HP-41 Contour ROM

Advanced 41Z / SandMath Apps - Vol. 3

Ángel M. Martin Cañas.
May 2024

This compilation revision 1.1.1

Copyright © 2024 Ángel Martin

Published under the GNU software license agreement.

Original authors retain all copyrights and should be mentioned in writing by any part utilizing this material. No commercial usage of any kind is allowed.

Front cover image taken from: https://www.dreamstime.com/royalty-free-stock-photography-mathematics-background-image20849947

Screen captures taken from V41, Windows-based emulator developed by Warren Furlow.
See www.hp41.org
"[GNTGUR" RGM
Table of [omtents

1. Introduction
a. Introduction and credits 4
b. Table of Functions. 5
2. Complex Analysis applications
a. Contour Integration 7
b. Integration Examples 15
c. Complex Potentials 19
d. Appendix. Delta-Wye Transform 22
e. Mandelbrot Set Area Estimation 24
3. Discrete Fourier Transform
a. Driver for $41 Z$ functions 33
b. Fast Fourier Transform 35
c. Bessel J and Y via continued fractions 42
d. Nested Radicals 59
e. Sigmoid and Einstein functions 61
4. Advanced Z-SandMath
a. Newton and Halley methods revisited 46
b. Complex Step Differentiation Method 47
c. Halley's method for Complex Functions 49
d. Arc Length of a Curve 55
e. Surface Areas 58
5. Recursive 2D-Solve and Integration
a. Recursive use of FINTG 62
b. Recursive use of FROOT 63
c. Examples 64
d. MCODE Routines 66
6. Number Theory functions
a. Binet Formulas 71
b. Bell and Bernoulli Numbers 73
c. Fibonacci Numbers 74
d. Collatz's Conjecture 75
e. Pythagorean Triplets 77

Contour_ROM Manual
 HP-41 Module

Introduction and Credits.

Welcome to the Contour ROM, gathering a few advanced math applications showcasing the prowess of the SandMath and 412 modules. You'll find HP-41 versions of classic HP-15 advanced application examples, such as the Contour Integration (which gives this ROM its very name) and the Complex Potential, as well as several other state-of-the-art examples of the usability and effectiveness of the calculator platform that may still surprise you after all these years - such as Valentín Albillo's seminal contribution on the Mandelbrot Set area estimation.

Other programs include additional applications of the SandMath and $41 Z$ in root-finding and differential geometry areas - see the Curve length, Surface of revolution, and areas under generic surfaces.

And make sure you don't miss the Fourier Transform sections, an elusive field for RPN calculators successfully conquered by your trusty HP-41 companion. See the driver program for the $41 Z$ MCODE functions and the seminal version by Narmwon Kim, here enhanced with X-Mem file support.

Overlap with other ROMs
Several applications in this module have been taken from the Advantage Math ROM, some of them for completion sake and other to round the selection in a more logical manner. Consequently, and with some exceptions, they have been removed from the Advantage Math to avoid repetition.

Note that the use of the SandMath for FINTG and FROOT has been favored over the leaner "Solve \& Integrate" ROM. Reasons for that are several, mainly because other SandMath functions (such as DERV) not available in the S\&I ROM are also featured in the programs. That's why the section dealing with the Recursive use of FINTEG and FROOT has been included in this module again, no need to plug the S\&I ROM for those.
A few other utility functions are sprinkled throughout the module as well, be that on the FFT section or in the others. Finally several number-theory applications are also included for completion sake.

Dependencies.
This ROM is designed for the HP-41CX O/S, obviously housed in Q-RAM-capable hardware devices like Clonix/NoVRAM, MLDL_2k and others. Numerous programs rely on functions from the SandMath and the $41 Z$ modules, thus make sure they're also installed - as well as the Library\#4, required by these two.

Without further ado, here is a list of the functions in the Main FAT table.

XROM\#	Function	Description	Author
16.00	-Z-CONTOUR	Section header	
16.01	"ZLITG"	Complex Line Integral	HP Co. - Á. Martin
16.02	"ITG"	Integrand function	HP Co. - Á. Martin
16.03	"ZCNTR"	Contour Integral	HP Co. - Á. Martin
16.04	"ITC"	Integrand function	HP Co. - Á. Martin
16.05	"ARC"	R-Circle Contour and Derivative (FO set)	Á. Martin
16.06	"LIN"	Line Contour and Derivative (FO Set)	Á. Martin
16.07	"FZ"	Complex function $-\mathrm{f}(\mathrm{z})=\exp (\mathrm{iz}) /(\mathrm{z}+1 / \mathrm{z})$	Á. Martin
16.08	"ZCD"	$\exp (-i z) /\left(1+z^{\wedge} 2\right)-$ Cauchy Distribution	Á. Martin
16.09	"ZL2"	$\left.\operatorname{Ln} \mathrm{z} /\left(1+\mathrm{z}^{\wedge} 2\right)\right\}^{\wedge} 2$	Á. Martin
10.10	"Z13"	(z+1)/(z-1).(z-3)	Á. Martin
16.11	"ZFLOW"	Complex Flow Study	HP Co. - Á. Martin
16.12	"ZFL"	$f(z)=P(z)-Y o-$ Function to Solve	Á. Martin
16.13	"PZ"	Complex Potential - P z$)=\mathrm{z}+1 / \mathrm{z}$	Á. Martin
16.14	"MBA"	Mandelbrot Set Area	Valentín Albillo
16.15	"D-Y"	Delta-Wye Transform	Á. Martin
16.16	"Y-D"	Wye-Delta Transform	Á. Martin
16.17	"PPL"	Print Pythagorean Triplets	Thomas Klemm
16.18	-ZFOURIER	Section header	
16.19	E3/E+	Pointer builder	Á. Martin
16.20	EINS	Einstein Functions 1-2-3	Á. Martin
16.21	SIGMD	Sigmoid function	Á. Martin
16.22	"JNYX"	Bessel J and Y vía Continued Fractions	Baillard-Martin
16.23	" $=:$ "	Subroutine for JYNX	Baillard-Martin
16.24	"ZDFT+"	Complex Discrete Fourier Transform	Á. Martin
16.25	"ZIDFT+"	Complex Inverse Discrete Fourier Transform	A. Martin
16.26	"DFTZ"	Direct Fourier Transform	A. Martin
16.27	"IFTZ"	Inverse Fourier Transform	A. Martin
16.28	"FFT"	Fast Fourier Transform	Narmwon Kim
16.29	"IFF"	Inverse Fast Fourier Transform	Narmwon Kim
16.30	-2D-ITG/SLV	Section header	
16.31	ASWAP	ALPHA swap around comma	Á. Martin
16.32	CLAC	Clear ALPHA from Comma	W\&W GmbH
16.33	"FITG2"	Recursive Double Integration	Á. Martin
16.34	"*2D"	Auxiliary for FITG2	Á. Martin
16.35	"F1XY"	Examle f1(x,y)	Á. Martin
16.36	"F2XY"	Example f2 $(\mathrm{x}, \mathrm{y}$)	Á. Martin
16.37	"FRT2"	Recursive Root Finder f(x.y)	Á. Martin
16.38	"*FG"	Auiliary for FRT2	Á. Martin
16.39	"FG1"	Examplef1 andg1	Á. Martin
16.40	"FG2"	Examplef2 abdg2	Á. Martin
16.41	FNRM	Finite Nested Radicals	Martin-Baillard
16.42	INRM	Infinite Nested Radicals	Martin-Baillard
16.43	-SANDMATH+	Section header	
16.44	"CLEN"	Curve Length	Á. Martin
16.45	*CL"	Auxiliary for CLEN	Á. Martin
16.46	"LNG"	Arc Length of a Curve	JM Baillard
16.47	"SRV"	Area of Surface of Revolution	JM Baillard
16.48	"SKS"	Area of Surface	JM Baillard

16.49	"*RM"	Romberg Routine	JM Baillard
16.50	"XHALL"	Halley's Method for real roots	Á. Martin
16.51	"XNWT"	Newton Method for real roots	Á. Martin
16.52	"ZNWT"	Complex-Step-Differentiation for real roots	Á. Martin
16.53	"ZROOT"	Complex Root finder	Albillo-Martin
16.54	BELL	Bell Numbers	Á. Martin
16.55	BN2	Bernouilly Numbers	Á. Martin
16.56	BINETN	Binet formula - Integer order	Á. Martin
16.57	BINETX	Binet formula - Real order	Á. Martin
16.58	FIB	Fibonacci Numbers	Á. Martin
16.59	IFIB	Inverse Fibonacci numbers	Á. Martin
16.60	MLN	Mutinomial Coefficients	Martin-Baillard
16.61	ULAM	Ulam's Conjecture	Á. Martin
16.62	FIB	Sum of Fibonacci numbers	Á. Martin
16.63	IFIB	Sum of Inverse Fibonacci numbers	Á. Martin

$$
\begin{gathered}
\oint_{\Gamma_{1}} d z f(z)=2 \pi i \operatorname{Res}[f(z)]_{z=i} \\
\oint_{\Gamma_{2}} d z f(z)=2 \pi i \cdot\left[\frac{1}{2 i}-\frac{1}{2 i}\right]=0 .
\end{gathered}
$$

Contour Integration on the HP-41.

What follows is just a quick adaptation of the parameterized complex integral examples from the HP15C Advanced Functions manual, see pages 73 and following.

Perhaps a little brute-force-ish, nevertheless a good example of a combined application of the $41 Z$ functions and the SandMatrix for the numerical integration task. Surely it is restricted to easy contours like the straight line segments used in the example below, so the general-purpose case (Residues theorem, analytical functions, etc.) remains a challenge to be cracked.
You can use FINTG to evaluate the contour integral $\int_{C} f(z) d z \quad$ here C is a curve in the complex plane. First parameterize the curve C by:

$$
\begin{aligned}
& \mathrm{z}(\mathrm{t})=\mathrm{x}(\mathrm{t})+\mathrm{i} \mathrm{y}(\mathrm{t}) ; \text { for } \mathrm{t} 1 \leq \mathrm{t} \leq \mathrm{t} 2
\end{aligned} \begin{aligned}
\text { Let } \mathrm{G}(\mathrm{t})=\mathrm{f}(\mathrm{z}(\mathrm{t})) \cdot \mathrm{z}^{\prime}(\mathrm{t}) \text {. Then } \quad \int_{C} f(\mathrm{z}) d z & =\int_{t_{1}}^{t_{2}} G(t) d t \\
& =\int_{t_{1}}^{t_{2}} \operatorname{Re}(G(t)) d t+i \int_{t_{1}}^{t_{2}} \operatorname{Im}(G(t)) d t
\end{aligned}
$$

These integrals are precisely the type that FINTG evaluates. Since $\mathrm{G}(\mathrm{t})$ is a complex function of a real variable t , FINTG will sample $\mathrm{G}(\mathrm{t})$ on the interval $\mathrm{t} 1 \leq \mathrm{t} \leq \mathrm{t} 2$ and integrate $\operatorname{Re}(\mathrm{G}(\mathrm{t})$)-the value that your function returns to the real X -register. For the imaginary part, integrate a function that evaluates $\mathcal{G}(t)$ and uses $\mathrm{RE}<>\operatorname{IM}$ to place $\operatorname{Im}(G(t))$ into the real X -register.

Program \#1. Integral along line segment [a, b]

$$
I=\int_{a}^{b} f(z) d z
$$

The generalized program listed below evaluates the complex integral along the straight line from \boldsymbol{a} to \boldsymbol{b}, where a and b are complex numbers such that $\operatorname{Im}(a) \# \operatorname{Im}(b)$. Hence, the parameterized values $\mathrm{z}(\mathrm{t})$ use $\mathrm{z}=\mathrm{a}+\mathrm{t} .(\mathrm{b}-\mathrm{a})$, with $\mathrm{t} 1=0, \mathrm{t} 2=1$. The program assumes that your complex function subroutine has a global label and evaluates the complex function $\mathrm{f}(\mathrm{z})$, and that the limits \boldsymbol{a} and \boldsymbol{b} are in the complex W - and Z -registers, respectively. The complex components of the integral $\cdot I$ and the uncertainty ΔI are returned in the X - and Y -registers respectively.

The parameterization is for this case quite simple:

$$
\begin{aligned}
& z(t)=a+t .(b-a), \text { with } t 1=0, t 2=1 \\
& z^{\prime}(t)=(b-a)
\end{aligned}
$$

This has the additional benefit that there's no need to write a global label subroutines for either the contour or the derivative curves.

Note that since the derivative of the contour is not dependent on t it could therefore be taken out of the integral - however the requirement of using the imaginary part of the integrand advises to leave the derivative inside.

			26	RDN	saves $\operatorname{Im}(\Delta I)$ in R03 same limits
01	LBL "ZLITG+"	Data entry .	27	STO 09	
02	"F(Z)? "	line segment	28	RDN	
03	PMTA		29	CF 01	flag real parts
04	ASTO 00	FName in R00	30	FINTG	calculates $\operatorname{Re}(\mathrm{I}, \Delta)$
05	"Z1=?"		31	STO 06	saves Re(I) in R06
06	PROMPT	saves a in ZR01	32	RDN	
07	ZSTO 01	Re-R02, Im - R01	33	STO 08	saves $\operatorname{Re}(\Delta \mathrm{I})$ in R 08
08	"Z2=?"		34	RCL 09	presents $\Delta \mathrm{I}$ in W
09	PROMPT	b	35	X<>Y	
10	ZRC- 01	(b-a)	36	ZENTER^	saves $\Delta \mathrm{I}$ in W
11	GTO 00		37	RCL 07	presents I in Z
12	LBL "ZLITG"	Cpx. Line Intg	38	RCL 06	
13	ASTO 00	FName in R00	39	ZAVIEW	shows result
14	Z<>W	a	40	TONE 2	
15	ZSTO 01	saves a in ZR01	41	RTN	done.
16	Z-	(b-a)			
17	LBL 00		42	LBL "ITG"	Integrals
18	ZSTO 02	saves (b-a) in ZR02	43	0	no Imaginary
19	"ITG"	integrands	44	X<>Y	current t
20	0	t1 limit	45	ZRC* 02	(b-a).t
21	ENTER^		46	ZRC+ 01	$a+(b-a) . t$
22	1	t2 limit	47	XEQ IND 00	$f(a+(b-a) \cdot t)$
23	SF 01	Imaginary parts	48	ZRC* 02	$f(z) \cdot z^{\prime}(t)$
24	FINTG	calculates Im (I, Δ)	49	FS? 01	Imaginary?
25	STO 07	saves $\operatorname{Im}(\mathrm{I})$ in R07	50	X<>Y	yes, use it
			51	END	done.

To use ZLITG you need to write a subroutine to calculate the complex function $f(z)$, place its global label in ALPHA and the two complex integration limits that define the ends of the straight line that your function will be integrated along in the complex stack levels W and Z .

The driver program ZLITG+ offers prompts to input the data sequentially, so it's more convenient for the casual user. Note that $\mathrm{f}(\mathrm{z})$ still must be written prior to executing the program.

Note that in this case

$$
\begin{aligned}
& z(t)=a+t \cdot(b-a), \\
& z^{\prime}(t)=(b-a),
\end{aligned}
$$

hence
and thus, not depending on the real variable t, it can be taken out of the integral instead of being part of the subroutine programming $\mathrm{f}(\mathrm{z})$. This facilitates the calculations and speeds up the execution.

Example 1．Approximate the integrals：

$$
I_{1}=\int_{1}^{\infty} \frac{\cos x}{x+1 / x} d x \quad \text { and } \quad I_{2}=\int_{1}^{\infty} \frac{\sin x}{x+1 / x} d x
$$

These integrals decay very slowly as x approaches infinity and therefore require a long interval of integration and a long execution time．You can expedite this calculation by deforming the path of integration from the real axis into the complex plane．According to complex variable theory，these integrals can be combined as

$$
I_{1}+i I_{2}=\int_{1}^{1+i \infty} \frac{e^{i z}}{z+1 / z} d z \quad \quad \quad \text { with: } \quad f(z)=\frac{e^{i z}}{z+1 / z}
$$

This complex integral，evaluated along the line $x=1$ and $y \geq 0$ ，decays rapidly as y increases－like $\exp (-y)$ ．To use the previous program to calculate both integrals at the same time，we write a subroutine to evaluate $f(z)$ ．This result I is calculated much more quickly than if $I 1$ and $I 2$ were calculated directly along the real axis．．

$\mathbf{0 1}$	LBL＂FZ＂	
$\mathbf{0 2}$	ZENTER＾	
03	ZINV	$1 / \mathrm{z}$
04	LASTZ	z
05	Z＋	$\mathrm{z}+1 / \mathrm{z}$
06	ZINV	$1 /(\mathrm{z}+1 / \mathrm{z})$
07	Z＜＞W	z
08	Z＊I	can be replaced with $\{\mathrm{X}<>\mathrm{Y}, \mathrm{CHS}\}$
09	ZEXP	$\exp (\mathrm{iz})$
10	Z＊	$\mathrm{f}(\mathrm{z})$
11	END	

Approximate the complex integral by integrating the function from $a=1+0 i$ to $b=1+6 i$ using a FIX 3 display format to obtain three significant digits．（The integral beyond $1+6 \mathrm{i}$ doesn＇t affect the first three digits．）

0, ENTER $^{\wedge}, 1$, ZENTER $^{\wedge}, 6$, ENTER， 1 ，puts the lower limit in W and the upper one in Z

ALPHA，＂FZ＂，ALPHA，XEQ＂ZLITG＂$\quad>$－亿．ヨコ4＋ப 亿．ヨロコ

This result \mathbf{I} is calculated much more quickly than if I1 and I2 were calculated directly along the real axis．

And here the upper limit does have an impact，for instance moving it up to $b=1+7 i$ ：

Program \#2.- Extension to a more general contour.

The next step is an extension of this method to more general contours, beyond the straight-line (vertical or not) segment used before. For this we'll need to program the different contour sections as parameterized formulas of the real variable \mathbf{t}, i.e. $\mathrm{z}(\mathrm{t})$ in the contour, with t going from an initial (lower) value of the parameter t 1 , to a final (upper) value t 2 .

Besides that parameterized curve we'll also need its derivative as another component of the complex integral equivalent once the change of variable is applied: $G(t)=f(z(t)) \cdot z^{\prime}(t)$.

Therefore we see that in principle three global labels are going to be required - although the parameterized equations are likely to be rather simple ones given the nature of the usual contours used for these integrals - typically line segments and circle arcs.

Let's see as example the integral of the previous function $f(z)$ but this time using as contour the arc of circumference with radius R and centered at $\mathrm{z}=1$, taken in a direct (counter-clockwise) direction from $z 1=1+R$ to $z 2=1+R i$
$\mathrm{z}(\mathrm{t})=1+\mathrm{R} \cdot \exp (\mathrm{it})$ with t in the interval $[0, \pi / 2]$
$z^{\prime}(\mathrm{t})=\mathrm{i} . \mathrm{R} \exp (\mathrm{it})$

The program \#2 in next page is a straightforward extension of the previous one, with the obvious difference this time that within the integrand routine we call the parameterized $z^{\prime}(\mathrm{t})$ and multiply its value by the value of the function $f(z(t))$ as required by the definition $G(t)$ formula.

The program has a data input section where the names of the three global labels are saved in data registers R00, R01, and R02 using the OS/X utility function PMTA. Also the value of the radius R and the parameterized integration limits are required at this stage.

Then the runtime main body starts at LBL C - which assumes all input values have been already entered. The arrangement will be convenient to do repeated calculations with different values of the radious R, as the point we're really after is checking whether the integral values decrease with \boldsymbol{R}, hinting at a final zero result when R goes to an infinite limit.

