as user flags UF 001 and UF 01. Refrain
from using these resources in the definition of your radicand functions. Note that both the root order
m and the term n are available for your user function to use — even if normally only n is used. This
allows for more elaborate expressions in the definitions.

For example, let’s calculate the value of an infinite nested radical with f(n) = n, as per the expression
below:

\/n+\/n+\/n+m=%(l+\/mﬁ)

For the case n=1 this happens to be the golden ratio ® = 2 (1+sqr(5)

A trivial user program like this: {LBL “PH", 1, RTN}, say we set FIX 9 and then we type:
2, ENTER™ 4, XEQ “INRM”_PH” => 1.618033989

Using cubic roots instead we'll obtain the “Plastic” Constant:

3, ENTER”, 4, XEQ “INRM"_"PH => 1.324717957

Example2.Calculate the cubic and quartic root nested radicals for the function F(n) = n~4
Using n0=4 and the trivial user function {LBL “NR4”, X2, X2, END} we get:

4, ENTER”, 4, XEQ “INRM”_"NR4” =>1.325706774 quartic case
3, ENTER#, 4, XEQ “INRM”_"NR4" =>1.551416993 cubic case
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Example 3. Calculate the square nested radical for the function F(n) = n {LBL “NR1”, RTN"}
2, ENTER”, 4, XEQ“INRM”_"NR1" =>1.757932757

Programmer’s notes.

These functions use a special technique to call user-programs within the MCODE. This technique was
developed by Greg McClure for the Derivatives and Continued fractions (DERV and CF2V) applications
available in both the SandMath and the 41Z, and has been ported here as well. The method requires
ancillary housekeeping functions to manage the transitions between User- and M-Code. These
auxiliary functions are stealth under the FAT section headers, as they don't require any user
interaction or utilization beyond its automated purpose.

Execution flow:
1. Search for User function using [ASRCH]
2. Save its RAM address (in data register)
3. Prepare variables and check data regs available
4, transfer to FOCAL stub code (call to [XMR20]

a. add address to FOCAL RTN stack with [SAVRTN]
b. execute user function via [XGI0O7] (but can’tuse XEQ IND nn !!)
C. return to MCODE, popping the FOCALRTN with [XRTN]

Loop back to task #3 as needed

v

Where tasks 4.a, 4.b and 4.v are performed by XQRTN, a dedicated (stealth) function used in the
FOCAL stub. It is called twice, controlled by UF 00 to determine which one of the tasks to perform:

-FOCAL stub code -
01 SFO00
02 XQRTN - first time does 4.a and 4.b
03 CF 00
04 XQRTN - second time does 4.c
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Newton and Halley Methods Revisited

The idea of using the MCODE functions in the SandMath and the 417 is also at the heart of these
final applications. This time we'll use the first & second derivatives function DERV as an auxiliary tool
to calculate the derivatives of the function whose roots we're trying to obtain, directly and without
any additional conditioning regardless of the function in case.

The formulas involved are well known:

_ f@) oy =g 2 f (@)
f'(zn) 2[f’(;1;")]2 — f(z) F" (z2)

Tpel = Tn

I

As usual, you need to provide the boundaries [a, b] in the Y,X registers and the function name in
ALPHA. The user is required to program the function in a FOCAL routine under a global label, which
cannot use data registers R00O to R08 as explained below.

Remember that DERV uses R00 to R04 (see the documentation in the SandMath manual for details),
and in addition to these the routines use R05 for the function global label hame, and R06 — R08 to
save the initial guesses and as scratch. As it’s already customary, the successive approximations to
the root will be displayed if user flag 10 is set.

]l *LBL "XNWT" | 17 RCLO08 33 X2
2 CFO1 18 RCL 06 34 ST+ X
3 GTOO1 19 DERV 35 RCLO07
?
4 [ *LBL"XHALL" | 2 §$)8; o e
> ol 22 FS?01 38 -
2 ASTO 05 23 XEQO02 39 1/X
o ooy 24 RCL 06 40 RCLO7
5 51008 25  RCLO06 41 *
26 RCLO7 42 RCLOO
10 zk(< >Y 27 - 43 %
E ﬁ 28 X#Y? 44 ST+X
15 VIEW X 29 GTO 00 45  STO 07
30 CLD 46 END
14 STO 06 RN
15  XEQIND 05 S SBL o
16 STO 07 —LoL 02

This really can't get any shorter; my kinda routine that clearly showcases that with a powerful engine
behind doing the heavy lifting (DERYV in this case) the rest is a downhill trip.

Example: obtain a root for the equation below, which we program easily as shown. Then we use
some obviously non-optimal guesses to stress the algorithm:

{ LBL “X1”, CBRT, LASTX, 4, +, *, END }, and then

y=yz(z+4)
ALPHA,”X1", ALPHA, 1, 2, XEQ "XNWT"” => -~YUAZZZAA00

Or:" 1, 2, XEQ“XHALL" => -Manoaaaaad
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Newton’s Method with Complex Step Differentiation.

And the proverbial last but not leastis reserved for the “complex step derivative” method to calculate
real function derivatives, just as a quasi-magical application of complex variables. Complex step
differentiation is a technique that employs complex arithmetic to obtain the numerical value of the
first derivative of a real valued analytic function of a real variable, avoiding the loss of precision
inherent in traditional finite differences. This is then used n Newton’s method in the usual way.

We're concerned with an analytic function. Mathematically, that means the function is infinitely
differentiable and can be smoothly extended into the complex plane. Computationally, it probably
means that it is defined by a single "one line" formula, not a more extensive piece of code with if
statements and for loops.

Let F(Z) be such a function, let X0 be a point on the real axis, and let N be a real parameter.
Expand F(Z) in a Taylor series off the real axis.

F(xo+ih) = F(x0) + i.hF>(x0) — h2F>*(x0)/2! — ih3F@/31 +...

Take the imaginary part of both sides and divide by h

F>(x0) = Im(F(xo+ih))/h + O(h?)

Armed with the 41Z arsenal of functions it’s very likely that your real function can be programmed as
an equation in the complex variable too. Then all it takes is to calculate the value of said complex

function in a complex point close to the real argument X0, offset by a very small amount in the

imaginary axis 1N. The program expects the function name in ALPHA and the values of h and x0 in
the Y, X stack registers, and it returns the real derivative value in X. It uses data registers R00 to R02.

1[  LBL"ZNWT" | 10/

2 ASTO 02 11 RCLO1

3 ZSTO 00 12 *

4 LBL 00 13 ST-00

5 FS? 10 14 RND

6  VIEWO00 15 X#0?

7 ZRCL 00 16 GTO 00
8  XEQIND 02 17 RCL0O

What's remarkable is that with just one execution of the complex function we calculate both the real
function’s value (the real part) and its derivative (the imaginary part with correction) at the same
time. Note also the clever use of complex data register C00 to store z0 = x0 +ih, and then how it
keeps calculating the complex function value until two successive iterations are equal for the current
FIX selectedin the calculator.

