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HP-41 Module: 
Elliptic Functions and 
Orthogonal Polynomials 
 

 

 Overview 
 
This module includes a selection of functions and FOCAL routines mainly focused on the Elliptic 
Functions field and other related subjects. For the most part the same functions exist in the SandMath 
Module, but this version is a more portable implementation that suits itself better for Clonix/NoVRAM 
owners.   

The initial section of the module covers the Carlson Integral forms as the method used to calculate the 
Incomplete Elliptic integral.  The Arithmetic-Geometric means (standard and alternate formulations) 
provide the basis for a faster and much simpler implementation to calculate the Complete Elliptic 
Integrals. 

The Examples section is meant to show a few immediate applications of the Elliptical Integrals, used to 
calculate Ellipse parameters, Ellipsoid surface areas, oscillation period of a simple pendulum, and 
mutual inductance between two coaxial coils. This is followed by a section on the Jacobi Elliptic 
Functions, plus the Theta, Whittaker W and Weierstrass Elliptic functions to round up (no pun intended) 
the elliptic theme. Note that the last two are not included in the SandMath. 

Finally, a relatively large section of the FAT deals with Orthogonal Polynomials. Here too there are a 
fundamental set of MCODE functions taken from the SandMath and SandMatrix, plus a new group of 
FOCAL routines written by JM Baillard (a constant reference in this module as well) that calculate the 
coefficients of the most common orthogonal polynomials. Combined with Polynomial Evaluation, 
Integral and 1st& 2nd Derivatives this set provides a comprehensive section on the subject. Without 
further ado, see below the list of functions included in the module: 

XROM  Function  Description Input Author 
30,00 -ELLIPTICS Section Header n/a n/a 
30,01 AGM2 Arithmetic-Geometric Mean arguments in X, Y Ángel Martin 
30,02 AGM2 Arithmetic-Geometric Mean arguments in X, Y Ángel Martin 
30,03 "CEI" Complete Elliptic Integrals argument in X JM Baillard 
30,04 CRF Carlson Integral 1st. Kind arguments in  Z, Y, X JM Baillard 
30,05 CRFZ CRF for complex arguments arguments in  Z, Y, X JM Baillard 
30,06 "CRG" Carlson integral 2nd. Kind arguments in  Z, Y, X JM Baillard 
30,07 CRJ Carlson Integral 3rd. Kind arguments in  Z, Y, X JM Baillard 
30,08 CRJZ CRJ for complex arguments arguments in Stack JM Baillard 
30,09 "EK" Elliptic Int. 2nd. Order argument in X Ángel Martin 
30,10 "ELI" Incomplete Elliptic Integrals arguments in X, Y JM Baillard 
30,11 ELIPE Complete Elliptic Int. 2nd. Order argument in X Ángel Martin 
30,12 ELIPF Incomplete Elliptic Int. 1st. Order arguments in Y,X Ángel Martin 
30,13 ELIPK Complete Elliptic Int. 1st. Order argument in X Ángel Martin 
30,14 GHM Geometric-Harmonic Mean arguments in X, Y Greg McClure 
30,15 "JEF" Jacobi Elliptic Functions  JM Baillard 
30,16 "KK" Elliptic Int. 1st. Order argument in X Ángel Martin 
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30,17 "LEI1" Legendre Integral 1st. Kind arguments in Y,X JM Baillard 
30,18 "LEI2" Legendre Integral 2nd. Kind arguments in Y,X JM Baillard 
30,19 "LEI3" Legendre Integral 3rd. Kind arguments in Z, Y,X JM Baillard 
30,20 -EXAMPLES Section Header n/a n/a 
30,21 -/+ Calculates (y-x)/(y+x) a,b in  X,Y Ángel Martin 
30,22 ECC Eccentricity a,b in  X,Y Ángel Martin 
30.23 ELP Perimeter of Ellipse a,b in  X,Y Ángel Martin 
30.24 "MIND" Mutual Inductance prompts for data Ángel Martin 
30.25 "SAE" Surface Area of Ellipsoide a,b,c in Stack JM Baillard 
30.26 "PEND" Pendulum period prompts for data Ángel Martin 
30.27 -JACOBIAN Section Header n/a Ángel Martin 
30.28 ACOSH Arc Hyperbolic Sine argument in X Ángel Martin 
30.29 AJF auxiliary for JEF n/a JM Baillard 
30.30 ASINH Arc Hyperbolic Sine argument in X Ángel Martin 
30.31 ATANH Arc Hyperbolic Tangent argument in X JM Baillard 
30.32 CBRT Cubic Root argument in X Ángel Martin 
30.33 COSH Hyperbolic Cosine argument in X Ángel Martin 
30.34 "P2" Quadratic Equation a,b,c in Stack JM Baillard 
30.35 "P3" Cubic Equation a,b,c, d in Stack JM Baillard 
30.36 SINH Htyperbolic Sine argument in X Ángel Martin 
30.37 TANH Hyperbolic Tangent argument in X JM Baillard 
30.38 THETA Theta Functions n, q, x in {Z, Y, X} Ángel Martin 
30.39 "WEF" Weierstrass Elliptic Function  Ángel Martin 
30.40 "WHIW" Whittaker "W" function  Ángel Martin 
30.41 -ORTHOPOL Section Header n/a n/a 
30.42 "BELL" Bell Polynomials Cnt'l word in Y, argument in X JM Baillard 
30.43 "BSSL" Bessel Polynomials Cnt'l word in Y, argument in X JM Baillard 
30.44 CHBT Chebyshev T(x) Cnt'l word in Y, argument in X Ángel Martin 
30.45 CHBU Chebyshev U(x) Cnt'l word in Y, argument in X Ángel Martin 
30.46 "FIB" Fibonacci Polynomials Cnt'l word in Y, argument in X Ángel Martin 
30.47 HMT Hermite Polynomials Cnt'l word in Y, argument in X Ángel Martin 
30.48 LAG Lagrange Polynomials a in Z, Cnt'l word in Y, point in X Ángel Martin 
30.49 LANX Generalized Lagrange Polyn a in Z, Cnt'l word in Y, point in X Ángel Martin 
30.50 LEG Legendre Polynomials Cnt'l word in Y, argument in X Ángel Martin 
30.51 "CBT+" Chebyshev T(x) Coefficients Initial  RG in Y, n in X JM Baillard 
30.51 "CBU+" Chebyshev U(x) Coefficients Initial  RG in Y, n in X JM Baillard 
30.53 "HMT+" Hermite Polynomials Coeffs. Initial  RG in Y, n in X JM Baillard 
30.54 "JCP+" Jacobi Polun. Coefficients Initial  RG in Y, n in X JM Baillard 
30.55 "LANX+" Generalized Lagrange Polyn Initial  RG in Y, n in X JM Baillard 
30.56 "LEG+" Legendre Polyn. Coefficients Initial  RG in Y, n in X JM Baillard 
30.57 "USP+" Ultra-Spherical Polyn Coeffs. Initial  RG in Y, n in X JM Baillard 
30.58 dPL 1st. Derivative polynomial Cnt'l word in Y, argument in X Ángel Martin 
30.59 d2PL 2nd. Derivative Polynomial Cnt'l word in Y, argument in X Ángel Martin 
30.60 DTC Delete Tiny Coeffs Cnt'l word in X Ángel Martin 
30.61 ITPL Integral of Polynomial Cnt'l word in Y, argument in X Ángel Martin 
30.62 PDEG Polyn Degree Cnt'l word in X Ángel Martin 
30.63 PVAL Polyn Evaluation Cnt'l word in Y, argument in X Ángel Martin 
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1 –Elliptic Integrals. 

