Overview
1°)
Ecliptic
Geocentric Coordinates
2°)
Equatorial Geocentric
Coordinates
3°)
Azimuthal Topocentric
Coordinates
4°) Numerical Results
-These programs compute accurate positions
of the Sun, the Moon and the major planets
( this month, not enough room for Pluto )
for a short time-span
of 32 days, i-e 2025/10/31 0h TT to 2025/12/02
0h TT
-The longitudes & latitudes and the right-ascensions &
declinations are geocentric
apparent
referred to the true equator
& equinox of the date, corrected for aberration
and light-time.
-The precision is about 0"01 for the longitudes & latitudes and of
the order of 3 E-8 AU for
the distances ( 5 E-11 AU for the Moon ).
-The distances are true distances.
-The azimuthal ( topocentric ) coordinates are also given, corrected for parallax & diurnal aberration.
-These coordinates are calculated by polynomials fitted to the JPL Ephemerides
DE441
Notes:
-Always execute "ECL" first for the ecliptic coordinates, with at least
SIZE 031
-Then "EQ" for the equatorial coordinates
( SIZE 039 )
-And then "AZ" for the azimuthal coordinates
with at least SIZE 041.
-The azimuths are reckoned clockwise from North.
-Longitudes are positive East.
Data Registers
R00 = ( DOM - 16 ) / 16 ( from -1 to +1 ) Terrestrial Time ( TT )
R01 thru R30 = coordinates of the Sun, the Moon, Mercury, Venus, Mars, Jupiter, Saturn, Uranus, Neptune & Pluto.
R31 = True obliquity of the ecliptic ( deg )
R32 = Local Sidereal Time
( hh.mnss )
• R33 = Longitude of the observer ( ° ' " )
positive East
• R34 = Latitude of the observer
( ° ' " )
Registers
R33-R34-R35 are to be initialized before executing "AZ"
• R35 = Observer altitude in
meters
( R36 to R40: temporary data storage )
| XROM | Function | Desciption |
| 24,00 24,01 24,02 24,03 24,04 24,05 |
S -EPH2025NOV V ECL EQ AZ |
Subroutine that is called by
"V" Section Header Ecliptic Coordinates of the Sun, the Moon & the Planets Takes day of month & time and calls "V" Ecliptic -> Equatorial Coordinates Equatorial -> Azimuthal Coordinates |
-"ECL" "EQ" &
"AZ" calculate & store the coordinates
in registers R01 thru R27 as follows:
>>> h0 is the height, corrected for refraction
| Celestial Body | Registers | "ECL" | "EQ" | "AZ" |
| SUN |
R01 R02 R03 |
Eclipt
Longitude ( deg ) Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss)
Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth (
° ' " ) height ( ° ' " ) h0 ( ° ' " ) |
| MOON |
R04 R05 R06 |
Eclipt
Longitude ( deg ) Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss)
Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth
( ° ' " ) height ( ° ' " ) h0 ( ° ' " ) |
| MERCURY |
R07 R08 R09 |
Eclipt
Longitude ( deg ) Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss)
Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth
( ° ' " ) height ( ° ' " ) h0 ( ° ' " ) |
| VENUS |
R10 R11 R12 |
Eclipt
Longitude ( deg ) Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss)
Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth
( ° ' " ) height ( ° ' " ) h0 ( ° ' " ) |
| MARS |
R13 R14 R15 |
Eclipt
Longitude ( deg ) Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss)
Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth
( ° ' " ) height ( ° ' " ) h0 ( ° ' " ) |
| JUPITER |
R16 R17 R18 |
Eclipt
Longitude ( deg ) Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss)
Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth
( ° ' " ) height ( ° ' " ) h0 ( ° ' " ) |
| SATURN |
R19 R20 R21 |
Eclipt
Longitude ( deg ) Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss)
Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth
( ° ' " ) height ( ° ' " ) h0 ( ° ' " ) |
| URANUS |
R22 R23 R24 |
Eclipt
Longitude ( deg ) Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss)
Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth
( ° ' " ) height ( ° ' " ) h0 ( ° ' " ) |
| NEPTUNE |
R25 R26 R27 |
Eclipt
Longitude ( deg ) Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss)
Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth
( ° ' " ) height ( ° ' " ) h0 ( ° ' " ) |
1°) Ecliptic Geocentric Coordinates of the Sun, the
Moon & the major Planets
| STACK | INPUTS | OUTPUTS |
| Z | / | R0 ( AU ) |
| Y | Day of the Month | B0 ( deg ) |
| X | HH.MNSS(TT) | L0 ( deg ) |
Where L = Longitude B = Latitude R = radius vector
Example: Calculate the apparent geocentric ecliptic coordinates of the Sun, the Moon and the planets on 2025/11/24 at 16h41m TT
-Enter the day of the month and the time expressed
in Terrestrial Time ( TT )
24
ENTER^
16.41
XEQ "ECL"
>>>> L0
= 242.656682 =
R01
RDN
B0 = -0°000098
= R02
RDN
R0 = 0.98727700 AU = R03
Notes:
-All the angles are expressed in decimal degrees.
-Cf paragraph 4°) for the
other results.
-If you key in a date outside the interval [ 2025/10/31 0h TT , 2025/12/02
0h TT ] you'll
get a DATA ERROR message.