You can tell something’s remarkable when the root-finding routine is almost shorter than the equation
used to program the function!
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Time now for some examples. The first one just a simple polynomial to try our hand with the new
method, taken from the MoHPC forum: https://www.hpmuseum.org/forum/thread-6667.html

Calculate the three roots of the third degree polynomial: X3-X2—x+0,5 = 0

We program the equation as shown below:

And type:

01 LBL“Z3"
02 Z73

03 LASTZ
04 Z12

05 z+

ALPHA, “Z1”, ALPHA

,01, ENTER”, 0, XEQ “ZNWT”
.01, ENTER”, 2, XEQ “ZNWT”
.01, ENTER”, -2, XEQ "ZNWT"

[ |
vV VvV

\%

06 z-
07 .5
08 +
09 END

And then a more elaborate example adapted from the seminal reference:

https:

blogs.mathworks.com/cleve/2013/10/14/complex-step-differentiation

The blog uses the function F(x) given below, which does not have any real roots:

F(z) =

ez

(cosz)® + (sinz)?

For our purposes let’s calculate the roots of, say g(x) = F(x) — =«

e}{p(}{)f((cns(x))3+(sin(x))3)

| 01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16

LBL"“Z2"
ZEXP
LASTZ
ZSIN
LASTZ
ZCOS
3

Z™NX
Z<>W
3

Z™X
Z+

Z/

END

PI O

And type:

ALPHA, “Z2", ALPHA
,01, ENTER”, 1, XEQ “ZNWT”

0
-0.7854

1
0.7854 1.5708

=3
_
l -~
[
L
=3
(A
-t
Ll
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Halley’s Method for Complex Functions

To complement the choices already available in the 41Z (programs ZSOLVE and ZHALL), a third
program is included in the Contour module as well.

This program is based on Valentin Albillo’s article Going back to the roots”, where he presented an
HP-35S solution to the problem. The final version shown here was aided by a first port to the HP-41
platform by Vincent Weber, contributed to the MoHP forum

see: https://www.hpmuseum.org/forum/thread-21615.html) and

https://albillo.hpcalc.org/articles/HP%20Article%20VA031%20-%20Boldly%20Going %20-
%20Going%20Back%20t0%20the %20Roots.pdf)

User instructions:

Just type in ALPHA the name of the global label the function has been programmed under, and the
guess value in stack registers Y, X (i.e. complex stack level Z), then call the program. After a while
the root found is presented in the displat. Execution time depends on the initial guess value and the
number of decimal places used for the precision setting.

Example: obtain one root for the expression f(z) =2z — =
We program the function under LBL “ZZ" as follows:

01 LBL “z2”
02 ZENTER?
03 wrz

04 PI

05 -

06 END

Next, we enter a guess value (imaginary part in Y, real part in X), and call ZROOT.
After a while the result is shown in the display

ALPHA, “ZZ", ALPHA
0, ENTERA, 1, XEQ“ZROOT"” > HSY+ A
verification: XEQ“Zz” > 2+.48

The program is listed below. Being a port from another machine I decided to leave parts
unchanged, not using 417 functions in them to maintain the original ideas. Nevertheless the
MCODE 41Z functions are profusely used all throughout the code, contributing to a faster execution
and more accurate results.
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Program listing.

01  *LBL "ZROOT" 36 ST/Z 73 RCL11
02  ZSTO 00 37 / 74 X<Y?
03 ASTOO02 38 ZRCLO3 75  GTOO02
04  E-a 40  ZRC-04 76  ZRCL 00
05 STO 10 42 RCL10 77 R-P
06 X2 43 ST+00 78  RDN
07 STO11 44 ST/Z 79  STOO08
08 5 45 / 80 SIN
09 STOO03 46  RCLO3 81  ABS
10  *LBLO2 47  ST*Z 82 RCL11
11 ZRCLOO 48 83  X<=Y?
12 XEQIND 02 49  75TO 04 84 GTOO03
13 RCLO3 51 zZ/ 85 RCL 08
u sz 52 7STO 03 86  COS
5 54 ZRC* 02 87  ENTERA
16 ZSTO 02 56 ZRC/ 04 88  ABS
18  RCL10 8 1 89  X#0?

19  ST+00 3 - % /

20 ZRCLOO 60  CHS 91  RCLO1
21 XEQIND 02 61 XY 92 RCLOO
22 75TO 03 62 CHS 93 RP

24 RCL10 63 XY 94 X<>Y

e ST 00 64  RCLO3 95  RDN

26 ST-00 65 %X % *

27 ZRCL 00 66 1 97  STO00
28  XEQIND 02 67 - 98  *LBLO3
29 7STO 04 68  ZRC/03 99  ZRCLOO
31  ZRC+03 70 Z5T+00 100  ZAVIEW
33 ZRC- 02 71 ZRC/00 101 END

35  RCL11 72 RP

Note that the line numbers reflect the non-merged character of some 41Z functions, taking two
standard lines (that have been merged in the listing).
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Sigmoid and Einstein functions,

SIGMD calculates the Sigmoid of the argument in x. This function is relevant in machine learning
and data mining fields. It is defined as:

S(x) 1 e’

l1+e* e’ 41
The result is placed in X and the original argument is saved in LastX. Y,Z,T are untouched and no
data registers are used either.

1 - 8(—xz).

-6 2 q &
Examples:
1, XEQ"SIGMD =>/1. 14 {HSHS 14
2, XEQ“SIGMD =>A.HH T 159 74 TH

The Sigmoid function is also known as the Standard Logistics function, which will appear linked to
the Logistics Map in the discrete domain — refer to the CHAOS Module for additional applications.

Derivative and Integral of the Sigmoid function.

The derivative is known as the density of the logistic distribution:

d e (l+e”)—e"re” e’ V(1
e =TT T )1 f(e)

Conversely, its antiderivative can be computed by the substitutionu = 1+e”x, since f(x) = u’/ u, so
(dropping the constant of integration)

e’ 1 .
/H—Emdm—fadu—MH—ln(l+e )
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In artificial neural networks, this is known as the softp/us function and (with scaling) is a smooth
approximation of the ramp function, just as the logistic function (withscaling) is a smooth approximation
of the Heaviside step function.

Finally, SIGMD is a rather simple function. The MCODE listing is shown below.