In integral calculus, elliptic integrals originally arose in connection with the problem of giving the arc 
length of an ellipse. They were first studied by Giulio Fagnano and Leonhard Euler. Modern 
mathematics defines an "elliptic integral" as any function f which can be expressed in the form 
 

 
 
where R is a rational function of its two arguments, P is a polynomial of degree 3 or 4 with no repeated 
roots, and c is a constant.The most common ones are the incomplete Elliptic Integrals of the first, 
second and third kinds. The definitions for these functions is as follows: 
 

  

 

  
 
Besides the traditional Legendre form, the elliptic integrals may also be expressed in Carlson symmetric 
form – which has been the basis for this implementation. The Carlson integrals RF and RJ are therefore 
the basis to calculate the incomplete elliptic integrals if first and second kinds, according to the 
formulas shown below: 
 

• Incomplete Elliptic integral of 1st. kind: 

 
 

• Incomplete Elliptic integral of 2nd. Kind: 

E = sin (Φ). RF(cos2(Φ); 1-k.sin2(Φ); 1) - (k/3) sin3(Φ). RJ (cos2(Φ); 1- k.sin2

• Incomplete Elliptic Integral of 3rd. kind: 

(Φ); 1)  

P = sin (Φ). RF (cos2(Φ); 1-k.sin2(Φ); 1) - (k/3) sin3(Φ). RJ (cos2(Φ); 1-k.sin2(Φ); 1 ; 
1+n.sin2

 

(Φ) )  

Functions CRF and CRJ in the module are written in MCODE, which provides the speed advantage 
needed in the repeated calculations where these functions have a defining role. There are several 
functions and programs you can use to calculate these functions, as follows: 
 

Incomplete Integrals FOCAL Routine MCODE Function 
First kind “LEI1” ELIPF 
Second kind “LEI2” 

n/a Third kind “LEI3” 
All at once “ELI” 

Stack input for the first two cases are the amplitude Φin Y and the argument “m” in degrees in X. – 
and LEI3 also expects the characteristic “n” in Z. The result is always returned to X. 
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Examples:
 

in DEG mode (!) calculate F(0.7; 84), E(0.7; 84), and P(0.9; 0.7; 84).- 

  0.7,  ENTER^,  84,   XEQ "LEI1"    ->  F ( 84° | 0.7 ) =  1.884976271    
  0.7,  ENTER^,  84,   XEQ "LEI2"  -> E ( 84° | 0.7 ) =  1.184070048   
  0.9,  ENTER^,  0.7,  ENTER^, 84,  XEQ "LEI3" ->  P (0.9; 84° | 0.7 ) =  1.336853616 
 
 

Note that LEI1 uses data registers {R00 - R03}, and LEI2/3 also use R04. 
 
 
Obviously we could have used ELIPF for the first case – which has a slightly faster execution and 
yields the same result. ELIPF is implemented as a MCODE function which simply calls CRF with the 
appropriate input parameters. All the heavy lifting is thus performed by CRF, which together with CRJ 
do all the hard work in the calculation for the Elliptic Integrals of first, second and third kinds. 
 
 
The figure below shows the first and third kinds in comparison: 
 

 
 

Complete Forms 

Note also that the respectivecomplete

 

 elliptic integrals are easily obtained by setting the value of the 
amplitude, Φ(the upper limit of the integrals), toπ/2.Therefore, you could use the same functions to 
calculate the complete version of the integrals – but that’s a slower and generally less accurate 
approach than using the dedicated functions, based on the Arithmetic-Geometric means.  

Complete Integrals FOCAL Routine MCODE Function 
First kind “KK” ELIPK 
Second kind “EK” ELIPE 
Third kind n/a 

n/a 
All at once “CEI” 

 
 
The FOCAL programs “KK” and ‘EK” are shown below in case you’re interested. As you can see they’re 
little more than a driver for the AGM functions. Note also that the second kind requires calculating the 
first kind first.  
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Examples
 

: calculate the complete forms for the same cases shown above, for amplitude = 90. 

