FORMULA EVALUATION ROM - HP-41 MODULE

FORMULHA EVHLURTION ROM
HP-Y{ Modu! e

Written & Programmed by

Greg McClure and Angel Martin
Revision VF++, May 2024

© MARTIN-MCCLURE — MAY 2024 PAGE 1 OF 92

FORMULA EVALUATION ROM - HP-41 MODULE

This compilation revision 1.7.3

Copyright © 2017-2024 Angel Martin & Greg McClure

relation procedore 2N oparate -
routine work
subprogram run
o (o}
part
(]
office
social affair . __.
® @ fu n’Ctlon < ““ mathematical function
s role
social gathering malfuriction (]
affair @ ®
(@] use
nccasion
purpose

social function
social occasion

selve

officiate

Published under the GNU software license agreement.
Original authors retain all copyrights and should be mentioned in writing by any part utilizing this

material. No commercial usage of any kind is allowed.

Thanks to Mark Fleming for his through revisions to the manuals and suggesting numerous
enhancements to the ROM.

Screen captures taken from V41, Windows-based emulator developed by Warren Furlow.
See www.hp41.org

! ___|
© MARTIN-MCCLURE — MAY 2024 PAGE 2 OF 92

http://www.hp41.org/

FORMULA_EVRLURTION-VF+14

Table of Contents

1. Towards a Visual FOCAL Language: VF++

a. Teaching new tricks toanol’dog.............. 4
b. Scope, Intent and Dependencies 4
c. Module function Summary e 6

2. Syntax and Rules of Engagement

a. Variables, constants and parameters 9

b. Formula Entry remarks i 9

c. Formula Evaluation rules. i ... 10
d. Syntax Table and keyboard Overlay. 11
e. Chained evaluations & Error handling. 14
f. EVAL Launcher and AlphatoMemory 15
g. Other Utility functions., 17

3. Example Programs

a. Vector distances and Dot product. 19
b. Polynomial Evaluation using Honer’s method. 20
c. Orthogonal Polynomials: Legendre, Hermite, and Chebyshev’s .. 21
d. Real Roots of Quadratic Equation. 22
e. Solve and Integrate Reloaded. v, 23
f. Use of EVAL$ with FINTGand FROOT ot v vir v, 24
g. Lambert Function..t e 25
4. EVAL$ Advanced Applications
a. Advanced test comparisons with EVAL?. 26
b. Evaluating Sums & Series with EVALY 28
c. Evaluating Products with EVALP 29
d. Appendix 1. Sub-functions in the auxiliary FAT 48
e. Appendix 2. Eval$ Buffer Structure., 49
5. VF++ Conditional Structurest i i e 33
a. WHILE we're atit: Putting EVAL? towork 34
b. What IF ?; Getting EVAL? money'sworth 36
c. Even more difficult: FOR...NEXT loopS cvv ... 42
d. SELECT-CASE Structures it it it ti it e e e 44
6. Eval_ APPS Companion ROM ittt it i e 51
a. Scripting Language facility using X-Mem. 58
Appendix4. MCODE Underpinnings of VF++ Structures 71

! ___|
© MARTIN-MCCLURE — MAY 2024 PAGE 3 OF 92

FORMULA EVALUATION ROM - HP-41 MODULE

Formula EvaluationROM

Visual FOCAL++ e
HP-41 Module 5 et - -
& 2 \\QQO - ~
: : : A /e
Introduction. Teaching new tricks to an old dog. - e A

Welcome to the Formula Evaluation ROM, a plug-in module for the HP-41 platform that allows you to
evaluate formulas typed in the ALPHA registers directly — without the need for RPN programs.

It is generally accepted that Symbolic Algebra and CAS are well beyond the scope of a venerable
machine like the HP-41, quickly approaching40-year-old architecture and design. Some pioneering
attempts were made in the old days, but their practical applicability (and very slow performance)
would render them into little more than exploratory incursions into the field.

Fast-forward to the present with PC emulators and SY’s 41-CL boards capable of TURBO speed — add
to that the stubborn dedication of MCODE programmers refusing to accept defeat, and the results are
interesting projects that push the limits of the original designs, like this one.

Scope, Intent and Dependencies

The core of the routines is based on Greg McClure’s idea for the design of the Symbolic Buffer — a
dedicated structure in the I/O memory area capable to store unformatted data, and therefore suitable
for abstract constructs like operations, function codes, and of course variable values. Wrapped around
that core is a set of functions that allow the user to input formulas in a convenient way, save them in
and recall them from data registers, and evaluate the results. Also remember that supporting all math
are the 13-digit OS routines doing the number crunching.

The initial design had very modest goals but was soon enough extended to include a comprehensive
set of functions and operations, only restricted by the inherent limitations of the LCD display, the
keyboard and other design aspects. EVALX and EVALP have added support for Direct evaluation of
formulas with sums and products, and EVAL? provided a general-purpose conditional testing based
on expressions combining multiple variables and math logic between them.

Variables Syntax Rules

Visual

Formula Editor
Parameters =—|:>—= FOCAL++

Operators Evaluation Engine

\ J

Note that the EVAL$ functions are programmable and can be used to replace calls to FOCAL

subroutines (typically made using “XEQ IND Rnn” with the ALPHA name stored in Rnn). In fact, this
module includes versions of SOLVE and INTEG programs using EVAL$ directly.

! ___|
© MARTIN-MCCLURE — MAY 2024 PAGE 4 OF 92

FORMULA EVALUATION ROM - HP-41 MODULE

Subsequent revisions added to the mix an intriguing set of new functions for a higher-level
programming experience: both DO/WHILE loops and IF/ELSE/ENDIF groups are available as direct
applications of the underlying EVAL$ and EVAL? functions of the module. These were followed by
daring implementations of FOR...NEXT and SELECT/CASE/ENDSLCT structures to complete the set of
Conditional Structures.

As for dependencies, this module is a Library#4-aware ROM that requires the library#4 to be plugged
in. Also, the ROM is only compatible with the CX OS, as internal routines from it are used. See the

diagram below for a conceptual summary of the interdependencies between the VF++ plug-in
modules

- Scripting Language
Formula EVAL APPS ROM
Evaluation

Engine

Conditlonal Equation Solver
Structures EVAL _EQS ROM

|

Library #4

This is not an AOS Module — even if you're already making that connection in your mind. If anything,
it'll be more akin to the CALC mode on the HP-71, albeit with the obvious huge differences in power
and flexibility. The Formula Evaluation concept is also somewhat similar to the AECROM'’s Self-
Programming facility, which also uses the ALPHA register to enter the definition formula. However,
with the Evaluation functions there are no FOCAL programs involved to calculate the results.

From low-level routines to the keyboard overlay, a lot of work went into making the Formula
Evaluation ROM. Much of it is transparent to the user, but it all plays an important role when it comes
to the moment to put it to a good use. We hope you find the module useful and enjoy using it as
much as we have enjoyed writing it !

! ___|
© MARTIN-MCCLURE — MAY 2024 PAGE 5 OF 92

FORMULA EVALUATION ROM - HP-41 MODULE

Formula Evaluation ROM — Function Summary

The table below lists all functions available in the module. The Main FAT section comprises 39

functions, while the Auxiliary FAT section adds another set of 32 functions. All of them are

programmable and directly accessible by the user.

Name Description Input Author

| 00 -FORM EVAL+ Section header n/a n/a
01 AFRMLA _ Enters Formulain ALPHA Uses Custom Keyboard Angel Martin
02 EVALS Evaluates Formula ->X Expression in ALPHA Greg McClure
03 EVALY Evaluates Formula ->Y Expressionin ALPHA Martin-McClure
04 EVALZ Evaluates Formula ->Z Expressionin ALPHA Martin-McClure
05 EVALT Evaluates Formula ->T Expressionin ALPHA Martin-McClure
06 EVALR _ _ _ Evaluates -> Data Register Expressionin ALPHA Martin-McClure
07 GET=_ Recalls parameter value a,b,c,d,ein prompt Angel Martin
08 LET= _ Sets Parameter Value a,b,c,d,ein prompt Angel Martin
09 SHOW=_ Shows Parameter Value a,b,c,d,ein prompt Angel Martin
10 SWAP= _ Swaps Parameter and X a,b,c,d,ein prompt Angel Martin
11 SF# _ _ _ Sub-function by index sub-fnc. Index# Angel Martin
12 SFS _ Sub-function by Name sub-fnc. Name Angel Martin
13 A-PM ALPHA to Program Memory String in ALPHA Angel Martin
14 ZEVL _ Eval Launcher Prompts for destination Angel Martin
15 -EVALS FNS Section header n/a n/a
16 RCLS _ _ Recalls Formula to ALPHA Prompts for Rg# Angel Martin
17 RG>ST_ _ Registers to Stack Prompts for Re# Angel Martin
18 ST<>RG _ _ Swaps Stack and Regs Reg# in Prompt Ken Emery
19 ST>RG _ _ Stack to Regs Prompts for Rg# Ken Emery
20 STOS _ _ Stores Formulain Memory Prompts for Rg# Angel Martin
21 SWAPS _ _ Swaps Alpha and Regs prompts for Rg# Angel Martin
22 “EVAL?” Evaluates Boolean Tests Expressionsin ALPHA Angel Martin
23 EVALZ Sums and Series Expressionin ALPHA Angel Martin
24 EVALP Products Expressionin ALPHA Angel Martin
25 LEFTS Extracts Left text #Chars in X Ross Colling
26 RIGHTS Extracts right text #Chars in X Ross Colling
27 SWAPS _ _ Swap ALPHA and Regs Regi in prompt Angel Martin
28 DO Begins While Loop WHILE statement below Angel Martin
29 WHILE Ends While Loop Expressionin ALPHA Angel Martin
30 IF Begins IF group Expressionin ALPHA Angel Martin
31 ELSE Branches IF ENDIF statement below Angel Martin
32 ENDIF Ends IF group none Angel Martin
33 FOR __ Begins For/Next loop Bbb.eeeinX Angel Martin
34 NEXT _ _ Ends For/Next loop none Angel Martin
35 SELECT _ _ Opens SELECT Structure Prompts for Reg# Angel Martin
36 CASE _ _ _ Individual CASE option Prompts for Value Angel Martin
37 CASELSE Unconditional Clause none Angel Martin
38 ENDSLCT Closes SELECT Structure none Angel Martin
0 -AUX FNS Section header n/a n/a
1 FILL Fills Stack w/ X-value valuein X J.D. Dodin
2 SKIP Skips Next PRGM Line Program code Erik Blake
3 EVALb _ Evaluates -> Buffer Register Expressionin ALPHA Angel Martin
4 EVALL Evaluates Formula ->L Expressionin ALPHA Martin-McClure
5 EVAL# EVAL by index Indexin ROO Greg McClure
6 LADEL Left ALPHA delete Text in ALPHA Ross Colling
7 RADEL Right ALPHA delete Text in ALPHA Ross Colling

© MARTIN-MCCLURE — MAY 2024

PAGE 6 OF 92

FORMULA EVALUATION ROM - HP-41 MODULE

Name Description Input Author
8 TRIAGE Variable assignment ASCCl file record Martin-McClure
9 WORKFL Current File Name Appendedto ALPHA Sebastian Toleg
10 CLRB6 Clear Buffer#6 Buffer#6in Memory Greg McClure
11 CHKS Checks Syntax Expressionin ALPHA Angel Martin
12 TSTS Test ALPHA operators T Angel Martin
13 PSHB6 Push X to Buffer#6 Data in X Greg McClure
14 POPB6 Pop data from Buffer#6 Data in bufferreg Greg McClure
15 NXTCHR Get Next Char Textin ALPHA Greg McClure
16 PRVCHR Get Previous Char Text in ALPHA Greg McClure
17 B7>ST Copies buffer to Stack None Angel Martin
18 ST>B7 Copies Stack to Buffer None Angel Martin
19 BLIP Make a Sound None Angel Martin
20 B6? Buffer #6 Check Datainl/O Greg McClure
21 B7? Buffer#7 Check Data in 1/O Angel Martin
22 XDGT Sum of Mantissa Digits Numberin X Angel Martin
23 Z0uUT Shows Complexvalue ReinX, IminY Angel Martin
24 CAT+ _ Sub-function CATalog R/S, SST, BST. XEQ Angel Martin
25 XQ>GO Pops the first RTN addr Skipsthe 1st. return HékanThérngren
26 DRTN2 Duplicate 2" RTN addr Overwrites 15t RTN Angel Martin
27 | KRTN2 Kills 2"¢. RTN addr Skipsthe 2nd. Return Angel Martin
28 ?RTN Tests for pending RTN Skips next line if False Doug Wilder
29 RTNS Number of pending RTN Data in RTN stack Angel Martin
30 DTST Display Test none Chris Dennis
32 SKY?N _ Bulk Key Assignments Prompts Y/N, Cancel HP Co.
Additionally, the EVAL_APPS ROM has a library of pre-programmed applications, as follows:
| o0 -EVALAPPS Section header n/a n/a
01 AINT ALPHA integer part Valuein X Fritz Ferwerda
02 “ARPXY” Alpha Replace Y by X PosinY, ChrSin X Greg McClure
03 “T$ Integrates [a,b]and N instack Angel Martin
04 “svs” Solves f(x)=0 Guess in X PPC Members
05 “AGM” Arithm-Geom. Mean X, yinX,Y Angel Martin
06 | “d2$” 2D-Distance P1, P2 in Stack Martin-McClure
07 “d3$” 3D-Distance Prompts for Vectors Martin-McClure
08 “DOTS” Dot Product 3x3 Prompts for Vectors Martin-McClure
09 “cLS” Ceiling Function Argument inX Angel Martin
10 “FLS” Floor Function Argument inX Angel Martin
11 “HRONS” Triangle Area (Heron) A b, cinY,ZT Angel Martin
12 “LINES” Line equation thru 2 points Y2,X2,Y1,X1 in Stack Angel Martin
13 “NDFS$” Normal Density Function pninz cinY, xinX Angel Martin
14 “P4s” Polynomial Evaluation Prompts for Coefficients Angel Martin
15 “QRTS” Quadratic Equation Roots Coefficientsinz,Y, X Martin-McClure
16 “RS$S” Rectangular to Spherical xy,z}inX,Y,Z Angel Martin
17 “SSR” Spherical to Rectangular {R, phi, theta}inX, Y, Z Angel Martin
18 -SAND MTH Section header n/a n/a
19 “KKS” Elliptic Integral 1°t. Kind argument in X Angel Martin
20 “NCKS” Combinations ninY, kinX Angel Martin
21 “NPKS” Permutations ninY, kinX Angel Martin
22 “LEGS” Legendre Polynomials orderinY, argumentin X Angel Martin
23 “HMTS” Hermite’s Polynomials orderinY, argument in X Angel Martin
24 “TNXS Chebyshev’s Pol. 1°. Kind orderinY, argumentin X Angel Martin
25 “UNXS” Chebyshev’s Pol. 2™, Kind orderinY, argumentin X Angel Martin
26 “enx” Exponential function Argument inX Angel Martin

© MARTIN-MCCLURE — MAY 2024

PAGE 7 OF 92

FORMULA EVALUATION ROM - HP-41 MODULE

Name Description Input Author

27 “ERDOS” Erdos-Borwein constant None Angel Martin
28 “FHBS” Generalized Faulhaber’s NinY,xinX Angel Martin
29 “HRMS” Harmonic Number Nin X Angel Martin
30 “GAMS” Gamma function (Lanczos) Argument in X Angel Martin
31 “JNXS” Bessel J integer order ninY, xin X Angel Martin
32 “LNGS” LogGamma Argument inX Angel Martin
33 “pPSIS” Digamma function ArgumentinX Angel Martin
34 “WLS” Lambert W Function Argument inX Angel Martin
35 “ERFS” Error Function Argument inX Angel Martin
36 “Cc1s” Cosineintegral ArgumentinX Angel Martin
37 “s1$” Sine Integral Argument inX Angel Martin
38 “JDNS” Julian Day Number MDY Date in {Z,Y,X} Angel Martin
39 “CALS” Calendar Date INDin X Angel Martin
40 -SCRIPTEVL Section Header n/a n/a

41 “EVALXM” Evaluates an XM File ASCII File Script Greg McClure
42 “EVLXM+” ExecutesScript File File Namein ALPHA Greg McClure
43 1ST 1st, Position Program usage Greg McClure
44 2ND 2"d Position Program usage Greg McClure
45 3RD 3" position Program usage Greg McClure
46 4TH 4% position Program usage Greg McClure

47 “EVLZ +”
48 “EVLP+”
49 “GMXM”

Enhanced EVALX Formulain ALPHA
Enhanced EVALP Formulain ALPHA
Makes GAMMA Script none

Martin-McClure
Martin-McClure
Martin-McClure

50 A1 Puts chars in RO0O-R01 String in ALPHA Martin-McClure

51 +REC Advance File Record Selected XM File Martin-McClure

52 “FCTH#” Factorial using Do/While Argument inX Angel Martin

53 “FIB#” Fibonacci using Do/While Argument inX Angel Martin

54 “ULAMS Collatz’ Conjecture Argument inX Angel Martin
do {

conditional code ;
} while (condition)

Boolean

Expression 1

If condition
is true

condition

Boolcan

Expression 2

If condition
is false

Statement

Boolean

Expression n

Statement - n

Default Statement

Rest of the Code

© MARTIN-MCCLURE — MAY 2024 PAGE 8 OF 92

FORMULA EVALUATION ROM - HP-41 MODULE

Syntax and Rules of Engagement.{ [*FRMLA|| EVAL$ }

Syntax rules always come together with this kind of functionality by definition: the formulas must
abide with the expected forms and formats for the Evaluation engine to decode them properly.

Obviously, power users can use a free-form manual typing in ALPHA (which requires access to curved
parenthesis and other special characters, as provided by the AMC_OS/X Module)— but a much more
convenient approach is to use the ~FRMLA facility that chooses the right mnemonics for the
functions and assists with the editing.

Here the 41-LCD limited length and modest character set force some compromises for practical and
effective rules, still meaningful enough to be unambiguous and easily recognized by the user. A good
balance between those two is the ultimate goal of every design.

Conceptually speaking, formulas are expressions that contain references to three components: Data,
Operators, and Functions. The data is further sub-divided in variables, parameters, and constants.
These are expected to be in the following arrangement:

e Variables are the stack registers contents, and are referenced by the corresponding register
letter {XYZTL}. ALPHA DATA contents are not allowed.

e Constants are explicit integer values (up to 9 digits) typed directly in the LCD, and

e Six additional parameters referenced by the lower-case letters {a, b, ¢, d, e} and the upper
case “F”, with values stored previously from X into the parameter buffer using function
LET=. You can also Swap, Recall or View their values using SWAP=, GET= and SHOW=,
followed by the corresponding parameter letter.

Formula entry general remarks:

e The special characters are entered automatically by AFRMLA; some examples are the left
and right parenthesis, the hash sign (#) for unary negative, the “alien” sign for the Greek
letter =, and the ampersand (&) for the MOD function.

e Two- and Three-character mnemonics are completely deleted when using the back-arrow
key. Underscores replace the deleted characters, and are removed appropriately with the
next character entry

e The LCD will only show the last 12-characters typed in, without any scrolling to the left if you
delete back passed that point — at which point you'll be flying blind...

e During the entry process some characters show punctuation signs (like dot, colon). This is for
editing purposes only (to inform the back arrow of the length to delete), and they won't be
transferred to ALPHA in the final form.

e The formula entry is terminated pressing [ALPHA] or [R/S] indistinctly. This will show the
formula and return control to the Operating system. Note that /f close parenthesis are missing
they will be automatically added to the formuia.

! ___|
© MARTIN-MCCLURE — MAY 2024 PAGE 9 OF 92

FORMULA EVALUATION ROM - HP-41 MODULE

e ALPHA contains the complete expression, which can be up to 24 characters long (an audible
tone will sound if you reach the limit). If your expression is longer, you'll need to break it in
two and evaluate each part sequentially.

e As a bit of intelligence logic, the function will automatically add a left parenthesis right after
any function mnemonic has been entered.

e There is a partial built-in syntax checking performed on exit, which verifies matching counts
of left and right parenthesis. Too many rights will trigger a "SYNTAX ERR"” message, whilst if
there are more lefts than rights the code will complete the expression appending as many
right parentheses as needed to make the counts match.

e Any other improper expressions won't be noticed until their evaluation time by EVAL$

Formula evaluation Rules:

e All operations must be declared explicitly, i.e. not implicit multiplication using * XY” — it needs
to be “X*Y”. Ditto for constants, like “2*n"

e For equal-precedence operations, the interpretation is always done from /eft to right. Thus for
instance, "XAYAZ" calculates (xy) Az, and “X&Y&Z" calculates MOD(MOD(x, y), z)

e Following the standard conventions, powers have precedence over all other operators
(addition, subtraction, multiplication, division, modulus). Thus “Y*5/Z" calculates y(5”z), and
not 5y”~z, which would be typed “(Y*5)/Z"

e Alsomuiltiplication, division, and modulus exponents have precedence over the addition and
subtraction. Thus “X+3*Y” calculates x+(3.y), and *not* (x+3).y - and “2~X+5" calculates
27x+5, and *not* 2/ (x+5) — which would be typed "2/~ (X+5)"

e Multiplication, division, and modules have the same precedence level with one another, thus
their interpretation follows the “from left to right” rule as stated before.

e And finally, addition and subtraction also have the same precedence level. i.e. the expression
“2-5+1" calculates (2 -5) +1 = -2, and *not* 2 — (5+1) = -4 ; which would be typed as:
"2-(5+1)” instead.

e As hinted at above, you need to use parenthesis to force an interpretation different from the
standard convention. Always remember that “with power comes responsibility” ... so refrain
from typing nonsensical strings if you can avoid it ;-)

In summary:

~ is the highest precedence
*, [, and &(mod) are the next highest precedence and are considered equal (left to right)
+, - are the lowest operator precedence and are considered equal (left to right)

All togethernow: "X +Y—-Z*T/LA" 3"wouldbe: (X+Y)-((Z*T)/ (L™ 3))

! ___|
© MARTIN-MCCLURE — MAY 2024 PAGE 10 OF 92

FORMULA EVALUATION ROM - HP-41 MODULE

Formula Evaluation Syntax Table

Finally, the tables below show the symbols and abbreviations used by the functions. Allin all, quite a
sizable set covering the basic functions plus the Hyperbolic added to the mix as a bonus. Note the
mnemonic selection avoids conflicts with variables, like "N” in TAN and the “T" register.

LCD LCD
Key Symbol Function Key Symbol

[+] Sum [1sCI][<-]

Name
Data Register {RO-R9}

)
=]

[-1 Subtraction [1la] a parameter

[*] Product [1[b] b parameter

[/1 Division [1lc] c parameter

[ENTERA] Power [1[d] d parameter

[Z+] Open Parenthesis [1el e parameter

[1/X] Close Parenthesis [1[cLX] F parameter

[CHS] Negative value [1Hm] T pi

[1[1SG] Absolute value [0] 0 integer

[1[SF] Integer part [1] 1 integer

[1[CF] Fractional part [2] P integer

[SQRT] Square Root [3] 3 integer

[XEQ] Modulus [4] 4 integer

[%] Percentage [5] 5 integer

[1Isc1] Square Power [6] 6 integer

[1IENG] Cube power [7] 7 integer
Exponential [8] 8 integer
Factorial [9] 9 integer
Sign [1[X] X Variable
Sine [1Y] Y Variable
Cosine [1[z] Z Variable
Tangent [I[T] T Variable

[1[ASIN] Arc Sine [1[LastX] L Variable

[1IACOS] Arc Cosine

[1[ATAN] Arc Tangent Key LCD Name
HyperbolicSIN [PR SUM Eval
HyperbolicCOS [IRTN Product Eval
HyperbolicTAH [,1 Semi-colon

[1[LBL] HyperbolicASIN [IVIEW Infinite index

[IGTO] HyperbolicACOS [1[x=y?] Comparison

[1[BST] HyperbolicATAN [TIx<=y?] Comparison

[LN] Natural Log [1[x=07?] Comparison

[LOG] Decimal Log [1[BEEP] Comparison

Remember the precedence rules as covered in the previous paragraphs; some will take you a little to
get used to but very soon you'll feel comfortable and be putting them to its paces.

Note that the EVAL$ functions are programmable and can be used directly, replacing calls to FOCAL
subroutines (typically made using “"XEQ IND Rnn” with the ALPHA name stored in Rnn). In fact, this
module includes versions of SOLVE and INTEGRATE programs using EVAL$ directly.

! ___|
© MARTIN-MCCLURE — MAY 2024 PAGE 11 OF 92

FORMULA EVALUATION ROM - HP-41 MODULE

The Custom Keyboard Overlay.

Using ~FRMLA simplifies the text entry and speeds the editing process. The picture below shows the
custom keyboard overlay used by ~FRMLA. Most functions have the same location as the original
HP-41 functions, so it should be easy to get familiar with the complete layout.

1. There's no need to turn ALPHA on to enter the formula.
2. Operators use the standard arithmetic keys plus [XEQ] for MOD and [%] for (%)
3. They are shown in blue font and their keys have a blue frame around them in the overlay.
4, \Variables and parameters are always accessed as SHIFTed keys. They're shown in red font.
5. Use the numeric digit keys to enter constants directly.
6. Functions are shown in black font. They're in both SHIFted and Un-SHIFTed positions.
7. Usethe Back-arrow at will to correct or modify the expression.
8. Press [R/S]or [ALPHA] to terminate the entry.
9. If missing, the right-parentheses will be added automatically by the function.
a: b: e d: e:
) Q() LG() LN()
f: (%) AS() AC() AT()
) () ()
FT() G() S() C() N()
EVALS AHS{) AHC() AHT()
[&] HS() HC() HT()
J L .
AFRMLA ABS() P() NULL
[[*1] [#] E() €
(<) IP() FP() T
=] 7 8 9
(>) {1=) 0 X:
[+] 4 5 6
Y: Z: R() u()
[*] 1 2 3
(=) pi: Lz .) (@)]
[/] 0 [3] RIS
hp-41 Form;:Ia EvaJl - - .
LT - |

Note: Characters in blue background are only used by EVAL?, EVALT and EVALP

Note that FRMLA is not programmable, thus when editing a program the expression entered in
ALPHA will be added as text lines steps performing an automated transfer to program memory (using
the function A-PM under the scenes; see description in a later section.

! ___|
© MARTIN-MCCLURE — MAY 2024 PAGE 12 OF 92

FORMULA EVALUATION ROM HP-41 MODULE

Show Me. (Missourians rejoice!)

The following examples should be helpful to familiarize yourself with the capabilities and operation of
the functions. Set the calculator in RAD mode and populate the stack with the following values:

X=1, Y=2, Z=3, T=4. Then EVALS$ returns the following results:

VAV VA VA VA VA VA VA VA
LA R /A N /A A /A A A N A A |
= 1.000000000
a more rugged test!
L P /A B VA A /A VA /A By /A A A
a trivial example showing function of a function

R vl) Lo e wY I Wil v
LSS5 155

Calculated as:LOG(y/2 + =”3)

Larger real root of a quadratic
equation with coefficients a,b,c

stored in the buffer registers
=R

|_,_|
L;,
Y

with a=1, b=4, c=1 it returns:

The Quintuple Twins. Chained Evaluations

You can store the final result in any of the five stack registers — simply using one of the five functions
available in the module. The most common destination will be the X register, and that’s the one used
by EVALS$. The remaining functions have the destination register as last character of the name, thus
we have EVALY, EVALZ, EVALT and EVALL to choose from, depending on the cases. Note that all
except EVALL (for obvious reasons) will save the previous contents of the destination register in
LastX-which then it effectively becomes “LastY"”, “LastZ"”, or “LastT".

The result of one evaluation can be used as input parameter in a subsequent one, enabling a chained
calculation mode. Being able to choose the location where the result is placed is therefore very
convenient for this operation.

Let’s see an example to calculate thereal roots of the quadratic equation: x~2 + 4x + 1 =0, withthe
coefficients stored in the buffer parameters as follows: a=1, b=4, c=1.

