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Contour_ROM Manual 

HP-41 Module 
 

Introduction and Credits. 

Welcome to the Contour ROM, gathering a few advanced math applications showcasing the prowess 

of the SandMath and 41Z modules. You’ll find HP-41 versions of classic HP-15 advanced application 

examples, such as the Contour Integration (which gives this ROM its very name) and the Complex 

Potential, as well as several other state-of-the-art examples of the usability and effectiveness of the 

calculator platform that may still surprise you after all these years – such as Valentín Albillo’s seminal 

contribution on the Mandelbrot Set area estimation. 

Other programs include additional applications of the SandMath and 41Z in root-finding and 

differential geometry areas - see the Curve length, Surface of revolution, and areas under generic 

surfaces. 

And make sure you don’t miss the Fourier Transform sections, an elusive field for RPN calculators 

successfully conquered by your trusty HP-41 companion. See the driver program for the 41Z MCODE 

functions and the seminal version by Narmwon Kim, here enhanced with X-Mem file support. 

 

Overlap with other ROMs 

Several applications in this module have been taken from the Advantage Math ROM, some of them 

for completion sake and other to round the selection in a more logical manner. Consequently, and 

with some exceptions, they have been removed from the Advantage Math to avoid repetition.  

Note that the use of the SandMath for FINTG and FROOT has been favored over the leaner “Solve & 

Integrate” ROM. Reasons for that are several, mainly because other SandMath functions (such as 

DERV) not available in the S&I ROM are also featured in the programs. That’s why the section dealing 

with the Recursive use of FINTEG and FROOT has been included in this module again, no need to 

plug the S&I ROM for those. 

A few other utility functions are sprinkled throughout the module as well, be that on the FFT section 

or in the others. Finally several number-theory applications are also included for completion sake. 

 

 

Dependencies. 

This ROM is designed for the HP-41CX O/S, obviously housed in Q-RAM-capable hardware devices like 

Clonix/NoVRAM, MLDL_2k and others. Numerous programs rely on functions from the SandMath and 

the 41Z modules, thus make sure they’re also installed – as well as the Library#4, required by these 

two. 
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Without further ado, here is a list of the functions in the Main FAT table. 

XROM# Function Description Author 

16.00 -Z-CONTOUR Section header  
16.01 “ZLITG” Complex Line Integral HP Co. – Á. Martin 
16.02 “ITG” Integrand function HP Co. – Á. Martin 
16.03 “ ZCNTR” Contour Integral HP Co. – Á. Martin 
16.04 “ITC” Integrand function  HP Co. – Á. Martin 
16.05 “ARC”   R-Circle Contour and Derivative (F0 set) Á. Martin 

16.06 “LIN” Line Contour and Derivative (F0 Set) Á. Martin 
16.07 “FZ” Complex function  -  f(z) = exp(iz)/(z+1/z) Á. Martin 
16.08 “ZCD” exp(-iz) / (1+z^2)  - Cauchy Distribution Á. Martin 
16.09 “ZL2” Ln z /( 1+z^2)}^2 Á. Martin 
10.10 “Z13” (z+1)/(z-1).(z-3) Á. Martin 
16.11 “ZFLOW” Complex Flow Study HP Co. – Á. Martin 

16.12 “ZFL” f(z) = P(z)-Yo  -  Function to Solve Á. Martin 
16.13 “PZ” Complex Potential  -  P(z) = z + 1/z Á. Martin 
16.14 “MBA” Mandelbrot Set Area Valentín Albillo 
16.15 “D-Y” Delta-Wye Transform Á. Martin 
16.16 “Y-D” Wye-Delta Transform Á. Martin 

16.17 “PPL” Print Pythagorean Triplets Thomas Klemm 
16.18 -ZFOURIER Section header  
16.19 E3/E+ Pointer builder Á. Martin 
16.20 EINS _ Einstein Functions 1-2-3 Á. Martin 
16.21 SIGMD Sigmoid function Á. Martin 
16.22 “JNYX” Bessel J and Y vía Continued Fractions Baillard-Martin 

16.23 “=:” Subroutine for JYNX Baillard-Martin 
16.24 “ZDFT+” Complex Discrete Fourier Transform Á. Martin 
16.25 “ZIDFT+” Complex Inverse Discrete Fourier Transform A. Martin 
16.26 “DFTZ” Direct Fourier Transform A. Martin 
16.27 “IFTZ” Inverse Fourier Transform A. Martin 

16.28 “FFT” Fast Fourier Transform Narmwon Kim 
16.29 “IFF” Inverse Fast Fourier Transform Narmwon Kim 
16.30 -2D-ITG/SLV Section header  
16.31 ASWAP ALPHA swap around comma Á. Martin 
16.32 CLAC Clear ALPHA from Comma W&W GmbH 
16.33 “FITG2” Recursive Double Integration Á. Martin 

16.34 “*2D” Auxiliary for FITG2 Á. Martin 
16.35 “F1XY” Examle f1(x,y) Á. Martin 
16.36  “F2XY” Example f2(x,y) Á. Martin 
16.37 “FRT2” Recursive Root Finder f(x.y) Á. Martin 
16.38 “*FG” Auiliary for FRT2 Á. Martin 
16.39 “FG1” Example f1 and g1 Á. Martin 

16.40 “FG2” Example f2 abd g2 Á. Martin 
16.41 FNRM Finite Nested Radicals Martin-Baillard 
16.42 INRM Infinite Nested Radicals Martin-Baillard 
16.43 -SANDMATH+ Section header  

16.44 “CLEN” Curve Length Á. Martin 

16.45  *CL” Auxiliary for CLEN Á. Martin 

16.46 “LNG” Arc Length of a Curve JM Baillard 

16.47 “SRV” Area of  Surface of Revolution JM Baillard 

16.48 “SKS” Area of Surface JM Baillard 
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16.49 “*RM” Romberg Routine JM Baillard 

16.50 “XHALL” Halley’s Method for real roots Á. Martin 

16.51 “XNWT” Newton Method for real roots Á. Martin 

16.52 “ZNWT” Complex-Step-Differentiation for real roots Á. Martin 

16.53 “ZROOT” Complex Root finder Albillo-Martin 
16.54 BELL Bell Numbers Á. Martin 
16.55 BN2 Bernouilly Numbers Á. Martin 
16.56 BINETN Binet formula – Integer order Á. Martin 

16.57 BINETX Binet formula – Real order Á. Martin 
16.58 FIB Fibonacci Numbers Á. Martin 
16.59 IFIB Inverse Fibonacci numbers Á. Martin 
16.60 MLN Mutinomial Coefficients Martin-Baillard 
16.61 ULAM Ulam’s Conjecture Á. Martin 

16.62 FIB Sum of Fibonacci numbers Á. Martin 

16.63  IFIB Sum of Inverse Fibonacci numbers Á. Martin 
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Contour Integration on the HP-41. 

 
What follows is just a quick adaptation of the parameterized complex integral examples from the HP-

15C Advanced Functions manual, see pages 73 and following. 
 

Perhaps a little brute-force-ish, nevertheless a good example of a combined application of the 41Z 

functions and the SandMatrix for the numerical integration task. Surely it is restricted to easy 

contours like the straight line segments used in the example below, so the general-purpose case 

(Residues theorem, analytical functions, etc.) remains a challenge to be cracked. 

You can use FINTG to evaluate the contour integral     here C is a curve in the  

complex plane. First parameterize the curve C by: 

z(t)= x(t) + i y(t) ; for t1 ≤ t ≤ t2.  
 

Let G(t)=f(z(t)).z’(t). Then 

 

 

These integrals are precisely the type that FINTG evaluates. Since G(t) is a complex function of a 

real variable t, FINTG will sample G(t) on the interval t1 ≤ t ≤ t2 and integrate Re(G(t))—the value 

that your function returns to the real X-register. For the imaginary part, integrate a function that 

evaluates G(t) and uses RE<>IM to place Im(G(t)) into the real X-register.  

 

Program #1. Integral along line segment  [a, b] 

 
The generalized program listed below evaluates the complex integral  along  the straight line from 
a  to b, where a and b are complex numbers such that Im(a)#Im(b). Hence, the parameterized 
values z(t) use  z = a + t.(b-a),  with t1=0, t2=1.The program assumes that your complex function 
subroutine has a global label and evaluates the complex function f(z), and that the limits a and b are 
in the complex W- and Z- I  and the 
uncertainty ΔI  are returned in the X- and Y-registers respectively. 
 

The parameterization is for this case quite simple: 

 
z(t) = a + t.(b-a), with t1=0, t2=1 
z’(t) = (b-a)    

 
This has the additional benefit that there’s no need to write a global label subroutines for either the 
contour or the derivative curves.  
 
Note that since the derivative of the contour is not dependent on t it could therefore be taken out of 
the integral - however the requirement of using the imaginary part of the integrand advises to leave 

the derivative inside.  
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01 LBL “ZLITG+” Data entry . 

02 “F(Z)?  “  line segment 

03 PMTA 

04 ASTO 00  FName in R00 

05 “Z1=?” 

06 PROMPT  saves a in ZR01 

07 ZSTO 01  Re - R02, Im - R01 

08 “Z2=?” 

09 PROMPT  b 

10 ZRC- 01  (b-a) 

11 GTO 00 

12 LBL “ZLITG“  Cpx. Line Intg 

13 ASTO 00  FName in R00 

14 Z<>W  a 

15 ZSTO 01  saves a in ZR01 

16 Z-  (b-a) 

17 LBL 00 

18 ZSTO  02  saves (b-a) in ZR02 

19 “ITG”  integrands 

20 0   t1 limit 

21 ENTER^ 

22 1   t2 limit 

23 SF 01  Imaginary parts 

24 FINTG  calculates Im (I, ) 

25 STO 07  saves Im(I) in R07 

 

26 RDN 

27 STO 09  saves Im(I) in R03 

28 RDN  same limits 

29 CF 01  flag real parts 

30 FINTG  calculates Re(I, ) 

31 STO 06  saves Re(I) in R06 

32 RDN 

33 STO 08  saves Re(I) in R08 

34 RCL 09  presents I in W 

35 X<>Y 

36 ZENTER^ saves I in W 

37 RCL 07  presents I in Z 

38 RCL 06 

39 ZAVIEW shows result   

40 TONE 2 

41 RTN  done. 

 

42 LBL “ITG” Integrals 

43 0  no Imaginary 

44 X<>Y  current t 

45 ZRC* 02 (b-a).t 

46 ZRC+ 01 a +(b-a).t 

47 XEQ IND 00 f(a + (b-a).t) 

48 ZRC* 02 f(z).z’(t) 

49 FS? 01  Imaginary? 

50 X<>Y  yes, use it  

51 END  done.

 

 

To use ZLITG you need to write a subroutine to calculate the complex function f(z), place its global 

label in ALPHA and the two complex integration limits that define the ends of the straight line that 

your function will be integrated along in the complex stack levels W and Z. 

The driver program ZLITG+ offers prompts to input the data sequentially, so it’s more convenient for 

the casual user. Note that f(z) still must be written prior to executing the program. 

 

Note that in this case   z(t) = a + t.(b-a),   

hence       z’(t) = (b-a),  

and thus, not depending on the real variable t, it can be taken out of the integral instead of being 

part of the subroutine programming f(z). This facilitates the calculations and speeds up the execution.  
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Example 1. Approximate the integrals:  

  

These integrals decay very slowly as x approaches infinity and therefore require a long 

interval of integration and a long execution time. You can expedite this calculation by 

deforming the path of integration from the real axis into the complex plane. According to 

complex variable theory, these integrals can be combined as 

               with:   

This complex integral, evaluated along the line x=1 and y≥ 0, decays rapidly as y increases — like 
exp(-y). To use the previous program to calculate both integrals at the same time, we write a 
subroutine to evaluate f(z). This result I is calculated much more quickly than if I1 and I2 were 
calculated directly along the real axis. . 

 

01 LBL “FZ” 

02 ZENTER^ 
03 ZINV   1/z 
04 LASTZ   z 
05 Z+  z+1/z 
06 ZINV  1/(z+1/z) 
07 Z<>W  z 
08 Z*I  can be replaced with {X<>Y, CHS} 

09 ZEXP  exp(iz) 
10 Z*  f(z) 
11 END 

 
Approximate the complex integral by integrating the function from a = 1 + 0i  to b = 1 + 6i  using a 
FIX 3 display format to obtain three significant digits. (The integral beyond 1 + 6i  doesn't affect the 
first three digits.) 
 
0, ENTER^, 1, ZENTER^, 6, ENTER, 1,  puts the lower limit in W and the upper one in Z  

 

ALPHA, “FZ”, ALPHA,  XEQ “ZLITG“   =>   

Z<>W     =>       

 

This result I is calculated much more quickly than if I1 and I2 were calculated directly along the real 

axis. 

 

Using FIX 6 instead returns after a substantially longer time:  

And here the upper limit does have an impact, for instance moving it up to b=1+7i: 



 

 

 



HP41 CONTOUR ROM 

 
 

 
 

  

© ÁNGEL M. MARTIN – MAY 2024 PAGE 10 OF 77   

 

Program #2.- Extension to a more general contour. 

 

The next step is an extension of this method to more general contours, beyond the straight-line 

(vertical or not)  segment used before. For this we’ll need to program the different contour sections as 

parameterized formulas of the real variable t, i.e. z(t) in the contour, with t going from an initial (lower) 

value  of the parameter t1, to a final (upper) value t2. 

Besides that parameterized curve we’ll also need its derivative as another component of the complex 

integral equivalent once the change of variable is applied:  G(t) = f(z(t)).z’(t). 

