Overview
1°)
Ecliptic
Geocentric Coordinates
2°)
Equatorial Geocentric
Coordinates
3°)
Azimuthal Topocentric
Coordinates
4°) Numerical Results
-These programs compute accurate positions
of the Sun, the Moon and the major planets.
for a short time-span of
32 days, i-e 2023/08/31 0h TT to 2023/10/02
0h TT
-The longitudes & latitudes and the right-ascensions & declinations
are geocentric apparent,
referred to the true equator &
equinox of the date, corrected for aberration
and light-time.
-The precision is about 0"01 for the longitudes & latitudes and of
the order of 3 E-8 AU for the
distances ( 5 E-11 AU for the Moon ).
-The distances are true distances.
-The azimuthal ( topocentric ) coordinates are also given, corrected for parallax & diurnal aberration.
-These coordinates are calculated by polynomials fitted to the JPL Ephemerides
DE441
Notes:
-Always execute "ECL" first for the ecliptic coordinates, with at least
SIZE 031
-Then "EQ" for the equatorial coordinates
( SIZE 039 )
-And then "AZ" for the azimuthal coordinates
with at least SIZE 041.
-The azimuths are reckoned clockwise from North.
-Longitudes are positive East.
Data Registers
R00 = ( DOM - 16 ) / 16 ( from -1 to +1 ) Terrestrial Time ( TT )
R01 thru R30 = coordinates of the Sun, the Moon, Mercury, Venus, Mars, Jupiter, Saturn, Uranus, Neptune & Pluto.
R31 = True obliquity of the ecliptic ( deg )
R32 = Local Sidereal Time
( hh.mnss )
• R33 = Longitude of the observer ( ° ' " )
positive East
• R34 = Latitude of the observer
( ° ' " )
Registers
R33-R34-R35 are to be initialized before executing "AZ"
• R35 = Observer altitude in meters
( R36 to R40: temporary data storage )
XROM | Function | Desciption |
24,00 24,01 24,02 24,03 24,04 24,05 |
S -EPH2023SEP V ECL EQ AZ |
Subroutine that is called by "V"
or "ECL" Section Header Ecliptic Coordinates of the Sun, the Moon & the Planets Takes day of month & time and calls "V" & "S" Ecliptic -> Equatorial Coordinates Equatorial -> Azimuthal Coordinates |
-"ECL" "EQ" & "AZ"
calculate & store the coordinates in
registers R01 thru R30 as follows:
>>> h0 is the height, corrected for refraction
Celestial Body | Registers | "ECLI" | "EQUA" | "AZIM" |
SUN | R01
R02 R03 |
Eclipt Longitude
( deg ) Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss)
Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth ( ° ' "
) height ( ° ' " ) h0 ( ° ' " ) |
MOON | R04
R05 R06 |
Eclipt Longitude
( deg ) Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss)
Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth ( °
' " ) height ( ° ' " ) h0 ( ° ' " ) |
MERCURY | R07
R08 R09 |
Eclipt Longitude
( deg ) Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss)
Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth ( °
' " ) height ( ° ' " ) h0 ( ° ' " ) |
VENUS | R10
R11 R12 |
Eclipt Longitude
( deg ) Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss)
Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth ( °
' " ) height ( ° ' " ) h0 ( ° ' " ) |
MARS | R13
R14 R15 |
Eclipt Longitude
( deg ) Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss)
Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth ( °
' " ) height ( ° ' " ) h0 ( ° ' " ) |
JUPITER | R16
R17 R18 |
Eclipt Longitude
( deg ) Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss)
Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth ( °
' " ) height ( ° ' " ) h0 ( ° ' " ) |
SATURN | R19
R20 R21 |
Eclipt Longitude
( deg ) Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss)
Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth ( °
' " ) height ( ° ' " ) h0 ( ° ' " ) |
URANUS | R22
R23 R24 |
Eclipt Longitude
( deg ) Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss)
Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth ( °
' " ) height ( ° ' " ) h0 ( ° ' " ) |
NEPTUNE | R25
R26 R27 |
Eclipt Longitude
( deg ) Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss)
Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth ( °
' " ) height ( ° ' " ) h0 ( ° ' " ) |
PLUTO | R28
R29 R30 |
Eclipt Longitude
( deg ) Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss)
Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth ( °
' " ) height ( ° ' " ) h0 ( ° ' " ) |
1°) Ecliptic Geocentric Coordinates of the Sun, the
Moon & the major Planets
STACK | INPUTS | OUTPUTS |
Z | / | R0 ( AU ) |
Y | Day of the Month | B0 ( deg ) |
X | HH.MNSS(TT) | L0 ( deg ) |
Where L = Longitude B = Latitude R = radius vector
Example: Calculate the apparent geocentric ecliptic coordinates of the Sun, the Moon and the planets on 2023/09/24 at 16h41m TT
-Enter the day of the month and the time expressed
in Terrestrial Time ( TT )
24
ENTER^
16.41
XEQ "ECL"
>>>> L0
= 181.379640 = R01
RDN
B0 = -0°000049
= R02
RDN
R0 = 1.00320009 AU = R03
Notes:
-All the angles are expressed in decimal degrees.
-Cf paragraph 4°) for the other
results.
-If you key in a date outside the interval [ 2023/08/31 0h TT , 2023/10/02
0h TT ] you'll get
a DATA ERROR message.
-However, this program may probably be
used a few hours outside the prescribed
interval: set F25 and R/S
-But the precision is less guaranteed
and the results may even become completely
meaningless several days before 00 or after 32, especially
for the Moon.
