Ephemerides 2025 April Module


 Overview
 

1°)  Ecliptic Geocentric Coordinates
2°)  Equatorial Geocentric Coordinates
3°)  Azimuthal Topocentric Coordinates
4°)  Numerical Results


-These programs compute accurate positions of the Sun, the Moon and the major planets.
    for a short time-span of 32 days, i-e  2025/03/31 0h TT to 2025/05/02  0h TT

-The longitudes & latitudes and the right-ascensions & declinations are geocentric apparent
  referred to the true equator & equinox of the date, corrected for aberration and light-time.

-The precision is about 0"01 for the longitudes & latitudes and of the order of 3 E-8 AU for the distances ( 5 E-11 AU for the Moon ).
-The distances are true distances.

-The azimuthal ( topocentric ) coordinates are also given, corrected for parallax & diurnal aberration.

-These coordinates are calculated by polynomials fitted to the JPL Ephemerides DE441
 

Notes:

-Always execute "ECL" first for the ecliptic coordinates, with at least SIZE 031
-Then "EQ" for the equatorial coordinates ( SIZE 039 )
-And then "AZ" for the azimuthal coordinates with at least SIZE 041.

-The azimuths are reckoned clockwise from North.
-Longitudes are positive East.
 

Data Registers

  R00 = ( DOM - 16 ) / 16 ( from -1  to +1 )  Terrestrial Time ( TT )

  R01 thru R30 = coordinates of the Sun, the Moon, Mercury, Venus, Mars, Jupiter, Saturn, Uranus, Neptune & Pluto.

  R31 = True obliquity of the ecliptic  ( deg )
  R32 = Local Sidereal Time  ( hh.mnss )

 • R33 = Longitude of the observer ( ° ' " )   positive East
 • R34 = Latitude of the observer ( ° ' " )                                                         Registers R33-R34-R35 are to be initialized before executing "AZ"
 • R35 = Observer altitude in meters

 ( R36 to R40:  temporary data storage )
 
 

XROM  Function  Desciption
 24,00
 24,01
 24,02
 24,03
 24,04
 24,05
 S
-EPH2025APR
 V
 ECL
 EQ
 AZ
 Subroutine that is called by "V"
 Section Header
 Ecliptic Coordinates of the Sun, the Moon & the Planets

 Takes day of month & time and calls "V"
 Ecliptic -> Equatorial Coordinates
 Equatorial -> Azimuthal Coordinates
  


-"ECL"  "EQ"  &  "AZ"  calculate & store the coordinates in registers R01 thru R30 as follows:

>>>   h0 is the height, corrected for refraction
 
 

      Celestial Body    Registers                "ECLI"                 "EQUA"          "AZIM"
            SUN       R01
      R02
      R03
    Eclipt Longitude ( deg )
    Eclipt  Latitude ( deg )
    Dist from Earth ( AU )
    Right-Ascens(hh;mnss)
      Declination ( ° ' " )
    Dist from Earth ( AU )
   Azimuth ( ° ' " )
     height  ( ° ' " )
        h0  ( ° ' " )
          MOON       R04
      R05
      R06
    Eclipt Longitude ( deg )
    Eclipt  Latitude ( deg )
    Dist from Earth ( AU )
    Right-Ascens(hh;mnss)
      Declination ( ° ' " )
    Dist from Earth ( AU )
    Azimuth ( ° ' " )
     height  ( ° ' " )
        h0  ( ° ' " )
       MERCURY       R07
      R08
      R09
    Eclipt Longitude ( deg )
    Eclipt  Latitude ( deg )
    Dist from Earth ( AU )
    Right-Ascens(hh;mnss)
      Declination ( ° ' " )
    Dist from Earth ( AU )
    Azimuth ( ° ' " )
     height  ( ° ' " )
        h0  ( ° ' " )
         VENUS       R10
      R11
      R12
    Eclipt Longitude ( deg )
    Eclipt  Latitude ( deg )
    Dist from Earth ( AU )
   Right-Ascens(hh;mnss)
     Declination ( ° ' " )
   Dist from Earth ( AU )
    Azimuth ( ° ' " )
     height  ( ° ' " )
        h0  ( ° ' " )
          MARS       R13
      R14
      R15
    Eclipt Longitude ( deg )
    Eclipt  Latitude ( deg )
    Dist from Earth ( AU )
    Right-Ascens(hh;mnss)
      Declination ( ° ' " )
   Dist from Earth ( AU )
    Azimuth ( ° ' " )
     height  ( ° ' " )
        h0  ( ° ' " )
        JUPITER       R16
      R17
      R18
    Eclipt Longitude ( deg )
    Eclipt  Latitude ( deg )
    Dist from Earth ( AU )
    Right-Ascens(hh;mnss)
      Declination ( ° ' " )
    Dist from Earth ( AU )
    Azimuth ( ° ' " )
     height  ( ° ' " )
        h0  ( ° ' " )
        SATURN       R19
      R20
      R21
    Eclipt Longitude ( deg )
    Eclipt  Latitude ( deg )
    Dist from Earth ( AU )
    Right-Ascens(hh;mnss)
      Declination ( ° ' " )
    Dist from Earth ( AU )
    Azimuth ( ° ' " )
     height  ( ° ' " )
        h0  ( ° ' " )
        URANUS       R22
      R23
      R24
    Eclipt Longitude ( deg )
    Eclipt  Latitude ( deg )
    Dist from Earth ( AU )
    Right-Ascens(hh;mnss)
      Declination ( ° ' " )
    Dist from Earth ( AU )
    Azimuth ( ° ' " )
     height  ( ° ' " )
        h0  ( ° ' " )
       NEPTUNE       R25
      R26
      R27
    Eclipt Longitude ( deg )
    Eclipt  Latitude ( deg )
    Dist from Earth ( AU )
    Right-Ascens(hh;mnss)
      Declination ( ° ' " )
    Dist from Earth ( AU )
    Azimuth ( ° ' " )
     height  ( ° ' " )
        h0  ( ° ' " )
         PLUTO       R28
      R29
      R30
    Eclipt Longitude ( deg )
    Eclipt  Latitude ( deg )
    Dist from Earth ( AU )
    Right-Ascens(hh;mnss)
      Declination ( ° ' " )
    Dist from Earth ( AU )
    Azimuth ( ° ' " )
     height  ( ° ' " )
        h0  ( ° ' " )