The function $f(z)$ was already taken into account by the "FZ" routine in the first example, so it won't be repeated in the listings below - refer to the previous example if needed.

1	LBL "ZCNTR"	main driver program	29	$X<>Y$	
2	"FZ? "	global LBL name	30	STO 07	saves ${ }^{\text {(}}$ Im(I))
3	PMTA	for $f(z)$ routine	31	CF 01	flags Real parts
4	ASTO 02	saved in R02	32	RCL 04	lower linit t1
5	"Z(T)? "	global label name	33	RCL 05	upper limit t2
6	PMTA	for $z(t)$ routine	34	FINTG	does the integration
7	ASTO 00	saved in R00	35	STO 08	saves Re(I)
8	" $Z^{\prime}(T)$? "	global LBL name	36	X<>Y	
9	PMTA	for $z^{\prime}(t)$ routine	37	STO 09	saves $\operatorname{lne}(\mathrm{Re})$)
10	ASTO 01	saved in R01	38	RCL 07	? $\operatorname{lm}(\mathrm{I})$)
11	"ZO=?"	anchor point	39	X<>Y	? $\operatorname{Re}(1)$)
12	PROMPT		40	ZENTER^	pushes? in level W
13	ZSTO 05	saved in ZR05	41	RCL 06	Im(I)
14	"R=?"	value of radius	42	RCL 08	$\mathrm{Re}(\mathrm{I})$
15	PROMPT	ignore if not needed	43	ZAVIEW	shows result
16	STO 03	saved in R03	44	TONE 2	
17	"T1^T2=?"	integration limits	45	RTN	done.
18	PROMPT	for parametert	46	LBL "ITC"	Integrand routine
19	STO 05	t2 saved in R05	47	STO 08	savest in R08
20	X<>Y		48	XEQ IND 00	calculates $\mathrm{z}(\mathrm{t})$
21	STO 04	t1 saved in R04	49	XEQ IND 02	$\mathrm{f}(\mathrm{z}(\mathrm{t})$)
22	LBL C	for repeat use	50	ZENTER^	saves f(z) in W
23	RCL 04	lower limitt1	51	RCL 08	recallst
24	RCL 05	upper limitt2	52	XEQ IND 01	calculates $z^{\prime}(t)$
25	"ITC"	integrand routine	53	Z*	$z^{\prime}(t) . f(z(t))$
26	SF 01	flags Imaginary parts	54	FS? 01	Imaginary?
27	FINTG	does integration	55	X<>Y	yes, take Im part
28	STO 06	Im(I) in R06	56	END	done.

And finally the parameterized curves are programmed as follows:

01 LBL "ZP"	derivative $z^{\prime}(\mathrm{t})$	08 RTN	
020	pure imaginary (0+it)	09 LBL "ZT"	parameterized $z(t)$
03 ZEXP	\exp (it)	10 XEQ "ZP"	opportunistic
04 RCL 03	R	$11 \mathrm{Z} / \mathrm{l}$	undoes Z^{*} I
05 ST* Z		12 ZRCL 05	adds anchor
06 *	R.exp(it)	13 Z+	$a+$ R.exp (i.t)
07 Z *	i.R.exp(i.t)	14 END	done.

Example 2．－Obtain the integral results for the different values of $R=1, R=10, R=100$ ，and $R=1000$ and see if they show a decreasing trend as R increases．

Radius	Re （Intg）	Im（Intg）	Magnitude
1	$\cdots 3.475$		
10	8．8日7 E－昭		
100	－4．3日7 E－\％	$0.8735 \cdots$	
1000	－ $9.1515 \cdots$	$\cdots 3.985$ E－${ }^{2}$	1吉：

Finally let＇s close the circle（pun intended）using the general－purpose program \＃2 to re－calculate the first example，where the contour in this case is the straight segment：$z(t)=a+$（b－a）．t with $0 \leq t \leq 1$

01	LBL＂LP＂derivative		
02	6	（b－a）	
03	ENTER＾		
04	0		
05	RTN	$0+6 \mathrm{i}$	
06	LBL＂LT＂contour		
07	XEQ＂LP＂		

08	RCL 08	t
09	ST＊Z	t．（b－a）
10	$*$	$0+t .(b-a)$
11	1	a
12	+	
13	RTN	$a+t .(b-a)$

XEQ＂ZCNTR＂with FZ，LT，and LP as global labels，plus $\mathrm{t} 1=0$ and $\mathrm{t} 2=1$（R can be ignored）
Using FIX 4 it gives the same result as before，
Result：ZIT＝－ロ．ヨコ4＋ப オ．ヨロコ

Combining Curve and Derivative

In order to reduce the number of global labels in the ROM（where FAT space is always at a premium）， the programs in the module has been modified to use flag F00 to determine whether to calculate the contour（FO clear）or its derivative（FO set）．The main program will manage the status of FOO appropriately，setting and clearing FOO appropriately before calling the（now combined）parameter curve routines．Besides that，the prompt for the derivative subroutine＂$Z^{\prime}(T)$＂has been eliminated－ freeing register R01 for other purposes．

This changes the previous routines listing into the following version：

01	LBL＂LT／LP＂	single entry
02	FC？00	
03	GTO 00	
04	LBL 01	derivative
05	6	
06	ENTER＾	
07	0	（b－a）
08	RTN	

09	LBL 00	contour
10	XEQ 01	（b－a）
11	RCL 08	t
12	ST＊Z *	
13	${ }^{*}$	t．（b－a）
14	ZRCL 05 a	
15	Z＋	a＋t．（b－a）
16	END．	

And likewise for the arc of circumference contour:

01 LBL "ZT/ZP"	single FAT entry)
02 FC? 00	derivative?
03 GTO 00	no, branch off
04 LBL 01	derivative
05 0	pure imaginary (0+it)
06 ZEXP	exp(it)
07 RCL 03	R
08 ST* Z	
09^{*}	R.exp(it)

10 Z*	i.R.exp(i.t)
11 RTN	
12 LBL00	parameterized z(t)
13 XEQ01	opportunistic
$14 \mathrm{Z/I}$	undoes Z^{*} I
151	adds anchor
16 +	1+R.exp(i.t)
17 END	done.

Program \#3.- Final consolidated version
Rewriting the data entry section and using PMTK in the OS/X Module we can combine both cases in a single program, as listed below. This has the advantage of using the same integrand routine for both cases (ITG and ITC), and thus saves one more FAT entry in the module. Note that iy uses PMTK in the OS / X module to select the case, either ARC ("Ä") or LINE ("L") - and even a custom contour denoted by " X ", which would need its custom routine to compute the curve and its derivative.

01	LBL "ZCNTR+"	
02	"FZ?"	
03	PMTA	f(z) Name
04	ASTO 00	
05	"TYPE ALX"	
06	PMTK	either 1 0r 2
07	GTO IND X	dispatch choice
$\mathbf{0 8}$	LBL 03	
09	"Z(T)?"	
$\mathbf{1 0}$	PMTA	contour name
11	ASTO 01	
12	GTO 00	
13	LBL 02	ine segment
14	"Z1=?"	
15	PROMPT	
16	ZSTO 01	
17	"Z2=?"	
18	PROMPT	
19	ZRC- 01	
20	ZSTO 02	
21	0	initial param
22	ENTER^	
23	1	final param
24	"LIN"	contour name
25	GTO 00	merge
26	LBL 01	Circular ARC
27	"A=?"	
28	PROMPT	
29	STO 02	Aux. Param.
30	"R=?"	

31	PROMPT	
32	STO 03	Circle radius
33	"T1^T2=?"	
34	PROMPT	
35	STO 05	final angle
36	X<>Y	
37	STO 04	initial angle
38	X<>Y	final angle
39	"ARC"	contour name
40	LBL 00	merged code
41	ASTO 01	
42	"ITC"	integrand
43	LBL C	
44	SF 01	imaginary
45	FINTG	
46	STO 07	Im(ITG)
47	RDN	
48	STO 09	Δ (Im)
49	RDN	same limits!
50	CF 01	real part
51	FINTG	
52	STO 06	Re(ITG)
53	X<>Y	
54	STO 08	Δ (Re)
55	RCL 09	Δ (Im)
56	X<>Y	
57	ZENTER^	
58	RCL 07	Im(ITG)
59	RCL 06	Re(ITG(
60	ZAVIEW	show result

61 62	TONE 0 RTN		05 06	$\underset{*}{\text { ST* }} \mathrm{Z}$	
63	LBL "ITC"	integrand	07	X<>Y	$\text { do } Z^{*} I$
64	STO 08	current t	08	CHS	i.R.exp(i.t)
65	CF 00	contour	09	FS?C 00	derivative?
66	XEQ IND 01	contour $\mathrm{z}(\mathrm{t})$	10	RTN	yes, return
67	XEQ IND 00	complex f(z)	11	CHS	no, undo Z *I
68	ZSTO 05	save for later	12	X<>Y	R.exp(i.t)
69	RCL 08	current t	13	RCL 02	anchor point
70	SF 00	derivative	14	+	$a+R . \exp (\mathrm{i} . \mathrm{t})$
71	XEQ IND 01	$\mathrm{z}^{\prime}(\mathrm{t})$	15	RTN	
72	ZRC* 05	$\mathrm{f}(\mathrm{z}) \cdot \mathrm{z}$ '(t)	16	LBL "LIN"	line segment
73	FS? 01	imaginary?	17	ZRCL 02	(b-a)
74	X<>Y	yes, oblige	18	FS?C 00	derivative?
75	END	done	19	RTN	yes, return
			20	RCL 08	t
			21	ST* Z	
01	LBL "ARC"	circular	22	*	t. $(\mathrm{b}-\mathrm{a})$
02	0		23	ZRC+ 01	$a+t .(b-a)$
03	ZEXP	$\exp (\mathrm{i} . \mathrm{t})$	24	END	
04	RCL 03	R			

Where the last two routines are the combined contour \& derivative calculation for the cases of a circular arc and a straight line segment,

See the registers used in the table below:

Register \#	ZLITG	ZCNTR - LINE	ZCNTR - ARC
ROO	$\mathrm{f}(\mathrm{z})$ - function Name		
R01	unused	Z(t) - Contour Name	
R02	$\mathrm{Re}(\mathrm{z} 1)$		Anchor point A
R03	Im(z1)		Radius R
R04	$\operatorname{Re}(z 2-z 1)$		t1
R05	Im(z2-z1)		t2
R06	$\mathrm{Re}(\mathrm{Intg})$		
R07	Im(Intg)		
R08	Re(Delta)		
R09	Im(Delta)		
R10	unused	$\operatorname{Re}\left(z^{\prime}(t)\right)$	
R11	unused	$\operatorname{Im}\left(z^{\prime}(t)\right)$	

Thanks to this common register mapping across the three programs we'll be able to use subroutines valid for all applicable cases, therefore saving further space in the ROM.

$$
=\pi
$$

Examples from Wikipedia: https://en.wikipedia.org/wiki/Contour integration
Example 1 - Unit circle
A fundamental result in complex analysis is that the contour integral of $f(z)=1 / z$ is $2 n i$, where the path of the contour is taken to be the unit circle traversed counterclockwise (or any positively oriented Jordan curve about 0). In the case of the unit circle $|z|=1$ there is a direct method to evaluate the integral

$$
\oint_{C} \frac{1}{z} d z=\int_{0}^{2 \pi} \frac{1}{e^{i t}} i e^{i t} d t=i \int_{0}^{2 \pi} 1 d t=\left.i t\right|_{0} ^{2 \pi}=(2 \pi-0) i=2 \pi i
$$

Example 2 - Cauchy distribution.
The integral

$$
\int_{-\infty}^{\infty} \frac{e^{i t x}}{x^{2}+1} d x
$$

which arises
in probability theory as a scalar multiple of the characteristic function of the Cauchy distribution) resists the techniques of elementary calculus. We will evaluate it by expressing it as a limit of contour integrals along the contour C that goes along the real line from $-a$ to a and then counterclockwise along a semicircle centered at 0 from a to $-a$. Take a to be greater than 1 , so that the imaginary unit i is enclosed within the curve. The contour integral is

$$
\int_{C} \frac{e^{i t z}}{z^{2}+1} d z
$$

Since $e^{i t z}$ is an entire function (having no singularities at any point in the complex plane), this function has singularities only where the denominator $z 2+1$ is zero. Since $z 2+1=(z+i)(z-i)$, that happens only where $z=i$ or $z=-i$. Only one of those points is in the region bounded by this contour. The residue of $f(z)$ at $z=i$ is:

$$
\lim _{z \rightarrow i}(z-i) f(z)=\lim _{z \rightarrow i}(z-i) \frac{e^{i t z}}{z^{2}+1}=\lim _{z \rightarrow i}(z-i) \frac{e^{i t z}}{(z-i)(z+i)}=\lim _{z \rightarrow i} \frac{e^{i t z}}{z+i}=\frac{e^{-t}}{2 i}
$$

According to the residue theorem, then, we have

$$
\int_{C} f(z) d z=2 \pi i \operatorname{Res}_{z=i} f(z)=2 \pi i \frac{e^{-t}}{2 i}=\pi e^{-t}
$$

According to Jordan's lemma, if $t>0$ then the integral along the arc of circumference tends to zero as R tends to infinite. Therefore, if $t>0$ then

$$
\int_{-\infty}^{\infty} \frac{e^{i t x}}{x^{2}+1} d x=\pi e^{-t}
$$

A similar analysis can be made for values $\mathrm{t}<0$, leading to the final consolidated result shown below:

$$
\int_{-\infty}^{\infty} \frac{e^{i t x}}{x^{2}+1} d x=\pi e^{-|t|}
$$

If $t=0$ then the integral yields immediately to real-valued calculus methods and its value is π

Example 3 - Squared Logarithm
This example treats a type of integral of which

$$
\int_{0}^{\infty} \frac{\log x}{\left(1+x^{2}\right)^{2}} d x
$$

To calculate this integral, one uses the function

$$
f(z)=\left(\frac{\log z}{1+z^{2}}\right)^{2}
$$

And to avoid singularities in the integration path we use the branch of the logarithm corresponding to $-\pi<\arg \mathrm{z} \leq \pi$.

We will calculate the integral of $f(z)$ along the keyhole contour shown at right. As it turns out this integral is a multiple of the initial integral that we wish to calculate and by the Cauchy residue theorem (there are two poles
 at $z=i$ and $z=-i$) we have

$$
2 \pi . i .(\Sigma \operatorname{Res}\{I,-i\})=-\pi^{\wedge} 2
$$

Let R be the radius of the large circle, and r the radius of the small one. We will denote the upper line by M, and the lower line by N. As before we take the limit when $R \rightarrow \infty$ and $r \rightarrow 0$. The contributions from the two circles vanish.

In order to compute the contributions of M and N we set $z=-x+i \varepsilon$ on M and $z=-x-i \varepsilon$ on N, with $0<x<\infty$: Replacing z by hose values and performing some simplification we obtain:

$$
\left(\int_{M}+\int_{N}\right) f(z) d z=4 \pi i \int_{0}^{\infty} \frac{\log x}{\left(1+x^{2}\right)^{2}} d x
$$

and after isolating the sought for integral it gives

$$
\int_{0}^{\infty} \frac{\log x}{\left(1+x^{2}\right)^{2}} d x=-\frac{\pi}{4}
$$

we＇ll see that the chosen branch of the logarithm is a rather relevant point for a proper usage of the ZLN function．That，together with the winding direction being clock－wise，must be taken into account to obtain he correct results！

Application with the module functions．

The module includes global labels for straight segments－defined by the two complex points at its end－ and circumferences centered in 0 and with a radius R ．Choosing initial and final angles is the way to provide a general－purpose arc，such as the one used in the previous example with initial angle zero and final angle $\pi / 2$ ．

The module also includes the complex functions routines for the examples described above：
－LBL＂ $1 / \mathrm{Z}$＂for the first example
－LBL＂ZCD＂for the Cauchy distributions
－LBL＂ZLN2＂for the keyhole contour example
Combining these resources is therefore a simple task．

Example 1 －Keystrokes，

A straightforward case for which we have both the complex function and the contour：

XEQ＂ZCNTR＂	
＂1／Z＂，R／S	Z $\mathrm{T}^{\text {P }}$ ？
＂RC＂，R／S	$\boldsymbol{R}=$ ？
0，R／S	$R=?$
1，R／S	「リアアコニワ
0，PI，2，＊，R／S	－こ．4ヨ5E－1 1＋－ロ，ア ヨ
X＜＞y，FIX 9	Б，ごヨ1日5ヨ习习

Note that the „A＂parameter is irrelevant for this example，so zero is as good as any other value

Example 2 －Keystrokes

Here the routines can be used to verify that the contribution of the semi－circumference tends to zero as its radius increases，i．e．similar to the analysis made at the beginning of this section．

Running if for the cases $R=10, R-100, R-1,000$ and $R=10,0000$ we compile the following table：

Radius	Result	Magnitude
10		17：＝机，4
100		1
1.000		
10.000		17：$=1,4155 \cdots 4$

```
XEQ "ZCNTR"
FZ?
"ZCD", R/S
Z《T)『
"RC",R/S F=?
0,R/S R
1,R/S \ \アTコニ?
0, PI, 2, /, R/S
```


Repeating for $\mathrm{R}=100,1,000$ and 10,000 is as simple as modifying the radius value in data register R 03 and executing the program from the local label＂ C ＂，as shown below：

100，STO 03，XEQ C
1000，STO 03，XEQ C
10000，STO 03，XEQ C
etc．．．

Example 3 －keystrokes

Here too the contribution of the module is limited to the verification of the diminishing results in the outer and inner circles of the keyhole contour．It is left to the reader for practice．．．

This contour and the choice of the branch of the logarithm introduce two points for consideration．
$>$ The first one is that the contour winds in clockwise direction，therefore the sign changes when compared to the＂natural＂convention．
$>$ The second is the function ZLN in the $41 Z$ module uses the principal branch of the logarithm， which removes the negative semi－axis and therefore it is the appropriate one for this example． This is mentioned just to alert you that it may not always be the case，depending on the case．

Program Listings

$\mathbf{0 1}$	LBL＂1／Z＂	
$\mathbf{0 2}$	ZINV	
03	RTN	
04	LBL＂ZLN2＂	$\left\{\operatorname{Ln~z~/(~1+z^{\wedge }2)\} ^{\wedge }2}\right.$
$\mathbf{0 5}$	ZLN	
$\mathbf{0 6}$	LASTZ	
$\mathbf{0 7}$	Z＾2	
08	1	
09	$\mathbf{+}$	
$\mathbf{1 0}$	Z／	
$\mathbf{1 1}$	Z＾2	
12	RTN	
13	LBL＂ZCD＂	Cauchy Distr
14	ZENTER＾＾	exp（－i．t．z）／$\left(1+z^{\wedge} 2\right)$
15	X＜＞Y	
16	CHS	i．z
17	RCL 02	argument＂ $\mathrm{t}^{\prime \prime}$
18	ST＊Z	
19	$*$	i．t．z

20	ZEXP	exp（i．t．z）
$\mathbf{2 1}$	Z＜＞W	
22	$\mathbf{Z}^{\wedge} \mathbf{2}$	z＾$^{\wedge} 2$
23	1	
24	+	$1+Z^{\wedge} 2$
25	Z／	exp（－i．t．z）／$\left(1+z^{\wedge} 2\right)$
26	RTN	
27	LBL＂RC＂	R－Circle
28	0	$0+$ i．t
29	ZEXP	exp（it）
30	RCL 03	get radius
31	ST＊Z	
32	$*$	R．exp（i．t）
33	FC？C 00	derivative？
34	RTN	no，return
35	X＜＞Y	yes，multiply by i
36	CHS	i．R．exp（i．t）
37	END	done

Complex Potentials.