Using a more descriptive formula than the one above makes it a tad too large to fit in a single ALPHA
expression, thus we prepare the following two equations and store them in memory:

_, and: _

Stored in RO1-R04 Stored in RO5-R08

"J

l""l

2757945 (93

RCL$01, EVALY, RCL$ 05, EVAL$ =>

! ___|
© MARTIN-MCCLURE — MAY 2024 PAGE 13 OF 92

FORMULA EVALUATION ROM - HP-41 MODULE

As the Y value is still available, we can obtain the other root typing its corresponding formula:

b Y S O K
i HEER |, then EVAL$ again =>~ 3.7 3 71

=l

/]
!

i
LA

N
3

7
VA]

3

Y|
gy

Note that if the equation has complex roots the discriminant will be negative, and that'll trigger a
DATA ERROR condition. Should that happen, the expression in ALPHA can become scrambled — which
brings us to the next paragraph on error conditions.

For your convenience the EVAL_APPS module includes QRT$, an application program to calculate the
two real roots of a quadratic equation. Note that QRT$ will handle the negative discriminant so
ALPHA won't be rendered unusable.

Entering Formulas in program memory with

No doubt using AFRMLA is a powerful and convenient way to enter formula expressions in the
ALPHA register, and now it is also capable of entering those expressions in program memory by itself.
To achieve that it triggers behind the scenes the function A-PM — which transfers the current content
in ALPHA as program lines in memory, breaking the text into two when the total length exceeds 15
characters.

To use it just position the program pointer at the location where you want them to be inserted,
switch to program mode and execute AFRMLA. Since it isn't programmable it'll prompt for the text
string to be entered. The transfer will occur automatically when you press R/S or ALPHA to terminate
the formula string. Note that A-PM will check for available memory before inserting the new steps —
showing “"NO ROOM" if such isn't the case, and that if the program pointer is over a ROM location the
appropriate "ROM” error will be shown.

For example, the ALPHA string:"¥ + X / { - i} "is transferred to the program step:

-

M 7
o

-

T+ RS -
RAD 1 PRGM

k

It comes without saying that A-PM is an interesting function to say the least — but more than that,
the technique used to create program steps from the ALPHA information also lays the foundation for
self-programming routines, which will be fully exploited in the “Equation Solver” ROM, a follow-up
companion module to this one.

Note: Later on, we'll see another way to manage formula expressions not in ALPHA but in ASCII files
in extended memory. This will be done either:

1. Using ALPHA and a combination of the X-Functions INSREC/APPREC, or
2. Using the enhanced ASCII File editor (ED+) in the WARP Core module — capable of direct
editing of special characters like the parentheses and all other control symbols.

! ___|
© MARTIN-MCCLURE — MAY 2024 PAGE 14 OF 92

FORMULA EVALUATION ROM - HP-41 MODULE

Revision Note: Revision 3K includes two more EVAL functions similar to these but that leave the result
in the buffer registers {a — f} or in data registers instead of the stack. You can use them to directly
store the result there without altering other registers. Both are prompting functions:

for EVALR_ _ _ the prompt specifies the data register number, and
for EVALb_ the buffer register letter (a — f) — or number (1 — 6) in program use.

You only need to enter the value in manual mode, or as subsequent program step in a program. Note
that EVALDb and EVALL are implemented as sub-functions to save main FAT entries.

Supporting Data Registers {R00 to R09} as data variables.

Revision VF+ adds support for the first ten data registers in memory, thatis {R00 to R09}, as
variables for your formulas. The syntax for these is a capital "R"” followed by the one-digit register
number, i.e. from “R0” to “"R9". The way to enter these using ~FRMLA is a work-around of the
Square Power shortcut: [SHFT] [2] puts “R(™ on the LCD, so all you need now is hit the back arrow
to remove the left parenthesis, and type the index number using the numeric pad.

Example: Calculate the sum of 5+572+573, storing 53 in R0O5 previously

SIRS+R (5

UZER RAD

EVALS$ quickly returns with the result:

125, STO05, AFRMLA "% + R 5+ H (&) " EVAL$ => { S SAAAA A A

The data registers can therefore be part of your formulas as well, and thus numeric values from them
are used as input just by typing their coded number. Furthermore, you can user the EVALR function
to store the result in any data register of choice, a very clean and convenient way to do register math
not altering the stack or requiring the infamous RCL/STO combination.

Example: Put the sum of R01, R02, and R03 in data register R10

“"R1+R2+R3”, EVALR 10 => sum in R10, previous R10 value in LastX

Example: Calculate RO6*(1+R05) and using EVALR save the result in R07:

CiFHR5 EFRD EVALF @87

UZER RRAD ALPHA
p'US: UZER RAD 1

So there you have it, an even more seamless integration between the classic data storage locations
and the new formula-driven operations. Note however that EVALX , EVALP and EVAL? make internal
usage of data registers {R00-R10}, thus the data registers syntax will conflict in these cases.

! ___|
© MARTIN-MCCLURE — MAY 2024 PAGE 15 OF 92

FORMULA EVALUATION ROM - HP-41 MODULE

Eval Launcher: the new face of the Eval Module {EEVL }

Revision 3K ads an EVAL Function launcher, grouping all the possible storage destinations of the
evaluated result into a convenient command prompt, as shown below:

cEVvL RIWIZITLIRAR

UZER RRAD 12 4

. .

- Main screen:

Data register Rxx
Buffer Register { a—f}
Stack L register

Stack T register

Stack Z register

Stack Y register

Stack X register

Besides these functions, note that EVALP and EVALY are also covered by any of the EVAL# cases
when the formula expression starts with “P” or “ X" respectively.

>EVLis purposely not programmable, so you can use it in a program to select the function of choice.
As an example of utilization in a program,the three program steps below will store the result of the
evaluation in buffer register “b”. The first two steps are to invoke the EVALb sub-function (using the
sub-function launcher SF# and its index), and the third line is the buffer register number (2 for the
second one):

01 SF#
02 17 ; 17 subfunction
03 2 ; second buffer reg, i.e. “b”

The main launcher also provides shortcut access for other five functions not listed at the prompt, as
follows:

e USER key invokes the ~FRMLA function

e ENTERAinvokes CAT+ for sub-function enumeration catalog
e RADIXinvokes the LASTEF facility

e ALPHA invokes the SF$ sub-function launcher by name

e PRGM invokes the SF# sub-function launcher by index

Remember thatthe formula syntax will automatically trigger the EVALP, EVALY, and EVAL?
functions if needed when selecting any of the available choices -overriding so the nominal destination
- Thus they don't need additional choices in the launcher

! ___|
© MARTIN-MCCLURE — MAY 2024 PAGE 16 OF 92

FORMULA EVALUATION ROM - HP-41 MODULE

Caveat Emptor: Error Handling

The EVALS$ functions do a very reasonable job at error handling, but as any cost-effective software
implementation cannot be bullet-proof, nor does it cover all possible contingencies. There are two
main causes for errors: bad syntax (including multiple cases of incomplete or inconsistent
expressions), and wrong values (in the function definition domains, ranges of the result etc..).

Of these two the most difficult to handle are the error conditions incurred by the individual functions,
say trying to calculate the logarithm of a negative number. You should be aware thatin some
instances this type will show the ‘DATA ERROR'message and abort the execution of EVAL$ at the
point where the error is encountered.

The code includes pre-checking of argument values for FACT, LOG, LN, SQRT, ASIN and ACOS
functions, properly skipping the execution for non-valid ones and showing a "DATA ERROR"” message.
Division by zerois also accounted for. The “"ALPHA DATA”and “"OUT OF RANGE” conditions should
always be properly handled.

And finally the bad syntax condition is also properly handled, and reported using a dedicated
“"SYNTAX ERR"” message as well (which I can already tell you'll be soon tired of seeing) :

SYNTHX EFRF

Note however that the bad syntax conditions can be caused by many different reasons, and not all of
them may be captured by the EVAL$ logic. For instance: writing two variable names without an
operation between them, or a parameter name followed by an open parenthesis without a matching
closing one in mid-string. Adding error trapping for every possible contingency will not be practical
due to the additional code and the impact in performance. So, treat it gingerly, as it corresponds to a
very-venerable machine tip-toeing into new realms ;-)

Programmer’s Note: As of revision 1H the technique used to scan the formula characters in the
ALPHA register was changed to use the CX-0S routine [FAHED] (“Find Alpha HEaDer"). This allowed
for a substantial code size reduction (which was quickly re-used for other functionality added to the
module), and also made for a speedier execution of the code. As an additional benefit it was possible
to remove sub-functions for last-character marking and unmarking, as well as the text-rotation
undoing steps — since now the text is not being rotated to begin with. More robust, shorter, and
faster code: it doesn’t get any better!

! ___|
© MARTIN-MCCLURE — MAY 2024 PAGE 17 OF 92

FORMULA EVALUATION ROM - HP-41 MODULE

Other Utility Functions.

Functions “FRMLA and EVALS$ are the two main pillars of the module — but there’s much more to
it.In addition to the parameter buffer management functions (LET=, GET=, SWAP=, and SHOW=
described before), the module includes a few other functions very useful to prepare your variables
and to manage the expressions entered in by ~FRMLA. They are described below.

e STO$ and RCL$ perform both ways of the data copying between Alpha and four contiguous
standard data registers. Note that these functions are programmable, and in a program the
initial reg# is taken from the program step following the function. Note that while IND
arguments are valid, this function does not support Stack or IND Stack arguments.

WARNING: Do not try to read directly (with RCL) registersused by STO$, RCL$ since this will
change the contents of the registers and RCL$ will not be able to restore the alpha string
correctly. This is because doing a RCL on these registers’ forces normalization, whereas the
values created by these functions are NOT normalized.

e ST>RG and RG>ST move the 5 Stack registers to/from 5 adjacent data registers, starting at
the number entered in the prompt. Like RCL$ above, in a program the initial reg# is taken
from the program step following ST>RG. Note as well that while IND arguments are valid,
this function does not support Stack or IND Stack addressing.

This method to copy the stack had the advantage to leave the buffer “shadow” registers
unaltered, so they can be used to hold parametersin formula evaluations.

STO0% _ _ STARGE _ _

UZER RAD 1] UZER FRRD 1]

dk

e Similarly, ST<>RG and SWAP$exchange the5 Stack registers and the 4 ALPHA registers
respectively with 5 or 4 adjacent data registers, starting at the number entered in the

prompt.
ST¢LRG SWAPS _ _
USER RAD 1 USER RAD 1 |

e RIGHTS$ and LEFT$ are string manipulation functions. Theyuse the number in X as number
of characters to extract from the right or from the left of the string respectively. Part of these
functions is the deletion of the rightmost or leftmost character, used in a loop to complete the
total number of characters. These partial subroutines are also included in the auxiliary FAT as
RADEL and LADEL.

® FILL is a sweet & short routine which basically fills the stack with the value in X. So it is
equivalent to SHFL "XXXXL" in the WARP_Core module. This short routine was first
published by J.D. Dodin, one of the advanced capabilities pioneers.

! ___|
© MARTIN-MCCLURE — MAY 2024 PAGE 18 OF 92

FORMULA EVALUATION ROM - HP-41 MODULE

e LET=, GET=, SHOW=, and SWAP= work on the buffer register variables {a, b, c, d, e, F,
and G }. Use them to assign values to them, recall their current value to X, exchange it with
X value, or just to view their current value — I let you figure out which function is for each
action ;-)

These functions operate on the individual registers of the buffer, but you can also use the
pair below for a group action using the complete stack as data source.

e B7>STand ST>B7 are small utilities in the auxiliary FAT to move the contents of the stack
and the “shadow” registers, back and forth respectively. Obviously, ST>B7 s a very good
approach to assign values to buffer variables. The reverse direction B7>ST populates the
stack with the values in those variables.

The table below shows the actual correspondence between the stack and buffer registers.

a E'FN

BCD value n/

bs BCD value X-Reg [“e"
b4 BCD value ¥-Reg /[“d”
b3 BCD value Z-Reg [“c"
b2 BCD value T-Reg / “b”
bl BCD value L-Reg [/ "a"”
bo admin Header

The table below shows the indexes needed for the non-merged instructions described above.

Argument | Shown as: Argument | Shown as: Argument | Shown as:
100 00 112 T 124 b
101 01 113 Z 125 C
102 A 114 Y 126 d
103 B 115 X 127 e
104 C 116 L 128 IND 00
105 D 117 M 129 IND 01
106 E 118 N 130 IND 02
107 F 119 0 131 IND 03
108 G 120 P 132 IND 04
109 H 121 Q 133 IND 05
110 I 122 |- 134 IND 06
111 J 123 a 135 IND 07

(1) Note that sub-functions need to be accessed using a sub-function launcher, either SF$ - typing
their name - or SF#- entering its corresponding index number. See section in page# 39 for details.

! ___|
© MARTIN-MCCLURE — MAY 2024 PAGE 19 OF 92

FORMULA EVALUATION ROM - HP-41 MODULE

Example Programs.

1. Vector Distances, and Dot Product.

Three more easy examples follow (included in the EVAL_APPS ROM) to calculate the distance
between two points, (2D and 3D cases) and the dot product of two 3D-vectors.

For the 2D-distance the two points are expected to be in the stack: P1(T, Z) and P2(Y, X).

Example.. Calculate the distance between the points P1(-3,5) and P2(6,-2) from the figure below:
¥ Type:

5, ENTERA, -3, ENTER”, -2, ENTERA, 6,

B :-3.51‘\ XEQ “d2$" => d2=11.40175425

And the formula used is:
\ I R B /7 /7T VN AL ST oMNCTATN
[A ' LT N L NS
\ x

A (&,-2)

(R

For the 3D-distance and the Dot product the routines will prompt for the point/vector coordinates.
Here the first vector is stored in the parameter buffer registers using ST>B7, which leaves the stack
unchanged but also makes the following transformation:

X->"e” Consequently, the formulas used are:

Y _> \\dll

7 ->“¢” AN AR =) T RY) R0
wpr I:;_-:T = X*lll’\l/}xl_':l'Z*I_

T->%

L _> \\all

Examples. Let V1(1, 2, 3) and V2(4, 5, 6). Calculate the dot product and vector distance.

N
X

XEQ \\d3$n

) .. i
3, ENTERA, 2, ENTERA, 1, R/S =R
6, ENTERA, 5, ENTER”, 4, R/S H3-5 195 (52423
XEQ“DOT$" => I0T-3200000000

The routine listings are below, really a minimalistic coding just driving EVAL$ and data input/output:

" 01 LBL"d2% | " 1 EVALS " 23 ARCLX
Y o2 aymyrrasz-xe T “pDoT=" " 24 PROMPT
" oo3 J-nazy T ARCLX " 25 RN

" 04 EVALS " 15 PROMPT [26 1BLOD
- "1 RTN Foar wi=pn
" 05 ARCLX [17 LBL "d3$ | " 28 PROMPT
" 07 PROMPT " 18 XEQ 00 " 29 wzvme
" 08 RN T o19 “QfR{Z-c)+R{Y-d) " " 30 SHEL

¥ 0o LBL'DOTS | T2 SR (K-))" Fos1 |wa=pe
" 10 xeaoo oo EVALS " 32 PROMPT
11 e*Xed*¥eceT Yoo ng3=" " 33 END

! ___|
© MARTIN-MCCLURE — MAY 2024 PAGE 20 OF 92

FORMULA EVALUATION ROM - HP-41 MODULE

2. Polynomial Evaluation using Honer’s method.

All'it takes is re-writing the expression using in the Honer/Ruffini form, as follows:

Let P(x) = [a.x™4 + b.x"3 + c.x”2 + d.x + e]; from here:

POX) = o4 XEdtX

\ / v / AV IR
N/ g /R L Iy VAN L /\%\’j"/\%u///

Examples: witha= 1, b =2, c= 3, d = 4, and e = 5, evaluate the polynomial at x= 2 and x=-2.

Assuming the coefficients are stored in the homonymous buffer parameter registers (which is done
using LET= statements repeatedly), we type the formula (23 characters exactly) and proceed to
evaluate it:

~FRMLA => L F XX A F XX P XX R X k)))
2,EVAL$ => Sddaavaav
-2, EVAL$ => SOvaaa A

The module includes the program “P4$” that prompts for the coefficients and calculates the value.
Since the coefficients are stored in the parameter buffer, no standard data registers are used.

The same formula can be used for polynomials of smaller orders, just use zero for the coefficients of
the terms not required (obviously at least one term should exist to be a meaningful case).

1 LBL"P4s" | 21 3

2 4 22 RCLO3

3 IBLOO < | 23 LET=

P 24 2

5 ARCL 25 RCLO4

8 -=F" 26 LET=

7 PROMPT 7 1

8 STOINDY I8 "esXt(deXT (Xt "
9 RDN 29 "|-b+X*a)))"

10 DSEX 30 5TOS

11 GTODD ——— 31 IBLOL ¢
12 "o(0)=?" 32 =P

13 PROMPT 33 PROMPT

14 LET= 34 RCLS (00)

15 5 35 EVALS

16 RCLO1 36/ |P="

17 LET= 37 |ARCLX

12 4 38 |PROMPT

19 RCLO2 38 GTOO1

0 LET= 40 END

! ___|
© MARTIN-MCCLURE — MAY 2024 PAGE 21 OF 54

FORMULA EVALUATION ROM - HP-41 MODULE

3. Orthogonal Polynomials: Legendre, Hermite, and Chebyshev’s

These examples use the EVAL$ function within a DSE loop, taking advantage of the recurrent
definition of these polynomials and the LastX functionality of EVAL$. The results are left in X, and
the value of the previous order polynomial is available in LastX. From the definitions:

Type Expression n=0 value n=1 value
Legendre n.P(n,x) = (2n-1).x.Pn-1(x) - (n-1).Pn-2(x) PO(x) = 1 P1(x) = x
Hermite Hn(x) = 2x.Hn-1(x) - 2(n-1).Hn-2(x) HO(x) =1 H1(x) = 2x
Chebyshev 1%, Kind Tn(x) = 2x.Tn-1(x) - Tn-2(x) TO(x) =1 T1(x) = x
Chebyshev 2™, Kind Un(x) = 2x.Un-1(x) - Un-2(x) Uo(x) =1 Ul(x) = 2x

Examples. Calculate the values for: P(7, 4.9); H(7, 3.14); T(7,0.314); and U(7, 0.314)

7, ENTERA, 4.9, XEQ"LEG$” => 15 GHHYYE (T P7
LastX => (ABLEY LFESZ P6
7, ENTER, 3.14, XEQ"HMT$" =>71317RA4 T30 H7
LastX =>7 (ESEFEAYT H6
7, ENTERA, 314, XEQ'TNX$" =>-ATEESBZ 1A T7
LastX =>AAdd8THS 77T T6

7, ENTERA, .314, XEQ'UNX$" =>-ASHZH (SHH | u7
LastX =>AEYS99 52293 U6

The programs don't make use of any data registers, all operations are performed in the stack.

1 LBL"LEGS | 2% -

2 4 27 XY

3 ({2eT-1)eZeRL 22 STOZ

4 T 29 5700

5 GTOO00 30 ST+ X

6 LBL"HMTS | 31 F5?02

73 32 GTO D2

8§ GTOO00 33 2ereL

9 LBL"TNXS | 34 5701

10 0 35 [e2eT

11 GTO 00 36 LBLO2
12 LBL"UNXS | 37 EVALS

13 F 38 ISGT

14 LBLOO | 38 NOP

15 Xe<=F 40 DSEY

16 RDN 41 G002 ——
17 XY 42 RN

18 X=07 | 43 1BLOO |
19 GTOO00 44 E

20 E 45 RTN

21 X=Y? [26 1BLOL |
22 GToo1 47 e

23 STOT 48 FS?00

24 FS202 49 ST+X

25 ST+T 50 END

! ___|
© MARTIN-MCCLURE — MAY 2024 PAGE 22 OF 54

FORMULA EVALUATION ROM - HP-41 MODULE

4. Real Roots of Quadratic Equation.

The short FOCAL program below calculates the real roots of a quadratic equation, checking for
negative discriminantbeforehand — so DATA ERROR will be shown for complex roots (see program in
the appendix for an enhanced versions). Just enter the coefficients in the stack and execute QRT$,
and the two roots are shown and leftin Y and X on exit.

Example: Calculates the roots of Q(x) = x*2 + 2.x- 3

1, ENTERA, 2, ENTERA, -3, XEQ"QRT$"=>X i = {7 Xed - -4
1 LBL"QRTS 3 1 17 AVIEW
2 LET= 10 “(b*2-4*a*c)" 18 “(X+b)/2/a"
3 3 11 EVALS 19 EVALS
4 RDN 12 SQRT 0 xe=t
5 LET= 13 “(X-b)/2/a" 21 ARCLX
£ 2 14 EVALY 22 AVIEW
7 RDN 15 "x1=" 23 END
8 LET= 16 ARCLY

5. Bessel functions of 1st. Kind for Integer orders.

This short FOCAL program calculates the Bessel functions J and I for positive integer orders,
applying a direct sum evaluation of the general terms defined by the formulas below. Note that
despite a relative fast convergence the execution takes its time to reach up to the ninth decimal digit,
so rounding is done to the display settings. Note also that because of its length exceeding the ALPHA
capacity the general term expression is split in two, with an intermediate evaluation into the T
register needed. 7he final result is left in X and R0OO

Jale) = ﬂ,:i;ﬂ ml r((ﬂi)z 1) (g)mﬂ

To use them just enter N and X, then call the corresponding routine. For example:

1, ENTERA, 1, XEQ“$INX” =>)(1,1) = 0.4400505860

[01*LBLINXS" | 11tBLol 21R
02 CF00 12RDN 22ST+00 ‘add to sum
03 GTO 00 131 ;next index 23FS?10

| 04*LBL "INXS" 14t :"placed in X 24VIEW 00 ‘show E)artlal
05SF00 15"(Y/2)N2*X+Z) 25RND ;rounding
06*LBL 00 16FC? 00 ;isitJ? 26X#0?

07 1 17>"*#17X" ;qlternate 27GTO01

08 ENTERA 18EVALT ;first part 28RCLOO
19"T/FT(X)/FT(X+2)" 29 .END.

09 CLX 20EVALT ;second part

10 STO 00 !

© MARTIN-MCCLURE — MAY 2024

PAGE 23 OF 54

FORMULA EVALUATION ROM - HP-41 MODULE

6. Solve and Integrate Reloaded.

The next two programs are a straightforward application of EVAL$ to the well-known Solve &
Integrate cases. These routines are brand-new versions, based on the Secant method for Solve and
the Simpson rule for Integrate. They assume that the function is entered in the ALPHA register as a
formula before calling the program, which you can do using ~FRMLA of course.

The main advantage is the direct replacement of the "XEQ IND Rnn" calls to the integrand or solved-
for functions,replaced by EVAL$ instructions. Apart from that everything else is very similar to other
well-known routines, like SV and IT from the PPC ROM. Just enter the two root guesses (must be
different) in Y and X for SV$; or the integration data (number of slicesin Z, interval in Y,X) for IT$
and call the corresponding routine. It really doesn't get any easier!

For example, to find a root of f(x) = exp(x) -3 between x=1 and x=2:

L

H

ey
[

g
g
L3

SRR

AFRMLA“E(X)-3", 1, ENTER”, 2, XEQ“SV$” => LG

And to find the integral of the same function between 0 and 2 - with max# =10(max number of
subintervals needs to be entered in Z, right before the interval [a, b])

[N
L
[
L3
=3
A
[
A
ol
A

10, ENTER”, 0, ENTER#, 2, XEQ “IT$" =>

There you have it, no need to write auxiliary routines (which take RAM memory), or to deconstruct
the formula into an RPN-compatible format. The FOCAL listings for these routines are included below.
Note how they take full advantage of the formula evaluation functionality and are shorter than the
original ones (notably so SV$)

[1 LTS N, g, b, in stack 27 1BL 09
2 sTO$ 07 28 RDN
3 ENTERA b 29 ST+ Y(2)
4 EVALS 30 RCLY(2)
5 STO11 F(b) 31 EVALS
6 RDN 32 ST+ X(3) 2
7 ["(x-v)/z/2" (a-b)/2N 33 RIN
8 |EVALS 34 LBLOL
9 RCLS 07 35 RCL11
10 RCLY(2) a 36 |"x*T/3"
11 EVALS F(a) 37 |EVALS
12 ST+ 11 F(a) +F(b) 38 RCLS 07
13 LBLOO | 39 END
14 CIX [1 BL"SVS" |
15 E 2 sT0$ 07
16 ST- T(0) decrement N [3 1BLOO |
17 XEQO09 4 EVALZ
18 ST+ X(3) ax 5 XoY
19 ST+11 add to sum 6 EVALT
20 R 7 Y-ZX(Y-X)/(Z-T)"
21 X=0? 8 EVALS
2 Groo1 9 FS?10
23 RDN 10 VIEWX(3)
24 XEQ09 11 RCLS 07
25 ST+ 11 add to sum 12 X#Y?
26 GTO00 13 GTo00
14 END

! ___|
© MARTIN-MCCLURE — MAY 2024 PAGE 24 OF 54

FORMULA EVALUATION ROM - HP-41 MODULE

7. Use of EVAL$ with FINTG and FROOT.

For those who use the SandMath module, machine code versions for solving and integrating exist as
FINTG and FROOT, which run faster than the counterpart FOCAL programs IT$ and SV$.

The disadvantage to this is that a user program must be created that puts the formula in the Alpha
register and executesEVAL$. But that program is minimalistic in nature as we're about to see.

Here is an example of using FROOT to solve "SIN(X) + COS(X)"” between 120 and 150 degrees.

First, use ~FRMLA to create™ ¢ X} + L { X} "in the Alpha register. This does not require the
AMC_OS/X or other module capable to use ALPHA special characters.

You can save this string to registers {R00-R03} using STO$ 00 and then create a small program (this
example uses “SC" for the program name):

01 LBL"“SC”

02 RCL$ (00) - no need to enter the register index after RCL$ if it is zero
03 EVALS$

04 END

Now put 120 in Y, and 150 in X (to find the root between 120 and 150) and XEQ “FROOT" which will
prompt for the program name, enter “SC” and hit Alpha to execute.

Et voila, {4 5.0 00 V4 A 2 returns as the answer.

To integrate SIN(X)+COS(X) between 0 and 1 radian, XEQ "RAD”, put 0 inY, 1in X and XEQ “"FINTG"
which will prompt for the program name, enter *SC" and hit Alpha to execute. Resultis 1.301168679
(to 9decimal places).

Note that with the function A-PM you can enter the formula directly in a program step, just as if you
were using the AMC_OS/X module, instead of using the data registers and RCL$ instruction. This will
eliminate the need for the data registers and the operation will not take longer to perform.

In that case the program will look like this:

01 LBL“SC”

02 “S(X)+C(X)"
03 EVAL$

04 END

For sure this does not address the more complex cases involving special functions, but it pretty much
covers 80% of the field.

Note: If you're re-constructing formulas from RPN programs, make sure that the right conventions
are used when you transcribe the programs, for instance Y~X, and Y&X for MOD, etc. But this should
be much more intuitive this way around than putting the formula in RPN to begin with.

Warning: SV$ uses registers R07-R10, while IT$ uses registers R07-R11.
No data registers are used by FROOT and FINTG — which use another memory buffer instead.

! ___|
© MARTIN-MCCLURE — MAY 2024 PAGE 25 OF 54

FORMULA EVALUATION ROM - HP-41 MODULE
8. Lambert Function (;;i).

The Lambert W function is the inverse function of f(w) = w.exp(w) where exp(w) is the natural
exponential function and w is any complex number. The function is denoted here by W.

As it’s well known, the most common way to calculate the Lambert function involves an iteration
process using the Newton method. Starting with a good guess the number of iterationsis small,
leading to a relatively fast convergence.

The formula used for the successive iterative values is: F= H’(E:}EHTE}_

wj e — z

Wiy = Wi — .

