Overview
1°)
Ecliptic
Geocentric Coordinates
2°)
Equatorial Geocentric
Coordinates
3°)
Azimuthal Topocentric
Coordinates
4°) Numerical Results
-These programs compute accurate positions
of the Sun, the Moon and the major planets.
for a short time-span
of 32 days, i-e 2023/09/30 0h TT to 2023/11/01
0h TT
-The longitudes & latitudes and the right-ascensions & declinations
are geocentric apparent,
referred to the true equator
& equinox of the date, corrected for aberration
and light-time.
-The precision is about 0"01 for the longitudes & latitudes and of
the order of 3 E-8 AU for
the distances ( 5 E-11 AU for the Moon ).
-The distances are true distances.
-The azimuthal ( topocentric ) coordinates are also given, corrected for parallax & diurnal aberration.
-These coordinates are calculated by polynomials fitted to the JPL Ephemerides
DE441
Notes:
-Always execute "ECL" first for the ecliptic coordinates, with at least
SIZE 031
-Then "EQ" for the equatorial coordinates
( SIZE 039 )
-And then "AZ" for the azimuthal coordinates
with at least SIZE 041.
-The azimuths are reckoned clockwise from North.
-Longitudes are positive East.
Data Registers
R00 = ( DOM - 16 ) / 16 ( from -1 to +1 ) Terrestrial Time ( TT )
R01 thru R30 = coordinates of the Sun, the Moon, Mercury, Venus, Mars, Jupiter, Saturn, Uranus, Neptune & Pluto.
R31 = True obliquity of the ecliptic ( deg )
R32 = Local Sidereal Time
( hh.mnss )
• R33 = Longitude of the observer ( ° ' " )
positive East
• R34 = Latitude of the observer
( ° ' " )
Registers
R33-R34-R35 are to be initialized before executing "AZ"
• R35 = Observer altitude in
meters
( R36 to R40: temporary data storage )
XROM | Function | Desciption |
24,00 24,01 24,02 24,03 24,04 24,05 |
S -EPH2023OCT V ECL EQ AZ |
Subroutine that is called by
"V" Section Header Ecliptic Coordinates of the Sun, the Moon & the Planets Takes day of month & time and calls "V" Ecliptic -> Equatorial Coordinates Equatorial -> Azimuthal Coordinates |
-"ECL" "EQ" &
"AZ" calculate & store the coordinates
in registers R01 thru R30 as follows:
>>> h0 is the height, corrected for refraction
Celestial Body | Registers | "ECLI" | "EQUA" | "AZIM" |
SUN |
R01 R02 R03 |
Eclipt Longitude
( deg ) Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss)
Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth ( °
' " ) height ( ° ' " ) h0 ( ° ' " ) |
MOON |
R04 R05 R06 |
Eclipt Longitude
( deg ) Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss)
Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth (
° ' " ) height ( ° ' " ) h0 ( ° ' " ) |
MERCURY |
R07 R08 R09 |
Eclipt Longitude
( deg ) Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss)
Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth (
° ' " ) height ( ° ' " ) h0 ( ° ' " ) |
VENUS |
R10 R11 R12 |
Eclipt Longitude
( deg ) Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss)
Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth (
° ' " ) height ( ° ' " ) h0 ( ° ' " ) |
MARS |
R13 R14 R15 |
Eclipt Longitude
( deg ) Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss)
Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth (
° ' " ) height ( ° ' " ) h0 ( ° ' " ) |
JUPITER |
R16 R17 R18 |
Eclipt Longitude
( deg ) Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss)
Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth (
° ' " ) height ( ° ' " ) h0 ( ° ' " ) |
SATURN |
R19 R20 R21 |
Eclipt Longitude
( deg ) Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss)
Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth (
° ' " ) height ( ° ' " ) h0 ( ° ' " ) |
URANUS |
R22 R23 R24 |
Eclipt Longitude
( deg ) Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss)
Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth (
° ' " ) height ( ° ' " ) h0 ( ° ' " ) |
NEPTUNE |
R25 R26 R27 |
Eclipt Longitude
( deg ) Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss)
Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth (
° ' " ) height ( ° ' " ) h0 ( ° ' " ) |
PLUTO |
R28 R29 R30 |
Eclipt Longitude
( deg ) Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss)
Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth (
° ' " ) height ( ° ' " ) h0 ( ° ' " ) |
1°) Ecliptic Geocentric Coordinates of the Sun, the
Moon & the major Planets
STACK | INPUTS | OUTPUTS |
Z | / | R0 ( AU ) |
Y | Day of the Month | B0 ( deg ) |
X | HH.MNSS(TT) | L0 ( deg ) |
Where L = Longitude B = Latitude R = radius vector
Example: Calculate the apparent geocentric ecliptic coordinates of the Sun, the Moon and the planets on 2023/10/24 at 16h41m TT
-Enter the day of the month and the time expressed
in Terrestrial Time ( TT )
24
ENTER^
16.41
XEQ "ECL"
>>>> L0
= 211°008714
= R01
RDN
B0 = -0°000006
= R02
RDN
R0 = 0.99467135 AU = R03
Notes:
-All the angles are expressed in decimal degrees.
-Cf paragraph 4°) for the
other results.
-If you key in a date outside the interval [ 2023/09/30 0h TT , 2023/11/01
0h TT ] you'll
get a DATA ERROR message.
-However, this program may probably
be used a few hours outside the prescribed
interval: set F25 and R/S
-But the precision is less guaranteed
and the results may even become completely
meaningless several days before 00 or after 32, especially
for the Moon.
