
Elliptic Functions ROM

© 2016 ‘Angel Martin Page 1

HP-41 Module:
Elliptic Functions and
Orthogonal Polynomials

 Overview

This module includes a selection of functions and FOCAL routines mainly focused on the Elliptic
Functions field and other related subjects. For the most part the same functions exist in the SandMath
Module, but this version is a more portable implementation that suits itself better for Clonix/NoVRAM
owners.

The initial section of the module covers the Carlson Integral forms as the method used to calculate the
Incomplete Elliptic integral. The Arithmetic-Geometric means (standard and alternate formulations)
provide the basis for a faster and much simpler implementation to calculate the Complete Elliptic
Integrals.

The Examples section is meant to show a few immediate applications of the Elliptical Integrals, used to
calculate Ellipse parameters, Ellipsoid surface areas, oscillation period of a simple pendulum, and
mutual inductance between two coaxial coils. This is followed by a section on the Jacobi Elliptic
Functions, plus the Theta, Whittaker W and Weierstrass Elliptic functions to round up (no pun intended)
the elliptic theme. Note that the last two are not included in the SandMath.

Finally, a relatively large section of the FAT deals with Orthogonal Polynomials. Here too there are a
fundamental set of MCODE functions taken from the SandMath and SandMatrix, plus a new group of
FOCAL routines written by JM Baillard (a constant reference in this module as well) that calculate the
coefficients of the most common orthogonal polynomials. Combined with Polynomial Evaluation,
Integral and 1st& 2nd Derivatives this set provides a comprehensive section on the subject. Without
further ado, see below the list of functions included in the module:

XROM Function Description Input Author
30,00 -ELLIPTICS Section Header n/a n/a
30,01 AGM2 Arithmetic-Geometric Mean arguments in X, Y Ángel Martin
30,02 AGM2 Arithmetic-Geometric Mean arguments in X, Y Ángel Martin
30,03 "CEI" Complete Elliptic Integrals argument in X JM Baillard
30,04 CRF Carlson Integral 1st. Kind arguments in Z, Y, X JM Baillard
30,05 CRFZ CRF for complex arguments arguments in Z, Y, X JM Baillard
30,06 "CRG" Carlson integral 2nd. Kind arguments in Z, Y, X JM Baillard
30,07 CRJ Carlson Integral 3rd. Kind arguments in Z, Y, X JM Baillard
30,08 CRJZ CRJ for complex arguments arguments in Stack JM Baillard
30,09 "EK" Elliptic Int. 2nd. Order argument in X Ángel Martin
30,10 "ELI" Incomplete Elliptic Integrals arguments in X, Y JM Baillard
30,11 ELIPE Complete Elliptic Int. 2nd. Order argument in X Ángel Martin
30,12 ELIPF Incomplete Elliptic Int. 1st. Order arguments in Y,X Ángel Martin
30,13 ELIPK Complete Elliptic Int. 1st. Order argument in X Ángel Martin
30,14 GHM Geometric-Harmonic Mean arguments in X, Y Greg McClure
30,15 "JEF" Jacobi Elliptic Functions JM Baillard
30,16 "KK" Elliptic Int. 1st. Order argument in X Ángel Martin

Elliptic Functions ROM

© 2016 ‘Angel Martin Page 2

30,17 "LEI1" Legendre Integral 1st. Kind arguments in Y,X JM Baillard
30,18 "LEI2" Legendre Integral 2nd. Kind arguments in Y,X JM Baillard
30,19 "LEI3" Legendre Integral 3rd. Kind arguments in Z, Y,X JM Baillard
30,20 -EXAMPLES Section Header n/a n/a
30,21 -/+ Calculates (y-x)/(y+x) a,b in X,Y Ángel Martin
30,22 ECC Eccentricity a,b in X,Y Ángel Martin
30.23 ELP Perimeter of Ellipse a,b in X,Y Ángel Martin
30.24 "MIND" Mutual Inductance prompts for data Ángel Martin
30.25 "SAE" Surface Area of Ellipsoide a,b,c in Stack JM Baillard
30.26 "PEND" Pendulum period prompts for data Ángel Martin
30.27 -JACOBIAN Section Header n/a Ángel Martin
30.28 ACOSH Arc Hyperbolic Sine argument in X Ángel Martin
30.29 AJF auxiliary for JEF n/a JM Baillard
30.30 ASINH Arc Hyperbolic Sine argument in X Ángel Martin
30.31 ATANH Arc Hyperbolic Tangent argument in X JM Baillard
30.32 CBRT Cubic Root argument in X Ángel Martin
30.33 COSH Hyperbolic Cosine argument in X Ángel Martin
30.34 "P2" Quadratic Equation a,b,c in Stack JM Baillard
30.35 "P3" Cubic Equation a,b,c, d in Stack JM Baillard
30.36 SINH Htyperbolic Sine argument in X Ángel Martin
30.37 TANH Hyperbolic Tangent argument in X JM Baillard
30.38 THETA Theta Functions n, q, x in {Z, Y, X} Ángel Martin
30.39 "WEF" Weierstrass Elliptic Function Ángel Martin
30.40 "WHIW" Whittaker "W" function Ángel Martin
30.41 -ORTHOPOL Section Header n/a n/a
30.42 "BELL" Bell Polynomials Cnt'l word in Y, argument in X JM Baillard
30.43 "BSSL" Bessel Polynomials Cnt'l word in Y, argument in X JM Baillard
30.44 CHBT Chebyshev T(x) Cnt'l word in Y, argument in X Ángel Martin
30.45 CHBU Chebyshev U(x) Cnt'l word in Y, argument in X Ángel Martin
30.46 "FIB" Fibonacci Polynomials Cnt'l word in Y, argument in X Ángel Martin
30.47 HMT Hermite Polynomials Cnt'l word in Y, argument in X Ángel Martin
30.48 LAG Lagrange Polynomials a in Z, Cnt'l word in Y, point in X Ángel Martin
30.49 LANX Generalized Lagrange Polyn a in Z, Cnt'l word in Y, point in X Ángel Martin
30.50 LEG Legendre Polynomials Cnt'l word in Y, argument in X Ángel Martin
30.51 "CBT+" Chebyshev T(x) Coefficients Initial RG in Y, n in X JM Baillard
30.51 "CBU+" Chebyshev U(x) Coefficients Initial RG in Y, n in X JM Baillard
30.53 "HMT+" Hermite Polynomials Coeffs. Initial RG in Y, n in X JM Baillard
30.54 "JCP+" Jacobi Polun. Coefficients Initial RG in Y, n in X JM Baillard
30.55 "LANX+" Generalized Lagrange Polyn Initial RG in Y, n in X JM Baillard
30.56 "LEG+" Legendre Polyn. Coefficients Initial RG in Y, n in X JM Baillard
30.57 "USP+" Ultra-Spherical Polyn Coeffs. Initial RG in Y, n in X JM Baillard
30.58 dPL 1st. Derivative polynomial Cnt'l word in Y, argument in X Ángel Martin
30.59 d2PL 2nd. Derivative Polynomial Cnt'l word in Y, argument in X Ángel Martin
30.60 DTC Delete Tiny Coeffs Cnt'l word in X Ángel Martin
30.61 ITPL Integral of Polynomial Cnt'l word in Y, argument in X Ángel Martin
30.62 PDEG Polyn Degree Cnt'l word in X Ángel Martin
30.63 PVAL Polyn Evaluation Cnt'l word in Y, argument in X Ángel Martin