0.7, XEQ “ELIPK”   -> K(0.7) =2.075363135 
0.7, XEQ “ELIPE”  ->E (0.7) = 1.241670568 
 
 

No data registers are used, and any angular mode can be selected (not relevant here). 
The MCODE functions will save the initial argument in LastX 

 
 
Auxiliary functions. 
 
The following examples will illustrate the usage of the Carlson Integrals and the AGM functions.Note 
the inverse order of arguments for the Carlson functions; that AGM is a symmetric argument function; 
and that for AGM2 the distance between both arguments must be <=1 
 
 
CalculateRF(2;3;4),, and RG(2;3;4). 
 
4  ENTER^,  3  ENTER^,  2  XEQ "CRF"  RF(2;3;4) = 0.584082842  
4  ENTER^,  3  ENTER^,  2  XEQ "CRG"  RG(2;3;4) = 1.725503028  
 
Calculate  RJ(1;2;3;4) and RJ(1;2;4;7).   
 
4  ENTER^, 3  ENTER^,  2  ENTER^,  1  XEQ "CRJ"     RJ(1;2;3;4) = 0.239848100   
7  ENTER^, 4  ENTER^,  2  ENTER^,  1  XEQ “CRJ“      RJ(1,2,4,7) = 0.147854445 
 
 
Calculate the Arithmetic-Geometric Mean for 8 and 23.-  
 
8, ENTER^, 23, XEQ “AGM“  -> AGM ( 8, 23 )  = 14.51619896 
0.5, ENTER^, 0.9, XEQ “AGM2”  ->  AGM2(0.5, 0.9) = 0.685370957 
 
For additional information on this subject you should refer to JM Baillard web pages – which also 
include examples of utilization of  the FOCAL programs ”CEI”  and ‘ELI”. 
 

 
http://hp41programs.yolasite.com/ellipticf.php 

 
 
  

1 LBL "KK" 12 *
2 CHS 13 RTN
3 1 14 LBL "EK"
4 + 15 XROM "KK" 
5 SQRT 16 RCL O
6 STO O 17 X^2
7 1 18 1
8 AGM 19 AGM2
9 ST+ X 20 +

10 1/X 21 END
11 PI

http://hp41programs.yolasite.com/ellipticf.php�
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Arithmetic-Geometric Mean - Revisited {  AGM } 
 
In mathematics, the arithmetic–geometric mean (AGM) of two positive real numbers x and y is defined 
as follows: First compute the arithmetic mean of x and y and call it a1. Next compute the geometric 
mean of x and y and call it g1; this is the square root of the product xy: 
 

 
 
Then iterate this operation with a1 taking the place of x and g1 taking the place of y. In this way, two 
sequences (an) and (gn) are defined: 
 

 
 
These two sequences converge to the same number, which is the arithmetic–geometric mean of x and 
y; it is denoted by M(x, y), or sometimes by agm(x, y). 
 

Stack Input Output 
Y a0 Z 
X b0 agm(a0,b0) 
L - b0 

 
Note that “DATA ERROR” will be triggered when one of the arguments is negative (but not if both are). 
 
 

 
Example 1: 

To find the arithmetic–geometric mean of a0 = 24 and g0 = 6, simply input: 
 
24, ENTER^, 6,  XEQ “AGM”   13,45817148 
 
 

 
Example 2. Gauss Constant. 

The reciprocal of the arithmetic–geometric mean of 1 and the square root of 2 is called Gauss's 
constant, after Carl Friedrich Gauss. Calculate it using AGM: 
 
2, SQRT, 1, XEQ “AGM”   1,198140235;  1/X   0,834626842 
 
A piece of trivia: the Gauss constant is a transcendental number, and appears in the calculation of 
several integrals such as those below: 
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Example 3.- Complete Elliptic Integral of 1st Kind. 

Using AGM it’s a convenient way to calculate the Complete Elliptic Integral of the first kind, ELIPK (k), 
by means of the following relationship (where M(x,y) represents the AGM): 
 

 
where K(k) is the Complete

 

 Elliptic Integral of the first kind: 

 
As usual the conventions used for the input parameters get in the way – so paying special attention to 
this, we can re-write the expresion using the In
 

complete Elliptic Integral instead, as follows: 

ELIPF { π/2 | (a-b)/(a+b) } = π (a+b) / 4 AGM(a,b),       which is the same as: 
 
ELIPF { π/2, [(a-b)/(a+b)]^2 } = π (a+b) / 4 AGM(a,b) 
 
The idea is to find two values a,b derived from the argument: x = [(a-b)/(a+b)]^2 
 
The easiest approach is to choose a=1, and therefore:  b= [1-sqr(x)] / [1+sqr(x)] 
 
Here’s the FOCAL program used for the calculation. - Note the first step needed to get the square root 
of the argument, to harmonize both conventions used. 
 

 
 
 
And here are some results, compared to the values obtained using ELIPF. As you can expect, the 
execution is substantially faster using the AGM approach. 
 

x ELIPK(x) ELIPF (π/2, x) % Delta 
0.1 1.612441348 1.612441348 0 
0.2 1.659623599 1.659623598 6.02546E-10 
0.3 1.713889448 1.713889447 5.83468E-10 
0.4 1.777519373 1.777519371 1.12516E-09 
0.5 1.854074677 1.854074677 0 
0.6 1.949567749 1.949567749 0 
0.7 2.075363134 2.075363135 -4.81843E-10 
0.8 2.257205326 2.257205326 0 
0.9 2.578092113 2.578092113 0 

 
 
 
 
 
 