Which with a bit of ingenuity can be written in exactly 24 characters, and therefore only one call to
EVALS$ is required per each iteration. Assuming the current value w is in X, and the argument z is in
Z the expression for the next value (w") is as follows:

~

[NRL v /v VA VARY
”mw = t\"\t\ﬁt\t\/“

N~
~-
~-
~

This is a very good example of how to put those pesky precedence rules to work to our advantage.

The small FOCAL routine below shows the complete code — just 18 steps in total, which include
visualization of the iterations when UF 10 is set, as well as dealing with pesky oscillations in the last
decimal digit caused by the Newton method in some instances.

1 LBL"WLS |

2 FI¥G & W

3 sTOZ

4 LN1+X

5 UWeKE(K)-ZH1" I

B N R T | S W()

7 LBLOO X

8 |stoY L ; : | >
9 EVALS =1 1 2 3 x
10 F57 10 i

11 VIEWX +-1

12 Koy

13 RND

14 KaeY T-2

15 RND W.l{

16 XHY? 13

17 GTOO00 -

18 END

The initial guess is Ln(1+x) — which works rather well to obtain the “*main” branch result of the
function. For arguments between (-1/e) and zero you can modify the routine to use"-2” instead to
calculate the second branch results.Here too this routine does not compete for speed with the all-
MCODE Lambert function in the SandMath — nor was it intended to.

! ___|
© MARTIN-MCCLURE — MAY 2024 PAGE 26 OF 54

FORMULA EVALUATION ROM - HP-41 MODULE

Advanced EVAL$ Applications.

The module includes a set of functions and FOCAL routines designed to make general-purpose test
comparisons, and to evaluate finite and infinite Products, Sums and Series. The FOCAL routines are
designed pretty much as if they were MCODE functions, in that they preserve the contents of the
stack registers and fully support chained evaluations. Let’s see them individually.

1. Advanced Test Comparisons with | EVAL?

Extending beyond the standard set of test functions of the calculator like X>Y? - EVAL? allows you
to compare two general-purpose expressions with one another — not altering the numeric value of the
stack or buffer registers.

Each expression can include any combination of variables, operators and functions as described in the
EVALS$ sections. The routine uses the test operators “ =", "<"”, *>" and “#" as delimiters to separate
the ALPHA expression in two parts; it then evaluates both and makes the comparison on the resulting
values for each of them. Also note that the combination *<="and “>="is supported as well.

Note that “#"” denotes the character #29 of the native set, as used in OS functions like X#Y? and
X#0?. It's not the “hash” character (#) used to denote unary minus as seen before.

X+vVvysz=v: 22 TEXLAGS LY
1]

USER RAD RAD 1]

EVAL? uses a very fast MCODE function to scan the ALPHA text looking for valid combinations of the
test operators. This function is located in the second FAT, andnamed TST$. If no test operator is
present or an invalid combination of them are found, the function will abort the FOCAL program
execution and will show the "SYNTAX ERR” message.

Although you could use them if you want, there’s no need to enclose the expressions between open
and close parenthesis to delimit them.As always, you need to mind the maximum length of the ALPHA
text, limited to 24 characters. Also do *not* put a question mark at the end of the text.

The Boolean result of EVAL? is used to skip the following program line if FALSE, and do nothing if

TRUE. You can use that as a control in your own routines. In manual mode (not running a program)
it'll also show the message “YES" or “*NO” for visual feedback to the user.

Let's see an example: for a more capable way to calculate the roots of the quadratic equation, add a
test on the discriminant to determine if it has complex roots. If we write Q(X) = aX~2+ bX + ¢,
then the evaluation syntax will be as follows:

A -HY ¥ ¥ -8

USER RAD 24

Note: You can use EVAL$ directly on an expression that uses one conditional operator.
The execution will be transferred to EVAL? for proper evaluation of the Boolean result.

! ___|
© MARTIN-MCCLURE — MAY 2024 PAGE 27 OF 54

FORMULA EVALUATION ROM - HP-41 MODULE

See below the equivalent FOCAL routine listing below for details. This routine was further optimized in
revision 1G for speed and simplified program flow — but as a FOCAL program it isn't comparable to
the final MCODE function.

EVAL? the FOCAL routine used data registers {R00-R10}, and user flags FO-F4.
EVAL? the MCODE function uses data registers { RO0 — R10 }, but no user flags are used.

1 LEL "EVAL?" | 32 =y

2 STOS (00) sSave expression 33 CLX

3 S5T=RG 04 Stack 1o Regs 34 GTODD —

4 T5TS Check for operators 35 LBL O3

5 ALEMNG 36 HEY?

& RCL Q%) position of character 37 CLX True Line

7 5TO 09 ready for RIGHTS 38 GTODD —* Faise Line

B - 35 LBL 05

9 E 40 FS? 01 double case?

10 - 4] HAY? yes, either one
11 FC? 01 was "=" there? 42 xeNT no, strictly "<"
12 GTO 01 na, skip adjustment 43 CLxX True Line

13 FC? 02 was =" there? 44 GTODD —* False Line

14 FS? 00 no, was "<" there? 45 LBL 02 double case?

15 DSE X(3) yes, adjust marker 46 F3? 01

16 LBEL 01 e 47 XHEYT yes, either one
17 LEFTS Left ALPHA string 48 17 no, strictly ">"
18 RG>ST 04 Regs to Stack 49 CLX True Line

19 EVALS evaluate first part 50 LEL 00 <— |Fm’se Line

20 W 09 51 "FALSE"

21 RCLS (00) restore expression 52 CF 04 for the record...
22 RIGHTS Right ALPHA string 53 w=07

23 RG=5T 04 54 "TRUE"

24 EVALS 55 ¥=07

25 RCL 0% 56 5F D4 for the record...
26 F57 03 gy 57 ?RTN sre 27

27 GTO 03 58 AVIEW show if not program
28 FS? 0D ety 58 RG=>5T 04 Regs to Stack
29 GTO 05 &0 RCLS (00) FESTLOrE EXpression
30 F57 02 61 END

31 GTO 02

Examples. Enter the values 4, 3, 2, 1 in the stack registers T, Z, Y, X, respectively.

Then test whether the following comparisons are true or false:

~

-~
~
.
!
=
|

-~
X

/s VoL
\ */\//

|\
N~
L’
r
r..
I

The MCODE function will show a Boolean YES/NO result message in the LCD if the function is used
interactively from the keyboard, but not so during a program execution. It'll also reflect the Boolean
statusin the general rule “skip if false”..

Note: Since revision 3H, EVAL? became a full-MCODE function. The main benefits are faster
execution speed, the use of the standard “"YES/NO” LCD messages in manual mode, and “Skip-if-
False” rule in program execution - not using user flag 04 anymore.

© MARTIN-MCCLURE — MAY 2024 PAGE 28 OF 54

FORMULA EVALUATION ROM - HP-41 MODULE

2. Evaluating Sums & Series with

This routine provides the capability to calculate sums or even (convergent) infinite series, just by
direct repeat execution of the general term — either the number of terms specified for sums, or until
the contribution to the partial sum is negligible for convergent series.

The syntax requires the initial and final values for the indexes (they must be constants), separated by
semi-colons *;” plus the function to sum — which uses the X register as index parameter. The first
character must be a Sigma and the complete expression must be enclosed by open and close

parenthesis.

The complete syntax can be put together using A~FRMLA, which has been upgraded to also handle
the Sigma character and the semi-colons. For example, to calculate the harmonic number for n=25
we just call AFRMLA to type:

X625, (/X0

Note that the general term does not need to be enclosed by parenthesis — the routine knows it starts
right after the second semi-colon and ends right before the final parenthesis.

As an example of infinite series, let’s calculate the Erdos-Borwein constant 1.606695153 using the
following syntax (note the letter 1" used in the final index for infinite, but any non-numeric character
will work as well):

I /7 (22X~ 1))

This routine uses the current decimal settings to determine the accuracy of the result. FIX 9 is the
most accurate but will require the most number of terms (and longest time) to converge.

Setting user flag 10 provides a visual feedback of the result after each new term as been added to
the sum. This is very useful if the convergence is slow (like in this case).

Evaluation Functions as Power Series

You can also use EVALX to calculate functions expressed as power series. In that case the function
variable is assumed in the X register on entry, but it gets moved to Y at the beginning of the routine
execution. Therefore, it’s represented by “Y" in the evaluating syntax, and not by “X” - which is
reserved for the index value (usually “*n” or “k” in these formulas).

For example, to calculate the exponential function we'll use the syntax below:
KBy I YAX/FT X))
Don't forget to set the number of decimal places to the desired accuracy.

EVALZX is a direct application of EVAL$ used in a loop. It leaves the result in X, and the initial
argument in L — preserving the initial contents of the stack Y-Z-T registers. It uses data registers
{R00-R10} and user flags FO, F1.

! ___|
© MARTIN-MCCLURE — MAY 2024 PAGE 29 OF 54

3. Evaluating Products withEVALP |

The product counterpart is just a small modification of the same routine, and therefore shares the
same general characteristics and data registers requirements. In this case the initial character must
be a “"P” instead of sigma, but the rest of the syntax is identical.

n!
For example, let’s calculate the Permutations of n elements taken k at a time: ——m——

(n— k)l

Which can be calculated as the product of the last (n-k+1) terms of the numerator - from (n-k+1) to
n - rather than using the FACT function — avoiding so *OUT OF RANGE" errors if n>69 and k>=1

Thus, the required syntax should be of the form: “P(n-k+1;n;(n-k))”
All we need is a way to place the correct values in the ALPHA string, and the perfect function to do

that is ARCLI in the AMS_0OS/X module (or any of its equivalents like AINT or AIP). Say we start
the routine withn in Y and k in X, then we use the small program below:

01 LBL“NPK$” 08"P(*

02 STO Z(1) 09 AINT

03 CHS 10 |-%"

04 E 11 LASTX n

05 + n-k 12 AINT

06 X<>Y leaves k in L 13 |-%X)”

07 + n-k+1 14 XROM“EVALP”
15 END

The complementary routine to calculate the Combinations CNK is easy done using NPK as basis:

|o1 LBL “NCK$" n!

02 XEQ "NPK$” El(n — k)!
03 “X/F(2)"

04 EVAL$

05 END

Examples:

52, ENTER?, 5, NPKS S LWETSAA
52, ENTERA, 5, NCKS S SHEYREY

The routine code for both EVALX and EVALPis shown below. As you can see only functions from this

module are used — this makes the program a little longer but it's more convenient for compatibility
reasons.

In the final versions of the module these functions are hybrid: FOCAL with MCODE header. The first
part is MCODE, doing all the syntax verification and preparing the variables. The second part is
FOCAL, doing the loop calculations as per the code in next page.

Note: As of revision 2H you can use EVAL$ directly on an expression that uses the sigma (") or
product (“P") characters. The execution will be transferred to EVALY or EVALP automatically.

! ___|
© MARTIN-MCCLURE — MAY 2024 PAGE 30 OF 54

FORMULA EVALUATION ROM - HP-41 MODULE

Program listing.

1 LBL"EVALE" |
2 CFoOl

3 GTOOI

4 LBL"EVALP" |
5 SFOl

6 LBLOL <— |
7 STOS00

8 ST*RG 04
9 126

10 Fs?01

1 80

12 XEQOO

13 T

14 XEQOO

15 RADEL

16 ANUM

17 STO10

18 XEQ 03

12 ANUM

20 ATOX

21 57

22 Ne=Y?

23 o

24 ¥0?

5 RCLZ

% 1

7 %

22 5T+10

22 CFOD

30 ¥=D?

31 SFOD

32 NEQ03

33 O

34 STOO09

35 Fs?01

36 15609

save in {ROD-RO3}

"E" character

remove & check

""" character
remove & check

remove close paren

getinitial index

advance to next field

get final index

get first char of field

number limit
not a number?
then clear it
was a number?

YES, recover value

divide by 1,000

add to control word

default: SUM

wasn't a number?

SERIES mode

move 1o next field

initial value
reset sum
products 7
yes, start = 1

37 LBLOS —

38 RCLO7Y function argument
39 RCL1D get current index

a0 INT stripe off limit

41 EVALS evaluate expression
42 FCr 01 sums?

43 (5T+09 add to partial sum
44 FEY 01 products ?

45 (5T=09 factor in partial product
46 FS? 10 need to show?

47 |VIEwW 04 yes, oblige

48 FCr 0D infinite series?

43 GTo02 — no, skip owver

50 1SG 10 next index

51 NOP

52 FSr o0l products ?

53 DEE X¥(3)

54 NOP

55 RND as per the dsp settings
56 X#0v was term null?

57 GTOO0S5 > no, do next

58 GTOO1 yes, show final result
59 IBLO2 @ =— |finite SUM

60 ISG 10 next index

61 GTO 05 repeat if not done
62 LBLOL =—

63 RCL 09 final result to X

B4 | H<= 07

65 ETO Lj4)

66 RG>ST 04

67 RCLS 00 restore initial syntax
BE |RTN done.

6% LBLOD

7O ATOX remaove char

71 X=v? bad syntax?

72 RTN no, return

73 SYNERR yes, show "SYNTLAX ERR"
74 IBLO3

75 ATOX remaove char

76 59 " character

FERY -4 got it yet?

78 GTO03 — no, do next

7% END yes, done.

Note also that as of Revision 2H of the module, these programs have a MCODE header instead of a
FOCAL one. This facilitates the execution transfers from EVAL$ in case that special characters are

found in the string.

Always remember that the index values used in these two functions need to be constant values, i.e.
you cannot use a variable for them. The examples included in the manual show how to circumvent
this restriction using AINT — which adds the current value of the “X” variable to ALPHA.

© MARTIN-MCCLURE — MAY 2024

PAGE 31 OF 54

FORMULA EVALUATION ROM - HP-41 MODULE

Examples: Gamma and Digamma functions.

Armed with the routines described before, it is relatively simple to write short FOCAL programs to
calculate the Gamma and Digamma functions. To that effect we'll use the Lanczos approximation for

qo= 75122.6331530

Z g,2" q: = 80916.6278952

T(z) _ (z + 5'5')8+05e—(z+5.5) q,= 36308.2951477
I_L(z +) g2 = 8687.24529705

x=0. qa= 1168.92649479

qs = 83.8676043424

s = 2.5066282

Gamma, with the well-known formula:

Note the product in the denominator, which will be calculated using EVALP.

Examples: 1, XEQ “"GAM$” SIARAARAAA A
PI, XEQ “"GAM$" SOOHERA T TE T
-5.5, XEQ “"GAM$” SAM RS IPRESS

As you can see the program also works for values x<0 (not integers), including support for these

arguments using the reflection formula: .
b

I'l—2)T'(z)=— .
() () SI:NTwWE

On the other hand the formula for the Digamma function (Psi) is a combination of a logarithm and a
pseudo-polynomial expressionin u = 1/x

W(z) = log(z) — 5~ — o + =i — o

{
5z~ 1922 T 1208~ 25200 T ¢ (E)

programmed as: u”~2{[(u~2/20-1/21)u~2+1/10Ju~2-1}/12—-[Lnu + u/2],

The implementation also makes use of the analytic continuation to take it to arguments greater than
9, using the following recurrence relation to relate it to smaller values - which logically can be applied
for negative arguments as well, as required.

U(r+1) =W (z)+ i

Note the Summation in this expression (with as many terms as delta between the argument and 9),
which will be calculated using EVALZX.

Examples:
Pl, XEQ "PSIS" > AN (440
1, XEQ “PSIS” > A5 772 {55 b b (opposite of Euler's constant)

! ___|
© MARTIN-MCCLURE — MAY 2024 PAGE 32 OF 54

FORMULA EVALUATION ROM - HP-41 MODULE

-7.28, XEQ “PSI$” ->H.

LA

tt

L

ME Y

And here’s the program listing for these functions. Note we're using several tricks and executing
repeated times the EVAL$ functions, taking care of partial expressions of the formula each time.

1 LBL "GAMS" |x=0 1 LBL "PSIS" |

2 CF 04 2 STO 00 ¥

3 ¥<07? 3 0 initial delto
4 »=07 4 Wy

5 GTO0d —— 5 9 accuracy limit
& RAD & My

7 SF 4 7 LBLOD *—

2 "1-X" X=(1-X} 3 HY?

g EVALS g ¥=Y? =87

10 LBL 04 - | 10 GTO 01 yes, exit loop
11 UPI0EYXR)" deneminaror 11 E

12 EVALP saves x in RO9 12 ST+ T(0) increase delta
13 STO 09 save for iater 13 5T+ Y(2) Increase argument
14 55 14 ROM fix stack

15 LET=a 15 GTo0 —— do next

16 LASTY X 16 LBL 01 -

17 "[¥+a)r(H+1/2)/E" trascendent term 17 NP2

18 |-"{¥=a)" 18 EVALY

19 EVALS 15 "R{L1)

20 5TO 10 partial result 20 EVALS

21 7512263315 ql 21 K121)oK

22 LET=a 22 [-"1/10)*x-1"

23 80916,62789 gl 23 EVALS

24 LET=b 24 "KL 13-

25 36308,20514 g2 25 EVALS

26 LET=¢c 26 RCLZ(1) delta

) B6B7, 245297 g3) ¥=07? was x==97
28 LET=d 28 GTO 01 yEes, skip adjustment
29 1168, 926495 g4 29 E

30 LET=e 30 -

31 83, 86760434 q5 31 "Pfa;"

32 EMTER" 32 AINT

33 2 5066282 g6 33 RDMN

34 LASTX X 34 RCL 0O X

35 R Al R polynomial term 35 |- 1K)

36 = EETY)) part-1 36 EVALP

37 EVALS 37 - ok, | cheared here...
38 “geb L A2 part-2 38 Wy

2 |EVALS 33 IBLO1 |
40 RCL 10 get partial result 40 h e
41 - factor it in 41 CLD
42 RCL 09 get denominator 42 END
43 ! divi by it
44 FCr 04 negative argumenty
45 GTO 04 na, skip
45 RCL 08 get (1-x)
a7 Y S 1K) reflection formula
48 EVALS
45 LBLO4 @ «—— |
50 CLD clear display
51 END done.

© MARTIN-MCCLURE — MAY 2024

PAGE 33 OF 54

FORMULA EVALUATION ROM - HP-41 MODULE

VF++ Conditional Structures

The remaining of this chapter describes the VB-like functions included in the Formula Evaluation
module. This function set brings the classic FOCAL programming up one notch, so things begin to
resemble a higher-level programming language — even if the same intrinsic platform limitations are
still there of course.

These functions are associated in groups or structures, with each of them being either statements or
defining independent clauses within the structure. As such, they often include integrity checks built-in
to verify the presence of other functions needed to complete the structure. These checks scan the
body of the FOCAL program looking for the expected pairing functions, saving their location in
memory for later use depending on the result of conditional expressions, etc. Indeed, a new kind of
functions and a first on the HP-41 platform.

Function table:

Structure Function Description Technique
DO Starts structure EVAL? tests
DO/WHILE WHILE Repeat while True Uses RTN Stack
IF Does if expression is True EVAL? tests
IF.ELSE.ENDIF ELSE Does if expression is False Uses RTN Stack
ENDIF End of structure
FOR _ _ Starts loop bbb.eee:ss parameters
FOR..NEXT : . , .
NEXT _ _ Repeats if not matched in SELCTed register
LOOPT Recalls current pointer to X
SELECT _ _ | Activatesit and Selects Register SELCT’ed register in Header
CASE _ _ _ | Does clause if True Case value in Header
SELECT-CASE CASELSE Does Clause regardless Deactivates searchflag
ENDSLCT Deactivates and Ends structure Deactivates flag and clears

As mentioned before, the defining functions { DO, IF, FOR, and SELECT }scan the body of the
program to check the integrity of the structure, looking for the pairing function that defines the end
of the structure - WHILE, ENDIF, NEXT, and ENDSLCT respectively. When that’s not found the error
message “NO BOUND" is displayed and the program execution halts:

‘w1 Bnnuﬂ
[] []]
USER 0

The VF++ structures are designed to be used in a running program. The individual functions can also
be executed manually but the structure integrity check will likely throw the “NO BOUND” error
message — unless the program pointer is coincidentally positioned in a memory segment (defined by
a global label and END instructions) that includes the pairing function closing the structure — not very
likely indeed.

! ___|
© MARTIN-MCCLURE — MAY 2024 PAGE 34 OF 54

FORMULA EVALUATION ROM - HP-41 MODULE

WHILE we’'re at it:Putting | EVAL? |to work

EVAL? can be used in a FOCAL program to augment the basic testing capabilities provided by the
standard stack register comparison functions, such as X=Y?, X<=07?, etc. More sophisticated
conditions provide greater power in the program flow automation.

The idea is to repeat a calculation (or subroutine) while the expression in ALPHA is true, moving off
once the status has changed (obviously influenced by said subroutine); i.e. this is the standard
DO/WHILE methodology in high-level languages.

The example below uses EVAL? to count until 5; note how a local label is used and the execution is
transferred back to it while the count hasn't reached the target value.

01 LBL™COUNT”" 07 “X#5" ;testing condition
02 CLX ;count starts at zero 08 EVAL? ;check the test
03 LBL 00 ;marker point] 09 FS? 04 ;fulfilled?

04 VIEW X ;for information [10 GTO00 ;nope, do again]
05 1 ;actual code: 11 etc... ;yes, keep going
06 + ;increase counter

A proper DO/WHILE implementation will use DO instead of the LBL instruction, and WHILE replacing
lines 8-10 — with an automated decision made on the actual status of the test. So there is a combined
action in two steps: the first one needs to record the address to return to (done by DO) and the
second one needs to trigger the execution of EVAL?, and decide whether to return to the DO address
or to continue depending on the test result.

Here’s the same program using the brand-new functions:

01 LBL™COUNT”" 06 + ;increase counter
02 CLX ;count starts at zero 07 “X#5" ; testing condition
03 DO ;marker point] 08 WHILE ;repeat while trug|
04 VIEW X ;for information 09 etc... ;keep going

051 ;actual code:

Note that in this case the test condition in ALPHA could have been placed outside of the loop, just
before the DO instruction since the code within the loop does not alter ALPHA contents. This would
be faster, but I've left it next to the WHILE statement for clarity - as in the general case the code
within the loop may very well modify ALPHA.

Of course, you could move the central code (increasing the counter in this example) to a subroutine,
which in this case makes no sense but in more complex calculations could be very convenient.

Note also that DO checks the presence of a matching WHILE, searching the program steps following
itself until a WHILE statement is found — or until a global END is encountered, in which case it'll put
up a “NO BOUND” error message

! ___|
© MARTIN-MCCLURE — MAY 2024 PAGE 35 OF 54

FORMULA EVALUATION ROM - HP-41 MODULE

Nested “WHILE" levels are always possible

Each DO/WHILE loop requires two subroutine levels, therefore this implementation allows up to three
DO/WHILE calls in a nested structure. The only glitch is that the pairing check within the functions
won't cover nested configurations - so the user must make sure that the DO’s and WHILE's are
matched!

For example, the routine below will count up to five (in the X-Reg)three times, using the Y-register
for the outer counter:

01 LBL“DODO" | 09 "X#5” ;testing condition

02 CLST scounts starts at zero 10 WHILE ;repeat while true

03 DO ;15tmarker point 11 1 ;resumes 15t DO

04 CLX sreset inner count 12 ST+ 2Z

05DO ;2" marker point 13 RDN

06 1 ;actual code: 14 VIEWY ; for information

07 + ;increase counter 15 "Y#3” ;second condition

08 VIEW X ;for info 16 WHILE ;repeat while true
17 etc... ;keep going

In summary, this implementation provides a simpler and more advanced program flow control, but it
doesn’t come gratis: Obviously both instructions need to be paired — mind you,this is also the case
using the standard LBL, so it doesn't add overhead. More importantly, one additional return address is
used by DOfor the automated return from the WHILE step. Therefore, the user will only have FOUR
return addresses available when the DO/WHILE method is used.

As you have noticed, WHILE provides a focal encapsulation of the EVAL?FUNCTION, plus the
branching decisions based on the test result. This is transparent to the user, with he only caveat that
the FOCAL program including WHILE cannot be single stepped.

Remember that EVAL? uses the following resources internally — therefore they are not available for
the FOCAL code within the DO/WHILE loop:

Data Registers: {R00-R08} - to preserve the initial Stack and ALPHA contents
R0O9,R10 - for Scratch
User Flags: FOO-FO3 - tosignal the Boolean operator involved

Using the RTN address to store the WHILE address has pros and cons. The disadvantage is of course
that besides the default RTN level used by the FOCAL call to EVAL? , oneadditional RTN level is used
(or two or three if nested loops are configured). But the advantage is that no additional storage
locations are needed for those WHILE addresses, so the complete {XYZTL} stack and {abcdeF} buffer
variables are available for the test condition to use.

I trust you'd agree this is very neat stuff, bringing the programming resources up to a more abstract
position, usually requiring high-level languages.

! ___|
© MARTIN-MCCLURE — MAY 2024 PAGE 36 OF 54

FORMULA EVALUATION ROM - HP-41 MODULE

WhatlF ?- Getting[EvAL?] Money s worth!

The same methodology can be used for an IF.(ELSE).ENDIF structure, with only a little more effort to
arrange the RTN addresses and inverting the sequence of things.

Here too we'll resort to the EVAL? function to determine the Boolean result of the test condition in
ALPHA, acting accordingly depending of its TRUE/FALSE status.But contrary to the WHILE case, now
the heavy-lifting is performed by IF up-front, foreseeing either Boolean result beforehand and
arranging the RTN addresses accordingly to serve the desired program flow scheme.

Here's a succinct summary of the operation:

e IF will verify that there is a paired ENDIF statement following in memory, within the same
Global Chain segment (i.e. before the next global END).

e It then will evaluate the test condition and continue normally if the status is TRUE orit will
jump over to the instruction following ENDIF (or ELSE is present), in case the test condition
was FALSE.

e Using ELSE is optional, and when it’s included it will only be relevant if the test condition was
FALSE.

e ENDIF really doesn't do a thing, apart from demarcating the end of the structure.

Note that unrestricted nested calling of IF.(ELSE).ENDIF is currently *not* supported. This limitation
stems from the fact that the technique employed (using the RTN addresses) cannot really pair
multiple ELSE/ENDIF statements to their matching IF’s. Besides, the check for a closing ENDIF will
need additional logic to foresee the contingency that multiple IF statements precede a single ENDIF
step — getting too complex, the law of diminishing returns really kicks in!

However, it is possible to use DO/WHILE within any of its branches, and vice-versa i.e. it can be
placed inside of a DO/WHILE loop.

The example below should illustrate the operation: Use it to calculate the roots of the second-degree
equation, a.x~2 + b.x + c=0; with IF.ELSE branches for real or complex roots based on the
discriminant. On entry the coefficients (a, b, ¢) are expected in {Z,T,X}. On exit the real roots (F04
Set); or conjugated complex roots (F04 Clear) are placed in Y,X (Im, Re for complex)

| 01 LBL“QRT#” | 09 “(Q(b~2-4*a*c*)-b)/2/a"
02 “00XYZ" 10 ELSE
03 SHFL 11 “Q(ABS(b~2-4*a*c)”
04 “bA2-4*a*c>=0" 12 %|-)/2/a"
05 IF 13 EVALY
06 “#(Q(br2-4*a*c)+b" 14 “#b/2/a"
07 “[-)/2/a" 15 ENDIF
08 EVALY 16 EVALS
17 END

Try it with X~2 =1 toobtain: x1 =1, x2 =-1in{Y,X}

Note that the program is intentionally not optimized, for the purpose of the example showing the
expressions repeated several times.

! ___|
© MARTIN-MCCLURE — MAY 2024 PAGE 37 OF 54

FORMULA EVALUATION ROM - HP-41 MODULE

Nesting “IF” levels is not always possible.