F

Header AEAC D82 D"
Header AEAD 00D M Sigmoid Function
Header AEAE o7 “E" sig=1/1+e"x )
Header AEAF "oo9 e
Header AEBD 13 5" ﬁrrgef Martin
SIGMD AEB1 _ |OFE  READ 3(X)
AEB2 1361 PNCXQ (inciudes SETDEC)
AEB3 1050  ->14D8 [CHK_NO 5]
AEBA  2BE  C=C-1MS Sign change
AEBS "7 CLRF 4 standard version (w/our "-1")
AEB6 029 PNCXQ ey
AEB7 068 ->1A0A [EXP10]
AEBE  [001  PNCxQ Teeniy
AEBS 1060  -»1800 [ADDONE]
AEBa 239 PNCxQ 1/1ee x)
AEBE 1060  -»188F [ON/X13
AEBC 1331 PNCGO Overflow, DropsT. FillkL & Exit
aEBD ooz -s00CC [NFRX]

Here’s a minimalistic FOCAL routine for the derivative and the antiderivative:

01 LBL“SGD” 07 *

02 SIGMD 08 RTN

03 ENTERA |09 LBL"“SGI”
04 CHS 10 SIGMD
05 E 11 LN1+X

06 + 12 END

Einstein functions.

Typically four functions are considered under this classification, as follows:

E|(x)=———
1 (x) @ 17
X

e —1

Ei(=In(l —e™)

Ey (x)=

X )
Eq, (.I]:ﬁ —1]'1[1 —E_J').
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Clearly E4( x)= E2(x) — E3(x), thus no dedicate function for it exists in the module.

The module uses a prompting field for a parameter value from 1 to 3 to select the specific function
to calculate. Any input larger than 3 will calculate E3(x), whereas entering zero returns a DATA
ERROR message. Besides that, in program mode you need to add the parameter as a second

program line after EINS

See below the graphics for these in the range x around the origin

E(x) E>(x)
=1 2 7 |~ 2 & < )
Jo.8l g 4
1 3|
g B ; 2|
0.4 % .

,// - e —
/ 0.2 Iy R 2 & X
E;(x) E4(x)

== 5 4 5° i
-1 6

5
‘2['." a|
=3 3\

-4 2
-5 1 = =S
-6 2 3 4 857

E1(x) has an inflection point at:

EY (x)= é csch? [é x| [(rz +2)coshx+2 (xz —2 xsinhx - l]] =0,

which can be solved numerically to give x=+/-2.34694130...

Example: Calculate E1, E2, and E3for x = 1

1, XEQ“EIN” ,1 => A58 {91578
1, XEQ “EIN” ,2 => AR TSI
1, XEQ“EIN” ,3 => ~QMSHEETS M5

Example: Calculate E1(E2(E3(x))), and E3(E2(E1(x))) for x =
1, EINS-1, EINS-2, EINS-3 => M5 (HHEEZS
1, EINS-3, EINS-2, EINS-1 => ASHIEISSAT

_________________________________________________________________________________________________________|
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Arc Length of a Curve defined by y = f(x)

-The arc length of the curve y =f(x) (a <x < b)) is given by

b dy 2
S:/ 1+ (—) da.
a dx

The module includes two programs to calculate the arc length. The first one "CLEN”" is a direct (i.e.
brute-force) application of this formula using FINTG and DERV in the SandMath. It clearly is
simpler to program but foreseeably with longer execution time than a dedicated approach. It also
requires a second FAT entry for the auxiliary program that defines the integrand, as you can see in
the program listing below.

To use this program, just type the function’s program label name in ALPHA, and enter the
integration limitsa in Y, b in X.

|o1 LBL“CLEN" 09 0.1
02 ASTO 05 10 X<>Y
03 “*xCL” 11 DERV
04 FINTG 12 X*2
05 RTN 13 E
06 LBL\\*CLI’ 14 +
57 A 15 SQRT
08 ARCL 05 16 END

As always, FINTG determines the precision of the result by the number of decimal places set in the
calculator. Using FIX 9 yields the maximum accuracy but takes the longest time to compute it.

The second one "LNG" doesn't use this formula and so it avoids the calculation of dy/dx . It simply
applies Pythagoras' theorem. “"LNG"was written by Jean-Marc Baillard, and it is included in his
DERIVE+ module, see: http://www.hp41.org/LibView.cfm?Command=View&ItemID=1315

Data Registers: ¢ ROO = Function name

( Register R0OO is to be initialized before executing "LNG" )
RO1 =a R04 to RO7: temp "

R02=b R20, R21, .... are used by "ROM
RO3 =L

Flag: F02 is cleared

Subroutines: "ROM", plus a program that takes x in X-register and returns f(x) in X-register

STACK INPUT OUTPUT
Y a /
X b L(a,b)
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Example: Calculatethe arc length of thecurve y=Inx 1<x<3

01 LBL"T"
02 LN
03 RTN

Manual data entry:

ALPHA , "T", ASTO 00, ALPHA
FIX4, 1, ENTER”®, 3,

Using the direct approach:

XEQ“CLEN” >>>> 2,308 (YH154E
---Execution time = 1m 35s---

Using the iterative approach in manual way, skipping the data entry prompts:

GTO "LNG", XEQ C >>>> 238 (YH 1544
Execution time = 75s---

Notes:

The HP41 displays the successive approximations
The precision depends on the display format: for instance, FIX 6 would be faster but less accurate.

The exact resultis L = 2.301987535 ( rounded to 9 decimals )

The program listing below includes the Arc Length and the Surgace of Revolution described in
next section — both can be combined into a single application with considerable byte savings.

The program starts with a data entry section, prompting for the required information on the
function and integration limits. You can skip these steps if you prefer a manual data entry using the
soft-Label “C”

Note the use of function PMTA in the OS.X module to enter the function’s global label name. It can
be replaced by { AON, PROMPT, AOFF} as well.

o1 *LBL"LNG" | 17 ST020 |33 *BL12
02 CFo2 (18 =BL11 | 34 RCLOS
03  GTO 00 19  CLX 35  XEQIND 00

| 04 *LBL"SRV" | 20 sTOO04 36 ENTERA
05 SF 02 21 RCL 02 37 ENTERA
T ENANMES 23 STOO5 39 ST+Z
08  PMTA 24 - 40 -

05 ASTO 00 25  RCL20 41 XM2
10 "aapean 26 STO06 42 RCLO3
11 PROMPT 27/ 43 ST+05
> iBLC 28 STO03 44 XM2

29 ST+ 05 45 +
13 ST0 02 30  RCLO1 46 SQRT
14 XY 31 XEQIND 0O 47 FS?02
15 sto01 32 STO07 48
16 1
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49  ST+04 70  LASTX 91  ST+22

50  DSE 06 71 STO 25 92 -

51  GTO12 72 GTOO03 93 /

52 Pl 73 *LBL 01 94 +

53  FS?02 72 a 95  DSE 24

54 ST*04 75  STO 21 %  GTOO02

55  RCLO4 76 25 97  STOIND22
56 XROM "*RM" 77 STO 22 98 VIEW X

57 X#0? 78  RCL23 99  RND

59 RDN 80  LASTX 101 RND

60 STO 03 81 ISG 23 102 X#Y?

61  RTN (82 *BLO2 | 103  GTOO03
62 *LBL"*RM" | e3  ENTERA 104  RCLIND22
63 RCL 20 84 ENTERA 105 0

64 XY 85  X<>IND22 106 RTN

65  SIGN 86 - | 107 *1BLO3
66  ST*X 87  RCL21 108  RCL20

67 XHY? 88 4 109 ST+ 20

69  STO23 90  SIGN

The “*RM” routine could be replaced by FINTG as well...