1 LBL "ELIPK" 7 E 13 4 19 E
2 SQRT 8 + 14 * 20 +
3 E 9  / 15 1/X 21 *
4 X<>Y 10 RCL X 16 PI 22 END
5 - 11 E 17 *
6 LASTX 12 AGM 18 X<>Y
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Modified Arithmetic-Geometric Mean  { AGM2 } 
 
We’ve seen the relationship between the complete Elliptic integral of first kind (ELIPK) and the AGM 
largely facilitates the calculation.  Would it be possible to calculate the complete Elliptic of 2nd. Kind  
(ELIPE) using a similar approach, and if so how?  As it turns out there is a way – involving the Modified 
AGM as described below.  First we define a sequence of triples as follows: 
 

 

 
 
Defining now the modified arithmetic-geometric mean (AGM2) of two positive numbers x and y as the 
common limit of the descending sequence {Xn} and the ascending sequence {Yn}, with X0 = x and 
y0=y (and z0=0) 
 
The expressions we’re interested in are those linking the Complete Elliptic integrals of first and second 
kind with the regular AGM and this newly defined AGM2. As it turns out both expressions exist, and are 
given below: 

  

  
 
Where M(t) is the regular AGM(1, t) and N(t) the modified AGM2(1, t); and where {β, γ} are two 
positive numbers whose squares sum to one: β^2 + γ^2 = 1. In particular the equations hold if (in 
violation of the assumption, otherwise imposed)  γ^2 = -1  - which implies β^2 = 2,  facilitating the 
calculation even more. 
 
So there we have it, both complete integrals can be obtained using the AGM and AGM2 functions, an 
iterative and fast convergent algorithm that can be easily implemented on the SandMath. Once AGM 
and AGM2 are available it’s easy to write ELIPK and ELIPE – see the method used in the example 
quick FOCAL program below: 
 

01 LBL “KK” 
02 CHS 
03 1 
04 + 
05 SQRT 
06 STO O 
07 1 
08 AGM 
09 ST+ X 
10 1/X 
11 PI 

 

12 * 
13 RTN 

 
14 LBL “EK” 
15 XEQ “KK” 
16 RCL 07 
17 X^2 
18 1 
19 AGM2 
20 *  
21 END 

  
 
(*) See Article by Semjon Adlag,http://www.ams.org/notices/201208/rtx120801094p.pdf 
  

http://www.ams.org/notices/201208/rtx120801094p.pdf�
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2.- Application Examples.   
 
The following two examples should illustrate the applicability of these special functions in the geometry 
subjects related to ellipses and ellipsoids – and therefore provide some context to their origins and 
development. 
 
 
Example 1.-
 

  Surface Area of an Ellipsoid.  { SAE } 

SAEis a direct application of the Carlson Symmetrical Integral of second kind, CRG, used to calculate 
the surface area of an scalene ellipsoid (i.e. not of revolution): 
 

 
 
which formula is:    
 

Area = 4π.RG( a2b2 , a2c2 , b2c2 ) 
 

 
with c < b < a 

Example:  a=2, b=4, c=9  -> A=283.4273843 
 
 
 
 
 
 
 
Example 2.-
 

  Ellipse parameters. { EECC  ,   -/+ } 

A related magnitude appearing in formulas related to ellipses is the ratio (a-b)/(a+b), sometimes 
squared. There’s no “proper name” for this parameter (unlike eccentricity) – but regardless the sub-
function -/+  (appropriately also without a proper name) in the Auxiliary FAT (the very last one in the 
catalog) is available to compute it using the values in Y and X registers. 
 
Example: for Y=1 and X=3, -/+  returns –0.5 
 
Using this function we can re-write the ELIPK program as follows: 
 

01  LBL “ELIPK 
02  SQRT 
03  1 
04  X<>Y 
05  -/+  
06  RCL X 
07  1 
08  AGM  
09  4 

10  * 
11  1/X 
12  PI 
13  * 
14  X<>Y 
15  1 
16  + 
17  * 
18  END 
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Example 3.- Perimeter of the Ellipse. {  ELP  } 
 

For an ellipse with semi-major axis a and semi-minor axis b and eccentricity e , the complete elliptic 
integral of the second kind  is equal to one quarter of the perimeter C  of the ellipse measured in units 
of the semi-major axis . In other words: 

, with:    

or more compactly in terms of the incomplete integral of the second kind  E(Φ, k), as: 

 
 
Function ELP  is available in the auxiliary FAT. It is a FOCAL program like the one listed below, which 
calculates the perimeter from the semi-axis values input in Y and X stack registers – a sweet and short 
application of the Elliptic Integrals at work. Note how the (pesky) input conventions are observed: the 
parameter k needs to be squared!  
 
 

 
 
 
Where we have also put EECC to work as a nice shortcut for the calculations, and one of the nice 
things it does is making sure the larger semi-axis is used as denominator, regardless of its location in 
the stack (either X- or Y- register). 
 
Note as well that no data registers are used with this scheme. 
 
 
Example: calculate the perimeter for a=3 and b=2 
 
3,  ENTER^,  2,  ΣF$ “ELP”  ->  15.86543959 
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Example 4.- Period of a Simple Pendulum. 
 
The differential equation which represents the motion of a 
simple pendulum is: 
 

 
 
where g is acceleration due to gravity, ℓ is the length of the 

pendulum, and θ is the angular displacement. 
 
For amplitudes beyond the small angle approximation, one 
can compute the exact period by first inverting the equation 
for the angular velocity obtained from the energy method 
(Eq. 2), 
 

 
 
which after integration and substitution leads to an 
expression in function of the complete elliptic integral of the 
first kind: 
 

 
 
 
 
Below is the corresponding program as included in the module, based on the Arithmetic-
Geometric Mean as the fastest surrogate for K(k). Note that the program prompts for the 
pendulum parameters and allows for repeat calculations at different initial angles: 
 

  

1 LBL "PEND' 14 LBL C
2 DEG 15 STO 01
3 "L=? (M)" 16 2
4 PROMPT 17  /
5 9.81 18 COS
6  / 19 1
7 SQRT 20 AGM
8 PI 21 RCL 00
9 * 22 X<>Y

10 ST+X(3) 23  /
11 STO 00 24 "T=" 
12 "<)=? (DEG)" 25 ARCL X
13 PROMPT 26 PROMPT

27 GTO C
28 END
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Example 5.- Mutual inductance of two coaxial circular coils. 
 