There is a conceptual difference between the WHILE and IF implementations related to how (or
rather when) the test comparison is made:

e With DO/WHILE the comparison is made at the bottom of the loop, at the WHILE statement.
When true, the execution is sent back to the previous DO, and when False it simply continues
along its merry way. This poses no issue with nested levels, as each one is self-contained as
far as the reference address go (i.e. they don't “overlap” the individual brackets).

e With IF/ENDIF however the comparison is made atop the loop, at the IF statement.

o When True, the execution follows suit until either a) the next ENDIF statement is
found, or b) to the next ELSE statement, in which case it jumps to the next ENDIF
below it to skip the code within ELSE and ENDIF.

o When False, the execution jumps over to said ELSE/ENDIF skipping the top IF
branch.

You can see that therein lies the problem: depending on the combination of ELSE/ENDIF
statements and their Boolean results, the jumps will go to the first ENDIF grabbed, which
won't necessarily be the one paired with the proper IF. This is inherent to the way the RTN
addresses are being saved, sequentially at each encountering of the IF statement.

There are however a few supported configurations:you can nest IF/ENDIF groups provided that the
subordinate groupends at the bottom of thelower branch of the main group, i.e.when the two ENDIF

statements are consecutive, and only if there are no program steps between them. This fortunately
includes the mostcommon cases without ELSE branches.

Therefore, the subordinate group cannot be in the “True” branch if this has end ELSE step, as this will
situate its ENDIF directly before the ELSE statement of the main group. Likewise, you can't place two
subordinate groups within the same branch — it'll also break the “contiguous ENDIF's” rule.

Two examples with one subordinate group in blue are shown below, showing the explicit restrictionto
have contiguous ENDIF statements:

IF(1) IF(1)

True branch-1 True branch-1

ELSE(1) IF(2)

False branch-1 True branch-2

IF(2) ENDIF(2)

True branch-2 ’ ®
ELSE(2) ENDIF(1)

False branch-2

ENDIF(2)

S\

ENDIF(1)

If you're interested to see the underpinnings of these functions refer to the Appendix#4 in page #59,
with a detailed analysis of the code and discussion of the operation.

|
© MARTIN-MCCLURE — MAY 2024 PAGE 38 OF 54

FORMULA EVALUATION ROM - HP-41 MODULE

Let’s see a few examples of utilization to illustrate the advantage of the new functions.

Example 1: Fibonacci numbers and vet another Factorial

Starting with the Fibonacci numbers, we'll apply the recursive definitionwith F(0)=0, F(1) = F(2) = 1:
Fn = Fn—l + FH—E?

Entering the initial values in the X,Y registers puts the input number in Z, so the condition will refer to

that stack register this time — repeating the loop while its value is greater than 2. Note as well the use
of a trivial IF/ENDIF condition to deal with the cases n=1 and n=2.

Moving to the next example, perhaps the tritest application of the Do/While construction - let’s
prepare our version using these new functions. Obviously not rocket science, as it's very straight-
forward application of the definition. With n in X, we use it as a counter multiplying all the values by
the partial result.

1. LBL“FBO#" | | 21.LBL FCT#"

2. INT 22. INT

3. ABS 23. ABS

4, X=0? ; is x=0? 24. X=07? ; is X=0?

5. RTN ; yes, abort 25. RTN ; yes, abort
6. "X<3” 26. 1

7. IF 5 is X<3? 27. X<>Y ;f=1

8. 1 ; yes, X=1 28. '"X>1"

9. RTN ; done. 29. DO ; loop starts
10. ENDIF ; NO, go on 30. ST*Y ; f=f*n
1.1 31. 1

12. 1 32. —; n=n-1

13 "Z2>2" 33. WHILE ; repeatif n>1
14. DO ; loop starts 34. X<>Y

15. + 35. END

16. LASTX

17. X<>Y

18. DSE Z

19. WHILE; repeat if >2

20. RTN

Note that these short programs are included in the companion module, "EVAL_APPS".

! ___|
© MARTIN-MCCLURE — MAY 2024 PAGE 39 OF 54

FORMULA EVALUATION ROM - HP-41 MODULE

Example 2: Arithmetic-Geometric Mean

No calculator should lack a good MCODE implementation of the AGM, a fundamental relationship very
useful in elliptic functions theory. The SandMath has its own, but here we're using EVAL$ functions in
the DO-WHILE loop for a good illustration of what this module is capable of:

1
Apiy1 = E(ﬂn + On

n+1 = 4/AnGn -

| 01 LBL AGM#” 10 EVALY ; gn

03 EVALY 12 X<>Y

04 “ABS(IP(X))" ; INT, ABS 13 RND

05 EVAL$ 14 X<>Y

06 DO 15 RND

07 “(X+Y)/2" 16 "X#Y”

08 EVAL$; an 17 WHILE ; in FIX 10
09 "Q{L*Y)” ; L, not X ! 18 END

Which isn't only a very sort and compact routine, but also very easy to read and troubleshoot — a far
cry compared to the FOCAL program listings!

Note that the convergence may at times run into issues if all 10 decimal places are used due to
oscillations. This can be avoided using rounding values to the desired accuracy, see steps 13-15.

Example: AGM(8,23) = 5 (b {4 E

L

L]

E

Y

As a corollary it is very simple to obtain the Geometric-Harmonic mean (GHM), derived from the
AGM as per the below relationship and code:

01 LBL “GHM#” 1
02 X<>y M(’.C, y) =TT 1.
03 1/X AG('y
04 X<>Y
05 1/X
06 XROM “AGM#”
07 1/X
08 END
~
Gn+1 = Gn hn
Definition of the sequence:
< 2
hﬂ--l-]. — 1 1
—_ + —_
\ Hﬂ. h-n

© MARTIN-MCCLURE — MAY 2024

PAGE 40 OF 54

FORMULA EVALUATION ROM - HP-41 MODULE

Example 3: Ulam’s Conjecture

Also known as the Collatz’Conjecture, a well-known subject that has been addressed before using
different approaches (MCODE included), now in a completely new fashion on the 41 platform.

fn) = % ifn=0 (mod 2)
YT sn1 ifn=1 (mod 2).

This final example uses an IF/ELSE/ENDIF structure inside of a DO-WHILE loop. It really brings the
point home: simplicity and legibility, albeit there’s an obvious speed penalty using this approach.

| 01 LBL ULAM#” 13 “X/2" : yes, halve it
02 “ABS(IP(X))" 14 ELSE _ -
03 EVAL$; naturalize input 15 "3*X+1 ; no, increase it
04 “X=0" 16 ENDIF

05 IF : x=0? 17 EVAL$; evaluate new
06 RTN ; abort if x=0 18 VIEW X ; show value
07 ENDIF 19 “Y+1"

08 “0” 20 EVALY ; increase count
09 EVALY : reset count 21 “X#1”

10 DO ; loop begins 22 WHILE ; repeat while
11 “(X&2)=0" ; MOD (x,2) 23 VIEWY ; show length
12 IF ; is x even? 24 END

Multiple visual representations of the Collatz conjecture can be
found, some of them more elaborate than others — and many
looking very intriguing and of a beautiful nature. Watch
Numberphile to see an in-depth discussion of how these visuals
were created.
(https://www.youtube.com/watch?v=LgKpkdRRLZw)

Here, each step where you divide by 2 is represented by a
vertical black line and each step where you multiply by 3 and 1
is represented by a red horizontal line.

PS. I couldn't resist the temptation to prepare a MCODE version of this program, see the code in next
page. FWIW, the speed isn't really the point here due to the visualization of the intermediate results,
but nevertheless this showcases the trade-offs between the lowest-level language and the more
convenient yet slower versions.

! ___|
© MARTIN-MCCLURE — MAY 2024 PAGE 41 OF 54

FORMULA EVALUATION ROM - HP-41 MODULE

Header MEEF oo M
Header agF0 g1 man
Header BEF1 g4c 1"
Header agF2 055w
ULAM ABF3 OF8 READ 3{X)
ABFA 128 WRIT 4{L)
LEFS PNC X0
ABFE -=4052
MEFT 68 WRIT 9({Q)
MEFE 4E C=DALL
ABFD "oER WRIT 3(X) reset the counter
LOOP1 MEFA, DDE A=DALL
LEFB 3i5C PT=12 Builds 1" in A
ABFC 162 A=A+1 @PT
#8FD 278 READ S(OQ)
MEFE 36E PAHCALL end of the path?
ABFF JA0 ?MC RTM yes, end here.
AS00 OFE READ 3{X)
801 200 SETDEC
AS02 010 NC X [MCrEQSE COUMtEr
ag03 060 ->1807 [AD2_10]
AT OES WRIT 3(X) update value
ag05 278 READ 9(Q) get current n
AS06 : C= MOD[int{
A907 ->40F3 [MOoD2]
AS0B JEE PCH0ALL it is odd?
ASDD 02F IC +05 VES, 5Kip
#o0a 78 READ9(OQ)
EVEN AS0B PNC X0
FE i -=4FF3
AS0D 053 INC +10d show resuit
ODD AB0E D4E C=DALL <—
ADOF 35 PT=12
A910 0D0 LD@PT-3
A911 10E A=CALL
a912 M7 READ9(Q)
ag13 1135 Ancxa 3*n
po14 T060 ->184D [MP2_10]
ao1s fooiPNCxG Fened
nol6 T80 -=1800 [ADDONE]
MERGE A917 268 WRIT9(Q) <——
AZ1E rDHE NCXQ Sends Cto display - sets HEX
a313 {pac -:0B26 [DSPCRG]
AZ1A NC wait a little - CL compatible
AEIB ..
AZ1C
A91D -
AB1E 263 INC-36d [LOOP1]

© MARTIN-MCCLURE — MAY 2024

PAGE 42 OF 54

FORMULA EVALUATION ROM - HP-41 MODULE

The next logical case for FOR/NEXT (STEP)

The next logical structure is no doubt the FOR...NEXT loop, perhaps the most popular program flow
control known by every programmer, no matter the level of expertise.

Obviously, the HP-41 platform comes with ISG and DSE, which combined with LBL and GTO
perform a similar function to the FOR...NEXT loops. Indeed, their fundamental operation is very
comparable, although the FOR...NEXT syntax offers more convenience — at the cost of more variables
and memory requirements used of course.

The implementation presented here is a compromise between the native ISG/DSE and the most
capable FOR...NEXT concept:

e FOR_ _ prompts for the register number to be used as index variable, which becomes the
Selected Variable (selvar#). It also expects the bbb.eee:ss control word in X, defining the
initial and final index values, as well as the step size. If the control word is positive (with
bbb<eee) thenthe STEP increments the index, whereas if negative (with bbb>eee) then
itdecrements the index. By default, if ss=0 the step is one (standard hp-41 convention for
loop functions).

e NEXT _ _ does the index increment or decrement and loops back to the FOR location of a
new iteration kkkuntil all of them are done (when kkk>eee); in which case the execution
continues with the program steps below it. Note that the function prompts for the register
index variable as well, and thus allowing nested levels.

e The index variable isdeclaredin the prompt, but due to the prompting technique (using OS
routines) the value is not automatically entered in program mode, thus you need to add it
manually. The indexes follow the same convention used all throughout the system. Adding
112 for stack registers and 128 for INDirect addressing.See the table in page #18.

Note that NEXT increments (or decrements if the control word is negative) the value in the SELCT’ed
register, not X — unless of course X is the selected register. It comes without saying that the
instructions executed within the loop should not modify the contents of the SELECTed register —
unless you're a power user and want to modify the index variable intentionally.

For example, the routine below uses R01 and R02 as SELCT'ed index to play three TONE 0 with
another two TONE 1 instructions for each of them, with a BEEP to end- i.e. nine tones in total as
follows: TO-T1-T1; TO-T1-T1; TO-T1-T1

36. LBL"TONES” 41. FOR 02 ; S=02
37. -2 ;=1.003 42. TONE 1
38. FORO1 ;S1=01 43. NEXTO02 ; Next S2
39. TONEO 44. NEXTO01 ; Next S1
40. -1 ;=1.002 45. BEEP

46. END

Unlike the previous two structures, FOR...NEXT doesn’t make utilization of EVAL? — or any evaluation
function for that matter. They can of course be used inside the loop, but if you do so remember that
data registers {R00-R01} are used byEVAL?itself, therefore, they shouldn’t be used as SELCT’ed
registers for the loop index.

! ___|
© MARTIN-MCCLURE — MAY 2024 PAGE 43 OF 54

FORMULA EVALUATION ROM - HP-41 MODULE

Each FOR..NEXT loop takes one subroutine level, thus you can build up to six nested loops — provided
that there aren’t any additional subroutines called inside any of them of course. Remember to always
match the number of FOR and NETX instructions — this is not checked by the code.

The next example is slightly more useful that playing tones: Bubble Sorting (once again!) - although
it's a non-practical solution due to the slow speed it is very indicated to document the operation of

the functions.

Two versions are included, one with data movement and another that makes the data comparison in-
place. The input should be the FROM.TO control word (bbb,eee) delimiting the memory area to be
sorted. The programs very much read like BASIC routines to do this job. Both versions show a nice
implementation of a two nested FOR...NEXT loops, even if the second one requires functions from the

WARP_Core module.

Version #1. Data moved to the stack for the comparison. We'll use R0O0 and RO1 as loop index
variables. It is slightly longer and obviously {R00-R01} are reserved (can’t contain data to sort).

01 LBL"BSORT1"”; bbb.eee in X

02 E-3

03 -

04 FOR 00
05 RCL 00O

06 1.001

07 +

08 FOR 01
09 RCLIND 01
10 RCLIND 00

; bbb.(eee-1)
; kkk.(eee-1)

5 (kkk+1).eee

; R(kkk) value

11 X<Y? ; already sorted?

; R(kkk+1) value

12 GTO 00 ; yes, skip
13 RCLOO ; kkk.(eee-1)
14 RCLO1 ; (kkk+1).eee
15 X<I>Y 5 (%)
| 16 LBL 00 |
17 NEXT 01 ; do next reg
18 NEXT 00 ; do next Reg
19 END

(*) Function X<I>Y does IND X <> IND Y. It is also in the WARP Core

Version#2. Data in-place.We'll use stack registers Y and X as loop index variables. Note that /t’s ok to
select other registers inside the loops because NEXT changes the selection back to the index variable,

so perfectly compatible.

01 LBL™BSORT2"; bbb.eee in X

02 E-3 ; 0.001
03 - ; bbb.(eee-1)
04 ENTERAN ; bbb.(eee-1)

05 FOR Y(114) ; kkk.(eee-1)
06 CLX

07 RCLY

08 1.001

09 + ; (kKkk+1).eee

10 FOR X(115) ; (kkk+1).eee
11 SELCTIND X

12 ?2S>=INDY ; (242)

13 GTO 00

14 S<>INDY ; (241)

15 LBL 00

16 NEXTX; do next X

17 NEXTY ; do nextY
18 END

Once again, these routines are very slow. For real-life applications (say more than 10 registers to
sort) you really should be using a MCODE function like SORTRG in the SandMath, or a more
intelligent routine such as S2 and S3 in the PPC ROM (and derivatives).

© MARTIN-MCCLURE — MAY 2024

PAGE 44 OF 54

FORMULA EVALUATION ROM - HP-41 MODULE

A complete SELECT-CASE Structure

We've just seen how to use the SELCT function in the WARP_Core module as an ancillary element in

the FOR...NEXT loops. This is very efficient in that it allows selecting data registers, Stack registers
and even buffer registers for the selected variable — as well as their INDirect variants.

SELCT is paired with 2CASE, a yes/no function that skips next line if the content of the selected
register doesn’'t match the value entered as its argument. See the EVALXM program later in the
manual for a superb example of utilization of this pair of functions.

That's very good al well but it ain't quite the same as a full-fledge SELECT structure with multiple
CASE clauses within it, which is now included in the Formula_Eval module and described below.

The new structure has fourelements:

e SELECT_ _ prompts for the selected register number and activates the structure flag. 7t
must always exist to delimit the beginning of the structure.

e CASE_ _ _ clauses prompt for a target value of the selected register. If there’s a match the
following program lines are run, right up to the next SELECT statement or the end of the
structure. It also deactivates the structure flag so that other CASE clauses below it won't get
executed. CASE checks for the existence of ENDSLCT downstreamin the program code,
showing the "NO BOUND" error message if it’s not found.

e CASELSE is a special kind of CASE that doesn't impose any value-matching condition. It is an
optional clause but if it exists /it should be placed after the last CASE statement in the
structure. Like CASE, this function also checks for an active selected variable and the
presence of the ENDSLCT clause below it.

e ENDSLCT delimits the end of the structure, thus /it ftoo must always exist. It deactivates the
flag and clears the selected register variable.

The trivial example below should illustrate usage. The routine plays a different tone depending on the
input value in X, from 0 to 3 — or a BEEP if the value isn't one of those four. For convenience it takes
the value in X into the register pointed at by R00 and selects that very register for the structure
usage. Just make sure that R0OO points at an existing registerin memory, of course.

01 LBL"“SCE” | 08 CASE?2
02 STOIND 00 09 TONE2

03 SELECT IND 00 (128) 10 CASE3
04 CASEO 11 TONE3

05 TONEO 12 CASELSE
06 CASE1 13 BEEP

07 TONE1 14 ENDSLCT

15 END

! ___|
© MARTIN-MCCLURE — MAY 2024 PAGE 45 OF 54

FORMULA EVALUATION ROM - HP-41 MODULE

Like any good thing in life, some restrictions: apply - let’s review them next:

1. Asa consequence of the prompting mechanism used (based on OS routines), there’s no
automated support for stack registers {X,Y,Z,T,L} or buffer registers (A,B,C,D,E,F,G}in the
variable selection. Therefore, when editing a program the selected register number needs to
be input manually (i.e. it's not stored by the prompt). Here we can also include Stack
registers and Indirect registers, simply by adding to the index the decimal value 112 (0x70
hex) for stack addressing, or 128 (0x80 Hex) for indirect addressing, i..e: 115 = Stack X; 128
= IND 00; 129 = IND 01; 243 = IND ST X. and so on. See the table in next page..

2. Even if these functions can be called in manual mode they’re meant to be used in a program.
In manual (interactive) mode there’s no checks for a matching function, so calling SELECT
outside of program mode will not trigger the "NO BOUND"” message.

3. Nested SELECT-CASE structures are onlyfully supported in CASELSE clauses(which is always
last in the structure). This is because the selected register number is stored in the header of
buffer#7 (there’s only one of them), and as a consequence of the cursory search of the CASE
instructions when the conditional is not matched. This restrictionis however immaterial if the
execution engages the last,non-conditional clause so it'll always get done. Any other situation
can run into conflict or false matches resulting in computational errors.

4. 1It's perfectly ok to include any of the other program-flow controlling groups as part of any
SELECT clause — as long as their own nesting rules are respected.For example, the snippets
below show three different flow control groups, one on each CASE clause, The value in RO0
will determine which of the three branches to execute.

SELECT 00 TONE 9
CASE 0 ; FORT..NEXT ENDIF
1,004 ; play 4 times
FOR CASELSE ;Not 0, not 1
TONE 0 ELECT 1 ; nested level
NEXT CASE 01
TONE 7
CASE 1 ; IF/ELSE CASE 1
“4E< IRy N2 TONE 2
IF ENDSLCT
BEEP ENDSLCT
ELSE

Note that like the FOR..NEXT group, the SELECT/CASE structure doesn’t need to do any formula
evaluation (i.e. embedded call to EVAL?), thus they’re much faster than the DO/WHILE and
IF.ELSE.ENDIF counterparts.

Warning: do not mistake the SELCT and SELECT functions. SELECT is part of the new structure,
while SELCT is a function in the WARP_Code module. SELCT is more general-purpose because it
features automated entry of the non-merged program step, supporting data registers, stack and
buffer addressing. On the other hand, SELECT requires manual editing of the non-merged program
step — and besides that, it doesn’t support buffer registers.

! ___|
© MARTIN-MCCLURE — MAY 2024 PAGE 46 OF 54

FORMULA EVALUATION ROM - HP-41 MODULE

Compatibility with FOR..NEXT structures.

As described already, the SELECT/CASE structure uses buffer#7 header to store the selected register
number (selvar#). This is used by the CASE instructions to check matching values with their
targets;thus, it follows that the selected register number should be the same at every CASE instance.

Say now that a FOR..NEXT loop is included within a CASE clause, with a modification of the selected
register number. This is going to alter the selvar# in the buffer header but such an alteration is
inconsequential to the SELECT/CASE structure because the go-to address of the ENDSLCT instruction
s maintained (i.e. not changed by FOR..NEXT), and thus the following SELECT instruction knows
where to transfer the program execution to.

For example:

e SELECT 01 ; structure begins
CASE XX ; clause begins
bbb.eee:ss ; control word

FOR 02 ; changes selvar# (1)
<code here>

NEXT 02
CASE YY ; hext clause begins
<code here>

N ENDSLCT ; end of structure.

Note that the other way around (a SELECT/CASE structure inside a FOR..NEXT loop) doesn't require

any special consideration either because the NEXT instruction also resets the selvar# in the buffer
header, thus no conflict can occur.

The table below shows the indexes needed for the non-merged instructions described above.

Argument | Shown as: Argument | Shown as: Argument | Shown as:
100 00 112 T 124 b
101 01 113 Z 125 C
102 A 114 Y 126 d
103 B 115 X 127 e
104 C 116 L 128 IND 00
105 D 117 M 129 IND 01
106 E 118 N 130 IND 02
107 F 119 0 131 IND 03
108 G 120 P 132 IND 04
109 H 121 Q 133 IND 05
110 I 122 |- 134 IND 06
111] 123 a 135 IND 07

! ___|
© MARTIN-MCCLURE — MAY 2024 PAGE 47 OF92

FORMULA EVALUATION ROM - HP-41 MODULE

Appendix 1. Sub-functions in the auxiliary FAT

This module includes a set of low-level routines in the auxiliary FAT that can become very useful for
troubleshooting and diagnostics. Some are subsets of the EVAL$ and ~FRMLA functions (the two
pillars of the ROM), made available as independent functions as well. Let’s describe them briefly.

To execute sub-functions, you need to use either one of the launcher functions, SF# (using the
function index) or SF$ (spelling the function name). LASTF will repeat the last executed function.

Use CAT+ to enumerate the sub-functions. [R/S] halts the listing, [SST]/[BST] navigates the list, and
[XEQ] executes it straight from the catalog.

e The underpinnings of EVAL$ make usage of a memory buffer, with id#6. This buffer stores
all information from the formula: operators, functions, and data. During the execution of
EVALS$ there are calls to buffer routines to push and pop values, as well as to initialize (clear)
it. The available functions are: CLRB6, PSHB6, and POPB6

The buffer#6 header also holds the information on the currently selected buffer register
(pointer in digit 9) and the destination register for the result (marker in digits 4,5,6). POPB6
and PSHB6 automatically decrement and increment the buffer register pointer. The buffer is
16 registers long, which should allow for any combination of data, operators, and variables in
the formula string. See the following chapter for more details.

« Another group of routines have to do with advancing the character selection within the text.
This allows the main code to scan all characters in the ALPHA string using a loop which is
executed multiple times until the complete formula has been processed. These sub-functions
are: NXTCHR, and PRVCHR.

« The next one is very helpful for error prevention and correction. CHK$ checks for non-
matching number of open and close parenthesis, correcting the unbalance in case that close
parenthesis were missing.

« The next pair B6? and B7?interrogates for existence of buffers #6 and #7 — creating them
on the fly if they don't yet exist. This action is always performed by all functions accessing
these buffers, but these functions provide a manual access to the functionality.

e ST>B7 and B7>ST copy the stack registers{X, Y, Z, T, L} to the stack buffer registers (a,
b, ¢, d, e, F} and back respectively. Very useful for variable assignment en masse.

« LOOPT is an auxiliary function to recall the loop pointer in a FOR..NEXT structure, a.k.a. the
content of the selected register. It does the same as SRCL in the WARP_Core module.

o In case you miss the HP-48SX, also included in this group is a trivial BLIP sound to reinforce
the error messages with an acoustic warning — don’t we all love those obnoxious beeps ;-)

e The last group does clever manipulation of the RTN stack addresses, popping or killing
specific ones. They are used by the high-level DO/WHILE and IF.ELSE.ENDIF structures to
keep track of the return-to addresses — which are temporarily stored in the RTN stack as well.
These sub-functions are XQ>GO, KRTN2, DRTN2, RTNS, and ?RTN

! ___|
© MARTIN-MCCLURE — MAY 2024 PAGE 48 OF92

FORMULA EVALUATION ROM - HP-41 MODULE

Appendix 2. EVAL$ Buffer Structure.

Buffer #6 is LIFO, sort of like a buffer stack. EVAL$ handles the buffer interactions, as it works its
way down the expression in ALPHA, character after character. EVAL$ also does checks for empty
buffer (nothing to pop from the buffer stack) or full buffer (can’t push anything more onto the buffer
stack). The lowest value register in the buffer set (i.e. the buffer header) has a pointer that tells
which one was the last value pushed (or 0 if a clear buffer)

Buffer 6 when used for EVAL$ purposes has three possible formats:

1. If the sign digitisl, it is the/nternal function code (found in the table below) for the
operation to be saved on left parenthesis operation. It would be either a dyadic or unary
operation code with format "1 |xo0c0000cx| CCC”, where CCC is the three-digit code in the
internal table.

2. If the signdigitis2, it is the saved status of the precedence flags for last left parenthesis
operation (used by right parentheses routine). It restores the flags back to the ST internal
register. This is formatted on the register as ™2 |x00000xxxx| XxSS”, where SS is the saved ST
register contents.

3. If the signdigitisOor 9, it is the saved value (decimal) of the last saved operand. This is
the usual numeric representation of a 10-digit operand (BCD). Dyadic functions save two
values, unary functions save one (and most unary functions save the function number using
format 1 after that because they are followed by a left parenthesis).

If the sign digit is anything else, EVAL$ will bail out and yield an error.

Key LCO Symbol id# MName Key LCD Symbol id# Name
[+] + 028 sum [STO] HS ¥ 253 Hyperbolic 5in
[-1 - 02D Subtraction [RCL] HC "oaa3 Hyperbolic COS
[*] = 024 Product [S5T] HT LT Hyperbolic TAH
[/ / 02F Division [1[LBL] aHs 7 353 HyperbolicASIN
[ENTER®] " 01F Power [1IGTO] AHC 7 343 Hyperbolic ACOS
[E+] { " 028 Open Paren [1[BST] AHT " o3ms Hyperbolic ATAN
[1/%]] " 029 Close Paren [la] a ¥ o061 parameter
[%] % i 025 Percentage [1lb] b i 062 parameter
[RDN] & " o0z Modulus [el c " 0e3 parameter
[CHS] 8 L Negative value [10d] d " 0e4 parameter
[JICHS] ABS 315 Absolute value [1le] e i 065 parameter
[1[CAT] IP 219 Integer Part [1[=] X " 050 pi
[1IRTN] FP 216 Fractional Part [O] 0 " 030 integer
[SORT]) " oom1 Square Roat [1] 1 " D31 integer
[JIENG] U " s Cube Power [2] 2 " 032 integer
[EEX] E " s Exponential [31 3 ¥ 033 integer
[Heny] E " p4aE Factorial [4] 1q " 034 integer
[JIELE] G " o4y sign [5] 5 " 035 integer
B R " o5z Square Power [6] 6 " D3 integer
[LOG] LM 24E MNatural Log [7] 7 37 integer
[LN] LG o247 Decimal Log [2] 8 " 038 integer
[SIN] 5 " 053 Sine [9] 9 " 039 | integer
[COS] C " o4 Cosine [I[X] X " D8 variable
[TAN] M 04E Tangent [1Y] Y] Variable
[JIASIN] as 7 153 Arc Sine [12] z 054 Variable
[1[ACOS] ac 7 143 Arc Cosine [1T] T " 054 Variable
[J[ATAN] AT " 154 Arc Tangent [1] LastX] L 04ac Variable

! ___|
© MARTIN-MCCLURE — MAY 2024 PAGE 49 OF92

FORMULA EVALUATION ROM - HP-41 MODULE

In summary, buffer #6 is used during the execution of the EVAL$ functions in a dynamic manner,
populating first its registers with both the arguments and the operations (coding the ALPHA
characters as described above), and decoding the registers later to calculate the value of the
expression written in ALPHA.