Therefore we see that in principle three global labels are going to be required – although the 

parameterized equations are likely to be rather simple ones given the nature of the usual contours used 

for these integrals – typically line segments and circle arcs. 

Let’s see as example the integral of the previous function f(z) but this time using as contour the arc of 

circumference with radius R and centered at z=1, taken in a direct (counter-clockwise) direction from 

z1 = 1+ R  to  z2= 1+ Ri 

z(t) = 1 + R.exp(it) with t in the interval [0, /2] 

z’(t) = i.R exp(it) 

 

The program #2 in next page is a straightforward extension of the previous one, with the obvious 

difference this time that within the integrand routine we call the parameterized z’(t) and multiply its 

value by the value of the function f(z(t)) as required by the definition G(t) formula. 

 

The program has a data input section where the names of the three global labels are saved in data 

registers R00, R01, and R02 using the OS/X utility function PMTA. Also the value of the radius R and 

the parameterized integration limits are required at this stage. 

Then the runtime main body starts at LBL C – which assumes all input values have been already 

entered. The arrangement will be convenient to do repeated calculations with different values of the 

radious R, as the point we’re really after is checking whether the integral values decrease with 

R, hinting at a final zero result when R goes to an infinite limit. 

The function f(z) was already taken into account by the “FZ” routine in the first example, so it won’t be 

repeated in the listings below – refer to the previous example if needed. 

 

 

 



HP41 CONTOUR ROM 

 
 

 
 

  

© ÁNGEL M. MARTIN – MAY 2024 PAGE 11 OF 77   

 

 

LBL "ZCNTR"  main driver program 1 

"FZ? "  global LBL name 2 

 PMTA  for f(z) routine 3 

ASTO 02  saved in R02 4 

"Z(T)? “  global label name 5 

PMTA        for z(t) routine 6 

ASTO 00  saved in R00 7 

"Z'(T)?  “  global LBL name 8 

PMTA  for z'(t) routine 9 

ASTO 01  saved in R01 10 

“Z0=?”  anchor point 11 

PROMPT 12 

ZSTO 05  saved in ZR05 13 

"R=?"   value of radius 14 

PROMPT  ignore if not needed 15 

STO 03  saved in R03 16 

"T1^T2=?"  integration limits 17 

PROMPT  for parameter t 18 

STO 05  t2 saved in R05 19 

X<>Y    20 

STO 04  t1 saved in R04 21 

LBL C   for repeat use 22 

RCL 04  lower limit t1  23 

RCL 05  upper limit t2 24 

"ITC"    integrand routine 25 

SF 01   flags Imaginary parts 26 

FINTG  does integration 27 

STO 06  Im(I) in R06 28 

X<>Y 29 

STO 07    30 

CF 01   flags Real parts 31 

RCL 04  lower linit t1 32 

RCL 05  upper limit t2 33 

FINTG  does the integration 34 

STO 08  saves Re(I)  35 

X<>Y     36 

STO 09   37 

RCL 07   38 

X<>Y    39 

ZENTER^   40 

RCL 06  Im(I) 41 

RCL 08  Re(I) 42 

ZAVIEW  shows result 43 

TONE 2     44 

RTN   done.  45 

LBL "ITC”  Integrand routine 46 

STO 08  saves t in R08 47 

XEQ IND 00  calculates z(t) 48 

XEQ IND 02  f(z(t)) 49 

ZENTER^  saves f(z) in W 50 

RCL 08  recalls t 51 

XEQ IND 01  calculates z'(t) 52 

Z*   z’(t).f(z(t))  53 

FS? 01  Imaginary?  54 

X<>Y   yes, take Im part 55 

END   done. 56 

 
 

And finally the parameterized curves are programmed as follows: 

 

01  LBL "ZP"  derivative z’(t) 

02   0   pure imaginary (0+it) 
03  ZEXP  exp(it) 

04  RCL 03  R 
05  ST* Z 
06  *   R.exp(it) 
07  Z*I   i.R.exp(i.t) 

08  RTN 

09  LBL "ZT"  parameterized  z(t) 

10  XEQ “ZP”  opportunistic  

11  Z/I   undoes Z*I 
12  ZRCL 05   adds anchor    
13  Z+   a + R.exp(i.t)   
14  END  done. 
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Example 2.-  Obtain the integral results for the different values of R=1, R=10, R=100, and R=1000 

and see if they show a decreasing trend as R increases. 
 

Radius Re(Intg) Im(Intg) Magnitude 

1 

10 

100 

1000 

 

Finally let’s close the circle (pun intended) using the general-purpose program #2 to re-calculate the 

first example, where the contour in this case is the straight segment: z(t) = a + (b-a).t  with  0 ≤ t ≤ 1 

 

01 LBL “LP” derivative 

02 6  (b-a) 
03 ENTER^ 
04 0 
05 RTN  0 + 6i 

06 LBL “LT” contour 

07 XEQ “LP” 0 + 6.i 

08 RCL 08  t 
09 ST* Z  t.(b-a) 
10 *  0 + t.(b-a) 
11 1  a 
12 + 
13  RTN  a + t.(b-a) 

 

 

XEQ “ZCNTR”  with FZ, LT, and LP as global labels, plus t1=0 and t2=1  (R can be ignored)  

Using FIX 4 it gives the same result as before, 

Result:     

 
Combining Curve and Derivative 
 

In order to reduce the number of global labels in the ROM (where FAT space is always at a premium), 
the programs in the module has been modified to use flag F00 to determine whether to calculate the 
contour (F0 clear) or its derivative (F0 set).  The main program will manage the status of F00 
appropriately, setting and clearing F00 appropriately before calling the (now combined) parameter 
curve routines. Besides that, the prompt for the derivative subroutine “Z’(T)” has been eliminated – 
freeing register R01 for other purposes. 
 

This changes the previous routines listing into the following version: 

 

01 LBL “LT/LP” single entry 

02 FC? 00 

03 GTO 00 

04 LBL 01  derivative 

05 6   

06 ENTER^ 

07 0  (b-a) 

08 RTN 

09 LBL 00  contour 

10 XEQ 01  (b-a) 

11 RCL 08  t 

12 ST* Z 

13 *  t.(b-a) 

14 ZRCL 05 a 

15 Z+  a+t.(b-a) 

16 END. 
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And likewise for the arc of circumference contour: 

 

01  LBL "ZT/ZP" single FAT entry) 

02  FC? 00  derivative? 
03  GTO 00  no, branch off 

04  LBL 01  derivative 

05   0  pure imaginary (0+it) 
06  ZEXP  exp(it) 
07  RCL 03  R 
08  ST* Z 
09  *  R.exp(it) 

10  Z*I  i.R.exp(i.t) 
11  RTN 

12  LBL 00  parameterized  z(t) 

13  XEQ 01  opportunistic  
14   Z/I  undoes Z*I 
15  1   adds anchor    
16  +  1+R.exp(i.t)   
17  END  done. 

 
 

Program #3.- Final consolidated version 

 
Rewriting the data entry section and using PMTK  in the OS/X Module we can combine both cases in a 

single program, as listed below. This has the advantage of using the same integrand routine for both 

cases (ITG and ITC), and thus saves one more FAT entry in the module. Note that iy uses PMTK in the 

OS/X module to select the case, either ARC  (“Ä”) or LINE (“L”) – and even a custom contour denoted 

by “X”, which would need its custom routine to compute the curve and its derivative. 

 

01 LBL “ZCNTR+” 

02 “FZ? “ 

03 PMTA  f(z) Name 
04 ASTO 00   
05 “TYPE ALX” 
06 PMTK  either 1 0r 2 
07 GTO IND X dispatch choice 

08 LBL 03 

09 “Z(T)? “ 
10 PMTA  contour name 

11 ASTO 01  
12 GTO 00  merge 

13 LBL 02 ine segment 

14 “Z1=?” 
15 PROMPT 
16 ZSTO 01 
17 “Z2=?” 
18 PROMPT 
19 ZRC-  01 

20 ZSTO 02 
21 0  initial param 
22 ENTER^ 
23 1  final param 
24 “LIN”  contour name 
25 GTO 00 merge 

26 LBL 01 Circular ARC 

27 “A=?” 
28 PROMPT 

29 STO 02 Aux. Param. 
30 “R=?” 

31 PROMPT 
32 STO 03 Circle radius 

33 “T1^T2=?” 
34 PROMPT 
35 STO 05 final angle 
36 X<>Y 
37 STO 04 initial angle 
38 X<>Y  final angle 
39 “ARC”  contour name 

40 LBL 00 merged code 

41 ASTO 01 
42  “ITC”  integrand 

43 LBL C   

44 SF 01  imaginary 
45 FINTG 
46 STO 07 Im(ITG) 
47 RDN 
48 STO 09 (Im) 

49 RDN  same limits! 
50 CF 01  real part 
51 FINTG 
52 STO 06 Re(ITG) 
53 X<>Y 
54 STO 08 (Re) 

55 RCL 09 (Im) 
56 X<>Y 
57 ZENTER^ 
58 RCL 07 Im(ITG) 

59 RCL 06 Re(ITG( 
60 ZAVIEW show result 
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61 TONE 0 

62 RTN 

63 LBL “ITC” integrand 

64 STO 08 current t 
65 CF 00  contour 
66 XEQ IND 01 contour z(t) 
67 XEQ IND 00 complex f(z) 
68 ZSTO 05 save for later 
69 RCL 08 current t 
70 SF 00  derivative 

71 XEQ IND 01 z’(t) 
72 ZRC* 05 f(z).z’(t) 
73 FS? 01 imaginary? 
74 X<>Y  yes, oblige 
75 END  done 

 

01 LBL “ARC” circular 

02 0 
03 ZEXP  exp(i.t) 
04 RCL 03  R 

05 ST* Z 

06 *  R.exp(i.t) 
07 X<>Y  do Z*I 
08 CHS  i.R.exp(i.t) 
09 FS?C 00  derivative? 
10 RTN  yes, return 
11 CHS  no, undo Z*I 
12 X<>Y  R.exp(i.t) 
13 RCL 02  anchor point 
14 +  a+R.exp(i.t) 

15 RTN 

16 LBL “LIN” line segment 

17 ZRCL 02 (b-a) 
18 FS?C 00` derivative? 
19 RTN  yes, return 
20 RCL 08  t 
21 ST* Z 
22 *  t.(b-a) 

23 ZRC+ 01 a+t.(b-a) 
24 END 

 

Where the last two routines are the combined contour & derivative calculation for the cases of a 
circular arc and a straight line segment,  
 
See the registers used in the table below: 

Register # ZLITG ZCNTR - LINE ZCNTR - ARC 
R00 f(z) - function Name 

R01 unused Z(t) - Contour Name 
R02 Re(z1) Anchor point A 
R03 Im(z1) Radius R 
R04 Re(z2-z1) t1 
R05 Im(z2-z1) t2 

R06 Re(Intg) 
R07 Im(Intg) 
R08 Re(Delta) 
R09 Im(Delta) 
R10 unused Re(z’(t)) 

R11 unused Im(z’(t)) 

 

Thanks to this common register mapping across the three programs we’ll be able to use subroutines 

valid for all applicable cases, therefore saving further space in the ROM. 
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Examples from Wikipedia:  https://en.wikipedia.org/wiki/Contour_integration 

 
Example 1 – Unit circle 

 
A fundamental result in complex analysis is that the contour integral of f(z)=1/z is 2πi, where the path 

of the contour is taken to be the unit circle traversed counterclockwise (or any positively oriented 
Jordan curve about 0). In the case of the unit circle |z|=1 there is a direct method to evaluate the 
integral 
 

 
 

 
 
Example 2 – Cauchy distribution.   

 

The integral   
 
 
which arises 
 in probability theory as a scalar multiple of the characteristic function of the Cauchy distribution) 
resists the techniques of elementary calculus. We will evaluate it by expressing it as a limit of contour 
integrals along the contour C  that goes along the real line from −a to a and then counterclockwise 
along a semicircle centered at 0 from a to −a. Take a to be greater than 1, so that the imaginary unit i 
is enclosed within the curve. The contour integral is  
 

 
 
Since eitz is an entire function (having no singularities at 
any point in the complex plane), this function has 
singularities only where the denominator z2 + 1 is zero. 
Since z2 + 1 = (z + i)(z − i), that happens only where      
z = i  or  z = −i.  Only one of those points is in the region 

bounded by this contour. The residue of f(z) at z = i is: 

 
 
 
According to the residue theorem, then, we have 

 
According to Jordan's lemma, if t > 0 then the integral along the arc of circumference tends to zero as 
R tends to infinite. Therefore, if t > 0 then 
 

 

https://en.wikipedia.org/wiki/Contour_integration
https://en.wikipedia.org/wiki/Probability_theory
https://en.wikipedia.org/wiki/Characteristic_function_(probability_theory)
https://en.wikipedia.org/wiki/Cauchy_distribution
https://en.wikipedia.org/wiki/Calculus
https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Imaginary_number
https://en.wikipedia.org/wiki/Residue_theorem
https://en.wikipedia.org/wiki/File:ContourDiagram.png
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A similar analysis can be made for values t<0, leading to the final consolidated result shown below: 
 

 
 

If t = 0 then the integral yields immediately to real-valued calculus methods and its value is  
 
 
 
Example 3 – Squared Logarithm 

 
This example treats a type of integral of which  

 
To calculate this integral, one uses the 
function   

 
And to avoid singularities in the integration 

path we use  the branch of the logarithm 
corresponding to − < arg z ≤ .   
 