Romberg Method

Suppose that a sequence {Ln} tends to L as n tends to infinity and thatthe "errors" L -Ln are
nearly proportional to 1/n2

If we want to use Romberg method to estimate the limit L "RM" must be called by a program with
the following specifications:

L must be stored in R20 at the beginning
Then, a loop - say LBL 01 - calculates the value of Ln in X-register corresponding to n in R20
The last instructions must be  XEQ "ROM" X#0? GTO 01 RDN END

See the paragraphs above for several examples ( "CRVL" "CRVLN" "LNG" "SRV" "SKS")
You can also use it for your own programs, provided that registers R20 R21 ..... are not disturbed.
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Area of a Surface of Revolution

The rotation of the curve y = f(x) (a < x < b) around x-axis generates a surface of revolution
given by

A, :2ﬂ£by1f1+ (%)2d$:27rfubf(z)ﬁl+ (f"(m))gdm

The program included in the module “SRV”was written by Jeam-Marc Baillard. "SRV" avoids the
calculation of dy/dx : the area of a truncated cone is used with Romberg method.

Data Registers: ¢ ROO = Function name
( Register ROO is to be initialized before executing "SRV" )

ROl =a R04 to RO7: temp
RO2=b R20, R21, .... are used by "ROM"
RO3 =A

Flag: FO02is set

Subroutines: "ROM" & 1 program that takes x in X-register and returns f(x) in X-register

STACK INPUT __ OUTPUT
Y a /
X b A(a,b)

Example: The sin of revolution.

Evaluate the area of the surface of revolution generated by the rotation of the curve
y =sinx (0 < x < pi) around the x-axis.

01 LBL"T"
02 SIN
03 RTN

Using a manual approach that skips the data entry prompts:

ALPHA, "T", ASTO00
FIX9, 0, ENTER~, PI,

GTO "SRV", XEQ C >>>> {YYZI5H5957
Execution time = 168s---

Notes:

The HP41 displays the successive approximations. The precision depends on the display format: for
instance, FIX 6 would be faster but less accurate

-The exact resultis A = 14.42359945 (rounded to 8 decimals).
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Note that in this case the module doesn't include the direct approach based on FINTG and DERV. If
you're interested it'd be very simple to modify CLEN to do it, as follows:

01 LBL“SREV” | 13 0.1 step size

02 ASTOO05 function LBL 14 X<>Y

03 “*SR” integrand LBL 15 DERV

04 FINTG 16 X~2

05 PI 17 E

06 ST+ X 2.1 18 +

07 * 19 SQRT partial value

08 RTN 20 X<> 06 X

09 LBL“*SR” integrand 21 XEQIND 05 f(x)

10 STO 06 saves x in R06 22 RCL 06 previous value
23 * integrand

o 24 END

12 ARCL05

Using this ad-hoc program the results for example 1 are EXACTLY as follows:

ALPHA, “T", ALPHA, 0, PI, XEQ “"SREV” >>>  (YYZISHYHS

Yi y

xY
x

N

Reference: this web siteis an excellent reference on this subject, also providing some examples to
check the programs described before.

https://math.libretexts.org/Courses/University_of_California_Davis/UCD_Mat_21B%3A_Integral_
Calculus/6%3A_Applications_of Definite_Integrals/6.4%3A_Areas_of Surfaces_of_Revolution
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Area of a Surface defined by z = f(x,y)

"SKS" computes the area of a surface defined by:  z = f(x,y) a<x<b, c<y<d

The result could be obtained by the double integral

= — — 1dxd
fﬁ\/(am) +(6y) rdre
where fx = df/dx and fy = df/dy are the

partial derivatives with respect to x and y
respectively.

But "SKS" avoids the calculation of the partial
derivatives:

The intervals [a,b] and [c,d] are divided into n
parts, and the approximate area is the sum of
the areas of triangles.

"*RM" uses Romberg method to obtain more and
more accurate approximations.

Data Registers:

ROO = Function name

ROl =a R0O4 =d RO6 to R16: temp

R02=b RO5=A R20, R21, .... are used by "ROM"
RO3 =c

Subroutines: "*RM" plus a program that takes x in X-register & y in Y-register and returns f(x,y) in
X-register

STACK INPUTS OUTPUTS

T a /
Z b /
Y c /
X d A

Example: Evaluate the area of the surface defined by
z=(25-x2-y2)1/2 , 0<x<2,0<y<3

To get faster result, store 25 in an unused register, for instance R17, 25 STO 17

| 01 LBL"T" | 06 RCL17
02 X"2 07 X<>Y
03 X<>Y 08 -
04 XA2 09 SQRT
05 + 10 RTN

_________________________________________________________________________________________________________|
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And using manual data entry:

ALPHA, "T", ASTO 00, ALPHA

FIX 6, 0, ENTER”, 2, ENTER”, 0, ENTERA, 3

GTO "SKS", XEQC >>>> hhSHIYHT
---Execution time = 5m06s---

Notes:
The HP41 displays the successive approximations

The precision depends on the display format: for instance, FIX 9 would give more accurate results
but with a much longer execution time as the price to pay for it.

With V41 & FIX9 we get: EESY3Y8E (246
The exact resultis A = 6.654396117

As usual with Romberg method, n is multiplied by 2 at each iteration, but here execution time is
multiplied by 4 because we are approximating a double integral.

#ﬁi‘ﬁ

A LT 2 2
255 sh Tt _ \/ of\* (o1 .
%‘iﬁ‘m‘ﬂ f/T (am) +(6y) Fldedy
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Recursive Utilization of FINTG and FROOT.

Like the original SOLVE and INTEG did, both FROOT & FINTG in the SandMath support “crossed”
nested calls from one another, i.e. you can call FROOT from an integrand function being used by
FINTG, and you can call FINTG in the root-finding function definition for FROOT. However, it is not
possible to recursively call either one of these functions sequentially from within a FOCAL routine. Any
attempt to do so triggers the " RECURSION' error message and the execution aborts.