Because of this, looking into Buffer #6 at any other moment (not during the execution of EVALS) will
typically not show any relevant information. However, during the actual execution it will have a
configuration like the one represented below with a variable number of registers used depending on
the actual formula being worked on.

Buffer idé | BufferReg | Type | Used for: |
bl0

bS <other> <available?
b8 <other> <available>
b7 Hex code Operator-3
b6 BCDvalue 4% argument
b5 Hex code Operator-2
ba BCDvalue 3% argument
b3 Hex code Operator-1
b2 BCDvalue 2™ argument
bl BCDvalue 1% argument
b0 admin Header

(*) In the picture abovethe buffer is shown with 7 “active” registers but we know it can hold up to 16
registers with the information on the pending operations and parameters. This size allows for as
many intermediate operations as needed to support a 24-char length formula, regardless of how
intricate the formula is.

Example: Buffer contents for the formula adding the integer and fractional parts of pi.

FRPOxy +IP LR

USER RAD 1 ‘HLFHHA

b3 @0DC: “n" 0]3141592653|000
b2@0DB: F7 2/0000000000|080 p=> IP(x) result to bl
bl @ODA:"IP” 1/0000000000(150
b4 @0ODD: “r” 0]/3141592653|000
b3 @0DC: F7,FO 2/0000000000|081 => FP(r) result to b2
b2 #0DB: “FP” 1/0000000000|250

b1l @ODA: IP(x) 0/3000000000|000

|
© MARTIN-MCCLURE — MAY 2024 PAGE 50 OF92

FORMULA EVALUATION ROM - HP-41 MODULE

Appendix 3.- Internal EVAL$ Execution flow.

The top-level execution flow to interpret and evaluate a formula string is described below.

1. The first phase is to read the string in ALPHA from left to right, checking for possible syntax
errors, and pushing all valid elementsinto buffer #6. These can be either actual BCD values or
the function codes. This phase is flagged with CPU flag F7 clear. The formula reading routine
loops thru all characters and the last character is flagged by CPU flag F5 set. There are
disambiguation routines for those multi-character function codes as well (like AS, AC, AT,
ABS, AHS, AHC, AHT, etc.)

2. The second phase is the interpretation of the contents of buffer #6, in a LIFO fashion — thus
corresponding to an evaluation of the formula in ALHA, this timefrom right to /left. This phase
is flagged with CPU flag F7 set.

In the interpretation/evaluation phase we distinguish three major categories:

e Arithmetic operations, such as addition, subtraction, multiplication, division, Module, and
percentage. Note that these are dual-number operations.

e Single number Functions, all defined in [FNCTBL] and

e Stack & Buffer variables— all defined in [CASTBL]- and Numeric constants, build from ALPHA
by [NUMRIC]

The dual-number cases are controlled by CPU flags FO — F6, according to the tables below.

Routine Function FO F1 F2 F3 F4 F6
[ADDSUB] | Addition 1 0 - - - -
Subtraction 0 1 - - _
Percent 1 1 - - - -
[MLTDIV] Multiplication - - 1 0 - -
Division - - 0 1 - -
Modulus - - 1 1 - -
[DOYTOX] | Power - - . - 1 _
[INVERS] Sign Change - - - - - 1

What we tried to do with the EVALXx series of functions was to insure that only the intended stack
register (and LastX) was modified with the results of the formula in Alpha. Hence, EVALS touches X
and L only, EVALY touches Y and L only, EVALZ touches Zand L only, EVALT touches T and L only, and
EVALL touches only L (with EVALL having no LastX capability, of course).

We get away with that because all the partial calculations are pushed/popped from a special buffer
(#6) as well as other important formula info. So this yields a lot of power to the user, allowing them
to use the stack the way they want to. This action only occurs at the very end of the formula
evaluation phase, and that means you have 5 "variables" to use in the stack (X, Y,Z, T,and L) and 6
"parameters" to use in buffer 7 (a, b, ¢, d, e, and F) before the stack is modified by the final phase of
the desired EVALx function.

! ___|
© MARTIN-MCCLURE — MAY 2024 PAGE 51 OF92

FORMULA EVALUATION ROM - HP-41 MODULE

EVAL Applications ROM

The companion to the EVAL_3K ROM, this is a collection of examples and applications of the different
EVAL functions. Some were used as examples in the manual, but others are added in for completion.
It also includes the EVAL$-aware versions of SOLVE and INTEG that were mentioned in previous
sections of this manual.

Here's a list of the included routines. Mostly they’re short drivers for the core EVAL functions, which
do all the heavy lifting. You're encouraged to look at the formulas used in the listings for those
examples you find interesting to your needs.

Name Description Inputs Author

I -EVAL_APPS Section Header n/a n/a
AINT ALPHA integerpart Valuein X Fritz Ferwerda
“ARPXY" ALPHA Replace Y by X oldinY, newin X Greg McClure
“IT$"” Integration Routine Intervalin {Y,X], #iterin Z UPLE#
“SVs$” Solvesf(x)=0 Guessin X PPC Members
“AGM" Arithmetic-Geometric Mean X, yinX,Y Angel Martin
“d2s$"” 2D-Distance P1, P2 in Stack Martin-McClure
“d3s$” 3D-Distance Prompts for Vectors Martin-McClure
“DOTS$"” Dot Product 3x3 Prompts for Vectors Martin-McClure
“CL$"” Ceiling Function ArgumentinX Angel Martin
“FL$" Floor Function ArgumentinX Angel Martin
“HRONS$"” Triangle Area (Heron) a,b,cinY,zZT Angel Martin
“LINES$"” Line equation thru points Y2,X2,Y1,X1 in Stack Angel Martin
“NDF$” Normal Density Function pninZ cinY,xinX Angel Martin
“P4s$” Polynomial Evaluation Prompts for Coefficients Angel Martin
“QRT$"” Quadratic Equation Roots CoefficientsinZ,Y, X Martin-McClure
“R$S” Rectangular to Spherical {x,y,z}inX,Y,Z Angel Martin
“"S$R” Spherical to Rectangular {R, phi, theta}inX, Y, Z Angel Martin

l -$AND MTH Section header n/a n/a
“NCKs$"” Combinations ninY, kinX Angel Martin
“NPKs$" Permutations ninY, kinX Angel Martin
“"KK$"” EllipticIntegral 1st. Kind argumentin X Angel Martin
“LEG$"” Legendre Polynomials orderinY, argumentin X Angel Martin
“HMT$"” Hermite’s Polynomials orderinY, argumentin X Angel Martin
“TNX$ Chebyshev’s Pol. 1st. Kind orderinY, argumentin X Angel Martin
“UNX$" Chebyshev’s Pol. 2", Kind orderinY, argumentin X Angel Martin
“erX” Exponential function Argument in X Angel Martin
“ERDOS"” Erdos-Borwein constant None Angel Martin
“FHB$" Generalized Faulhaber’s NinY,xinX Angel Martin
“HRM$"” Harmonic Number NinX Angel Martin
“GAMS$"” Gamma function (Lanczos) ArgumentinX Angel Martin
“JINX" BesselJ integerorder niny, xinX Angel Martin
“LNG$"” Log Gamma Argument in X Angel Martin
“PSIS$” Digamma function Argument in X Angel Martin
“WLS$"” Lambert W Function Argument in X Angel Martin
“CI$" Cosineintegral Argument in X Angel Martin
“SI$” Sine Integral Argument in X Angel Martin
“ERF$"” Error Function Argument in X Angel Martin
“JDN" Julian Day Number MDY Date in {Z,Y,X} Angel Martin
“CALS$" Calendar Date IJNDin X Angel Martin

| -SCRIPT EVL Section header n/a n/a
EVALXM Script Evaluation File Namein ALPHA Greg McClure
EVLXM+ Enhanced Script Eval File Namein ALPHA Martin-McClure

! ___|
© MARTIN-MCCLURE — MAY 2024

PAGE 52 OF92

FORMULA EVALUATION ROM - HP-41 MODULE

EVLI + Enhanced Sum Eval String in ALPHA Martin-McClure
EVLP+ Enhanced Product Eval String in ALPHA Martin-McClure
“"GMXM" Makes GAMMA Script none Martin-McClure
~01 Puts Chars in R00-R01 Strings in ALPHA Martin-McClure
+REC Advances one Record FileName in ALPHA Martin-McClure
“FCT#" Factorial w/ DO.WHILE ArgumentinX Angel Martin
“FIB#" Fibonacci Number ArgumentinX Angel Martin
“ULAM#" Collatz’Conjecture ArgumentinX Angel Martin

A few numerical examples. -

2, ENTERA, 3, ENTER”, 4, XEQ “HRON$” =>2924 7375 {2

25, ENTERA, 2, XEQ “FHB$” =>S52NARRAAT

25, XEQ “HRM$” =>4H {5495H (H

PI, XEQ “FL$" =>3707

PI, XEQ “CL$” =>HA AT

3, ENTER”, 2, ENTERA, 1, XEQ “R$S” =>4 74 {EST4HE,
RDN =>AbBHYA S 4 {4, (inRAD mode)
RDN =>{ {47 {457 {H (in RAD mode)
XEQ “S$R” =>3 2 in{ZY,X}

77, ENTERA, 27, XEQ “NCK$” =>HIFIETT L ESD

77, ENTER”, 27, XEQ “NPK$” =>HT7d54EhH EYH

5, XEQ “WL$" => 40h 1d4ARE6S

3, XEQ“PSI$” =>AH7 THEY A AN

75, XEQ “"LNG$” =>CH S 109 I

0.5, XEQ “ERF$” =>ASUHEYHER

1, ENTERA, 1, XEQ “INX$” =SAHYAASZSHY

07, ENTERA, 21, ENTERA, 1959, XEQ “JIDN$” =>Z4 35, THHA LT
XEQ“CAL$” => 195

RDN => |
RDN =>7
1.4, XEQ"CI$” =>AMbEI B SER
1.4, XEQ “SI$” => i Sbhddh Thd
24, ENTER”, 6 XEQ “AGM$” =>{d445H {7 I4E
0.5, XEQ “KK$” => (HSHYA THE T

Routine listings for NDF, LINE$, NCK/NPK, HRMX, HRON$, and JNX

! ___|
© MARTIN-MCCLURE — MAY 2024 PAGE 53 OF92

FORMULA EVALUATION ROM - HP-41 MODULE

1 LBL "NDF" 1 LBL "HRMX"

2 "Y=0 2=\) E(R{ (X" 2 LBLOL =

3 Wl _Z:Ur\‘r:ljlrz:lu 3 "El:l,'"

4 EVALS Fooa AINT

5 1% F 5 2)"

& EMD F & XROM "EVALE"
o7 RTH

1 LBL "LINES"] GTO0L & ——

2 "T-Y)Z-X)" g LEL "ERDOS"

3 EVALS 10 LBLOZ

4 oL 11 "T(L1(20H1)"

5 EVALY oo oy

& "yt ¥ 13 XROM "EVALT"

7 ARCL¥(3) Foa RTN

8 -y s GTO 02

g Wy 16 LBL "ef¥" —

10 ¥e<D? 17 LEL 03 —

11 ¥=07 18 ME(O YR

12 P " 19 XROM"EVALE"

13 Ky o2 RTN

14 ARCLY(Z) " on GTO03 ——

15 AVIEW shows line Foon EMD

16 END

1 LBL "MCKS" 1 LBL "JNX"

2 LBLOO < 2 LET=

3 XROM "MPKS" 3 1

4 "R 4 RDN

5 EVALS 5 LET=

g RTN g 2

7 GTO00 — 7 "Cib*K-a*S(x)) "

8 LBL "MPKS" g E1

g LBLO2 = g STO 13

10 "py 0 0

11 RCL ¥(2) 11 PI

12 RDN 12 XROM "[T5

13 - 13 Pl

14 156G X[3) leavezs kin L 14 !

15 NOP 15 EMD

16 AINT

17 o 1 LBL "HRONS"

18 R 2 "[HeY=Z) /2"

19 AINT 3 EVALT

20 |- 4 T (T-H)*(T-Y)"

721 XROM "EVALP" 5 W[T-Z))"

22 RTN g EVALT

23 GTO02 —— 7 R

24 END 2 EMD

! ___|
© MARTIN-MCCLURE — MAY 2024 PAGE 54 OF92

FORMULA EVALUATION ROM - HP-41 MODULE

Routine listings for QRT$ (updated to support complex roots) and P4$.

1 LBL"ORTS | 1 iBL"Pas” |
2 LBL DD new start 2 4

3 LET=¢ [3 LBLOD < |
4 3 4 g

5 RDON 5 ARCLI

6 LET=h 6 ofe=p

7 2 7 PROMPT

8 RON 8 STOIND Y

g LET=a] RDM

10 1 10 DSE ¥

11 ph2-4eg e el discriminant 11 GTO 00

12 XROM "EVAL?" test for complex roots 12 "af0)="

13 "O{ABS(bA2-40a " 13 PROMPT

14 [-")3/2fa" aupids DATA ERROR 14 LET=

15 EVALS 15 4

16 F5? 04 16 RCLO1

17 GTOM —— 17 LET=

18 "H-by2fa" 18 3

19 EVALY 19 RCLO2

20 yi=" 20 LET=

21 ARCLY show x1 21 2

22 AVIEW 22 RCLO3

23 R 23 LET=

24 EVALS 24 1

5 =" 5 R = el fs
26 ARCLX show x2 26 " -beX*a)))

7 PROMPT 7 STOS%

28 GToot 22 LBLO1 < |
29 LBL 04 — 29 Y7

30 "#b/2/a" 30 PROMPT

31 EVALY 31 RCLS (00)

32 Hemy 32 EVALS

33 "71,2=" 33 "p=

34 ARCL X shos results, 34 ARCLX

35 |- both combined 35 PROMPT

36 ARCLY 36 GTO 01

37 PROMPT 37 END

38 END

Examples.

Roots of x*2 +x +1 =0

Rootsof x*2-3x+2=0

,

! ___|
© MARTIN-MCCLURE — MAY 2024 PAGE 55 OF92

FORMULA EVALUATION ROM - HP-41 MODULE

Routine listings for AGM$, KK$, CL$, FL$,FHB$ and SR / RS.

1 LBL "AGMS" | 1 LBL "RSS"
2 LBLOD <—— 2 "QXA2+YA2)"
3 "QXeY)" 3 EVALT
4 EVALY 4 "AT(T/Z)"
5 "(X+L) 2" 5 EVALY
6 EVALS 6 "ATIL/X)"
7 RND 7 EVALZ
g8 Moy g QLA 2+TA2)"
9 RND g EVALS
10 X=Y? 10 RTN
11 RTN 11 LBL"SS$R"
12 Grog0 ——— 12 "XeCy)"
13 LBL"KK$" 13 EVALT
14 LBLO1 < 14 "X*5{Y)*5(Z)"
15 "Qil-®)" 15 EVALY
16 EVALS 16 "X*S{L)*C(z)"
17 E 17 EVALS
18 XROM "AGM" 18T
19 "m/2/x" 19 EVALZ
20 EVALS 20 END
21 RTN
2 Groor ——
23 END
[1 LBL "FLS" |
2 CFOD
3 GTO0D —
1 LBL "FHBS" | 4 LBL "CLS" |
2 "E(L" 5 SFOD
3 Ny [& LBLOD «—— |
4 AINT 7 "X XE"
5 - 8 FS7 00
& "Xy g -"g"
7 XY 0 -y
& XROM "EVALS" 11 EVALS
9 END 12 END

Note that AGMS$ relies on the decimal settings of the calculator for the accuracy of the results
(steps 9 and 11 perform a rounding of the X,Y values).

Formulas: N =1IDN-1,721,119

if Gregorian: if Julian:
C = int {(N-0.2(/36,524.25] '
N'= N+ C - int(C/4) N'=N+2
Y' = int[(N'-0.2) / 365.25] ->N" = N' - int(365.25 * Y']
M' = int[(N" - 0.5)/ 30.6] ->D =int [N"- 30.6 * M' + 0.5]

DN =int{int [[D + int(367 x) - int(x)] - 0.75 * int(x)] - 0.75 * int[int(x)/100) } + 1,721,115

where: X =Y’ + (M-2.85)/ 12
1

© MARTIN-MCCLURE — MAY 2024 PAGE 56 OF92

FORMULA EVALUATION ROM

- HP-41 MODULE

Routine listings for ARPLXY and JDN$ / CALS.

1 LBL "ARPLXY"
2 nemy

3 POSA

4 E

5 +

6 %=07?

7 GTO00 —

8 AROT

9 Neoy

10 [SF#

11 3 RADEL
12 XTOA

13 Xy

14 CHs

15 AROT

16 LBLOD <« !

17 END

1 LBL "IDNS"

2 75

3 LET=

4 2 "
5 CLX

6 "2 85

7 LET=

8 1 g
9 RDN

10 "Y+{Z-a)f12"

11 EVALT

12 "b*IP{IP(T)/100)

13 FS? 00 Julian Cal?
14 "2ep"

15 EVALZ

16 "IP(367*T)-1P(T)"

17 |-"-b*IP(T)"

18 EVALS

19 "IP{IP[Y=X)-Z)+1"

20 |-"721115"

21 EVALS

22 RTN

23 LBL "CALS"

24 [365.25

25 LET=

% |5 g
77 CX

2 306

29 LET=

30 |4 pre
31 CLX

32 3552425

33 LET=

34 2 upe
3/ O

36 1721119

37 "Y-¥a2"

38 FS? 00 Julian Cai?
39 GTO 00

40 "IP((Y-X-1/5)/b)"

41 EVALT

42 "Y-¥+T-1P(T/4)"

43 LBL 00

44 EVALS

45 LET=

% 3 "en
47 RDN

48 "IP{ic-1/5)/e)"

49 EVALS

50 "c-IP{e*X)"

51 EVALT

52 "IP((T-1/2)/d)"

53 EVALZ

54 "IP(T+1/2-d*Z)"

55 EVALY

56 "Ze=g"

57 XROM "EVAL?"

58 FC? 04 True?
59 GTO 04

&0 "Z+3"

61 GTO 00

62 LBL 04

63

B4 +

65 "Z-g"

66 LBL 00

67 EVALZ

68 CLD

69 END

© MARTIN-MCCLURE — MAY 2024

PAGE 57 OF92

FORMULA EVALUATION ROM - HP-41 MODULE

Routine listings for SV$ and IT$.

An alternative form of the well-known routines is presented here!

1 LBL"SVS" X0, x1 in Y.X ' Tp1 — Tp_2
2 5TOS 07 save integrand fric, Ip = Tp-1 — f(mﬂ.—l)
3 LBLOD <— | f(@n_1) — f(Tn2)
4 EVALZ fix1)
5 ¥enY
6 EWALT fix0)
7 Y-ZEY-X) (2T
8 EVALS %2 = x1-fad) [x1-x0)/F{x1}-F(x0)]
9 | F5710
10 |VIEW X(3)
11 RCLS OF recoll integrand function
12 xaye is xI=x'?
13 GTo00 —— no, do another loop
14 |END yes, we're done. it can’t get any better than this!
1 LBL iT§" |M, a, &, in stack 13 LBL 00
2 STOS 07 save formuwa in RO7-R10 14 CLX
3 |ENTER® b 15 |E
4 EVALS fib) 16 ST- T(0) |decrement N
5 sTO11 17 XEQO9 | 2f((b+{b-a}/2n)
& RON b 18 ST+ ¥(3) |4f((b+{b-a)/2n)
7 |"xnfzie (a-bj/2N 19 ST+ 11 |odd to sum
g |EVALS o |R®
9 ROLS 07 21 |x=07
10 | RCLY(2) o 22 Grool
11 EVALS ffa) 23 |RDN
12 5T+ 11 ffa) +f(b) 24 XEQO9
25 5T+ 11 |odd to sum
26 GTOO0
27 LBL 09
28 RDNM {b-o)/2n
29 ST+ Y(2)
30 |RCL Y(2)|b+(b-a}/2n)
3l EVALS |f{(b+{b-al/2n)
32 ST+ ¥(3)|2f((b+{b-a}/2n)
33 |RTN
[3¢ 1BLOL
35 RCL11
b 5 b 3/ |"XTS3
L 9—a a 37 |EVALS
[f@ae =t [ar () v aw)] . 0 s
32 END

Note that both routines use {R07-R10} to save the formula of integrand function. These routines are
prepared to be used by EVALXM and EVLXM+ (data registers usage is compatible). This, however,
makes them unsuitable for nested execution, i.e. either using SV$ in the integrand function, or IT$ in
the function to solve the roots for.

! ___|
© MARTIN-MCCLURE — MAY 2024 PAGE 58 OF92

FORMULA EVALUATION ROM - HP-41 MODULE

A new scripting language using Extended Memory

One of the goals for the final version of this module was to allow a series of steps to be stored to
automatically run as a scripted language. The perfect place for such a script would be an ASCII file in
Extended Memory. After entering the steps into the ASCII file, all the module user would need to do
is initialize the stack and buffer variables (X, Y, Z, T, L, a, b, ¢, d, e) if required, enter the name of the
file into the Alpha register, and execute the script reading program.

This goal has been realized in this version of the Function Evaluation module! All the EVAL functions
(including EVAL?,EVALZ, and EVALP) have been brought together to create a scripted language
including a primitive *GOTO" function, labels for the "GOTO”, and decision making statements.

Note that two versions of the program exist, the standard EVALXM and a more capable EVLXM+.
Either one requires that the WARP_CORE module be plugged in, as they make extensive use of its
?SELCT/CASE functions in control branches..

Before describing each type of script line, a few definitions are needed:

« ‘Variable' can represent any of the stack variables used by EVAL$ (or its siblings),i.e. X, Y,
Z, T, or L; or it can also be one of the buffer variables a, b, c, d, e, or F.

A\} n

. represents a blank space character

« 'StackVar' is restricted to one of the stack variables X, Y, Z, T, or L.
« ‘Formula’ represents any of the strings used by EVAL$ or its siblings as a line to evaluate.
« ‘Value' represents any valid real value that can be read from the Alpha register via ANUM.

« {Condition} represents any conditional operator understood by EVAL?, i.e. <, <=, =, >=,
>, or #, as described in the EVAL? section.

« ‘Label’ represents any single character — even special chars.

« ‘RegNumber’ represents any valid memory register number, it does NOT require a leading
zero 0.

e 'Params’ represents the parameters supplied inside “(” and"“)” used by EVALZ and EVALP.

With those definitions in mind, here is the syntax used by the scripting language. Each record in the
ASCII file in extended memory should be one of the following:

1. ‘Variable’_'Value’ [the space in between “Variable” and “Value” is required]

2. ‘StackVar'='Formula” [the equal sign is required]

3. ‘Label’: [the colon after the “Label” is required].

4. G_'Label’ [the space between the G and ‘Label’ is required, “"GOTO" statement]
5. 'Variable’S’RegNumber’ [stores value at “Variable” into memory register “RegNumber”]

6. ‘Variable’R’RegNumber’ [stores value from register "RegNumber” into location “Variable"]

7. ??'Formula’{Condition}'Formulaconditional statement, skips next statement if FALSE]

8. ZX(‘Params’) [for using summation function EVALZ, value of sum replaces X, prev X to L]

9. PP(‘Params’) [for using product function EVALP, value of product replaces X, prev X to L]

! ___|
© MARTIN-MCCLURE — MAY 2024 PAGE 59 OF92

FORMULA EVALUATION ROM - HP-41 MODULE

And [EVLXM+|adds the following additional capabilities:

10. F_'Variable’="Params’ [Space between the F and ‘Variable' is required, "FOR” statement]

11. NX [Next statement that goes back to FOR statement above]
12. DO [Beginning of while statement loop]

13. W_"Formula’{Condition}'Formula’ [While condition is true, repeat DO loop]
14. IT('Params’) [“Params” represents “Divisions;From; To;Equation” for IT$]
15. SV(*Params’) [“"Params” represents “Guess1;Guess2;Equation” for SV$]
16. GF'Label’ [Forward only GOTO search for “Label”]

17. GB'Label’ [Backward only GOTO search for “Label”]

Notel: The assignment statement (form at #1 above) accepts any real value (i.e. -1.2345E-67), but
the evaluation statements (Format #2 above) formulas can only contain integers, not real values.

Note2: The last eight statements are only available in the new EVLXM+ program. In addition to
these new statements, "Params”in ZZ, PP, IT and SV can ALL be formulas: the integer indexes are
no longer restricted to being integers (as EVLXM+ uses enhanced versions of EVALY and EVALP,
aptly named EVLZ + and EVLP+). “I" for “infinite” looping in ZZ, PP is still supported, and since this
parameter can also be a formula, must be “I" by itself to represent infinity.

Solve and integrate.

For the IT statement, the parameters are the Z, Y, and X values needed for IT$, and the formula put
into the alpha register. However, for the IT statement these values can be formulas that will be
evaluated, and the results put on the stack for IT$ to use. The first parameter is evaluated and
placed in Z, then the second parameter is evaluated and placed in Y, finally the third parameter is
evaluated and placed in X. During execution phase, X, Y, and Z are pushed into Y, Z, and T.

For the SV statement, the parameters are the Y and X values needed for SV$, and the formula put
into the alpha register. Again, for the SV statement these values can be formulas that will be
evaluated, and the results put on the stack for SV$ to use. The first parameter is evaluated and
place in Y, then the second parameter is evaluated and placed in X. During execution phase, X, Y,
and Z are pushed into Y, Z,and T.

Loop Control
For/Next statements should be used as follows:

F variable=begin;end
... statements in the loop
NX

On finding the F statement, the variable selected s initialized to the begin value. So, for example the
statement F_X=5.5;7.5 will initialize X to 5.5, then continue on.

On finding the NX statement, the F statement will be search for, and then the variable will be
incremented by 1. It will then be checked to see if it is greater than the end value. If so, the next
statement executed will be that after the NX statement, otherwise it will be the next statement
following the F statement (it will repeat all statements in the loop).

! ___|
© MARTIN-MCCLURE — MAY 2024 PAGE 60 OF92

FORMULA EVALUATION ROM - HP-41 MODULE

Do/While statements should be used as follows:

DO
... statements in the loop...
W formula{condition}formula

On finding the W statement, the condition is evaluated. If true, then the DO statement will be
searched for, and the next statement following the DO will be executed. Otherwise, it will continue
with the next statement after the W.

All this may seem confusing, so an example might be in order.

Create an ASCII file in extended memory named “TEST", sizeit to 20 registers (oversized so you can
play with the example afterward). Put the following records into the file using your favorite editor:

00 Y1.0 ; initial Y value

01 X1.0 ; initial X value

02 A: ; label A

03 X=X+Y ; add it to sum in X
04 Y=L ; recall LastXto Y
05 ??X<100 ; les that 100?

06 GA ; yes, goto A:

Put TEST into the Alpha registerand XEQ “"EVALXM”. What you have done is find the first Fibonacci
number above 100. Note the steps show up as they are executed, and the GOTO statement will
show the goose as it searches for the label.

An explanation of the steps follows:

Y_1.0 puts 1.0 into the Y register [you could have also just used Y 1]

X_1.0 puts 1.0 into the X register [you could have also just used X 1]

A: this is a label, it will be used by the GOTO statement at the end

X=X+Y replaces X register with the sum of X and Y, L becomes the previous value of X
Y=L replaces Y register with contents of L

??2X<100 this tests to see if X is less than 100, if NOT, the GOTO statement is skipped
G_A go to label A

Notice: Direction of search.

The GOTO statement will search from the beginning of the ASCII script file for the label. This means
some searches could take a long time if the label is far down into a program. The EVLXM+ program
includes two additional statements to make this search faster (GF and GB).

! ___|
© MARTIN-MCCLURE — MAY 2024 PAGE 61 OF92

FORMULA EVALUATION ROM - HP-41 MODULE

Let’s see how to rewrite the Fibonacci example with DO/WHILE statements instead:

00 Y1.0

01 X1.0

02 DO

03 X=X+Y
04 Y=L

05 W X<100

; start of DO/WHILE

; end of WHILE loop, keeps looping until X>=100

The DO statement replaces the label, and we take one less statement in the program.

