Overview
1°)
Ecliptic
Geocentric
Coordinates
2°) Equatorial
Geocentric
Coordinates
3°)
Azimuthal Topocentric
Coordinates
4°)
Numerical Results
-These programs
compute accurate positions of the Sun,
the Moon and the major planets.
for a short time-span of 32 days, i-e
2025/06/30 0h TT to 2025/08/01
0h TT
-The longitudes & latitudes and the right-ascensions &
declinations
are geocentric apparent
referred
to the true equator & equinox of
the date, corrected for aberration and light-time.
-The precision is about 0"01 for the longitudes & latitudes and of
the order
of 3 E-8 AU for the distances ( 5 E-11 AU
for the Moon ).
-The distances
are true distances.
-The azimuthal ( topocentric ) coordinates are also given, corrected for parallax & diurnal aberration.
-These coordinates are calculated by polynomials fitted to the JPL Ephemerides
DE441
Notes:
-Always execute "ECL" first for the ecliptic coordinates, with at least
SIZE 031
-Then "EQ" for
the equatorial coordinates ( SIZE 039 )
-And then "AZ"
for the azimuthal coordinates with at
least SIZE 041.
-The azimuths are reckoned clockwise from North.
-Longitudes
are positive East.
Data Registers
R00 = ( DOM - 16 ) / 16 ( from -1 to +1 ) Terrestrial Time ( TT )
R01 thru R30 = coordinates of the Sun, the Moon, Mercury, Venus, Mars, Jupiter, Saturn, Uranus, Neptune & Pluto.
R31 = True obliquity of the ecliptic ( deg )
R32 =
Local Sidereal Time ( hh.mnss )
• R33 = Longitude of the observer ( ° ' " )
positive East
• R34
= Latitude of the observer ( ° ' "
)
Registers
R33-R34-R35 are to be initialized before executing
"AZ"
• R35
= Observer altitude in meters
( R36 to R40: temporary data storage )
XROM | Function | Desciption |
24,00
24,01 24,02 24,03 24,04 24,05 |
S -EPH2025JUL V ECL EQ AZ |
Subroutine
that is called by "V" Section Header Ecliptic Coordinates of the Sun, the Moon & the Planets Takes day of month & time and calls "V" Ecliptic -> Equatorial Coordinates Equatorial -> Azimuthal Coordinates |
-"ECL" "EQ"
& "AZ" calculate &
store the coordinates in registers R01
thru R30 as follows:
>>> h0 is the height, corrected for refraction
Celestial Body | Registers | "ECLI" | "EQUA" | "AZIM" |
SUN |
R01 R02 R03 |
Eclipt Longitude ( deg ) Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss) Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth ( ° ' " ) height ( ° ' " ) h0 ( ° ' " ) |
MOON |
R04 R05 R06 |
Eclipt Longitude ( deg ) Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss) Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth ( ° ' " ) height ( ° ' " ) h0 ( ° ' " ) |
MERCURY |
R07 R08 R09 |
Eclipt Longitude ( deg ) Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss) Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth ( ° ' " ) height ( ° ' " ) h0 ( ° ' " ) |
VENUS |
R10 R11 R12 |
Eclipt Longitude ( deg ) Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss) Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth ( ° ' " ) height ( ° ' " ) h0 ( ° ' " ) |
MARS |
R13 R14 R15 |
Eclipt Longitude ( deg ) Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss) Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth ( ° ' " ) height ( ° ' " ) h0 ( ° ' " ) |
JUPITER |
R16 R17 R18 |
Eclipt Longitude ( deg ) Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss) Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth ( ° ' " ) height ( ° ' " ) h0 ( ° ' " ) |
SATURN |
R19 R20 R21 |
Eclipt Longitude ( deg ) Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss) Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth ( ° ' " ) height ( ° ' " ) h0 ( ° ' " ) |
URANUS |
R22 R23 R24 |
Eclipt Longitude ( deg ) Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss) Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth ( ° ' " ) height ( ° ' " ) h0 ( ° ' " ) |
NEPTUNE |
R25 R26 R27 |
Eclipt Longitude ( deg ) Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss) Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth ( ° ' " ) height ( ° ' " ) h0 ( ° ' " ) |
PLUTO |
R28 R29 R30 |
Eclipt Longitude ( deg ) Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss) Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth ( ° ' " ) height ( ° ' " ) h0 ( ° ' " ) |
1°) Ecliptic Geocentric Coordinates of the Sun, the
Moon &
the major Planets
STACK | INPUTS | OUTPUTS |
Z | / | R0 ( AU ) |
Y | Day of the Month | B0 ( deg ) |
X | HH.MNSS(TT) | L0 ( deg ) |
Where L = Longitude B = Latitude R = radius vector
Example: Calculate the apparent geocentric ecliptic coordinates of the Sun, the Moon and the planets on 2025/07/24 at 16h41m TT
-Enter the day of the month
and the time expressed in Terrestrial
Time ( TT )
24
ENTER^
16.41 XEQ "ECL"
>>>> L0
= 122°037178
= R01
RDN
B0 = 0°000058
= R02
RDN
R0 = 1.01577973 AU
= R03
Notes:
-All the angles are expressed in decimal degrees.
-Cf paragraph
4°) for the other results.
-If you key in a date outside the interval [ 2025/06/30 0h TT , 2025/08/01
0h TT
] you'll get a DATA ERROR message.
-However, this
program may probably be used a few hours
outside the prescribed interval: set
F25 and R/S
-But the precision
is less guaranteed and the results may
even become completely meaningless several
days before 00 or after 32, especially for
the Moon.