We will calculate the integral of f(z) along the 
keyhole contour shown at right. As it turns 
out this integral is a multiple of the initial 

integral that we wish to calculate and by the 
Cauchy residue theorem (there are two poles 
at z=i and z=-i) we have 
 

 2i.(Res{I, -i} ) = -^2 
 
Let R be the radius of the large circle, and r the radius of the small one. We will denote the upper line 
by M, and the lower line by N. As before we take the limit when R → ∞ and r → 0. The contributions 
from the two circles vanish.  
 
In order to compute the contributions of M and N we set z = −x + iε on M and z = −x − iε on N, with 
0 < x < ∞: Replacing z by hose values and performing some simplification we obtain: 
 

 

  
 

and after isolating the sought for integral it gives 
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we’ll see that the chosen branch of the logarithm is a rather relevant point for a proper usage of the 
ZLN function. That, together with the winding direction being clock-wise, must be taken into account to 

obtain he correct results! 
 
 
 

Application with the module functions. 
 
The module includes global labels for straight segments - defined by the two complex points at its end - 
and circumferences centered in 0 and with a radius R. Choosing initial and final angles is the way to 
provide a general-purpose arc, such as the one used in the previous example with initial angle zero and 

final angle /2. 
 
The module also includes the complex functions routines for the examples described above: 
 

 LBL “1/Z” for the first example 

 LBL “ZCD” for the Cauchy distributions 
 LBL “ZLN2” for the keyhole contour example 

 
Combining these resources is therefore a simple task. 
 
Example 1 - Keystrokes, 
 

A straightforward case for which we have both the complex function and the contour:  
 
XEQ “ZCNTR”    
“1/Z”, R/S  ? 
“RC”, R/S   
0, R/S    
1, R/S    
0, PI, 2, *,  R/S  

X<>y, FIX 9     

 
Note that the „A“ parameter is irrelevant for this example, so zero is as good as any other value  
 
 
Example 2 - Keystrokes 
 
Here the routines can be used to verify that the contribution of the semi-circumference tends to zero as 
its radius increases, i.e. similar to the analysis made at the beginning of this section. 

 
Running if for the cases R=10, R-100, R-1,000  and R=10,0000 we compile the following table: 
   
 

Radius Result Magnitude 

10  

100  

1.000  

10.000  
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XEQ “ZCNTR”   
“ZCD”, R/S     
“RC”, R/S   
0, R/S                will repeat for different radius 
1, R/S    
0, PI, 2, /, R/S    
 
Repeating for R=100, 1,000 and 10,000 is as simple as modifying the radius value in data register R03 
and executing the program from the local label “C”, as shown below: 

 
100, STO 03, XEQ C  
1000, STO 03, XEQ C  
10000, STO 03, XEQ C 
etc… 
 
 
Example 3 - keystrokes 

 
Here too the contribution of the module is limited to the verification of the diminishing results in the 
outer and inner circles of the keyhole contour. It is left to the reader for practice… 
 
This contour and the choice of the branch of the logarithm introduce two points for consideration.  
 

 The first one is that the contour winds in clockwise direction, therefore the sign changes when 
compared to the “natural” convention. 

 

 The second is the function ZLN in the 41Z module uses the principal branch of the logarithm, 
which removes the negative semi-axis and therefore it is the appropriate one for this example. 
This is mentioned just to alert you that it may not always be the case, depending on the case. 

 
 

Program Listings 
 
 

01 LBL “1/Z” 

02 ZINV 
03 RTN 

04 LBL “ZLN2” {Ln z /( 1+z^2)}^2 

05 ZLN 
06 LASTZ 
07 Z^2 
08 1 
09 + 
10 Z/ 
11 Z^2 

12 RTN 

13 LBL “ZCD” Cauchy Distr 

14 ZENTER^ exp(-i.t.z) / (1+z^2) 
15 X<>Y 
16 CHS  i.z 
17 RCL 02  argument “ t”  
18 ST* Z 
19 *  i.t.z 

20 ZEXP  exp(i.t.z) 
21 Z<>W 
22 Z^2  z^ 2 
23 1 
24 +  1+Z^ 2 
25 Z/  exp(-i.t.z) / (1+z^2) 
26 RTN 

27 LBL “RC” R-Circle 

28 0  0+i.t  
29 ZEXP  exp(it) 
30 RCL 03  get radius 
31 ST* Z 
32 *  R.exp(i.t) 
33 FC?C 00  derivative? 
34 RTN  no, return 
35 X<>Y  yes, multiply by i 
36 CHS  i.R.exp(i.t) 

37 END  done 
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Complex Potentials. 
 
What follows is just a quick adaptation of the complex potentials examples from the HP-15C Advanced 

Functions manual, see pages 76 and following. 

Conformal mapping is useful in applications associated with a complex potential function. The 

discussion that follows deals with the problem of fluid flow, although problems in electrostatics and 

heat flow are analogous. 

Consider the potential function P(z). The equation Im(P(z)) = c defines a family of curves that are 

called streamlines of the flow. That is, for any value of c, all values of z that satisfy the equation lie 

on a streamline corresponding to that value of c. To calculate some points zk on the streamline, specify 

some values for xk and then use FROOT to find the corresponding values of yk using the equation 

Im(P(xk + iyk)) = c. 

If the xk values are not too far apart, you can use yk-1 as an initial estimate for yk. In this way, you 

can work along the streamline and calculate the complex points zk = xk + iyk. Using a similar 

pocedure, you can define the equipotential lines, which are given by  

Re(P(z)) = c. 

 

The program listed below is set up to compute the values of yk from evenly spaced values of xk. You 

must provide a subroutine labeled with a global label in memory that places Im(P(z)) in the real X-

register. The program uses inputs that specify the step size h, the number of points n along the real 

axis, and z0 = x0 + iy0, the initial point on the streamline. You must enter n, h, and z0 into the Z-, Y-, 

and X-registers before running the program. 

The program computes the values of zk and stores them in data file in X-Mem in the form ak1 = xk-1 

and ak2 = yk-1 for k = 1, 2, ... , n.  Data entry includes prompting for the flow conditionas and allows 

for either streamlines or equipotentials to be computed. In addition to the 41Z module to define the 

complex flow, and the Solve & Integrate module (for FROOT, hence the ancilliary subrout ine “ZFL” for 

the equation to solve), the AMC_OS/X module is required for PMTA and PMTK. The listing below also 

includes the potential flow example “PZ” given by:  P(z) = z + 1/z 

One special feature of this program is that if an xk value lies beyond the domain of the streamline (so 

that there is no root for _ to find), then the step size is decreased so that xk approaches the boundary 

where the streamline turns back. This feature is useful for determining the nature of the streamline 

when yk isn't a single-valued function of xk. If h is small enough, the values of zk will lie on one branch 

of the streamline and approach the boundary. (The second example below illustrates this feature.)  
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01 LBL “ZFLOW” 

02 “FNAME? “ function name 
03 PMTA 
04 ASTO 08 
05 “#N=?”  data points 
06 PROMPT 
07 STO 09 
08 “H=?”  step size 
09 PROMPT 

10 STO 04 
11 “Z0=?”  initial point 
12 PROMPT enter IM in Y, Re in X 
13 ZSTO 00 saved in {R00, R01} 
14 “TYPE? SV” stream/velocity 
15 PMTK 
16 CF 00  default is streamlines 
17 2 
18 X=Y?  chose “V”? 

19 SF 00  flags velocity 

20 LBL C  main section 

21 RCL 09  number of points 
22 ST+ X  double size 
23 “ZFL”  data file name 
24 SF 25 
25 PURFL  purge if there 
26 CF 25 

27 CRFLD  create it (again) 
28 CLX 
29 SEEKPTA sets pointer to top 
30 RCL 09  # of points 
31  E 
32 –  n-1 
33 E3/E+  1,00(n-1) 
34 STO 07 ` save counter 
35 ZRCL 00 initial point 

36 STO 02  x0 in R02 
37 SAVEX  and in data file 
38 X<>Y 
39 STO 03  y0 in R03 
40 SAVEX  and in data file 
41 X<>Y  restore order 
42 XEQ IND 08 compute function 
43 STO 05  save result 

44 LBL 02 

45 RCL 04  h 
46 RCL 07  counter 
47 INT  index k 
48 *  k.h 
49 RCL 02  xk 
50 +  xk+1 = xk+k.h 
51 STO 06   
52 RCL 03  yk as guess1 

53 ENTER^ and as guess2  
54 FROOT 
55 GTO 04  root found! 
56 4  if not, adjust search 
57 ST/ 04  new # of points 
58 ST* 07  new step size 
59 GTO 02  try again 

60 LBL 04  root was found 

61 RCL 06 

62 VIEW X  show Re(xk+1) 
63 SAVEX  and save in file 
64 RDN 
65 STO 03  make yk = yk+1 
66 VIEW X  show Im(xk+1) 
67 SAVEX  and save in file 
68 ISG 07  increase counter 
69 GTO 02  do next if not last 

70 CLX   
71 SEEKPT  set pointer to top 
72 RTN  done. 

73 LBL “ZFL” ancillary routine 

74 RCL 06  Yk in Y, xk in Xk 
75 XEQ IND 08 compute P(z) 
76 RCL 05  xk ot yk 
77 –  subtract it 
78 RTN  done. 

79 LBL “PZ” example potential 

80 ZENTER^ 
81 ZINV 
82 Z+ 
83 FC? 00  streamline? 
84 X<>Y  yes, get Im part 
85 END 

 

Let’s see next a couple of examples to check the program 

 

.
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Example-1: Calculate the streamline of the potential P(z) = 1/z + z passing through z = −2 + 0.1i .  

Using nine data points and a step size of 0.1 we obtain the results shown below...  

Example-2: For the same potential as the previous example, P(z) = 1/z + z, compute the velocity 

equipotential line starting at z = 2 + i and proceeding to the left.  

We\ll try with n = 6 and h = −0.5. (Notice that h is negative, which specifies that xk will be to the 

left of x0) 

Example-1   Results     Example-2 Results  

xk yk 

−2.0 

−1.5 

−1.0 

−0.5 

0.0 

0.5 

1.0 

1.5 

2.0 

 

The example-2 results show the nature of the top branch of the curve (the heavier dashed line in the 

graph for the previous example). Note that the step size h is automatically decreased in order to follow 

the curve-rather than stop with an error-when no y-value is found for x < 1.86. 

To review the results you could set user flag 21 to halt the displaying while the calculations are being 

made, or alternatively review the values saved in the data file with the utility listed below: 

 

01 LBL “DFED” 

02 FLSIZE 
03 1 
04 – 
05 E3 
06  /`  0.00(n-1) 

07 LBL 00 

08 SEEKPT 
09 GETX  get current 
10 X<>Y  index to X 

11 “D” 
12 ARCLI 
13 >”=” 
14 X<>Y  value to X 
15 ARCL X 
16 CF 22  set data entry flag 
17 FC? 08  edit mode? 
18 >”?”  yes, add question mark 
19 PROMPT 

20 FC?C 22 was data entered? 

 

21 GTO 02  no, branch off 
22 FS? 08  yes, edit mode? 
23 GTO 01  no, skip over 
24 X<>Y  yes, prepare stage 
25 RDN 
26 X<>Y  get pointer 
27 SEEKPT  set pointer 
28 X<>Y  new value 
29 SAVEX  save it in file 

30 LBL 02 

31 X<>Y 

32 LBL 01 

33 ISG X  increase counter 
34 GTO 00  loop for next 
35 ”DONE” 
36 AVIEW 
37 CLA 
38 END 

 

xk yk 

2.0000 

1.8750 

1.8672 

1.8452 

1.8647 

1.8646 
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41Z  Application:  Delta-Wye Transformation. 

Here’s a token of appreciation for the EE folks in the audience – using the 41Z to tackle a classic: 
Delta-Wye impedance transformation for 3-phase systems.  
 
The expressions to use are as follows: 

                      
 

   

 

Examples. 

Compute the Delta impedances equivalent to the Wye configuration given by: 

z1 = 1+2i,   z2=3+4i, and  z3=5+6i 

We type: 

CF 00,  GTO “Y-D” 

2, ENTER^, 1, ZENTER^   

4, ENTER^, 3, ZENTER^   

6, ENTER^, 5, XEQ C    

ZRDN      

ZRDN       

and for the reverse direction we take advantage that the three values are already in the complex 

stack, thus there’s no need to re-enter them. 

SF 00, XEQ C     

ZRDN      

ZRDN       
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The simple program below is all there is to it – behold the power of the 41Z complex stack in action 
:-) 
 

 
 
 
Note that to reduce the number of FAT entries, the version in this ROM has replaced the global 
label DYD  with the local label C, to be used as a soft key assignment. 
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Mandelbrot Set Area estimation 

Saving the best for last, here is a brilliant example of RN’s utilization provided by Valentín Albillo’s 

excellent articles on the estimation of the Mandelbrot set area on the HP-42 and Free42 (see here: 

HP Article VA040a - Boldly Going - Mandelbrot Set Area (42S).pdf) 

Quoting sections or copying parts of that article is bound to do the reader and the article itself a 

huge disservice, so you’re encouraged to read the original – included in this manual in its entirety. 

Thanks to Valentín for graciously granting permission to do so. 

Porting it to the HP-41 platform was relatively straight-forward, once the function set was enhanced 

to deal with the required utilities. Obviously the HP-41 has its own limitations compared to the HP-

42S and more so to Free42, however it does a good-enough job aided by the 41Z_Complex 

Number Module, needed for the complex math functions required by the program. 