Binet’'s Formula for Fibonacci numbers.

Here’s a way to obtain the n-th. Fibonacci number directly using Binet's formula, without iterations
based on the previous values. Here phi is the golden ratio

=
=
i

| o T ,:T

|74 B | a4 Lo 1] -
ERTRDEELEL: p=? —(—)
AALET=- o e

BYRIN V5

D " X (/A H AN) 7"

3/ o N L v A v W 1]

/A [NN s

YIAEVHLS

VHENT

A few more scripting examples:

To store [Z] in R11 use: ZS11
To recall [R15] to [a] use: aR15
To goto label A searching backwards only use: GBA
To find the sum of X for X=1to 5 use: 22(1;5;X)
To find the product of X for X=1 to 5 use: PP(1;5;X)

Variables vs. Integer indexes.

If you are using the new EVLXM+ program, then in place of the last two examples...
If Y=2and Z=6 you could use instead:
22(Y-1; Z-1;X)or PP(Y-1;Z-1;X)

Notice that Y and Z are not moved until the execution phase (where the formula “X" is used).

Warning: Record Length.

Even if the ASCII records can hold up to 256 characters, the complete strings cannot exceed 24
characters, as they'll be put in ALPHA and handled byEVALXM. This restriction does include the
leading control characters at the beginning of the record, like "X=",%??", etc. So in this respect the
scripts are a bit more restrictive than if you use the individual functions in FOCAL programs.

|
© MARTIN-MCCLURE — MAY 2024 PAGE 62 OF92

FORMULA EVALUATION ROM - HP-41 MODULE

EVALXM Program Listing.(Updated)

The first version of EVALXM used the SELCT/?CASE functions from WARP_Core functions to sieve
through the different possible cases of the control charactersin the X-Mem ASCII files. With the
subsequent addition of the SELECT/CASE/ENDSLCT structure it was possible to replace them and so
simplify and enhance the program, saving about 50 bytes in the process. The new version still
requires the WARP_Core for functions ?X= and ?X#, but it's smaller and leaner thus well worth the
change.

Bending the rules just a little bit.

As it was mentioned in the description of the SELECT/CASE/ENDSLCT structure, nested structures are
only supported if the second level is placed within the CASELSE clause. This is the only way to always
ensure that no conflicts arise in cases where the last level-1 SELECT clause is false — which will
trigger a search for other SELECT instructions below it, finding those belonging to the level-2
structure.But /t’s possible to have a second-level structure if its code isn't placed within the first one.
This is accomplished using a GOTO approach to move the code off the body of the Level-1. This is
exactly what we’ve done in this case - see the listing in next page. When/If the execution reaches the
ENDSLCT instruction in the level-2 structure it clears the pointers in the buffer header and deactivates
the structure, thus we need to provide a little extra aid to tell it where to go next, which is back to
the mail loop of course. To pick up the next record form the ASCII file and repeat the process.

Program remarks.

The program does a sequential interpretation of the ASCII file records until all are done. The first two
characters of each record control the action, and the third one provides additional information if
needed.

The program uses {R00 — R04} which therefore cannot be used in any of the script formulas. R02,
R03, and R04 are scratch. R00 and R01 hold the first two characters of each ASCII record, which are
used as control characters for the scripted action — see the list below as a refresher:

W_ space after “Variable” is required

‘S'= equal sign after “Stackvar”is required, does EVAL#
L colon after the “Label” is required.

G_ space after the G is required, "GOTO” statement

V'S storesvalue at “Variable” into memory register "RegNumber”]
‘W'R stores value from register into location “Variable”

?? conditional statement using EVAL?

23 for using summation function EVALX

PP for using product function EVALP

WoeNO~WNE

The two ancillary routines “+REC"” and “~01" perform: (1) a record pointer increase and record to
ALPHA, and (2) storage of the first two characters into data registers R0O0 and RO1.

The other function playing a key role here is TRIAGE. Its mission is to store the value in R02 into the
variableindicated in R0OO, identified by the ASCII value of its initial letter { X,Y,Z,T,L ;a,b,c,d,e,F }.

! ___|
© MARTIN-MCCLURE — MAY 2024 PAGE 63 OF92

FORMULA EVALUATION ROM - HP-41 MODULE

Without further ado, here’s the program listing.

1 LBL "EVALXM" | ASCil File Evaluation ¥ 55 ANUM
"2 o =n non-stop AVIEW ¥ s st003 RG# to R03
3 sto00 ' SAVE X T AT
o4 disable stack lift ' 52 |00 chr{0)
"5 sEEkPTA beginning of file ' sz |xTom
" 5 ye 00 ' RESTORE X " e ox
¥ 7 1BLH ' MAIN LOOP ' & roLo2 restore X
arCES 'TURN ONTO HANDLEEND OF F 62 EVALS evaluate expression
' 9 gEREC get current record ¥ & st0 INDO3 store in RG#
' 10 fecas 'END OF FILE CLEARS FLAG 25 | 64 X< 04 recall L
11 EmE end of program ¥ & stOL® restore L
" o1 aviEew : SHOW RECORD ' 8 xom restore X
" 13 xROM"s01" puts first 2-Chars in ROO-R01 | 67 |CASE 32 |
" 1 saado second char (operator) ' & G032 get it out of the way
" 15 [casE (o0) | siank record case [6o [caskise |any other chars
156 eoE ¥ 70 SYNERR show "SYNTAX ERR"
" 17 case 126 [z forevars | [71 enpsica |end of Lever-1
F'ooug e ' 72 GTo H (109 next record
19 som [73 1BL32 <« |
' 0 ox disable stack lift ¥ 74 [stom
" [" 15 wx
" 22 |aRoT " 76 anum get REG#
" 3 yen ' 7 xen save in RO2, X back
r 24 EVALE perform the sum 78 SELECT O Level-2 begins
25 |case 80 | "pfor EvALP 79 CASE7L “G" for GOTO
A 80 |STO 02 S SAVE X
" 7 som " m x disable stack lift
" ow wx ¥ 82 aTOX get chr# value
' [' 83 xem save it in RO2
" 3 |apoT ' 84 s003 - SAVE X IN RO3
F 31 yen " 85
" 32 pvap perform the product ¥ 85 SEEKPTA beginning of file
¥ 33 |case s |"r" FOR RECALL 87 1BL13 «—
' 2 som - SAVE X ¥ g oD clear LD
r 35 CLY B0 XROM "+REC" advance record
36 anuMm GET REG# 50 XROM "A01" puts first Chars in ROG-RO1
' 37 st003 REGH to RO3 91 |ew
" @ 92 |58 = fot LABEL
¥ 39 RoLInNDO3 GET VALUE FROM REG# 93 [2x# 01
' o xen - RESTORE X, VALUE TO RO2 91 G013
i 41 TRIAGE Sra s 95 X<ox 02 get chré value
" a2 [case 58 " for LABEL % 2= 00
a3 [casE 61 "=t for EVAL 97 |GTO00 —
P ar evai SF#5 98 x<» 02 save chr# value in RO2
" 45 [casE 63 |2 for coMParE 99 |GTO13 ———
s make comparison [100 1BLOD < |
r a7 SKIP yes, next record 10 ¥ 03 ; RESTORE X
¥ 48 XROM "+REC" advance record [102 caseise |
" a9 [casE 83 "5" FOR STORE 103 TRIAGE SF28
' 50 stom X to R02 [104 Enpsicr |
" s ¥ 105 GTO H(109) next record
sz asmx [16 1BLE |
" 53 stooe Lto RO4 ¥ 107 oo
s ¥ 108 WORKFL SF#9
" 13 Eenp

! ___|
© MARTIN-MCCLURE — MAY 2024

PAGE 64 OF92

FORMULA EVALUATION ROM - HP-41 MODULE

Example: Gamma ASCII script.

Now gilding the lily, here you have an ASCII script to calculate Gamma(x) for x>0 using EVALXM.

Note that to include the special characters like parenthesis you'll need to first place them in ALPHA
(either using XTOA or the direct entry feature from the AMC_OS/X Module); and then append them
to the ASCII record using APPCHR (or APPREC if you write in ALPHA the complete record). See the
GMXM routine in the companion EVAL_APPS ROM to see how this can be done programmatically.

Warning: this script assumes your radix is set to decimal point, not comma. Use SF 28 if needed.|

This script is also based in the Lanczos formula. The listing is similar to the FOCAL program in the
previous section, although modified due to the 24-chars limitation in ALPHA for the evaluating
expressions. Only arguments x>0 are supported, you can go ahead and include the reflection formula
as an exercise ;-)

00 PP(0;6;Y+X) ; product term

01 XS9 ; result to RO9

02 X=L ; argument back to X
03 a5.5

04 X=(X+a)~(X+1/2)/E(X+a) ; exponential term
05 XS10 ; stored in R10

06 a75122.63315 ; load coefficients
07 b80916.62789 ; in buffer regs

08 ¢ 36308.29514
09 d 8687.245297
10 e 1168.926495
11 Z283.86760434
12 Y 2.5066282

13 X=L ; argument back to X

14 X=X*(d+X*(e+X*(Z+X*Y))) ; had toleave off c due to length
15 z=L ; use Z for L

16 X=X+c ; add it in here

17 X=a+b*Z+X*Z~2 ; changed this formula accordingly
18 YR10 ; recall exponential result

19 X=X*Y

20 YR9 ; recall product result

21 X=X/Y

Example: Create the GAMMA ASCII file in X-Mem using GMXM, then calculate I'(1) via EVALXM.
XEQ “"GMXM”, 1, EVALXM => WA AARAa A

Below you can see the code for the EVALXM routine. Note the repeated use of functions
?SELCTandCASE from the WARP_Code Module. Note as well the use of two auxiliary functions from
FAT-2, EVAL# and TRIAGE. The first one is a “wild-card” to help select which of the EVAL$
functions to use, while TRIAGE expedites the value assignment to variables. They use R02 as
repository for the index to designate the variable.

! ___|
© MARTIN-MCCLURE — MAY 2024 PAGE 65 OF92

FORMULA EVALUATION ROM - HP-41 MODULE

Script Reading program comparison summary

The table below summarizes the most important differences between the two scrip reading programs
included in the EVAL_APPS Module.

Program Condition Routine | Summing Routine | Multiplying Routine | Other Routines

EVALXM EVAL? EVALZ EVALP n/a

EVLXM+ EVAL? XROM“EVLEZ+" | XROM “EVLP+" XROM“IT$”
XROM "SV$”

Note that besides being capable of using integral and solve commands directly in the scripts, the
enhanced EVLXM+ includes the following additional Statements not supported by EVALXM:

e GoTo Forward

e GoTo Backward

e For / Next Loop

e Do/ While Loop

e Solve & Integrate calls

Besides,EVALZ and EVALP require actual integer values in their syntax, whereas the enhanced
versions EVLX + and EVLP+ also allow using expression formulas for the indexes, i.e. the actual
index value is calculated during program execution.

Appendix 0. Equation Solver.

As you know by now, the Formula Evaluation EVAL_3K is a 4k-Module and can be extended with an

upper page with the examples (EVAL_APPS). The contents of the two pages are largely self-
contained, so it’s possible to only load the lower page in the calculator.

An optional ROM is available that employs the formula evaluation techniques to solving for unknown
variables in equations, a.k.a. an equation SOLVER add-on. The EVAL_EQNS add-on can be plugged
along the Formula Evaluation module, instead of the EVAL_APPS upper page (this saves room in the
I/0 bus if you don't need the provided examples anymore),

The diagram below shows these options; the top configuration with both modules alongside, and the
bottom one where the EVAL_EQNS has replaced the AVAL_APPS:

Module Formula Eval Equation Solver
Lower Page EVAL_VF EVAI_VF
Upper Page EVAL_APPS EVAL_EQNS

© MARTIN-MCCLURE — MAY 2024 PAGE 66 OF92

FORMULA EVALUATION ROM - HP-41 MODULE

Appendix. Enhanced EVLXM+ Program Listing

Extended version supports DO-WHILE, FOR-NEXT, GOTO, IT$ AND SV$
Non-merged instructions are listed in condensed form to save real state and for improved legibility.

01 LBL"EVLXM+" le1 BL1I0 ;zum 112 ?CASE 66 ; Bek.
02 CF21 ;no-stop 62 "p GTO
03 STO00 ;xtoROO 63 STO 02 114 GTO 15
04 CLX 64 CLX 115 CLX
05 SEEKPTA ;top offile 65 -1 116 SEEKPT
06 X<>00 ;xisback 66 AROT 117 G101
07 LBLH :new record |67 X<> 02 | 118 LBL 15 < Bck|GTO
08 SF 25 68 XROM "EVLZ+" 119 RCLPT
09 GETREC 69 GTOH 120 INT
10 FC2C25 ;lastone? |70 LBL12 _ ;PROD | 121 Xx=0?
11 GTO E ;yes, exit 71 "pp 122 SYNERR
12 AVIEW ;no, show 72 STO 02 123 DSEX
13 XROM “r01” 73 CLX 124 NOP
14 SELCT1 74 -1 125 SEEKPT
16 ?CASE 126 ;evalS 75 AROT 126 XROM “+REC’
18 G0 10 76 x<> 02 127 XROM “A01”
19 ?CASE 80 ;evalP 77 XROM "EVLP+" 128 SELCT1
21 GTO12 78 GTOH 130 ?CASE 58 E
22 ?CASE61 ;= assign [79 1BL20 ;:assign | 132 GTO0O
24 GTO 20 80 SF#05 (EVALH) 133 GTO15
25 ?CASE32 ;space 8 GTOH 134 1BLOO ;:asslgn
;g fg/(x)silm . 83 1BL21 ;Frwd.GTO | 122 ;)f; gg
30 GTo21 84 SELCT 0 139 GTO 15
85 ?CASE71 ;Goto
31 ?CASE 66 ;Backd 141 RG>ST 03
33 Gro21 87 _G1010 . 143 GTOH
88 ?CASE 87 ; While

34 ?CASE79 ;Do % GO 17 144 LBL1I"
36 GIOH 91 ?CASE70 ;For 145 XROM “+REC”
37 ?CASE 58 ;:label 93 GTO 26 146 XROM “A01"
39 GIOH 94 STO 02 147 SELCT1
40 ?CASE63 ;eval? o5 CLx 149 2CASE 58 .
42 GIo23 96 ANUM 151 GTO 00
43 ?CASE 82 ; Recall 97 X<> 02 152 GTO 11
32 5(1:25?83 ; Store 98 SFit 8 (TRIAGE) | 3 LBL 99

' ’ 100 GTOH 154 RCL 0O
22 fggsisgg - next 101 LBL10 ;Goto | 155 2x#02
51 GTO 27 102 CLD 158 GTO 11—
52 ?CASE 84 :inTeg 103 ST>RG 03 160 RG>ST 03
54 GTO28 105 ATOX 162 GTOH
55 2CASES6 :solVe 106 STO02 |163 LBL17 ; |
c8 ICASE 0 108 E 165 GTO 04
59 GTOE + Exit 109 ?CASE70 ;For 166 GTOH
60 SYNERR 111 GTO 11 | 166 LBLO4 |

! ___|
© MARTIN-MCCLURE — MAY 2024 PAGE 67 OF92

FORMULA EVALUATION ROM - HP-41 MODULE

167 CLD 227 RG>STO3 289 GTOH
168 ST>RG 02 229 1ST 291 X<>11
I 170 LBL22 <—— | 230 RG>STO03 292 INT
171 RCLPT 232 EVALS 293 SEEKPT
172 INT 233 STOO2 294 XROM “+REC”
173 X=0? 234 X<> 06 295 X<>11
174 SYNERR 235 SF# 8 (TRIAGE) 296 GTOH
175 DSE X 237 GTOH 1297 LBL29 ;solve |
176 NOP 238 LBL27 | 208 sFo1
177 SEEKPT 239 CLD 299 GTO 01
178 XROM “+REC’ 240 ST>RG 02 | 300 LBL28 ;integrate |
179 XROM “AQ1” 242 RCLPT 301 CFol
et N EZNCT l
183 GTO 00 ’ | TR — 303 ST>RG 02
305 SF#07 (RADEL)
184 GTO22—— 246 RCLPT 307 STOS 07
[185 1BLOO | 248 INT 309 1ST
186 RG>ST02 249 X=0? 310 RG>ST 02
188 GTOH 250 SYNERR 312 EVALS
|189 LBL23 ; | 251 DSEX 313 FC?01
190 EVAL? 252 NOP 314 STOO03
191 GTOH 253 SEEKPT 315 FS? 01
193 XROM “+REC” 254 XROM “+REC” 316 STO 04
194 GTOH 255 XROM “~01* 317 RCL$ 07
195 LBL24 ; | 256 SELCT 319 SFO0O
196 ST>RG 04 257 ?CASE 70 ; For 320 2ND
198 ANUM 259 GTO 00 321 RG>ST 02
199 STO 03 260 GTO30 323 EVALS
200 RCLINDO3 261 1BLOO 324 FC?01
201 STO 02 262 STOS$ 07 325 STO 04
202 RG>STO4 264 ATOX 326 FS?01
204 SFH 08 (TRIAGE) e da 25 RQSO7
206 GTOH
T ya— o
208 ST>RG 04
510 ANUM 269 |)'(TOA" 332 3RD
511 STO 03 270 F+1 333 FS?01
512 CLA 271 RG>ST 02 334 GTO 00
e eomeor e sToos
214 XTOA
515 RCLO7 277 RCL$ 07 337 RCL$ 07
216 EVALS 279 CFO0O 339 4TH
217 STOINDO3 280 2ND 340 LBLOO
218 RG>ST 04 281 RCLOO 341 RG>ST 02
220 GTO H ;:g ?f];gf" 343 STO 06
222 ST>RG 03 585 AROT
346 FS? 01
224 ATOX 286 RG>ST 2 347 XROM "SV$"
225 STO 00 88 EVAL? 48 STO 08
226 ATOX

! ___|
© MARTIN-MCCLURE — MAY 2024 PAGE 68 OF92

FORMULA EVALUATION ROM - HP-41 MODULE

349 RG>ST02 1368 LBLE ;EXIT | 371 cwp

351 GIOH 369 SF#9 (WRKFILE) 372 END

1 LBL"1ST" 11 RTN [21 LBL 07
2 LBLOL 12 LBL"3RD" | 22 ALENG
3 59 13 XEQO7 23 59

4 POSA 14 XEQO7 24 POSA
5 LEFTS 15 FS?00 25 -

6 RTN 16 GTOO1 26 E

7 LBL"2ND" | 17 RIN 27 -

8 XEQO7 |18 LBL"4TH" 28 RIGHTS
9 FS?00 19 XEQO7 29 END
10 GTOO1 20 XEQO7

And finally, see the two subroutines shared by EVALXM and EVLXM+

e “+REC"simply gets the next record content to ALPHA, and shows an error if somehow the
end of file is reached (not meant to at this point).

“A01” gets the char$ value for the two first characters into data registers R00 and R01
respectively. The characters are removed from the ALPA string.

F 1 LBL "ap1" |puts first Two Chars in ROO-RO1

F 2 stooo

F 3 o disable stack lift

F 4 aTOX left char to X

F 5 00 P11 LBL"+REC" |

F & =sT0o01 F 12 sF2s

F 7 disable stack lift ¥ 13 GETREC

F g aTOX left char to X F 14 Fcecas end of File?

¥ 9 x 01 ¥ 15 SYNERR show "SYNTAX ERR"
F 10 RN F 15 END

EVALXM uses {R00-R10} for scratch, thus they cannot be used in the script.

Like it was the case with EVALXM, one of the major hurdles for the scripting programs is the fact
that there’s no available registers for scratch calculations: indeed, the stack, buffer registers and data
registers can all and any of them be part of the expressions used in the formulas, thus they're not
freely available for the program’s internal usage.

This is overcome by using functions such as ?CASE, ?X=, etc. that feature in-place argument
capability, i.e. there’s no need to bring the arguments to the stack to operate on them. The only
drawback is the requirement of the WARP_Core module — where those functions reside.

! ___|
© MARTIN-MCCLURE — MAY 2024 PAGE 69 OF92

FORMULA EVALUATION ROM - HP-41 MODULE

Modified EVLXM+ using SELECT-CASE Structures

Like what we did for the standard EVALXM, applying the new conditional structures to the task has
saved about 100 bytes and made the program easier to follow and maintain.

In this conversion we have taken a few liberties (a.k.a. bent the rules a bit more), as follows.

e Taking several clauses outside of the body of the main structure to avoid interferences with
sub-level clauses.

e Using GTO statements between structure clauses, which would make structure programming
purists frown but works like a charm.

e Finally, we also use the / functions from the WARP_Core within some
clauses: they are compatible if we keep in mind their mutual impact on the selected variable
declaration, and that they don't alter the skip-to ENDSLCT address saved in the buffer header
by SELECT, nor they deactivate the structure flag either.

All these tricks and techniques may appear a bit confusing perhaps, specially at first, but all combined
it adds the ultimate flexibility for more efficient and smaller code.Below you can see the result.

01 *LBL"EVLXM+" 38 EVAL# (SF#5) 86 GTO27 ;->moved

2 CFa1 40 CASE32 87 CASES6

03 STOOO 42 GTO21 ;->moved 89 SFOL

04 CLX 43 CASE 70 90 GTO01

05 SEEKPTA 45 GTO21 91 CASE84

06 X<>00 46 CASE66 93 CFO1

07 *LBLH 48 GTO21 94 *LBLO1

08 SF25 49 CASES5S 95 ST>RGO2

09 GETREC 51 CASE 79 97 RADEL (SF#7)

10 FC?C25 53 CASE63 99 STOS07

11 GTOE 55 EVAL? 101 XROM “1ST”

12 AVIEW 56 GTOH 102 RG>ST 02

13 ro1 57 XROM “+REC” 104 EVALS

14 SELECT 1 58 CASE 82 105 FC?01

16 CASEO 60 ST>RGO4 183 g? (;)13

17 GIOE 62 ANUM 108 1004

18 CASE126 63 STO03

20 >3 64 RCLINDO3 109 RCL307
111 SFOO

21 ST002 6> 5TO02 112 XROM “2ND”

22 CLX 66 RG>ST04

3 1 68 TRIAGE (SF#8) 113 RG>ST02
115 EVALS

24 AROT 70 CASE 83 116 FC201

25 X<>02 72 ST>RG 04 117 STO 04

26 XROM"EVLI+" 74 ANUM 118 FS201

27 CASES0 75 STO03 119 S1008

29 >"P" 76 CLA 120 RCLS 07

30 STO02 77 RCLOO 122 FS?01

31 CX 78 XTOA 123 CFOO

32 1 79 RCLO7 124 XROM “3RD”

33 AROT 80 EVALS 125 FS?01

34 X<> 02 81 STOIND O3 126 GTO 00

35 XROM"EVLP+" 82 RG>ST04 127 EVALS

36 CASE61 84 CASESS 128 STOOS

! ___|
© MARTIN-MCCLURE — MAY 2024 PAGE 70 OF92

FORMULA EVALUATION ROM - HP-41 MODULE

129 RCL$07 191 SELECT O 256 *LBL30
131 XROM “4TH" 192 CASE68 257 XEQ99
132 *LBLOO 194 RG>STO2 258 SELECT O
133 RG>ST 02 196 CASELSE 259 CASE 70
135 STO06 197 GTO22 261 STOSO07
136 FC?OL 198 ENDSLCT 263 ATOX
g;)F(;‘S(')\f ITS 199 GTOH 264 STO00
OM "Syen 200 *IBL10 265 CLA
139 XROM"SV$ o1 Clb 266 XTOA
12(1) ;I;(Z:STS 02 202 ST>RGO3 267 >'=
143 CASELSE 204 ATOX 268 XTOA
205 STOO02 269 >"+1
145 ENDSLCT 208 CASE70 272 EVAL# (SF#5)
146 GTOH 510 *LBL11 274 ST>RGO02
147 *LBL21; movedout 211 XROM “+REC” 276 RCLS07
148 SELECT O 212 XROM “A01” 278 CFO0O
149 CASE70 279 XROM “2ND”
151 ST>RGO03 280 RCLOO
153 ATOX 217 GTOO00 ;Z; ’:T?A
154 STOO00 218 GTO11 N
155 ATOX 219 *LBL 00 283 -3
156 RG>ST 03 220 RCL 00 284 AROT
158 XROM “1ST" 285 RG>ST 02
159 RG>STO03 223 GTOo11 287 EVAL?
161 EVALS 224 RG>STO3 322 SISH
162 STOO02 226 CASEG66
163 X<>06 228 *| BL 15 290 INT
164 TRIAGE (SF#8) 229 XEQ99 291 SEERPT =
166 CASE 71 292 XROM “+REC
168 GTO10 293 X<>11
294 CASELSE
169 CASE 87 234 GTO 00
171 GTO17 ; ->moved 235 GTO15 ;gg S;g s3LOCT
172 CASELSE 236 *LBLOO
173 sTOO02 237 RCLOO 297 GTOH
174 CLX 298 *LBL99
175 ANUM 240 GTO15 299 RCLPT
176 X<>02 241 RG>ST03 300 INT
177 TRIAGE (SF#8) 243 CASELSE 301 X=0?
179 ENDSLCT 244 CLX 302 SYNERR
180 GTOH 245 SEEKPT 303 DSE X
181 *LBL17 | 246 GTO11 304 ADV
247 ENDSLCT 305 SEEKPT
182 EVAL? 306 XROM “+REC”
183 GTOO4 248 S1oH 307 XROM “A01”
* a
184 GTOH |249 *LBL27;moved | s R
185 *LBLO4 250 CLD (305 *isLe |
186 CLD 251 ST>RGO2
187 ST>RG02 253 RCLPT 310 WORKFL (SF#09)
189 *LBL22 254 STO11 312 CLD
190 XEQ99 255 CLX 313 END

! ___|
© MARTIN-MCCLURE — MAY 2024

PAGE 71 OF92

FORMULA EVALUATION ROM - HP-41 MODULE

Appendix4. The underpinnings of DO-WHILE and IF,ELSE.ENDIF

These functions are a great example of what can be done with a good idea and a robust knowledge
of the operation of the calculator. The recipe for success is a skillful manipulation of the FOCALRTN
addresses to coerce the routine flow to obey the results of the conditional evaluations, and not the
sequential scheme provided by the standard FOCAL rules.

Starting with the easier one, the DO-WHILE source code is shown below.

DO’s mission is to search for a WHILE statement downstream; done in the subroutine [?ZENDO], and
to pushits own location address in the [ADR1] position of the RTN stack — so the WHILE code will
know where to send the execution back to..