2°) Equatorial Geocentric Coordinates
-AFTER executing "ECL", use "EQ" to get the equatorial coordinates
-The right-ascensions
are expressed in hh.mnss and the
declinations in ° ' "
-They replace
the ecliptic longitudes & latitudes
( cf the tableau in the paragraph above
)
-"EQ" also calculates the true obliquity of the ecliptic which is returned
in Z-register
-A polynomial
is also used for that.
STACK | INPUTS | OUTPUTS |
Z | / | eps ( deg ) |
Y | / | Decl0 ( ° ' " ) |
X | / | RA0 ( hh.mnss ) |
Where RA = Right-Ascension Decl = declination eps = true obliquity of the ecliptic
Example: Calculate the apparent geocentric equatorial
coordinates of the Sun, the Moon and the planets on 2025/07/24 at 16h41m
TT
After executing "ECLI"
XEQ "EQ" or simply R/S
if you've just executed "ECL"
>>>>
RA0
= 8h17m11s02
= R01
RDN Decl 0
= 19°42'19"82 =
R02
RDN eps =
23°438368 = R31
-The distances in R03-R06-.....-R30 are unchanged.
-Cf paragraph 4°)
for the other results
3°)
Azimuthal Topocentric Coordinates
-AFTER executing "ECL" & "EQ" use "AZ" to get the horizontal coordinates
-The azimuths
& heights are expressed in °
' "
-The heights corrected for refraction are also computed and replace the
distances
in R03 R06 ..... R30
STACK | INPUTS | OUTPUTS |
Z | / | h0 ( ° ' " ) |
Y | / | h ( ° ' " ) |
X | / | Az ( ° ' " ) |
Long = longitude
( positive East )
Az = Azimuth ( clockwise from North
) |
Where
Lat = latitude
h =
height
>
of the Sun
Alt
= altitude in meters
h0
= height ( corrected for refraction
) |
Example: Calculate the apparent topocentric
azimuthal coordinates of the Sun, the Moon
and the planets on 2025/07/24
at 16h41m TT
at the Palomar
Observatory, Longitude =
116°51'50"4 W Latitude
= 33°21'22"4 N Altitude = 1706
m
>>> After executing "ECLI" & "EQUA"
-116.51504 STO 33
which are
the topocentric coordinates
of the Sun.
>>> We also have the local sidereal time in R32 = LST
= 5h03m01s22
Notes:
-Cf paragraph 4°) for the other results.
-The difference
TT - UTC = 69.184 seconds.
-> h0 is often meaningless
when h <
0
Celestial Body | Registers | "ECL" | "EQ" | "AZ" |
SUN |
R01 R02 R03 |
122.037178 0.000058 1.01577973 |
8.171102 19.421982 unchanged |
94.565336 44.544065 44.553782 |
MOON |
R04 R05 R06 |
120.686029 3.843053 0.00251267899 |
8.151223 23.450990 unchanged |
89.594824 46.255960 46.265381 |
MERCURY |
R07 R08 R09 |
133.892729 -4.484909 0.59723933 |
9.000926 12.212915 unchanged |
96.293577 32.180862 32.193858 |
VENUS |
R10 R11 R12 |
82.553383 -1.865896 1.11233706 |
5.280111 21.215774 unchanged |
153.391093 76.474153 76.475489 |
MARS |
R13 R14 R15 |
171.830727 0.705763 2.07698507 |
11.310617 3.531926 unchanged |
82.524635 -3.421154 -3.421154 |
JUPITER |
R16 R17 R18 |
100.130405 -0.092679 6.08208853 |
6.440297 22.573337 unchanged |
108.344745 65.304616 65.311212 |
SATURN |
R19 R20 R21 |
1.823047 -2.343144 9.01675585 |
0.102506 -1.252980 unchanged |
-100.393687 13.120087 13.155819 |
URANUS |
R22 R23 R24 |
60.689602 -0.208912 19.98487368 |
3.542008 20.052347 unchanged |
-126.402069 69.463322 69.465422 |
NEPTUNE |
R25 R26 R27 |
2.071842 -1.343553 29.36864796 |
0.094443 -0.243200 unchanged |
-99.420836 13.382241 13.421217 |
PLUTO |
R28 R29 R30 |
302.603522 -3.753587 34.29759001 |
20.231446 -23.134905 unchanged |
-90.243780 -45.123202 -45.123202 |
True obliquity of the ecliptic |
R31 |
/ |
23.438368 |
unchanged |
Local Sidereal Time |
R32 |
/ |
/ |
5.030122 |
-This subroutine may be used for itself to calculate the geocentric
ecliptic coordinates
-First initialize
R00 before executing "V".
-With the
example above, R00 = 0.5434461806
WARNING !!!
6°) Refraction
-The apparent heights are calculated by a refraction
formula which approximates
the Pulkovo refraction tables
for standard
conditions of temperature & pressure
( T = 15°C , P = 1013.25 mbar, humidity
= 0 , wave length = 0.59µ )
-The precision is about 0"12 if -0°32'58"0 <= h <=
90°
h0 ~ h + 1° / 62.93951 /
Tan ( h + 4°80017
/ ( h + 6°90263 / ( h +10°06891
/ ( h + 31°76812 / ( h + 8°87360
) ) ) ) )
References:
[1] Aldo Vitagliano SOLEX http://www.solexorb.it/
[2] ftp://ssd.jpl.nasa.gov/pub/eph/planets/ascii/
[3] Jean
Meeus - "Astronomical Algorithms" -
Willmann-Bell - ISBN 0-943396-61-1