Ephemerides 2025 June Module


 Overview
 

1°)  Ecliptic Geocentric Coordinates
2°)  Equatorial Geocentric Coordinates
3°)  Azimuthal Topocentric Coordinates
4°)  Numerical Results


-These programs compute accurate positions of the Sun, the Moon and the major planets.
    for a short time-span of 32 days, i-e  2025/05/31 0h TT to 2025/07/02  0h TT

-The longitudes & latitudes and the right-ascensions & declinations are geocentric apparent
  referred to the true equator & equinox of the date, corrected for aberration and light-time.

-The precision is about 0"01 for the longitudes & latitudes and of the order of 3 E-8 AU for the distances ( 5 E-11 AU for the Moon ).
-The distances are true distances.

-The azimuthal ( topocentric ) coordinates are also given, corrected for parallax & diurnal aberration.

-These coordinates are calculated by polynomials fitted to the JPL Ephemerides DE441
 

Notes:

-Always execute "ECL" first for the ecliptic coordinates, with at least SIZE 031
-Then "EQ" for the equatorial coordinates ( SIZE 039 )
-And then "AZ" for the azimuthal coordinates with at least SIZE 041.

-The azimuths are reckoned clockwise from North.
-Longitudes are positive East.
 

Data Registers

  R00 = ( DOM - 16 ) / 16 ( from -1  to +1 )  Terrestrial Time ( TT )

  R01 thru R30 = coordinates of the Sun, the Moon, Mercury, Venus, Mars, Jupiter, Saturn, Uranus, Neptune & Pluto.

  R31 = True obliquity of the ecliptic  ( deg )
  R32 = Local Sidereal Time  ( hh.mnss )

 • R33 = Longitude of the observer ( ° ' " )   positive East
 • R34 = Latitude of the observer ( ° ' " )                                                         Registers R33-R34-R35 are to be initialized before executing "AZ"
 • R35 = Observer altitude in meters

 ( R36 to R40:  temporary data storage )
 
 

XROM  Function  Desciption
 24,00
 24,01
 24,02
 24,03
 24,04
 24,05
 S
-EPH2025JUN
 V
 ECL
 EQ
 AZ
 Subroutine that is called by "V"
 Section Header
 Ecliptic Coordinates of the Sun, the Moon & the Planets

 Takes day of month & time and calls "V"
 Ecliptic -> Equatorial Coordinates
 Equatorial -> Azimuthal Coordinates
  


-"ECL"  "EQ"  &  "AZ"  calculate & store the coordinates in registers R01 thru R30 as follows:

>>>   h0 is the height, corrected for refraction
 
 

      Celestial Body    Registers                "ECLI"                 "EQUA"          "AZIM"
            SUN       R01
      R02
      R03
    Eclipt Longitude ( deg )
    Eclipt  Latitude ( deg )
    Dist from Earth ( AU )
    Right-Ascens(hh;mnss)
      Declination ( ° ' " )
    Dist from Earth ( AU )
   Azimuth ( ° ' " )
     height  ( ° ' " )
        h0  ( ° ' " )
          MOON       R04
      R05
      R06
    Eclipt Longitude ( deg )
    Eclipt  Latitude ( deg )
    Dist from Earth ( AU )
    Right-Ascens(hh;mnss)
      Declination ( ° ' " )
    Dist from Earth ( AU )
    Azimuth ( ° ' " )
     height  ( ° ' " )
        h0  ( ° ' " )
       MERCURY       R07
      R08
      R09
    Eclipt Longitude ( deg )
    Eclipt  Latitude ( deg )
    Dist from Earth ( AU )
    Right-Ascens(hh;mnss)
      Declination ( ° ' " )
    Dist from Earth ( AU )
    Azimuth ( ° ' " )
     height  ( ° ' " )
        h0  ( ° ' " )
         VENUS       R10
      R11
      R12
    Eclipt Longitude ( deg )
    Eclipt  Latitude ( deg )
    Dist from Earth ( AU )
   Right-Ascens(hh;mnss)
     Declination ( ° ' " )
   Dist from Earth ( AU )
    Azimuth ( ° ' " )
     height  ( ° ' " )
        h0  ( ° ' " )
          MARS       R13
      R14
      R15
    Eclipt Longitude ( deg )
    Eclipt  Latitude ( deg )
    Dist from Earth ( AU )
    Right-Ascens(hh;mnss)
      Declination ( ° ' " )
   Dist from Earth ( AU )
    Azimuth ( ° ' " )
     height  ( ° ' " )
        h0  ( ° ' " )
        JUPITER       R16
      R17
      R18
    Eclipt Longitude ( deg )
    Eclipt  Latitude ( deg )
    Dist from Earth ( AU )
    Right-Ascens(hh;mnss)
      Declination ( ° ' " )
    Dist from Earth ( AU )
    Azimuth ( ° ' " )
     height  ( ° ' " )
        h0  ( ° ' " )
        SATURN       R19
      R20
      R21
    Eclipt Longitude ( deg )
    Eclipt  Latitude ( deg )
    Dist from Earth ( AU )
    Right-Ascens(hh;mnss)
      Declination ( ° ' " )
    Dist from Earth ( AU )
    Azimuth ( ° ' " )
     height  ( ° ' " )
        h0  ( ° ' " )
        URANUS       R22
      R23
      R24
    Eclipt Longitude ( deg )
    Eclipt  Latitude ( deg )
    Dist from Earth ( AU )
    Right-Ascens(hh;mnss)
      Declination ( ° ' " )
    Dist from Earth ( AU )
    Azimuth ( ° ' " )
     height  ( ° ' " )
        h0  ( ° ' " )
       NEPTUNE       R25
      R26
      R27
    Eclipt Longitude ( deg )
    Eclipt  Latitude ( deg )
    Dist from Earth ( AU )
    Right-Ascens(hh;mnss)
      Declination ( ° ' " )
    Dist from Earth ( AU )
    Azimuth ( ° ' " )
     height  ( ° ' " )
        h0  ( ° ' " )
         PLUTO       R28
      R29
      R30
    Eclipt Longitude ( deg )
    Eclipt  Latitude ( deg )
    Dist from Earth ( AU )
    Right-Ascens(hh;mnss)
      Declination ( ° ' " )
    Dist from Earth ( AU )
    Azimuth ( ° ' " )
     height  ( ° ' " )
        h0  ( ° ' " )

