Overview
1°)
Ecliptic
Geocentric
Coordinates
2°)
Equatorial
Geocentric Coordinates
3°)
Azimuthal Topocentric
Coordinates
4°) Numerical
Results
-These programs
compute accurate positions of the Sun,
the Moon and the major planets.
for
a short time-span of 32 days, i-e
2025/05/31 0h TT to 2025/07/02 0h
TT
-The longitudes & latitudes and the right-ascensions &
declinations
are geocentric apparent
referred
to the true equator & equinox of
the date, corrected for aberration and light-time.
-The precision is about 0"01 for the longitudes & latitudes and of
the order
of 3 E-8 AU for the distances ( 5 E-11 AU
for the Moon ).
-The distances
are true distances.
-The azimuthal ( topocentric ) coordinates are also given, corrected for parallax & diurnal aberration.
-These coordinates are calculated by polynomials fitted to the JPL Ephemerides
DE441
Notes:
-Always execute "ECL" first for the ecliptic coordinates, with at least
SIZE 031
-Then "EQ" for
the equatorial coordinates ( SIZE 039 )
-And then "AZ"
for the azimuthal coordinates with at
least SIZE 041.
-The azimuths are reckoned clockwise from North.
-Longitudes are
positive East.
Data Registers
R00 = ( DOM - 16 ) / 16 ( from -1 to +1 ) Terrestrial Time ( TT )
R01 thru R30 = coordinates of the Sun, the Moon, Mercury, Venus, Mars, Jupiter, Saturn, Uranus, Neptune & Pluto.
R31 = True obliquity of the ecliptic ( deg )
R32 = Local
Sidereal Time ( hh.mnss )
• R33 = Longitude of the observer ( ° ' " )
positive East
• R34 =
Latitude of the observer ( ° ' " )
Registers
R33-R34-R35 are to be initialized before executing
"AZ"
• R35 =
Observer altitude in meters
( R36 to R40: temporary data storage )
XROM | Function | Desciption |
24,00
24,01 24,02 24,03 24,04 24,05 |
S -EPH2025JUN V ECL EQ AZ |
Subroutine
that is called by "V" Section Header Ecliptic Coordinates of the Sun, the Moon & the Planets Takes day of month & time and calls "V" Ecliptic -> Equatorial Coordinates Equatorial -> Azimuthal Coordinates |
-"ECL" "EQ"
& "AZ" calculate &
store the coordinates in registers R01 thru
R30 as follows:
>>> h0 is the height, corrected for refraction
Celestial Body | Registers | "ECLI" | "EQUA" | "AZIM" |
SUN |
R01 R02 R03 |
Eclipt Longitude ( deg ) Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss) Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth ( ° ' " ) height ( ° ' " ) h0 ( ° ' " ) |
MOON |
R04 R05 R06 |
Eclipt Longitude ( deg ) Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss) Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth ( ° ' " ) height ( ° ' " ) h0 ( ° ' " ) |
MERCURY |
R07 R08 R09 |
Eclipt Longitude ( deg ) Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss) Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth ( ° ' " ) height ( ° ' " ) h0 ( ° ' " ) |
VENUS |
R10 R11 R12 |
Eclipt Longitude ( deg ) Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss) Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth ( ° ' " ) height ( ° ' " ) h0 ( ° ' " ) |
MARS |
R13 R14 R15 |
Eclipt Longitude ( deg ) Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss) Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth ( ° ' " ) height ( ° ' " ) h0 ( ° ' " ) |
JUPITER |
R16 R17 R18 |
Eclipt Longitude ( deg ) Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss) Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth ( ° ' " ) height ( ° ' " ) h0 ( ° ' " ) |
SATURN |
R19 R20 R21 |
Eclipt Longitude ( deg ) Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss) Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth ( ° ' " ) height ( ° ' " ) h0 ( ° ' " ) |
URANUS |
R22 R23 R24 |
Eclipt Longitude ( deg ) Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss) Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth ( ° ' " ) height ( ° ' " ) h0 ( ° ' " ) |
NEPTUNE |
R25 R26 R27 |
Eclipt Longitude ( deg ) Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss) Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth ( ° ' " ) height ( ° ' " ) h0 ( ° ' " ) |
PLUTO |
R28 R29 R30 |
Eclipt Longitude ( deg ) Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss) Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth ( ° ' " ) height ( ° ' " ) h0 ( ° ' " ) |
1°) Ecliptic Geocentric Coordinates of the Sun, the
Moon & the
major Planets
STACK | INPUTS | OUTPUTS |
Z | / | R0 ( AU ) |
Y | Day of the Month | B0 ( deg ) |
X | HH.MNSS(TT) | L0 ( deg ) |
Where L = Longitude B = Latitude R = radius vector
Example: Calculate the apparent geocentric ecliptic coordinates of the Sun, the Moon and the planets on 2025/06/24 at 16h41m TT
-Enter the day of the month
and the time expressed in Terrestrial
Time ( TT )
24
ENTER^
16.41
XEQ "ECL"
>>>>
L0 = 93°418766
= R01
RDN B0
= 0°000063
= R02
RDN R0
= 1.01642501 AU = R03
Notes:
-All the angles are expressed in decimal degrees.
-Cf paragraph
4°) for the other results.
-If you key in a date outside the interval [ 2025/05/31 0h TT , 2025/07/02
0h TT
] you'll get a DATA ERROR message.
-However, this
program may probably be used a few hours
outside the prescribed interval: set
F25 and R/S
-But the precision
is less guaranteed and the results may
even become completely meaningless several
days before 00 or after 32, especially for the
Moon.