This ROM provides a set of MCODE functions and two FOCAL routines to overcome this limitation.
Each time FROOT/FINTG s executed it creates a dedicated memory buffer to store the application
data and to perform all the math. The basis of the recursive operation is the use of a secondary
memory area for the nested call of the function, not conflicting with the initial memory buffer created
in the first call. The main loop uses the initial buffer #14, and the operand function in turn creates a
secondary buffer #14 to use for the nested loop — deleting it after it's complete.

In order to reuse the existing code, we'll trick the OS changing the id# of the initial buffer #14 right
before the second call — not deleting it but cloaking it in the /O Memory area of the calculator. The
operand function re-labels the buffer with id#13 (using function CLOAK), then the nested call to
FROOT/INTEG creates and uses a new buffer #14 to perform its task and deletes it upon completion
— returning the execution to the “operand” function FOCAL routine. Before the execution is returned
to the driver program, the cloaked buffer is re-issued as id#14 (using function EXPOSE) so things
can be picked up exactly where there were left off before calling the nested subroutine.

If you must know, all CLOAK and EXPOSE do is changing the buffer id#’ of the initial buffer created
in the first call to FROOT/INTEG - first from 14 to 13, and then back to 14. Prior to all this a third
function (RESET) is used to check for pre-existing buffers with id#13 — deleting it if found.

NO RECURSION
UZER RAD

2D Driver Routines and Rules of Engagement.

The main programs for double integrals and system of 2 equations are FITG2 and FRT2. Eachone
has an auxiliary routine associated with it, which acts as the first level operand function and issues a

second nested call for the integrand or the second equation appropriately, as follows:

For FITG2, the function name f(x,y) is expected in ALPHA, and the four integral limits in the stack in
the pattern™y1, y2, x1, x2” — (y1,y2) for the outer integral, and (x1,x2) for the inner one.

e The integrand function is to be programmed assuming x is in R0O1, and y in the stack.

For FRT2, both function names are expected to be in Alpha separated by comma (like “F1,F2"), and
the guesses entered in the stack, with the pattern “x1, x2, y1, y2” - with (x1, x2) for f1(x,y) and (y1,
y2) for f(2(x,y).

e The second operand function f2(x,y) is executed first. It assumes x in ROI and y in the stack.
e The first operand function f1(x,y) assumes x in RO1 and y in ROZ.
e You decide which one Is F1 and F2 by their order in the ALPHA string

All buffer management is made automatically by the auxiliary routines *2D and*FG.
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Routine Listings.

Here are the routine listings for your perusal. Notably FRT2 introduces more complexity to process
the function names — entered as comma-separated strings in ALPHA — and due to the indirect call to
f1(x,y) at the end of the auxiliary routine *FG - which is not required by *2D in the double
integration case, as it's just one function involved. CLAC and ASWAP are borrowed from the ALPHA
ROM — and need the Library#4 present in the calculator. They're only used for FRT2.

| o1 iBL"FRRT2Z" | | o1 =BL"FTG2" |
02 CLKEYS no keys assigned 02 CLKEYS no keys assigned
03 ASTO 00 save string 03 ASTO 00 save in ROO
04 ASWAP swap around "," 04 STO 03 upper limit2
05 CLAC remove second 05 RDN
06 ASTO 05 save in RO5 06 STO 02 lower limit2
07 CLA 07 RDN
08 ARCL 00 recall string 08 RESET reset buffers
09 CLAC remove second 09 "2D" first level operand
10 ASTO 00 savein ROO 10 FINTG call first round
11 STO 04 upper guess2 11 RTN done
12 RDN 12 “NO soL”
13 STO 03 lower guess2 13 AVIEW
14 RDN 14 RESET
15 RESET reset buffers 15 RTN done.
16 "*FG" first level operand 16 *LBL "*2D" |
17 FROOT call first round 17 STO 01 Save x for later
18 GTO 00 18 CLOAK mask bufferid#
19 *LBL 01 Not found 19 RCL 02 lower limit2
20 RESET 20 RCL 03 upper limit2
21 “NO ROOT” 21 CLA
22 AVIEW 22 ARCL 00 fix,y)
23 *LBL 00 Found 23 FINTG nested call
24 RCL 02 y solution 24 EXPOSE re-issue buf id#
25 X<>Y arrange in stack 25 END ready
26 CLA appends
27 ARCL 00 f1(x,y) name
28 “l
29 ARCL 05
30 RTN done(!)
31 *BL"*FG" |
32 STO 01 save x for later
33 CLOAK mask buffer id#
34 RCL 03 lower guess 2
35 RCL 04 upper guess 2
35 CLA
36 ARCL 05 f2(x,y)
37 FROOT nested call
38 GTO 00 Foundyo, skip
39 GTO 01 Not found!
40 *LBL 00
41 EXPOSE re-issue buf id#
42 STO 02 Save yo result
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43 XEQ IND 00 calculates f1(x,Yo)
44 END

FITG2 uses registers {R00-R03} and leaves the results in X and RO1. The function name is left in
ALPHA (6-chars max).

FRT2 uses registers {R00-R05} and leaves the results in the stack registers {X, Y} and {R01, R02}
for the 2-equation roots. The comma-separated function names string is left in ALPHA (6-chars max
for each name).

Comments.

The new functions to support the nested configuration are simplified versions of some general-
purpose buffer utilities, available in other extension modules as follows:

e RESET is equivalent to the sequence { 13, B?, CLB, RDN }
e CLOAK is equivalent to the sequence { 14.013 , REIDBF, RDN}
e EXPOSE is equivalent to the sequence: { 13.014 , REIDBF, RDN }

B? and CLB are available in the OS/X ROM, and REIDBF in the RAMPAGE ROM.

Using the simplified versions is more intuitive for math-oriented users, and besides it freed up some
space for additional examples in the SIROM.

While you can use RESET at any time (which will delete buff #13 if present, or do nothing if not
present), using CLOAK and EXPOSE will generally result in the error message “"BUF ERR”. They're
meant to be used only while buffer #14 exists, which is tightly controlled by the code in FINTG and
FROOT — and furthermore, the SIROM uses the I/0O_PAUSE interrupt as a “search & destroy” for
buffer#14 at all times. Refer to the corresponding sectionin the SandMath manual to read more on
this subject.