 

1°) Ecliptic Geocentric Coordinates of the Sun, the Moon & the major Planets


            STACK            INPUTS      OUTPUTS
                 Z                 /       R0  ( AU )
                 Y       Day of the Month       B0  ( deg )
                 X        HH.MNSS(TT)       L0  ( deg )

    Where  L = Longitude   B = Latitude   R = radius vector

Example:    Calculate the apparent geocentric ecliptic coordinates of the Sun, the Moon and the planets on 2025/04/24 at 16h41m  TT


-Enter the day of the month and the time expressed in  Terrestrial Time ( TT )

       24       ENTER^
    16.41     XEQ "ECL"            >>>>     L0 =   34°744516          = R01
                                                RDN      B0 =   -0°000090           = R02
                                                RDN      R0 =  1.00586515  AU   = R03

Notes:

-All the angles are expressed in decimal degrees.
-Cf  paragraph 4°) for the other results.

-If you key in a date outside the interval [ 2025/02/28 0h TT , 2025/04/01   0h TT ]  you'll get a DATA ERROR message.
-However, this program may probably be used a few hours outside the prescribed interval: set F25 and R/S
-But the precision is less guaranteed and the results may even become completely meaningless several days before 00 or after 32, especially for the Moon.
 

2°) Equatorial Geocentric Coordinates
 

-AFTER executing "ECL", use "EQ" to get the equatorial coordinates
-The right-ascensions are expressed in hh.mnss and the declinations in ° ' "
-They replace the ecliptic longitudes & latitudes ( cf the tableau in the paragraph above )

-"EQ" also calculates the true obliquity of the ecliptic which is returned in Z-register
-A polynomial is also used for that.
 
 

           STACK          INPUTS        OUTPUTS
               Z               /        eps   ( deg )
               Y               /       Decl0 ( ° ' " )
               X               /     RA0  ( hh.mnss )

  Where  RA = Right-Ascension   Decl = declination  eps = true obliquity of the ecliptic

Example:    Calculate the apparent geocentric equatorial coordinates of the Sun, the Moon and the planets on 2025/04/24 at 16h41m  TT

After executing "ECLI"


       XEQ "EQ"  or simply R/S if you've just executed "ECL"

                           >>>>     RA0 =      2h09m52s99     = R01              
                            RDN    Decl 0 =    13°06'08"76      = R02
                            RDN      eps  =     23°438601        = R31
 

-The distances in R03-R06-.....-R30  are unchanged.  
-Cf paragraph 4°) for the other results 


3°) Azimuthal Topocentric Coordinates
 

-AFTER executing "ECL" & "EQ" use "AZ" to get the horizontal coordinates
-The azimuths & heights are expressed in ° ' "

-The heights corrected for refraction are also computed and replace the distances in R03  R06 ..... R30
 
 

      STACK        INPUTS      OUTPUTS
           Z             /       h0  ( ° ' " )
           Y             /       h  ( ° ' " )
           X             /      Az  ( ° ' " )

