Overview
1°)
Ecliptic
Geocentric
Coordinates
2°)
Equatorial
Geocentric Coordinates
3°)
Azimuthal
Topocentric Coordinates
4°) Numerical
Results
-These programs compute
accurate positions of the Sun, the Moon
and the major planets.
for a
short time-span of 32 days, i-e 2025/03/31
0h TT to 2025/05/02 0h TT
-The longitudes & latitudes and the right-ascensions &
declinations are
geocentric apparent
referred to
the true equator & equinox of the date,
corrected for aberration and light-time.
-The precision is about 0"01 for the longitudes & latitudes and of
the order of 3
E-8 AU for the distances ( 5 E-11 AU for
the Moon ).
-The distances are
true distances.
-The azimuthal ( topocentric ) coordinates are also given, corrected for parallax & diurnal aberration.
-These coordinates are calculated by polynomials fitted to the JPL Ephemerides
DE441
Notes:
-Always execute "ECL" first for the ecliptic coordinates, with at least
SIZE 031
-Then "EQ" for the
equatorial coordinates ( SIZE 039 )
-And then "AZ" for
the azimuthal coordinates with at least
SIZE 041.
-The azimuths are reckoned clockwise from North.
-Longitudes are positive
East.
Data Registers
R00 = ( DOM - 16 ) / 16 ( from -1 to +1 ) Terrestrial Time ( TT )
R01 thru R30 = coordinates of the Sun, the Moon, Mercury, Venus, Mars, Jupiter, Saturn, Uranus, Neptune & Pluto.
R31 = True obliquity of the ecliptic ( deg )
R32 = Local
Sidereal Time ( hh.mnss )
• R33 = Longitude of the observer ( ° ' " ) positive
East
• R34 = Latitude
of the observer ( ° ' " )
Registers R33-R34-R35 are
to be initialized before executing "AZ"
• R35 = Observer
altitude in meters
( R36 to R40: temporary data storage )
XROM | Function | Desciption |
24,00
24,01 24,02 24,03 24,04 24,05 |
S -EPH2025APR V ECL EQ AZ |
Subroutine
that is called by "V" Section Header Ecliptic Coordinates of the Sun, the Moon & the Planets Takes day of month & time and calls "V" Ecliptic -> Equatorial Coordinates Equatorial -> Azimuthal Coordinates |
-"ECL" "EQ"
& "AZ" calculate &
store the coordinates in registers R01 thru
R30 as follows:
>>> h0 is the height, corrected for refraction
Celestial Body | Registers | "ECLI" | "EQUA" | "AZIM" |
SUN |
R01 R02 R03 |
Eclipt Longitude ( deg ) Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss) Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth ( ° ' " ) height ( ° ' " ) h0 ( ° ' " ) |
MOON |
R04 R05 R06 |
Eclipt Longitude ( deg ) Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss) Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth ( ° ' " ) height ( ° ' " ) h0 ( ° ' " ) |
MERCURY |
R07 R08 R09 |
Eclipt Longitude ( deg ) Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss) Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth ( ° ' " ) height ( ° ' " ) h0 ( ° ' " ) |
VENUS |
R10 R11 R12 |
Eclipt Longitude ( deg ) Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss) Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth ( ° ' " ) height ( ° ' " ) h0 ( ° ' " ) |
MARS |
R13 R14 R15 |
Eclipt Longitude ( deg ) Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss) Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth ( ° ' " ) height ( ° ' " ) h0 ( ° ' " ) |
JUPITER |
R16 R17 R18 |
Eclipt Longitude ( deg ) Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss) Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth ( ° ' " ) height ( ° ' " ) h0 ( ° ' " ) |
SATURN |
R19 R20 R21 |
Eclipt Longitude ( deg ) Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss) Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth ( ° ' " ) height ( ° ' " ) h0 ( ° ' " ) |
URANUS |
R22 R23 R24 |
Eclipt Longitude ( deg ) Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss) Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth ( ° ' " ) height ( ° ' " ) h0 ( ° ' " ) |
NEPTUNE |
R25 R26 R27 |
Eclipt Longitude ( deg ) Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss) Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth ( ° ' " ) height ( ° ' " ) h0 ( ° ' " ) |
PLUTO |
R28 R29 R30 |
Eclipt Longitude ( deg ) Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss) Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth ( ° ' " ) height ( ° ' " ) h0 ( ° ' " ) |
1°) Ecliptic Geocentric Coordinates of the Sun, the
Moon & the major
Planets
STACK | INPUTS | OUTPUTS |
Z | / | R0 ( AU ) |
Y | Day of the Month | B0 ( deg ) |
X | HH.MNSS(TT) | L0 ( deg ) |
Where L = Longitude B = Latitude R = radius vector
Example: Calculate the apparent geocentric ecliptic coordinates of the Sun, the Moon and the planets on 2025/04/24 at 16h41m TT
-Enter the day of the month
and the time expressed in Terrestrial
Time ( TT )
24
ENTER^
16.41
XEQ "ECL"
>>>>
L0 = 34°744516
= R01
RDN B0
= -0°000090
= R02
RDN R0
= 1.00586515 AU = R03
Notes:
-All the angles are expressed in decimal degrees.
-Cf paragraph
4°) for the other results.
-If you key in a date outside the interval [ 2025/02/28 0h TT , 2025/04/01
0h TT ]
you'll get a DATA ERROR message.
-However, this program
may probably be used a few hours outside
the prescribed interval: set F25 and R/S
-But the precision
is less guaranteed and the results may
even become completely meaningless several
days before 00 or after 32, especially for the
Moon.
