Overview
1°)
Ecliptic
Geocentric
Coordinates
2°)
Equatorial
Geocentric Coordinates
3°)
Azimuthal
Topocentric Coordinates
4°) Numerical
Results
-These programs compute
accurate positions of the Sun, the Moon
and the major planets.
for a short
time-span of 32 days, i-e 2025/01/31
0h TT to 2025/03/04 0h TT
-The longitudes & latitudes and the right-ascensions &
declinations are
geocentric apparent
referred to the
true equator & equinox of the date,
corrected for aberration and light-time.
-The precision is about 0"01 for the longitudes & latitudes and of
the order of 3 E-8
AU for the distances ( 5 E-11 AU for the
Moon ).
-The distances are true
distances.
-The azimuthal ( topocentric ) coordinates are also given, corrected for parallax & diurnal aberration.
-These coordinates are calculated by polynomials fitted to the JPL Ephemerides
DE441
Notes:
-Always execute "ECL" first for the ecliptic coordinates, with at least
SIZE 031
-Then "EQ" for the equatorial
coordinates ( SIZE 039 )
-And then "AZ" for the
azimuthal coordinates with at least SIZE
041.
-The azimuths are reckoned clockwise from North.
-Longitudes are positive
East.
Data Registers
R00 = ( DOM - 16 ) / 16 ( from -1 to +1 ) Terrestrial Time ( TT )
R01 thru R30 = coordinates of the Sun, the Moon, Mercury, Venus, Mars, Jupiter, Saturn, Uranus, Neptune & Pluto.
R31 = True obliquity of the ecliptic ( deg )
R32 = Local Sidereal
Time ( hh.mnss )
• R33 = Longitude of the observer ( ° ' " ) positive
East
• R34 = Latitude
of the observer ( ° ' " )
Registers R33-R34-R35 are to be
initialized before executing "AZ"
• R35 = Observer
altitude in meters
( R36 to R40: temporary data storage )
XROM | Function | Desciption |
24,00
24,01 24,02 24,03 24,04 24,05 |
S -EPH2025FEB V ECL EQ AZ |
Subroutine
that is called by "V" Section Header Ecliptic Coordinates of the Sun, the Moon & the Planets Takes day of month & time and calls "V" Ecliptic -> Equatorial Coordinates Equatorial -> Azimuthal Coordinates |
-"ECL" "EQ"
& "AZ" calculate &
store the coordinates in registers R01 thru
R30 as follows:
>>> h0 is the height, corrected for refraction
Celestial Body | Registers | "ECLI" | "EQUA" | "AZIM" |
SUN |
R01 R02 R03 |
Eclipt Longitude ( deg ) Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss) Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth
( ° ' " ) height ( ° ' " ) h0 ( ° ' " ) |
MOON |
R04 R05 R06 |
Eclipt Longitude ( deg ) Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss) Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth ( ° ' " ) height ( ° ' " ) h0 ( ° ' " ) |
MERCURY |
R07 R08 R09 |
Eclipt Longitude ( deg ) Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss) Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth ( ° ' " ) height ( ° ' " ) h0 ( ° ' " ) |
VENUS |
R10 R11 R12 |
Eclipt Longitude ( deg ) Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss)
Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth ( ° ' " ) height ( ° ' " ) h0 ( ° ' " ) |
MARS |
R13 R14 R15 |
Eclipt Longitude ( deg ) Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss) Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth ( ° ' " ) height ( ° ' " ) h0 ( ° ' " ) |
JUPITER |
R16 R17 R18 |
Eclipt Longitude ( deg ) Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss) Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth ( ° ' " ) height ( ° ' " ) h0 ( ° ' " ) |
SATURN |
R19 R20 R21 |
Eclipt Longitude ( deg ) Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss) Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth ( ° ' " ) height ( ° ' " ) h0 ( ° ' " ) |
URANUS |
R22 R23 R24 |
Eclipt Longitude ( deg ) Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss) Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth ( ° ' " ) height ( ° ' " ) h0 ( ° ' " ) |
NEPTUNE |
R25 R26 R27 |
Eclipt Longitude ( deg ) Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss) Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth ( ° ' " ) height ( ° ' " ) h0 ( ° ' " ) |
PLUTO |
R28 R29 R30 |
Eclipt Longitude ( deg ) Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss) Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth ( ° ' " ) height ( ° ' " ) h0 ( ° ' " ) |
1°) Ecliptic Geocentric Coordinates of the Sun, the
Moon & the major
Planets
STACK | INPUTS | OUTPUTS |
Z | / | R0 ( AU ) |
Y | Day of the Month | B0 ( deg ) |
X | HH.MNSS(TT) | L0 ( deg ) |
Where L = Longitude B = Latitude R = radius vector
Example: Calculate the apparent geocentric ecliptic coordinates of the Sun, the Moon and the planets on 2025/02/24 at 16h41m TT
-Enter the day of the month and
the time expressed in Terrestrial
Time ( TT )
24
ENTER^
16.41
XEQ "ECL"
>>>>
L0 = 336°319874
= R01
RDN B0 = -0°000186
=
R02
RDN R0 = 0.98981397
AU = R03
Notes:
-All the angles are expressed in decimal degrees.
-Cf paragraph 4°)
for the other results.
-If you key in a date outside the interval [ 2025/01/31 0h TT , 2025/03/04
0h TT ]
you'll get a DATA ERROR message.
-However, this program
may probably be used a few hours outside
the prescribed interval: set F25 and R/S
-But the precision is
less guaranteed and the results may even
become completely meaningless several days
before 00 or after 32, especially for the Moon.