-However, this program may probably
be used a few hours outside the prescribed
interval: set F25 and R/S
-But the precision is less guaranteed
and the results may even become completely
meaningless several days before 00 or after 32, especially
for the Moon.
2°) Equatorial Geocentric Coordinates
-AFTER executing "ECL", use "EQ" to get the equatorial coordinates
-The right-ascensions are expressed
in hh.mnss and the declinations in ° '
"
-They replace the ecliptic longitudes
& latitudes ( cf the tableau in the
paragraph above )
-"EQUA" also calculates the true obliquity of the ecliptic which is returned
in Z-register
-A polynomial is also used for that.
| STACK | INPUTS | OUTPUTS |
| Z | / | eps ( deg ) |
| Y | / | Decl0 ( ° ' " ) |
| X | / | RA0 ( hh.mnss ) |
Where RA = Right-Ascension Decl = declination eps = true obliquity of the ecliptic
Example: Calculate the apparent geocentric equatorial
coordinates of the Sun, the Moon and the planets on 2025/11/24 at 16h41m
TT
After executing "ECLI"
XEQ "EQ"
or simply R/S if you've just executed "ECL"
>>>>
RA0 =
16h02m22s66 = R01
RDN Decl 0
= -20°41'25"90 = R02
RDN eps
= 23°438237
= R31
-The distances in R03-R06-.....-R27 are unchanged.
-Cf paragraph 4°) for the other results
3°) Azimuthal Topocentric
Coordinates
-AFTER executing "ECL" & "EQ" use "AZ" to get the horizontal coordinates
-The azimuths & heights are expressed
in ° ' "
-The heights corrected for refraction are also computed and replace the
distances in R03 R06
..... R27
| STACK | INPUTS | OUTPUTS |
| Z | / | h0 ( ° ' " ) |
| Y | / | h ( ° ' " ) |
| X | / | Az ( ° ' " ) |
Long = longitude ( positive
East )
Az = Azimuth ( clockwise from North )
|
Where
Lat = latitude
h = height
>
of the Sun
Alt = altitude
in meters
h0 = height
( corrected for refraction )
|
Example: Calculate the apparent topocentric
azimuthal coordinates of the Sun, the Moon and the
planets on 2025/11/24 at 16h41m TT
at the Palomar Observatory,
Longitude = 116°51'50"4 W
Latitude = 33°21'22"4 N Altitude
= 1706 m
>>> After executing "ECLI" & "EQUA"
-116.51504 STO 33
which are
the topocentric coordinates of the Sun.
>>> We also have the local sidereal time in R32 = LST
= 13h07m57s51
Notes:
-Cf paragraph 4°) for the other results.
-The difference TT - UTC = 69.184
seconds.
-> h0 is often meaningless
when h < 0
| Celestial Body | Registers | "ECL" | "EQ" | "AZ" |
| SUN |
R01 R02 R03 |
242.656682 -0.000098 0.98727700 |
16.022266 -20.412590 unchanged |
135.583728 21.483199 21.505338 |
| MOON |
R04 R05 R06 |
291.022629 -4.036329 0.0026709262 |
19.333986 -25.465448 unchanged |
108.590348 -19.433119 -19.433119 |
| MERCURY |
R07 R08 R09 |
233.102221 1.810284 0.71424372 |
15.244406 -16.474230 unchanged |
141.305317 30.095404 30.113183 |
| VENUS |
R10 R11 R12 |
232.271659 0.922417 1.67157580 |
15.202603 -17.264109 unchanged |
142.551508 30.100544 30.114322 |
| MARS |
R13 R14 R15 |
254.635821 -0.610126 2.42332152 |
16.530052 -23.093439 unchanged |
128.330165 12.081281 12.123048 |
| JUPITER |
R16 R17 R18 |
114.870413 0.143082 4.53442357 |
7.471980 21.174038 unchanged |
-76.462534 19.260049 19.284045 |
| SATURN |
R19 R20 R21 |
355.168294 -2.390303 9.10872485 |
23.460370 -4.065000 unchanged |
37.325908 -55.044161 -55.044161 |
| URANUS |
R22 R23 R24 |
59.312701 -0.206124 18.51105119 |
3.483635 19.480422 unchanged |
-41.485621 -24.283781 -24.283781 |
| NEPTUNE |
R25 R26 R27 |
359.443177 -1.356344 29.42805916 |
0.000690 -1.275721 unchanged |
30.020790 -54.215297 -54.215297 |
| True obliquity of the ecliptic |
R31 |
/ |
23.438237 |
unchanged |
|
Local Sidereal Time |
R32 |
/ |
/ |
13.075751 |
-This subroutine may be used for itself to calculate the geocentric
ecliptic coordinates
-First initialize R00 before executing
"V".
-With the example above, R00 =
0.5434461806
WARNING !!!
6°) Refraction
-The apparent heights are calculated by a refraction formula
which approximates
the Pulkovo refraction tables
for standard conditions of temperature
& pressure ( T = 15°C ,
P = 1013.25 mbar, humidity = 0 , wave length
= 0.59µ )
-The precision is about 0"12 if -0°32'58"0 <= h <=
90°
References:
[1] Aldo Vitagliano SOLEX http://www.solexorb.it/
[2] ftp://ssd.jpl.nasa.gov/pub/eph/planets/ascii/
[3] Jean Meeus - "Astronomical
Algorithms" - Willmann-Bell -
ISBN 0-943396-61-1