What follows is just a quick adaptation of the complex potentials examples from the HP-15C Advanced Functions manual, see pages 76 and following.

Conformal mapping is useful in applications associated with a complex potential function. The discussion that follows deals with the problem of fluid flow, although problems in electrostatics and heat flow are analogous.

Consider the potential function $P(z)$. The equation $\operatorname{Im}(P(z))=c$ defines a family of curves that are called streamlines of the flow. That is, for any value of c, all values of z that satisfy the equation lie on a streamline corresponding to that value of c . To calculate some points zk on the streamline, specify some values for xk and then use FROOT to find the corresponding values of yk using the equation

$$
\operatorname{Im}\left(P\left(x_{k}+i y_{k}\right)\right)=c .
$$

If the xk values are not too far apart, you can use $\mathrm{yk}-1$ as an initial estimate for yk . In this way, you can work along the streamline and calculate the complex points $\mathrm{zk}=\mathrm{xk}+\mathrm{iyk}$. Using a similar pocedure, you can define the equipotential lines, which are given by

$$
\operatorname{Re}(P(z))=c .
$$

The program listed below is set up to compute the values of $y k$ from evenly spaced values of xk . You must provide a subroutine labeled with a global label in memory that places $\operatorname{Im}(P(z))$ in the real X register. The program uses inputs that specify the step size h, the number of points n along the real axis, and $\mathrm{zO}=\mathrm{x0}+\mathrm{iy} 0$, the initial point on the streamline. You must enter n , h , and zO into the $\mathrm{Z}-\mathrm{Y}$-, and X -registers before running the program.

The program computes the values of zk and stores them in data file in X-Mem in the form ak1 $=x k-1$ and $\mathrm{ak} 2=y \mathrm{k}-1$ for $\mathrm{k}=1,2, \ldots, \mathrm{n}$. Data entry includes prompting for the flow conditionas and allows for either streamlines or equipotentials to be computed. In addition to the $41 Z$ module to define the complex flow, and the Solve \& Integrate module (for FROOT, hence the ancilliary subroutine "ZFL" for the equation to solve), the AMC_OS/X module is required for PMTA and PMTK. The listing below also includes the potential flow example "PZ" given by: $\mathrm{P}(\mathrm{z})=\mathrm{z}+1 / \mathrm{z}$

One special feature of this program is that if an xk value lies beyond the domain of the streamline (so that there is no root for _ to find), then the step size is decreased so that xk approaches the boundary where the streamline turns back. This feature is useful for determining the nature of the streamline when yk isn't a single-valued function of xk . If h is small enough, the values of zk will lie on one branch of the streamline and approach the boundary. (The second example below illustrates this feature.)

01 LBL "ZFLOW"	
02 "FNAME?"	function name
03 PMTA	
04 ASTO 08	
05 "\#N=?"	data points
06 PROMPT	
07 STO 09	
08 "H=?"	step size
09 PROMPT	
10 STO 04	
11 "ZO=?"	initial point
12 PROMPT	enter IM in Y , Re in X
13 ZSTO 00	saved in \{R00, R01\}
14 "TYPE? SV"	stream/velocity
15 PMTK	
16 CF 00	default is streamlines
172	
$18 \mathrm{X}=\mathrm{Y}$?	chose "V"?
19 SF 00	flags velocity
20 LBLC	main section
21 RCL 09	number of points
$22 \mathrm{ST}+\mathrm{X}$	double size
23 "ZFL"	data file name
24 SF 25	
25 PURFL	purge if there
26 CF 25	
27 CRFLD	create it (again)
28 CLX	
29 SEEKPTA	sets pointer to top
30 RCL 09	\# of points
31 E	
$32-$	$\mathrm{n}-1$
$33 \mathrm{E} / \mathrm{E}+$	1,00(n-1)
34 STO 07	save counter
35 ZRCL 00	initial point
36 STO 02	x0 in R02
37 SAVEX	and in data file
$38 \mathrm{X}<\gg$	
39 STO 03	y0 in R03
40 SAVEX	and in data file
$41 \mathrm{X}<>\mathrm{Y}$	restore order
42 XEQ IND 08	compute function
43 STO 05	save result

44	LBL 02	
45	RCL 04	h
46	RCL 07	counter
47	INT	index k
48	*	k.h
49	RCL 02	xk
50	+	$\mathrm{xk}+1=\mathrm{xk}+\mathrm{k} . \mathrm{h}$
51	STO 06	
52	RCL 03	yk as guess1
53	ENTER^	and as guess2
54	FROOT	
55	GTO 04	root found!
56	4	if not, adjust search
57	ST/ 04	new \# of points
58	ST* 07	new step size
59	GTO 02	try again
60	LBL 04	root was found
61	RCL 06	
62	VIEW X	show $\operatorname{Re}(\mathrm{xk}+1)$
63	SAVEX	and save in file
64	RDN	
65	STO 03	make $\mathrm{yk}=\mathrm{yk}+1$
66	VIEW X	show $\operatorname{Im}(\mathrm{xk}+1)$
67	SAVEX	and save in file
68	ISG 07	increase counter
69	GTO 02	do next if not last
70	CLX	
71	SEEKPT	set pointer to top
72	RTN	done.
73	LBL "ZFL"	ancillary routine
74	RCL 06	Yk in Y , xk in Xk
75	XEQ IND 08	compute P(z)
76	RCL 05	xk ot yk
77	-	subtract it
78	RTN	done.
79	LBL"PZ"	example potential
80 ZENTER^		
81 ZINV		
$82 \mathrm{Z}+$		
83	FC? 00	streamline?
84	X<>Y	yes, get Im part
	END	

Let's see next a couple of examples to check the program

Example-1: Calculate the streamline of the potential $P(z)=1 / z+z$ passing through $z=-2+0.1 i$. Using nine data points and a step size of 0.1 we obtain the results shown below...

Example-2: For the same potential as the previous example, $P(z)=1 / z+z$, compute the velocity equipotential line starting at $z=2+i$ and proceeding to the left.
We $/ / /$ try with $n=6$ and $h=-0.5$. (Notice that h is negative, which specifies that x_{k} will be to the left of xo)

Example-1 Results

xk	yk
-2.0	
-1.5	818. 3.9
-1.0	80.4484
-0.5	01915
0.0	1.003
0.5	01915
1.0	80.4944
1.5	81. 1393
2.0	

Example-2 Results

xk	$y k$
2.0000	
1.8750	04.235
1.8672	苂.1342
1.8452	20.094
1.8647	7004844
1.8646	20.2775

The example-2 results show the nature of the top branch of the curve (the heavier dashed line in the graph for the previous example). Note that the step size h is automatically decreased in order to follow the curve-rather than stop with an error-when no y-value is found for $x<1.86$.

To review the results you could set user flag 21 to halt the displaying while the calculations are being made, or alternatively review the values saved in the data file with the utility listed below:

01 LBL "DFED"			21		no, branch off
02	FLSIZE				
03	1		22	FS? 08	
04	-		23	GTO 01	no, skip over
05	E3		24	X<>Y	yes, prepare stage
06	I	0.00(n-1)	25	RDN	
07	LBL 00		26	X<>Y	get pointer
08	SEEKPT		27	SEEKPT	set pointer
09	GETX	get current	28	X $<>Y$ SAVEX	new value
10	X<>Y	index to X	30		
11	"D"		30	LBL 02	
12	ARCLI		31	X<>Y	
13	>"="		32	LBL 01	
14	X<>Y	value to X	33	ISG X	increase counter
15	ARCLX		34	GTO 00	loop for next
16	CF 22	set data entry flag	35	"DONE"	
17	FC? 08	edit mode?	36	AVIEW	
18	>"?"	yes, add question mark	37	CLA	
19	PROMPT			END	
20	FC?C 22	was data entered?			

41Z Application：Delta－Wye Transformation．

Here＇s a token of appreciation for the EE folks in the audience－using the $41 Z$ to tackle a classic： Delta－Wye impedance transformation for 3－phase systems．

The expressions to use are as follows：

$$
\begin{aligned}
R_{\mathrm{a}}=\frac{R_{1} R_{2}+R_{2} R_{3}+R_{3} R_{1}}{R_{1}} & R_{1}=\frac{R_{\mathrm{b}} R_{\mathrm{c}}}{R_{\mathrm{a}}+R_{\mathrm{b}}+R_{\mathrm{c}}} \\
R_{\mathrm{b}}=\frac{R_{1} R_{2}+R_{2} R_{3}+R_{3} R_{1}}{R_{2}} & R_{2}=\frac{R_{\mathrm{a}} R_{\mathrm{c}}}{R_{\mathrm{a}}+R_{\mathrm{b}}+R_{\mathrm{c}}} \\
R_{\mathrm{c}}=\frac{R_{1} R_{2}+R_{2} R_{3}+R_{3} R_{1}}{R_{3}} & R_{3}=\frac{R_{\mathrm{a}} R_{\mathrm{b}}}{R_{\mathrm{a}}+R_{\mathrm{b}}+R_{\mathrm{c}}}
\end{aligned}
$$

Examples．
Compute the Delta impedances equivalent to the Wye configuration given by：
$z 1=1+2 i, \quad z 2=3+4 i$, and $z 3=5+6 i$
We type：
CF 00，GTO＂Y－D＂
2，ENTER＾，1，ZENTER＾

$$
1+42
$$

4，ENTER＾，3，ZENTER＾
344
6，ENTER＾，5，XEQ C
7，72ロナ」（园4
ZRDN

ZRDN
$4,574+47,311$
and for the reverse direction we take advantage that the three values are already in the complex stack，thus there＇s no need to re－enter them．
SF 00，XEQ C

ZRDN

ZRDN
1＋ப 2

The simple program below is all there is to it - behold the power of the 41 Z complex stack in action :-)

Delta <-> Wye conversions				
1	LBL "D-Y	01	LBL "DYD"	
2	SF 00	02	ZRCL 00	Za / Zab
3	GTO 00	03	ZRC+ 01	$Z a+Z b / Z a b+Z b c$
4	LBL "Y-D	04	FC? 00	
5	CF 00	05	GTO 01	
6	LBL 00	06	ZRC+ 02	$Z a b+Z b c+Z c a$
7	"Za"	07	ZINV	1/(Zab+Zbc+Zca)
8	FS? 00	08	ZRPL^	
9	"I-b"	09	ZRCL 00	Zab
10	\|"I-=?"	10	ZRC* 02	ZabZca
11	[PROMPT	11	Z*	$Z a=Z a b Z c a$
12	ZZSTO 00	12	Z $<>$ W	1/(Zab+Zbc+Zca)
13	"Zb"	13	ZRCL 01	Zbc
14	FS? 00	14	ZRC* 00	ZabZbc
15	"I-c".	15	Z*	$Z b=Z a b Z b c /(Z a b+Z b c+Z c a)$
16	"1-=?"	16	ZRUP	1/(Zab+Zbc+Zca)
17	PROMPT	17	ZRCL 02	Zca
18	ZSSTO 01	18	ZRC* 01	ZbcZca
19	"Zc"	19	Z*	$Z c=Z b c Z c a /(Z a b+Z b c+Z c a)$
20	FS? 00	20	RTN	
21	"I-a"	21	LBL 01	
22	!"I-=?"	22	LASTZ	Zb
23	IPROMPT	23	ZRC* 00	ZaZb
24	IZSTO 02	24	ZRC/ 02	ZaZb/Zc
25	XEQ "DYD"	25	Z+	$Z a b=Z a+Z b+Z a Z b / Z c$
26	ZSTO 02	26	ZRCL 01	Zb
27	ZRDN	27	ZRC/ 00	Zb/Za
28	ZSTO 01	28	ZRC* 02	ZbZc/Za
29	ZRDN	29	LASTZ	Zc
30	ZSTO 00	30	Z+	$Z c+Z b z c / Z a$
31	ZRDN	31	ZRC+ 01	$Z b+Z c+Z b Z c / Z a$
32	ZRDN	32	ZRCL 00	Za
33	ZVIEW 00	33	ZRC/ 01	Za/Zb
34	ZVIEW 01	34	ZRC* 02	ZaZc/Zb
35	ZVIEW 02	35	LASTZ	Zc
36	RTN	36	Z+	$Z c+Z a Z c / Z b$
		37	ZRC+ 00	$Z a+Z c+Z a Z c / Z b$
		38	END	

Note that to reduce the number of FAT entries, the version in this ROM has replaced the global label DYD with the local label C, to be used as a soft key assignment.

Mandelbrot Set Area estimation

Saving the best for last, here is a brilliant example of RN's utilization provided by Valentín Albillo's excellent articles on the estimation of the Mandelbrot set area on the HP-42 and Free42 (see here:
HP Article VA040a - Boldly Going - Mandelbrot Set Area (42S).pdf)
Quoting sections or copying parts of that article is bound to do the reader and the article itself a huge disservice, so you're encouraged to read the original - included in this manual in its entirety. Thanks to Valentín for graciously granting permission to do so.

Porting it to the HP-41 platform was relatively straight-forward, once the function set was enhanced to deal with the required utilities. Obviously the HP-41 has its own limitations compared to the HP42S and more so to Free42, however it does a good-enough job aided by the 41Z_Complex
Number Module, needed for the complex math functions required by the program.
Here's the program listing on the HP-41 w/ the $41 Z$ Module.

01 *LBL "MBA"	29 X\#0?	57 RDN	85 DSE 00
022.5	30 SF 00	$58 \mathrm{X}<\mathrm{Y}$?	86 GTO 00
03 STO 06	31 *LBL 00	59 GTO 02	87 *LBL 03
042	32 RCL 05	60 SIGN	88 RCL 00
05 STO 07	33 STO 01	61 ZRUP	89 RCL 03
061.2	34 FS? 00	62 RCL Z	90 MOD
07 STO 08	35 XEQ 03		92 X\#0?
080.25	36 RNDM	64 ZMOD	93 RTN
09 STO 09	37 RCL 06	65 RCL 09	94 CLA
101	38 *	$66 \mathrm{X}>\mathrm{Y}$?	95 RCL 04
11 SEEDT	39 RCL 07	67 GTO 02	96 RCL 00
12 "POINTS=?"	40	68 ZRUP	97
13 PROMPT	41 RNDM	69 ZRPL^	$98 \mathrm{X}=0$?
14 STO 04	42 RCL 08	70 *LBL 01	99 RTN
15 STO 00	$43 *$	71 Z^2	100 AINT
16256	$44 \mathrm{X}<\gg$	72 Z+	101 " $->$ "
17 "\#ITERS=?"	45 ZRPL^	73 ZMOD	102 RCL 02
18 PROMPT	46 ZSIGN	74 RCL 07	103 AINT
19 STO 05	47 ZENTER^	$75 \mathrm{X}<=\mathrm{Y}$?	104 PROMPT
20 CLX	48 RCL 07	76 GTO 04	105 RCL Y
21 STO 02	49	77 ZRDN	106 /
22 "EVERY=?"	50 Z-	78 LASTZ	1076
23 PROMPT	51 ZMOD	79 DSE 01	108 *
24 STO 03	52 RCL 09	80 GTO 01	109 "AREA="
25 CF 21	53 *	81 *LBL 04	110 ARCL X
26 "WORKING..."	54 Z<>W	82 ISG 02	111 AVIEW
27 AVIEW	55 ZMOD	83 *LBL 02	112 END
28 CF 00	56 X<>Y	84 VIEW 00	

Boldly Going - Mandelbrot Set Area

© 2020 Valentin Albillo

Welcome to a new article in my "Boldly Going" senes, this time staring the Mandelbrot set and the difficult task of computing an accurate estimation of its area. The task is fraught with difficulties and it's been attacked with really powerful hardware (think 4 GPUs), complex software and extremely long computation times (think 35 days) but all that work has produced only about $8-9$ correct digits. Here I'll attempt the feat using just my trusty HP calculators, many orders of magnitude slower and less capable but nevertheless I'll manage to get about 5-6 correct digits in much shorter times.

Introduction

The Mandelbrot set (\mathbf{M} for short) is the most well-known fractal of all, an amazing mathematical object which mystified everyone since its discovery by B. Mandelbrot ca. 1975 and subsequent popularization in the August 1985 issue of Scientific American. There is an incredible amount of readily available literature dealing with all aspects of M from the very basic to the most advanced so I'll refer the reader to it and won't discuss them here.

M has a fractal boundary which encloses a finite area whose precise value is still an open question, and an estimation of it is what this article is all about. To wit, there are several ways to try and estimate the area, including ${ }^{1}$:

- the Monte Carlo approach, where a large number of random points are generated within some enclosing box, and a tally is kept of how many belong to \mathbf{M}, which is then used to compute the estimation.
- the pixel-counting approach, where finer and finer grids are averaged to tally the number of grid points belonging to \mathbf{M}.
- the theoretical approach, where a large number of terms of an exact formula converging (extremely slowly) to the area of M are evaluated and added up to get an estimate.

The Monte Carlo approach has some advantages (such as not being prone to potential aliasing problems as may happen with equally-spaced grids) and disadvantages, the main one being that as is typical of standard Monte Carlo approaches, to get one more correct digit (i.e., increasing the resolution 10 x) the mumber of generated pixels would need to be increased 100 x , which would result in approximately 100 x the running time. It also requires a very good, non-biased random number generator with a large cycle (at least several billions long).

The pixel-counting approach has been widely used. For example, back in 2012 R. Munafo launched an 8-day run to calculate almost 17 trillion pixels (at 2.4 million $\mathrm{px} / \mathrm{sec}$) to get an estimated area of 1.506591856 with an estimated error of 0.0000000256 .

Later, T. Förstemann used some powerful hardware (Intel Core i7 2600 K CPU, 2 x GPU Radeon HD 5970 for a total of 4 GPUs with 1600 stream processors each, 350 W under load) and software (Mathematica 8.0.4.0 under Windows 7, ATI driver Catalyst 11.2 with AMD Stream SDK 2.3 and installation of a C-compiler [Visual Studio 2011] for Mathematica) running for 35 days straight with a grid size of $2,097,152$ for a total of $87,960,930,222,520$ calculated pixels (at more than 29 million $\mathrm{px} / \mathrm{sec}$ and depths starting at $8,589,934,592$ iterations) to get an estimated area/error of 1.5065918849 and 0.0000000028 , ten times better than Munafo's.

[^0]Finally, the theoretical approach uses Laurent Series, in particular a specific one introduced by Ewing and Schober, which allows computing the area of \mathbf{M} by evaluating an infinite series of the form:

$$
M_{\text {area }}=\pi\left(1-\sum_{n=0}^{\infty} n \cdot b_{n}^{2}\right)
$$

where b_{n} are the coefficients of the Laurent series, the first ones being $b_{0}=-1 / 2, b_{1}=1 / 8, b_{2}=-1 / 4, b_{3}=15 / 128$, $b_{4}=0, b_{5}=-47 / 1024$, etc. For a finite number of terms this formula always gives an upper bound of the area but despite its mathematical elegance it is absolutely unsuitable to compute the area as it converges incredibly slowly, with an estimated $6 \cdot 4 \cdot 10^{11}$ terms needed to get just one correct digit and more than 10^{118} terms to get two !