 

1°) Ecliptic Geocentric Coordinates of the Sun, the Moon & the major Planets


            STACK            INPUTS      OUTPUTS
                 Z                 /       R0  ( AU )
                 Y       Day of the Month       B0  ( deg )
                 X        HH.MNSS(TT)       L0  ( deg )

    Where  L = Longitude   B = Latitude   R = radius vector

Example:    Calculate the apparent geocentric ecliptic coordinates of the Sun, the Moon and the planets on 2025/06/24 at 16h41m  TT


-Enter the day of the month and the time expressed in  Terrestrial Time ( TT )

       24       ENTER^
    16.41     XEQ "ECL"            >>>>     L0 =   93°418766          = R01
                                                RDN      B0 =    0°000063           = R02
                                                RDN      R0 =  1.01642501  AU   = R03

Notes:

-All the angles are expressed in decimal degrees.
-Cf  paragraph 4°) for the other results.

-If you key in a date outside the interval [ 2025/05/31 0h TT , 2025/07/02   0h TT ]  you'll get a DATA ERROR message.
-However, this program may probably be used a few hours outside the prescribed interval: set F25 and R/S
-But the precision is less guaranteed and the results may even become completely meaningless several days before 00 or after 32, especially for the Moon.
 

2°) Equatorial Geocentric Coordinates
 

-AFTER executing "ECL", use "EQ" to get the equatorial coordinates
-The right-ascensions are expressed in hh.mnss and the declinations in ° ' "
-They replace the ecliptic longitudes & latitudes ( cf the tableau in the paragraph above )

-"EQ" also calculates the true obliquity of the ecliptic which is returned in Z-register
-A polynomial is also used for that.
 
 

           STACK          INPUTS        OUTPUTS
               Z               /        eps   ( deg )
               Y               /       Decl0 ( ° ' " )
               X               /     RA0  ( hh.mnss )

  Where  RA = Right-Ascension   Decl = declination  eps = true obliquity of the ecliptic

Example:    Calculate the apparent geocentric equatorial coordinates of the Sun, the Moon and the planets on 2025/06/24 at 16h41m  TT

After executing "ECLI"


       XEQ "EQ"  or simply R/S if you've just executed "ECL"

                           >>>>     RA0 =      6h14m54s09     = R01              
                            RDN    Decl 0 =    23°23'38"93      = R02
                            RDN      eps  =     23°438284        = R31
 

-The distances in R03-R06-.....-R30  are unchanged.  
-Cf paragraph 4°) for the other results 


3°) Azimuthal Topocentric Coordinates
 

-AFTER executing "ECL" & "EQ" use "AZ" to get the horizontal coordinates
-The azimuths & heights are expressed in ° ' "

-The heights corrected for refraction are also computed and replace the distances in R03  R06 ..... R30
 
 

      STACK        INPUTS      OUTPUTS
           Z             /       h0  ( ° ' " )
           Y             /       h  ( ° ' " )
           X             /      Az  ( ° ' " )