 

01  LBL "MIND" 
02  "R1=?" 
03  PROMPT 
04  STO 06 
05  "R2=?" 
06  PROMPT 
07  STO 07 
08  LBL 00 
09  "d=?" 
10  PROMPT 
11  LBL C 
12  STO 05 
13  RCL 07 
14  RCL 06 
15  * 
16  4 
17  * 
18  RCL 06 
19  RCL 07 
20  + 
21  X^2 
22  RCL 05 
23  X^2 
24  + 
25  / 
26  STO 05 
27  ELIPK  (ΣFL# 43) 
28  STO 08 
29  RCL 05 
30  ELIPE(ΣFL# 41) 
31  STO 09 
32  E 
33  RCL 05 
34  2 
35  / 
36  - 
37  RCL 08 
38  * 
39  RCL 09 
40  - 
41  PI 
42  * 
43  8 E-7 
44  * 
45  RCL 06 
46  RCL 07 
47  * 
48  RCL 05 
49  / 
50  SQRT 
51  * 
52  "MI=" 
53  ARCL X 
54  PROMPT 
55  GTO 00 
56  END 

 

 
This example shows a practical utilization of functions 
ELIPK and ELIPE to calculate the mutual inductance 
between two coaxial circular coils or radius r1 and r2, 
separated a distance “d”. The example is taken from 
page# 83 of the NASA SP-42 document, “Space 
Resources and Space settlements”. 
 
Note the conventions used in the definition, especially 
for the “k” parameter – not squared! 
 
Test cases: with r1=0.2, r2=0.25 

1. d= 0.1 ->MI=2,48787E-7 
2. d= 0.2 ->MI=1,23957E-7 

 
These results are in henries. 
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3.- Jacobi Elliptic functions. 
 
In mathematics, the Jacobi elliptic functions are a set of basic elliptic functions, and auxiliary theta functions, 
that are of historical importance. Many of their features show up in important structures and have direct 
relevance to some applications (e.g. the equation of a pendulum). They also have useful analogies to the 
functions of trigonometry, as indicated by the matching notation sn for sin. They were introduced by Carl 
Gustav Jakob Jacobi (1829). 
 
Definition as inverses of elliptic integrals  
 
There is a simpler, but completely equivalent definition, giving the elliptic functions as inverses of the 
incomplete elliptic integral of the first kind. Let     

 
 

Then the elliptic functions sn(u,m), cn(u,m), and dn(u,m) are given by: 

 
sn (u,m) = sin (Φ),   cn (u,m) = cos (Φ) ,   and 
 
Here, the angle Φ is called the amplitude. On occasion, dn(u) = Δ(u) is called the delta amplitude. In the 
above, the value m is a free parameter, usually taken to be real, 0 ≤ m ≤ 1, and so the elliptic functions can 
be thought of as being given by two variables, the amplitude Φ and the parameter m. 
 
The elliptic functions can be given in a variety of notations, which can make the subject unnecessarily 
confusing. Elliptic functions are functions of two variables. The first variable might be given in terms of the 
amplitude φ, or more commonly, in terms of u given below. The second variable might be given in terms of 
the parameterm, or as the elliptic modulusk, where k2 = m, or in terms of the modular angle α, where m = 
 sin2

 
 α. 

 
Formulae and Methodology. 
 
The implementation is based on the Gauss transformation, with the formulas used being: 
 
With  m' = 1-m ,  let  µ = [(1-sqrt(m')/( 1+sqrt(m')]2

 
   and   v = u/( 1+sqrt(µ) ] ,  we have:  

   sn ( u | m ) = [ ( 1 + sqrt(µ) ) sn ( v | µ ) ] / [ 1 + sqrt(µ) sn2 ( v | µ ) ]  
   cn ( u | m ) = [ cn ( v | µ ) dn ( v | µ ) ] / [ 1 + sqrt(µ) sn2 ( v | µ ) ]  
   dn ( u | m ) = [ 1 - sqrt(µ) sn2 ( v | µ ) ] / [ 1 + sqrt(µ) sn2

 
 ( v | µ ) ]  

These formulas are applied recursively until µ is small enough to use. 
 
The program calculates the three functions simultaneously, returning the result in the stack registers X [sn], Y 
[cn], and Z [dn]. The input parameters are the amplitude m, and the argument u – expected in Y and X 
respectively before calling JEF.  
 
 
Two functions are included in the module, JEF and AJF. The main program is JEF, which can be used to 
calculate the results for any value of the amplitude m (*). AJF is a MCODE funtion used to speed up the 
calculations, applicable when the amplitude lies between 0 and 1. You could use AJF directly in this case, 
since JEF does nothing but calling it in that circumstance. 
 