2°) Equatorial Geocentric Coordinates
-AFTER executing "ECL", use "EQ" to get the equatorial coordinates
-The right-ascensions
are expressed in hh.mnss and the declinations
in ° ' "
-They replace the ecliptic
longitudes & latitudes ( cf the tableau
in the paragraph above )
-"EQUA" also calculates the true obliquity of the ecliptic which is returned
in Z-register
-A polynomial is also
used for that.
STACK | INPUTS | OUTPUTS |
Z | / | eps ( deg ) |
Y | / | Decl0 ( ° ' " ) |
X | / | RA0 ( hh.mnss ) |
Where RA = Right-Ascension Decl = declination eps = true obliquity of the ecliptic
Example: Calculate the apparent geocentric
equatorial coordinates of the Sun, the Moon and the planets on 2025/02/24
at 16h41m TT
After executing "ECLI"
XEQ "EQ" or simply R/S if you've just
executed "ECL"
>>>>
RA0
= 22h32m19s62 = R01
RDN
Decl 0 = -9°11'34"26
= R02
RDN
eps = 23°438625
= R31
-The distances in R03-R06-.....-R30 are unchanged.
-Cf paragraph 4°) for
the other results
3°) Azimuthal
Topocentric Coordinates
-AFTER executing "ECL" & "EQ" use "AZ" to get the horizontal coordinates
-The azimuths & heights
are expressed in ° ' "
-The heights corrected for refraction are also computed and replace the
distances in R03
R06 ..... R30
STACK | INPUTS | OUTPUTS |
Z | / | h0 ( ° ' " ) |
Y | / | h ( ° ' " ) |
X | / | Az ( ° ' " ) |
Long = longitude
( positive East )
Az = Azimuth ( clockwise from North )
|
Where
Lat = latitude
h =
height
>
of the Sun
Alt =
altitude in meters
h0 =
height ( corrected for refraction )
|
Example: Calculate the apparent topocentric
azimuthal coordinates of the Sun, the Moon
and the planets on 2025/02/24 at 16h41m
TT
at the Palomar
Observatory, Longitude = 116°51'50"4
W Latitude = 33°21'22"4
N Altitude = 1706 m
>>> After executing "ECLI" & "EQUA"
-116.51504 STO 33
which are
the topocentric coordinates of
the Sun.
>>> We also have the local sidereal time in R32 = LST
= 19h11m37s73
Notes:
-Cf paragraph 4°) for the other results.
-The difference TT - UTC
= 69.184 seconds.
-> h0 is often meaningless
when h <
0
Celestial Body | Registers | "ECL" | "EQ" | "AZ" |
SUN |
R01 R02 R03 |
336.319874 -0.000186 0.98981397 |
22.321962 -9.113426 unchanged |
122.234786 26.070013 26.085587 |
MOON |
R04 R05 R06 |
292.653706 -4.756122 0.0025441800 |
19.411987 -26.132781 unchanged |
172.182122 29.095888 29.114068 |
MERCURY |
R07 R08 R09 |
348.811510 -0.607246 1.21170963 |
23.194865 -4.590724 unchanged |
110.311187 20.005146 20.032650 |
VENUS |
R10 R11 R12 |
10.276339 5.951179 0.36563034 |
0.281922 9.321716 unchanged |
87.502067 14.133076 14.171110 |
MARS |
R13 R14 R15 |
107.017516 3.674475 0.82832364 |
7.155099 25.595931 unchanged |
-1.060799 -30.381688 -30.381688 |
JUPITER |
R16 R17 R18 |
71.961426 -0.410329 4.90758719 |
4.420393 21.485941 unchanged |
38.125961 -24.185700 -24.185700 |
SATURN |
R19 R20 R21 |
350.164782 -1.910867 10.57139781 |
23.265197 -5.391011 unchanged |
109.554673 18.131878 18.160992 |
URANUS |
R22 R23 R24 |
53.535490 -0.233629 19.73922005 |
3.245070 18.254891 unchanged |
55.134328 -15.084477 -15.084477 |
NEPTUNE |
R25 R26 R27 |
358.737332 -1.262974 30.80524763 |
23.572254 -1.393954 unchanged |
101.521478 14.280889 14.314552 |
PLUTO |
R28 R29 R30 |
302.769048 -3.358115 36.02773399 |
20.233230 -22.482662 unchanged |
160.331759 31.165059 31.182418 |
True obliquity of the ecliptic |
R31 |
/ |
23.438625 |
unchanged |
Local Sidereal Time |
R32 |
/ |
/ |
19.113773 |
-This subroutine may be used for itself to calculate the geocentric
ecliptic coordinates
-First initialize R00
before executing "V".
-With the example above,
R00 = 0.5434461806
WARNING !!!
6°) Refraction
-The apparent heights are calculated by a refraction formula
which approximates the
Pulkovo refraction tables
for standard conditions
of temperature & pressure ( T =
15°C , P = 1013.25 mbar, humidity = 0 ,
wave length = 0.59µ )
-The precision is about 0"12 if -0°32'58"0 <= h <=
90°
h0 ~ h + 1° / 62.93951 /
Tan ( h + 4°80017
/ ( h + 6°90263 / ( h +10°06891 /
( h + 31°76812 / ( h + 8°87360 ) ) )
) )
References:
[1] Aldo Vitagliano SOLEX http://www.solexorb.it/
[2] ftp://ssd.jpl.nasa.gov/pub/eph/planets/ascii/
[3] Jean Meeus
- "Astronomical Algorithms" - Willmann-Bell
- ISBN 0-943396-61-1