Matter of fact, Ewing et al used 500,000 terms ($\left.b_{\text {so0000 }} \sim 5.5221313 \cdot 10^{-8}\right)$ in 1990 to get an estimated area of 1.72 and later in 2014 Bitmer et al used $5,000,000$ terms (whose b_{n} coefficients took 3 months to compute, $b_{\text {sowawe }} \sim 8.0532 \cdot 10^{-11}$) and got an estimation of 1.68288 .

To complicate the matter even further, this theoretical approach seems to converge to a value between 1.60 and 1.70 while the empirical approaches (Monte Carlo and pixel counting) give estimates around 1.50659 . This might be due to the fact that the boundary of \mathbf{M} has Hausdorff dimension 2 and thus might have positive (i.e., non-zero) area, which would account for the discrepancy as none of the empirical approaches can ever generate and calculate points or pixels exactly belonging to M's boundary, so their potential contribution to the area would never be included in the computation. As of 2020 , this is still in the realm of speculation but nevertheless it seems quite plausible ${ }^{1}$.

Boldly going ...

As stated in the Introduction above, the purpose of this article is to use nothing but my trusty HP calculators (whether in physical or virtual form) to try and compute an estimation as accurate as possible (say 5-6 correct digits) for M's area in reasonable times: less than half an hour for a virtual calc, a day or two at most for a physical one), which is no mean feat.

In view of the above described hardware, software and computation time requirements, it's clear that accomplishing my goal will require a good algorithm and pretty optimized code. As this is an informal Article, not a formal research paper, I'll adopt a Machiavellian approach ("The Ends Justify the Means") and I'll mix sound mathematical optimizations with more informal heuristics as required.

To begin with, I'll use a Monte Carlo approach, generating a suitably large number N of random points within a rectangular box which completely encloses \mathbf{M}, and counting how many actually belong to \mathbf{M}. The sought-for area will then be proportional to the count. To make the task manageable I'll use the following optimizations:

- Each point (x, y) will be generated as a random complex number z within a rectangular box enclosing \mathbf{M}. Actually, the leftmost extreme of \mathbf{M} is at $x=-2$, the righmost extreme is at $x=0.471185334933396+$, the topmost extreme is at $y=1.122757063632597+$ and the downmost extreme is at $y=-1.122757063632597+$.
- As \mathbf{M} is symmetric, I only need to compute the area of the top half and the total area of M will then be twice this value. This means that I can use a smaller rectangular box with x ranging from -2 to 0.5 and with y ranging from 0 to 1.2 and I'll generate all random complex points z within that box.
- Each randomly generated complex z has to be tested for inclusion in M, which is done via the usual escape time algorithm: start with $z_{0}=(0,0)$ and $c=z$, then iteratively compute $z_{n+1}=z_{n}{ }^{2}+c$ until either the absolute value of $z_{n} \geq 2$, in which case z escapes to infinity and so definitely does not belong to \mathbf{M}, or else a \max. number of iterations is reached and z is considered to belong to \mathbf{M} and the count is increased by 1.

[^1]- As computing whether every z belongs to \mathbf{M} is a very time-consuming iterative process (which will reach the maximum number of iterations if z actually belongs to \mathbf{M}) we can try and avoid it altogether for those z which we can easily ascertain in advance as belonging to M without performing any iterations. That's the case for those z either in the main cardioid (below left) or in the largest circular bud (main disk, below right):

- The main cardioid's area is $3 \pi / 8=1.178097+$ (about 78.20% of the total area), while the main disk has an area of $\pi / 16=0.196350+$, (another 13.03%) and their combined total is $7 \pi / 16=1.374447+$, which already accounts for 91.23% of the total area of \mathbf{M} so we need to compute just the remaining 8.77%, thus the expensive iterative process will be executed in full less than 9% of the time, a considerable savings.
- To wit, if we can quickly check whether a given z belongs or not to the main cardioid or the main disk we'll save lots of running time and as it happens, indeed we actually can, using just a few steps for the RPN version or just 2 lines of code for the BASIC version.
- As for those points not belonging to either the main cardioid or the main disk, checking whether they belong to some other minor disks or cardioids quickly becomes more expensive and complicated than performing the K iterations, which will proceed faster if K is relatively small, say 256 iterations max.

However, this will adversely affect the accuracy because there will be points which do not escape to infinity in 256 iterations but would if performing 512 iterations, say, and the same would happen with a bigger K, there will always be points (i.e.: those sufficiently close to the boundary) which will require more iterations than any limit we might specify in advance and so those points would be miscounted as belonging to \mathbf{M} while actually they don't. Nevertheless, there will be fewer of them as K grows bigger, which will help increase the accuracy but negatively impact the running time.

- I'll attempt to alleviate this dilemma by calculating a large number N of random points but using a relatively low maximum number of iterations, say $K=256$, which will speed the computation as desired. To increase the accuracy, I'll apply afterwards a correction factor to the resulting area, which will be heuristically computed like this: we'll choose a suitably smaller number of random points $N_{2} \ll N$ and we'll obtain the count of the points belonging to \mathbf{M} using first $K=256$, then $K=1024$ iterations. The resulting correction factor would then be:

$$
f_{\text {corr }}=\text { count }_{1024} / \text { count }_{256}
$$

Simple as it is, this non-rigorous, heuristic approach works quite nicely and will allow us to use a relatively low number of max. iterations without actually compromising the obtained accuracy too much.

- In short, my algorithm will rely on: (a) rigorous math (statistically-sound Monte Carlo method, tight box, symmetry, main cardioid and disk detection, etc.), (b) nonrigorous heuristics (the correction factor) and last but not least (c) a little luck. When dealing with random numbers you always need a little luck, as the sequence $7,7,7, \ldots$ has the same probability as any other more random-looking sequence. In practice this means that the results might be worse than average or better than average and the latter case is the lucky part.

Program Listing for the HP42S ${ }^{1}$

01	LBL "AM"	26	CF 21	51	2BS	76	GTO 00
	2.5		"Working..."		$\mathrm{X}<\mathrm{Y}$?		LBL 03
	3T0 06		AVIEN		GTO 04		RCL 00
	2		CF 00		SIGM		RCL 03
05	37007	30	$\mathrm{z}=0$?	55	RCL +3 T 2	80	MOD
	1.2		SF 00		ABS		$\mathrm{X}=0$?
	3T0 08		LBL 00		RCL 09		RTN
	0.25		RCL 05		$\mathrm{X}>\mathrm{Y}$?		CLA
	STO 09		3TO 01		GTO 04		RCL 04
10	1	35	F3? 00	60	Rt	85	RCI- 00
	3EED		XEQ 03		RCL 07		$\mathrm{x}=0$?
	"Points?"		RANT		RCL ST Y		RTN
	PROMPT		RCLM 06		LBL 01		AIP
	STO 04		RCL- 07		$\mathrm{X}+2$		$\vdash^{\prime \prime} \rightarrow$ "
15	STO 00	40	Ran	65	RCI+ 3 T 2	90	RCL 02
	256		RCL. 08		ABS		AIP
	"Iters?"		COMPLEX		X 2 Y ?		RCI $-3 T \mathrm{Y}$
	PROMPT		ENTER		GTO 02		6
	37005		ENTER		$\mathrm{X}<\gg 3 \mathrm{I}$		\%
20	CLX	45	SIGN	70	DSE 01	95	- "ifArea~"
	STO 02		RCL- 07		GTO 01		ARCL ST X
	"Every?"		RCLm 3T I		LBL 04		AvIEW
	PROMPT		ABS		ISG 02	98	EMD
	37003		RCL. 09		LBL 02		
25	RECT	50	$\mathrm{Z} 队 \mathrm{Y}$	75	D3E 00		

Uses:
-98 steps (199 bytes)

- flags 00,21
- labels 00-04
- ngisters $00-09$
- sets RECT mode
- ary angular mode

Registers:

00:	N-loop index
01:	K-loopindex
02:	M (count)
$03:$	every P
$04:$	N (\#points)
$05:$	K (\#iterations)
$06:$	2.5
$07:$	2
$08:$	1.2
$09:$	0.25

Program details

Steps 01-31 : main entry point: initialization ${ }^{2}$ and prompting input from the user. $\{31$ steps $\}$
Steps 32-36: start of the main loop. \{ 5 steps \}
Steps 37-44: generation of a random point within the box, plus 2 copies on the stack. (8 steps \}
Steps 45-53: checking whether the point belongs to the main cardioid (thus, to M). \{9 steps \}
Steps 54-59: checking whether the point belongs to the main disk (thus, to M). \{6 steps \}
Steps 60-71: checking whether the point belongs elsewhere in \mathbf{M} (iterations). \{ 12 steps \}
Steps 72-73: if the point does indeed belong to \mathbf{M}, increment the count. \{ 2 steps \}
Steps 74-76: decrement the number of points yet to generate/check and loop until no more left. \{ 3 steps \}
Steps 77-98: output routine, displays either the intermediate results and/or the final result. \{ 22 steps \}

[^2]
Usage Instructions

The program accepts the number N of points to generate, the maximum number of iterations K, and whether you want to display intermediate results every P points or just the final estimation for the area.
The program doesn't automatically compute/apply any correction factor, that's left at the discretion of the user to decide whether and how to compute it since there's no optimal approach valid for all N and K, there's plenty of leeway. Of course, the program will greatly assist in computing it, as we'll see in the main run below.
To compute an estimation of the area of M proceed as follows:

```
XEQ "AM" }->\mathrm{ Points? {asks for the number of points to generate, N}
    N R/S T Iters? {asks for the max.num. of iterations',K. Default=256, just press R/S }
    K R/S }->\mathrm{ Every? {asks ifyou want to display intermediate results every P points}\mp@subsup{}{}{2}\mathrm{ ;
    if you don't and just want the final result, simply press R/S}
    P R/S }->\mp@subsup{\mathrm{ Point }}{P}{}->\mp@subsup{\mathrm{ Count }}{P}{}\quad{\mathrm{ the intermediate tally of points generated and resulting counts }
        Area ~Area }\mp@subsup{P}{P}{}\quad{\mathrm{ the intermediate estimations of the area }
        P Point N}->\mp@subsup{\mathrm{ Count }}{N}{}\quad{\mathrm{ the final tally of points generated and resulting count }
        Area ~Area N { the final estimation of the area }
```


Further Considerations

To choose the number of points N and max. iterations K, we'll take into account the following considerations:

- Both the correctness of the estimated area and the ruming time depend on N and K, the larger the better as far as the estimated area is concerned but the longer the running time will be. Also, whether you're using a physical HP42S/DM42 or a virtual HP42S and its underlying OS (iOS, Android, Windows, Mac, Linux, other) and hardware, all of it will greatly influence the choice of calculation parameters.

Generally speaking, a physical original $H P 42 S$ will be the slowest by far, and this will limit the rumning times allowable without depleting the batteries, probably 1-2 days at most. The DM42 is $\sim 100 \mathrm{x}$ faster and can use an USB power source, so it can run the program for much longer. Some experimentation will be required, starting at a low value of N, K (say $N=1,000$ and $K=256$) and noting the rumning time. Then it's possible to select how big N and K should be, as the time will be proportional to both.

- On the other hand, a virtual HP42S will be orders of magnitude faster. For instance, using Free 42^{3} $B C D$ on an Android mid-range Samsung tablet (as done below) will generate and check about 1,000 points per second at 256 max. iterations per point. This means I can use $N=500,000$ points and $K=$ 256 max . iterations, say, and get the result in less than 10 min . Using a faster version of Free 42 and/or a faster emulator/OS/ hardware combination can easily get results even 10x or 100x faster.
- Increasing the number of iterations K will always reduce the estimated area because performing more iterations weeds out points that never escaped to infinity when using K iterations, and thus were included in the count, but actually did escape when using more iterations and so weren't included now.
- However, increasing the number of points N while leaving K fixed results in estimated areas which overshoot/undershoot the area, slowly converging to the correct value of the area for that number of iterations, $\mathbf{M}_{\boldsymbol{K}}$, not to the correct area of \mathbf{M}, which would be the value for infinite iterations.
- This can be remedied by using a correction factor, which uses $K_{i, j}$ to extrapolate K_{∞} as we'll see below.

[^3]
Sample runs

Let's see several examples. We'll asume FIX 05 display mode for all results that follow.

Example 1

For starters, let's estimate \mathbf{M} 's area using $N=10,000$ points and $K=256$ iterations, showing just the final result.

XEQ	'AM"	\rightarrow	Points?	
10000	R/S	\rightarrow	Iters?	\{we'll use 256 iters. which is the default so just press R/S \}
	R/S	\rightarrow	Every?	\{ we just want the final result so just press R/S \}
	R/S	\rightarrow	$10000 \rightarrow 2572$	\{ the final tally: 10,000 points generated, 2,572 landed in M \}
			Area ~ 1.54320	\{ the estimated area of M, just two correct digits, err $=2.43 \%, 11{ }^{\prime \prime}$ \}

Example 2

Let's improve the estimation using $N=10,000$ points and $K=512$ iterations, showing results every 2,000 points.

XEQ	"AM"		Points?		
10000	R/S		Iters?		
512	R/S	\rightarrow	Every?		
2000	R/S	\rightarrow	$2000 \rightarrow 511$	Area~1.53300	\{ the first intermediate result \}
		\rightarrow	$4000 \rightarrow 1041$	Area~1.56150	\{the $2^{\text {nd }}$ intermediate result \}
		-	$6000 \rightarrow 1561$	Area~1.56100	\{ the $3^{\text {rd }}$ intermediate result \}
		-	$8000 \rightarrow 2053$	Area~1.53975	\{ the $4^{\text {th }}$ intermediate result \}
			$10000 \rightarrow 2560$	Area~1.53600	\{ fnal ressll, still 2 comect digits but en $=1.95 \%, 19^{\prime \prime}$ \}

The Ultimate Run

Now for the real McCoy. Taking the above considerations into account and as I'll be using a virtual HP42S (Free42 BCD for Android) numing on a mid-range Samsung tablet, I'll use half a million points and a low 256 iterations for speed but I'll also compute and apply a correction factor to try and increase the precision. I'll compute this correction factor first, using 5 x fewer points than the main run but 4 x more iterations, as follows:

$$
f_{\text {corr }}=\text { Area }_{100000,1024} / \text { Area }_{100000,256}
$$

where Area N, K means computing the area using N points and K iterations. Let's proceed to compute forr :

XEQ	"AM"	\rightarrow Points?		\{we'll use $5 x$ less points, just 100,000 \}
100000	R/S	\rightarrow Iters?		\{we'll use first 1,024 iterations \}
1024	R/S	\rightarrow Every?		\{we won't be monitoring progress \}
	R/S	$\rightarrow 100000 \rightarrow 25312$	Area~1.51872	\{the value of Area ${ }_{100000,1024}\left[5^{\prime} 45^{\prime \prime}\right]$ \}
			STO 10	\{we store it for later use \}
XRQ	"AM"	\rightarrow Points?		\{ as above, still just 100,000 \}
100000	R/S	\rightarrow Iters?		\{ now we'll use 256 iterations, so just press R/S \}
	R/S	\rightarrow Every?		\{we won't be monitoring progress either \}
	R/S	$\rightarrow 100000 \rightarrow 25501$	Area~153006	\{the value of Area $1_{100000,256}\left[1^{\prime} 58^{\prime \prime}\right]$ \}
			STO $\div 10$	\{ R_{10} now contains the c. factor ~ 0.99258853 \}

Now it's time for the the main computation, to which we'll afterwards apply the just calculated (and stored) correction factor. This will take less than 10 min . in all and we'll monitor progress ..

XEO	" M M ${ }^{\text {/ }}$	\rightarrow Points?		(we'll use the fill 500,000 points \}
500000	R/S	\rightarrow Iters?		\{ we'll use 256 iterations, so just press R/S)
	R/S	\rightarrow Every?		\{we'll monitor progress every 100,000 points \}
100000	R/S	$\rightarrow 100000 \rightarrow 25501$	Area~1. 53006	\{ the first intermediate result [1 '58"]\}
		-	
		$\rightarrow 500000 \rightarrow 126486$	Area -1.51783	\{ the main result, which in itself has err ~ 0.75\%
				before applying the correction factor [$\left.\left.9^{\prime} 47^{\prime \prime}\right]\right\}$

Finally, let's apply to the just computed area in the display the correction factor previously computed and stored:

$$
\text { RCLX } 10 \rightarrow \underline{1.50658} \quad \text { \{more precisely, } 1.50658 _263 \text { vs. Förstemann's 1.50659_188\} }
$$

which is my final computed estimation for the area of \mathbf{M} and it's correct to 6 digits within less than one $u l p$ (unit in the last place). It differs from Förstemann's 88 -trillion-pixels-calculated-at-8.6-billion-iterations-per-pixel result by just ~ 0.00000925, an error of $\sim 0.000614 \%$.
He got an estimated area accurate to 9 correct digits (within possibly a couple ulps or three) in 35 days at great expense (both the costly hardware and the 35 -day electricity bill), while I got 6 correct digits in less than 20 min . (actually $17^{\prime} 30^{\prime \prime}=9^{\prime} 47^{\prime \prime}$ for the main computation plus $5^{\prime} 45^{\prime \prime}+1^{\prime} 58^{\prime \prime}$ for the correction factor computation) at negligible expense, so point made. Not bad, isn't it ?

Where to go now

As this is an informal article and the point has already been made, we could really call it a day and move on. But if we were willing to, there's a number of further techniques to consider in order to improve the accuracy and/or reduce the computation times. For instance, among other possibilities:

- We can avoid wasting time generating and checking random points in blank areas ($\sim 75 \%$ of the enclosing box used here) where no part of \mathbf{M} is, by subdividing \mathbf{M} into a number of rectangular boxes (9 in the sample partition below) and then computing the total count as the sum of the counts in each individual box.

It is important to distribute the total number of points N among the boxes proportionally to the area of each box so that the density of points is the same. Otherwise we would be adding areas computed with different precisions and this is wasteful as the resulting sum will be no more accurate than the least accurate area.
To implement this, the program must be converted into a subprogram with no prompting and no output, which accepts the dimension of each box and the number of points N_{i} to use and returns the count to a main program which first inputs the number of points N and max iterations K from the user and then calls the subprogram with the coordinates and the N_{i} for each box, then adds up the returned counts and computes and outputs the total area. There's no overhead and large blank areas are thus avoided.

Also, the process is faster for each box because some time-consuming checks are avoided altogether:

- Box 1 only needs to check if points belong to the main cardioid, but forfeits the check for the disk.
- Box 2 only needs to check if points belong to the main disk, but forfeits the check for the cardioid.
- all remaining boxes forfeit both checks, which significantly speeds the process.
- The correction factor could be improved like this: we'll choose a suitable number of random points N and we'll obtain the count of the points belonging to \mathbf{M} for an increasing max number of iterations, say for $K=$ $256,512,1024,2048$, etc. We'll then analyze the counts obtained and roughly extrapolate what the expected count would be for $K=\infty$. The resulting correction factor would then be:

$$
f_{\text {corr }}=\text { count }_{\infty} / \text { count }_{25 \sigma}
$$

which will presumably get us a more accurate estimation. For instance, for $N=100,000$ points we get:

\boldsymbol{K}	256	512	1024	2,048	4,096	8,192	∞
count $_{\boldsymbol{K}}$	25,501	25,352	25,312	25,277	25,261	25,254	$?$

Now we simply use some extrapolation or curve fitting technique to try and estimate count t_{∞}.

- We can use periodicity checking within the iterations to detect loops and abort the iterations early.
- We can add a check for the secondary disk (the one in box 3 in the partition above) or even other μ-atoms.
- And so on and so forth ... and what about the area of other fractals (Mandelbar, Burning Ship, ...)?