Caveat emptor.

e There's a price to pay for this buffer trickery, and that’s the loss of the USER key
assignments. As you can see in the listings above, the main routines call CLKEYS to make
the operation more reliable (this avoids spurious buffer errors due to memory overwrites).
You can save them in an X-Mem file using SAVEKA and then recover them with GETKA after
the fact (both functions are also available in the AMC_OS/X ROM).

e These routines are not fast, their interest is in the methodology - not optimized for speed to
say the least. If you need faster responses, then the SandMath provides dedicated MCODE
functions for many of these and yet some more.

e Bear in mind that the INTEG-based method to define special functions is not an efficient one
from the mathematical standpoint, but it is a godsend for engineering problems. Also FROOT
is not perfect or fool-proof either, so choosing a good initial guess is of high importance. If
FRT?2 fails to find a root (in either variable), it'll present the error message"NO ROOT" —
Change the limits and try again.
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The following examples should provide a good overview into the details of the programming.

Example 1. Calculate the integral of the BesselJn function, 1T](1,3) = INT (0,3) { J(1,t).dt}
using the integral definition as reference:

1 m
Jo(z)=— | cos(nT —xsinT)dr.
T Jo

Program Code is below. Note that you don’t need to worry about the buffer management, that’s done
automatically by the driver routines all transparently to the user.

r 01 LBL"ITIB" I r 13 LBL " *JN" Iinner variable t in stack
T02 X<>Y order nto X " o14 RAD angular mode

¥ 03 sTOO04 order saved in R04 ¥ 15 RCL 04 get order

" 04 o lower outer limit " 16 * n.t

¥ 05 X<¥ upper outer limit Y, X<>Y inner variable t

" o6 0 lower inner limit ¥ 18 SIN sint

Y, PI upper inner limit ¥ 19 RCL 01 outer variable

" 08 "IN function name " 20 * x.sin t

¥ 09 XROM"ITG2" double integration o - n.t-xsint

¥ 10 PI adjust factor ) Ccos cos (n.t - x.sin t)
o / final result "3 END integrand complete.
" 12 RTN done.

As mentioned before, speed is not this method’s forte. Even on V41 in turbo mode it'll take a good 75
seconds to return 1.260052 (in FIX 6). This was not the goal of the example, but to clarify the
general guidelines and showcase the conceptual approach. If you want a fast result you're
encouraged to use JBS in the SandMath, or even better the ITJ (sub)function also in the SandMath,
which uses the Generalized, Regularized Hypergeometric function for the calculation — a world of

differences...

Comment. This particular example is of course much better dealt with using the well-known
expression between the Bessel function J1 and JO shown below (proving once again that it's always
good to check your math before embarking in long and winding paths):

FJl(t) dt =1-Jy(x)

Jo

thus: )
14}
FJl(t)dt = 1-Jy(3) ¥ 1.26005 \ ’/\

3 i
Here’s an interesting plot showing ] \l ”f / \/
the integral function of J1(x) ' P8 / \/
between ]-15. 15[ \{ .

RS

-15 -10 -5 5 10 15
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HP41 CONTOUR ROM

Example 2. Calculate the solution for the system of non-linear equations below:

f1(x,y) = x - sin(x + y) Solution: x = 0,935082064
f2(x,y) =y - cos(x-y) y = 0,998020058

The equations are programmed as shown below. Note how the convention is observed, with the y
value assumed in the stack for the second function and in R02 for the first one; whilst x is always
assumed in RO1 for both functions. The solutions are obtained in about 3 seconds (FIX 9) using V41
in Turbo mode.

ALPHA, “FG1,FG2”, ALPHA, ENTERA, 2, ENTERA, 1, ENTERA, 2, CF.01, XEQ “FRT2”

01 LBL“FG1” 2 sets combined | | 20 LBL"FG2" 2 sets combined
02 RCLO1 X 21 FS?01
03 FS?01 22 GTO 01
04 GTOO01 23 RAD example #3
05 RAD example #3 24 CHS -y
06 RCL 02 y 25 RCLO1 X
07 + X+y 26 +
08 SIN sin(x+y) 27 COS cos(x-y)
09 RCLO1 X 28 X<>Y y
10 - -X+sin(x+y) 29 - -y+cos(x-y)
11 RTN 30 RTN
12 LBL 01 example #2 37 LBLO1 example #2
13 X~2 XN2 32 X~2 yn2
14 RCL 02 y 33 CHS -yA2
15 X~2 yN2 34 RCLO1 X
16 + XA 24yN2 35 X~2
17 5 36 + XN2 —yN2
18 - XA2+yN2-5 37 3
19 RTN 38 -
39 END
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Note: fo save main FAT entries the example #2 and #3 function sets included in the ROMS have
been combined to use a single global label for both sets, aided by the user flag F1 to determine
which set would be computed. CF 01 — uses F1(x,y) and F2(x,y) ; SF 01 — uses G1(x,y) and
G2(xy)

Obviously this approach won't be needed with your own examples, which will likely have one global
label per set of two functions — i.e. not combined with more sets.

Example 3. Obtain the roots for the system of two equations below (available as “FG1” and “FG2"
with F1 clear)

gl(x,y) = x"2 +y"2 -5 Solution: X
92(x,y) = x"2-y"2 -3 y=

This is an interesting case because FRT2 not only is much slower (as we knew it was going to be),
but also fails to find a root using initial guesses equal to the solutions, i.e. x0 = 2, y0=1.

Other Examples.

Let’s use Valentin Albillo’s neat examples from DataFile for Double Integrals - as follows:

s NE
I = (x> + v") .dy.dx I = 1/(x + y)? .dy.dx

Jo J1 . J3 )1
[1.6 [ 6.1
I= (e 4y -y *x%+7) *tan 1 (x-2) *sin (y+3) .dy.dx
-2.3 )3.9

See the original article for details, available at:
http://web. archive.org/web/201109061 35412/http.//membres. muktimania. fr/abillo/ca k/pdf/DatafieVAO24. pdf
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The results are: I1 = 8/3 = 2.6666666
12 = Ln(25/24) = 0.040821
13 =1,321.275779

Input interpretation

3D plot {exp(—xz)arx3 -y XP +7)tan'1(x-2)sin(y+3)

tan L Is the Inverse tangent function

3D plot Show contour lines

3D plot =~ ———
(x + y)?
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Appendix: MCODE listing for dedicated functions