2°) Equatorial Geocentric Coordinates
-AFTER executing "ECL", use "EQ" to get the equatorial coordinates
-The right-ascensions
are expressed in hh.mnss and the
declinations in ° ' "
-They replace
the ecliptic longitudes & latitudes
( cf the tableau in the paragraph above
)
-"EQ" also calculates the true obliquity of the ecliptic which is returned
in Z-register
-A polynomial
is also used for that.
STACK | INPUTS | OUTPUTS |
Z | / | eps ( deg ) |
Y | / | Decl0 ( ° ' " ) |
X | / | RA0 ( hh.mnss ) |
Where RA = Right-Ascension Decl = declination eps = true obliquity of the ecliptic
Example: Calculate the apparent geocentric equatorial
coordinates of the Sun, the Moon and the planets on 2025/06/24 at 16h41m
TT
After executing "ECLI"
XEQ "EQ" or simply R/S
if you've just executed "ECL"
>>>>
RA0
= 6h14m54s09
= R01
RDN
Decl 0 = 23°23'38"93
= R02
RDN eps =
23°438284 = R31
-The distances in R03-R06-.....-R30 are unchanged.
-Cf paragraph 4°)
for the other results
3°)
Azimuthal Topocentric Coordinates
-AFTER executing "ECL" & "EQ" use "AZ" to get the horizontal coordinates
-The azimuths
& heights are expressed in °
' "
-The heights corrected for refraction are also computed and replace the
distances
in R03 R06 ..... R30
STACK | INPUTS | OUTPUTS |
Z | / | h0 ( ° ' " ) |
Y | / | h ( ° ' " ) |
X | / | Az ( ° ' " ) |
Long = longitude
( positive East )
Az = Azimuth ( clockwise from North )
|
Where
Lat = latitude
h =
height
>
of the Sun
Alt =
altitude in meters
h0
= height ( corrected for refraction
) |
Example: Calculate the apparent topocentric
azimuthal coordinates of the Sun, the Moon
and the planets on 2025/06/24
at 16h41m TT
at the Palomar
Observatory, Longitude =
116°51'50"4 W Latitude
= 33°21'22"4 N Altitude = 1706
m
>>> After executing "ECLI" & "EQUA"
-116.51504 STO 33
which are
the topocentric coordinates
of the Sun.
>>> We also have the local sidereal time in R32 = LST
= 3h04m44s42
Notes:
-Cf paragraph 4°) for the other results.
-The difference TT
- UTC = 69.184 seconds.
-> h0 is often meaningless
when h <
0
Celestial Body | Registers | "ECL" | "EQ" | "AZ" |
SUN |
R01 R02 R03 |
93.418766 0.000063 1.01642501 |
6.145409 23.233893 unchanged |
90.454854 47.223274 47.232519 |
MOON |
R04 R05 R06 |
83.234114 5.012007 0.00243847647 |
5.292212 28.161423 unchanged |
89.290371 58.094800 58.102340 |
MERCURY |
R07 R08 R09 |
117.145812 1.463926 0.99120983 |
7.580124 22.095309 unchanged |
79.125920 25.255313 25.275241 |
VENUS |
R10 R11 R12 |
49.170952 -2.687197 0.88768021 |
3.095421 14.554518 unchanged |
176.033212 71.320614 71.322516 |
MARS |
R13 R14 R15 |
154.144552 1.101301 1.88002692 |
10.254476 11.005415 unchanged |
69.230799 -10.175091 -10.175091 |
JUPITER |
R16 R17 R18 |
93.377080 -0.139332 6.15923304 |
6.144227 23.152113 unchanged |
90.583705 47.213885 47.223133 |
SATURN |
R19 R20 R21 |
1.648704 -2.207579 9.49170779 |
0.093374 -1.221145 unchanged |
-121.034444 36.074296 36.090094 |
URANUS |
R22 R23 R24 |
59.397089 -0.209389 20.35755314 |
3.485755 19.485835 unchanged |
141.131282 73.153860 73.155573 |
NEPTUNE |
R25 R26 R27 |
2.147070 -1.318170 29.84980339 |
0.095857 -0.212055 unchanged |
-120.144198 36.542989 36.554569 |
PLUTO |
R28 R29 R30 |
303.269541 -3.696489 34.40714721 |
20.255953 -23.010638 unchanged |
-104.541218 -20.083431 -20.083431 |
True obliquity of the ecliptic |
R31 |
/ |
23.438284 |
unchanged |
Local Sidereal Time |
R32 |
/ |
/ |
3.044442 |
-This subroutine may be used for itself to calculate the geocentric
ecliptic coordinates
-First initialize
R00 before executing "V".
-With the
example above, R00 = 0.5434461806
WARNING !!!
6°) Refraction
-The apparent heights are calculated by a refraction
formula which approximates
the Pulkovo refraction tables
for standard
conditions of temperature & pressure
( T = 15°C , P = 1013.25 mbar, humidity
= 0 , wave length = 0.59µ )
-The precision is about 0"12 if -0°32'58"0 <= h <=
90°
h0 ~ h + 1° / 62.93951 /
Tan ( h + 4°80017
/ ( h + 6°90263 / ( h +10°06891
/ ( h + 31°76812 / ( h + 8°87360
) ) ) ) )
References:
[1] Aldo Vitagliano SOLEX http://www.solexorb.it/
[2] ftp://ssd.jpl.nasa.gov/pub/eph/planets/ascii/
[3] Jean
Meeus - "Astronomical Algorithms" -
Willmann-Bell - ISBN 0-943396-61-1