Here’s the program listing on the HP-41 w/ the 41Z Module. 

 

 01 *LBL "MBA" 

 02  2.5 
 03  STO 06 
 04  2 

 05  STO 07 
 06  1.2 
 07  STO 08 

 08  0.25 
 09  STO 09 

 10  1 
 11  SEEDT 
 12  "POINTS=?" 

 13  PROMPT 
 14  STO 04 
 15  STO 00 

 16  256 
 17  "#ITERS=?" 

 18  PROMPT 
 19  STO 05 
 20  CLX 

 21  STO 02 
 22  "EVERY=?" 

 23  PROMPT 
 24  STO 03 
 25  CF 21 

 26  "WORKING..." 
 27  AVIEW 
 28  CF 00 

 29  X#0? 

 30  SF 00 

 31 *LBL 00 

 32  RCL 05 

 33  STO 01 
 34  FS? 00 
 35  XEQ 03 

 36  RNDM 
 37  RCL 06 
38   *  

 39  RCL 07 
 40  - 

 41  RNDM 
 42  RCL 08 
43  * 

 44  X<>Y 
 45  ZRPL^ 
46  ZSIGN 

 47 ZENTER^ 
48  RCL 07 

49   - 
 50  Z- 
 51  ZMOD 

 52  RCL 09 
53   * 
 54  Z<>W 

 55  ZMOD 
56   X<>Y 

57  RDN 

 58  X<Y? 
59  GTO 02 
60  SIGN 

 61  ZRUP 
 62  RCL Z 
 63   - 

 64  ZMOD 
 65  RCL 09 

66  X>Y? 
 67  GTO 02 
 68  ZRUP 

69  ZRPL^ 

 70 *LBL 01 

 71  Z^2 

 72  Z+ 
 73  ZMOD 
 74 RCL 07 

 75 X<=Y? 
76 GTO 04 

77  ZRDN 
 78  LASTZ 
79  DSE 01 

 80  GTO 01 

 81 *LBL 04 

 82 ISG 02 

 83 *LBL 02 

 84 VIEW 00 

 85  DSE 00 

 86  GTO 00 

 87 *LBL 03 

 88  RCL 00 

89  RCL 03 
 90  MOD 
 92  X#0? 

 93  RTN 
 94  CLA 
 95  RCL 04 

 96  RCL 00 
 97  - 

 98  X=0? 
 99  RTN 
100  AINT 

101  "`->" 
102  RCL 02 
103  AINT 

104  PROMPT 
105  RCL Y 

106  / 
107  6 
108  * 

109  "AREA=" 
110  ARCL X 
111  AVIEW 

112  END 

 

 
 

https://albillo.hpcalc.org/articles/HP%20Article%20VA040a%20-%20Boldly%20Going%20-%20Mandelbrot%20Set%20Area%20(42S).pdf
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Discrete Fourier Transform 

This module includes several programs related to the DFT subject.  

 The first one is just a driver for the functions ZDFT and ZIDFT  included in the 41Z 

module, used to input the data points throughout the execution. This driver program was 

not included in the 41Y due to the lack of enough available space.  

 The second one is a FOCAL equivalent to the MCODE implementation in the 41Z , therefore 

should be equivalent to the first one only considerably slower of course. 

 The third one is a Fast Fourier Transform implementation written by Narmwon Kim, and 

published in the US Users’ Library  

 

Program #1.- Driver for ZDFT and ZIDFT in the 41Z module. 

 

01 LBL  “ZDFT+” 

02 CF 00 

03 GTO 00 

04 LBL “ZIDFT+” 

05 SF 00 

06 LBL 00 

07 “#PTS=?” 

08 PROMPT 

09 E3/E+  build pointer 

10 STO 00 

11 ZINPT  data entry 

12 LBL 04 

13 RCL 00  control word 

14 FC? 00  direct? 

15 ZDFT  direct DFT 

16 FS? 00  inverse? 

17 ZIDFT  inverse DFT 

18 RCL M  number of pts. 

19 E3/E+  build pointer 

20 STO 00  inputl word 

21 RDN  results word 

22 ZOUTP  data output 

23 RTN  done. 

24 LBL C  Undo 

25 0 

26 TF  toggles F0 

27 RCL 00  bbb.eee 

28 FRC  0.eee 

29  E3 

30 *  eee  

31 ST+ X  2.(eee) 

32 ENTER^ 

33 ENTER^ 

34  E6   

35 /  0.000|2.(eee) 

36 +  0.000|2.(eee) 

37 2.002 

38 +  (e+2),002|(2e) 

39 REGMOVE 

40 GTO 04 

41 END 

 

In addition to facilitating the data entry process, this program offers the option to undo the last 

transformation to verify that the results obtained were correct, by doing the inverse calculation 

again which should equal the same original  data set. If you want to use such option simply press 

R/S after all points have been outputted, or press XEQ C at any time afterwards. Note that function 

TF in the OS/X module is used here to toggle the status of user flag F00. 
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Program #2.- A FOCAL counterpart. 

 

The FOCAL program below is a rough equivalent of the MCODE function. Execution times for this 
program are about four to five times longer than the MCODE counterpart. 
 
 

01 LBL "ZDFT"  

02 CF 01  
03 GTO 00  

04 LBL "ZIDFT"  

05 SF 01  

06 *LBL 00 

07 STO 00      N 
08 E3/E+  

09 STO M(5)      j,00N 

10 *LBL 01      outer loop 

11 VIEW M(5)  
12 RCL 00      N 
13 STO N(6)  
14 E3/3+  
15 STO O(7)      k,00N 
16 RCL 5(M)      j,00N 
17 INT       j 

18 ST+  N(6)      dest: ZR(N+j) 
19 E  
20 -       j-1 
21 PI  
22 *  
23 ST+ X(3)      2p.(j-1) 
24 RCL 00      N 
25  /       2p.(j-1)/N 
26 STO 01  

27 CLZ  

28 ZSTO IND N(6) reset destination 

29 *LBL 02  inner loop 

30 RCL 0(7)  k,00N 
31 INT   k 
32 E  
33 -   k-1 
34 RCL 01  2p.(j-1)/N 
35 *   2p.(j-1)(k-1)/N 

36 FC? 01  
37 CHS  
38 E  
39 P-R  
40 ZRC* IND O(7)  
41 ZST+ IND N(6)  
42 ISG O(7)  next k 
43 GTO 02  loop back 
44 FC? 01  

45 GTO 00  
46 ZRCL IND 01  
47 RCL 00  
48 ST/ Z  
49  /  
50 ZSTO IND 01  

51 *LBL 00  

52 ISG M(5)  next j 
53 GTO 01  loop back 

54 END 

 
 

 

Note that contrary to the functions in the 41Z, this program will not check that enough data 
registers are available. If not, the “NONEXISTENT” message will be presented; adjust the size and 
try again. Make sure complex data register ZR00 is not used to store the sample – which must start 
at ZR01. This is because (real) data registers R00 and R01 are used for scratch calculations by 

these functions. 
 

 

Program #3. – Fast and Furious. 

 

Last in this section is an enhanced version using extended memory for the data storage  of the 

contribution to the User’s Library  by Narmwon Kim (reference 008068C) with a Fast Fourier 

Transform program, using the well-known Cooley & Tuckey FFT algorithm. Some of the original UPL 

forms reproduced here, but the program listing is more elaborate for the additional features. 
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Using Extended functions  makes this program easier to use and  provides a more stable repository 

for the different data sets, which are saved as data files in X-Mem. 
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Example.  Do the transformation for the following data set: 

{   1,    1+j,   3,   3+j   } 

The first time we’ll not be using an existing data file for the data set, even if it already exists - 

therefore we’ll choose “N” to the pertinent question if it appears: 

 

 

XEQ “FFT     

“N”    ? 

4, R/S  `   

1, ENTER, 0, RS    

1, ENTER^, 1, R/S  

3, ENTER^, 0, R/S   

3, ENTER^1, R/S   

R/S     

R/S     

R/S     

R/S     

 

At this point the data file FFT contains the four results for a more permanent repository, one that 

can even be used to obtain the inverse and check the accuracy of the programs: 

 

XEQ “IFF”    

“Y”     

R/S     

R/S     

r/s     

R/S     

 

Note: When the use of the data file is selected the program expects the pointer to be set at the first 

element. This is normally the case, as both FFT and IFF will leave it in that setting – but if you 

manually alter the pointer then an END OF FL error message will probably come up. You can make 

sure with the sequence ‘FFT” . 0, SEEKPTA before running the programs. 
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01 *LBL "IFF" 

02 SF 00 

03 GTO 03 

04 *LBL "FFT" 

05 CF 00 

06 *LBL 03 

07 RAD 

08 CF 29 
09 SIZE? 
10 "FFT" 

11 SF 25 
12 FLSIZE 

13 FC?C 25 
14 GTO 03 
15 CF 01 

16 "USE FL? YN" 
17 PMTK 
18  E 

19 - 
20 X#0? 

21 GTO 03 
22 SF 01 
23 RDN 

24 ENTER^ 
25 ENTER^ 

26 2 
27 / 
28 STO 04 

29 RDN 
30 GTO C 

31 *LBL 03 

32 "#POINTS=?" 
33 PROMPT 

34 STO 04 
35 ST+ X 
36 "FFT" 

37 SF 25 
38 PURFL 
39 CF 25 

40 CRFLD 
41 17 

42 + 
43 X>Y? 
44 PSIZE 

 45 *LBL C 

46 CLX 

 47 SEEKPTA 
 48 RCL 04 

 49 STO 08 
 50 LOG 

 51 2 
 52 LOG 

 53 / 
 54 FIX 8 
 55 RND 

 56 STO 05 
 57 FRC 
 58 STO 00 

 59 FACT 

 60 *LBL 01 

 61 "Z" 
 62 RCL 00 
 63 ARCLI 

 64 "`=? Re^IM" 
 65 RCL 05 
 66 STO 01 

 67 RCL 00 
 68 STO 03 

 69 CLX 
 70 STO 02 

 71 *LBL 05 

 72 RCL 03 
 73 ENTER^ 

 74 ENTER^ 
 75 2 
 76 / 

 77 INT 
 78 STO 03 
 79 ST+ X 

 80 - 
 81 RCL 02 

 82 ST+ X 
 83 + 
 84 STO 02 

 85 DSE 01 
 86 GTO 05 
 87 17 

 88 RCL 02 
 

 89 ST+ X 
 90 + 
 91 STO 06 

 92  E 
 93 + 

 94 STO 07 
 95 FC? 01 
 96 PROMPT 

 97 FC? 01 
 98 GTO 00 

 99  GETX 
100 GETX 

101 *LBL 00 

102 STO IND 07 
103 X<>Y 

104 STO IND 06 
105 1 
106  ST+ 00 

107 DSE 08 
108 GTO 01 

109 1 
110 STO 03 
111 STO 02 

112 *LBL 15 

113 2 
114 RCL 03 

115 Y^X 
116 STO 01 

117 RCL 02 
118 STO 08 
119 CLX 

120 STO 09 
121 PI 

122 ST+ X 
123 FC? 00 
124 CHS 

125 RCL 01 
126 / 
127 RCL 02 

128 P-R 
129 STO 10 

130 X<>Y 
131 STO 11 
132 RCL 02 

 
133 STO 12 

134 *LBL 16 

135 RCL 12 
136 STO 00 

137 *LBL 02 

138 RCL 02 
139 15 

140 RCL 00 
141 ST+ X 

142 + 
143 STO 13 
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144 + 
145 STO 14 

146 LASTX 
147 RCL 01 

148 + 
149 STO 15 
150 RCL 02 

151 + 
152 STO 16 
153 RCL IND 15 

154 RCL 08 
155 * 

156 RCL IND 16 
157 RCL 09 
158 * 

159 - 
160 STO 06 
161 RCL IND 15 

162 RCL 09 
163 * 

164 RCL IND 16 
165 RCL 08 
166 * 

167 + 
168 STO 07 
169 RCL IND 14 

170 RCL 07 
171 - 

172 STO IND 16 
173 RCL IND 13 
174 RCL 06 

175 - 
176 STO IND 15 

177 RCL IND 13 
178 RCL 06 
179 + 

180 STO IND 13 
181 RCL IND 14 
182 RCL 07 

183 + 
184 STO IND 14 

185 RCL 01 
186 ST+ 00 

187 RCL 04 
188 RCL 00 

189 X<=Y? 
190 GTO 02 

191 RCL 10 
192 RCL 08 
193 * 

194 RCL 11 
195 RCL 09 
196 * 

197 - 
198 RCL 08 

199 RCL 11 
200 * 
201 RCL 09 

202 RCL 10 
203 * 
204 + 

205 STO 09 
206 X<>Y 

207 STO 08 
208 RCL 02 
209 ST+ 12 

210 RCL 01 
211 2 
212 / 

213 RCL 12 
214 X<=Y? 

215 GTO 16 
216 RCL 02 
217 ST+ 03 

218 RCL 05 
219 RCL 03 

220 X<=Y? 
221 GTO 15 
222 BEEP 

223 CLX 
224 STO 00 
225 17 

226 STO 08 
227 18 

228 STO 09 
229 RCL 04 

230 STO 01 
231 0 

232 SEEKPT 

233 *LBL 11 

234 RCL IND 09 
235 RCL IND 08 
236 FC? 00 

237 GTO 06 
238 RCL 04 
239 / 

240 X<>Y 
241 LASTX 

242 / 
243 X<>Y 

244 *LBL 06 

245 FIX 8 
246 ZRND 
247 SAVEX 

248 X<>Y 
249 SAVEX 

250 X<>Y 
251 FIX 3 
252 ZAVIEW 

253 "`Z" 
254 RCL 00 
255 ARCLI 

256 "`=" 
257 -3 

258 AROT 
259 PROMPT 
260 RCL 02 

261 ST+ 00 
262 2 

263 ST+ 08 
264 ST+ 09 
265 DSE 01 

266 GTO 11 
267 CLX 
268 SEEKPT 

269 END 
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Direct Bessel fns. via Continued Fractions  
 
 
The SandMath contains a very competent set of Bessel functions, both for the direct (J, Y) and the 
modified kinds (I, K). The implementation is a hybrid of MCODE and Focal routines, really optimized 

for the applicable valid range of the functions.  
 