(*) If  m < -9999999999 the program can give wrong results. 
 

http://en.wikipedia.org/wiki/Elliptic_modulus�
http://en.wikipedia.org/wiki/Modular_angle�
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Example 1- Evaluate  sn ( 0.7 | 0.3 )     cn ( 0.7 | 0.3 )     dn ( 0.7 | 0.3 ) 
 
0.3, ENTER^, 0.7, XEQ "JEF"     -> sn ( 0.7 | 0.3 )  = 0.632304776                    

RDN -> cn ( 0.7 | 0.3 ) = 0.774719736 
    RDN -> dn ( 0.7 | 0.3 ) = 0.938113640  
 
 
Example 2 - Likewise for x=0.7 and amplitudes { 1,  2, -3 } 
 
sn ( 0.7 | 1 ) = 0.604367777          sn ( 0.7 | 2 ) = 0.564297007        sn ( 0.7 | -3 ) = 0.759113421  
cn ( 0.7 | 1 ) = 0.796705460          cn ( 0.7 | 2 ) = 0.825571855        cn ( 0.7 | -3 ) = 0.650958382  
dn ( 0.7 | 1 ) = 0.796705460          dn ( 0.7 | 2 ) = 0.602609138        dn ( 0.7 | -3 ) =1.651895746  
 
 
 
 
Example 3.-  Let’s verify the inverse relationship between the Jacobi Elliptic functions and the Elliptic Integral 
– for a given elliptic modulus (k) that will remain constant in both cases. The expression to verify can be 
written as: 
 
 Φ  = asin ( sn [k ;  F ( k | Φ) ] 
 
Let’s use the values  Φ = 84 and k =0.7  - We start by obtaining the value of F: 
 

0.7,  ENTER^,  84,   XEQ "ELIPF"   ->  F ( 84° | 0.7 ) =  1.884976271    
 
Then we use this intermediate result (and the initial parameter) as input for JEF as follows: 
 

0.7, X<>Y, XEQ "JEF"   ->   sn (0.7 | F(84° | 0.7) = 0.994521895 
 
And finally get the arc sine of the sn value to recover the original amplitude: 
 

ASIN     =>  84.00000002 
 
Which matches the initial value with an accuracy of E-8. 
 
 
 
Final remarks on the Jacobi Elliptic functions. 
 
Note the interesting role of the parameter m as it moves from 0 to 1. The condition m=0 causes the functions 
to become the same as the trigonometric sin and cos, whereas in the other extreme for m=1 they become 
the hyperbolic tanh and sech.  In more proper terms, these functions are doubly periodic generalizations of 
the trigonometric functions satisfying: 
 
sn ( v | 0 ) = sin v ;    cn ( v | 0 ) = cos v ;   and  dn ( v | 0 ) = 1  
sn ( v | 1 ) = tanh v ;  cn ( v | 0 ) = sech v ; and  dn ( v | 1 ) = sech v  
 
The figures in next page represent three intermediate stages; observe the tendency as the elliptic modulus k 
varies towards both ends of the range. Quite a remarkable behavior showing how the interrelationships 
amongst seemingly unrelated topics appear. 
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(Jacobian) Theta Functions.  {THETA} 
 
There are several closely related functions called Jacobi theta functions, and many different and incompatible 
systems of notation for them. One Jacobi theta function (named after Carl Gustav Jacob Jacobi) is a function 
defined for two complex variables z and τ, where z can be any complex number and τ is confined to the 
upper half-plane, which means it has positive imaginary part. It is given by the formula: 

 
The SandMath uses the following definitions as per JM Baillard, with:  q =  e-pi K'/K   (0<= q < 1) 
 
   Theta1(x;q) =  2.q1/4Σk>=0  (-1)k qk(k+1) sin(2k+1)x  
   Theta2(x;q) =  2.q1/4Σk>=0    qk(k+1) cos(2k+1)x  
   Theta3(x;q) =  1 + 2 Σk>=1    qk*k cos 2kx                                 
   Theta4(x;q) =  1 + 2 Σk>=1  (-1)k qk*k cos 2kx  
 
Use the function “THETA” to calculate any of these, with the function index in Z, and the two arguments (q, 
x) in Y and X. The result is returned in X. 

Stack Input Output 
T n# n# 
Y q q 
X x Theta(n,q,x) 

 
 
Example:   Compute  Theta1(x;q) , Theta2(x;q) , Theta3(x;q) , Theta4(x;q)   for  x = 2 ; q = 0.3 
 
1,  ENTER^,  0.3,  ENTER^,  2,  XEQ "THETA"  ->      1.382545289              
2,  ENTER^,  0.3,  ENTER^,  2   XEQ "THETA”  ->     -0.488962527  
3,  ENTER^,  0.3,  ENTER^,  2,  XEQ "THETA”  ->      0.605489938           
4,  ENTER^,  0.3,  ENTER^,  2,  XEQ "THETA”  ->      1.389795845 
 
 
The picture below shows the Theta functions 1-2 (on the left) and 3-4 (right) for a range of x between [-5,5] 
and a second argument y kept constant. Note the similar shapes between cn with T1,T2, as well as sn with 
T3,T4 
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Whittaker Functions. { WHIM ,  WHIW}  - <Requires SandMath> 
 
In mathematics, a Whittaker function is a special solution of Whittaker's equation, a modified form of the 
confluent hypergeometric equation introduced by Whittaker (1904) to make the formulas involving the 
solutions more symmetric. 
 
Whittaker's equation is 
 

 
 
It has a regular singular point at 0 and an irregular singular point at ∞. Two solutions are given by the 
Whittaker functions Mκ,μ(z), Wκ,μ(z), defined in terms of Kummer's confluent hypergeometric functions M 
and U by 

 
 
The graphics below show both functions for the particular case k=2 and m=0.5 
 

 
 
 
DATA REGISTERS:   R00 thru R02:  
Flags: none. 

 
 
 
 
 
Examples:  
 
   2,   SQRT,   3,  SQRT ,  PI,   ΣF$ "WHIM" ->M( sqrt(2), sqrt(3), π) = 5.612426206        
 
    2,  SQRT,  3,  SQRT,  PI,  XEQ “WHIMW” ->W( sqrt(2), sqrt(3), π) =2.177593412 
 
 
 

Stack Input Output 
Z K / 
Y µ / 
X x  W(k,m,x) 
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(Jacobian) Weierstrass Elliptic Functions.  
 