Header ABCA 08F o does PC=RTN
Header ABCS "oo4 o A ngel Martin
Do ABCH 39C =0 | 1
asc7 T30 LDI S&X 1
ABCE [09C CON: WHILE 2nd. byte i
“and agcs '0se e=C@PTEe<— |
! asca Fro PORT DEP- Search for matching WHILE]
) ABCB |03C xa doesn't change the PC |
ascc [Das ->ARRS [PENDO]
NOTFND _ ABCD _ 08B INC+23d ——— Show "NO_" msg
FOUND ABCE ri:ii NCXQ get current PC address
ABCF 044 -x2950 [GETPC] -points at byte after DO
GO=X0 ABDOD 31D NC Xa backtrack one byte
_at [poy ABD1 044 -=29C7 [DECAD]
b iteration ABD2 31D NCXQ backtrack one byte
Irin RTN stack ABD3 044 -=29C7 [DECAD]
G0_X0O2 [ABD4 0CC ?FSET 10 pointer in ROM?
ABDS 02F 05 — ves, skip adjustment
55 ABDG b4z =0 @PT PCis now at the DO step
le is rerp ABDY 0A2 AC @PT pack the RAM address
ABDE 3CA REHFC PT=- 50 the leftmost nybble is zero
_ ABDS 56 A=A+ X5 “OKXX" in A<3:0=
PRTMN2 ABDA 338 READ 12({bj<— "R3|ADRZ| ADR1| PCNT"
Wi ABDEB [T A<>C PT<- replace PC with OXXX
ABDC OFC RCR 10 "R2|ADR1| addr| R3| AD"
ABDD OAR A>C PT<- save b's leftover in A<3:0=
ABDE 328 WRIT 12{b) "RZ|ADRL|0XMX| PCNT"
ABDF 2FB READ 11ja) "ADRE|ADRS| ADR4| AD"
ABED OFC RCR 10 "ADRS|ADR4|AD| ADRB"
ABE] OAR A>C PT<- rescue leftover for a
ABE2 ks WRIT 11fa) "ADRS | ADR4| ADRZ| AD"
ABE3 3E0 RTN done.
NOEMND ABE4 3 PNC XD Show "NO_" msg
ABES -=4308 INOMSG4]
ABEG
ABET O0E N “NO END
ABER 204 o
ABES iF1 NC GO Left!, Show and Halt :
ABEA OFE -=3F7C [APEREXT :

! ___|
© MARTIN-MCCLURE — MAY 2024 PAGE 72 OF92

FORMULA EVALUATION ROM - HP-41 MODULE

At this point let’s refresh our understanding of the RTN stack registers. Remember that because of
the RAM/ROM issue PCNT’s format is not the same as the other six RTN addresses !

h{12}:
R|3 | A[(D|R|2|A|D[R|1|P[C|N|T
|l |luwu|lw|es e | 7|54 3|2z2]1]o0
al11}:

AlD| R[6|A[D| R[S |A|[D|R | 4| A|D
13 !

=
Pl
-
[
=
=
W
[==]
|
=3
(%]
i
Lol
[}
[
=

Once DO has performed its task, the program continues executing all following instructions until
WHILE is reached, and [UCRUN] is called to run EVAL? as a FOCAL instruction to perform the
conditional evaluation defined in ALPHA and act accordingly:

o If true, the execution needs to be sent back to the DO program step. This we accomplish by
removing the first RTN address (placed there by [UCRUN])so that the second one takes its
position, hence the execution will go to DO after the RTN. The popping is done by [XQ>GO]

o If false, the execution should continue below the WHILE step, in which case we don't need
the DO address anymore, thus ADR2is purged offthe RTN stack, shifting the higher RTN
addresses (ADR5 to ADR3) down one position. Note that ADR1 is not messed with at all, as it
holds the location of the WHILE program step - pushed there by [UCRUN]. The purging is
done by [KADR2]

Header agoD 'Das “E*
Header ABDE oac b i Check test and decide
Header asoF "Dog o
Header age0 Do “H
Header ABE] 17 W aﬁngef Martin
WHILE ABE2 78 READ 5{M)
ABE3 2EE 2CE0 ALL anything in Alpha?
ABES 32 "SYNTAX ERROR"
AEEE ...
PORTAL ABEE
ABEY -
FOCAL ABER 147 XROM 30,21 evalwate the test condition E
ABED 095 A7:95 EVAL? '
TRUE |ABEA J'IE‘I GTO 00] TRUE, pop the first RTN adr |
ABEB 082 <Distamce= | | . 2bytes .]
FALSE |ABEC _irIE‘I GTO 00 — T T FALSE, kill 2nd. RTN and end. i
ABED 1085 <Distance> 5 bytes '
POPRT1 ABEE 147 XROM 30,11 «=— pop the first RTN adr {WHILE)
ABEF 086 A78B SFE
ABFO 112 2
agF1 |ois % XQ>G0
ABF2 "85 RTN it'll return to "0DO"
KILLRT2 ABF3 147 XROM 30,11 = kill the 2nd. RTN adr
ABF4 086 A7BB SFE
ABFS 112 2
agfs (016 B KRTNZ
ABFY 1C2 END it'll return to “WHILE"
FOCAL ABFE "oog CHAIN - ... whatever
FOCAL ABFQ 22F <End od Program =

! ___|
© MARTIN-MCCLURE — MAY 2024 PAGE 73 OF92

FORMULA EVALUATION ROM - HP-41 MODULE

To complete this review, see the listing for the subroutines mentioned so far:

Header ACBD OcF o
Header ACB1 "ha7 “=" s first RTN address
Header ACB2 03E -y
Header aces 'Os1 “q-
Header ACB4 "oss X Hokan Thorgren
XO=G0 ACBS 2F8 READ 11{a) get upper register
ACEE DEE C<»B ALL save it in B
ACBT EET READ 12{b) get lower register
ACEB DAE Pl AL save it in A
ACED 29C PT=7 field delimiter
ACEA 3EA LSHFA PT<-
ACBB 3EA LSHFA PT<- shift A<0:7> four nybbles left
ACBC 3EA LEHFA PTe- from: "R3|ADR2 |ADRI|PCNT"
ACBD 3EA LEHFA PTe- to: “"R3|ADR2| PCNT[0000
ACBE OAE Pl ALL bringit to C
ACBF 01c PT=3
ACCD OCA C=B PT<- “R3IJADR2Z | PCNT| R4JAD "
ACCL orC RCR 4 “"R4JAD| R3|ADR2 | PCNT"
ACC2 EhL) WRIT 12(b) ADR1 is gonel
ACCS OCE C=B ALL “ADREG|ADRS | ADR4 | AD"
ACC4 044 C=0 PT<- "ADRG|ADRS|AD QOO0 "
ACCS o7C RCR 4 Q000 ADRG| ADRS | AD"
ACCE gla:) WRIT 11{a) update upper register
accy BE0 RTN done.
and:
Header A333 og2 2"
Header A334 O4E N Kills the 2nd. RTN adr
Header a33s D54 ST
Header A336 D52 “R"
Header A3I3T o4g K" A ngel Martin
KRTMN2 A338 EET) READ 12{h)
A33s DEO SLCTQ
ASSH 2DC PT=13
A33B 0aD SLCTP
A33C 11C PT=8
A33D 302 RSHFC P-01
AS3E 302 REHFC P-O get rid of 2nd. RTN
A3SF 302 REHFC P-0O one nybble at a time
As4D 302 REHFC P-O "0000| R3|ADRI | PCNT"
A341 10E A=C ALL
A342 2F8 READ 11{a) get upper RTN stack
A343 o7c RCR 4 rotate for transfer
As44 oDc PT= 10 delimit new field
A345 A12 A=C P-0 puts "R4| AD" to A<13:100
a3 o5z C=0 P-0 wipe it off from upper
A34T gla:) WRIT 11({a) "0000| ADRG| ADRS | AD"
AS4R DAE P ALL "R4| ADRS| ADRL| PCNT"
AZAG Eas WRIT 12({b) re-write-lower part
a3aa BEO RTN done.

And we've left the initial subroutine for last, which is also a good seg way for the IF.ELSE.ENDIF

description following next.-

! ___|
PAGE 74 OF92

© MARTIN-MCCLURE — MAY 2024

FORMULA EVALUATION ROM - HP-41 MODULE

The routine expects the second byte of the sought-for instruction in the G register. A successful hit
consists of a match of the first byte ("171") and the second byte (in G). They are of course
determined by the XROM id# and their position in the FAT.

[

TENDD ABBBR 384 CLRF 0
PEND ABBI 141 PNC XO get current PC address :
ABEA 0A4 -=2950 [GETPC] - puts adr in A<3:0> :
NXTEBYT ABEB OBA B=A PT<- +—— byte adr in B<3:0>
ABBC 3CC PREY safety abort
488D 360 2CRTN
OVER? ABBE 38C PFSET O was INDIF found?
azgF D23 INC w4 ——— g, skip
ABSD Fog C=M ALL get ENDIF adr back
ABS] J6A ARC PT=- are we here again?
ABS2 JAD ?MC RTN yes, abort ELSE search!
FIRST ABSS fo19 PNCXQ =— get next byte from A<3:0= in C<1(
4234 084 22006 [NBYTAB] i
ABSS O8E B=A ALL save adr in B<3:.0>
agos 056 C=0 %S
ABST 106 A=CSEX] put byte in A<1:0> for compares
ABSE {130 LDIS&x i
AE99 10A7 _ CON: B I WHILE Ist.byte _
ABSA %66 TARC SEN could it be WHL_17
ABDEB o7z IC +14d —— NQ, keep checking
WHILE agoC [ois PNC XQ Ves, get next byte i
ABSD 054 -=2006 [NBYTAB]
ABSE 08E B=A ALL
ABSF 56 C=0 X5 clear the "1" if there
ABAD 106 A=C SEX save 2nd. Byte in AX
ABAL 39C FT=0
ABAZ (098 (=G @PT> get sought forvalue _
ABAZ 01c =3 watch out!
ABAL 66 PARC SEN isis WHL_27
ABAS §I4ﬂ NC GO yes, WHILE found
ABAG 5332 -#0C53 [5KIP1] - address left in B<3:0=
NXTBT ABAT 0BA AxB PT- no, put adr in A
ABAB 318 UNC -29d - | and loop for nextbyte
NOWHL ABAS .'"1541 LD 58X = upper bound _!
ABAA |OCD | CON:_ D "CE"=X<>F _; "GP =1BL__ |
ABAB Bos PA<C SEN trouble child?
ABAC DB INC -05 na, next byte plz.
AgAD 86 RsHFASEX | _|move nybbleright _
ABAE Tﬂﬂ LDV S&X the remaining “Cx" bytes |
ASAF 100C _ END.Nybble | | excluing CEand CF__ |
ABBO 366 PA#C 58X
ABB1 387 I -10d —
ABB2 E13) RTN search failed!

Two entry points exist: the first one at 0xA888 clears FO and it's used by both DO and IF in the
search for and ENDIF statement (that must always exist). The second entry point is only used by IF
in the search for an ELSE statement (which may exist or not), a condition that sets FO so the routine
knows to do an address check — ensuring that the current address checked does not go beyond that
of the ENDIF statement found in the first pass. This shortens the searched segment and avoids
finding an ELSE outside of the IF.ENDIF we're working within.

! ___|
© MARTIN-MCCLURE — MAY 2024 PAGE 75 OF92

FORMULA EVALUATION ROM - HP-41 MODULE

When the execution encounters an IF statement the code searches for the matching ENDIF, as well
as for a possible ELSE statement within the same structure. Its address is immediately pushed in the
ADR?2 location of the return stack. Next it performs the evaluation of the conditional in ALPHA, and
depending on its result it will: () continue with the program step after when TRUE, or (b) branch to
the ENDIF (or ELSE if it exists) when FALSE.

Header asFa Dss upe does PC=RTN
Header ABFB "oog o aﬁngef Martin
IF ABFC 30C P=0 | | |
ABFD T30 LDI S&X 1
ABFE O9F _ CON: _ | ||| ENDIF 2nd. byte | _ i
ABFF 038 G=C@PTs | | | | I
agoo Paro PORT DEP- Search for matching ENDIF 1
ALl LDSC Xa somewhere below i
ago2 oz -=A838 [PENDO] i
NOTFND |ASD3 298 UNC-45d <—— | | _|Show "NO_" msg
FOUND AS4 oCA C=B PT< get ENDIF address to C<3:0=
ASOS Msg M=C ALL safeguard in M<3:0=
AS06 raaa SETF O flogs ENDIF foundi
ao7 3¢ =0 | || | .
acog M3 LDI S&X '
o9 losE _ cow:_ ||| ELSE2nd.byte |
annot exceed asos fose e=te@prs [[|] -]
AS0B %79 PORT DEP: Search for matching ELSE]
asoc losc xa ,
AcoD Toso -=4889 [PEND] |
NOTFND asoe 'oaz awce0s —— | || ELSE not found
FOUND ADOF s C=0 S&X
a010 270 RAMSLCT
M<3:0> A91l OA _ AcBPT< | | ||| put ELSE address in A<3:0>
ao12 Ko PORT DEP: Push ELSE adr+2 in RTN#1 1
V=30 4913 iDSC xa in case it's FALSE i
AZ14 003 -=A8C3 [60=XQJ] i
4915 (e INC+0B —— CHECK CONDITION
NOTELSE AS16 046 C=0S&X < Found, it'll be used if FALSE
A917 270 RAMSLCT
ao1g Mos C=M ALL get ENDIF odr back
AD1D 104 A=C PT=- put address in A<3:0=
A91A 1379 PORT DEP: Push ENDIF adr in RTN#1 :
AD1B !D&C ()} in case it's FALSE '
ADIC |0BF -»A8BF [GO=XQ] i
PORTAL 491D
AD1E L o0
FOCAL AD1F 1A7 XROM 30,21 evalwate the test condition :
£920 D95 AFG5 EVAL? i
TRUE 4921 |1B1 GTO 00 TRUE, kill 2nd. RTN and end. i
o2 [030_ _<Distoncex | _|___|- dBhytes .]
FALSE A923 1B1 GTO 00 FALSE, pop the first RTN adr |
AG24 ,rDSF <Qistance= -55 bytes 1

Note that, like it was the case for WHILE, the conditional evaluation is done in a FOCAL code stub
triggered by [UCRUN]. The TRUE/FALSE results direct the execution to the same [XQ>GO] and

[KRTN2] routines but in reverse:

e TRUE now removes the ENDIF address from ADR2
e FALSE pops the first RTN addr so that the ENDIF address in ADR2 becomes ADR1
1

© MARTIN-MCCLURE — MAY 2024

PAGE 76 OF92

FORMULA EVALUATION ROM - HP-41 MODULE

So far so good, the last piece of this puzzle is to equip ELSE with the capability to jump to the ENDIF
statement, so then the TRUE branch is completed the program will skip all the instructions between
ELSE and ENDIF. This requires a new search for ENDIF, i.e. a third call to [?ENDQ] as can be seen
below:

Header AS25 085 “E"
Header AS26 13 5" tricky littie one...
Header A92T ooc “-
Header A928 "oos “E" A ngel Martin
ELSE A929 39C P=0
AD2A 1130 LDI 58X '
F processes A28 looF _ con: B . ENDIF 2nd. byte J
y A92C EEB G=C @PT+
'V done AS2D 379 PORT DEF: Search for matching ENDIF
11} AS2E to3c Xa somewhere below
AS2F 1088 -=4888 [PENDO]
NOTFND _ A930 298 _INC-45d ——— | Show "NO_" msg
FOUND AS31 DE& A<=B PT<- put address in A<3:0=
AgG32 31D NCXa backtrock one
AS33 044 -=29C7 [DECAD]
Ag34 081 NC GO [DECAD] and [PUTPC]
AS35 08E -=232¢C [PUTPCD]
Header AS36 086 “F"
Header A93T "oog “-r End of IF
Header A938 "oo4 o Does_NOTHING!
Header A939 O0E N
Header AS3A "oos “E" A ngel Martin
EMDIF AD3B 39C PT=0
AS3C 3D& C<=8T XP
as30 ‘ose G=C, PT+
AS3E & C=0 S&X
Ag3F 70 _RAMSLCT B
AS4D 130 LD S&X
e ASal 0CE CON: 198 higher pitch
A4 375 FNCXQ messes up ail status bits!
AS4s 058 -=1600 [TONEB]
AD44 098 C=G @PT,*
agas f5g ST=C WP
asa5 BED RTN

And finally, the ENDIF instruction — which by itself does nothing but must exist to demarcate the
IF/ENDIF structure. I've added a short beep just for kicks, so the user knows the execution has
completed the IF.ELSE.ENDIF structure successfully.

PS. It'll be good to expedite the execution by saving the ENDIF address in a permanent location, but
such isn't a trivial proposition since there’s no way to know what is going to happen within the
ELSE.ENDIF branch and thus there’s no way to tell what resources are going to be needed. The
solution may involve using the buffer header register... to be continued?

! ___|
© MARTIN-MCCLURE — MAY 2024 PAGE 77 OF92

FORMULA EVALUATION ROM - HP-41 MODULE

Even more difficult now: FOR...NEXT loops

This is of course the next logical step, that despite its assumed simplicity it has required a more
involved wizardry to wedge it in the module.

The FOR...NEXT loop requires a variable and three loop pointers (step size, beginning and end). The
variable is the SELCT edregister, and the pointers are combined in bbb.eee:ss form as contents of
such register.

In terms of the internal operation the FOR instruction performs a dual role: (1) storing the
bbb.eee:ss control word in X into the SELCT’ed registerand (2) pushing its own location address in
the RTN stack (for the NEXT statement consumption later on), done in the [GTO2ADR] routine. This
second task is identical to [DO]’s mission, thus the execution is transferred to the same point for that.

Header ABBO 092 “R" Saves X in SLET and does PC>RTN

Header ABBA O0F “o" bbb ecess

Header a8 "Dos g Angel Martin

FOR ABBC Bag SETF9 F8 i5 used by BCOBIN wy/ IND SELCT
ABBD OFg8 READ 3(X) get control word
ABBE 70 NCALL_ |bobeeess
ageF 7o PORT DEP- Selects SLCT register, and puts |

e with BECO (03C xa header addr in @, contentin M |

& ABCL 1183 ASES [SELSLC] - leaves SFLCT selected |

small agvance? ABC2 0BO C=N ALL no, recall control word
ASCS 2F0 _ wRTDATA_ | put crt word in SLCTreg
asca fi30 LDisax |
ABCS l0A1 | CON:_ . _ . _.._..| NEXT20d.byte i
ABCHE ’Dﬁ INCHE — merge w DO code

Header ABCT 08F o does PC=RTN

Header ABCE "B =p" Angel Martin

DO ASCO 244 CRF9 F is used by BCDBIN w/ IND SELCT
ABCA 1130 LDI 58X |
ascB losc con: WHILE 2nd. byte |

Tand ABCC 30C FT=0 b

: agCD D58 G=C @PT,+

] ABCE rSFQ PORT DEF: Search for matching WHILE '
ABCF | 03C Xa doesn't change the PC |
ASDD {0BE ->ABSE [PENDO] |

woreno _ _ _ lasp1 oE3TTjCaagd T T Show “NO_BOUND" msg

FOUND ABD2 {141 PNC X0 get current PC address !
ABD3 044 -22050 [GETPC] - points at byte * gfter® O

gt [DO] agpa Y5707 PORT DEP- Push DOJFOR adre2 in RTN&1L |

b iteration ABDS | 03C Xa for loop return |

Irin BTN stock ABDB EDDQ -=4809 [GOZADRT i
ABD7 {31 PNC GO |
ABDE .rﬂﬂz -=00F0 [NFRPUT EI

Note that the address saved in the FOCAL RTN stack is for the instruction following FOR, in other
words FOR is only executed once. This is a vital design point, that frees up the X-register within the
loop.

Also done by FOR is the search for a NEXT instruction downstream to ensure the loop integrity.

! ___|
© MARTIN-MCCLURE — MAY 2024 PAGE 78 OF92

FORMULA EVALUATION ROM - HP-41 MODULE

The subroutine [SELSLC] shown below is also used by NEXT to read the current control word
kkk.eee:ss, and check the existence of the variable register. It leaves it selected on exit.

SELSLC A9BS Check buffer idd7 - = header in C
ASEG 24 [CHKBF#7] - returns addr in A.X
ELECT" toker ASET OAG PG SEN
LT update ASER 70 RAMSLCT
ASES 038 READATA get header content
ASEA 03C RCR 3 yes, shift group
ASEB 266 C=C-1 S&X remove the padding
ASBC 018 UNCHO3_———) _|if zero, repiace with defouit
assp 1130 LDIsax l
asge fo73 Xregister defauits toX ifnoinfo _____ |
ASEF 106 A=C SEN = put in AX for vetting
ASSD 32 NC XQ Check Existence - IND, STK
AS9l -=4ECH [EXISTS3] - adr in AX
ADg2 DAL Aol SEN
ASG3 B0 RAMELCT select SELCT 'ed register
Ag94 BE0 RTN

Let’s now look into the NEXT instruction code next (sorry I couldn't resist). The first part after calling

[SELSLC] is the routinary stuff to read the values, increment them and compare them: see code
segment OxA95F to 0XA97B in next page.

Depending on the comparison the execution is transfer back to the line below the FOR statement (if
kkk<eee), or to the instruction following NEXT if the limit has been reached (kkk>=eee). Note that
we cover both contingencies (equal or larger than) to trap error condition cases when the user inputs
bbb.eee such that bbb>eee.

The transfer back to the line belowFORis made by copying the first return address from RTN1 into
the program pointer PC. Easy does it, no frills, no added complexity. See code segment from 0xA97F
to 0xA984 in next page. Interestingly this code stream ends with a call to [NFRPU], needed to tell the
OS where to go when the MCODE RTN stack is empty — which occurs when the selected register is an
INDirect type or a buffer register.

Finally, the termination when the loop needs exiting is no other than a call to our known [XQ>GO]
routine to pop FOR address off the RTN stack, since it won't be needed anymore.

Note that because FOR...NEXT doesn't involve ?EVAL, it is an all-MCODE routine, and thus the
strategy did not require using [UCRUN] to transfer the execution to FOCAL as it was the case for
DO/WHILE and IF/ELSE/ENDIF — which was needed to run ?EVAL as a FOCAL program step!

! ___|
© MARTIN-MCCLURE — MAY 2024 PAGE 79 OF92

FORMULA EVALUATION ROM - HP-41 MODULE

Header AS51 "h94 “™ Increase Cnt'l word and decide
Header A952 b18 .. whether to return to FOR
Header ass3 "oos “E*
Header A954 O0E “N" Angel Martin
MNEXT A955 E?E PORT DEF: Selects SLCT register, and puts i
AS5E 03C xa heoder addr in Q, content in M
AST 715. =) =ADES [SELSLC] - Ieaves SELCT selected ?_"F_'EE?E'___E
A958 GET) READATA bbb.ecess
A959 E’EI FNCXQ {includes SETDEC)
Ag5A 050 ->1408 [CHK_NO_5]
ASSE iIID NCXQ "0 EEESSO0000] 000" in A
AG5C rl'JE-JI -=1047 [SINFR]
AL5D 3FA LSHFA M "] EESSOOM00 | B00"
AOSE 3FA LSHFA M "] ESSOOOMH00 | B00"
AOSF 3FA LSHFA M "0 | SSO000MH00 | GO0
ASE0 35C PT=12
aos1 fB42 PAKD @PT
aos2 ‘o3 IC+6
ADE3 3FA LSHFA M "0 | SOO00OMR00 | BOH0"
Adgd B4z A0 @PT step#=07
nsss o2z 4 — na, skip
ASGE Ag2 A=4+1 @PT yes, add one
ao67 ‘D13 INC +02
STEP>2 A968 166 A=A+1 SBN <
STEP# AQED LT READATA <— kkk,eeess ; kkk==bbb
ADGA 101D PNC XQ
AEB 060 ->1807 [AD2_10]
ASGC D70 N=C ALL
AQED
AOBE
AOEF
AGT0 NCXO
AT -=400EF .
AGT2 OF0 C<=M ALL kikk in N; eeein C
ALQT3 10E A=C ALL eag
AGT4 0BO C=N ALL KKK
ALT5 2BE C=-C-1 M5 -kkk
ao76 "Doo NOP let carry settle
A977 01D PNC XQ eee-kitk
AGTE rl'JED ->1807 [AD2-10]
Ag79 260 SETHEX
AGTA 2FE LD MS i5 kki=gee 7
AGTB "oz23 INCHd — no, copy RTN2 into RTN1
REPEAT AGTC JAD PORT DEP: yes, kill the [FOR] RTN addr
AGTD 08c GO and merrily go on...
ADQTE 0B5 -=ACEBS Xa=G0]
LOOP# ADTF 01c PT=3 -« write RTN1 into the PC
ASED EET) READ 12{b) get lower RTN stack
A0R1 o7c RCR 4 put RTNI ir C<3:0=
AGE2 104 A=C PT<- copy to A<3:0>
ASE3Z rﬂiﬂ NC GO go back to line below FOR E
noga Thos -»2512 [XGNN10] =- [PUTPC] + [NFRPU] |

So, there you have it - the underpinnings of the BASIC-like instructions explained in all gory-detail. If
nothing else, it'll be very helpful for me the next time I need to revise the code, but I also Hope it

was of interest to you as well.

© MARTIN-MCCLURE — MAY 2024

PAGE 80 OF92

FORMULA EVALUATION ROM - HP-41 MODULE

SELECT-CASE Structures

Not to be underdone, let’s tackle the last program flow control to end this section. The WARP Core
includes a precursor of this structure, namely functions SELCTand ?CASE. They do a wonderful job
by themselves as it can be seen in the EVALXM programs, but frankly they’re not the real McCoy.

For the complete SELECT-CASE implementation we need to include four new functions that, working

collaboratively, can handle all instances arising in this type of structure. They are the four clauses of
the structure:

1. SELECT _ _ demarcates the beginning and initializes variables, pointers and flags. It also
searches for ENDSLECT to check for structural integrity — done by our trusty [?ZENDQ]
subroutine again. The selected data register is in the program line below as a non-merged
line, and it is retrieved by the [GETRG#] subroutine.

2. CASE_ _ _ runs the code segment if the value of the selected variable matches the input
parameter, otherwise it passes the baton to the following CASE instruction, if there’s any
below in the structure. On paired matches it also clears the “active” flag so the subsequent
CASEs will be ignored.

3. CASELSE is a special case without numeric value to match — so anything goes. It’s the “last
chance” clause after all other options have been checked without a match.

4, ENDSLCT terminates the structure by clearing variables and flags.

SELECT selects REG, sets flag and search for EMDSLCT

CASE if flag is clear: move PC to ENDSLCT
if flag is set, check value:
if value is true, clear it and run instructions below
if value is false, move to next CASE or ENDSLCT

CASELSE clear flag and run stuff downstream

EMDSLCT clear flag and beep

The header buffer holds the following data:

“77|5Z| ADDR|REG| FOO"

e ADDRIis the address of the ENDSLCT instruction
e REG the number of the selected data register (can be INDirect)
e When C[XS] ="F"it denotes an active structure, otherwise C[XS5]=0

Note: Importantly enough, the FOCAL RTN stack (status registers a(11) and b(12)) is not used to
store any address — so it’s available for all other flow control groups to use without interferences.

! ___|
© MARTIN-MCCLURE — MAY 2024 PAGE 81 OF92

FORMULA EVALUATION ROM - HP-41 MODULE

Here's the MCODE for SELECT, showing how the previous considerations are done:

Header ans2 ‘Do T
Header ANGS ooz e Inputs SELCT 'ed REGH
Header AASS "Bos “E" and activates SELCASE fiag
Header AASS ooc - Warmning: no nested ability!
Header AASE 205 “E"
Header AAST D13 5" A ngel Martin
SELECT _ _ AALE 04c ?FSET 4 55T'ing a program
~ |AASS O1F Ic +03 yes, divert
{ addresses AABD 2CC ?FSET 13 RUN'ing o program ?
—) AMSE 016 INC+HD3 —— nom skip
AASC NCXQ Get Parameter from Nextline
— |AASD 3 =43 [GETRGA]
CON'T AASE 0AE A0 SEN input parameter to C.X
ALSF P26 C=C+1 S&X pad it
AABD 70 M=C ALL save it in M.X for later
Angl € P=0c_ A
AAB2 riau LDI 58X |
ARB3 As _eow-] [ENDSLCT 2nd. byte J
ARBS 953____53_'3_ @rT .. _
AABS rSFE PORT DEF: 5=*::rrf'h or matching ENDSLCT |
AMBE iﬂSC xa doesn't change the PC |
ARRTY {08E -=A88E (PENDO] - resuit in B<3:0= :
NOTFND ANEER 098 INC +19d Show "NO_ EDUHD" msg
PNC XQ o
-=4904
AMEE OAG PG SEN
AABC B0 RAMSLLT select buf header
AAED e READATA get header content
ALMGE 056 C=0 X5
AABF 276 C=C-1 X5 flags active SELCT
AATOD 17C RCR & rotate ADDR field to C<3:0=
AT 01c PT=5
AAT2 OCA =B PT<- copy ENDSLCT addr to C<3:0=
AATS 1BC RCR 11 rotate 3 digits to left
ANTA 10E A=C ALL move it to A
AATS 0BOD C=M ALL recover REG#
AMTE fos A=C 58X putitin AX
ANTT OAE PO ALL complete headerto C
AMTE 1BC RCR 11 "77|5Z| ADDR| REG | FOO"
AMTD 3 NC GO write updated heoder
ANTH 26 -=4900 TWRTSEL] - selects ChipD
NOBOUND AMTE 369 PORT DEF: Show "NO_BOUND" msg !
AATC i03C GO i
AMTD OED -=ABED INOBOND] :

Next comes CASE, a bit trickier in that it needs to have the logic to make a go/no-go call based on
the parameter values. It also needs to deactivate the structure in cases of matched conditions, and
search forother CASE or CASELSE statements when said flag is inactive.

