Overview
1°)
Ecliptic
Geocentric Coordinates
2°)
Equatorial Geocentric
Coordinates
3°)
Azimuthal Topocentric
Coordinates
4°) Numerical Results
-These programs compute accurate positions
of the Sun, the Moon and the major planets
( this month, not enough room for Pluto )
for a short time-span of
32 days, i-e 2024/10/31 0h TT to 2024/12/02
0h TT
-The longitudes & latitudes and the right-ascensions &
declinations are geocentric
apparent
referred to the true equator &
equinox of the date, corrected for aberration
and light-time.
-The precision is about 0"01 for the longitudes & latitudes and of
the order of 3 E-8 AU for the
distances ( 5 E-11 AU for the Moon ).
-The distances are true distances.
-The azimuthal ( topocentric ) coordinates are also given, corrected for parallax & diurnal aberration.
-These coordinates are calculated by polynomials fitted to the JPL Ephemerides
DE441
Notes:
-Always execute "ECL" first for the ecliptic coordinates, with at least
SIZE 031
-Then "EQ" for the equatorial coordinates
( SIZE 039 )
-And then "AZ" for the azimuthal coordinates
with at least SIZE 041.
-The azimuths are reckoned clockwise from North.
-Longitudes are positive East.
Data Registers
R00 = ( DOM - 16 ) / 16 ( from -1 to +1 ) Terrestrial Time ( TT )
R01 thru R30 = coordinates of the Sun, the Moon, Mercury, Venus, Mars, Jupiter, Saturn, Uranus, Neptune & Pluto.
R31 = True obliquity of the ecliptic ( deg )
R32 = Local Sidereal Time
( hh.mnss )
• R33 = Longitude of the observer ( ° ' " ) positive
East
• R34 = Latitude of the observer
( ° ' " )
Registers
R33-R34-R35 are to be initialized before executing "AZ"
• R35 = Observer altitude in meters
( R36 to R40: temporary data storage )
XROM | Function | Desciption |
24,00 24,01 24,02 24,03 24,04 24,05 |
$ -EPH2024NOV V ECL EQ AZ |
Subroutine that is called by "V" Section Header Ecliptic Coordinates of the Sun, the Moon & the Planets Takes day of month & time and calls "V" Ecliptic -> Equatorial Coordinates Equatorial -> Azimuthal Coordinates |
-"ECL" "EQ" & "AZ"
calculate & store the coordinates in registers
R01 thru R27 as follows:
>>> h0 is the height, corrected for refraction
Celestial Body | Registers | "ECL" | "EQ" | "AZ" |
SUN |
R01 R02 R03 |
Eclipt Longitude
( deg ) Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss)
Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth ( °
' " ) height ( ° ' " ) h0 ( ° ' " ) |
MOON |
R04 R05 R06 |
Eclipt Longitude
( deg ) Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss)
Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth
( ° ' " ) height ( ° ' " ) h0 ( ° ' " ) |
MERCURY |
R07 R08 R09 |
Eclipt Longitude
( deg ) Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss)
Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth
( ° ' " ) height ( ° ' " ) h0 ( ° ' " ) |
VENUS |
R10 R11 R12 |
Eclipt
Longitude ( deg ) Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss)
Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth
( ° ' " ) height ( ° ' " ) h0 ( ° ' " ) |
MARS |
R13 R14 R15 |
Eclipt Longitude
( deg ) Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss)
Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth
( ° ' " ) height ( ° ' " ) h0 ( ° ' " ) |
JUPITER |
R16 R17 R18 |
Eclipt Longitude
( deg ) Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss)
Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth
( ° ' " ) height ( ° ' " ) h0 ( ° ' " ) |
SATURN |
R19 R20 R21 |
Eclipt Longitude
( deg ) Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss)
Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth
( ° ' " ) height ( ° ' " ) h0 ( ° ' " ) |
URANUS |
R22 R23 R24 |
Eclipt Longitude
( deg ) Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss)
Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth
( ° ' " ) height ( ° ' " ) h0 ( ° ' " ) |
NEPTUNE |
R25 R26 R27 |
Eclipt Longitude
( deg ) Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss)
Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth
( ° ' " ) height ( ° ' " ) h0 ( ° ' " ) |
1°) Ecliptic Geocentric Coordinates of the Sun, the
Moon & the major Planets
STACK | INPUTS | OUTPUTS |
Z | / | R0 ( AU ) |
Y | Day of the Month | B0 ( deg ) |
X | HH.MNSS(TT) | L0 ( deg ) |
Where L = Longitude B = Latitude R = radius vector
Example: Calculate the apparent geocentric ecliptic coordinates of the Sun, the Moon and the planets on 2024/11/24 at 16h41m TT
-Enter the day of the month and the time expressed
in Terrestrial Time ( TT )
24
ENTER^
16.41
XEQ "ECL"
>>>> L0
= 242.894121 =
R01
RDN B0
= 0°000041
= R02
RDN R0
= 0.98718659 AU = R03
Notes:
-All the angles are expressed in decimal degrees.
-Cf paragraph 4°) for the other
results.
-If you key in a date outside the interval [ 2024/10/31 0h TT , 2024/12/02
0h TT ] you'll get
a DATA ERROR message.
-However, this program may probably be
used a few hours outside the prescribed interval:
set F25 and R/S
-But the precision is less guaranteed
and the results may even become completely
meaningless several days before 00 or after 32, especially
for the Moon.