In mathematics, Weierstrass's elliptic functions are elliptic functions that take a particularly simple form; they 
are named for Karl Weierstrass. This class of functions are also referred to as P-functions and generally 
written using the symbol ℘ ., with variables ℘(x, g2, g3)  
 
Relation to Jacobi elliptic functions.For numerical work, it is often convenient to calculate the Weierstrass 
elliptic function in terms of Jacobi's elliptic functions. The basic relations are described in JM Bailard’s web 
pages, depending on the roots of the polynomial p(x) = 4x3- g2.x -g3   - where g2, g3 are the function’s 
“elliptic invariants”. 
 

 
The above plots show the Weierstrass elliptic function P(x ;g2,g3) and its derivative P'(x;g2,g3) for elliptic 
invariants g2=4 and g3=0 along the real axis. 
 
 
The program uses data registers R00 – R07, as well as several auxiliary functions as resources. The results 
include both the function value and its first derivative  in the stack – plus the half-periods in R09 & R10. 
 

STACK INPUTS OUTPUTS 

Z g3 / 
Y g2 P'(x;g2;g3) 
X x P(x;g2;g3) 

 
Example1:   Calculate   ℘(x;g2;g3) &℘'(x;g2;g3)  for  x=2, g2=4, g3=1  
 
 1, ENTER^, 4, ENTER^, 2, XEQ "WEF" ->   P(2;4;1) =  4.950267724        
     X<>Y  ->P'(2;4;1) = 21.55057197   
 
We have R09 = 1.225694692  &  R10 = 1.496729323   ( Ω&Ω' because F01 is clear )  
Therefore the primitive half-periods are:  1.225694692  &  1.496729323 i  
 
 
Example2:   Calculate   ℘(x;g2;g3) &℘'(x;g2;g3)  for x=1,  g2=2, g3=3  
 
3, ENTER^, 2,  ENTER^, 1  XEQ "WEF"  ->   P(1;2;3) =  1.214433709        
X<>Y ->  P'(1;2;3) = -1.317406193  
 
We have   R09 = 1.197220889  &  R10 = 2.350281226   ( Ω2&Ω'2 because F01 is set )  
Whence:     Ω =  0.598610445 - 1.175140613 i   &Ω' =  0.598610445 + 1.175140613 i 
 
  

https://en.wikipedia.org/wiki/File:Weierstrass_p.svg�
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4.- Orthogonal Polynomials.   
 
The last section in the module includes a comprehensive function set to calculate orthogonal polynomials. 
Some of the functions are written in MCODE, and therefore feature a speed and accuracy advantage over 
equivalent user code routines. 
 
All these routines use a similar convention for the data entry parameters: the order in the Y-register and the 
evaluation point in the X-register. The generalized Laguerre polynomials require a third parameter, which is to 
be entered in the Z-register. Upon completion, the result is left in the X register, and for the MCODE functions 
the original evaluation point is saved in the LastX register as well. No data registers are used. 
 
Legendre Polynomials 
 
n.Pn(x) = (2n-1).x.Pn-1(x) - (n-1).Pn-2(x)  ;  P0(x) = 1  ;  P1(x) = x 
 
Examples:  Calculate   P7(4.9)  
 
7, ENTER^, 4.9, XEQ”LEG”  -> P7(4.9) =1,698,444.018 
 
 
Laguerre Polynomials. 
 
n! . Ln(x) = (2n-1-x).Ln-1(x) - (n-1)2.Ln-2(x)  ;  L0(x) = 1  ;  L1(x) = 1 - x,  and: 

L0
(a) (x) = 1  ;   L1

(a) (x) = a+1-x   ;    n.Ln
(a) (x) = (2.n+a-1-x).Ln-1

(a) (x) - (n+a-1).Ln-2
(a) (x) 

 
Examples: Calculate L7 (3.14) and  L7

(1.4)(Pi) 
 
7, ENTER, 3.14, XEQ “LAG”   -> L(7, 3.14) = -0.978658720 
1.4, ENTER^, 7, PI, XEQ “LANX”  -> L(1.4, 7, 3.14)= 1.688893513 
 
 
Hermite Polynomials. 
 
Hn(x) = 2x.Hn-1(x) - 2(n-1).Hn-2(x)  ;  H0(x) = 1  ;  H1(x) = 2x 
 
Examples: Calculate H7 (3.14) 
 
7, ENTER^, 3.14, XEQ “HMT” -> 73,726.24325 
 
 
Chebyshev Polynomials of the first and second kind 
 
Tn(x) = 2x.Tn-1(x) - Tn-2(x)  ;  T0(x) = 1  ;  T1(x) = x   - first kind  
Un(x) = 2x.Un-1(x) - Un-2(x)  ;  U0(x) = 1  ;  U1(x) = 2x    - second kind. 
 
Examples:  Compute   T7 (0.314)  and  U7(0.314) 
 
7, ENTER^, .314, XEQ “CHBT”  ->T7 (0.314) = -0.582815680 
7, ENTER^, 0.314, XEQ “CHBU”  ->U7 (0.314) = -0.786900700 
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Fibonnaci’s Polynomials. 
 