BUFERR AECD 120D PNC X0 -« Build Msg - UF25 Clear
AEC1 OFC ->3F83 [APERMSG]
AEC2 002 “g"
AEC3 015 "y~
AEC4 006 e “NO BUF" or
AECS 020 o “DUP BUF"
AECE 005 g
AECT 012 “R"
AECE 212 “R"
AEC 1F1 PNC GO Left), Show and Halt
AECA OFE ->3F7C [APEREX]
Header AECB 088 "
Header AECC o1 A"
Header AECD 00F "0~
Header AECE ue
Header AECF == Angel Martin
CLOAK AEDO stfFo [ 1
AED1 LDI S&X :
AEDZ  WOOE comN:18 .. i _|bufferigz="€" __ __ ___ __ :
AED3 % INC+10d ——— [MERGE]
Header AED4 g
Header AEDS g
Header AEDE “0"
Header AED7 “pe
Header AEDE X"
Header AED9 g™ Angel Martin
EXPOSE AEDA T
AEDE LDI 58X '
AEDC CON: 13 bufferig#="0" _ __ ____. |
MERGE AEDD A=C SN *—
AEDE
AEDF
AEED
NOBUF2_ _ |AEEl __2FB___INC-33d ———— . _|[NOBUF]
BFOUND2 AEE2 2DC PT= 13
AEE3 38C PFSET 0 cloaking?
AEE4 027 c+04 yes, skip
MAKE14 AEES EED) LD@PT- E change id#to "EE"
LEER 00 LD@PT- E
AEET7 018 INC +03
MAKE13 AEER EED) LD@PT- D < change id# to "DD"
AFES 50 LD@PT- D
AEEA 2F0 WRTDATA <
AEEB 131 NC GO Normal Function Returm
AEEC oz ->00F0 [NFRPU]
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Header AEAE 094 e

Header AEAF u'DGE “E" Deletes er 13

Header AEBO 013 g

Header AEB1 Y005 g

Header AEB2 012 “R" Angel Martin
RESET AEB3 f130 LDI S&X :

[CHKBFAT
BFOUND AEBS 05E C=0 M5 delete only the first nybble
AEBA 2FD WRTDATA so the 05 will do the rest!
AEBE D4E C=0 ALL
AEBC B70 RAMSLCT
AEBD ;'551 NC GO0 Pack 10/KA area :
AEBE ;’-E'JSE -=2114 [PKIDAS] :
CHEKBFA 43A9  0AB A=C S8R recail id# to Cf0)
CHKBF4 43A8  23C RCR 2 id# to Cf12}
43AB 35 PT=l2_ A
asac N30 LD S&X 1
43AD [OBE ___cON:1s1 Fisrtpossiblereg-1 ]
43AE 10E A=C ALL store ig#® & addr in A
CB10 a3aF  Mes A=ps]l SEN Increase reg# address
CB20 4380 046 C=058K <« ——
43B1 270 RAMSLCT Select Chip 0
a3p2 378 REALD 13(c) END.
4383 %Gos PA<C SEX did we reach the .END. Chainhead?
4364 3AD ?MNC RTH yes -= Not Found
4385 046 A BEN addr to C[38&X]
4386 270 RAMSLCT Candidote address for header
4387 046 Aol SEY id# to Af12) & oddr to A[S8X]
a3gg  'o3e READATA Candidote Value for header
4389 2EE *CED ALL Carry if not empty register
43BA  3AD ?MC RTN empty reg -> Not Found
43BB  25E C=C+1 ME Carry if id#="F" [KAR}
43BC | 39F JC -13d — Key Assignment Register
4380 B2 PARC @PT is this 10 Buffer?
438 037 IC +06 — NO, keep searching
43BF 180 POPADR YES ¥
4300 234 C=C+=1 M Return to (P+2)
a3c1 Mo PUSHADR
azc2 "o3e READATA Return with Header in ©
a3c3 BEo RTM and BuffAdr in A - rg# selected
CB30 4304 OFC RCR 10 S — Skip Buffer
43¢5 056 C=0 %S
a3ce Mas A=f+L SEN add buffer size
43C7 3B INC-23d  ——— [CB20]
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Binet Formulas

Function Description Input Output
BINETN Binet formula for integers ninX f(n)
BINETX Binet formula for real values xin X f(x)
MLN Multinomial Coefficient ninY, kin X C(n,k)

. implements the well-known Binet formula for integer input values. The result is
the n-th Fibonacci number obtained directly without any
iterations. P ¢" - (_(p)‘"

| \/g

Example: Calculate f(9)

9, XEQ "BINETN” => AHZAA DA A0

. implements an extension for non-integer real input values to calculate the
interpolated Fibonacci numbers. This provides an easy expression for the determination
that guarantees real values also for the interpolated

; ; . T _ —z
Fibonacci numbers: f* _ © cos{‘:r:r:)(p
I
Example: Calculate f(r) \@
PI, XEQ “"BINETX" => R R R R e e

See below the graphical representation of Binet(x) for arguments between [-5 . 5]

B
-—
e
-
N
~
~
~N
-

Obviously, the values for integer arguments coincide with the natural Fibonacci number,
since the term cos(=n) is equal to +/- one.
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In fact, this modified formula produces the real parts of the complex results obtained applying
Binet's formula directly with complex arguments — where the term -¢”*-n clearly yields a result in
the complex domain: (-¢)”(-n) = exp(-n . In (-¢))

Note: You can refer to the 41Z Module manual for the complex case, implemented in that module
with the function ZFIB.

Multinomial Coefficients. { } (See M Baillard's reference page.)

Multinomial coefficients are an extension of the Binomial coefficient, using multiple indexes instead
of two. For example, if “k” is the number of variables we have:

P=(nl,n2, ... nk)!'=n!/(nlln2! ... nk! ) ; where n=nl+n2+ ...... + nk

n _ n!
kpjskyyeoo skng ) Kplipl k, Ik, !

The function MLN expects the input values stored in data registers startingin R01, The number of
variables “k” is entered in the stack’ X-register.

Example: Calculate ( 76 , 107 , 112, 184 ) !

16 STOO01 24 STO02 41 STO03 48 STO 04
4 XEQ"MLN" => P=5972755H%9 (9 ERY
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Bell and Bernoulli Numbers

Function Description Input Output

BELL Bell Numbers Index nin X n-th. Bell number
BN2 Bernoulli Numbers Index nin X n-th. Bernoullinumber
Bell Numbers. {BELL[} (See IM Baillard’s reference page)

In combinatorial mathematics, the Bell numbers count the possible partitions of a set, i.e. the Bell
number Bn counts the nhumber of different ways to partition a set that has exactly n elements.

Bell numbers are defined by the iterative sequence below:
k)
n
B(0)=1 — E :
(0) and . Bn.+1 — Bk-
B(n+1) = £{k=0..n}Cn,k B(k) if n>1 k

k=0
where Cnk = n!/ [k!(n-k)!] are the binomial coefficients.