                  Long = longitude ( positive East )       Az = Azimuth ( clockwise from North )    |
  Where       Lat  =  latitude                                   h  =  height                                             >       of the Sun
                   Alt  =  altitude in meters                   h0 =  height ( corrected for refraction )    |

Example:    Calculate the apparent topocentric azimuthal coordinates of the Sun, the Moon and the planets on 2025/04/24  at 16h41m  TT
                    at the Palomar Observatory,   Longitude = 116°51'50"4 W   Latitude = 33°21'22"4 N   Altitude = 1706 m
 

>>>  After executing "ECLI" & "EQUA"


    -116.51504   STO 33
       33.21224   STO 34
          1706       STO 35    R/S         >>>>      Az   = 104°18'19"81   = R01          
                                                        RDN         h   =  43°16'39"02     = R02
                                                        RDN         h0  =  43°17'39"53    = R03

         which are the topocentric coordinates of the Sun.
 

>>>  We also have the local sidereal time in R32 = LST = 23h04m14s40
 

Notes:

-Cf paragraph 4°) for the other results.
-The difference TT - UTC = 69.184 seconds. 

->  h0   is often meaningless when  h <   0
 

4°) Numerical Results

-Longitudes & latitudes are expressed in decimal degrees   and the distances in Astronomical Units ( "ECL" )
-Right-ascensions in hh.mnss & declinations in ° ' "  ( "EQ"   )
-Azimuths & heights in ° ' "  too   ( "AZ" )
  
-Obliquity of the ecliptic  in decimal degrees ( R31 )
-Local sidereal time in hh.mnss  ( R32 )



           Celestial Body    Registers          "ECL"          "EQ"         "AZ"
                 SUN       R01
      R02
      R03
     34.744516
     -0.000090
    1.00586515
      2.095299
     13.060876
     unchanged
   104.181981
    43.163902
    43.173953
               MOON       R04
      R05
      R06
     -8.981135
     -0.534286
  0.00244100654
    23.275043
    -4.030429
     unchanged
   170.222301
    51.333204
    51.341729
            MERCURY       R07
      R08
      R09
    367.680251
     -2.712025
    0.89535595
     0.322964
     0.331830
     unchanged
   143.095421
    51.121101
    51.125684
              VENUS       R10
      R11
      R12
    357.100453
      2.210323
    0.41325942
    23.455068
     0.523173
     unchanged
   161.072699
    56.044746
    56.052580
              MARS       R13
      R14
      R15
    122.767437
      2.122280
    1.36295038
      8.221739
     21.362085
     unchanged
    40.551748
   -22.503115
   -22.503115
             JUPITER       R16
      R17
      R18
     80.129008
     -0.251216
    5.77734437
      5.170751
     22.491509
     unchanged
    69.024005
     9.471360
     9.523000
             SATURN       R19
      R20
      R21
    357.192577
     -1.984198
   10.37320724
     23.525118
     -2.561312
     unchanged
   160.034284
    51.560248
    51.564713
            URANUS       R22
      R23
      R24
     55.964666
     -0.216945
    20.46816113
      3.344693
     19.020683
     unchanged 
    85.070968
    28.401259
    28.415648
            NEPTUNE       R25
      R26
      R27
      0.895206
     -1.273476
    30.72121951
      0.051869
     -0.484445
     unchanged
   154.055489
    52.555167
    52.563474
              PLUTO       R28
      R29
      R30
    303.795206
     -3.521772
    35.21779634
     20.280141
    -22.432606
     unchanged
  -140.571649
    22.415416
    22.440952
  True obliquity of the ecliptic       R31
           /
    23.438601
    unchanged
      Local Sidereal Time
      R32
           /
             /
    23.041440

 
 
5°) V

 

-This subroutine may be used for itself to calculate the geocentric ecliptic coordinates
-First initialize R00 before executing "V".
 
 -With the example above,  R00 = 0.5434461806


WARNING !!!


-Unlike "ECL" , this routine does not check if R00 is between -1 and +1

 

6°)  Refraction


-The apparent heights are calculated by a refraction formula which approximates the Pulkovo refraction tables
  for standard conditions of temperature & pressure ( T = 15°C , P = 1013.25 mbar, humidity = 0 , wave length = 0.59µ )

-The precision is about 0"12 if  -0°32'58"0 <= h <=  90°
 

    h0  ~  h + 1° / 62.93951 / Tan ( h + 4°80017 / ( h + 6°90263 / ( h +10°06891 / ( h + 31°76812 / ( h + 8°87360 ) ) ) ) ) 



References:

[1]  Aldo Vitagliano SOLEX  http://www.solexorb.it/
[2]  ftp://ssd.jpl.nasa.gov/pub/eph/planets/ascii/
[3]  Jean Meeus - "Astronomical Algorithms" - Willmann-Bell  -  ISBN 0-943396-61-1