F0(x) = 0   F1(x) = 1    and   Fn(x) = x Fn-1(x) + Fn-2(x)     if  n > 1 
 
Example: Compute F8(1/π) 
 
8, PI, 1/X,. XEQ “FIB” -> F8(1/π) = 1.615692565 
 
 
 
Bell Polynomials. Recurrent expression: 
 
 

, 
 

 
Example: Compute B8(1/π) 
 
8, PI, 1/X,. XEQ “FIB” -> F8(1/π) = 3.4051766 E10 
 
 
 
Bessel Polynomials. Recurrent expression: 
 

 
;  

 
Particular Values: 
 

 
 
 
Example: Compute y5(1/π) 
 
5, PI, 1/X,. XEQ “BSSL” -> F5(1/π) = 42.74840691 
 
We can verify the last result using the y5(x) polynomial above and function PVAL. Which returns a value of    
F5(1/π)  = 42.74840688  
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Coefficients of Orthogonal Polynomials 
 
Besides obtaining their values using recurrent expressions, an interesting subject is the calculation of the 
coefficients of the orthogonal polynomials. A considerably large program written by JM Baillard accomplishes 
this goal for the most frequently used cases. You’re encouraged to see JM’s webpage at:  
 
http://hp41programs.yolasite.com/orthopoly.php 
 
 
The program requires at least two inputs: the index of first register for coefficient storage in Y, and the order 
of the polynomial in X. Because the program itself uses the first 11 data registers, the first register available 
for coefficients must be 11 or greater. When a third parameter is required it is expected to be in the Z 
register.  
 
Note that as additional bonus the program returns the coeffs. for the polynomial of degree n-1 as well as the 
degree “n”. Upon completion the X-register has the control word that defines the polynomial in data registers, 
and the Y-register has the control word for the polynomial of previous order (n-1) as well. 
 
Once the coefficients are calculated and stored in data registers, you can use the evaluation functions to 
obtain their values, derivatives and primitives. The control word follows the same convention for all programs. 
 
Example 1. Find the Legendre polynomial of order n=6 
 
11, ENTER^, 6,  XEQ “LEG+”  ->  11,007  (and X<>Y:  18,023) 
 
Listing those registers we see:  R11 = 231/16;    R12 = 0;      R13 = -315/16  

R14 = 0;     R15= 106/16;      R16 = 0;   
R17 = -5/16 

 

Therefore:   L6(x) = ( 231 x6 - 315 x4 + 105 x2 - 5 ) / 16 
 
 
 
Example 2-. Find the Generalized Laguerre Polynomial Ln

(a)(x)  with  a = 3 , n = 6 
 
3, ENTER^, 11, ENTER^, 6, XEQ “LANX+”  ->  11,007  (and X<>Y:  18,023) 
 
{R11 - R17}  give:    L6

(3)(x) = x6 / 720 - 3 x5 / 40 + 3 x4 / 2 - 14 x3 + 63 x2 - 126 x + 84  
and {R18 - R23}: L5

(3)(x) = - x5 / 120 + x4 / 3 - 14 x3 / 3 + 28 x2 - 70 x + 56 
 
 
 
Example 3.- Chebyshev’s Polynomials.  Find T6(x) and U6(x) 
 
11, ENTER, 6, XEQ ”CBT+”   ->  11,007  (and X<>Y:  18,023) 
 
{R11 - R17}  give: T6(x) = 32 x6 - 48 x4 + 18 x2 – 1 
and {R18 - R23}: T5(x) = 16 x5 - 20 x3 + 5 x 
 
 
11, ENTER, 6, XEQ ”CBU+”   ->  11,007  (and X<>Y:  18,023) 
 
{R11 - R17}  give: U6(x) = 64 x6 - 80 x4 + 24 x2 - 1  
and {R18 - R23}: U5(x) = 32 x5 - 32 x3 + 6 x 
 
  

http://hp41programs.yolasite.com/orthopoly.php�
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Example 4.- Ultraspherical polynomials. If  a = 3 & n = 6 ,  Cn(a)(x) = ? 
 
3, ENTER^, 11, 6, XEQ “USP+”  -> 11,007  (and X<>Y:  18,023) 
 
{R11 - R17}  give: C6

(3)(x) = 1792 x6 - 1680 x4 + 360 x2 - 10  
and {R18 - R23}: C5

(3)(x) = 672 x5 - 480 x3 + 60 x 
 
 
 
Example 5.- Hermite Polynomials. Find Hermite polynomial of order n = 6 
 
11, ENTER^, 6, XEQ “HMT+”   -> 11,007  (and X<>Y:  18,023) 
 
{R11 - R17}  give: H6(x) = 64 x6 - 480 x4 + 720 x2 - 120  
and {R18 - R23}: H5(x) = 32 x5 - 160 x3 + 120 x 
 
 
 
Example 6. Jacobi Polynomials. Find Pn(a;b)(x)  with  a = 3 ,  b = 4 ,  n = 6 
 
3, ENTER^, 4, ENTER^, 11, ENTER^, 8, XEQ “JCP+” -> 11,007  (and X<>Y:  18,023) 
 
{R11 - R17}  give:  
P6

(3;4)(x) = 423.9375 x6 - 133.875 x5 - 334.6875 x4 + 78.75 x3 + 59.0625 x2 - 7.875 x - 1.3125 
 
and {R18 - R23}:  
P5

(3;4)(x) = 193.375 x5 - 56.875 x4 - 113.75 x3 + 22.75 x2 + 11.375 x - 0.875 
 
 
Obviously when the coefficients are not integers, the HP-41 may give approximate values - not the fractions 
directly. Though mathematically equivalent, evaluating these polynomials would often produce p(x) with a 
lower precision because of cancellation of leading digits, especially for large n-values: the signs of the 
coefficients alternate. 
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Polynomial Primitive and Derivatives 
 
 
Lastly, a few other functions deal with the calculation of derivatives and primitive (that vanishes for x=0) for 
any polynomial – also written in MCODE and using the 13-digit O/S routines for intermediate calculations. 
 
For example, evaluate the H6(x) polynomial and its derivatives & primitive at the point  x=1. 
 
11,017, 1, ENTER^, XEQ “PVAL”  ->  184.0000000 
RDN, 1, XEQ “dPL”   -> -96.00000000 
RDN, 1, XEQ “dPL2”   ->  -2,400.000000 
RDN, 1, XEQ “ITPL”   ->  33.14285712 
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