2°) Equatorial Geocentric Coordinates
-AFTER executing "ECL", use "EQ" to get the equatorial coordinates
-The right-ascensions are expressed
in hh.mnss and the declinations in ° '
"
-They replace the ecliptic longitudes
& latitudes ( cf the tableau in the
paragraph above )
-"EQUA" also calculates the true obliquity of the ecliptic which is returned
in Z-register
-A polynomial is also used for that.
STACK | INPUTS | OUTPUTS |
Z | / | eps ( deg ) |
Y | / | Decl0 ( ° ' " ) |
X | / | RA0 ( hh.mnss ) |
Where RA = Right-Ascension Decl = declination eps = true obliquity of the ecliptic
Example: Calculate the apparent geocentric equatorial
coordinates of the Sun, the Moon and the planets on 2023/10/24 at 16h41m
TT
After executing "ECLI"
XEQ "EQ"
or simply R/S if you've just executed "ECL"
>>>>
RA0 =
13h55m30s12 = R01
RDN Decl 0
= -11°49'28"60 = R02
RDN eps
= 23.438586
= R31
-The distances in R03-R06-.....-R30 are unchanged.
-Cf paragraph 4°) for the other results
3°) Azimuthal Topocentric
Coordinates
-AFTER executing "ECL" & "EQ" use "AZ" to get the horizontal coordinates
-The azimuths & heights are expressed
in ° ' "
-The heights corrected for refraction are also computed and replace the
distances in R03 R06
..... R30
STACK | INPUTS | OUTPUTS |
Z | / | h0 ( ° ' " ) |
Y | / | h ( ° ' " ) |
X | / | Az ( ° ' " ) |
Long = longitude ( positive
East )
Az = Azimuth ( clockwise from North )
|
Where
Lat = latitude
h = height
>
of the Sun
Alt = altitude
in meters
h0 = height
( corrected for refraction )
|
Example: Calculate the apparent topocentric
azimuthal coordinates of the Sun, the Moon and the
planets on 2023/10/24 at 16h41m TT
at the Palomar Observatory,
Longitude = 116°51'50"4 W
Latitude = 33°21'22"4 N Altitude
= 1706 m
>>> After executing "ECLI" & "EQUA"
-116.51504 STO 33
which are
the topocentric coordinates of the Sun.
>>> We also have the local sidereal time in R32 = LST
= 11h03m41s53
Notes:
-Cf paragraph 4°) for the other results.
-The difference TT - UTC = 69.184
seconds.
-> h0 is often meaningless
when h < 0
Celestial Body | Registers | "ECL" | "EQ" | "AZ" |
SUN |
R01 R02 R03 |
211.008714 -0.000006 0.99467135 |
13.553012 -11.492860 unchanged |
130.162292 29.032320 29.050543 |
MOON |
R04 R05 R06 |
-25.102649 -4.053024 0.0024469114 |
22.330296 -13.290251 unchanged |
21.083452 -69.172382 -69.172382 |
MERCURY |
R07 R08 R09 |
213.977356 0.301227 1.43361439 |
14.072015 -12.333790 unchanged |
128.221092 26.353523 26.372857 |
VENUS |
R10 R11 R12 |
164.597358 -0.072538 0.69971923 |
11.030881 5.595102 unchanged |
-179.421834 62.382183 62.385133 |
MARS |
R13 R14 R15 |
218.526888 0.127843 2.54869370 |
14.244577 -14.132638 unchanged |
126.125868 22.290093 22.311766 |
JUPITER |
R16 R17 R18 |
41.787928 -1.420300 3.99266338 |
2.391231 14.010736 unchanged |
-56.354991 -20.091438 -20.091438 |
SATURN |
R19 R20 R21 |
330.609897 -1.753256 9.22754355 |
22.131368 -12.534607 unchanged |
32.184819 -66.314245 -66.314245 |
URANUS |
R22 R23 R24 |
51.870710 -0.320930 18.69157421 |
3.180952 17.552449 unchanged |
-60.074932 -10.355961 -10.355961 |
NEPTUNE |
R25 R26 R27 |
355.374822 -1.272642 29.09171339 |
23.450252 -3.002233 unchanged |
-19.510137 -58.085352 -58.085352 |
PLUTO |
R28 R29 R30 |
297.937556 -2.739827 34.91594836 |
20.022917 -23.152711 unchanged |
87.454975 -49.112353 -49.112353 |
True obliquity of the ecliptic |
R31 |
/ |
23.438586 |
unchanged |
Local Sidereal Time |
R32 |
/ |
/ |
11.034153 |
-This subroutine may be used for itself to calculate the geocentric
ecliptic coordinates
-First initialize R00 before executing
"V".
-With the example above, R00 =
0.5434461806
WARNING !!!
6°) Refraction
-The apparent heights are calculated by a refraction formula which approximates
the Pulkovo refraction tables
for standard conditions of temperature
& pressure ( T = 15°C , P = 1013.25
mbar, humidity = 0 , wave length = 0.59µ
)
-The precision is better than 0"06 over the whole range [ -0°32'58"0
, 90° ]
h0 ~ h + 1° / 62.95929 /
Tan ( h + 4°8043 / ( h
+ 7°0822 / ( h +11°1187 / ( h + 38°2290
/ ( h + 9°9098 ) ) ) ) )
References:
[1] Aldo Vitagliano SOLEX http://www.solexorb.it/
[2] ftp://ssd.jpl.nasa.gov/pub/eph/planets/ascii/
[3] Jean Meeus - "Astronomical
Algorithms" - Willmann-Bell -
ISBN 0-943396-61-1