                  Long = longitude ( positive East )       Az = Azimuth ( clockwise from North )    |
  Where       Lat  =  latitude                                   h  =  height                                             >       of the Sun
                   Alt  =  altitude in meters                   h0 =  height ( corrected for refraction )    |

Example:    Calculate the apparent topocentric azimuthal coordinates of the Sun, the Moon and the planets on 2025/06/24  at 16h41m  TT
                    at the Palomar Observatory,   Longitude = 116°51'50"4 W   Latitude = 33°21'22"4 N   Altitude = 1706 m
 

>>>  After executing "ECLI" & "EQUA"


    -116.51504   STO 33
       33.21224   STO 34
          1706       STO 35    R/S         >>>>      Az   =  90°45'48"54    = R01          
                                                        RDN         h   =  47°22'32"74    = R02
                                                        RDN         h0  =  47°23'25"19    = R03

         which are the topocentric coordinates of the Sun.
 

>>>  We also have the local sidereal time in R32 = LST = 3h04m44s42
 

Notes:

-Cf paragraph 4°) for the other results.
-The difference TT - UTC = 69.184 seconds. 

->  h0   is often meaningless when  h <   0
 

4°) Numerical Results

-Longitudes & latitudes are expressed in decimal degrees   and the distances in Astronomical Units ( "ECL" )
-Right-ascensions in hh.mnss & declinations in ° ' "  ( "EQ"   )
-Azimuths & heights in ° ' "  too   ( "AZ" )
  
-Obliquity of the ecliptic  in decimal degrees ( R31 )
-Local sidereal time in hh.mnss  ( R32 )



           Celestial Body    Registers          "ECL"          "EQ"         "AZ"
                 SUN       R01
      R02
      R03
     93.418766
      0.000063
    1.01642501
      6.145409
     23.233893
     unchanged
    90.454854
    47.223274
    47.232519
               MOON       R04
      R05
      R06
     83.234114
      5.012007
  0.00243847647
     5.292212
    28.161423
     unchanged
    89.290371
    58.094800
    58.102340
            MERCURY       R07
      R08
      R09
    117.145812
      1.463926
    0.99120983
     7.580124
    22.095309
     unchanged
    79.125920
    25.255313
    25.275241
              VENUS       R10
      R11
      R12
     49.170952
     -2.687197
    0.88768021
     3.095421
    14.554518
     unchanged
   176.033212
    71.320614
    71.322516
              MARS       R13
      R14
      R15
    154.144552
      1.101301
    1.88002692
     10.254476
     11.005415
     unchanged
    69.230799
   -10.175091
   -10.175091
             JUPITER       R16
      R17
      R18
     93.377080
     -0.139332
    6.15923304
      6.144227
     23.152113
     unchanged
    90.583705
    47.213885
    47.223133
             SATURN       R19
      R20
      R21
      1.648704
     -2.207579
    9.49170779
      0.093374
     -1.221145
     unchanged
  -121.034444
    36.074296
    36.090094
            URANUS       R22
      R23
      R24
     59.397089
     -0.209389
    20.35755314
      3.485755
     19.485835
     unchanged 
   141.131282
    73.153860
    73.155573
            NEPTUNE       R25
      R26
      R27
      2.147070
     -1.318170
    29.84980339
      0.095857
     -0.212055
     unchanged
  -120.144198
    36.542989
    36.554569
              PLUTO       R28
      R29
      R30
    303.269541
     -3.696489
    34.40714721
     20.255953
    -23.010638
     unchanged
  -104.541218
   -20.083431
   -20.083431
  True obliquity of the ecliptic       R31
           /
    23.438284
    unchanged
      Local Sidereal Time
      R32
           /
             /
     3.044442

 
 
5°) V

 

-This subroutine may be used for itself to calculate the geocentric ecliptic coordinates
-First initialize R00 before executing "V".
 
 -With the example above,  R00 = 0.5434461806


WARNING !!!


-Unlike "ECL" , this routine does not check if R00 is between -1 and +1

 

6°)  Refraction


-The apparent heights are calculated by a refraction formula which approximates the Pulkovo refraction tables
  for standard conditions of temperature & pressure ( T = 15°C , P = 1013.25 mbar, humidity = 0 , wave length = 0.59µ )

-The precision is about 0"12 if  -0°32'58"0 <= h <=  90°
 

    h0  ~  h + 1° / 62.93951 / Tan ( h + 4°80017 / ( h + 6°90263 / ( h +10°06891 / ( h + 31°76812 / ( h + 8°87360 ) ) ) ) ) 



References:

[1]  Aldo Vitagliano SOLEX  http://www.solexorb.it/
[2]  ftp://ssd.jpl.nasa.gov/pub/eph/planets/ascii/
[3]  Jean Meeus - "Astronomical Algorithms" - Willmann-Bell  -  ISBN 0-943396-61-1