Notes

1. Quoting D. Allingham (see References below): "This method [Monte Carlo] was employed using Mathematica, and after 20 hours and nearly 45,000 points being generated, the approximate area of the Mandelbrot set was found to be 1.4880 to 4 decimal places." Actually the result barely has 2 conrect digits and shows the amazing progress made in the last 25 years, as now I've used an inexpensive tablet to run my virtual $H P$ calculator's 98 -step $R P N$ program to calculate $\sim 10 \mathrm{x}$ more points $\sim 60 \mathrm{x}$ faster and got a result $\sim 10,000 \mathrm{x}$ more accurate.
2. I've also written a 9-line (334-byte) BASIC version of this $R P N$ program for the $H P-71 B$. Although the random number generator is the same as the one Free 42 uses, producing the exact same sequence of random numbers when using the same seed (venified up to 100 million consecutive random numbers when starting from the seed 1 , as used in the $R P N$ program featured here), internally the $H P-71 B$ uses 15 digits (12 digits available to the user) while Free 42 has 34 -digit accuracy, which over many generated points and iterations tends to produce slightly different results, so the sample and main runs given here might not produce the exact same results shown here.

References

Daniel Bittmer et al (2014)
Thorsten Förstemann (2012)
Kerry Mitchel (2001)
David Allingham (1995)
John Ewing (1993)
Ewing and Schober (1990)
A.K. Dewdney (1985)

New Approximations for the area of the Mandelbrot Set
Numerical estimation of the area of the Mandelbrot set A Statistical Investigation of the Area of the Mandelbrot Set Conformal Mappings and the Area of the Mandelbrot Set Can We See the Mandelbrot Set? On the coefficients of the mapping to the exterior of the Mandelbrot set Computer Recreations (Scientific American, August 1985 issue)

Free42: An HP-42S Calculator Simulator (website)

Copyrights

Copyright for this article and its contents is retained by the author. Permission to use it for non-profit purposes is granted as long as the contents aren't modified in any way and the copynight is acknowledged.
For the purposes of this copyright, the definition of non-profit does not include publishing this article in any media for which a subscription fee is asked and thus such use is strictly disallowed without explicit written permision granted by the author.

Discrete Fourier Transform

This module includes several programs related to the DFT subject.

- The first one is just a driver for the functions ZDFT and ZIDFT included in the $41 Z$ module, used to input the data points throughout the execution. This driver program was not included in the 41 Y due to the lack of enough available space.
- The second one is a FOCAL equivalent to the MCODE implementation in the $41 Z$, therefore should be equivalent to the first one only considerably slower of course.
- The third one is a Fast Fourier Transform implementation written by Narmwon Kim, and published in the US Users' Library

Program \#1.- Driver for ZDFT and ZIDFT in the $41 Z$ module.

01 LBL "ZDFT+"			21	RDN	results word
02 CF 00			22	ZOUTP	data output
03 GTO 00			23	RTN	done.
04 LBL "ZIDFT+"			24	LBLC	Undo
05 SF 00			25	0	
06 LBL 00			26	TF	toggles F0
07 "\#PTS=?"			27	RCL 00	bbb.eee
08 PROMPT			28	FRC	0.eee
09	E3/E+	build pointer	29	E3	
10	STO 00		30	*	eee
11	ZINPT	data entry	31	ST+ X	2.(eee)
12	LBL 04		33	ENTER^	
13	RCL 00	control word	34		
14	FC? 00	direct?	35	/	0.000\|2.(eee)
15	ZDFT	direct DFT	36	+	0.000\|2.(eee)
16	FS? 00	inverse?	37	2.002	
17	ZIDFT	inverse DFT	38	+	(e+2),002\|(2e)
18	RCLM	number of pts.	39	REGMOVE	
19	E3/E+	build pointer	40	GTO 04	
20	STO 00	inputl word			

In addition to facilitating the data entry process, this program offers the option to undo the last transformation to verify that the results obtained were correct, by doing the inverse calculation again which should equal the same original data set. If you want to use such option simply press R/S after all points have been outputted, or press XEQ C at any time afterwards. Note that function TF in the OS/X module is used here to toggle the status of user flag FOO.

Program \#2.- A FOCAL counterpart.

The FOCAL program below is a rough equivalent of the MCODE function. Execution times for this program are about four to five times longer than the MCODE counterpart.

01	LBL "ZDFT"	
02	CF 01	
03	GTO 00	
04	LBL "ZIDFT"	
05	SF 01	
06	*LBL 00	
07	STO 00	N
08	E3/E+	
09	STO M(5)	j,00N
10	*LBL 01	outer loop
11	VIEW M(5)	
12	RCL 00	N
13	STO N(6)	
14	E3/3+	
15	STO O(7)	k,00N
16	RCL 5(M)	j,00N
17	INT	j
18	ST+ N(6)	dest: ZR(N+j)
19	E	
20	-	j-1
21	PI	
22	*	
23	ST+ X(3)	$2 p .(j-1)$
24	RCL 00	N
25	$/$	$2 p .(j-1) / N$
26	STO 01	
27	CLZ	

28	ZSTO IND N(6)	reset destination
29	*LBL 02	inner loop
30	RCL 0(7)	$\mathrm{k}, 00 \mathrm{~N}$
31	INT	k
32	E	$\mathrm{k}-1$
33	-	$2 \mathrm{p} .(\mathrm{j}-1) / \mathrm{N}$
34	RCL 01	$2 \mathrm{p} .(\mathrm{j}-1)(\mathrm{k}-1) / \mathrm{N}$
35	*	
36	FC? 01	
37	CHS	
38	E	
39	P-R	next k
40	ZRC* IND O(7)	
41	ZST+ IND N(6)	
42	ISG O(7)	
43	GTO 02	
44	FC? 01	
45	GTO 00	
46	ZRCL IND 01	
47	RCL 00	
48	ST/ Z	
49	/	
50	ZSTO IND 01	
51	*LBL 00	
52	ISG M(5)	next j
53	GTO 01	loop back
54	END	

Note that contrary to the functions in the $41 Z$, this program will not check that enough data registers are available. If not, the "NONEXISTENT" message will be presented; adjust the size and try again. Make sure complex data register ZR00 is not used to store the sample - which must start at ZR01. This is because (real) data registers R00 and R01 are used for scratch calculations by these functions.

Program \#3. - Fast and Furious.

Last in this section is an enhanced version using extended memory for the data storage of the contribution to the User's Library by Narmwon Kim (reference 008068C) with a Fast Fourier Transform program, using the well-known Cooley \& Tuckey FFT algorithm. Some of the original UPL forms reproduced here, but the program listing is more elaborate for the additional features.

00868 C PROGRAM DESCRIPTION I

[^4]
PROGRAM DESCRIPTION II

Sample Problem (Sketch if Desired)

Example 1: Find the DFT of a sequence, $x(n)=(1,1+j, 3,1-j)$.

Example 2: Find the IDFT of a sequence, $X(k)=(6,0,2,-4)$.

SOLUTION:

USER INSTRUCTIONS

Page 7 of ε

REGISTERS, STATUS, FLAGS, ASSIGNMENTS

Using Extended functions makes this program easier to use and provides a more stable repository for the different data sets, which are saved as data files in X-Mem.

Example．Do the transformation for the following data set：

$\{1,1+j, 3,3+j\}$

The first time we＇ll not be using an existing data file for the data set，even if it already exists－ therefore we＇ll choose＂ N ＂to the pertinent question if it appears：

XEQ＂FFT	H5E FiP Y：M
＂N＂	\＃PGIMTS ${ }^{\text {Pa }}$
4，R／S	
1，ENTER，0，RS	
1，ENTER＾，1，R／S	
3，ENTER＾ ，0，R／S	
3，ENTER＾1，R／S	
R／S	Z $1=$－2（ $1-山$ ）
R／S	Z こ＝可－」己
R／S	Z 3 －－2（ $4+5$
R／S	吅，近边近

At this point the data file FFT contains the four results for a more permanent repository，one that can even be used to obtain the inverse and check the accuracy of the programs：

XEQ＂IFF＂	U5E FLT YM，
＂Y＂	Z可＝1＋
R／S	Z $1=1(1+4)$
R／S	
r／s	Zヨニヨャ」1
R／S	吅，运是行

Note：When the use of the data file is selected the program expects the pointer to be set at the first element．This is normally the case，as both FFT and IFF will leave it in that setting－but if you manually alter the pointer then an END OF FL error message will probably come up．You can make sure with the sequence＇FFT＇． 0 ，SEEKPTA before running the programs．

01	*LBL "IFF"
02	SF 00
03	GTO 03
04	*LBL "FFT"
05	CF 00
06	*LBL 03
07	RAD
08	CF 29
09	SIZE?
10	"FFT"
11	SF 25
12	FLSIZE
13	FC?C 25
14	GTO 03
15	CF 01
16	"USE FL? YN"
17	PMTK
18	E
19	-
20	X\#0?
21	GTO 03
22	SF 01
23	RDN
24	ENTER^
25	ENTER^
26	2
27	/
28	STO 04
29	RDN
30	GTO C
31	*LBL 03
32	"\#POINTS=?"
33	PROMPT
34	STO 04
35	ST+X
36	"FFT"
37	SF 25
38	PURFL
39	CF 25
40	CRFLD
41	17
42	+
43	$X>Y$?
44	PSIZE
45	*LBL C
46	CLX
47	SEEKPTA
48	RCL 04

49	STO 08	97	FC? 01
50	LOG	98	GTO 00
51	2	99	GETX
52	LOG	100	GETX
53	/	101	*LBL 00
54	FIX 8	102	STO IND 07
55	RND	103	X<>Y
56	STO 05	104	STO IND 06
57	FRC	105	1
58	STO 00	106	ST+ 00
59	FACT	107	DSE 08
60	*LBL 01	108	GTO 01
61	"Z"	109	1
62	RCL 00	110	STO 03
63	ARCLI	111	STO 02
64	" $=$? $\operatorname{Re}^{\wedge} \mathrm{IM}$ "	112	*LBL 15
65	RCL 05	113	2
66	STO 01	114	RCL 03
67	RCL 00	115	$\mathrm{Y}^{\wedge} \mathrm{X}$
68	STO 03	116	STO 01
69	CLX	117	RCL 02
70	STO 02	118	STO 08
71	*LBL 05	119	CLX
72	RCL 03	120	STO 09
73	ENTER^	121	PI
74	ENTER^	122	ST+X
75	2	123	FC? 00
76	/	124	CHS
77	INT	125	RCL 01
78	STO 03	126	/
79	ST+X	127	RCL 02
80	-	128	P-R
81	RCL 02	129	STO 10
82	ST+X	130	X<>Y
83	+	131	STO 11
84	STO 02	132	RCL 02
85	DSE 01		
86	GTO 05	133	STO 12
87	17	134	*LBL 16
88	RCL 02	135	RCL 12
		136	STO 00
89	ST+X	137	*LBL 02
90	+	138	RCL 02
91	STO 06	139	15
92	E	140	RCL 00
93	+	141	$\mathrm{ST}+\mathrm{X}$
94	STO 07	142	+
95	FC? 01	143	STO 13
96	PROMPT		

HP41 Contour rom					
144	+	187	RCL 04	230	STO 01
145	STO 14	188	RCL 00	231	0
146	LASTX	189	$\mathrm{X}<=\mathrm{Y}$?	232	SEEKPT
147	RCL 01	190	GTO 02	233	*LBL 11
148	+	191	RCL 10	234	RCL IND 09
149	STO 15	192	RCL 08	235	RCL IND 08
150	RCL 02	193	*	236	FC? 00
151	+	194	RCL 11	237	GTO 06
152	STO 16	195	RCL 09	238	RCL 04
153	RCL IND 15	196	*	239	/
154	RCL 08	197	-	240	X<>Y
155	*	198	RCL 08	241	LASTX
156	RCL IND 16	199	RCL 11	242	/
157	RCL 09	200	*	243	X<>Y
158	*	201	RCL 09	244	*LBL 06
159	-	202	RCL 10	245	FIX 8
160	STO 06	203	*	246	ZRND
161	RCL IND 15	204	+	247	SAVEX
162	RCL 09	205	STO 09	248	X<>Y
163	*	206	X<>Y	249	SAVEX
164	RCL IND 16	207	STO 08	250	X<>Y
165	${ }_{*}^{\text {RCL }} 08$	208	RCL 02	251	FIX 3
166	*	209	ST+ 12	252	ZAVIEW
167	+	210	RCL 01	253	
168	STO 07	211	2	254	RCL 00
169	RCL IND 14	212		255	
170	RCL 07	213	RCL 12	256	" $=$ ="
171	-	214	$\mathrm{X}<=\mathrm{Y}$?	257	-3
172	STO IND 16	215	GTO 16	258	AROT
173	RCL IND 13	216	RCL 02	259	PROMPT
174	RCL 06	217	ST+ 03	260	RCL 02
175	-	218	RCL 05	261	ST+ 00
176	STO IND 15	219	RCL 03	262	
177	RCL IND 13	220	$\mathrm{X}<=\mathrm{Y}$?	263	ST+ 08
178	RCL 06	221	GTO 15	264	ST+ 09
179	+	222	BEEP	265	DSE 01
180	STO IND 13	223	CLX	266	GTO 11
181	RCL IND 14	224	STO 00	267	CLX
182	RCL 07	225	17	268	SEEKPT
183	+	226	STO 08	269	
184	STO IND 14	227	18		
185	RCL 01	228	STO 09		
186	ST+ 00	229	RCL 04		

Direct Bessel fns. via Continued Fractions

The SandMath contains a very competent set of Bessel functions, both for the direct (J, Y) and the modified kinds (I, K). The implementation is a hybrid of MCODE and Focal routines, really optimized for the applicable valid range of the functions.

And therein lays the only caveat: that implementation does a direct sum of the alternating terms of the series, which isn't valid for asymptotic cases, where either the order or the argument (or their sum!) are very large. To palliate this, the SandMath also includes an iterative approach for JNX, using recurrence formulas - but alas, the execution time can be really long.

Is there another way to skin this cat? Well as it turns out yes, at least for the non-modified cases there's a very intriguing approach based on continued fractions, which after all are another way to iterate for the solution - only that we can take advantage of the MCODE implementation in both the SandMath and the $41 Z$ Modules, because there are two different continued fractions involved, one of them in the complex variable - even for the real Bessel J case!

Here too the routine is a direct modification of Jean-Marc Baillard's FOCAL program available on his web site (cf \#5 in http://hp41programs.yolasite.com/bessel.php), adapted to use the MCODE functions CF2V and ZCF2V instead of the FOCAL subroutines - faster and shorter code. A real beauty to see the SandMath and $41 Z$ joining forces to crack this one!

The formulas used are as follows:

$$
\begin{aligned}
\text { With } & p+i . q=-1 /(2 x)+i+(i / x)\left[\left(0.5^{2}-n^{2}\right) /\left(2 x+2 i+\left(1.5^{2}-n^{2}\right) /(2 x+4 i+\ldots . .)\right)\right] \\
\text { and } & g_{n}=-1 /(((2 n+2) / x)-1 /(((2 n+4) / x)-\ldots . .))
\end{aligned}
$$

Then, calling $\mathrm{D}=$ the denominator of the second continued fraction:

$$
\begin{aligned}
& J_{n}(x)=\operatorname{sign}(D)\left[(2 q /(x . P i)) /\left(q^{2}+\left(p-g_{n}-n / x\right)^{2}\right)\right]^{1 / 2} \\
& Y_{n}(x)=\left[\left(p-g_{n}-n / x\right) / q\right] J_{n}(x)
\end{aligned}
$$

One must pay careful attention to the data registers requirements by these functions for the successions used to define the continued fractions, which are programmed under the global labels "\#" for the real one and ' $=$ " for the complex one.

Example: Calculate the Bessel J and Y of order 100 for the argument $\mathrm{x}=100$
According to Wolfram Alpha the results are:

```
Input:
\(J_{100}(100)\)
```

Open code \Leftrightarrow
$J_{11}(z)$ is the Bessel function of the first kind
Q Enlarge | D Data \| Customize \| A Plaintex | G interactive
$0.096366673295861559674314024870401848311755419825021855917 \ldots$
and:

Input:
$Y_{100}(100)$
Open code \leftrightarrows
$Y_{n}(x)$ is the Bessel function of the second kind

Decimal approximation:
-0.16692141141757650654000649527875245114794564358645737649 .

Which sure enough is what we obtain (with ten digit precision) using our routine:
100, ENTER^, XEQ "JYNX"

$$
\begin{aligned}
& \text { => 00095955573日 }
\end{aligned}
$$

Program Listing:

01	LBL "JYNX"
02	STO 01
03	X<>Y
04	STO 13
05	"="
06	CLST
07	ZENTER^
08	.
09	RCL 01
10	SF 02
11	ZCF2V
12	RCL 02
13	STO 01
14	ST/ Z
15	/
16	E
17	+
18	STO 10
19	X<>Y
20	CHS
21	RCL 01
22	ST+ X
23	$1 / X$
24	-
25	STO 09
26	"="
27	0
28	RCL 01
29	CF 02
30	CF2V
31	CHS

32	RCL 09	63	GTO 00
33	+	64	RCL 12
34	RCL 13	65	ST+ X
35	RCL 01	66	RCL 02
36	$/$	67	ST+ X
37	-	68	ZENTER^
38	STO 11	69	RCL 12
39	RCL 10	70	0.5
40	R-P	71	-
41	LASTX	72	X^2 $^{\wedge}$
42	ST+ X	73	RCL 13
43	PI	74	X^2
44	RCL 01	75	-
45	$*$	76	0
46	$/$	77	X<>Y
47	SQRT	78	RTN
48	X<>Y	79	$\underline{\text { LBL 00 }}$
49	$/$	80	X<>Y
50	RCL 05	81	STO 05
51	SIGN	82	X<>Y
52	$*$	83	RCL 02
53	STO 12	84	RCL 13
54	RCL 11	85	+
55	$*$	86	ST+ X
56	RCL 10	87	RCL 01
57	$/$	88	$/$
58	RCL 12	89	-1
59	CLD	90	END
60	RTN		
61	LBL "="		
62	FC? 02		

Note: ensure that the module is plugged in a page before the SandMath. This is required because there is another global label "=" in the SandMath and we don't want the routine to use the incorrect one for the calculation! (besides, this would result in NONEXISTENT, so you'll know right away).

Nested Radicals of m-th order.

FNRM and INRM are MCODE functions to calculate finite and infinite Nested Radicals or root-order m . The definition of the radical is given in a user-provided function under a global label, to generate the n terms that contribute to the radical $R(n)$.

- For the finite case the calculation ends when all the terms are provided and used in the radical.
- For the infinite case, a series of finite radicals of increasing sizes are computed until two of them are equal. This means $R(n)=R(n+1)$, for a given n large enough.

An initial size $\mathbf{n 0}$ needs to be provided by the user, which ideally is a balance between the radical size and the number of subsequent radicals to calculate: the larger the radical the longer calculation time, but the less number of radicals likely to calculate.

STACK	INPUTS	OUTPUTS
Y	k	
X	no	NR
ALPHA	F.NAME	$/$

FNRM and INRM use data registers $\{$ R00 - R05\} as well as user flags UF 001 and UF 01. Refrain from using these resources in the definition of your radicand functions. Note that both the root order m and the term n are available for your user function to use - even if normally only n is used. This allows for more elaborate expressions in the definitions.