And therein lays the only caveat: that implementation does a direct sum of the alternating terms of 
the series, which isn’t valid for asymptotic cases, where either the order or the argument (or their 
sum!) are very large. To palliate this, the SandMath also includes an iterative approach for JNX, using 
recurrence formulas – but alas, the execution time can be really long. 
 
Is there another way to skin this cat?  Well as it turns out yes, at least for the non-modified cases 
there’s a very intriguing approach based on continued fractions, which after all are another way to 

iterate for the solution – only that we can take advantage of the MCODE implementation in both the 
SandMath and the 41Z Modules, because there are two different continued fractions involved, one of 
them in the complex variable – even for the real Bessel J case! 
 
Here too the routine is a direct modification of Jean-Marc Baillard’s FOCAL program available on his 
web site (cf #5 in http://hp41programs.yolasite.com/bessel.php), adapted to use the MCODE 
functions CF2V and ZCF2V instead of the FOCAL subroutines – faster and shorter code. A real beauty 
to see the SandMath and 41Z joining forces to crack this one! 

 
The formulas used are as follows: 
 

With    p + i.q = -1/(2x) + i + (i/x) [ ( 0.52 - n2 )/( 2x + 2i + ( 1.52 - n2 )/( 2x + 4i + ..... ) ) ]  

  and    gn=  -1/(((2n + 2)/x) - 1/(((2n + 4)/x) - ..... )) 
 
Then, calling D = the denominator of the second continued fraction: 
 

Jn(x)  =  sign(D) [ ( 2q/(x.Pi) ) / ( q2 + ( p - gn - n/x )2 ) ] 1/2     

Yn(x) =  [ ( p - gn - n/x )/q ] Jn(x) 
 
One must pay careful attention to the data registers requirements by these functions for the 
successions used to define the continued fractions, which are programmed under the global labels “#” 
for the real one and ‘=” for the complex one. 
 
Example: Calculate the Bessel J and Y of order 100 for the argument x=100 
 

According to Wolfram Alpha the results are: 

 
 
and: 

http://hp41programs.yolasite.com/bessel.php
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Which sure enough is what we obtain (with ten digit precision) using our routine: 
 

100, ENTER^, XEQ “JYNX”  =>     
X<>Y 

 
Program Listing: 
 

01  LBL "JYNX" 

02  STO 01 
03  X<>Y 
04  STO 13 
05  "=" 
06  CLST 
07  ZENTER^ 
08  . 
09  RCL 01 
10  SF 02 
11  ZCF2V 
12  RCL 02 
13  STO 01 
14  ST/ Z 
15  / 
16  E 
17  + 
18  STO 10 
19  X<>Y 
20  CHS 
21  RCL 01 
22  ST+ X 
23  1/X 
24  - 
25  STO 09 
26  "=" 
27  0 
28  RCL 01 
29  CF 02 
30  CF2V 
31  CHS 

32  RCL 09 
33  + 
34  RCL 13 
35  RCL 01 
36  / 
37  - 
38  STO 11 
39  RCL 10 
40  R-P 
41  LASTX 
42  ST+ X 
43  PI 
44  RCL 01 
45  * 
46  / 
47  SQRT 
48  X<>Y 
49  / 
50  RCL 05 
51  SIGN 
52  * 
53  STO 12 
54  RCL 11 
55  * 
56  RCL 10 
57  / 
58  RCL 12 
59  CLD 
60  RTN 

61  LBL "=" 

62  FC? 02 

63  GTO 00 
64  RCL 12 
65  ST+ X 
66  RCL 02 
67  ST+ X 
68  ZENTER^ 
69  RCL 12 
70  0.5 
71  - 
72  X^2 
73  RCL 13 
74  X^2 
75  - 
76  0 
77  X<>Y 
78  RTN 

79  LBL 00 

80  X<>Y 
81  STO 05 
82  X<>Y 
83  RCL 02 
84  RCL 13 
85  + 
86  ST+ X 
87  RCL 01 
88  / 
89  -1 
90  END 

 
 

Note: ensure that the module is plugged in a page before the SandMath. This is required because 

there is another global label “=” in the SandMath and we don’t want the routine to use the incorrect 
one for the calculation! (besides, this would result in NONEXISTENT, so you’ll know right away). 
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Nested Radicals of m-th order. 

 
FNRM and INRM are MCODE functions to calculate finite and infinite Nested Radicals or root-order 
m. The definition of the radical is given in a user-provided function under a global label, to generate 
the n terms that contribute to the radical R(n). 

 
 For the finite case the calculation ends when all the terms are provided and used in the 

radical. 
 For the infinite case, a series of finite radicals of increasing sizes are computed until two of 

them are equal. This means R(n) = R(n+1), for a given n large enough.  
 
An initial size n0 needs to be provided by the user, which ideally is a balance between the radical 

size and the number of subsequent radicals to calculate: the larger the radical the longer calculation 
time, but the less number of radicals likely to calculate. 
 

STACK INPUTS OUTPUTS 

Y k 
 

X no NR 

ALPHA F.NAME / 

 
 

FNRM and INRM use data registers {R00 – R05} as well as user flags UF 001 and UF 01. Refrain 

from using these resources in the definition of your radicand functions. Note that both the root order 

m and the term n are available for your user function to use – even if normally only n is used. This 

allows for more elaborate expressions in the definitions. 

 
For example, let’s calculate the value of an infinite nested radical with f(n) = n, as per the expression 
below: 
 

 
 
For the case n=1 this happens to be the golden ratio  = ½ (1+sqr(5) 

 
A trivial user program like this: {LBL “PH”, 1, RTN}, say we set FIX 9 and then we type: 

 
2, ENTER^ 4, XEQ “INRM”_ PH” =>  1.618033989 

 
Using cubic roots instead we’ll obtain the “Plastic” Constant: 

 
3, ENTER^, 4, XEQ “INRM”_”PH =>  1.324717957 

 

Example2.Calculate the cubic and quartic root nested radicals for the function F(n) = n^4 

Using n0=4 and the trivial user function {LBL “NR4”, X^2, X^2, END} we get: 

4, ENTER^, 4, XEQ “INRM”_”NR4” =>1.325706774  quartic case 

3, ENTER^, 4, XEQ “INRM”_”NR4” =>1.551416993  cubic case 
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Example 3. Calculate the square nested radical for the function F(n) = n  {LBL “NR1”, RTN”} 

 2, ENTER^, 4,  XEQ “INRM”_”NR1” =>1.757932757 

 
Programmer’s notes. 
 
These functions use a special technique to call user-programs within the MCODE. This technique was 
developed by Greg McClure for the Derivatives and Continued fractions (DERV and CF2V) applications 
available in both the SandMath and the 41Z, and has been ported here as well. The method requires 
ancillary housekeeping functions to manage the transitions between User- and M-Code. These 
auxiliary functions are stealth under the FAT section headers, as they don’t require any user 
interaction or utilization beyond its automated purpose. 
 

Execution flow: 
 

1. Search for User function using [ASRCH] 
2. Save its RAM address (in data register) 
3. Prepare variables and check data regs available 
4. transfer to FOCAL stub code (call to [XMR20] 

a. add address to FOCAL RTN stack with [SAVRTN] 
b. execute user function via [XGI07]   (but can’t use XEQ IND nn !!) 
c. return to MCODE, popping the FOCAL RTN with [XRTN] 

5. Loop back to task #3 as needed 

 
Where tasks 4.a, 4.b and 4.v are performed by XQRTN, a dedicated (stealth) function used in the 
FOCAL stub. It is called twice, controlled by UF 00 to determine which one of the tasks to perform: 
 
   -FOCAL stub code - 

01  SF 00 
02  XQRTN  - first time does 4.a and 4.b 

03  CF 00 
04  XQRTN - second time does 4.c 
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Newton and Halley Methods Revisited  
 
 
The idea of using the MCODE functions in the SandMath and the 41Z  is also at the heart of these 
final applications. This time we’ll use the first & second derivatives function DERV as an auxiliary tool 
to calculate the derivatives of the function whose roots we’re trying to obtain, directly and without 

any additional conditioning regardless of the function in case. 
 
The formulas involved are well known: 
 

    ;       

 
As usual, you need to provide the boundaries [a, b] in the Y,X registers and the function name in 
ALPHA. The user is required to program the function in a FOCAL routine under a global label, which 
cannot use data registers R00 to R08 as explained below. 
 
Remember that DERV uses R00 to R04 (see the documentation in the SandMath manual for details), 
and in addition to these the routines use R05 for the function global label name, and R06 – R08 to 
save the initial guesses and as scratch. As it’s already customary, the successive approximations to 

the root will be displayed if user flag 10 is set. 
 
 

  *LBL "XNWT" 1 
 CF 01 2 
 GTO 01 3 

 *LBL "XHALL" 4 
 SF 01 5 
 *LBL 01 6 
 ASTO 05 7 
 X<>Y 8 
 STO 08 9 
 X<>Y 10 
 *LBL 00 11 
 FS? 10 12 
 VIEW X 13 
 STO 06 14 
 XEQ IND 05 15 
 STO 07 16 

  RCL 08 17 
  RCL 06 18 
  DERV 19 
  FC? 01 20 
  ST/ 07 21 
  FS? 01 22 
  XEQ 02 23 
  RCL 06 24 
  RCL 06 25 
  RCL 07 26 
  - 27 
  X#Y? 28 
  GTO 00 29 
  CLD 30 
  RTN 31 
  *LBL 02 32 

X^2 33 
ST+ X 34 
RCL 07 35 
RCL 01 36 
* 37 
- 38 
1/X 39 
RCL 07 40 
* 41 
RCL 00 42 
* 43 
ST+ X 44 
STO 07 45 
END 46 

 
 
This really can’t get any shorter; my kinda routine that clearly showcases that with a powerful engine 
behind doing the heavy lifting (DERV in this case) the rest is a downhill trip. 
 
 

Example: obtain a root for the equation below, which we program easily as shown. Then we use 

some obviously non-optimal guesses to stress the algorithm: 

{  LBL “X1”, CBRT, LASTX, 4, +, *, END }, and then  

ALPHA,”X1”, ALPHA, 1, 2, XEQ “XNWT” =>
Or:` 1, 2, XEQ “XHALL”   =>     
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Newton’s Method with Complex Step Differentiation. 
 
 

And the proverbial last but not least is reserved for the “complex step derivative” method to calculate 
real function derivatives, just as a quasi-magical application of complex variables. Complex step 
differentiation is a technique that employs complex arithmetic to obtain the numerical value of the 
first derivative of a real valued analytic function of a real variable, avoiding the loss of precision 
inherent in traditional finite differences. This is then used n Newton’s method in the usual way.  

We're concerned with an analytic function. Mathematically, that means the function is infinitely 

differentiable and can be smoothly extended into the complex plane. Computationally, it probably 
means that it is defined by a single "one line" formula, not a more extensive piece of code with if 
statements and for loops. 

Let F(z) be such a function, let x0 be a point on the real axis, and let h be a real parameter. 

Expand F(z) in a Taylor series off the real axis. 

F(x0+ih) = F(x0) + i.hF’(x0) − h2F’’(x0)/2! – ih3F(3)/3! +... 
 

Take the imaginary part of both sides and divide by h 

. F’(x0) = Im(F(x0+ih))/h + O(h2) 

Armed with the 41Z arsenal of functions it ’s very likely that your real function can be programmed as 
an equation in the complex variable too. Then all it takes is to calculate the value of said complex 

function in a complex point close to the real argument x0, offset by a very small amount in the 

imaginary axis ih. The program expects the function name in ALPHA and the values of h and x0 in 

the Y,X stack registers, and it returns the real derivative value in X. It uses data registers R00 to R02. 

 

LBL "ZNWT" 1 
 ASTO 02 2 
 ZSTO 00 3 
 LBL 00 4 
FS? 10 5 
VIEW 00 6 
ZRCL 00 7 
XEQ IND 02 8 
X<>Y 9 

  / 10 
  RCL 01 11 
  * 12 
  ST- 00 13 
  RND 14 
  X#0? 15 
  GTO 00 16 
  RCL 00 17 
  END 18 

 
What’s remarkable is that with just one execution of the complex function we calculate both the real 
function’s value (the real part) and its derivative (the imaginary part with correction) at the same 
time. Note also the clever use of complex data register C00 to store  z0 = x0 +ih, and then how it 
keeps calculating the complex function value until two successive iterations are equal for the current 
FIX selected in the calculator. 