Elliptic Functions ROM

© 2016 ‘Angel Martin Page 3

1 –Elliptic Integrals.

In integral calculus, elliptic integrals originally arose in connection with the problem of giving the arc
length of an ellipse. They were first studied by Giulio Fagnano and Leonhard Euler. Modern
mathematics defines an "elliptic integral" as any function f which can be expressed in the form

where R is a rational function of its two arguments, P is a polynomial of degree 3 or 4 with no repeated
roots, and c is a constant.The most common ones are the incomplete Elliptic Integrals of the first,
second and third kinds. The definitions for these functions is as follows:

Besides the traditional Legendre form, the elliptic integrals may also be expressed in Carlson symmetric
form – which has been the basis for this implementation. The Carlson integrals RF and RJ are therefore
the basis to calculate the incomplete elliptic integrals if first and second kinds, according to the
formulas shown below:

• Incomplete Elliptic integral of 1st. kind:

• Incomplete Elliptic integral of 2nd. Kind:

E = sin (Φ). RF(cos2(Φ); 1-k.sin2(Φ); 1) - (k/3) sin3(Φ). RJ (cos2(Φ); 1- k.sin2

• Incomplete Elliptic Integral of 3rd. kind:

(Φ); 1)

P = sin (Φ). RF (cos2(Φ); 1-k.sin2(Φ); 1) - (k/3) sin3(Φ). RJ (cos2(Φ); 1-k.sin2(Φ); 1 ;
1+n.sin2

(Φ))

Functions CRF and CRJ in the module are written in MCODE, which provides the speed advantage
needed in the repeated calculations where these functions have a defining role. There are several
functions and programs you can use to calculate these functions, as follows:

Incomplete Integrals FOCAL Routine MCODE Function
First kind “LEI1” ELIPF
Second kind “LEI2”

n/a Third kind “LEI3”
All at once “ELI”

Stack input for the first two cases are the amplitude Φin Y and the argument “m” in degrees in X. –
and LEI3 also expects the characteristic “n” in Z. The result is always returned to X.

Elliptic Functions ROM

© 2016 ‘Angel Martin Page 4

Examples:

in DEG mode (!) calculate F(0.7; 84), E(0.7; 84), and P(0.9; 0.7; 84).-

 0.7, ENTER^, 84, XEQ "LEI1" -> F (84° | 0.7) = 1.884976271
 0.7, ENTER^, 84, XEQ "LEI2" -> E (84° | 0.7) = 1.184070048
 0.9, ENTER^, 0.7, ENTER^, 84, XEQ "LEI3" -> P (0.9; 84° | 0.7) = 1.336853616

Note that LEI1 uses data registers {R00 - R03}, and LEI2/3 also use R04.

Obviously we could have used ELIPF for the first case – which has a slightly faster execution and
yields the same result. ELIPF is implemented as a MCODE function which simply calls CRF with the
appropriate input parameters. All the heavy lifting is thus performed by CRF, which together with CRJ
do all the hard work in the calculation for the Elliptic Integrals of first, second and third kinds.

The figure below shows the first and third kinds in comparison:

Complete Forms

Note also that the respectivecomplete

 elliptic integrals are easily obtained by setting the value of the
amplitude, Φ(the upper limit of the integrals), toπ/2.Therefore, you could use the same functions to
calculate the complete version of the integrals – but that’s a slower and generally less accurate
approach than using the dedicated functions, based on the Arithmetic-Geometric means.