For example, let's calculate the value of an infinite nested radical with $f(n)=n$, as per the expression below:

$$
\sqrt{n+\sqrt{n+\sqrt{n+\sqrt{n+\cdots}}}}=\frac{1}{2}(1+\sqrt{1+4 n})
$$

For the case $\mathrm{n}=1$ this happens to be the golden ratio $\Phi=1 / 2(1+\operatorname{sqr}(5)$
A trivial user program like this: \{LBL "PH", 1, RTN\}, say we set FIX 9 and then we type:
2, ENTER^ 4, XEQ "INRM"_PH" => 1.618033989
Using cubic roots instead we'll obtain the "Plastic" Constant:
3, ENTER^, 4, XEQ "INRM"_"PH => 1.324717957

Example2.Calculate the cubic and quartic root nested radicals for the function $F(n)=n^{\wedge} 4$
Using $\mathrm{n} 0=4$ and the trivial user function $\left\{L B L\right.$ "NR4", $\left.\mathrm{X}^{\wedge} 2, \mathrm{X}^{\wedge} 2, E N D\right\}$ we get:
4, ENTER^, 4, XEQ "INRM"_"NR4" =>1.325706774 quartic case
3, ENTER^, 4, XEQ "INRM"_"NR4" =>1.551416993 cubic case

Example 3. Calculate the square nested radical for the function $\mathrm{F}(\mathrm{n})=\mathrm{n}\{\mathrm{LBL}$ "NR1", RTN"\}
2, ENTER^, 4, XEQ "INRM"_"NR1" =>1.757932757

Programmer's notes.

These functions use a special technique to call user-programs within the MCODE. This technique was developed by Greg McClure for the Derivatives and Continued fractions (DERV and CF2V) applications available in both the SandMath and the 41Z, and has been ported here as well. The method requires ancillary housekeeping functions to manage the transitions between User- and M-Code. These auxiliary functions are stealth under the FAT section headers, as they don't require any user interaction or utilization beyond its automated purpose.

Execution flow:

1. Search for User function using [ASRCH]
2. Save its RAM address (in data register)
3. Prepare variables and check data regs available
4. transfer to FOCAL stub code (call to [XMR20]
a. add address to FOCAL RTN stack with [SAVRTN]
b. execute user function via [XGIO7] (but can't use XEQ IND nn !!)
c. return to MCODE, popping the FOCALRTN with [XRTN]
5. Loop back to task \#3 as needed

Where tasks 4.a, 4.b and 4.v are performed by XQRTN, a dedicated (stealth) function used in the FOCAL stub. It is called twice, controlled by UF 00 to determine which one of the tasks to perform:

```
-FOCAL stub code -
```

01 SF 00
02 XQRTN - first time does 4.a and 4.b
03 CF 00
04 XQRTN - second time does 4.c

Newton and Halley Methods Revisited

The idea of using the MCODE functions in the SandMath and the $41 Z$ is also at the heart of these final applications. This time we'll use the first \& second derivatives function DERV as an auxiliary tool to calculate the derivatives of the function whose roots we're trying to obtain, directly and without any additional conditioning regardless of the function in case.

The formulas involved are well known:

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \quad ; \quad x_{n+1}=x_{n}-\frac{2 f\left(x_{n}\right) f^{\prime}\left(x_{n}\right)}{2\left[f^{\prime}\left(x_{n}\right)\right]^{2}-f\left(x_{n}\right) f^{\prime \prime}\left(x_{n}\right)}
$$

As usual, you need to provide the boundaries [a, b] in the Y, X registers and the function name in ALPHA. The user is required to program the function in a FOCAL routine under a global label, which cannot use data registers R00 to R08 as explained below.

Remember that DERV uses R00 to R04 (see the documentation in the SandMath manual for details), and in addition to these the routines use R05 for the function global label name, and R06-R08 to save the initial guesses and as scratch. As it's already customary, the successive approximations to the root will be displayed if user flag 10 is set.

		*LBL "XNWT"		17	RCL 08
2	CF 01	18	RCL 06	33	X^2
3	GTO 01	19	DERV	34	ST+ X
4	*LBL "XHALL"	20	FC? 01	35	RCL 07
5	SF 01	21	ST/ 07	36	RCL 01
6	*LBL 01	22	FS? 01	37	$*$
7	ASTO 05	23	XEQ 02	38	-
8	X<>Y	24	RCL 06	39	$1 / X$
9	STO 08	25	RCL 06	40	RCL 07
10	X<>Y	26	RCL 07	41	$*$
11	*LBL 00	27	-	42	RCL 00
12	FS? 10	28	X\#Y?	43	$*$
13	VIEW X	29	GTO 00	44	ST+ X
14	STO 06	30	CLD	45	STO 07
15	XEQ IND 05	31	RTN	46	END
16	STO 07	32	*LBL 02		

This really can't get any shorter; my kinda routine that clearly showcases that with a powerful engine behind doing the heavy lifting (DERV in this case) the rest is a downhill trip.

Example: obtain a root for the equation below, which we program easily as shown. Then we use some obviously non-optimal guesses to stress the algorithm:
\{ LBL "X1", CBRT, LASTX, 4, + ${ }^{*}$, END \}, and then

Newton's Method with Complex Step Differentiation.

And the proverbial last but not least is reserved for the "complex step derivative" method to calculate real function derivatives, just as a quasi-magical application of complex variables. Complex step differentiation is a technique that employs complex arithmetic to obtain the numerical value of the first derivative of a real valued analytic function of a real variable, avoiding the loss of precision inherent in traditional finite differences. This is then used n Newton's method in the usual way.

We're concerned with an analyticfunction. Mathematically, that means the function is infinitely differentiable and can be smoothly extended into the complex plane. Computationally, it probably means that it is defined by a single "one line" formula, not a more extensive piece of code with if statements and for loops.

Let $F(z)$ be such a function, let $x 0$ be a point on the real axis, and let h be a real parameter. Expand $F(z)$ in a Taylor series off the real axis.

$$
F\left(x_{0}+i h\right)=F\left(x_{0}\right)+i . h F^{9}\left(x_{0}\right)-h^{2} F^{\prime}\left(x_{0}\right) / 2!-i h^{3} F^{(3)} / 3!+\ldots
$$

Take the imaginary part of both sides and divide by h

$$
F^{\prime}\left(x_{0}\right)=\operatorname{Im}\left(F\left(x_{0}+i h\right)\right) / h+O\left(h^{2}\right)
$$

Armed with the $41 Z$ arsenal of functions it's very likely that your real function can be programmed as an equation in the complex variable too. Then all it takes is to calculate the value of said complex function in a complex point close to the real argument $x 0$, offset by a very small amount in the imaginary axis $i h$. The program expects the function name in ALPHA and the values of h and $x 0$ in the Y, X stack registers, and it returns the real derivative value in X. It uses data registers R00 to R02.

	LBL "ZNWT"	10	/
2	ASTO 02	11	RCL 01
3	ZSTO 00	12	$*$
4	LBL 00	13	ST- 00
5	FS? 10	14	RND
6	VIEW 00	15	X\#0?
7	ZRCL 00	16	GTO 00
8	XEQ IND 02	17	RCL 00
9	X<>Y	18	END

What's remarkable is that with just one execution of the complex function we calculate both the real function's value (the real part) and its derivative (the imaginary part with correction) at the same time. Note also the clever use of complex data register COO to store $z 0=x 0+i h$, and then how it keeps calculating the complex function value until two successive iterations are equal for the current FIX selected in the calculator.

You can tell something's remarkable when the root-finding routine is almost shorter than the equation used to program the function!

Time now for some examples. The first one just a simple polynomial to try our hand with the new method, taken from the MoHPC forum: https://www.hpmuseum.org/forum/thread-6667.html

Calculate the three roots of the third degree polynomial: $\mathrm{x}^{3}-\mathrm{x}^{2}-\mathrm{x}+0,5=0$
We program the equation as shown below:

01 LBL "Z3"	06 Z-
02 Z^3	07.5
03 LASTZ	$08+$
04 Z^2	09 END
05 Z+	

And type:
ALPHA, "Z1", ALPHA
,01, ENTER^, 0, XEQ "ZNWT" $\quad>\quad 0.403 .507$
.01, ENTER^, 2, XEQ "ZNWT" $\quad>\quad .45: 74450$
.01, ENTER^, -2, XEQ"ZNWT" => -. 0.0.0575055

And then a more elaborate example adapted from the seminal reference:
https://blogs.mathworks.com/cleve/2013/10/14/complex-step-differentiation/
The blog uses the function $\mathrm{F}(\mathrm{x})$ given below, which does not have any real roots:

$$
F(x)=\frac{\mathrm{e}^{x}}{(\cos x)^{3}+(\sin x)^{3}}
$$

For our purposes let's calculate the roots of, say $g(x)=F(x)-\pi$

And type:
ALPHA, "Z2", ALPHA

Halley's Method for Complex Functions

To complement the choices already available in the $41 Z$ (programs ZSOLVE and ZHALL), a third program is included in the Contour module as well.

This program is based on Valentín Albillo's article "Going back to the roots", where he presented an HP-35S solution to the problem. The final version shown here was aided by a first port to the HP-41 platform by Vincent Weber, contributed to the MoHP forum
see: https://www.hpmuseum.org/forum/thread-21615.html) and
https://albillo.hpcalc.org/articles/HP\ Article\ VA031\ -\ Boldly\ Going\ -
\%20Going\%20Back\%20to\%20the\%20Roots.pdf)

User instructions:
Just type in ALPHA the name of the global label the function has been programmed under, and the guess value in stack registers Y, X (i.e. complex stack level Z), then call the program. After a while the root found is presented in the displat. Execution time depends on the initial guess value and the number of decimal places used for the precision setting.

Example: obtain one root for the expression $f(z)=z^{\wedge} z-\pi$
We program the function under LBL "ZZ" as follows:
01 LBL "ZZ"
02 ZENTER^
03 W^Z
04 PI
05 -
06 END
Next, we enter a guess value (imaginary part in Y, real part in X), and call ZROOT.
After a while the result is shown in the display

ALPHA, "ZZ", ALPHA
$0, E N T E R \wedge, 1, X E Q$ "ZROOT" $\quad \rightarrow \quad$ 1, $554+4 \square$
verification: XEQ "ZZ" $\quad \rightarrow \quad$ 亿 $+\boldsymbol{U}$

The program is listed below. Being a port from another machine I decided to leave parts unchanged, not using $41 Z$ functions in them to maintain the original ideas. Nevertheless the MCODE $41 Z$ functions are profusely used all throughout the code, contributing to a faster execution and more accurate results.

Program listing.

01	*LBL "ZROOT"	36	ST/ Z	73	RCL 11
02	ZSTO 00	37	/	74	$X<Y$?
03	ASTO 02	38	ZRCL 03	75	GTO 02
04	E-4	40	ZRC- 04	76	ZRCL 00
05	STO 10	42	RCL 10	77	R-P
06	X^2	43	ST+ 00	78	RDN
07	STO 11	44	ST/ Z	79	STO 08
08	,5	45	/	80	SIN
09	STO 03	46	RCL 03	81	ABS
10	*LBL 02	47	ST* Z	82	RCL 11
11	ZRCL 00	48	*	83	$\mathrm{X}<=\mathrm{Y}$?
12	XEQ IND 02	49	ZSTO 04	84	GTO 03
13	RCL03	51	Z/	85	RCL 08
14	ST/ Z	52	ZSTO 03	86	COS
15	/	54	ZRC* 02	87	ENTER^
16	ZSTO 02	56	ZRC/ 04	88	ABS
18	RCL 10	58	1	89	X\#0?
19	ST+00	59	-	90	/
20	ZRCL 00	60	CHS	91	RCL 01
21	XEQ IND 02	61	X $<\gg$	92	RCL 00
22	ZSTO 03	62	CHS	93	R-P
24	RCL 10	63	X<>Y	94	X<>Y
25	ST- 00	64	RCL 03	95	RDN
26	ST- 00	65	Z^X	96	*
27	ZRCL 00	66	1	97	STO 00
28	XEQ IND 02	67	-	98	*LBL 03
29	ZSTO 04	68	ZRC/ 03	99	ZRCL 00
31	ZRC+ 03	70	ZST+ 00	100	ZAVIEW
33	ZRC- 02	71	ZRC/ 00	101	END
35	RCL 11	72	R-P		

Note that the line numbers reflect the non-merged character of some $41 Z$ functions, taking two standard lines (that have been merged in the listing).

Sigmoid and Einstein functions,

SIGMD calculates the Sigmoid of the argument in x. This function is relevant in machine learning and data mining fields. It is defined as:

$$
S(x)=\frac{1}{1+e^{-x}}=\frac{e^{x}}{e^{x}+1}=1-S(-x)
$$

The result is placed in X and the original argument is saved in LastX. Y, Z, T are untouched and no data registers are used either.

Examples:
1, XEQ "SIGMD = > 分. 731050579
2, XEQ "SIGMD = > 是

The Sigmoid function is also known as the Standard Logistics function, which will appear linked to the Logistics Map in the discrete domain - refer to the CHAOS Module for additional applications.

Derivative and Integral of the Sigmoid function.

The derivative is known as the density of the logistic distribution:

$$
\frac{\mathrm{d}}{\mathrm{~d} x} f(x)=\frac{e^{x} \cdot\left(1+e^{x}\right)-e^{x} \cdot e^{x}}{\left(1+e^{x}\right)^{2}}=\frac{e^{x}}{\left(1+e^{x}\right)^{2}}=f(x)(1-f(x))
$$

Conversely, its antiderivative can be computed by the substitution $u=1+e^{\wedge} x$, since $f(x)=u^{\prime} / u$, so (dropping the constant of integration)

$$
\int \frac{e^{x}}{1+e^{x}} d x=\int \frac{1}{u} d u=\ln u=\ln \left(1+e^{x}\right)
$$

In artificial neural networks, this is known as the softplus function and (with scaling) is a smooth approximation of the ramp function, just as the logistic function (with scaling) is a smooth approximation of the Heaviside step function.

Finally, SIGMD is a rather simple function. The MCODE listing is shown below.

Header	AEAC	\%84	"D"	
Header	AEAD	000	"M"	Siqmoid Function
Header	AEAE	\%07	"G"	$\operatorname{sig}=1 /\left(1+e^{\lambda}-x\right)$
Header	AEAF	\%09	"I"	
Header	AEBO	013	"S"	Ángel Martin
SIGMD	AEB1	-0F8	READ 3(X)	
	AEB2	361	?NCXQ	(includes SETDEC)
	AEB3	050	$->1408$	[CHK NO_S]
	AEB4	2BE	$\mathrm{C}=-\mathrm{C}-1 \mathrm{MS}$	Sign change
	AEB5	044	CLRF 4	standard version (w/out "-1")
	AEB6	029	?NCXQ	$e^{\wedge}-x$
	AEB7	068	$\rightarrow 1 A 0 A$	[EXP10]
	AEB8	001	?NCXQ	$1+e^{1}-x$
	AEB9	060	->1800	[ADDONEI
	AEBA	239	?NCXQ	$1 /\left(1+e^{1}-x\right)$
	AEBB	060	$\rightarrow 188 \mathrm{E}$	ON/X13
	AEBC	331	?NC GO	Overflow, DropST, FillXL \& Exit
	AEBD	002	\rightarrow-000c	[NFRX]

Here's a minimalistic FOCAL routine for the derivative and the antiderivative:
01 LBL"SGD"
02 SIGMD
03 ENTER^
04 CHS
05 E
$06+$

07 *
08 RTN
09 LBL "SGI"
10 SIGMD
11 LN1+X
12 END

Einstein functions.

Typically four functions are considered under this classification, as follows:

$$
\begin{aligned}
& E_{1}(x)=\frac{x^{2} e^{x}}{\left(e^{x}-1\right)^{2}} \\
& E_{2}(x)=\frac{x}{e^{x}-1} \\
& E_{3}(x)=\ln \left(1-e^{-x}\right) \\
& E_{4}(x)=\frac{x}{e^{x}-1}-\ln \left(1-e^{-x}\right)
\end{aligned}
$$

Clearly $\mathrm{E} 4(\mathrm{x})=\mathrm{E} 2(\mathrm{x})-\mathrm{E} 3(\mathrm{x})$, thus no dedicate function for it exists in the module.
The module uses a prompting field for a parameter value from 1 to 3 to select the specific function to calculate. Any input larger than 3 will calculate E3(x), whereas entering zero returns a DATA ERROR message. Besides that, in program mode you need to add the parameter as a second program line after EINS

See below the graphics for these in the range x around the origin

E1(x) has an inflection point at:

$$
E_{1}^{\prime \prime}(x)=\frac{1}{8} \operatorname{csch}^{4}\left(\frac{1}{2} x\right)\left[\left(x^{2}+2\right) \cosh x+2\left(x^{2}-2 x \sinh x-1\right)\right]=0
$$

which can be solved numerically to give $x=+/-2.34694130 .$. .

Example: Calculate E1, E2, and E3 for $\mathrm{x}=1$

Example: Calculate E1(E2(E3(x))), and E3(E2(E1(x))) for $x=1$

Arc Length of a Curve defined by $y=f(x)$

-The arc length of the curve $y=f(x) \quad(a<x<b)$ is given by

$$
s=\int_{a}^{b} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x
$$

The module includes two programs to calculate the arc length. The first one "CLEN" is a direct (i.e. brute-force) application of this formula using FINTG and DERV in the SandMath. It clearly is simpler to program but foreseeably with longer execution time than a dedicated approach. It also requires a second FAT entry for the auxiliary program that defines the integrand, as you can see in the program listing below.

To use this program, just type the function's program label name in ALPHA, and enter the integration limits a in Y, b in X.

01 LBL "CLEN"	090.1
02 ASTO 05	$10 \mathrm{X}<>\mathrm{Y}$
03 "*CL"	11 DERV
04 FINTG	12 X ^2
05 RTN	13 E
06 LBL "*CL"	
07 CLA	15 SQRT
08 ARCL 05	16 END

As always, FINTG determines the precision of the result by the number of decimal places set in the calculator. Using FIX 9 yields the maximum accuracy but takes the longest time to compute it.