 
You can tell something’s remarkable when the root-finding routine is almost shorter than the equation 
used to program the function! 
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Time now for some examples. The first one just a simple polynomial to try our hand with the new 
method, taken from the MoHPC forum: https://www.hpmuseum.org/forum/thread-6667.html 
 

Calculate the three roots of the third degree polynomial: x³–x²–x+0,5 = 0 

 
We program the equation as shown below: 
 

01  LBL “Z3” 

02  Z^3 
03  LASTZ 
04  Z^2 
05  Z+ 

06  Z- 

07  .5 
08  + 
09  END 

 

And type: 
ALPHA, “Z1”, ALPHA 
,01, ENTER^, 0, XEQ “ZNWT”  =>   
.01, ENTER^, 2, XEQ “ZNWT”  => 

.01, ENTER^, -2, XEQ “ZNWT“  =>   
 
 
And then a more elaborate example adapted from the seminal reference: 
https://blogs.mathworks.com/cleve/2013/10/14/complex-step-differentiation/ 
 
The blog uses the function F(x) given below, which does not have any real roots: 

 
For our purposes let’s calculate the roots of, say g(x) = F(x) –  

 

01 LBL “Z2” 

02 ZEXP 
03 LASTZ 
04 ZSIN 
05 LASTZ 
06 ZCOS 
07 3 
08 Z^X 

09 Z<>W 
10 3 
11 Z^X  
12 Z+ 
13 Z/ 
14 PI 
15 - 
16 END 

 

And type: 
 

ALPHA, “Z2”, ALPHA 
,01, ENTER^, 1, XEQ “ZNWT”  =>

 

  

https://www.hpmuseum.org/forum/thread-6667.html
https://blogs.mathworks.com/cleve/2013/10/14/complex-step-differentiation/
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Halley’s Method for Complex Functions 
 
 
To complement the choices already available in the 41Z (programs ZSOLVE and ZHALL), a third 

program is included in the Contour module as well. 

This program is based on Valentín Albillo’s article “Going back to the roots”, where he presented an 

HP-35S solution to the problem. The final version shown here was aided by a first port to the HP-41 

platform by Vincent Weber, contributed to the MoHP forum  

see: https://www.hpmuseum.org/forum/thread-21615.html)  and 

https://albillo.hpcalc.org/articles/HP%20Article%20VA031%20-%20Boldly%20Going%20-

%20Going%20Back%20to%20the%20Roots.pdf) 

 

User instructions: 

Just type in ALPHA the name of the global label the function has been programmed under, and the 

guess value in stack registers Y,X (i.e. complex stack level Z), then call the program. After a while 

the root found is presented in the displat. Execution time depends on the initial guess value and the 

number of decimal places used for the precision setting.  

 

Example: obtain one root for the expression   f(z) = z ẑ –  

We program the function under LBL “ZZ” as follows: 

01 LBL “ZZ” 

02 ZENTER^ 

03 W^Z 

04 PI 

05 – 

06 END 

Next, we enter a guess value (imaginary part in Y, real part in X), and call ZROOT.  

After a while the result is shown in the display 

 

ALPHA, “ZZ”, ALPHA 

0,  ENTER^, 1, XEQ “ZROOT”    

 

verification:   XEQ “ZZ”     



The program is listed below. Being a port from another machine I decided to leave parts 

unchanged, not using 41Z functions in them to maintain the original ideas. Nevertheless the 

MCODE 41Z functions are profusely used all throughout the code, contributing to a faster execution 

and more accurate results.  

  

https://www.hpmuseum.org/forum/thread-21615.html
https://albillo.hpcalc.org/articles/HP%20Article%20VA031%20-%20Boldly%20Going%20-%20Going%20Back%20to%20the%20Roots.pdf
https://albillo.hpcalc.org/articles/HP%20Article%20VA031%20-%20Boldly%20Going%20-%20Going%20Back%20to%20the%20Roots.pdf
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Program listing. 

01 *LBL "ZROOT" 

 02  ZSTO 00 
 03  ASTO 02 
 04   E-4 
 05  STO 10 
 06  X^2 
 07  STO 11 
 08  ,5 

 09  STO 03 

 10 *LBL 02 

 11  ZRCL 00 
 12  XEQ IND 02 
 13  RCL 03 
 14  ST/ Z 
 15  / 
 16  ZSTO 02 
 18  RCL 10 
 19  ST+ 00 
 20  ZRCL 00 
 21  XEQ IND 02 
 22  ZSTO  03 
 24  RCL 10 
 25  ST- 00 
 26  ST- 00 
 27  ZRCL 00 
 28  XEQ IND 02 
 29  ZSTO  04 
 31  ZRC+ 03 
  33  ZRC- 02 
 35  RCL 11 

 36  ST/ Z 

 37  / 
 38  ZRCL 03 
 40  ZRC- 04 

 42  RCL 10 
 43 ST+ 00 
 44 ST/ Z 
 45  / 

 46  RCL 03 
 47  ST* Z 
 48  * 
 49  ZSTO 04 
 51  Z/ 

 52  ZSTO 03 
 54  ZRC* 02 
 56  ZRC/  04 
 58  1 
 59  - 

 60  CHS 
 61  X<>Y 

 62  CHS 
 63  X<>Y 
 64  RCL 03 

 65  Z^X 
 66  1 

 67  - 
 68  ZRC/ 03 
 70  ZST+ 00 
 71  ZRC/ 00 
 72  R-P 

 73  RCL 11 

 74  X<Y? 
 75  GTO 02 
 76  ZRCL  00 

 77  R-P 
 78  RDN 
 79  STO 08 
 80  SIN 

 81  ABS 
 82  RCL 11 
 83  X<=Y? 
 84  GTO 03 
 85  RCL 08 

 86  COS 
 87  ENTER^ 
 88  ABS 
 89  X#0? 
 90  / 

 91  RCL 01 
 92  RCL 00 

 93  R-P 
 94  X<>Y 
 95  RDN 

 96  * 
 97  STO 00 

 98 *LBL 03 

 99  ZRCL 00 
100  ZAVIEW 
101  END 



Note that the line numbers reflect the non-merged character of some 41Z functions, taking two 

standard lines (that have been merged in the listing). 
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Sigmoid and Einstein functions, 

 

SIGMD calculates the Sigmoid of the argument in x. This function is relevant in machine learning 

and data mining fields. It is defined as: 

 

The result is placed in X and the original argument is saved in LastX. Y,Z,T are untouched and no 

data registers are used either. 

 

Examples:   

1, XEQ “SIGMD => 

2, XEQ “SIGMD =>

 

The Sigmoid function is also known as the Standard Logistics function, which will appear linked to 

the Logistics Map in the discrete domain – refer to the CHAOS Module for additional applications. 

 

Derivative and Integral of the Sigmoid function. 

 

The derivative is known as the density of the logistic distribution: 

 

Conversely, its antiderivative can be computed by the substitution u = 1+e^x , since  f(x) = u’/ u, so 

(dropping the constant of integration) 

 

https://en.wikipedia.org/wiki/Logistic_distribution
https://en.wikipedia.org/wiki/Antiderivative
https://en.wikipedia.org/wiki/Integration_by_substitution
https://en.wikipedia.org/wiki/Constant_of_integration
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In artificial neural networks, this is known as the softplus function and (with scaling) is a smooth 

approximation of the ramp function, just as the logistic function (with scaling) is a smooth approximation 

of the Heaviside step function. 

 

Finally, SIGMD is a rather simple function. The MCODE listing is shown below. 

 

 

Here’s a minimalistic FOCAL routine for the derivative and the antiderivative: 

01 LBL “SGD” 

02 SIGMD 

03 ENTER^ 

04 CHS 

05 E 

06 + 

07 * 

08 RTN 

09 LBL “SGI” 

10 SIGMD 

11 LN1+X 

12 END 

 

 

Einstein functions. 

Typically four functions are considered under this classification, as follows: 

 

 

https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Softplus
https://en.wikipedia.org/wiki/Ramp_function
https://en.wikipedia.org/wiki/Heaviside_step_function
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Clearly E4( x)= E2(x) – E3(x), thus no dedicate function for it exists in the module. 

The module uses a prompting field for a  parameter value from 1 to 3 to select the specific function 

to calculate. Any input larger than 3 will calculate E3(x), whereas entering zero returns a DATA 

ERROR message. Besides that, in program mode you need to add the parameter as a second 

program line after EINS 

 

See below the graphics for these in the range x around the origin 

 

E1(x) has an inflection point at: 

 

which can be solved numerically to give x=+/-2.34694130... 

 

Example: Calculate E1, E2, and E3 for x = 1 

1, XEQ “EIN” ,1   =>   

1, XEQ “EIN” ,2   =>   

1, XEQ “EIN” ,3   =>   

 

Example:  Calculate E1(E2(E3(x))), and  E3(E2(E1(x)))  for x = 1 

1, EINS-1, EINS-2, EINS-3  =>   

1, EINS-3, EINS-2, EINS-1 =>    
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Arc Length of a Curve defined by  y = f(x) 
  

-The arc length of the curve  y = f(x)   ( a < x < b )  is given by   

 

The module includes two programs to calculate the arc length. The first one “CLEN” is a direct (i.e. 

brute-force) application of this formula using FINTG and DERV in the SandMath. It clearly is 

simpler to program but foreseeably with longer execution time than a dedicated approach. It also 

requires  a second FAT entry for the auxiliary program that defines the integrand, as you can see in 

the program listing below. 

To use this program, just type the function’s program label name in ALPHA, and enter the 

integration limits a in Y, b in X. 

 

01 LBL “CLEN” 

02 ASTO 05 

03 “*CL” 

04 FINTG 

05 RTN 

06 LBL “*CL” 

07 CLA 

08 ARCL 05 

09 0.1 

10 X<>Y 

11 DERV 

12 X^2 

13  E 

14 + 

15 SQRT 

16 END 

 

As always, FINTG determines the precision of the result by the number of decimal places set in the 

calculator. Using FIX 9 yields the maximum accuracy but takes the longest time to compute it. 

 

The second one "LNG" doesn't use this formula and so it avoids the calculation of dy/dx . It simply 

applies Pythagoras' theorem. “LNG”was written by Jean-Marc Baillard, and it is included in his 

DERIVE+ module, see: http://www.hp41.org/LibView.cfm?Command=View&ItemID=1315 

Data Registers:         •  R00 = Function name                                    

 ( Register R00 is to be initialized before executing "LNG"  ) 

R01 = a             R04 to R07: temp    " 

R02 = b  R20, R21, .... are used by "ROM 

R03 = L 

Flag:   F02 is cleared 

Subroutines:  "ROM" , plus a program that takes x in X-register and returns f(x) in X-register  

 

      STACK  INPUT       OUTPUT 

           Y                   a            / 

           X      b          L(a,b) 

http://www.hp41.org/LibView.cfm?Command=View&ItemID=1315
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Example:   Calculate the arc length of the curve   y = ln x      1 < x < 3  

 01  LBL "T" 
 02  LN 
 03  RTN 
 

Manual data entry: 

ALPHA ,  "T",  ASTO 00,  ALPHA 

FIX 4,   1,   ENTER^,    3,    

Using the direct approach: 

XEQ “CLEN”     >>>> 

---Execution time = 1m 35s--- 

 

Using the iterative approach in manual way, skipping the data entry prompts: 

GTO "LNG",  XEQ  C      >>>>                         ---

Execution time = 75s--- 

Notes: 

The HP41 displays the successive approximations 

The precision depends on the display format:  for instance, FIX 6 would be faster but less accurate. 

The exact result is  L = 2.301987535  ( rounded to 9 decimals ) 

 The program listing below includes  the Arc Length and the Surgace of Revolution described in 

next section – both can be combined into a single application with considerable byte savings. 

The program starts with a data entry section, prompting for the required information on the 

function and integration limits. You can skip these steps if you prefer a manual data entry using the 
soft-Label “C” 
 
Note the use of function PMTA in the OS.X module to enter the function’s global label name. It can 
be replaced by { AON, PROMPT, AOFF} as well. 

 

01 *LBL "LNG" 

 02 CF 02 
 03  GTO 00 

 04 *LBL "SRV" 

 05  SF 02 

 06 *LBL 00 

 07  "FNAME? " 
 08  PMTA 

 09  ASTO 00 
 10  "a^b=?" 
 11  PROMPT 

 12 *LBL C 

 13  STO 02 
 14  X<>Y 

 15  STO 01 
 16  1 

 17  STO 20 

 18 *LBL 11 

 19  CLX 

 20  STO 04 
 21  RCL 02 
 22  RCL 01 

 23  STO 05 
 24  - 

 25  RCL 20 
 26  STO 06 
 27  / 

 28  STO 03 
 29  ST+ 05 
 30  RCL 01 

 31  XEQ IND 00 
 32  STO 07 

 33 *LBL 12 

 34  RCL 05 
 35  XEQ IND 00 

 36  ENTER^ 
 37  ENTER^ 
 38  X<> 07 

 39  ST+ Z 
 40  - 

 41  X^2 
 42  RCL 03 
 43  ST+ 05 

 44  X^2 
 45  + 
 46  SQRT 

 47  FS? 02 
 48  * 
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 49  ST+ 04 
 50  DSE 06 

 51  GTO 12 
 52  PI 

 53  FS? 02 
 54  ST* 04 
 55  RCL 04 

 56  XROM "*RM" 
 57  X#0? 
 58  GTO 11 

 59  RDN 
 60  STO 03 

 61  RTN 

 62 *LBL "*RM" 

 63  RCL 20 

 64  X<>Y 
 65  SIGN 
 66  ST* X 

 67  X#Y? 
 68  GTO 01 

 69  STO 23 

 70  LASTX 
 71  STO 25 

 72  GTO 03 

 73 *LBL 01 

 74  4 
 75  STO 21 
 76  25 

 77  STO 22 
 78  RCL 23 
 79  STO 24 

 80  LASTX 
 81  ISG 23 

 82 *LBL 02 

 83  ENTER^ 
 84  ENTER^ 

 85  X<> IND 22 
 86  - 
 87  RCL 21 

 88  4 
 89  ST* 21 

 90  SIGN 

 91  ST+ 22 
 92  - 

 93  / 
 94  + 

 95  DSE 24 
 96  GTO 02 
 97  STO IND 22 

 98  VIEW X 
 99  RND 
100  X<>Y 

101  RND 
102  X#Y? 

103  GTO 03 
104  RCL IND 22 
105  0 

106  RTN 

107 *LBL 03 

108  RCL 20 

109  ST+ 20 
110  END 

 
The “*RM” routine could be replaced by FINTG as well… 

 

 

Romberg Method 

  

 Suppose that a sequence {Ln} tends to L  as  n tends to infinity  and  that the  "errors"  L -Ln  are 

nearly proportional to 1/n^2 

 If we want to use Romberg method to estimate the limit L  "RM" must be called by a program with 

the following specifications: 

 L must be stored in R20 at the beginning 

  Then, a loop - say LBL 01 - calculates the value of Ln in X-register corresponding to n in R20 

  The last instructions must be   XEQ "ROM"  X#0?  GTO 01  RDN  END 

See the paragraphs above for several examples ( "CRVL"  "CRVLN"  "LNG"  "SRV"  "SKS" )  

You can also use it for your own programs, provided that registers R20 R21 ..... are not disturbed. 
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Area of a Surface of Revolution 

 
The rotation of the curve  y = f(x)   ( a < x < b )  around x-axis generates a surface of revolution 

given by    

 

The program included in the module “SRV”was written by Jeam-Marc Baillard.  "SRV" avoids the 

calculation of dy/dx : the area of a truncated cone is used with Romberg method. 