Examples:

10, XEQ “BELL" => (L9715 00an

89, XEQ “BELL" =>4 5 T0HY T E9Y

Bernoulli Numbers{ } (see IM Baillard reference page)

The Bernoulli numbers could be computed by the relations:

B(0)=1;
B(0) + Cn+1,1 B(1) + Cn+1,2 B(2) + ...... + Cn+1,nB(n)=0

where Cnk = n!/ [k!(n-k)!] are the binomial coefficients

If the convention B1=—1/2 is used, this sequence is also known as the first Bernoulli numbers; with
the convention B1=+1/2 is known as the second Bernoulli numbers. Except for this one difference,

the first and second Bernoulli numbers agree. Since Bn=0 for all odd n>1, and many formulas only

involveeven-index Bernoulli numbers, some authors write Bn instead of B2n.

Example:

LA
.
|

10, XEQ"BN2” =>B(10)= ~ZZ 15715 715

Note however that this recurrence relation is unstable, and the results are quite inaccurate for large
n. The generating function below is often used to avoid that:
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Fibonacci Numbers

Function Description Input Output

FIB Fibonacci Numbers Index nin X n-th. Fibonacci number
FIBI Inverse Fibonacci Index nin X n-th/ inverse Fibonacci
2FIB Sum of Fibonacci Range nin X Sum(fib(n)]

2IFIB Sum of Inverse Fibonacci Rangenin X Sum[1/fib(n)]

Fibonacci Numbers { , b

These functions calculate the Fibonacci andthe Fibonacci Inversenumbers using the well-known
recurrent relationship:

f(0)=0,
f(1)=1;
f(n) = f(n-2) +f(n-1)

And the "Fibonacci Inverse" defined as

f(0) = 0
f(1) =1
f(n) = 1/f('n-2) + 1/f(n-1).

Note that this is *not* the same as the inverse of Fibonacci, which would simply be 1/F(n)
Examples:

10, XEQ"FIB” =>55.00000000 ; LASTX, XEQ : FIBI” =>0.683299104
25, XEQ“FIB” => 75,025.00000 ; LASTX, XEQ“FIBI” =>0.707165965

Sum of Fibonacci numbers { ZFIB|, [ZFIBI}

Here we're calculating the sum of the first n Fibonacci numbers, starting at f(0)=0 until f(n).

An interesting fact is the sum of the first Fibonacci numbers with odd index up to f(2n—-1) is the 2n-
th. Fibonacci number, and the sum of the first Fibonacci numbers with even index up to f(2n) is the
(2n+1)-th. Fibonacci number minus 1:

Moreover, the general expression below relates the sum to the sequence value:

2{0..n)F(n) = f(n+2)-1

Example:

=

15, XEQ “=FIB" => \595.0020200

Verifying the formula above:

17, XEQ “FIB" => (SH A aaa G
Example:
15, XEQ “=FIBI"” =>445 0744 (HY
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Collatz conjecture. { }
(see: https://en.wikipedia.org/wiki/Collatz_conjecture)

ULAM shows the successive values in the Collatz conjecture, starting with the argument in X.
It is completely off-topic subject but it sorts of happened while preparing this manual — what an
excuse, uh?

The ULAM function does a complete path starting with the value in X, all the way until the end
when “1” is reached using the well-known Ulam’s (or Collatz’s) algorithm:

5 ifn=0 (mod 2)
e If odd, multiply by three and add one f(n) =
e Ifeven, divide by two 3n+1 ifn=1 (mod 2).

The function will take the integer part of the absolute value of the number in X. Then all
intermediate values are briefly shown, and the total number of “nodes” is left in X upon completion.
The starting number is left in X.

Examples:
41, XEQ “"ULAM" -> generates a sequence of 109 numbers
22, ULAM -> generates a sequence of 15 numbers

The sequence for n = 27, listed below, takes 111 steps (41 steps through odd numbers), climbing
as high as 9232 before descending to 1.

27,82,41,124,62,31,94,47,142,71,214,107,322,161,484,242,121,364,182,91, 274,137,412, 206,
103,310, 155, 466, 233,700,350, 175,526, 263, 790, 395,1186, 593, 1780, 890, 445, 1336, 668, 334, 167,
502,251,754,377,1132,566, 283,850, 425,1276, 638,319, 958,479, 1438,719,2158,1079, 3238, 1619,
4858,2429,7288,3644,1822,911,2734,1367,4102,2051,6154,3077,9232,4616,2308,1154,577,1732,
866,433,1300,650, 325,976,488, 244,122,61,184,92,46, 23,70, 35,106, 53, 160, 80, 40, 20, 10, 5, 16, 8,
4,2, 1 (sequence A008884 in the OEIS)

Histogram of total stopping times for the numbers 1 to 108. Total stopping time is on the x axis,
frequency on the y axis.
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MCODE listing
Header MEBF 0ap "R
Headesr AECD "oo1 A Collatz Conjecture
Header AEC] ooc e
Header AEC2 15 o .ﬂfngef Muortir
ULAM AEC3 OF8 READ 3(X)
AECA Hag WRIT 4{L)
MECS PHC X
AECE -=4052
AECT WRIT 9(0)
AECE O4E C=0 ALL
AECS ER WRIT 3() reset the counter
LOOP1 AECA O0E A=0 ALL
AECE 35C PT=12 Builds "1"in A
aEcc  fi62  A=A+1@PT
AECD T27e READ 9(Q)
AECE 36E PARC ALL end of the path?
AECF JAD ?MNC RTH yes, end here.
AEDD OFE READ 3({x)
AED] 200 SETDEC
AED2 o010 NCXQ increase cournter
AED3 050 -=1807 [AD2 107
AED4 OER WRIT 3(X) update value
AEDS  "278  READ 9(Q) get current n
AEDE I { C= MOD[int{
AEDT 3 [MOD2]
AEDE 2EE PCHO ALL it is odd?
AEDD 02F IC +05 VEs, skip
AEDA TR READ 9(Q)
EVEN AEDB 4,8} ={C,
AEDC ] [DIVTWa]
AEDD 053 INC +10d show resuit
QDD AEDE 04E C=DALL <—
AEDF 35C PT=12
AEED oDo L@ PT- 3
AEE] 10E A=C ALL
AEE2 B READ 9(Q)
AEE3 {135 PNC XQ 3*n
AEE4 ﬁ]ﬁﬂ -=184D0 [MP2_10]
AEES .?EJDI PNCXO 3*n+1
AEEG ﬁ]ﬁﬂ -=1800 [ADDONE]
MERGE MEET ) WRIT 9(0) <=——
AEER ﬁ]QH NCXQ Sends C to display - sets HEX
MEES i02c -=0B26 [DSPCRGT
AEEA "NC wait a little
SN 12C  -edB7F [WAITAL] - Enables.
AEEC Wit a [itt
AEED -=4B7F [WAITAL] - Enables RAM
MEEE 2E3 JNC -36d [LOOPr1]

The calls to [WAIT4L] ensure compatibility with the SY-41CL—slowing down the output for the user to
catch a glimpse of the enumerated values.
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