Overview
1°)
Ecliptic
Geocentric
Coordinates
2°)
Equatorial Geocentric
Coordinates
3°)
Azimuthal Topocentric
Coordinates
4°)
Numerical Results
-These
programs compute accurate positions of
the Sun, the Moon and the major planets.
for a short time-span of 32 days,
i-e 2025/12/31 0h TT to 2026/02/01
0h TT
-The longitudes & latitudes and the right-ascensions &
declinations
are geocentric apparent
referred to the true equator & equinox
of the date, corrected for aberration
and light-time.
-The precision is about 0"01 for the longitudes & latitudes and of
the
order of 3 E-8 AU for the distances ( 5 E-11
AU for the Moon ).
-The
distances are true distances.
-The azimuthal ( topocentric ) coordinates are also given, corrected for parallax & diurnal aberration.
-These coordinates are calculated by polynomials fitted to the JPL Ephemerides
DE441
Notes:
-Always execute "ECL" first for the ecliptic coordinates, with at least
SIZE
031
-Then
"EQ" for the equatorial coordinates
( SIZE 039 )
-And
then "AZ" for the azimuthal coordinates
with at least SIZE 041.
-The azimuths are reckoned clockwise from North.
-Longitudes
are positive East.
Data Registers
R00 = ( DOM - 16 ) / 16 ( from -1 to +1 ) Terrestrial Time ( TT )
R01 thru R30 = coordinates of the Sun, the Moon, Mercury, Venus, Mars, Jupiter, Saturn, Uranus, Neptune & Pluto.
R31 = True obliquity of the ecliptic ( deg )
R32 = Local Sidereal Time ( hh.mnss
)
• R33 = Longitude of the observer ( ° ' " )
positive East
•
R34 = Latitude of the observer ( °
' " )
Registers R33-R34-R35 are to be initialized
before executing "AZ"
•
R35 = Observer altitude in meters
( R36 to R40: temporary data storage )
| XROM | Function | Desciption |
| 24,00 24,01 24,02 24,03 24,04 24,05 |
S -EPH2026JAN V ECL EQ AZ |
Subroutine that is called by "V" Section Header Ecliptic Coordinates of the Sun, the Moon & the Planets Takes day of month & time and calls "V" Ecliptic -> Equatorial Coordinates Equatorial -> Azimuthal Coordinates |
-"ECL"
"EQ" & "AZ"
calculate & store the coordinates
in registers R01 thru R30 as follows:
>>> h0 is the height, corrected for refraction
| Celestial Body | Registers | "ECLI" | "EQUA" | "AZIM" |
| SUN |
R01 R02 R03 |
Eclipt Longitude ( deg )
Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss) Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth ( ° ' " ) height ( ° ' " ) h0 ( ° ' " ) |
| MOON |
R04 R05 R06 |
Eclipt Longitude ( deg )
Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss) Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth ( ° ' " ) height ( ° ' " ) h0 ( ° ' " ) |
| MERCURY |
R07 R08 R09 |
Eclipt Longitude ( deg )
Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss) Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth ( ° ' " ) height ( ° ' " ) h0 ( ° ' " ) |
| VENUS |
R10 R11 R12 |
Eclipt Longitude ( deg )
Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss) Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth ( ° ' " ) height ( ° ' " ) h0 ( ° ' " ) |
| MARS |
R13 R14 R15 |
Eclipt Longitude ( deg )
Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss) Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth ( ° ' " ) height ( ° ' " ) h0 ( ° ' " ) |
| JUPITER |
R16 R17 R18 |
Eclipt Longitude ( deg )
Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss) Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth ( ° ' " ) height ( ° ' " ) h0 ( ° ' " ) |
| SATURN |
R19 R20 R21 |
Eclipt Longitude ( deg )
Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss) Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth ( ° ' " ) height ( ° ' " ) h0 ( ° ' " ) |
| URANUS |
R22 R23 R24 |
Eclipt Longitude ( deg )
Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss) Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth ( ° ' " ) height ( ° ' " ) h0 ( ° ' " ) |
| NEPTUNE |
R25 R26 R27 |
Eclipt Longitude ( deg )
Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss) Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth ( ° ' " ) height ( ° ' " ) h0 ( ° ' " ) |
| PLUTO |
R28 R29 R30 |
Eclipt Longitude ( deg )
Eclipt Latitude ( deg ) Dist from Earth ( AU ) |
Right-Ascens(hh;mnss) Declination ( ° ' " ) Dist from Earth ( AU ) |
Azimuth ( ° ' " ) height ( ° ' " ) h0 ( ° ' " ) |
1°) Ecliptic Geocentric Coordinates of the Sun, the
Moon
& the major Planets
| STACK | INPUTS | OUTPUTS |
| Z | / | R0 ( AU ) |
| Y | Day of the Month | B0 ( deg ) |
| X | HH.MNSS(TT) | L0 ( deg ) |
Where L = Longitude B = Latitude R = radius vector
Example: Calculate the apparent geocentric ecliptic coordinates of the Sun, the Moon and the planets on 2026/01/24 at 16h41m TT
-Enter the day
of the month and the time expressed in
Terrestrial Time ( TT )
24
ENTER^
16.41 XEQ
"ECL"
>>>> L0
= 304°702936
= R01
RDN
B0 = 0°000115
= R02
RDN
R0 = 0.98444703
AU = R03
Notes:
-All the angles are expressed in decimal degrees.
-Cf
paragraph 4°) for the other results.
-If you key in a date outside the interval [ 2025/12/31 0h TT , 2026/02/01
0h TT ] you'll get a DATA ERROR message.
-However,
this program may probably be used a
few hours outside the prescribed
interval: set F25 and R/S
-But
the precision is less guaranteed and the
results may even become completely
meaningless several days before 00 or after 32,
especially for the Moon.