 Data Registers:         •  R00 = Function name                                     

 ( Register R00 is to be initialized before executing "SRV"  ) 

R01 = a R04 to R07: temp     

R02 = b R20, R21, .... are used by "ROM" 

R03 = A 

Flag:   F02 is set 

Subroutines:  "ROM" & 1 program that takes x in X-register and returns f(x) in X-register 

       STACK    INPUT       OUTPUT 

           Y                   a              / 

           X                       b          A(a,b) 

Example:   The sin of revolution. 

Evaluate the area of the surface of revolution generated by the rotation of the curve   

 y = sin x  ( 0 < x < pi )  around the x-axis.  

 01  LBL "T" 
 02  SIN 
 03  RTN 

 

Using a manual approach that skips the data entry prompts: 

ALPHA,   "T" ,   ASTO 00 

FIX 9,  0,    ENTER^,    PI,    

GTO "SRV", XEQ C    >>>>                                                   ---

Execution time = 168s--- 

Notes: 

The HP41 displays the successive approximations. The precision depends on the display format:  for 

instance, FIX 6 would be faster but less accurate 

 

-The exact result is  A = 14.42359945  (rounded to 8 decimals). 
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Note that in this case the module doesn’t include the direct approach based on FINTG and DERV. If 

you’re interested it’d be very simple to modify CLEN to do it, as follows: 

 

01 LBL “SREV” 

02 ASTO 05 function LBL 

03 “*SR”  integrand LBL 

04 FINTG  

05 PI 

06 ST+  X  2. 

07 * 

08 RTN 

09 LBL “*SR” integrand 

10 STO 06 saves x in R06 

11 CLA 

12 ARCL 05 

13 0.1  step size 

14 X<>Y 

15 DERV 

16 X^2 

17  E 

18 + 

19 SQRT  partial value 

20 X<>  06 x 

21 XEQ IND 05 f(x) 

22 RCL 06  previous value 

23 *  integrand 

24 END 

 

Using this ad-hoc program the results for example 1 are EXACTLY as follows: 

ALPHA, “T”, ALPHA, 0, PI, XEQ “SREV”  >>>  

 

 

Reference: this web site is an excellent reference on this subject, also providing some examples to 

check the programs described before. 

https://math.libretexts.org/Courses/University_of_California_Davis/UCD_Mat_21B%3A_Integral_

Calculus/6%3A_Applications_of_Definite_Integrals/6.4%3A_Areas_of_Surfaces_of_Revolution  
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Area of a Surface defined by z = f(x,y) 

  

"SKS" computes the area of a surface defined by:     z = f(x,y)       a < x < b  ,   c < y < d 

The result could be obtained by the double integral   

 

 where  fx = df/dx  and   fy = df/dy  are the 

partial derivatives with respect to x and y 

respectively. 

But "SKS" avoids the calculation of the partial 

derivatives: 

The intervals [a,b] and [c,d] are divided into n 

parts, and the approximate area is the sum of 

the areas of triangles. 

"*RM" uses Romberg method to obtain more and 

more accurate approximations. 

 

Data Registers:          

R00 = Function name                                      

R01 = a      R04 = d     R06 to R16: temp         

R02= b       R05 = A   R20, R21, .... are used by "ROM" 

R03 = c 

Subroutines:  "*RM" plus a program that takes x in X-register & y in Y-register and returns f(x,y) in 

X-register 

       STACK        INPUTS       OUTPUTS 

           T              a              / 

           Z                 b              / 

           Y                   c              / 

           X                   d             A 

Example:   Evaluate the area of the surface defined by  

 z = ( 25 - x2 - y2 )1/2  ,  0 < x < 2 ,  0 < y < 3 

To get faster result, store 25 in an unused register, for instance R17,   25  STO 17 

 01  LBL "T" 

 02  X^2 
 03  X<>Y 

 04  X^2 
 05  + 

 06  RCL 17 
 07  X<>Y 
 08  - 

 09  SQRT 
 10  RTN 
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And using manual data entry: 

    ALPHA, "T",  ASTO 00,  ALPHA 

    FIX 6,  0,  ENTER^,  2,   ENTER^,  0,  ENTER^,  3 

    GTO "SKS",  XEQ C       >>>>         

     ---Execution time = 5m06s--- 

 

Notes: 

The HP41 displays the successive approximations 

The precision depends on the display format:  for instance, FIX 9 would give more accurate results 

but with a much longer execution time as the price to pay for it. 

With V41 & FIX 9  we get:   

The exact result is  A = 6.654396117 

As usual with Romberg method, n is multiplied by 2 at each iteration, but here execution time is 

multiplied by 4 because we are approximating a double integral. 
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Recursive Utilization of FINTG and FROOT. 

Like the original SOLVE and INTEG did, both FROOT & FINTG in the SandMath support “crossed” 

nested calls from one another, i.e. you can call FROOT from an integrand function being used by 

FINTG, and you can call FINTG in the root-finding function definition for FROOT. However, it is not 

possible to recursively call either one of these functions sequentially from within a FOCAL routine. Any 

attempt to do so triggers the “RECURSION” error message and the execution aborts. 

This ROM provides a set of MCODE functions and two FOCAL routines to overcome this limitation. 

Each time FROOT/FINTG is executed it creates a dedicated memory buffer to store the application 

data and to perform all the math. The basis of the recursive operation is the use of a secondary 

memory area for the nested call of the function, not conflicting with the initial memory buffer created 

in the first call. The main loop uses the initial buffer #14, and the operand function in turn creates a 

secondary buffer #14 to use for the nested loop – deleting it after it’s complete. 

In order to reuse the existing code, we’ll trick the OS changing the id# of the initial buffer #14 right 

before the second call – not deleting it but cloaking it in the I/O Memory area of the calculator. The 

operand function re-labels the buffer with id#13 (using function CLOAK), then the nested call to 

FROOT/INTEG creates and uses a new buffer #14 to perform its task and deletes it upon completion 

– returning the execution to the “operand” function FOCAL routine. Before the execution is returned 

to the driver program, the cloaked buffer is re-issued as id#14 (using function EXPOSE) so things 

can be picked up exactly where there were left off before calling the nested subroutine. 

If you must know, all CLOAK and EXPOSE do is changing the buffer id#’ of the initial buffer created 

in the first call to FROOT/INTEG - first from 14 to 13, and then back to 14. Prior to all this a third 

function (RESET) is used to check for pre-existing buffers with id#13 – deleting it if found. 

 

2D Driver Routines and Rules of Engagement.           

The main programs for double integrals and system of 2 equations are FITG2 and FRT2.  Each one 

has an auxiliary routine associated with it, which acts as the first level operand function and issues a 

second nested call for the integrand or the second equation appropriately, as follows: 

For FITG2, the function name f(x,y) is expected in ALPHA, and the four integral limits in the stack in 

the pattern “y1, y2, x1, x2” – (y1,y2) for the outer integral, and (x1,x2) for the inner one. 

 The integrand function is to be programmed assuming x is in R01, and y in the stack. 

 

For FRT2, both function names are expected to be in Alpha separated by comma (like “F1,F2”), and 

the guesses entered in the stack, with the pattern “x1, x2, y1, y2” - with (x1, x2) for f1(x,y) and (y1, 

y2) for f(2(x,y). 

 The second operand function f2(x,y) is executed first. It assumes x in R01 and y in the stack.  

 The first operand function f1(x,y) assumes x in R01 and y in R02. 

 You decide which one is F1 and F2 by their order in the ALPHA string 

All buffer management is made automatically by the auxiliary routines *2D and*FG. 
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Routine Listings. 

Here are the routine listings for your perusal. Notably FRT2 introduces more complexity to process 

the function names – entered as comma-separated strings in ALPHA – and due to the indirect call to 

f1(x,y) at the end of the auxiliary routine *FG  - which is not required by *2D in the double 

integration case, as it’s just one function involved. CLAC and ASWAP are borrowed from the ALPHA 

ROM – and need the Library#4 present in the calculator. They’re only used for FRT2. 

 

01 LBL "FRT2" 

 

01 *LBL " FITG2"  

 02 CLKEYS no keys assigned 02 CLKEYS no keys assigned 

03 ASTO 00 save string 03 ASTO 00 save in R00 

04 ASWAP swap around "," 04 STO 03 upper limit2 

05 CLAC remove second 05 RDN 

 06 ASTO 05 save in R05 06 STO 02 lower limit2 

07 CLA 
 

07 RDN 
 08 ARCL 00 recall string 08 RESET reset buffers 

09 CLAC remove second 09 "2D"  first level operand 

10 ASTO 00 save in R00 10 FINTG call first round 

11 STO 04 upper guess2 11 RTN done 

12 RDN 
 

12 “NO SOL” 
 13 STO 03 lower guess2 13 AVIEW 

 14 RDN 
 

14 RESET 
 15 RESET reset buffers 15 RTN done. 

16 "*FG" first level operand 16 *LBL "*2D" 
 17 FROOT call first round 17 STO 01 Save x for later 

18 GTO 00 
 

18 CLOAK mask buffer id# 

19 *LBL 01 Not found 19 RCL 02 lower limit2 

20 RESET 
 

20 RCL 03 upper limit2 

21 “NO ROOT” 
 

21 CLA  
 22 AVIEW 

 
22 ARCL 00 f(x,y) 

23 *LBL 00 Found  23 FINTG nested call 

24 RCL 02 y solution 24 EXPOSE re-issue buf id# 

25 X<>Y arrange in stack 25 END ready 

26 CLA appends 
   27 ARCL 00 f1(x,y) name 
   28 “|-,” 

    29 ARCL 05 
    30 RTN done(!) 

   31 *LBL "*FG" 
    32 STO 01 save x for later 

   33 CLOAK mask buffer id# 

   34 RCL 03 lower guess 2 
   35 RCL 04 upper guess 2 
   35 CLA 

    36 ARCL 05 f2(x,y) 

   37 FROOT nested call 
   38 GTO 00 Foundyo, skip 
   39 GTO 01 Not found! 
   40 *LBL 00 

    41 EXPOSE re-issue buf id# 
   42 STO 02 Save yo result    
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43 XEQ IND 00 calculates f1(x,Yo) 

   44 END 
     

FITG2 uses registers {R00-R03} and leaves the results in X and R01. The function name is left in 

ALPHA (6-chars max). 

FRT2 uses registers {R00-R05} and leaves the results in the stack registers {X, Y} and {R01, R02} 

for the 2-equation roots. The comma-separated function names string is left in ALPHA (6-chars max 

for each name). 

 

Comments. 

The new functions to support the nested configuration are simplified versions of some general-

purpose buffer utilities, available in other extension modules as follows: 

 RESET is equivalent to the sequence { 13, B?, CLB, RDN }  

 CLOAK is equivalent to the sequence { 14.013 , REIDBF, RDN} 

 EXPOSE is equivalent to the sequence: { 13.014 , REIDBF , RDN } 

B? and CLB are available in the OS/X ROM, and REIDBF in the RAMPAGE ROM. 

Using the simplified versions is more intuitive for math-oriented users, and besides it freed up some 

space for additional examples in the SIROM. 

While you can use RESET at any time (which will delete buff #13 if present, or do nothing if not 

present), using CLOAK and EXPOSE will generally result in the error message “BUF ERR”. They’re 

meant to be used only while buffer #14 exists, which is tightly controlled by the code in FINTG and 

FROOT – and furthermore, the SIROM uses the I/O_PAUSE interrupt as a “search & destroy” for 

buffer#14 at all times. Refer to the corresponding section in the SandMath manual to read more on 

this subject. 

 

Caveat emptor:  

 There’s a price to pay for this buffer trickery, and that’s the loss of the USER key 

assignments. As you can see in the listings above, the main routines call CLKEYS to make 

the operation more reliable (this avoids spurious buffer errors due to memory overwrites). 