! ___|
© MARTIN-MCCLURE — MAY 2024 PAGE 82 OF92

FORMULA EVALUATION ROM - HP-41 MODULE

Here's the first part, note how CASELSE piggybacks on the CASE code, as most of the work is done

by both anyway. Here flag 9 is used to tell the cases apart.

NOBOUND AMTE 369 FORT DEF: Show "NO_BOUND" msg -
AATC i03C GO i
AMTD OED -=A8ED INOBOND] :
Header AMNTE 085 “E"
Header AATF 013 5 Any goter vialue
Header AARD o0oc “r Anything goes !
Header ALB] 005 “E"
Header ARMED 013 5"
Header ALES 001 A
Header AARSL 003 “" A ngel Martin
CASELSE AABS 248 SETF 9 F& is used by BCDBIN wy IND SELCT
AMBE 073 INC +14d
Header AART "ogs “E" Checks for match between
Header AARE 13 5" SELCTEéd Rge content and
Header AARS Fi01 A" parameter in prompt
Header angn o3 o Angel Martin
CASE __ _ AAMBB 244 CLRF 9 F8 iz used by BCOBIN wy IND SELCT
AABC 04ac ?FSET 4 55T'ing a program
{ oddresses AAED O1F IC+H03 yes, divert
AABE 2CC ?FSET 13 RUN'ing a program 7
AABF 018 INCHIZ & —— nom skip
AAS0D "NCXQ Get Parameter from Nextline
Angl -=435E [GETRGA]
CON'T ARG DAE AxC SENX input parameter to C.X
AASS o70 M=C ALL save CASE WALZ in N.X for later
CASELS# AASS "NCXQ Check buffer iddy - = header in C
AASS ->4904 [CHKBF&EZ] - returns addr in A.X
AADE DAE AxC SENX buffer address
AAST i) WRIT 2(Q) saved in QX for later
AASE B0 RAMSLLCT get header content
ANSS G5 READATA 77| 52| ADDR | REG| FOO
ANSA 17C RCR & rotate ADDR to C<3:0=
ANSE 01C PT=3 "REG|FOD| 77| 52| ADDR"
ANMSC 2EA ?CHO PT=- is ENDSLCT addr zero?
ALMSD 2F3 INC -34d yes, Show "NO_BOUND" msg
AASE EDE PFT=10 will check flag
AASF E2 R0 @ PT i5 SELCT active?
AAAD 03F ICH7F — VES, 5kip over
FCTOEND AAAL 01C PT=3 < no. aiready done in another CASE
ABAZ 104 A=C PT=- move PC to ENDSLCT
PCTOMNEXT AAAS 31D FNCXQ = bhacktrack one byte
AnAd 044 -=2907 [DECAD]
ABAS 0B1 PNC G0 [DECAD] plus [PUTPCT
ABAG : O8E -=2320 [PUTPCD]
ACTIVE ABAT 24C PFSET9 =— is this CASELESER
anng 380 PCRTN yes, let go!
AAAS Fsg M=C ALL safeguard REG adr in M<3:0>

CASE continues with the comparison between the register content and the CASE value, now saved in
register M as a three-digit decimal number (therefore up to 999 max)... BCDBIN alert!!

! ___|
© MARTIN-MCCLURE — MAY 2024

PAGE 83 OF92

FORMULA EVALUATION ROM - HP-41 MODULE

If the values match the routine defuses all activity markers and updates the header register.
If they don't then it's time to call [ENDOQ?] to search for more CASE/CASELSE instructions

LETLY 1BC RCR 11 put 5LCT'ed Reg in CX
AAAB gl C=C-1 S&X remove padding
AsaC "os A=C S&X
aaap Toze B=0 S&X single register
ANAE z PNC XQ
ANAF ¥ -=4386
AMBD DAL P SEN
AABL B0 RAMSLLT select SELCT register
AABZ 3s READATA get register contents
maximum is 999 ALB3 380 PNC X0 convert C to Hex in CI5&X]
AABS 008 -=02E3 [BCDBIN] - uses F8; selects Chip0
AABS 10E A=C ALL put in A for compares
ALBG 0BD C=MN ALL get CASE WVal#
AABT 36E TARC ALL value matches varg ¢
AABE "a37 IC +H06 no, try next CASE or goto ENDSLCT
MATCH AABS i) READ 9{Q) yes, deactivate SELCASE flag
AABA B70 RAMSLCT in case there are other CASEs below
AABE G5 READATA read buffer header
AABC a6 C=0 S&X clear active flags
AMBD 118 INC+35d —— SAVE AND EXIT
NOMATCH AMBE rE‘nBB SETFD =—- flags ENDSLCT found!
ALBF | PT=0_] R _
anco 130 LDisax i
AACL l0A3 _ CON: | i (CASE2nd.byte .
anc2 fse G=C@PT:_ | I Y O
ancs 579 PORT DEP- Search for other CASEs |
AACS 103C xa second pass! -
AACS i08F -=ABSF [PEND] :
NOTFND] AMCE 0IB UNC+03 ——— | ||] TRY CASELSE as well
FOUND AACT 0BA A=B PTa- % put address in A<3:0=
AACE 208 INC -37d move the PC to the next CASE
TRYELSE AMCS 39C PT=0 «~— ! T 4t
AACA 1130 LDl S&X '
AACB 04 _ CON:_ i (CASELSE2nd. byte
aacc 'ss _ G=C@PTr_]] e
AACD 5?9 PORT DEF: Search for other CASELSE i
AACE ! 03C X0 second pass! '
AACF |DBF ->ABSF [PEND] |
NOTFND] AMDD 288 INC-4Fd ———— | move PC to ENDSLCT
FOUND AAD] 383 INC -10d move the PC to the next CASE
SAVEXT AAED 13 NC GO write updoted h
ANED 26 -=4900 [WRTSEL] - sele

The PC gets moved either to the next CASE/CASELSE (if either one is found), or to ENDSLCT if we're
at the end of the road. Note the two calls to [DECAD] prior to putting the PC value — this is due to
the way [ENDO?] works, returning the address of the instruction *following* the sought-for
instruction.

! ___|
© MARTIN-MCCLURE — MAY 2024 PAGE 84 OF92

FORMULA EVALUATION ROM - HP-41 MODULE

Finally, the ENDSLCT code is just a nominal deactivation of the active flag and clearing of the selected

reg off the buffer header:

Header aapz "ood
Header aap3 "oo3
Header AAD4 00C
Header aaps 013
Header aap6 "ood
Header AAD7 OOE
Header sape "oos
ENDSLCT AAD9 5
AADA 2
AADB DA
aapc 2mo
aapo 038
AADE 25C
AADF 04A
SAVEXT AAED
AAEL

<L SEX
RAMSLCT
READATA
FT=5
=0 PT<-
"NC GO0

->4900

Deactivates SELCASE
and clears all pointers

Angel Martin
Check buffer id#7 - = header in C
[CHKBF&Z] - returms addr in A.X

select buf heoder

get header content
deactivate SELCT fiag
and ciear ADDR & REG#H

That's all folks, hope you enjoyed this excursion throughout the “FOCAL+ extensions” — if nothing
else surely particularly unusual applications on the HP-41 platform.

True

Boolean

Expression 1

Statement

False

Boolcan

Expression 2

®

A
Rest of the Code W

Statement - n

Boolean

Expression n

do {
conditional code ;
} while (condition)

code block

If condition
is true

condition

If condition
is false

Default Statement

© MARTIN-MCCLURE — MAY 2024

PAGE 85 OF92

FORMULA EVALUATION ROM - HP-41 MODULE

Appendix5. AOS Simulator

Written by Greg McClure, this FOCAL program was first releasedin the GJM ROM and is added here
for completion.

The AOS (Algebraic Operating System) program is designed to allow entry of data and operations
using operations and parenthesis as written. The partial answers are saved in Extended Memory in a
small file created by the user when AQOS initializes. It follows operation hierarchy. So"(“and “*"are
performed before “+", etc).

B.1 AOS Overview

The Algebraic Operating System emulator is designed to act like non-RPN calculators that use
parenthesis and pending operations to solve numeric math operations. This program requires an
Extended memory file (name AQS) to store data for pending operations for parenthesis operation.
The program does not require any other memory except for the stack (which is fully used).

B.2 AOS Flag Usage

Flag | Use when set

+ pending (flag 1 MUST be clear)
- pending (flag 0 MUST be clear)
* pending (flag 3 MUST be clear)
/ pending (flag 2 MUST be clear)
A pending

Open (‘s pending

ulbh[WIN|RL|O

B.3 AOS User Keyboard

[A]: AOS + [B]: AOS - [C]: AOS * [D]: AOS/ [E]: AOS A
[F]: AOS ([G]: AOS) [J]: AOS = (R/S)

B.4 AOS User Instructions
After XEQ “"AOS" the AOS flags and AOS buffer will initialize. It will ask for the size of the Extended

Memory file to use. If the AOS Data file already exists, it will ask for the new size. If no new size is
given the data file is not resized. User mode will be enabled.

B.5 AOS Example

Usage of the AOS program is best served by a simple example.

! ___|
© MARTIN-MCCLURE — MAY 2024 PAGE 86 OF92

FORMULA EVALUATION ROM - HP-41 MODULE

Calculate (1+2)*(3/4)+(5/(1/2))

Enter | Keypress Comments (and Annun.s) | Annunciators (red =on) | Output
XEQ “AOS” Reset AOS 01234 “SIZE?” (if no file)
“NEW SIZE?” (if file)
20 R/S Small array 0.0000
F (0.0000
1 A 1+ 01234 1.0000
2 G 2), + performed 01234 3.0000
C * 01234 3.0000
F (, * with value saved 01234 3.0000
3 D 3/ 01234 3.0000
4 G 4),/ performed, 01234 0.7500
* with value recalled
A +, * performed 01234 2.2500
F (01234 2.2500
5 E 5A 01234 5.0000
F (, » with value saved 01234 5.0000
1 D 1/ 01234 1.0000
2 G 2), / performed, 01234 0.5000
A with value recalled
G), » performed, 01234 2.2361
+ with value recalled
JorR/S = final + performed 01234 4.4861

In this example, after entering the final 2, instead of using G the final answer could have been
calculated by entering J or R/S (J or R/S will perform all pending parenthesis and functions).

For those interested, the data file saves required values from the stack and the status of the flags
every time the AOS “(* function is performed. It restores the flags and data values required back to
the stack when AOS™)” is performed. The annunciators show which operations and how many stack
registers will be stored (only one register is required for the operations saved).

! ___|
© MARTIN-MCCLURE — MAY 2024 PAGE 87 OF92

FORMULA EVALUATION ROM - HP-41 MODULE

AOS Program Listing.

| 01 LBL "AOS"

02 SF 27

| 031BLa

04 CFO1
05 CF 02
06 CF 22
07 12

08 STO 23
09 -E

10 STO 24
11 CLX

12 RTN

13 LBL"+"

14 LBLA

1561
16 GTO 00

17 LBL"-"

18 LBLB

1951
20 GTO 00

21 LBL "*"

22 LBLC

23 42
24 GTO 00

25 LBL"/"

26 LBLD

27 32
28 GTO 00

29 LBL "YX"

30LBLb

3114
32 GTO 00

33 LBL "NEG"

34LBLc

3523
36 GTO 00

37 LBL "<"

38 LBLd

395

| 40 LBLOO

41 E1
42/

43 STO 22
44 INT

45 X#0?
46 GTO 00

47 FS? 01
48 XEQ 03

| 49 LBL0O

50 RDN

51 FS?C 22
52 XEQ 02
53 RCL 22
54 INT

55 X=0?
56 GTO 00

57 LBLO7

58 RCL 24

59 X<0?

60 GTO 00

61 RCLIND 24
62 FRC

63 RCL 22

64 FRC

65 X>Y?

66 GTO 00

67 RCLIND 24
68 INT

69 X=07?

70 GTO 00

71 XEQ 01

72 GTO 07

73 LBLOO

74 15G 24

75 ENTERA
76 RCL24

77 13

78 X<=Y?

79 ASIN

80 RCL 22

81 STOIND 24
82 RCLIND 23
83 CFO01

84 GTO 99

85 LBL ">"

86 LBL e

87E

88 STO 22
89 X<>Y
90 FS?C 22
91 XEQ 02
92 RCL24
93 X<0?
94 SQRT

© MARTIN-MCCLURE — MAY 2024

95 RCLIND 24
96 INT

97 X=0?

98 GTO 08

99 XEQ 01
100 GTO e

101 LBL 08

102 DSE 24
103 ENTERA”
104 RCLIND 23
105 SF 01

106 GTO 99

107 LBLE

108 LBL "="

109 E

110 STO 22
111 X<>Y
112 FS?C 22
113 XEQ 02
114 RCL 24
115 X<0?
116 GTO 00
117 RCLIND 24
118 XEQ 01
119 GTO E

120 LBL 0O

121 RCLIND 23
122 XEQ a

123 RDN

124 RDN

125 SF 22

126 GTO 99

127 LBL 02

128 1SG 23
129 ENTERA”
130 21

131 RCL 23
132 -

133 X<0?
134 SQRT
135 RDN
136 STO IND 23
137 RCL 22
138 INT
139 X#0?
140 RTN

141 LBL O3

142 1SG 24

143 ENTERA
144 4.2

145 STO IND 24
146 RDN

147 RTN

148 LBLO1

149 RCLIND 23
150 DSE 23
151 RCLIND 23
152 X<>Y

153 XEQ IND Z
154 FS?C 02
155 ISG 23

156 ENTERA
157 RCL 23
158 13

159 -

160 X<0?

161 SQRT

162 X<>Y

163 STO IND 23
164 DSE 24
166 RTN

| 167 LBLO1

168 Y~X
169 RTN

| 170 LBL 02

171 CHS

| 172 LBL 0O

173 SF 02
174 RTN

| 175 LBL 03

176 /
177 RTN

| 178 LBL 04

179 *
180 RTN

| 181 LBL 05

182 CHS

| 183 LBL 06

184 +

| 185 LBL 99

186 RTN

| 187 SF 22

188 END

PAGE 88 OF92

FORMULA EVALUATION ROM - HP-41 MODULE

Appendix.-Stack Shuffling

This function has been moved to the WARP_Core module, where it has been enhanced and improved
with a companion ROR4 shuffling counterpart. Refer to the WARP_Core manual for details.

SHFL is a powerful Stack Shuffle & Digit Entry function that makes modifications to multiple stack
registers simultaneously in a selective manner, including deletion, digit value entry (0-9) and register
exchanges. The function prompts five fields, representing the new arrangement of the stack variables
- referenced by the current one.

Thus “XYZTL" would leave things unchanged, and “00000” will be equivalent to CLST plus STO L. For
example, to clear registers X, Z and L you'll use “"0YQTO0". To swap registersY and Z, clearing LastX
on the fly: "XZYT0". To enter 1,2,3,4 in the stack you'll type “1234L".

SHFL _ __ __] FHFL ZZTopP

UZER FRRAD

In addition to the five stack registers and “zero” for deletions, the four components of the
ALPHA register (M, N, O, P) are also allowed in the prompts. This adds flexibility and certain
complexity to the scope. It should be noted that the M register is used internally by the function so
for all practical purposes it's not really useful here.

SHFL is also programmable. In a program the parameter information is taken from the
ALPHA register (really the M component as mentioned) as a string containing the five letters for the
destinations. Non-valid letters will leave the corresponding register unaltered.

Note: You should be aware that SHFL uses the parameter buffer (id#=7) to hold a copy of
the current stack registers after the shuffling. This could be useful to recall the previous values
(basically an UNDO facility) but will conflict with your parameter assignments using LET= if you have
made them.

The function has a shortcut for the “no changes” case XYZTL. Pressing the radix key at the
prompt will make that as the input sequence automatically; creating a “shadow” copy of the stackin
the buffer registers as follows:

Note: for the sake of completion the original SHUFL MCODE is attached in the next few pages. As
mentioned before, this function is now superseded with the more capable version included in the
WARP Core module.

! ___|
© MARTIN-MCCLURE — MAY 2024 PAGE 89 OF92

[T S TT

LY R <]

LA EVALUATION ROM

- HP-41 MODULE

SHFL STEELD SHIFT key?
SHFL yes, toggie SHIFT and RTN
SHFL [TGSHF4]
SHFL NOSHFT get ALPHA key code
SHFL [GTACOD]
SHFL
SHFL
SHFL
SHFL
SHFL AREE 01F o HIE — no, skip
SHFL AAES 246 C=A-CSEX is key>3A (30 and 3F)
SHFL AREA 027 JC +H — na, -=[NUABER]
SHFL 2 { ino Prompt for Stock Letter
SHFL >
SHFL FOUND ARED 3ED RTH
SHFL [MuUnBER AAGE 221 wmexa € : ASCI char put to LCD
SHFL AAGF a0 2088 MASK]
SHFL AATO 140 PNC GO Skip one line and ATN
SHFL AATL 032 -0C53 [SKIF1]
SHFL [aDi03 BATZ 300 NC GO abandon ship
SHFL AATI 122 ->48C3 [BANOLT
SHFL Header AATH osc "
SHFL Header AATS (L] “F" Stock Shuffle
SHFL Header AATE 008 =gy Supports Digit entry (1)
SHFL Header AATT 013 "5 .inge.l Martin
SHFL [sHFL AATE 2CC FFSET 13 RUN'ing a program?
SHFL AATS 19F I +51d yes, proceed
SHFL AATA D4C YFEET 4 55Ting o program ?
SHFL AATE 18F JC +39d = yes, proceed
SHFL MANUAL AATC 158 M=C ALL get function oddress
SHFL AATDH 239 PNC XQ Display Function Name
SHFL AATE 108 ->428E [PRATFNM]
SHFL AATF 013 JNC +12 LB A440
SHFL REPMTE AAE0 3BE READ 14{d) = remowe rightmost chr
SHFL FRMFTS AREL '130 E Sprompts i
SHFL sz MOE_ o lunderseoreee i
SHFL AAS3 3E8 WRIT 15(g)
SHFL AABS 3E8 WRIT 15e)
SHFL AASS 12D ANC X0 S-prompts
SHFL AAEE 038 -HIE4B [NEXT3]
SHFL BOKARW | AAB7 | 358 INC 2id ——— 11 | lABTSEG)
SHFL OTHER laage 28C PFSET 7 Radix key pressed?
SHFL AAED)] JNCHE — nao, ignore
SHFL SHFLD AARA 38D INC XT Nessoge Line
SHFL AAER 01c -+JFEF [MESSL]
SHFL AAEC 158 o
SHFL AAED 19 Y

AAEBE 14 b "X¥ZTL"
guickest way to cregte a AAEF 14 ™
"shodow stack™ in the buffer AAE0 oc MLt

AAE1 158 JNC +43d
SHFL AATE 1379 PORT DEP- Select Stack Regy Capped!
SHFL AAS3 Ea.—:c xa and puts it in LCD
SHFL AADL 125F -=AASF ,!EIEB_LDE
SHFL NOSTE AAE5 363 JNC -20d — [PRMPTS]
SHFL -S:J'A_I:Zf_-_-__-M-_EIE-_-JFC_-FEE-:__"_ ___-WRWTJU
SHFL REPMT2 AMST 388 READ 14{d) remove rightmost chr
SHFL PRMPT4 AfSE 1130 LDI 58X &prompts _'
SHFL AADI DI .. T S |
SHFL AABA 3EB WRIT 15(e) add the fourth one
SHFL AfSE J12D ANC XQ 4-prompts |

! ___|
© MARTIN-MCCLURE — MAY 2024

PAGE 90 OF92

FORMULA EVALUATION ROM - HP-41 MODULE

AR

J\I\Jnl\l\Jd\l\J\l\:ﬁEhﬂ‘v
Woe bW =0 Ww o

8 .

oW e

- I

w

YRBPLLLRREYRR
- " \n . W N e 3 W0 O d M

B8

110
111
112
113

115
116
117
118
119
120
121
122

SHFL AfSC (038 ->0E48 | [NEXT3] i
SHFL BCKARW | Aa9D 318 INC -29d - [REPMTS]
SHFL OTHER AASE 379 PORT DEF: | Select Stack Reg/ Capped!
SHFL AASF 03C xa and puts it in LCD
SHFL AAAD 25F ->AASF [STKBLD]
SHFL NOSTK AAAL 388 INC 09 —— [PRMPT4]
SHFL STACK | |[AAA2 T 013 UNC 02 —— | T [~ 7 ClpemeT3)
SHFL REPMT3 AAA3 383 READ 14(d) < remove rightmost chr
SHFL PRMPT3 AAAG 12D NCXQ € 3-prompts
SHFL AAAS 038 ->0E48 [NEXT3]
SHFL BCKARW | AAs6 338 INC -15d REPMT4
SHFL OTHER AAA7 1379 PORT DEP: Select Stack Reg/ Capped!
SHFL AAAS 03¢ xQ and puts it in LCD
SHFL AAAS 25F ->AASF |5T*BLD]
SHFL NOSTK AAAA 3D3 INC 06 —— PRMPT3
SHFL STack — |AAAB T 018~ UNC+03 —— || | |PRmeTZ
SHFL AAAC 08B INC+28d =
SHFL REPMT2 AAAD 388 READ 13[d) < remove rightmost chr
SHFL PRMPT2 AAAE 121 MNCXQ 2-prompts
SHFL AAAF 038 ->0E48 [NEXT2]
SHFL BokaRw | AaB0 398 INC -13d [REPMT3]
SHFL OTHER AABL 379 PORT DEP: Select Stack Reg/ Capped!
SHFL AAB2 03¢ xQ and puts it in LCD
SHFL AAB3 25F ->AASF 8LD
SHFL AAB4 3D3 INC 06 — [PRMPT2]
SHFL |PRMVPTL AABS 115 NCXQ € 1-prompt
SHFL AABG 038 ->0E45 [NEXT4]
SHFL BCKARW |asB7 383 INC -10d [REPMT2]
SHFL OTHER AABS 379 PORT DEP: Select Stock Reg/ Capped!
SHFL AABS 03¢ xa and puts it in LCD
SHFL AABA 125F ->AASF 8LD
SHFL NOSTK AABB 3D3 INC 06 —— [PRMPTA]
SHFL A | CY TR E VT, R s R — T 7 "7 |ieft Justified format
SHFL AABD {0AC ->28F7 [LEFTI]
SHFL AABE 319 NCXQ last chance to cancel out
SHFL AABF 038 ->0ECE [NULTST]
SHFL AACO 138 READ 4(t) get rid of "SHFL: "
SHFL AACL 3F3 READ 15{e) in two strokes!
SHFL |SHFLL AAC2 169 NCXQ Enable RAM & Reset Seq
SHFL AAC3 124 ->495A [exar4]
SHFL AACS 04E C=0ALL
SHFL AACS 168 WRIT 5(M)
SHFL AACE
SHFL AACT
SHFL |ssT/RUN AACS 178 READ M{5) get master string
SHFL AACS 2EE 2CH0 ALL
SHFL AACA 3A0 ?NC RTN

AACB OEE C<B ALL out in B.
this first port copies the AACC 369 NC XQ ‘ Check buffer id#7 - > header in C
stack registers to the buffer AACD 124 ->490A [CHKBF#7] - returns addr in AX
in the order defined by the AACE 0A6 A<C SE&X header address
master string (prompt) AACF 226 C=C+1 S&X bR1 adr

AADO 158 M=C ALL for iater
SHFL AAD1 09C PT=5 will loop five times
SHFL [sTx2BUF AAD2 OCE C=BALL =« get master string
SHFL AAD3 106 A=C S&X put NIBBLE in A
SHFL AAD4 016 A=D XS neuter the XS nibbie
SHFL AADS 23C RCR 2 rotate two
SHFL AADG OEE _ CoBALL update masterstring -
SHFL AAD7 !'130 DI S8X '!
SHFL AADS @ e e e e e mrpirc_m_ns_k ________ =

! ___|
© MARTIN-MCCLURE — MAY 2024

PAGE 91 OF92

FORMULA EVALUATION ROM - HP-41 MODULE

123
124
1325
126
127
128
129
130
131
132
133
134
135
136
137
138
135
140
141
142
143
144
145
146
147
148
145
150
151
152
153
154
155
156
157
158
155
160
161
162
163
164
165
166
167
168
165
170
171
172

173

SHFL AADS QED SLCT O don't mess wy counter
SHFL AADA 31C FT=1 point to "3"
SHFRL AADE 362 FARC @PT is it @ number?
SHFL AADC 037 IC +DE& na, - [NONLIA]
SHFRL NUMBER AADD 04E C=0 ALl reset C
SHFL AADE 38C PT=0 get the digit
SHFL AADF 0A2 A<=C@PT put A<O> in C<0>
SHFL AAED 23C RCR 2 make it a floating point
SHRL AREL B INC+HD® — and merge W/ main code
SHFL [Momum AAEZ F |Prompts for Stock Letter
SHFRL AAE3 |[STKPMTA] - 11 choices
SHFL NOTFEND ARES 133 JNC +38d not found, abort!
SHFL Founo T T |ases T foss C=0 58X reset fiskd
SHFL ARER OBE A<z IMS result to C.MS
SHFRL ARET 2FC RCR 13 get addr to C.X
SHFL AMER 270 RAMSLCT select stock reg
SHFL AAES 033 READATA reod contents
SHFL ABEA 0AD SLCTP I
SHFL AAEB 1D8 C=o=hd ALL contents to MLALL; bR1 to C.X
SHFL AREC 270 RAMSLCT select buffer regq
SHFL ARED 226 C=C+1 58X next buf reg
SHFL AAEE 108 C=z=hl ALL viziue bock to C; bR2 adrto ©
SHFL AAEF 2FD WRTDATA stock contents to buffer
SHFL AAFD a4 FT=PT-1 incregse counter
SHFL AAFL 354 PT=0 all done?
SHFL AAF2 303 JNC -32d na, do next
SHFL [eUF2sTH AAF3 (130 LDIsEM — 1 1T T
SHFL ME e .) R R -t
SHFL AAFS 106 A=C SEX
SHFL AAFE o9c PT=5 loop five times
SHFL [AAFT 153 C=M ALL -
SHFL AAFE 266 C=C-1 58X paint at previous buf reg
AAFS 270 RAMSLCT select buffer reg
the second part then copies AAFA 158 M=C ALL updigted pointer
the buffer registers to the AAFB 033 READATA buffer reg contents
stack, in the "defoult" order AAFC DAE A== ALL value to A, stk adr to C.X
XYZTL - as designed. AAFD 270 RAMSLCT select stock reg
AAFE DAE A== ALL value back to CALL
SHFL AAFF 2FD WRTDATA write value to stock
SHFL ABDD 146 A=A-1 SEX decrease stack pointer
SHFL [(ABO1 023 JNCHM —
SHFL ABO2 30 IDIs&X | -1rrr-- T T
aB03 oo Lvegisteradar_ | | | | | _____
lost register is not in sequence _| |ABD4 106 A=C 58X
LastX = 4{L}, but from bR1 ABOS El] PT=PT-1 a—!
ABDB 354 *PT=0
SHFL ABO7 383 INC -16d
SHFL ~ |ABOE 3C1 NCGO
SHFL ABOD 00z ->00F0 NFRPU]
SHFL |ERH:GR ABDA 085 NCGO % DIATA ERROR
SHFL ABOB oAz -»282D TERRDE]

! ___|
© MARTIN-MCCLURE — MAY 2024

PAGE 92 OF92