2°) Equatorial Geocentric Coordinates
-AFTER executing "ECL", use "EQ" to get the equatorial coordinates
-The right-ascensions
are expressed in hh.mnss and the declinations
in ° ' "
-They replace the
ecliptic longitudes & latitudes (
cf the tableau in the paragraph above )
-"EQ" also calculates the true obliquity of the ecliptic which is returned
in Z-register
-A polynomial is also
used for that.
STACK | INPUTS | OUTPUTS |
Z | / | eps ( deg ) |
Y | / | Decl0 ( ° ' " ) |
X | / | RA0 ( hh.mnss ) |
Where RA = Right-Ascension Decl = declination eps = true obliquity of the ecliptic
Example: Calculate the apparent geocentric
equatorial coordinates of the Sun, the Moon and the planets on 2025/04/24
at 16h41m TT
After executing "ECLI"
XEQ "EQ" or simply R/S if you've just
executed "ECL"
>>>>
RA0
= 2h09m52s99 =
R01
RDN
Decl 0 = 13°06'08"76
= R02
RDN
eps =
23°438601 = R31
-The distances in R03-R06-.....-R30 are unchanged.
-Cf paragraph 4°)
for the other results
3°) Azimuthal
Topocentric Coordinates
-AFTER executing "ECL" & "EQ" use "AZ" to get the horizontal coordinates
-The azimuths &
heights are expressed in ° ' "
-The heights corrected for refraction are also computed and replace the
distances in R03
R06 ..... R30
STACK | INPUTS | OUTPUTS |
Z | / | h0 ( ° ' " ) |
Y | / | h ( ° ' " ) |
X | / | Az ( ° ' " ) |
Long = longitude
( positive East )
Az = Azimuth ( clockwise from North )
|
Where
Lat = latitude
h =
height
>
of the Sun
Alt =
altitude in meters
h0
= height ( corrected for refraction
) |
Example: Calculate the apparent topocentric
azimuthal coordinates of the Sun, the Moon
and the planets on 2025/04/24 at
16h41m TT
at the Palomar
Observatory, Longitude =
116°51'50"4 W Latitude
= 33°21'22"4 N Altitude = 1706
m
>>> After executing "ECLI" & "EQUA"
-116.51504 STO 33
which are
the topocentric coordinates
of the Sun.
>>> We also have the local sidereal time in R32 = LST
= 23h04m14s40
Notes:
-Cf paragraph 4°) for the other results.
-The difference TT -
UTC = 69.184 seconds.
-> h0 is often meaningless
when h <
0
Celestial Body | Registers | "ECL" | "EQ" | "AZ" |
SUN |
R01 R02 R03 |
34.744516 -0.000090 1.00586515 |
2.095299 13.060876 unchanged |
104.181981 43.163902 43.173953 |
MOON |
R04 R05 R06 |
-8.981135 -0.534286 0.00244100654 |
23.275043 -4.030429 unchanged |
170.222301 51.333204 51.341729 |
MERCURY |
R07 R08 R09 |
367.680251 -2.712025 0.89535595 |
0.322964 0.331830 unchanged |
143.095421 51.121101 51.125684 |
VENUS |
R10 R11 R12 |
357.100453 2.210323 0.41325942 |
23.455068 0.523173 unchanged |
161.072699 56.044746 56.052580 |
MARS |
R13 R14 R15 |
122.767437 2.122280 1.36295038 |
8.221739 21.362085 unchanged |
40.551748 -22.503115 -22.503115 |
JUPITER |
R16 R17 R18 |
80.129008 -0.251216 5.77734437 |
5.170751 22.491509 unchanged |
69.024005 9.471360 9.523000 |
SATURN |
R19 R20 R21 |
357.192577 -1.984198 10.37320724 |
23.525118 -2.561312 unchanged |
160.034284 51.560248 51.564713 |
URANUS |
R22 R23 R24 |
55.964666 -0.216945 20.46816113 |
3.344693 19.020683 unchanged |
85.070968 28.401259 28.415648 |
NEPTUNE |
R25 R26 R27 |
0.895206 -1.273476 30.72121951 |
0.051869 -0.484445 unchanged |
154.055489 52.555167 52.563474 |
PLUTO |
R28 R29 R30 |
303.795206 -3.521772 35.21779634 |
20.280141 -22.432606 unchanged |
-140.571649 22.415416 22.440952 |
True obliquity of the ecliptic |
R31 |
/ |
23.438601 |
unchanged |
Local Sidereal Time |
R32 |
/ |
/ |
23.041440 |
-This subroutine may be used for itself to calculate the geocentric
ecliptic coordinates
-First initialize
R00 before executing "V".
-With the example
above, R00 = 0.5434461806
WARNING !!!
6°) Refraction
-The apparent heights are calculated by a refraction formula
which approximates
the Pulkovo refraction tables
for standard
conditions of temperature & pressure
( T = 15°C , P = 1013.25 mbar, humidity
= 0 , wave length = 0.59µ )
-The precision is about 0"12 if -0°32'58"0 <= h <=
90°
h0 ~ h + 1° / 62.93951 /
Tan ( h + 4°80017
/ ( h + 6°90263 / ( h +10°06891
/ ( h + 31°76812 / ( h + 8°87360
) ) ) ) )
References:
[1] Aldo Vitagliano SOLEX http://www.solexorb.it/
[2] ftp://ssd.jpl.nasa.gov/pub/eph/planets/ascii/
[3] Jean Meeus
- "Astronomical Algorithms" - Willmann-Bell
- ISBN 0-943396-61-1