2°) Equatorial Geocentric Coordinates
-AFTER executing "ECL", use "EQ" to get the equatorial coordinates
-The right-ascensions are expressed in
hh.mnss and the declinations in ° ' "
-They replace the ecliptic longitudes
& latitudes ( cf the tableau in the paragraph
above )
-"EQUA" also calculates the true obliquity of the ecliptic which is returned
in Z-register
-A polynomial is also used for that.
STACK | INPUTS | OUTPUTS |
Z | / | eps ( deg ) |
Y | / | Decl0 ( ° ' " ) |
X | / | RA0 ( hh.mnss ) |
Where RA = Right-Ascension Decl = declination eps = true obliquity of the ecliptic
Example: Calculate the apparent geocentric
equatorial coordinates of the Sun, the Moon and the planets on 2024/11/24
at 16h41m TT
After executing "ECLI"
XEQ "EQ"
or simply R/S if you've just executed "ECL"
>>>>
RA0 =
16h03m22s41 = R01
RDN Decl 0
= -20°44'12"53 = R02
RDN eps =
23°438504 = R31
-The distances in R03-R06-.....-R27 are unchanged.
-Cf paragraph 4°) for the other results
3°) Azimuthal Topocentric
Coordinates
-AFTER executing "ECL" & "EQ" use "AZ" to get the horizontal coordinates
-The azimuths & heights are expressed
in ° ' "
-The heights corrected for refraction are also computed and replace the
distances in R03 R06 .....
R27
STACK | INPUTS | OUTPUTS |
Z | / | h0 ( ° ' " ) |
Y | / | h ( ° ' " ) |
X | / | Az ( ° ' " ) |
Long = longitude ( positive
East )
Az = Azimuth ( clockwise from North )
|
Where
Lat = latitude
h = height
>
of the Sun
Alt = altitude
in meters
h0 = height
( corrected for refraction )
|
Example: Calculate the apparent topocentric
azimuthal coordinates of the Sun, the Moon and the
planets on 2024/11/24 at 16h41m TT
at the Palomar Observatory,
Longitude = 116°51'50"4 W
Latitude = 33°21'22"4 N Altitude
= 1706 m
>>> After executing "ECLI" & "EQUA"
-116.51504 STO 33
which are
the topocentric coordinates of the Sun.
>>> We also have the local sidereal time in R32 = LST
= 13h08m54s41
Notes:
-Cf paragraph 4°) for the other results.
-The difference TT - UTC = 69.184
seconds.
-> h0 is often meaningless
when h < 0
Celestial Body | Registers | "ECL" | "EQ" | "AZ" |
SUN |
R01 R02 R03 |
242.894121 0.000041 0.98718659 |
16.032241 -20.441253 unchanged |
135.595476 21.455643 21.481812 |
MOON |
R04 R05 R06 |
170.815414 1.257488 0.0026968798 |
11.281400 4.474573 unchanged |
-135.090013 52.304873 52.313246 |
MERCURY |
R07 R08 R09 |
262.514506 -1.873135 0.83525688 |
17.265601 -25.054955 unchanged |
124.492060 5.174445 5.264383 |
VENUS |
R10 R11 R12 |
285.326036 -2.415011 1.01780628 |
19.074423 -24.572540 unchanged |
111.225654 -13.112259 -13.112259 |
MARS |
R13 R14 R15 |
125.205296 2.279551 0.84833810 |
8.323682 21.103628 unchanged |
-82.144192 28.283096 28.301568 |
JUPITER |
R16 R17 R18 |
78.016265 -0.694988 4.11099388 |
5.080987 22.122179 unchanged |
-54.274386 -10.254692 -10.254692 |
SATURN |
R19 R20 R21 |
342.765435 -2.075453 9.42346031 |
22.593980 -8.410587 unchanged |
57.453799 -51.202485 -51.202485 |
URANUS |
R22 R23 R24 |
54.926517 -0.262416 18.58145177 |
3.303395 18.443643 unchanged |
-38.230432 -27.540364 -27.540364 |
NEPTUNE |
R25 R26 R27 |
357.181310 -1.308250 29.47589828 |
23.514411 -2.191655 unchanged |
34.152966 -54.053985 -54.053985 |
True obliquity of the ecliptic |
R31 |
/ |
23.438504 |
unchanged |
Local Sidereal Time |
R32 |
/ |
/ |
13.085441 |
-This subroutine may be used for itself to calculate the geocentric
ecliptic coordinates
-First initialize R00 before executing "V".
-With the example above, R00 = 0.5434461806
WARNING !!!
6°) Refraction
-The apparent heights are calculated by a refraction formula
which approximates
the Pulkovo refraction tables
for standard
conditions of temperature & pressure
( T = 15°C , P = 1013.25 mbar, humidity
= 0 , wave length = 0.59µ )
-The precision is better than 0"06 over the whole range [ -0°32'58"0
, 90° ]
References:
[1] Aldo Vitagliano SOLEX http://www.solexorb.it/
[2] ftp://ssd.jpl.nasa.gov/pub/eph/planets/ascii/
[3] Jean Meeus - "Astronomical
Algorithms" - Willmann-Bell -
ISBN 0-943396-61-1