The second one "LNG" doesn't use this formula and so it avoids the calculation of dy/dx . It simply applies Pythagoras' theorem. "LNG"was written by Jean-Marc Baillard, and it is included in his DERIVE+ module, see: http://www.hp41.org/LibView.cfm?Command=View\&ItemID=1315

Data Registers: - R00 = Function name
(Register R00 is to be initialized before executing "LNG")
R01 = a R04 to R07: temp "
$R 02=b \quad$ R20, R21, ... are used by "ROM
$R 03=L$
Flag: F02 is cleared
Subroutines: "ROM", plus a program that takes x in X-register and returns $f(x)$ in X-register

STACK	INPUT	OUTPUT
Y	a	$/$
X	b	$L(a, b)$

Example：Calculate the arc length of the curve $y=\ln x \quad 1<x<3$
01 LBL＂T＂
02 LN
03 RTN

Manual data entry：
ALPHA ，＂T＂，ASTO 00，ALPHA
FIX 4，1，ENTER＾，3，
Using the direct approach：
XEQ＂CLEN＂＞＞＞＞こ，ヨロ 19日754日
－－－Execution time $=1 \mathrm{~m} 35 \mathrm{~s}---$

Using the iterative approach in manual way，skipping the data entry prompts：
GTO＂LNG＂，XEQ C＞＞＞＞こ．ヨロ 19日75ヨヨ
Execution time $=75 \mathrm{~s}$－－－

Notes：

The HP41 displays the successive approximations
The precision depends on the display format：for instance，FIX 6 would be faster but less accurate．
The exact result is $L=2.301987535$（ rounded to 9 decimals ）
The program listing below includes the Arc Length and the Surgace of Revolution described in next section－both can be combined into a single application with considerable byte savings．

The program starts with a data entry section，prompting for the required information on the function and integration limits．You can skip these steps if you prefer a manual data entry using the soft－Label＂C＂

Note the use of function PMTA in the OS．X module to enter the function＇s global label name．It can be replaced by $\{$ AON，PROMPT，AOFF $\}$ as well．

01	＊LBL＂LNG＂
02	CF 02
03	GTO 00
04	＊LBL＂SRV＂
05	SF 02
06	＊LBL 00
07	＂FNAME？＂
08	PMTA
09	ASTO 00
10	＂a＾b＝？＂
11	PROMPT
12	＊LBL C
13	STO 02
14	X＜＞Y
15	STO 01
16	1

17	STO 20
18	＊LBL 11
19	CLX
20	STO 04
21	RCL 02
22	RCL 01
23	STO 05
24	-
25	RCL 20
26	STO 06
27	／
28	STO 03
29	ST＋05
30	RCL 01
31	XEQ IND 00
32	STO 07

33	＊LBL 12
34	RCL 05
35	XEQ IND 00
36	ENTER＾$^{\wedge}$
37	ENTER＾$^{\wedge}$
38	X＜＞07
39	ST +Z
40	-
41	$\mathrm{X}^{\wedge} 2$
42	RCL 03
43	ST＋05
44	$\mathrm{X}^{\wedge} 2$
45	+
46	SQRT
47	FS？02
48	$*$

49	ST+ 04	70	LASTX		91	ST+ 22
50	DSE 06	71	STO 25	92	-	
51	GTO 12	72	GTO 03	93	$/$	
52	PI	73	*LBL 01	94	+	
53	FS? 02	74	4	95	DSE 24	
54	ST* 04	75	STO 21	96	GTO 02	
55	RCL 04	76	25	97	STO IND 22	
56	XROM "*RM"	77	STO 22	98	VIEW X	
57	X\#0?	78	RCL 23	99	RND	
58	GTO 11	79	STO 24	100	X<>Y	
59	RDN	80	LASTX	101	RND	
60	STO 03	81	ISG 23	102	X\#Y?	
61	RTN	82	*LBL 02	103	GTO 03	
62	*LBL "*RM"	83	ENTER^	104	RCL IND 22	
63	RCL 20	84	ENTER^	105	0	
64	X<>Y	85	X<> IND 22	106	RTN	
65	SIGN	86	-	107	*LBL 03	
66	ST* X	87	RCL 21	108	RCL 20	
67	X\#Y?	88	4	109	ST+ 20	
68	GTO 01	89	ST* 21	110	END	
69	STO 23	90	SIGN			

The "*RM" routine could be replaced by FINTG as well...

Romberg Method

Suppose that a sequence $\{\operatorname{Ln}\}$ tends to L as n tends to infinity and that the "errors" L - Ln are nearly proportional to $1 / n^{\wedge} 2$

If we want to use Romberg method to estimate the limit L " $R M$ " must be called by a program with the following specifications:
L must be stored in R20 at the beginning
Then, a loop - say LBL 01 - calculates the value of Ln in X-register corresponding to n in R20 The last instructions must be XEQ "ROM" X\#0? GTO 01 RDN END

See the paragraphs above for several examples ("CRVL" "CRVLN" "LNG" "SRV" "SKS")
You can also use it for your own programs, provided that registers R20 R21 are not disturbed.

Area of a Surface of Revolution

The rotation of the curve $y=f(x)(a<x<b)$ around x-axis generates a surface of revolution given by

$$
A_{x}=2 \pi \int_{a}^{b} y \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x=2 \pi \int_{a}^{b} f(x) \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x
$$

The program included in the module "SRV"was written by Jeam-Marc Baillard. "SRV" avoids the calculation of $d y / d x$: the area of a truncated cone is used with Romberg method.

Data Registers: \quad R00 = Function name
(Register R00 is to be initialized before executing "SRV")
R01 $=\mathrm{a} \quad$ R04 to R07: temp
R02 = b R20, R21, are used by "ROM"
R03 $=A$
Flag: F02 is set
Subroutines: "ROM" \& 1 program that takes x in X-register and returns $f(x)$ in X-register

STACK	INPUT	OUTPUT
Y	a	$/$
X	b	$A(a, b)$

Example: The sin of revolution.
Evaluate the area of the surface of revolution generated by the rotation of the curve
$y=\sin x(0<x<p i)$ around the x-axis.
01 LBL "T"
02 SIN
03 RTN

Using a manual approach that skips the data entry prompts:
ALPHA, "T" , ASTO 00
FIX 9, 0, ENTER^, PI,
GTO "SRV", XEQ C >>>> 14,4 ㄹ $\exists 5950$
Execution time $=168 \mathrm{~s}--$
Notes:
The HP41 displays the successive approximations. The precision depends on the display format: for instance, FIX 6 would be faster but less accurate
-The exact result is $A=14.42359945$ (rounded to 8 decimals).

Note that in this case the module doesn't include the direct approach based on FINTG and DERV. If you're interested it'd be very simple to modify CLEN to do it, as follows:

01 LBL "SREV"		13	0.1	step size
02 ASTO 05	function LBL	14	X $<\gg$	
03 "*SR"	integrand LBL	15	DERV	
04 FINTG		16	X^2	
05 PI		17	E	
06 ST+ X	$2 . \pi$	18	+	
07 *		19	SQRT	partial value
08 RTN		20	X<> 06	X
09 LBL "*SR"	integrand	21	XEQ IND 05	$\mathrm{f}(\mathrm{x})$
10 STO 06	saves x in R06	22	RCL 06	previous value
11 CLA		23		integrand
12 ARCL 05		24	END	

Using this ad-hoc program the results for example 1 are EXACTLY as follows:

```
ALPHA, "T", ALPHA, 0, PI, XEQ "SREV"
>>>
\(14,42 \exists 59945\)
```


Reference: this web site is an excellent reference on this subject, also providing some examples to check the programs described before.
https://math.libretexts.org/Courses/University_of_California_Davis/UCD_Mat_21B\%3A_Integral_ Calculus/6\%3A_Applications_of_Definite_Integrals/6.4\%3A_Areas_of_Surfaces_of_Revolution

Area of a Surface defined by $z=f(x, y)$

"SKS" computes the area of a surface defined by: $\quad z=f(x, y) \quad a<x<b, \quad c<y<d$
The result could be obtained by the double integral

$$
=\iint_{T} \sqrt{\left(\frac{\partial f}{\partial x}\right)^{2}+\left(\frac{\partial f}{\partial y}\right)^{2}+1} \mathrm{~d} x \mathrm{~d} y
$$

where $\mathrm{fx}=\mathrm{df} / \mathrm{dx}$ and $\mathrm{fy}=\mathrm{df} / \mathrm{dy}$ are the partial derivatives with respect to x and y respectively.

But "SKS" avoids the calculation of the partial derivatives:

The intervals [a,b] and [c,d] are divided into n parts, and the approximate area is the sum of the areas of triangles.
"*RM" uses Romberg method to obtain more and more accurate approximations.

Data Registers:

R00 = Function name
R01 = a R04 = d R06 to R16: temp
R02 = b R05 = A R20, R21, are used by "ROM"
R03 $=c$
Subroutines: "*RM" plus a program that takes x in X-register \& y in Y-register and returns $f(x, y)$ in X-register

STACK	INPUTS	OUTPUTS
T	a	$/$
Z	b	$/$
Y	c	$/$
X	d	A

Example: Evaluate the area of the surface defined by

$$
z=(25-x 2-y 2) 1 / 2,0<x<2,0<y<3
$$

To get faster result, store 25 in an unused register, for instance R17, 25 STO 17

01 LBL "T"	06 RCL 17
$02 X^{\wedge} 2$	$07 \mathrm{X}<>\mathrm{Y}$
$03 \mathrm{X}<>\mathrm{Y}$	$08-$
$04 \mathrm{X}^{\wedge} 2$	09 SQRT
$05+$	10 RTN

And using manual data entry:

```
ALPHA, "T", ASTO 00, ALPHA
FIX 6, 0, ENTER^, 2, ENTER^, 0, ENTER^, 3
GTO "SKS", XEQC >>>> 5.554397
---Execution time = 5m06s---
```


Notes:

The HP41 displays the successive approximations
The precision depends on the display format: for instance, FIX 9 would give more accurate results but with a much longer execution time as the price to pay for it.

With V41 \& FIX 9 we get: Б.Б54ヨ95 (05
The exact result is $A=6.654396117$
As usual with Romberg method, n is multiplied by 2 at each iteration, but here execution time is multiplied by 4 because we are approximating a double integral.

$$
=\iint_{T} \sqrt{\left(\frac{\partial f}{\partial x}\right)^{2}+\left(\frac{\partial f}{\partial y}\right)^{2}+1} \mathrm{~d} x \mathrm{~d} y
$$

Recursive Utilization of FINTG and FROOT.

Like the original SOLVE and INTEG did, both FROOT \& FINTG in the SandMath support "crossed" nested calls from one another, i.e. you can call FROOT from an integrand function being used by FINTG, and you can call FINTG in the root-finding function definition for FROOT. However, it is not possible to recursively call either one of these functions sequentially from within a FOCAL routine. Any attempt to do so triggers the "RECURSION' error message and the execution aborts.

This ROM provides a set of MCODE functions and two FOCAL routines to overcome this limitation. Each time FROOT/FINTG is executed it creates a dedicated memory buffer to store the application data and to perform all the math. The basis of the recursive operation is the use of a secondary memory area for the nested call of the function, not conflicting with the initial memory buffer created in the first call. The main loop uses the initial buffer \#14, and the operand function in turn creates a secondary buffer \#14 to use for the nested loop - deleting it after it's complete.

In order to reuse the existing code, we'll trick the OS changing the id\# of the initial buffer \#14 right before the second call - not deleting it but cloaking it in the I/O Memory area of the calculator. The operand function re-labels the buffer with id\#13 (using function CLOAK), then the nested call to FROOT/INTEG creates and uses a new buffer \#14 to perform its task and deletes it upon completion - returning the execution to the "operand" function FOCAL routine. Before the execution is returned to the driver program, the cloaked buffer is re-issued as id\#14 (using function EXPOSE) so things can be picked up exactly where there were left off before calling the nested subroutine.

If you must know, all CLOAK and EXPOSE do is changing the buffer id\#' of the initial buffer created in the first call to FROOT/INTEG - first from 14 to 13, and then back to 14. Prior to all this a third function (RESET) is used to check for pre-existing buffers with id\#13 - deleting it if found.

2D Driver Routines and Rules of Engagement.

The main programs for double integrals and system of 2 equations are FITG2 and FRT2. Each one has an auxiliary routine associated with it, which acts as the first level operand function and issues a second nested call for the integrand or the second equation appropriately, as follows:

For FITG2, the function name $f(x, y)$ is expected in ALPHA, and the four integral limits in the stack in the pattern " $\mathrm{y} 1, \mathrm{y} 2, \mathrm{x} 1, \mathrm{x} 2$ " - ($\mathrm{y} 1, \mathrm{y} 2$) for the outer integral, and ($\mathrm{x} 1, \mathrm{x} 2$) for the inner one.

- The integrand function is to be programmed assuming x is in R01, and y in the stack.

For FRT2, both function names are expected to be in Alpha separated by comma (like "F1,F2"), and the guesses entered in the stack, with the pattern " $\mathrm{x} 1, \mathrm{x} 2, \mathrm{y} 1, \mathrm{y} 2$ " - with ($\mathrm{x} 1, \mathrm{x} 2$) for $\mathrm{f} 1(\mathrm{x}, \mathrm{y})$ and (y 1 , $y 2)$ for $f(2(x, y)$.

- The second operand function $f 2(x, y)$ is executed first. It assumes x in R01 and y in the stack.
- The first operand function $f 1(x, y)$ assumes x in R01 and y in R02.
- You decide which one is F1 and F2 by their order in the ALPHA string

All buffer management is made automatically by the auxiliary routines *2D and*FG.

Routine Listings.

Here are the routine listings for your perusal. Notably FRT2 introduces more complexity to process the function names - entered as comma-separated strings in ALPHA - and due to the indirect call to $\mathrm{f1}(\mathrm{x}, \mathrm{y})$ at the end of the auxiliary routine *FG - which is not required by *2D in the double integration case, as it's just one function involved. CLAC and ASWAP are borrowed from the ALPHA ROM - and need the Library\#4 present in the calculator. They're only used for FRT2.

01	LBL "FRT2"	no keys assigned	01	*LBL " FITG2"	no keys assigned
02	CLKEYS		02	CLKEYS	
03	ASTO 00	save string	03	ASTO 00	save in ROO
04	ASWAP	swap around","	04	STO 03	upper limit2
05	CLAC	remove second	05	RDN	lower limit2
06	ASTO 05	save in R05	06	STO 02	
07	CLA		07	RDN	reset buffers first level operand
08	ARCL 00	recall string	08	RESET	
09	CLAC	remove second	09	"2D"	
10	ASTO 00	save in ROO	10	FINTG	call first round done
11	STO 04	upper guess2	11	RTN	
12	RDN		12	"NO SOL"	
13	STO 03	lower guess2	13	AVIEW	
14	RDN		14	RESET	
15	RESET	reset buffers	15	RTN	done.
16	"*FG"	first level operand	16	*LBL "*2D"	
17	FROOT	call first round	17	STO 01	Save x for later mask bufferid\#
18	GTO 00		18	CLOAK	
19	*LBL 01	Not found	19	RCL 02	lower limit2
20	RESET		20	RCL 03	upper limit2
21	"NO ROOT"		21	CLA	$f(x, y)$ nested call
22	AVIEW		22	ARCL 00	
23	*LBL 00	Found	23	FINTG	
24	RCL 02	y solution	24	EXPOSE	re-issue buf id\#
25	X<>Y	arrange in stack	25	END	ready
26	CLA	appends			
27	ARCL 00	$f 1(x, y)$ name			
28	"I-,"	done(!)			
29	ARCL 05				
30	RTN				
31	*LBL "*FG"				
32	STO 01	save x forlater			
33	CLOAK	mask bufferid\#			
34	RCL 03	lower guess 2			
35	RCL 04	upper guess 2			
35	CLA				
36	ARCL 05	$f 2(x, y)$			
37	FROOT	nested call			
38	GTO 00	Foundyo, skip			
39	GTO 01	Not found!			
40	*LBL 00				
41	EXPOSE	re-issue buf id\#			
42	STO 02	Save yo result			

43	XEQ IND 00
44	calculates $f 1(x, Y o)$

FITG2 uses registers \{R00-R03\} and leaves the results in X and R01. The function name is left in ALPHA (6-chars max).

FRT2 uses registers $\{R 00-R 05\}$ and leaves the results in the stack registers $\{\mathrm{X}, \mathrm{Y}\}$ and $\{\mathrm{RO1,R02} \mathrm{\}}$ for the 2 -equation roots. The comma-separated function names string is left in ALPHA (6-chars max for each name).

Comments.

The new functions to support the nested configuration are simplified versions of some generalpurpose buffer utilities, available in other extension modules as follows:

- RESET is equivalent to the sequence \{ $13, \mathbf{B}$?, CLB, RDN \}
- CLOAK is equivalent to the sequence \{ 14.013, REIDBF, RDN \}
- EXPOSE is equivalent to the sequence: $\{13.014$, REIDBF , RDN $\}$

B? and CLB are available in the OS/X ROM, and REIDBF in the RAMPAGE ROM.
Using the simplified versions is more intuitive for math-oriented users, and besides it freed up some space for additional examples in the SIROM.

While you can use RESET at any time (which will delete buff \#13 if present, or do nothing if not present), using CLOAK and EXPOSE will generally result in the error message "BUF ERR". They're meant to be used only while buffer \#14 exists, which is tightly controlled by the code in FINTG and FROOT - and furthermore, the SIROM uses the I/O_PAUSE interrupt as a "search \& destroy" for buffer\#14 at all times. Refer to the corresponding section in the SandMath manual to read more on this subject.

Caveat emptor.

- There's a price to pay for this buffer trickery, and that's the loss of the USER key assignments. As you can see in the listings above, the main routines call CLKEYS to make the operation more reliable (this avoids spurious buffer errors due to memory overwrites). You can save them in an X-Mem file using SAVEKA and then recover them with GETKA after the fact (both functions are also available in the AMC_OS/XROM).
- These routines are not fast, their interest is in the methodology - not optimized for speed to say the least. If you need faster responses, then the SandMath provides dedicated MCODE functions for many of these and yet some more.
- Bear in mind that the INTEG-based method to define special functions is not an efficient one from the mathematical standpoint, but it is a godsend for engineering problems. Also FROOT is not perfect or fool-proof either, so choosing a good initial guess is of high importance. If FRT2 fails to find a root (in either variable), it'll present the error message "NO ROOT"Change the limits and try again.

The following examples should provide a good overview into the details of the programming.
Example 1. Calculate the integral of the Bessel Jn function, $\operatorname{ITJ}(1,3)=\operatorname{INT}(0,3)\{J(1, \mathrm{t}) . \mathrm{dt}\}$ using the integral definition as reference:

$$
J_{n}(x)=\frac{1}{\pi} \int_{0}^{\pi} \cos (n \tau-x \sin \tau) \mathrm{d} \tau
$$

Program Code is below. Note that you don't need to worry about the buffer management, that's done automatically by the driver routines all transparently to the user.

01	LBL "ITJB"		13	LBL " *JN"	inner variable tin stack
02	X<>Y	order n to X	14	RAD	angular mode
03	STO 04	order saved in RO4	- 15	RCL 04	get order
- 04	CLX	lower outer limit	* 16	*	n.t
$\bigcirc 05$	$X<>Y$	upper outer limit	F 17	X<>Y	inner variable t
- 06	0	lower inner limit	- 18	SIN	$\sin t$
- 07	PI	upper inner limit	- 19	RCL 01	outer variable
- 08	"*JN"	function name	- 20	*	$x . \sin t$
- 09	XROM " ITG2"	double integration	- 21	-	$n . t-x . \sin t$
F 10	PI	adjust factor	「 22	COS	$\cos (n . t-x . \sin t)$
- 11	/	final result	- 23	END	integrand complete.
$\bigcirc 12$	RTN	done.			

As mentioned before, speed is not this method's forte. Even on V41 in turbo mode it'll take a good 75 seconds to return 1.260052 (in FIX 6). This was not the goal of the example, but to clarify the general guidelines and showcase the conceptual approach. If you want a fast result you're encouraged to use JBS in the SandMath, or even better the ITJ (sub)function also in the SandMath, which uses the Generalized, Regularized Hypergeometric function for the calculation - a world of differences...

Comment. This particular example is of course much better dealt with using the well-known expression between the Bessel function J1 and JO shown below (proving once again that it's always good to check your math before embarking in long and winding paths):

$$
\int_{0}^{x} J_{1}(t) d t=1-J_{0}(x)
$$

thus:

$$
\int_{0}^{3} J_{1}(t) d t=1-J_{0}(3) \approx 1.26005
$$

Here's an interesting plot showing the integral function of $\mathrm{J1}(\mathrm{x})$ between]-15 . 15[

Example 2. Calculate the solution for the system of non-linear equations below:

$$
\left\{\begin{array}{lll}
f 1(x, y)=x-\sin (x+y) & \text { Solution: } & x=0,935082064 \\
f 2(x, y)=y-\cos (x-y) & & y=0,998020058
\end{array}\right.
$$

The equations are programmed as shown below. Note how the convention is observed, with the y value assumed in the stack for the second function and in R02 for the first one; whilst x is always assumed in R01 for both functions. The solutions are obtained in about 3 seconds (FIX 9) using V41 in Turbo mode.