2°) Equatorial Geocentric Coordinates
-AFTER executing "ECL", use "EQ" to get the equatorial coordinates
-The
right-ascensions are expressed in hh.mnss
and the declinations in ° ' "
-They
replace the ecliptic longitudes &
latitudes ( cf the tableau in the
paragraph above )
-"EQ" also calculates the true obliquity of the ecliptic which is returned
in
Z-register
-A polynomial
is also used for that.
| STACK | INPUTS | OUTPUTS |
| Z | / | eps ( deg ) |
| Y | / | Decl0 ( ° ' " ) |
| X | / | RA0 ( hh.mnss ) |
Where RA = Right-Ascension Decl = declination eps = true obliquity of the ecliptic
Example: Calculate the apparent geocentric equatorial
coordinates of the Sun, the Moon and the planets on 2026/01/24 at 16h41m
TT
After executing "ECLI"
XEQ "EQ"
or simply R/S if you've just executed "ECL"
>>>>
RA0 = 20h28m10s80
= R01
RDN Decl 0
= -19°05'13"11 = R02
RDN eps
= 23°438258
= R31
-The distances in R03-R06-.....-R30 are unchanged.
-Cf paragraph
4°) for the other results
3°) Azimuthal Topocentric Coordinates
-AFTER executing "ECL" & "EQ" use "AZ" to get the horizontal coordinates
-The
azimuths & heights are expressed
in ° ' "
-The heights corrected for refraction are also computed and replace the
distances
in R03 R06 ..... R30
| STACK | INPUTS | OUTPUTS |
| Z | / | h0 ( ° ' " ) |
| Y | / | h ( ° ' " ) |
| X | / | Az ( ° ' " ) |
Long
= longitude ( positive East )
Az = Azimuth ( clockwise from
North ) |
Where
Lat = latitude
h
= height
>
of the Sun
Alt
= altitude in meters
h0
= height ( corrected for refraction
) |
Example: Calculate the apparent topocentric
azimuthal coordinates of the Sun,
the Moon and the planets on 2026/01/24
at 16h41m TT
at the
Palomar Observatory, Longitude
= 116°51'50"4 W
Latitude = 33°21'22"4 N Altitude
= 1706 m
>>> After executing "ECLI" & "EQUA"
-116.51504 STO 33
which are
the topocentric coordinates
of the Sun.
>>> We also have the local sidereal time in R32 = LST
= 17h08m27s56
Notes:
-Cf paragraph 4°) for the other results.
-The difference
TT - UTC = 69.184 seconds.
-> h0 is often meaningless
when
h < 0
| Celestial Body | Registers | "ECL" | "EQ" | "AZ" |
| SUN |
R01 R02 R03 |
304.702936 0.000115 0.98444703 |
20.281080 -19.051311 unchanged |
130.021269 19.095204 19.123437 |
| MOON |
R04 R05 R06 |
15.377219 3.061922 0.00251513981 |
0.515205 8.524112 unchanged |
67.380519 -16.532428 -16.532428 |
| MERCURY |
R07 R08 R09 |
306.758035 -2.087894 1.40209581 |
20.385041 -20.361038 unchanged |
129.122087 16.204075 16.235224 |
| VENUS |
R10 R11 R12 |
309.004822 -1.228105 1.70560139 |
20.470698 -19.112150 unchanged |
126.434479 15.593022 16.024602 |
| MARS |
R13 R14 R15 |
301.019543 -1.015095 2.38749464 |
20.135469 -20.551509 unchanged |
133.593775 20.000757 20.024271 |
| JUPITER |
R16 R17 R18 |
108.224390 0.291684 4.26904724 |
7.190809 22.291334 unchanged |
-33.432834 -26.035111 -26.035111 |
| SATURN |
R19 R20 R21 |
357.949322 -2.190056 10.06708528 |
23.555758 -2.492970 unchanged |
85.474606 -11.275496 -11.275496 |
| URANUS |
R22 R23 R24 |
57.506803 -0.190546 19.08336221 |
3.410677 19.250102 unchanged |
24.481847 -33.153864 -33.153864 |
| NEPTUNE |
R25 R26 R27 |
359.949134 -1.318714 30.43430970 |
0.015471 -1.134843 unchanged |
83.355715 -11.490594 -11.490594 |
| PLUTO |
R28 R29 R30 |
303.463531 -3.794514 36.41974337 |
20.265465 -23.040341 unchanged |
133.040618 16.243380 16.274451 |
| True obliquity of the ecliptic | R31 |
/ |
23.438258 |
unchanged |
| Local Sidereal
Time |
R32 |
/ |
/ |
17.082756 |
-This subroutine may be used for itself to calculate the geocentric
ecliptic coordinates
-First
initialize R00 before executing "V".
-With
the example above, R00 = 0.5434461806
WARNING !!!
6°) Refraction
-The apparent heights are calculated
by a refraction formula which approximates
the Pulkovo refraction tables
for standard conditions of temperature
& pressure ( T = 15°C , P
= 1013.25 mbar, humidity = 0 , wave length
= 0.59µ )
-The precision is about 0"12 if -0°32'58"0 <= h <=
90°
h0 ~ h + 1° / 62.93951 /
Tan ( h +
4°80017 / ( h + 6°90263 / ( h +10°06891
/ ( h + 31°76812 / ( h + 8°87360
) ) ) ) )
References:
[1] Aldo Vitagliano SOLEX http://www.solexorb.it/
[2]
ftp://ssd.jpl.nasa.gov/pub/eph/planets/ascii/
[3]
Jean Meeus - "Astronomical Algorithms"
- Willmann-Bell -
ISBN 0-943396-61-1