Complete Integrals FOCAL Routine MCODE Function
First kind “KK” ELIPK
Second kind “EK” ELIPE
Third kind n/a

n/a
All at once “CEI”

The FOCAL programs “KK” and ‘EK” are shown below in case you’re interested. As you can see they’re
little more than a driver for the AGM functions. Note also that the second kind requires calculating the
first kind first.

Elliptic Functions ROM

© 2016 ‘Angel Martin Page 5

Examples

: calculate the complete forms for the same cases shown above, for amplitude = 90.

0.7, XEQ “ELIPK” -> K(0.7) =2.075363135
0.7, XEQ “ELIPE” ->E (0.7) = 1.241670568

No data registers are used, and any angular mode can be selected (not relevant here).
The MCODE functions will save the initial argument in LastX

Auxiliary functions.

The following examples will illustrate the usage of the Carlson Integrals and the AGM functions.Note
the inverse order of arguments for the Carlson functions; that AGM is a symmetric argument function;
and that for AGM2 the distance between both arguments must be <=1

CalculateRF(2;3;4),, and RG(2;3;4).

4 ENTER^, 3 ENTER^, 2 XEQ "CRF" RF(2;3;4) = 0.584082842
4 ENTER^, 3 ENTER^, 2 XEQ "CRG" RG(2;3;4) = 1.725503028

Calculate RJ(1;2;3;4) and RJ(1;2;4;7).

4 ENTER^, 3 ENTER^, 2 ENTER^, 1 XEQ "CRJ" RJ(1;2;3;4) = 0.239848100
7 ENTER^, 4 ENTER^, 2 ENTER^, 1 XEQ “CRJ“ RJ(1,2,4,7) = 0.147854445

Calculate the Arithmetic-Geometric Mean for 8 and 23.-

8, ENTER^, 23, XEQ “AGM“ -> AGM (8, 23) = 14.51619896
0.5, ENTER^, 0.9, XEQ “AGM2” -> AGM2(0.5, 0.9) = 0.685370957

For additional information on this subject you should refer to JM Baillard web pages – which also
include examples of utilization of the FOCAL programs ”CEI” and ‘ELI”.

http://hp41programs.yolasite.com/ellipticf.php

1 LBL "KK" 12 *
2 CHS 13 RTN
3 1 14 LBL "EK"
4 + 15 XROM "KK"
5 SQRT 16 RCL O
6 STO O 17 X^2
7 1 18 1
8 AGM 19 AGM2
9 ST+ X 20 +

10 1/X 21 END
11 PI

http://hp41programs.yolasite.com/ellipticf.php�

Elliptic Functions ROM

© 2016 ‘Angel Martin Page 6

Arithmetic-Geometric Mean - Revisited { AGM }

In mathematics, the arithmetic–geometric mean (AGM) of two positive real numbers x and y is defined
as follows: First compute the arithmetic mean of x and y and call it a1. Next compute the geometric
mean of x and y and call it g1; this is the square root of the product xy:

Then iterate this operation with a1 taking the place of x and g1 taking the place of y. In this way, two
sequences (an) and (gn) are defined:

These two sequences converge to the same number, which is the arithmetic–geometric mean of x and
y; it is denoted by M(x, y), or sometimes by agm(x, y).

Stack Input Output
Y a0 Z
X b0 agm(a0,b0)
L - b0

Note that “DATA ERROR” will be triggered when one of the arguments is negative (but not if both are).

Example 1:

To find the arithmetic–geometric mean of a0 = 24 and g0 = 6, simply input:

24, ENTER^, 6, XEQ “AGM” 13,45817148

Example 2. Gauss Constant.

The reciprocal of the arithmetic–geometric mean of 1 and the square root of 2 is called Gauss's
constant, after Carl Friedrich Gauss. Calculate it using AGM:

2, SQRT, 1, XEQ “AGM” 1,198140235; 1/X 0,834626842

A piece of trivia: the Gauss constant is a transcendental number, and appears in the calculation of
several integrals such as those below:

Elliptic Functions ROM

© 2016 ‘Angel Martin Page 7

Example 3.- Complete Elliptic Integral of 1st Kind.

Using AGM it’s a convenient way to calculate the Complete Elliptic Integral of the first kind, ELIPK (k),
by means of the following relationship (where M(x,y) represents the AGM):

where K(k) is the Complete

 Elliptic Integral of the first kind:

As usual the conventions used for the input parameters get in the way – so paying special attention to
this, we can re-write the expresion using the In

complete Elliptic Integral instead, as follows:

ELIPF { π/2 | (a-b)/(a+b) } = π (a+b) / 4 AGM(a,b), which is the same as:

ELIPF { π/2, [(a-b)/(a+b)]^2 } = π (a+b) / 4 AGM(a,b)

The idea is to find two values a,b derived from the argument: x = [(a-b)/(a+b)]^2

The easiest approach is to choose a=1, and therefore: b= [1-sqr(x)] / [1+sqr(x)]

Here’s the FOCAL program used for the calculation. - Note the first step needed to get the square root
of the argument, to harmonize both conventions used.

And here are some results, compared to the values obtained using ELIPF. As you can expect, the
execution is substantially faster using the AGM approach.

x ELIPK(x) ELIPF (π/2, x) % Delta
0.1 1.612441348 1.612441348 0
0.2 1.659623599 1.659623598 6.02546E-10
0.3 1.713889448 1.713889447 5.83468E-10
0.4 1.777519373 1.777519371 1.12516E-09
0.5 1.854074677 1.854074677 0
0.6 1.949567749 1.949567749 0
0.7 2.075363134 2.075363135 -4.81843E-10
0.8 2.257205326 2.257205326 0
0.9 2.578092113 2.578092113 0

1 LBL "ELIPK" 7 E 13 4 19 E
2 SQRT 8 + 14 * 20 +
3 E 9 / 15 1/X 21 *
4 X<>Y 10 RCL X 16 PI 22 END
5 - 11 E 17 *
6 LASTX 12 AGM 18 X<>Y

Elliptic Functions ROM

© 2016 ‘Angel Martin Page 8

Modified Arithmetic-Geometric Mean { AGM2 }

We’ve seen the relationship between the complete Elliptic integral of first kind (ELIPK) and the AGM
largely facilitates the calculation. Would it be possible to calculate the complete Elliptic of 2nd. Kind
(ELIPE) using a similar approach, and if so how? As it turns out there is a way – involving the Modified
AGM as described below. First we define a sequence of triples as follows:

Defining now the modified arithmetic-geometric mean (AGM2) of two positive numbers x and y as the
common limit of the descending sequence {Xn} and the ascending sequence {Yn}, with X0 = x and
y0=y (and z0=0)

The expressions we’re interested in are those linking the Complete Elliptic integrals of first and second
kind with the regular AGM and this newly defined AGM2. As it turns out both expressions exist, and are
given below:

Where M(t) is the regular AGM(1, t) and N(t) the modified AGM2(1, t); and where {β, γ} are two
positive numbers whose squares sum to one: β^2 + γ^2 = 1. In particular the equations hold if (in
violation of the assumption, otherwise imposed) γ^2 = -1 - which implies β^2 = 2, facilitating the
calculation even more.

So there we have it, both complete integrals can be obtained using the AGM and AGM2 functions, an
iterative and fast convergent algorithm that can be easily implemented on the SandMath. Once AGM
and AGM2 are available it’s easy to write ELIPK and ELIPE – see the method used in the example
quick FOCAL program below:

01 LBL “KK”
02 CHS
03 1
04 +
05 SQRT
06 STO O
07 1
08 AGM
09 ST+ X
10 1/X
11 PI

12 *
13 RTN

14 LBL “EK”
15 XEQ “KK”
16 RCL 07
17 X^2
18 1
19 AGM2
20 *
21 END

(*) See Article by Semjon Adlag,http://www.ams.org/notices/201208/rtx120801094p.pdf

http://www.ams.org/notices/201208/rtx120801094p.pdf�

Elliptic Functions ROM

© 2016 ‘Angel Martin Page 9

2.- Application Examples.

The following two examples should illustrate the applicability of these special functions in the geometry
subjects related to ellipses and ellipsoids – and therefore provide some context to their origins and
development.

Example 1.-

 Surface Area of an Ellipsoid. { SAE }

SAEis a direct application of the Carlson Symmetrical Integral of second kind, CRG, used to calculate
the surface area of an scalene ellipsoid (i.e. not of revolution):

which formula is:

Area = 4π.RG(a2b2 , a2c2 , b2c2)

with c < b < a

Example: a=2, b=4, c=9 -> A=283.4273843

Example 2.-

 Ellipse parameters. { EECC , -/+ }

A related magnitude appearing in formulas related to ellipses is the ratio (a-b)/(a+b), sometimes
squared. There’s no “proper name” for this parameter (unlike eccentricity) – but regardless the sub-
function -/+ (appropriately also without a proper name) in the Auxiliary FAT (the very last one in the
catalog) is available to compute it using the values in Y and X registers.

Example: for Y=1 and X=3, -/+ returns –0.5

Using this function we can re-write the ELIPK program as follows:

01 LBL “ELIPK
02 SQRT
03 1
04 X<>Y
05 -/+
06 RCL X
07 1
08 AGM
09 4

10 *
11 1/X
12 PI
13 *
14 X<>Y
15 1
16 +
17 *
18 END

Elliptic Functions ROM

© 2016 ‘Angel Martin Page 10

Example 3.- Perimeter of the Ellipse. { ELP }

For an ellipse with semi-major axis a and semi-minor axis b and eccentricity e , the complete elliptic
integral of the second kind is equal to one quarter of the perimeter C of the ellipse measured in units
of the semi-major axis . In other words:

, with:

or more compactly in terms of the incomplete integral of the second kind E(Φ, k), as:

Function ELP is available in the auxiliary FAT. It is a FOCAL program like the one listed below, which
calculates the perimeter from the semi-axis values input in Y and X stack registers – a sweet and short
application of the Elliptic Integrals at work. Note how the (pesky) input conventions are observed: the
parameter k needs to be squared!

Where we have also put EECC to work as a nice shortcut for the calculations, and one of the nice
things it does is making sure the larger semi-axis is used as denominator, regardless of its location in
the stack (either X- or Y- register).

Note as well that no data registers are used with this scheme.

Example: calculate the perimeter for a=3 and b=2

3, ENTER^, 2, ΣF$ “ELP” -> 15.86543959

Elliptic Functions ROM

© 2016 ‘Angel Martin Page 11

Example 4.- Period of a Simple Pendulum.

The differential equation which represents the motion of a
simple pendulum is:

where g is acceleration due to gravity, ℓ is the length of the

pendulum, and θ is the angular displacement.

For amplitudes beyond the small angle approximation, one
can compute the exact period by first inverting the equation
for the angular velocity obtained from the energy method
(Eq. 2),

which after integration and substitution leads to an
expression in function of the complete elliptic integral of the
first kind:

Below is the corresponding program as included in the module, based on the Arithmetic-
Geometric Mean as the fastest surrogate for K(k). Note that the program prompts for the
pendulum parameters and allows for repeat calculations at different initial angles:

1 LBL "PEND' 14 LBL C
2 DEG 15 STO 01
3 "L=? (M)" 16 2
4 PROMPT 17 /
5 9.81 18 COS
6 / 19 1
7 SQRT 20 AGM
8 PI 21 RCL 00
9 * 22 X<>Y

10 ST+X(3) 23 /
11 STO 00 24 "T="
12 "<)=? (DEG)" 25 ARCL X
13 PROMPT 26 PROMPT

27 GTO C
28 END

Elliptic Functions ROM

© 2016 ‘Angel Martin Page 12

Example 5.- Mutual inductance of two coaxial circular coils.

01 LBL "MIND"
02 "R1=?"
03 PROMPT
04 STO 06
05 "R2=?"
06 PROMPT
07 STO 07
08 LBL 00
09 "d=?"
10 PROMPT
11 LBL C
12 STO 05
13 RCL 07
14 RCL 06
15 *
16 4
17 *
18 RCL 06
19 RCL 07
20 +
21 X^2
22 RCL 05
23 X^2
24 +
25 /
26 STO 05
27 ELIPK (ΣFL# 43)
28 STO 08
29 RCL 05
30 ELIPE(ΣFL# 41)
31 STO 09
32 E
33 RCL 05
34 2
35 /
36 -
37 RCL 08
38 *
39 RCL 09
40 -
41 PI
42 *
43 8 E-7
44 *
45 RCL 06
46 RCL 07
47 *
48 RCL 05
49 /
50 SQRT
51 *
52 "MI="
53 ARCL X
54 PROMPT
55 GTO 00
56 END

This example shows a practical utilization of functions
ELIPK and ELIPE to calculate the mutual inductance
between two coaxial circular coils or radius r1 and r2,
separated a distance “d”. The example is taken from
page# 83 of the NASA SP-42 document, “Space
Resources and Space settlements”.

Note the conventions used in the definition, especially
for the “k” parameter – not squared!

Test cases: with r1=0.2, r2=0.25

1. d= 0.1 ->MI=2,48787E-7
2. d= 0.2 ->MI=1,23957E-7

These results are in henries.

Elliptic Functions ROM

© 2016 ‘Angel Martin Page 13

3.- Jacobi Elliptic functions.

In mathematics, the Jacobi elliptic functions are a set of basic elliptic functions, and auxiliary theta functions,
that are of historical importance. Many of their features show up in important structures and have direct
relevance to some applications (e.g. the equation of a pendulum). They also have useful analogies to the
functions of trigonometry, as indicated by the matching notation sn for sin. They were introduced by Carl
Gustav Jakob Jacobi (1829).

Definition as inverses of elliptic integrals

There is a simpler, but completely equivalent definition, giving the elliptic functions as inverses of the
incomplete elliptic integral of the first kind. Let

Then the elliptic functions sn(u,m), cn(u,m), and dn(u,m) are given by:

sn (u,m) = sin (Φ), cn (u,m) = cos (Φ) , and

Here, the angle Φ is called the amplitude. On occasion, dn(u) = Δ(u) is called the delta amplitude. In the
above, the value m is a free parameter, usually taken to be real, 0 ≤ m ≤ 1, and so the elliptic functions can
be thought of as being given by two variables, the amplitude Φ and the parameter m.

The elliptic functions can be given in a variety of notations, which can make the subject unnecessarily
confusing. Elliptic functions are functions of two variables. The first variable might be given in terms of the
amplitude φ, or more commonly, in terms of u given below. The second variable might be given in terms of
the parameterm, or as the elliptic modulusk, where k2 = m, or in terms of the modular angle α, where m =
 sin2

 α.

Formulae and Methodology.

The implementation is based on the Gauss transformation, with the formulas used being:

With m' = 1-m , let µ = [(1-sqrt(m')/(1+sqrt(m')]2

 and v = u/(1+sqrt(µ)] , we have:

 sn (u | m) = [(1 + sqrt(µ)) sn (v | µ)] / [1 + sqrt(µ) sn2 (v | µ)]
 cn (u | m) = [cn (v | µ) dn (v | µ)] / [1 + sqrt(µ) sn2 (v | µ)]
 dn (u | m) = [1 - sqrt(µ) sn2 (v | µ)] / [1 + sqrt(µ) sn2

 (v | µ)]

These formulas are applied recursively until µ is small enough to use.

The program calculates the three functions simultaneously, returning the result in the stack registers X [sn], Y
[cn], and Z [dn]. The input parameters are the amplitude m, and the argument u – expected in Y and X
respectively before calling JEF.

Two functions are included in the module, JEF and AJF. The main program is JEF, which can be used to
calculate the results for any value of the amplitude m (*). AJF is a MCODE funtion used to speed up the
calculations, applicable when the amplitude lies between 0 and 1. You could use AJF directly in this case,
since JEF does nothing but calling it in that circumstance.

(*) If m < -9999999999 the program can give wrong results.

http://en.wikipedia.org/wiki/Elliptic_modulus�
http://en.wikipedia.org/wiki/Modular_angle�

Elliptic Functions ROM

© 2016 ‘Angel Martin Page 14

Example 1- Evaluate sn (0.7 | 0.3) cn (0.7 | 0.3) dn (0.7 | 0.3)

0.3, ENTER^, 0.7, XEQ "JEF" -> sn (0.7 | 0.3) = 0.632304776

RDN -> cn (0.7 | 0.3) = 0.774719736
 RDN -> dn (0.7 | 0.3) = 0.938113640

Example 2 - Likewise for x=0.7 and amplitudes { 1, 2, -3 }

sn (0.7 | 1) = 0.604367777 sn (0.7 | 2) = 0.564297007 sn (0.7 | -3) = 0.759113421
cn (0.7 | 1) = 0.796705460 cn (0.7 | 2) = 0.825571855 cn (0.7 | -3) = 0.650958382
dn (0.7 | 1) = 0.796705460 dn (0.7 | 2) = 0.602609138 dn (0.7 | -3) =1.651895746

Example 3.- Let’s verify the inverse relationship between the Jacobi Elliptic functions and the Elliptic Integral
– for a given elliptic modulus (k) that will remain constant in both cases. The expression to verify can be
written as:

 Φ = asin (sn [k ; F (k | Φ)]

Let’s use the values Φ = 84 and k =0.7 - We start by obtaining the value of F:

0.7, ENTER^, 84, XEQ "ELIPF" -> F (84° | 0.7) = 1.884976271

Then we use this intermediate result (and the initial parameter) as input for JEF as follows:

0.7, X<>Y, XEQ "JEF" -> sn (0.7 | F(84° | 0.7) = 0.994521895

And finally get the arc sine of the sn value to recover the original amplitude:

ASIN => 84.00000002

Which matches the initial value with an accuracy of E-8.

Final remarks on the Jacobi Elliptic functions.

Note the interesting role of the parameter m as it moves from 0 to 1. The condition m=0 causes the functions
to become the same as the trigonometric sin and cos, whereas in the other extreme for m=1 they become
the hyperbolic tanh and sech. In more proper terms, these functions are doubly periodic generalizations of
the trigonometric functions satisfying:

sn (v | 0) = sin v ; cn (v | 0) = cos v ; and dn (v | 0) = 1
sn (v | 1) = tanh v ; cn (v | 0) = sech v ; and dn (v | 1) = sech v

The figures in next page represent three intermediate stages; observe the tendency as the elliptic modulus k
varies towards both ends of the range. Quite a remarkable behavior showing how the interrelationships
amongst seemingly unrelated topics appear.

Elliptic Functions ROM

© 2016 ‘Angel Martin Page 15

Elliptic Functions ROM

© 2016 ‘Angel Martin Page 16

(Jacobian) Theta Functions. {THETA}

There are several closely related functions called Jacobi theta functions, and many different and incompatible
systems of notation for them. One Jacobi theta function (named after Carl Gustav Jacob Jacobi) is a function
defined for two complex variables z and τ, where z can be any complex number and τ is confined to the
upper half-plane, which means it has positive imaginary part. It is given by the formula:

The SandMath uses the following definitions as per JM Baillard, with: q = e-pi K'/K (0<= q < 1)

 Theta1(x;q) = 2.q1/4Σk>=0 (-1)k qk(k+1) sin(2k+1)x
 Theta2(x;q) = 2.q1/4Σk>=0 qk(k+1) cos(2k+1)x
 Theta3(x;q) = 1 + 2 Σk>=1 qk*k cos 2kx
 Theta4(x;q) = 1 + 2 Σk>=1 (-1)k qk*k cos 2kx

Use the function “THETA” to calculate any of these, with the function index in Z, and the two arguments (q,
x) in Y and X. The result is returned in X.

Stack Input Output
T n# n#
Y q q
X x Theta(n,q,x)

Example: Compute Theta1(x;q) , Theta2(x;q) , Theta3(x;q) , Theta4(x;q) for x = 2 ; q = 0.3

1, ENTER^, 0.3, ENTER^, 2, XEQ "THETA" -> 1.382545289
2, ENTER^, 0.3, ENTER^, 2 XEQ "THETA” -> -0.488962527
3, ENTER^, 0.3, ENTER^, 2, XEQ "THETA” -> 0.605489938
4, ENTER^, 0.3, ENTER^, 2, XEQ "THETA” -> 1.389795845

The picture below shows the Theta functions 1-2 (on the left) and 3-4 (right) for a range of x between [-5,5]
and a second argument y kept constant. Note the similar shapes between cn with T1,T2, as well as sn with
T3,T4

Elliptic Functions ROM

© 2016 ‘Angel Martin Page 17

Whittaker Functions. { WHIM , WHIW} - <Requires SandMath>

In mathematics, a Whittaker function is a special solution of Whittaker's equation, a modified form of the
confluent hypergeometric equation introduced by Whittaker (1904) to make the formulas involving the
solutions more symmetric.

Whittaker's equation is

It has a regular singular point at 0 and an irregular singular point at ∞. Two solutions are given by the
Whittaker functions Mκ,μ(z), Wκ,μ(z), defined in terms of Kummer's confluent hypergeometric functions M
and U by

The graphics below show both functions for the particular case k=2 and m=0.5

DATA REGISTERS: R00 thru R02:
Flags: none.

Examples:

 2, SQRT, 3, SQRT , PI, ΣF$ "WHIM" ->M(sqrt(2), sqrt(3), π) = 5.612426206

 2, SQRT, 3, SQRT, PI, XEQ “WHIMW” ->W(sqrt(2), sqrt(3), π) =2.177593412

Stack Input Output
Z K /
Y µ /
X x W(k,m,x)

Elliptic Functions ROM

© 2016 ‘Angel Martin Page 18

(Jacobian) Weierstrass Elliptic Functions.

In mathematics, Weierstrass's elliptic functions are elliptic functions that take a particularly simple form; they
are named for Karl Weierstrass. This class of functions are also referred to as P-functions and generally
written using the symbol ℘ ., with variables ℘(x, g2, g3)

Relation to Jacobi elliptic functions.For numerical work, it is often convenient to calculate the Weierstrass
elliptic function in terms of Jacobi's elliptic functions. The basic relations are described in JM Bailard’s web
pages, depending on the roots of the polynomial p(x) = 4x3- g2.x -g3 - where g2, g3 are the function’s
“elliptic invariants”.

The above plots show the Weierstrass elliptic function P(x ;g2,g3) and its derivative P'(x;g2,g3) for elliptic
invariants g2=4 and g3=0 along the real axis.

The program uses data registers R00 – R07, as well as several auxiliary functions as resources. The results
include both the function value and its first derivative in the stack – plus the half-periods in R09 & R10.

STACK INPUTS OUTPUTS

Z g3 /
Y g2 P'(x;g2;g3)
X x P(x;g2;g3)

Example1: Calculate ℘(x;g2;g3) &℘'(x;g2;g3) for x=2, g2=4, g3=1

 1, ENTER^, 4, ENTER^, 2, XEQ "WEF" -> P(2;4;1) = 4.950267724
 X<>Y ->P'(2;4;1) = 21.55057197

We have R09 = 1.225694692 & R10 = 1.496729323 (Ω&Ω' because F01 is clear)
Therefore the primitive half-periods are: 1.225694692 & 1.496729323 i

Example2: Calculate ℘(x;g2;g3) &℘'(x;g2;g3) for x=1, g2=2, g3=3

3, ENTER^, 2, ENTER^, 1 XEQ "WEF" -> P(1;2;3) = 1.214433709
X<>Y -> P'(1;2;3) = -1.317406193

We have R09 = 1.197220889 & R10 = 2.350281226 (Ω2&Ω'2 because F01 is set)
Whence: Ω = 0.598610445 - 1.175140613 i &Ω' = 0.598610445 + 1.175140613 i

https://en.wikipedia.org/wiki/File:Weierstrass_p.svg�

Elliptic Functions ROM

© 2016 ‘Angel Martin Page 19

4.- Orthogonal Polynomials.

The last section in the module includes a comprehensive function set to calculate orthogonal polynomials.
Some of the functions are written in MCODE, and therefore feature a speed and accuracy advantage over
equivalent user code routines.

All these routines use a similar convention for the data entry parameters: the order in the Y-register and the
evaluation point in the X-register. The generalized Laguerre polynomials require a third parameter, which is to
be entered in the Z-register. Upon completion, the result is left in the X register, and for the MCODE functions
the original evaluation point is saved in the LastX register as well. No data registers are used.

Legendre Polynomials

n.Pn(x) = (2n-1).x.Pn-1(x) - (n-1).Pn-2(x) ; P0(x) = 1 ; P1(x) = x

Examples: Calculate P7(4.9)

7, ENTER^, 4.9, XEQ”LEG” -> P7(4.9) =1,698,444.018

Laguerre Polynomials.

n! . Ln(x) = (2n-1-x).Ln-1(x) - (n-1)2.Ln-2(x) ; L0(x) = 1 ; L1(x) = 1 - x, and:

L0
(a) (x) = 1 ; L1

(a) (x) = a+1-x ; n.Ln
(a) (x) = (2.n+a-1-x).Ln-1

(a) (x) - (n+a-1).Ln-2
(a) (x)

Examples: Calculate L7 (3.14) and L7

(1.4)(Pi)

7, ENTER, 3.14, XEQ “LAG” -> L(7, 3.14) = -0.978658720
1.4, ENTER^, 7, PI, XEQ “LANX” -> L(1.4, 7, 3.14)= 1.688893513

Hermite Polynomials.

Hn(x) = 2x.Hn-1(x) - 2(n-1).Hn-2(x) ; H0(x) = 1 ; H1(x) = 2x

Examples: Calculate H7 (3.14)

7, ENTER^, 3.14, XEQ “HMT” -> 73,726.24325

Chebyshev Polynomials of the first and second kind

Tn(x) = 2x.Tn-1(x) - Tn-2(x) ; T0(x) = 1 ; T1(x) = x - first kind
Un(x) = 2x.Un-1(x) - Un-2(x) ; U0(x) = 1 ; U1(x) = 2x - second kind.

Examples: Compute T7 (0.314) and U7(0.314)

7, ENTER^, .314, XEQ “CHBT” ->T7 (0.314) = -0.582815680
7, ENTER^, 0.314, XEQ “CHBU” ->U7 (0.314) = -0.786900700

Elliptic Functions ROM

© 2016 ‘Angel Martin Page 20

Fibonnaci’s Polynomials.

F0(x) = 0 F1(x) = 1 and Fn(x) = x Fn-1(x) + Fn-2(x) if n > 1

Example: Compute F8(1/π)

8, PI, 1/X,. XEQ “FIB” -> F8(1/π) = 1.615692565

Bell Polynomials. Recurrent expression:

,

Example: Compute B8(1/π)

8, PI, 1/X,. XEQ “FIB” -> F8(1/π) = 3.4051766 E10

Bessel Polynomials. Recurrent expression:

;

Particular Values:

Example: Compute y5(1/π)

5, PI, 1/X,. XEQ “BSSL” -> F5(1/π) = 42.74840691

We can verify the last result using the y5(x) polynomial above and function PVAL. Which returns a value of
F5(1/π) = 42.74840688

Elliptic Functions ROM

© 2016 ‘Angel Martin Page 21

Coefficients of Orthogonal Polynomials

Besides obtaining their values using recurrent expressions, an interesting subject is the calculation of the
coefficients of the orthogonal polynomials. A considerably large program written by JM Baillard accomplishes
this goal for the most frequently used cases. You’re encouraged to see JM’s webpage at:

http://hp41programs.yolasite.com/orthopoly.php

The program requires at least two inputs: the index of first register for coefficient storage in Y, and the order
of the polynomial in X. Because the program itself uses the first 11 data registers, the first register available
for coefficients must be 11 or greater. When a third parameter is required it is expected to be in the Z
register.

Note that as additional bonus the program returns the coeffs. for the polynomial of degree n-1 as well as the
degree “n”. Upon completion the X-register has the control word that defines the polynomial in data registers,
and the Y-register has the control word for the polynomial of previous order (n-1) as well.

Once the coefficients are calculated and stored in data registers, you can use the evaluation functions to
obtain their values, derivatives and primitives. The control word follows the same convention for all programs.

Example 1. Find the Legendre polynomial of order n=6

11, ENTER^, 6, XEQ “LEG+” -> 11,007 (and X<>Y: 18,023)

Listing those registers we see: R11 = 231/16; R12 = 0; R13 = -315/16

R14 = 0; R15= 106/16; R16 = 0;
R17 = -5/16

Therefore: L6(x) = (231 x6 - 315 x4 + 105 x2 - 5) / 16

Example 2-. Find the Generalized Laguerre Polynomial Ln

(a)(x) with a = 3 , n = 6

3, ENTER^, 11, ENTER^, 6, XEQ “LANX+” -> 11,007 (and X<>Y: 18,023)

{R11 - R17} give: L6

(3)(x) = x6 / 720 - 3 x5 / 40 + 3 x4 / 2 - 14 x3 + 63 x2 - 126 x + 84
and {R18 - R23}: L5

(3)(x) = - x5 / 120 + x4 / 3 - 14 x3 / 3 + 28 x2 - 70 x + 56

Example 3.- Chebyshev’s Polynomials. Find T6(x) and U6(x)

11, ENTER, 6, XEQ ”CBT+” -> 11,007 (and X<>Y: 18,023)

{R11 - R17} give: T6(x) = 32 x6 - 48 x4 + 18 x2 – 1
and {R18 - R23}: T5(x) = 16 x5 - 20 x3 + 5 x

11, ENTER, 6, XEQ ”CBU+” -> 11,007 (and X<>Y: 18,023)

{R11 - R17} give: U6(x) = 64 x6 - 80 x4 + 24 x2 - 1
and {R18 - R23}: U5(x) = 32 x5 - 32 x3 + 6 x

http://hp41programs.yolasite.com/orthopoly.php�

Elliptic Functions ROM

© 2016 ‘Angel Martin Page 22

Example 4.- Ultraspherical polynomials. If a = 3 & n = 6 , Cn(a)(x) = ?

3, ENTER^, 11, 6, XEQ “USP+” -> 11,007 (and X<>Y: 18,023)

{R11 - R17} give: C6

(3)(x) = 1792 x6 - 1680 x4 + 360 x2 - 10
and {R18 - R23}: C5

(3)(x) = 672 x5 - 480 x3 + 60 x

Example 5.- Hermite Polynomials. Find Hermite polynomial of order n = 6

11, ENTER^, 6, XEQ “HMT+” -> 11,007 (and X<>Y: 18,023)

{R11 - R17} give: H6(x) = 64 x6 - 480 x4 + 720 x2 - 120
and {R18 - R23}: H5(x) = 32 x5 - 160 x3 + 120 x

Example 6. Jacobi Polynomials. Find Pn(a;b)(x) with a = 3 , b = 4 , n = 6

3, ENTER^, 4, ENTER^, 11, ENTER^, 8, XEQ “JCP+” -> 11,007 (and X<>Y: 18,023)

{R11 - R17} give:
P6

(3;4)(x) = 423.9375 x6 - 133.875 x5 - 334.6875 x4 + 78.75 x3 + 59.0625 x2 - 7.875 x - 1.3125

and {R18 - R23}:
P5

(3;4)(x) = 193.375 x5 - 56.875 x4 - 113.75 x3 + 22.75 x2 + 11.375 x - 0.875

Obviously when the coefficients are not integers, the HP-41 may give approximate values - not the fractions
directly. Though mathematically equivalent, evaluating these polynomials would often produce p(x) with a
lower precision because of cancellation of leading digits, especially for large n-values: the signs of the
coefficients alternate.

Elliptic Functions ROM

© 2016 ‘Angel Martin Page 23

Polynomial Primitive and Derivatives

Lastly, a few other functions deal with the calculation of derivatives and primitive (that vanishes for x=0) for
any polynomial – also written in MCODE and using the 13-digit O/S routines for intermediate calculations.

For example, evaluate the H6(x) polynomial and its derivatives & primitive at the point x=1.

11,017, 1, ENTER^, XEQ “PVAL” -> 184.0000000
RDN, 1, XEQ “dPL” -> -96.00000000
RDN, 1, XEQ “dPL2” -> -2,400.000000
RDN, 1, XEQ “ITPL” -> 33.14285712

	/HP-41 Module: Elliptic Functions and Orthogonal Polynomials
	Overview This module includes a selection of functions and FOCAL routines mainly focused on the Elliptic Functions field and other related subjects. For the most part the same functions exist in the SandMath Module, but this version is a more porta...
	LBL “KK”
	CHS
	1
	+
	SQRT
	STO O
	1
	AGM
	ST+ X
	1/X
	PI
	*
	RTN
	LBL “EK”
	XEQ “KK”
	RCL 07
	X^2
	1
	AGM2
	*
	END