ALPHA, "FG1,FG2" , ALPHA, ENTER^, 2, ENTER^, 1, ENTER^, 2, CF 01, XEQ "FRT2"

01 LBL"FG1"	2 sets combined
02 RCL 01	X
03 FS? 01	
04 GTO 01	
05 RAD	example \#3
06 RCL 02	y
07 +	$x+y$
08 SIN	$\sin (x+y)$
09 RCL 01	x
10 -	$-x+\sin (x+y)$
11 RTN	
12 LBL 01	example \#2
$13 \mathrm{X}^{\wedge} 2$	$\mathrm{x}^{\wedge} 2$
14 RCL 02	y
15 X ^2	$y^{\wedge} 2$
$16+$	$x^{\wedge} 2+y^{\wedge} 2$
175	
18 -	$x^{\wedge} 2+y^{\wedge} 2-5$
19 RTN	

20 LBL "FG2"	2 sets combined
21 FS? 01	
22 GTO 01	
23 RAD	example \#3
24 CHS	-y
25 RCL 01	x
$26+$	
27 COS	$\cos (x-y)$
$28 \mathrm{X}<>\mathrm{Y}$	y
29 -	$-y+\cos (x-y)$
30 RTN	
31 LBL 01	example \#2
32 X ^2	$\mathrm{y}^{\wedge} 2$
33 CHS	$-y^{\wedge} 2$
34 RCL 01	x
35 X ^2	
$36+$	$x^{\wedge} 2-y^{\wedge} 2$
373	
38 -	
39 END	

Note: to save main FAT entries the example \#2 and \#3 function sets included in the ROMS have been combined to use a single global label for both sets, aided by the user flag F1 to determine which set would be computed. CF 01 - uses F1 (x, y) and F2(x, y) ; SF 01 - uses G1 (x, y) and G2 (x, y)

Obviously this approach won't be needed with your own examples, which will likely have one global label per set of two functions - i.e. not combined with more sets.

Example 3. Obtain the roots for the system of two equations below (available as "FG1" and "FG2" with F 1 clear)
$\left\{\begin{array}{ll}g 1(x, y)=x^{\wedge} 2+y^{\wedge} 2-5 \\ g 2(x, y)=x^{\wedge} 2-y^{\wedge} 2-3 & \text { Solution: }\end{array} \quad x=2\right.$

This is an interesting case because FRT2 not only is much slower (as we knew it was going to be), but also fails to find a root using initial guesses equal to the solutions, i.e. $x 0=2, y 0=1$.

Other Examples.

Let's use Valentín Albillo's neat examples from DataFilefor Double Integrals - as follows:

$$
\begin{gathered}
I=\int_{0}^{1} \int_{1}^{2}\left(x^{2}+y^{2}\right) \cdot d y \cdot d x \quad I=\int_{3}^{4} \int_{1}^{2} 1 /(x+y)^{2} \cdot d y \cdot d x \\
\left.I=\int_{-2.3}^{1.6} \int_{3.9}^{6.1} e_{\left(e^{-x^{*} x}\right.}^{6}+x^{3}-y^{3} * x^{2}+7\right) * \tan ^{-1}(x-2) * \sin (y+3) \cdot d y \cdot d x
\end{gathered}
$$

See the original article for details, available at:
http://web.archive.org/web/20110906135412/http://membres.multimania.fr/albillo/calc/pdf/DatafileVAO24.pdf

The results are:	$\mathrm{I} 1=8 / 3=2.6666666$
	$\mathrm{I} 2=\operatorname{Ln}(25 / 24)=0.040821$
	$\mathrm{I} 3=1,321.275779$

Input interpretation:

$$
\text { 3D plot } \quad\left(\exp \left(-x^{2}\right)+x^{3}-y^{3} x^{2}+7\right) \tan ^{-1}(x-2) \sin (y+3)
$$

$\tan ^{-1}(x)$ is the inverse tangent function

3D plot:
Show contour lines

Open code \leftrightarrow
3D plot $\frac{1}{(x+y)^{2}}$

BUFERR	AECO	200	PNCXQ	Build Msg - UF25 Clear
	AEC1	OFC	->3F83	[APERMSGI
	AEC2	002	"B"	
	AEC3	015	"U"	
	AEC4	006	"F"	"NO BUF" or
	AEC5	020	" ${ }^{\text {a }}$	"DUP BUF"
	AEC6	005	"E"	
	AEC7	012	"R"	
	AEC8	212	"R"	
	AEC9	1 1F1	?NC GO	Left, Show and Halt
	AECA	OFE	->3F7C	[APEREXI
Header	AECB	08B	"K"	
Header	AECC	\%01	"A"	
Header	AECD	OOF	"O"	
Header	AECE	OOC	"L"	
Header	AECF	O03	"C"	Ángel Martin
CLOAK	AED0	1388	SETF 0	
	AED1	130	LDI S\&X	
	AED2	, OOE	CON: 14	buffer id\# = "E"
	AED3	053	JNC $+10 d$	[MERGE]
Header	AED4	085	"E"	
Header	AED5	\%13	"S"	
Header	AED6	00 F	"O"	
Header	AED7	V10	"P"	
Header	AED8	$\bigcirc 18$	" $\chi^{\prime \prime}$	
Header	AED9	$\bigcirc 05$	" ${ }^{\text {c }}$	Ángel Martin
EXPOSE	AEDA	384	CLRF 0	
	AEDB	130	LDI S\&X	
	AEDC	100D	CON: 13	buffer id\# = "D"
MERGE	AEDD	106	$\mathrm{A}=\mathrm{CS}$ \& X -	
	AEDE	000	NOP	
	AEDF	245	?NCXQ	
	AEEO	10C	\rightarrow - 43 A9	[CHKBFA]
NOBUF2	AEE1.	2FB	JNC -33d	[NOBUF]
BFOUND2	AEE2	2DC	$\mathrm{PT}=13$	
	AEE3	38 C	?FSET 0	cloaking?
	AEE4	027	$J C+04$	yes, skip
MAKE14	AEE5	390	LD@PT- E	change id\# to "EE"
	AEE6	390	LD@PT- E	
	AEE7	01B	JNC $+03 \square$	
MAKE13	AEE8	350	LD@PT- D \longleftarrow	change id\# to "DD"
	AEE9	350	LD@PT- D	
	AEEA	2F0	WRTDATA \longleftarrow	
	AEEB	\|3C1	?NC GO	Normal Function Return
	AEEC	002	\rightarrow OOFO	[NFRPU]

Header	AEAE	$\bigcirc 94$	"T"	
Header	AEAF	$\bigcirc 05$	"E"	Deletes Buffer 13
Header	AEBO	V13	"S"	
Header	AEB1	$\bigcirc 05$	"E"	
Header	AEB2	012	"R"	Ángel Martin
RESET	AEB3	130	LDI S\&X	
	AEB4	,000	CON: 13	buffer id\# = "D"
	AEB5	106	$A=C$ s x	
	AEB6	245	?NCXQ	
	AEB7	10 C	$\rightarrow 4349$	CHKBEFA]
NOTFUND	AEB8	3 E 0	RTN	
BFOUND	AEB9	05E	$\mathrm{C}=0 \mathrm{MS}$	delete only the first nybble
	AEBA	2F0	WRTDATA	so the OS will do the rest!
	AEBB	O4E	$\mathrm{C}=0 \mathrm{ALL}$	
	AEBC	270	RAMSLCT	
	AEBD	051	?NC GO	Pack 1O/KA area
	AEBE	O86	$\rightarrow>2114$	[PKIOAS]

Binet Formulas

Function	Description	Input	Output
BINETN	Binet formula for integers	n in X	$\mathrm{f}(\mathrm{n})$
BINETX	Binet formula for real values	x in X	$\mathrm{f}(\mathrm{x})$
MLN	Multinomial Coefficient	n in Y, k in X	$\mathrm{C}(\mathrm{n}, \mathrm{k})$

- BINETN implements the well-known Binet formula for integer input values. The result is the n-th Fibonacci number obtained directly without any iterations.

Example: Calculate f(9)

$$
F_{n}=\frac{\varphi^{n}-(-\varphi)^{-n}}{\sqrt{5}}
$$

- BINETX implements an extension for non-integer real input values to calculate the interpolated Fibonacci numbers. This provides an easy expression for the determination that guarantees real values also for the interpolated Fibonacci numbers:

$$
f_{x}^{*}=\frac{\varphi^{x}-\cos (\pi x) \varphi^{-x}}{\sqrt{5}}
$$

Example: Calculate $\mathrm{f}(\pi)$

See below the graphical representation of Binet (x) for arguments between [-5 . 5]

Obviously, the values for integer arguments coincide with the natural Fibonacci number, since the term $\cos (\pi n)$ is equal to $+/-$ one.

In fact, this modified formula produces the real parts of the complex results obtained applying Binet's formula directly with complex arguments - where the term $-\varphi^{\wedge}-n$ clearly yields a result in the complex domain: $(-\varphi)^{\wedge}(-n)=\exp (-n . \ln (-\varphi))$

Note: You can refer to the $41 Z$ Module manual for the complex case, implemented in that module with the function ZFIB.

Multinomial Coefficients.
MLN
(See JM Baillard's reference page.)
Multinomial coefficients are an extension of the Binomial coefficient, using multiple indexes instead of two. For example, if " k " is the number of variables we have:

$$
\begin{aligned}
& \mathrm{P}=(\mathrm{n} 1, \mathrm{n} 2, \ldots \ldots . \mathrm{nk})!=\mathrm{n}!/(\mathrm{n} 1!\mathrm{n} 2!\ldots \ldots . \mathrm{nk}!) ; \text { where } \mathrm{n}=\mathrm{n} 1+\mathrm{n} 2+\ldots \ldots+\mathrm{nk} \\
& \binom{n}{k_{1}, k_{2}, \ldots, k_{r-1}}=\frac{n!}{k_{1}!k_{2}!\ldots k_{r-1}!k_{r}!}
\end{aligned}
$$

The function MLN expects the input values stored in data registers starting in R01, The number of variables " k " is entered in the stack' X-register.

Example: Calculate ($76,107,112,184$) !
16 STO 0124 STO 0241 STO 0348 STO 04

Bell and Bernoulli Numbers

Function	Description	Input	Output
BELL	Bell Numbers	Index n in X	n －th．Bell number
BN2	Bernoulli Numbers	Index n in X	n －th．Bernoulli number

Bell Numbers．$\{$ BELL $\}$
（See JM Baillard＇s reference page）
In combinatorial mathematics，the Bell numbers count the possible partitions of a set，i．e．the Bell number Bn counts the number of different ways to partition a set that has exactly n elements．

Bell numbers are defined by the iterative sequence below：

$$
\begin{aligned}
& B(0)=1 \text { and } \\
& B(n+1)=\Sigma\{k=0 . . n\} C n, k B(k) \quad \text { if } n>1
\end{aligned}
$$

$$
B_{n+1}=\sum_{k=0}^{n}\binom{n}{k} B_{k}
$$

where Cnk $=n!/[k!(n-k)!]$ are the binomial coefficients．

Examples：

```
10, XEQ "BELL" => : 5 5,975.0婴婴园
89,XEQ "BELL" =>5.2e572.4.7e E.9
```


Bernoulli Numbers BN2 \} (see JM Baillard reference page)

The Bernoulli numbers could be computed by the relations：

$$
\begin{aligned}
& B(0)=1 ; \\
& B(0)+C n+1,1 B(1)+C n+1,2 B(2)+\ldots \ldots . .+C n+1, n B(n)=0
\end{aligned}
$$

where $\mathrm{Cnk}=\mathrm{n}!/[\mathrm{k}!(\mathrm{n}-\mathrm{k})!]$ are the binomial coefficients

If the convention $\mathrm{B} 1=-1 / 2$ is used，this sequence is also known as the first Bernoulli numbers；with the convention $\mathrm{B} 1=+1 / 2$ is known as the second Bernoulli numbers．Except for this one difference， the first and second Bernoulli numbers agree．Since $\mathrm{Bn}=0$ for all odd $\mathrm{n}>1$ ，and many formulas only involveeven－index Bernoulli numbers，some authors write Bn instead of B 2 n ．

Example：

$$
10, \mathrm{XEQ} \text { "BN2" }=>\mathrm{B}(10)=- \text { 则四 } 75757575
$$

Note however that this recurrence relation is unstable，and the results are quite inaccurate for large n ．The generating function below is often used to avoid that：

$$
\frac{t}{e^{t}-1}=\frac{t}{2}\left(\operatorname{coth} \frac{t}{2}-1\right)=\sum_{m=0}^{\infty} \frac{B_{m}^{-} t^{m}}{m!}
$$

Fibonacci Numbers

Function	Description	Input	Output
FIB	Fibonacci Numbers	Index n in X	n -th. Fibonacci number
FIBI	Inverse Fibonacci	Index n in X	n -th/ inverse Fibonacci
Σ FIB	Sum of Fibonacci	Range n in X	Sum[fib(n)]
Σ IFIB	Sum of Inverse Fibonacci	Range n in X	Sum[1/fib(n)]

Fibonacci Numbers $\{$ FIB, FIBI $\}$

These functions calculate the Fibonacci andthe Fibonacci Inversenumbers using the well-known recurrent relationship:

$$
\begin{aligned}
& f(0)=0, \\
& f(1)=1 ; \\
& f(n)=f(n-2)+f(n-1)
\end{aligned}
$$

And the "Fibonacci Inverse" defined as

$$
\begin{aligned}
& f^{\prime}(0)=0 \\
& f^{\prime}(1)=1 \\
& f^{\prime}(n)=1 / f(n-2)+1 / f^{\prime}(n-1) .
\end{aligned}
$$

Note that this is *not* the same as the inverse of Fibonacci, which would simply be $1 / F(n)$
Examples:
10, XEQ "FIB" $=>55.00000000$; LASTX, XEQ : FIBI" $=>0.683299104$
25, XEQ "FIB" => 75,025.00000 ; LASTX, XEQ "FIBI" =>0.707165965

Sum of Fibonacci numbers $\{\Sigma$ FIB,$\Sigma \Sigma$ FIBI $\}$

Here we're calculating the sum of the first n Fibonacci numbers, starting at $f(0)=0$ until $f(n)$.
An interesting fact is the sum of the first Fibonacci numbers with odd index up to $f(2 n-1)$ is the $2 n$ th. Fibonacci number, and the sum of the first Fibonacci numbers with even index up to $f(2 n)$ is the $(2 n+1)$-th. Fibonacci number minus 1 :

Moreover, the general expression below relates the sum to the sequence value:

$$
\Sigma\{0 . . n) F(n)=f(n+2)-1
$$

Example:

Verifying the formula above:

Example:
15, XEQ "LFIBI" => 3.357 .3 .49

Collatz conjecture. \{ ULAM \}

(see: https://en.wikipedia.org/wiki/Collatz conjecture)
ULAM shows the successive values in the Collatz conjecture, starting with the argument in X. It is completely off-topic subject but it sorts of happened while preparing this manual - what an excuse, uh?

The ULAM function does a complete path starting with the value in X, all the way until the end when " 1 " is reached using the well-known Ulam's (or Collatz's) algorithm:

- If odd, multiply by three and add one $\quad f(n)= \begin{cases}\frac{n}{2} & \text { if } n \equiv 0(\bmod 2) \\ 3 n+1 & \text { if } n \equiv 1(\bmod 2) .\end{cases}$

The function will take the integer part of the absolute value of the number in X . Then all intermediate values are briefly shown, and the total number of "nodes" is left in X upon completion. The starting number is left in X .

Examples:
41, XEQ "ULAM" -> generates a sequence of 109 numbers

22 , ULAM -> generates a sequence of 15 numbers

The sequence for $\mathrm{n}=27$, listed below, takes 111 steps (41 steps through odd numbers), climbing as high as 9232 before descending to 1 .
$27,82,41,124,62,31,94,47,142,71,214,107,322,161,484,242,121,364,182,91,274,137,412,206$, $103,310,155,466,233,700,350,175,526,263,790,395,1186,593,1780,890,445,1336,668,334,167$, $502,251,754,377,1132,566,283,850,425,1276,638,319,958,479,1438,719,2158,1079,3238,1619$, $4858,2429,7288,3644,1822,911,2734,1367,4102,2051,6154,3077,9232,4616,2308,1154,577,1732$, $866,433,1300,650,325,976,488,244,122,61,184,92,46,23,70,35,106,53,160,80,40,20,10,5,16,8$, 4, 2, 1 (sequence A008884 in the OEIS)

Histogram of total stopping times for the numbers 1 to 108 . Total stopping time is on the x axis, frequency on the y axis.

The calls to [WAIT4L] ensure compatibility with the SY-41CL - slowing down the output for the user to catch a glimpse of the enumerated values.

[^0]: ${ }^{1}$ Other methods include the μ-atom mathod, used by J. Hill to get a lower bound which is close to the pixel counting methods. He included the area of all components up to period 16 (main cardioid is $P 1$, main disk is $P 2$), and all of period 16 but one, and got an area of 1.506303622 , which differs from Förstemann's by $\sim 0.0002883(0.019 \%)$.

[^1]: ${ }^{1}$ D. Allingham (see References) wrote: "B. Mandelbrot himself conjetures that the boundary of the set may have Hausdorff dimension 2 , which would imply that it actually contributes to the avea."

[^2]: ${ }^{1}$ To enter text lines use the ALPHA menu; + is the Append character and L_{F} is the Line Feed character, which can be found at the end of the second row of the PUNC submenu of the ALPHA menu.
 ${ }^{2}$ The initialization part stores four small constants in storage registers $R_{06}-R_{00}$ because of speed considerations. Simply having the constants as program lines and performing the relevant anithmetic operations takes two program steps each and is much slower than using recall anithmetic, which just takes a single step and is faster as well. As these operations are part of the main loop, every speed gain is essential when being repeated many thousands of times.
 Also, to save a register and a program step the constant 2 is stored just in R_{07}, then used at 3 different locations in the program, but the very first use at step 30 depends on the enclosing box x-range being from -2 to 0.5 . If using a different box x-range this constant might change and would need to be stored in its own register, say $R_{\text {Re }}$ the other instances remaining unaltered.

[^3]: ${ }^{1}$ The number of iterations doesn't need to be a power of $2(250,512, \ldots)$, it can be any positive integer (say $1,000,087, \ldots$)
 ${ }^{2}$ If you enter a positive integer value P, the intermediate results will be displayed every P points as well as the final result once all N points have been generated. P doesn't need to divide evenly into N, the final result will be displayed regardless. If P is 0 no intermediate results will be shown, which will mean faster execution but you won't be able to monitor progress.
 ${ }^{3}$ Free 42 is a fantastic free simulation of the HP42S created by Thomas Okken for many operating systems (Windows, Mac OS, Android, iOS, Linux, etc.) which also runs at the heart of SwissMicros physical DM42 calculator. It runs many hundred times faster than a physical $H P 42 S$ and features vastly increased available $R A M, 34$-digit $B C D$ precision and much more.

[^4]: This progam has been ventiod enly with respect to the numerical example gven in Program Descripton 11 . User accepts and uses this program malenal AT HIS OWN RISK. in retance solely upen his own inspection of the program matenal and without reliance upon any represertation or cescripton concernang the progyam matenal.
 NEITHEA HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KINO WITH REGARD TO THIS PROGRAM MATERIAL. INCLUDING. BUT NOT LIMATED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUAPOSE. NEITHER HP NOA THE CONTRIBUTOR SHAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL

