Overview
1°)
Ecliptic
Geocentric
Coordinates
2°) Equatorial
Geocentric
Coordinates
3°)
Azimuthal Topocentric
Coordinates
4°)
Numerical Results
-These programs
compute accurate positions of the
Sun, the Moon and the major planets.
for a short time-span of 32 days, i-e
2025/11/30 0h TT to 2026/01/01
0h TT
-The longitudes & latitudes and the right-ascensions &
declinations
are geocentric apparent
referred to the true equator & equinox
of the date, corrected for aberration
and light-time.
-The precision is about 0"01 for the longitudes & latitudes and of
the order
of 3 E-8 AU for the distances ( 5 E-11 AU
for the Moon ).
-The distances
are true distances.
-The azimuthal ( topocentric ) coordinates are also given, corrected for parallax & diurnal aberration.
-These coordinates are calculated by polynomials fitted to the JPL Ephemerides
DE441
Notes:
-Always execute "ECL" first for the ecliptic coordinates, with at least
SIZE
031
-Then
"EQ" for the equatorial coordinates (
SIZE 039 )
-And then
"AZ" for the azimuthal coordinates with
at least SIZE 041.
-The azimuths are reckoned clockwise from North.
-Longitudes
are positive East.
Data Registers
R00 = ( DOM - 16 ) / 16 ( from -1 to +1 ) Terrestrial Time ( TT )
R01 thru R30 = coordinates of the Sun, the Moon, Mercury, Venus, Mars, Jupiter, Saturn, Uranus, Neptune & Pluto.
R31 = True obliquity of the ecliptic ( deg )
R32 = Local Sidereal Time ( hh.mnss
)
• R33 = Longitude of the observer ( ° ' " ) positive
East
•
R34 = Latitude of the observer ( °
' " )
Registers R33-R34-R35 are to be initialized
before executing "AZ"
•
R35 = Observer altitude in meters
( R36 to R40: temporary data storage )
| XROM | Function | Desciption |
| 24,00 24,01 24,02 24,03 24,04 24,05 |
S -EPH2025DEC V ECL EQ AZ |
Subroutine that is called by "V" Section Header Ecliptic Coordinates of the Sun, the Moon & the Planets Takes day of month & time and calls "V" Ecliptic -> Equatorial Coordinates Equatorial -> Azimuthal Coordinates |
-"ECL"
"EQ" & "AZ"
calculate & store the coordinates
in registers R01 thru R30 as follows:
>>> h0 is the height, corrected for refraction
| Celestial Body | Registers | "ECLI" | "EQUA" | "AZIM" |
| SUN |
R01 R02 R03 |
Eclipt Longitude ( deg ) Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss) Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth ( ° ' " ) height ( ° ' " ) h0 ( ° ' " ) |
| MOON |
R04 R05 R06 |
Eclipt Longitude ( deg ) Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss) Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth ( ° ' " ) height ( ° ' " ) h0 ( ° ' " ) |
| MERCURY |
R07 R08 R09 |
Eclipt Longitude ( deg ) Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss) Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth ( ° ' " ) height ( ° ' " ) h0 ( ° ' " ) |
| VENUS |
R10 R11 R12 |
Eclipt Longitude ( deg )
Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss) Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth ( ° ' " ) height ( ° ' " ) h0 ( ° ' " ) |
| MARS |
R13 R14 R15 |
Eclipt Longitude ( deg ) Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss) Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth ( ° ' " ) height ( ° ' " ) h0 ( ° ' " ) |
| JUPITER |
R16 R17 R18 |
Eclipt Longitude ( deg ) Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss) Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth ( ° ' " ) height ( ° ' " ) h0 ( ° ' " ) |
| SATURN |
R19 R20 R21 |
Eclipt Longitude ( deg ) Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss) Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth ( ° ' " ) height ( ° ' " ) h0 ( ° ' " ) |
| URANUS |
R22 R23 R24 |
Eclipt Longitude ( deg ) Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss) Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth ( ° ' " ) height ( ° ' " ) h0 ( ° ' " ) |
| NEPTUNE |
R25 R26 R27 |
Eclipt Longitude ( deg ) Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss) Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth ( ° ' " ) height ( ° ' " ) h0 ( ° ' " ) |
| PLUTO |
R28 R29 R30 |
Eclipt Longitude ( deg ) Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss) Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth ( ° ' " ) height ( ° ' " ) h0 ( ° ' " ) |
1°) Ecliptic Geocentric Coordinates of the Sun, the
Moon &
the major Planets
| STACK | INPUTS | OUTPUTS |
| Z | / | R0 ( AU ) |
| Y | Day of the Month | B0 ( deg ) |
| X | HH.MNSS(TT) | L0 ( deg ) |
Where L = Longitude B = Latitude R = radius vector
Example: Calculate the apparent geocentric ecliptic coordinates of the Sun, the Moon and the planets on 2025/12/24 at 16h41m TT
-Enter the day of
the month and the time expressed in
Terrestrial Time ( TT )
24
ENTER^
16.41 XEQ "ECL"
>>>> L0
= 273°124872
= R01
RDN
B0 = -0°000013
= R02
RDN
R0 = 0.98360906 AU
= R03
Notes:
-All the angles are expressed in decimal degrees.
-Cf
paragraph 4°) for the other results.
-If you key in a date outside the interval [ 2025/11/30 0h TT , 2026/01/01
0h TT ] you'll get a DATA ERROR message.
-However,
this program may probably be used a few
hours outside the prescribed interval:
set F25 and R/S
-But the
precision is less guaranteed and the
results may even become completely
meaningless several days before 00 or after 32,
especially for the Moon.
2°) Equatorial Geocentric Coordinates
-AFTER executing "ECL", use "EQ" to get the equatorial coordinates
-The right-ascensions
are expressed in hh.mnss and the
declinations in ° ' "
-They
replace the ecliptic longitudes &
latitudes ( cf the tableau in the paragraph
above )
-"EQ" also calculates the true obliquity of the ecliptic which is returned
in Z-register
-A polynomial
is also used for that.
| STACK | INPUTS | OUTPUTS |
| Z | / | eps ( deg ) |
| Y | / | Decl0 ( ° ' " ) |
| X | / | RA0 ( hh.mnss ) |
Where RA = Right-Ascension Decl = declination eps = true obliquity of the ecliptic
Example: Calculate the apparent geocentric
equatorial coordinates of the Sun, the Moon and the planets on 2025/12/24
at 16h41m TT
After executing "ECLI"
XEQ "EQ" or
simply R/S if you've just executed "ECL"
>>>>
RA0 = 18h13m37s26
= R01
RDN Decl 0
= -23°24'04"54 =
R02
RDN eps
= 23°438176
= R31
-The distances in R03-R06-.....-R30 are unchanged.
-Cf paragraph
4°) for the other results
3°) Azimuthal Topocentric Coordinates
-AFTER executing "ECL" & "EQ" use "AZ" to get the horizontal coordinates
-The azimuths
& heights are expressed in °
' "
-The heights corrected for refraction are also computed and replace the
distances
in R03 R06 ..... R30
| STACK | INPUTS | OUTPUTS |
| Z | / | h0 ( ° ' " ) |
| Y | / | h ( ° ' " ) |
| X | / | Az ( ° ' " ) |
Long
= longitude ( positive East )
Az = Azimuth ( clockwise from
North ) |
Where
Lat = latitude
h
= height
>
of the Sun
Alt
= altitude in meters
h0
= height ( corrected for refraction
) |
Example: Calculate the apparent topocentric
azimuthal coordinates of the Sun, the
Moon and the planets on 2025/12/24
at 16h41m TT
at the
Palomar Observatory, Longitude
= 116°51'50"4 W
Latitude = 33°21'22"4 N Altitude
= 1706 m
>>> After executing "ECLI" & "EQUA"
-116.51504 STO 33
which are
the topocentric coordinates
of the Sun.
>>> We also have the local sidereal time in R32 = LST
= 15h06m14s27
Notes:
-Cf paragraph 4°) for the other results.
-The difference
TT - UTC = 69.184 seconds.
-> h0 is often meaningless
when
h < 0
| Celestial Body | Registers | "ECL" | "EQ" | "AZ" |
| SUN |
R01 R02 R03 |
273.124872 -0.000013 0.98360906 |
18.133726 -23.240454 unchanged |
135.184900 17.484062 17.513587 |
| MOON |
R04 R05 R06 |
-34.512991 -1.378669 0.00260708695 |
21.525559 -14.192051 unchanged |
95.563830 -18.195354 -18.195354 |
| MERCURY |
R07 R08 R09 |
257.675295 0.296047 1.30693615 |
17.063237 -22.341975 unchanged |
148.394614 27.090943 27.110011 |
| VENUS |
R10 R11 R12 |
270.012161 -0.223583 1.70691316 |
18.000319 -23.394233 unchanged |
138.025330 19.331020 19.354912 |
| MARS |
R13 R14 R15 |
277.107581 -0.843444 2.41589006 |
18.310932 -24.052278 unchanged |
132.375919 14.392935 14.430318 |
| JUPITER |
R16 R17 R18 |
112.281222 0.220842 4.27005129 |
7.362494 21.485022 unchanged |
-59.300659 -5.162068 -5.162068 |
| SATURN |
R19 R20 R21 |
355.783708 -2.283325 9.59632282 |
23.480922 -3.461676 unchanged |
68.211103 -35.151982 -35.151982 |
| URANUS |
R22 R23 R24 |
58.167085 -0.199575 18.67723052 |
3.435109 19.332299 unchanged |
-11.010308 -36.195376 -36.195376 |
| NEPTUNE |
R25 R26 R27 |
359.431344 -1.337130 29.93228783 |
0.000245 -1.271069 unchanged |
63.490000 -36.014515 -36.014515 |
| PLUTO |
R28 R29 R30 |
302.503790 -3.766649 36.26830949 |
20.224996 -23.155768 unchanged |
115.132577 -4.101465 -4.101465 |
| True obliquity of the ecliptic | R31 |
/ |
23.438176 |
unchanged |
| Local Sidereal
Time |
R32 |
/ |
/ |
15.061427 |
-This subroutine may be used for itself to calculate the geocentric
ecliptic coordinates
-First
initialize R00 before executing "V".
-With
the example above, R00 = 0.5434461806
WARNING !!!
6°) Refraction
-The apparent heights are calculated by
a refraction formula which approximates
the Pulkovo refraction tables
for standard conditions of temperature
& pressure ( T = 15°C , P
= 1013.25 mbar, humidity = 0 , wave length
= 0.59µ )
-The precision is about 0"12 if -0°32'58"0 <= h <=
90°
h0 ~ h + 1° / 62.93951 /
Tan ( h +
4°80017 / ( h + 6°90263 / ( h +10°06891
/ ( h + 31°76812 / ( h + 8°87360
) ) ) ) )
References:
[1] Aldo Vitagliano SOLEX http://www.solexorb.it/
[2]
ftp://ssd.jpl.nasa.gov/pub/eph/planets/ascii/
[3]
Jean Meeus - "Astronomical Algorithms"
- Willmann-Bell - ISBN
0-943396-61-1