You can save them in an X-Mem file using SAVEKA and then recover them with GETKA after 

the fact (both functions are also available in the AMC_OS/X ROM). 

 

 These routines are not fast, their interest is in the methodology - not optimized for speed to 

say the least. If you need faster responses, then the SandMath provides dedicated MCODE 

functions for many of these and yet some more. 

 

 Bear in mind that the INTEG-based method to define special functions is not an efficient one 

from the mathematical standpoint, but it is a godsend for engineering problems. Also FROOT 

is not perfect or fool-proof either, so choosing a good initial guess is of high importance. If 

FRT2 fails to find a root (in either variable), it’ll present the error message “NO ROOT” – 

Change the limits and try again. 
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The following examples should provide a good overview into the details of the programming. 

Example 1. Calculate the integral of the Bessel Jn function, ITJ(1,3) = INT (0,3) { J(1,t).dt}  

using the integral definition as reference: 

 

Program Code is below. Note that you don’t need to worry about the buffer management, that’s done 

automatically by the driver routines all transparently to the user. 

 

As mentioned before, speed is not this method’s forte. Even on V41 in turbo mode it’ll take a good 75 

seconds to return 1.260052 (in FIX 6). This was not the goal of the example, but to clarify the 

general guidelines and showcase the conceptual approach. If you want a fast result you’re 

encouraged to use JBS in the SandMath, or even better the ITJ (sub)function also in the SandMath, 

which uses the Generalized, Regularized Hypergeometric function for the calculation – a world of 

differences… 

Comment. This particular example is of course much better dealt with using the well-known 

expression between the Bessel function J1 and J0 shown below (proving once again that it’s always 

good to check your math before embarking in long and winding paths): 

thus: 

 

Here’s an interesting plot showing 

the integral function of J1(x) 

between ]-15 . 15[ 

 

 

  

01 LBL "ITJB" 13 LBL " *JN" inner variable t in stack

02 X<>Y order n to X 14 RAD angular mode

03 STO 04 order saved in R04 15 RCL  04 get order

04 CLX lower outer limit 16 * n.t

05 X<>Y upper outer limit 17 X<>Y inner variable t

06 0 lower inner limit 18 SIN sin t

07 PI upper inner limit 19 RCL  01 outer variable

08 "*JN" function name 20 * x.sin t

09 XROM " ITG2" double integration 21 - n.t - x.sin t
10 PI adjust factor 22 COS cos (n.t - x.sin t)

11  / final result 23 END          integrand complete.

12 RTN done.



HP41 CONTOUR ROM 
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Example 2. Calculate the solution for the system of non-linear equations below: 

f1(x,y) = x - sin(x + y)   Solution: x = 0,935082064 

f2(x,y) = y - cos(x - y)     y = 0,998020058 

 

 

The equations are programmed as shown below. Note how the convention is observed, with the y 

value assumed in the stack for the second function and in R02 for the first one; whilst x is always 

assumed in R01 for both functions. The solutions are obtained in about 3 seconds (FIX 9) using V41 

in Turbo mode. 

ALPHA, “FG1,FG2” , ALPHA, ENTER^, 2, ENTER^, 1, ENTER^, 2,  CF 01, XEQ “FRT2”     

      

01 LBL “FG1” 2 sets combined 

02 RCL 01  x 

03 FS? 01 

04 GTO 01 

05 RAD  example #3 

06 RCL 02  y 

07 +  x+y 

08 SIN  sin(x+y) 

09 RCL 01  x 

10 -  -x+sin(x+y)  

11 RTN 

12 LBL 01  example #2 

13 X^2  x^2 

14 RCL 02  y 

15 X^2  y^2 

16 +  x^2+y^2 

17 5 

18 –  x^2+y^2-5 

19 RTN 

 

20 LBL “FG2” 2 sets combined 

21 FS? 01 

22 GTO 01 

23 RAD  example #3 

24 CHS  -y 

25 RCL 01  x 

26 + 

27 COS  cos(x-y) 

28 X<>Y  y 

29 –  -y+cos(x-y) 

30 RTN 

31 LBL 01  example #2 

32 X^2  y^2 

33 CHS  -y^2 

34 RCL 01  x 

35 X^2 

36 +  x^2 – y^2 

37 3 

38 – 

39 END 
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Note: to save main FAT entries the example #2 and #3 function sets included in the ROMS have 

been combined to use a single global label for both sets, aided by the user flag F1 to determine 
which set would be computed.  CF 01 – uses F1(x,y) and F2(x,y)  ;    SF 01 – uses G1(x,y) and 

G2(x,y) 

Obviously this approach won’t be needed with your own examples, which will likely have one global 

label per set of two functions – i.e. not combined with more sets. 

 

Example 3. Obtain the roots for the system of two equations below (available as “FG1” and “FG2” 

with F1 clear) 

g1(x,y) = x^2 + y^2 -5  Solution: x = 2 

g2(x,y) = x^2 -y^2 - 3     y = 1 

 

This is an interesting case because FRT2 not only is much slower (as we knew it was going to be), 

but also fails to find a root using initial guesses equal to the solutions, i.e. x0 = 2, y0=1.  

 
 

Other Examples. 
 
Let’s use Valentín Albillo’s neat examples from DataFile for Double Integrals - as follows: 

;   

 

See the original article for details, available at: 

http://web.archive.org/web/20110906135412/http://membres.multimania.fr/albillo/calc/pdf/DatafileVA024.pdf  
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The results are: I1 = 8/3 = 2.6666666 

I2 = Ln(25/24) = 0.040821 

I3 = 1,321.275779 
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Appendix: MCODE listing for dedicated functions 
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Binet Formulas 

Function Description Input Output 

BINETN Binet formula for integers n in X f(n) 
BINETX Binet formula for real values x in X f(x) 
MLN Multinomial Coefficient n in Y, k in X C(n,k) 

 

  BINETN  implements the well-known Binet formula for integer input values. The result is 

the n-th Fibonacci number obtained directly without any 

iterations. 

 

Example: Calculate f(9) 

 

9, XEQ “BINETN” =>  





  BINETX  implements an extension for non-integer real input values to calculate the 

interpolated Fibonacci numbers. This provides an easy expression for the determination 
that guarantees real values also for the interpolated 

Fibonacci numbers: 
 

 
Example: Calculate f() 

PI, XEQ “BINETX” =>  

 

See below the graphical representation of Binet(x) for arguments between [-5 . 5] 

 

 
Obviously, the values for integer arguments coincide with the natural Fibonacci number, 

since the term cos(n) is equal to +/- one. 

 

 

https://www.wolframalpha.com/input/?i=plot+fibonacci%28x%29+between+-5+and+5
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In fact, this modified formula produces the real parts of the complex results obtained applying 

Binet’s formula directly with complex arguments – where the term -^-n clearly yields a result in 

the complex domain:  (-^(-n) = exp(-n . ln (-)) 

Note: You can refer to the 41Z Module manual for the complex  case, implemented in that module 

with the function ZFIB. 

 

 

Multinomial Coefficients.    {  MLN  }       (See JM Baillard’s reference page.) 

Multinomial coefficients are an extension of the Binomial coefficient, using multiple indexes instead 

of two. For example, if “k” is the number of variables we have: 

P = ( n1 , n2 , ....... nk ) ! = n ! / ( n1! n2! ....... nk! ) ;  where  n = n1 + n2 + ...... + nk 

 

The function MLN expects the input values stored in data registers starting in R01, The number of 

variables “k” is entered in the stack’ X-register. 

Example: Calculate ( 76 , 107 , 112 , 184 ) ! 

16  STO 01   24  STO 02   41  STO 03   48  STO 04 

4   XEQ "MLN"   =>  P =  

 

 

 

  

http://hp41programs.yolasite.com/multinomial.php
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Bell and Bernoulli Numbers  

Function Description Input Output 

BELL Bell Numbers Index n in X n-th. Bell number 

BN2 Bernoulli Numbers Index n in X n-th. Bernoulli number 

 

Bell Numbers.  {BELL }          (See JM Baillard’s reference page) 

In combinatorial mathematics, the Bell numbers count the possible partitions of a set, i.e. the Bell 

number Bn counts the number of different ways to partition a set that has exactly n elements . 

Bell numbers are defined by the iterative sequence below: 

B(0) = 1  and   

B(n+1) = {k=0..n} Cn,k B(k)     if  n > 1  

 where Cnk = n!/ [k!(n-k)!] are the binomial coefficients. 

 

Examples:  

10, XEQ “BELL”  =>

89, XEQ “BELL”  =>

 

Bernoulli Numbers{  BN2  }           (see JM Baillard reference page) 

The Bernoulli numbers could be computed by the relations: 

B(0) = 1 ;   

B(0) + Cn+1,1 B(1) +  Cn+1,2 B(2) + ...... +  Cn+1,n B(n) = 0    

where   Cnk = n!/ [k!(n-k)!]  are the binomial coefficients 

 

If the convention B1=−1⁄2 is used, this sequence is also known as the first Bernoulli numbers; with 

the convention B1=+1⁄2 is known as the second Bernoulli numbers. Except for this one difference, 

the first and second Bernoulli numbers agree. Since Bn=0 for all odd n>1, and many formulas only 

involveeven-index Bernoulli numbers, some authors write Bn instead of B2n. 

Example: 

10, XEQ “BN2” =>B(10) = 

Note however that this recurrence relation is unstable, and the results are quite inaccurate for large 

n. The generating function below is often used to avoid that: 

 

 

 

  

http://hp41programs.yolasite.com/bell.php
http://hp41programs.yolasite.com/bernouilli.php
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Fibonacci Numbers   

Function Description Input Output 

FIB Fibonacci Numbers Index n in X n-th. Fibonacci number 

FIBI Inverse Fibonacci Index n in X n-th/ inverse Fibonacci 

FIB Sum of Fibonacci Range n in X Sum[fib(n)] 

 IFIB Sum of Inverse Fibonacci Range n in X Sum[1/fib(n)] 

 

Fibonacci Numbers   {  FIB  , FIBI }  

These functions calculate the Fibonacci andthe Fibonacci Inversenumbers using the well-known 

recurrent relationship: 

f(0) = 0  ,    

f(1) = 1; 

f(n) = f(n-2) +f(n-1) 

And the "Fibonacci Inverse" defined as  

f’(0) = 0 

f’(1) = 1 

f'(n) = 1/f('n-2) + 1/f'(n-1).  

Note that this is *not* the same as the inverse of Fibonacci, which would simply be 1/F(n) 

Examples: 

10, XEQ “FIB” =>55.00000000 ;     LASTX, XEQ : FIBI”  =>0.683299104 

25, XEQ “FIB” => 75,025.00000 ;     LASTX, XEQ “FIBI”  =>0.707165965 

 

Sum of Fibonacci numbers   { FIB , FIBI} 

Here we’re calculating the sum of the first n Fibonacci numbers, starting at f(0)=0 until f(n). 

An interesting fact is the sum of the first Fibonacci numbers with odd index up to f(2n−1) is the 2n-

th. Fibonacci number, and the sum of the first Fibonacci numbers with even index up to f(2n) is the 

(2n+1)-th. Fibonacci number minus 1: 

Moreover, the general expression below relates the sum to the sequence value: 

{0..n)F(n) = f(n+2)-1 

Example: 

15, XEQ “FIB”  => 

Verifying the formula above: 

17, XEQ “FIB”   =>

 

Example:  

15, XEQ “FIBI” =>
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Collatz conjecture. {  ULAM  } 

(see: https://en.wikipedia.org/wiki/Collatz_conjecture) 

ULAM shows the successive values in the Collatz conjecture, starting with the argument in X. 

It is completely off-topic subject but it sorts of happened while preparing this manual – what an 

excuse, uh?   

The ULAM function does a complete path starting with the value in X, all the way until the end 

when “1” is reached using the well-known Ulam’s (or Collatz’s) algorithm: 
 

 If odd, multiply by three and add one   

 If even, divide by two 
 

The function will take the integer part of the absolute value of the number in X. Then all 

intermediate values are briefly shown, and the total number of “nodes” is left in X upon completion. 

The starting number is left in X. 

Examples: 

41, XEQ “ULAM” -> generates a sequence of 109 numbers 

 22, ULAM -> generates a sequence of 15 numbers 

The sequence for n = 27, listed below, takes 111 steps (41 steps through odd numbers), climbing 

as high as 9232 before descending to 1. 

27, 82, 41, 124, 62, 31, 94, 47, 142, 71, 214, 107, 322, 161, 484, 242, 121, 364, 182, 91, 274, 137, 412, 206, 

103, 310, 155, 466, 233, 700, 350, 175, 526, 263, 790, 395, 1186, 593, 1780, 890, 445, 1336, 668, 334, 167, 

502, 251, 754, 377, 1132, 566, 283, 850, 425, 1276, 638, 319, 958, 479, 1438, 719, 2158, 1079, 3238, 1619, 

4858, 2429, 7288, 3644, 1822, 911, 2734, 1367, 4102, 2051, 6154, 3077, 9232, 4616, 2308, 1154, 577, 1732, 

866, 433, 1300, 650, 325, 976, 488, 244, 122, 61, 184, 92, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 

4, 2, 1 (sequence A008884 in the OEIS) 

 

Histogram of total stopping times for the numbers 1 to 108. Total stopping time is on the x axis, 

frequency on the y axis.  

https://en.wikipedia.org/wiki/Collatz_conjecture
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MCODE listing 

 

 
 

The calls to [WAIT4L] ensure compatibility with the SY-41CL – slowing down the output for the user to 

catch a glimpse of the enumerated values. 