2°) Equatorial Geocentric Coordinates
-AFTER executing "ECL", use "EQ" to get the equatorial coordinates
-The right-ascensions are expressed in
hh.mnss and the declinations in ° ' "
-They replace the ecliptic longitudes
& latitudes ( cf the tableau in the
paragraph above )
-"EQUA" also calculates the true obliquity of the ecliptic which is returned
in Z-register
-A polynomial is also used for that.
STACK | INPUTS | OUTPUTS |
Z | / | eps ( deg ) |
Y | / | Decl0 ( ° ' " ) |
X | / | RA0 ( hh.mnss ) |
Where RA = Right-Ascension Decl = declination eps = true obliquity of the ecliptic
Example: Calculate the apparent geocentric equatorial
coordinates of the Sun, the Moon and the planets on 2023/09/24 at 16h41m
TT
After executing "ECLI"
XEQ "EQ"
or simply R/S if you've just executed "ECL"
>>>>
RA0 =
12h05m03s80 = R01
RDN Decl 0
= -0°32'55"59 = R02
RDN eps =
23.438607
= R31
-The distances in R03-R06-.....-R30 are unchanged.
-Cf paragraph 4°) for the other results
3°) Azimuthal Topocentric
Coordinates
-AFTER executing "ECL" & "EQ" use "AZ" to get the horizontal coordinates
-The azimuths & heights are expressed
in ° ' "
-The heights corrected for refraction are also computed and replace the
distances in R03 R06
..... R30
STACK | INPUTS | OUTPUTS |
Z | / | h0 ( ° ' " ) |
Y | / | h ( ° ' " ) |
X | / | Az ( ° ' " ) |
Long = longitude ( positive
East )
Az = Azimuth ( clockwise from North )
|
Where
Lat = latitude
h = height
>
of the Sun
Alt = altitude in
meters
h0 = height
( corrected for refraction )
|
Example: Calculate the apparent topocentric
azimuthal coordinates of the Sun, the Moon and the
planets on 2023/09/24 at 16h41m TT
at the Palomar Observatory,
Longitude = 116°51'50"4 W
Latitude = 33°21'22"4 N Altitude
= 1706 m
>>> After executing "ECLI" & "EQUA"
-116.51504 STO 33
which are
the topocentric coordinates of the Sun.
>>> We also have the local sidereal time in R32 = LST
= 9h05m24s90
Notes:
-Cf paragraph 4°) for the other results.
-The difference TT - UTC = 69.184
seconds.
-> h0 is often meaningless
when h < 0
Celestial Body | Registers | "ECL" | "EQ" | "AZ" |
SUN | R01
R02 R03 |
181.379640 -0.000049 1.00320009 |
12.050380 -0.325559 unchanged |
119.222484 35.531809 35.543673 |
MOON | R04
R05 R06 |
295.899420 -5.239939 0.0024606669 |
19.555362 -26.063952 unchanged |
68.523498 -73.340958 -73.340958 |
MERCURY | R07
R08 R09 |
163.823861 1.227768 1.00879530 |
11.021745 7.294366 unchanged |
127.093437 52.361871 52.370228 |
VENUS | R10
R11 R12 |
139.292678 -3.906927 0.47783355 |
9.215291 11.191539 unchanged |
169.200516 67.383221 67.385564 |
MARS | R13
R14 R15 |
198.317817 0.417188 2.53441131 |
13.081341 -6.474448 unchanged |
112.544353 19.552990 19.580563 |
JUPITER | R16
R17 R18 |
44.909069 -1.385142 4.19309186 |
2.512790 14.590384 unchanged |
-75.333797 5.202544 5.292115 |
SATURN | R19
R20 R21 |
331.834471 -1.788961 8.88042414 |
22.175805 -12.293147 unchanged |
-42.412768 -63.220566 -63.220566 |
URANUS | R22
R23 R24 |
52.786399 -0.320308 18.98745085 |
3.215292 18.092946 unchanged |
-76.461578 13.115536 13.155263 |
NEPTUNE | R25
R26 R27 |
356.127524 -1.276586 28.90733955 |
23.474885 -2.423942 unchanged |
-59.511576 -41.154092 -41.154092 |
PLUTO | R28
R29 R30 |
297.954649 -2.735829 34.39684289 |
20.023332 -23.150061 unchanged |
57.491469 -72.540399 -72.540399 |
True obliquity of the ecliptic | R31 |
/ |
23.438607 |
unchanged |
Local
Sidereal Time |
R32 |
/ |
/ |
9.052490 |
-This subroutine may be used for itself to calculate the geocentric
ecliptic coordinates
-First initialize R00 before executing "V".
-With the example above, R00 = 0.5434461806
WARNING !!!
6°) Refraction
-The apparent heights are calculated by a refraction formula which approximates
the Pulkovo refraction tables
for standard conditions of temperature
& pressure ( T = 15°C , P = 1013.25
mbar, humidity = 0 , wave length = 0.59µ
)
-The precision is better than 0"06 over the whole range [ -0°32'58"0
, 90° ]
h0 ~ h + 1° / 62.95929 /
Tan ( h + 4°8043 / ( h +
7°0822 / ( h +11°1187 / ( h + 38°2290
/ ( h + 9°9098 ) ) ) ) )
References:
[1] Aldo Vitagliano SOLEX http://www.solexorb.it/
[2] ftp://ssd.jpl.nasa.gov/pub/eph/planets/ascii/
[3] Jean Meeus - "Astronomical
Algorithms" - Willmann-Bell -
ISBN 0-943396-61-1