

COMPILED BY Á. MARTIN - 2020 1

HP-41 AOS ROM



Algebraic Operation for the HP-41

Introduction.

This module includes a set of three FOCAL programs implementing Algebraic Operation on

the HP-41. The programs are independent from one another and can be used indistinctly.

In addition to the three main AOS programs the module also includes utility programs for

“Function Interpretation” using the ALPHA register. In many respects this approach has

been superseded by the Formula Evaluation Module, but it’s still interesting to document the

different solutions contributed by the user community along the years.

Another group of routines are about using X-Memory registers in a more flexible way –

similar to standard data registers in main memory, and even as extended stack for complete

ALPHA strings. Here too these Focal routines have been superseded by the MCODE

implementation in the X-Mem Twin module.

Finally, and somehow in an opposite kind of way, the module also includes Valentin Albillo’s

STKN program that simulates a N-Level RPN stack.

ROM Contents

The table below summarizes the main programs by category.

Program(s) Category Author

AOSXM AOS Greg McClure

AOS57 AOS Thomas Klem

AOS67 AOS Jim Horn

FLREG, FLSTO, FLRCL… XM Registers Peter Reiter

ASINIT, APOP, APUSH XM ALPHA Stack Godwin Stewart

SIZA, ASTOA, A<> XM ALPHA Stack Tyann

AFI, AFI+ Formula Erik Christensen

FRMLA Formula Stefan Fegert

STKN RPN Stack Valentín Albillo

All authors listed should be credited for the programs. The sources include other ROMS like

the GJM ROM, HP67FUN, and diverse user forums (MoHP and SwissMicros) and publications

like the PPC Journal. Refer to the individual program description for more details.

COMPILED BY Á. MARTIN - 2020 2

HP-41 AOS ROM

AOS Simulator using X-Mem ; by Greg McClure

Written by Greg McClure, this FOCAL program was first released in the GJM ROM and it opens the set

of AOS implementations in this module.

The AOSXM (Algebraic Operating System) program is designed to allow entry of data and operations

using operations and parenthesis as written. The partial answers are saved in Extended Memory in a

small file created by the user when AOS initializes. It follows operation hierarchy. So “(“ and “*” are

performed before “+”, etc).

B.1 AOS Overview

The Algebraic Operating System emulator is designed to act like non-RPN calculators that use

parenthesis and pending operations to solve numeric math operations. This program requires an

Extended memory file (name AOS) to store data for pending operations for parenthesis operation.

The program does not require any other memory except for the stack (which is fully used).

B.2 AOS Flag Usage

Flag Use when set

0 + pending (flag 1 MUST be clear)

1 - pending (flag 0 MUST be clear)

2 * pending (flag 3 MUST be clear)

3 / pending (flag 2 MUST be clear)

4 ^ pending

5 Open (‘s pending

B.3 AOS User Keyboard

[A]: AOS + [B]: AOS - [C]: AOS * [D]: AOS / [E]: AOS ^

[F]: AOS ([G]: AOS) [J]: AOS = (R/S)

B.4 AOS User Instructions

After XEQ “AOS” the AOS flags and AOS buffer will initialize. It will ask for the size of the Extended

Memory file to use. If the AOS Data file already exists, it will ask for the new size. If no new size is

given the data file is not resized. User mode will be enabled.

COMPILED BY Á. MARTIN - 2020 3

HP-41 AOS ROM

B.5 AOS Example

Usage of the AOS program is best served by a simple example.

Calculate (1+2)*(3/4)+(5^(1/2))

Enter Keypress Comments (and
Annun.s)

Annunciators (red = on) Output

 XEQ
“AOSXM”

Reset AOSXM 01234 “SIZE?” (if no file)
“NEW SIZE?” (if file)

20 R/S Small array 0.0000

 F (0.0000

1 A 1 + 01234 1.0000

2 G 2), + performed 01234 3.0000

 C * 01234 3.0000

 F (, * with value saved 01234 3.0000

3 D 3 / 01234 3.0000

4 G 4),/ performed,
* with value recalled

01234 0.7500

 A +, * performed 01234 2.2500

 F (01234 2.2500

5 E 5 ^ 01234 5.0000

 F (, ^ with value saved 01234 5.0000

1 D 1 / 01234 1.0000

2 G 2), / performed,
^ with value recalled

01234 0.5000

 G), ^ performed,
+ with value recalled

01234 2.2361

 J or R/S = final + performed 01234 4.4861

In this example, after entering the final 2, instead of using G the final answer could have been

calculated by entering J or R/S (J or R/S will perform all pending parenthesis and functions).

For those interested, the data file saves required values from the stack and the status of the flags

every time the AOS “(“ function is performed. It restores the flags and data values required back to

the stack when AOS “)” is performed. The annunciators show which operations and how many stack

registers will be stored (only one register is required for the operations saved).

COMPILED BY Á. MARTIN - 2020 4

HP-41 AOS ROM

B.6 Program Listing

 01 LBL “AOSXM”

 02 RAD
 03 SF 27
 04 "AOS"
 05 SF 25
 06 FLSIZE
 07 FS?C 25
 08 GTO 00
 09 "SIZE?"
 10 PROMPT
 11 "AOS"
 12 CRFLD
 13 GTO 01
 14 *LBL 00

 15 RCLFLAG
 16 FIX 0
 17 X<>Y
 18 "NEW SZ <"
 19 ARCL X
 20 "`>?"
 21 X<>Y
 22 STOFLAG
 23 RDN
 24 CF 22
 25 PROMPT
 26 FC? 22
 27 GTO 01
 28 CHS
 29 RESZFL
 30 *LBL 01

 31 CLST
 32 CLA
 33 SEEKPT
 34 X<>F
 35 X<> L
 36 +
 37 XEQ F
 38 XEQ G
 39 GTO 12
40 *LBL 14

 41 FS?C 04
 42 Y^X
 43 RTN
 44 *LBL 13

 45 XEQ 14
 46 FS?C 03
 47 /
 48 FS?C 02

 49 *
 50 RTN
 51 *LBL 12

 52 XEQ 13
 53 FS?C 01
 54 -
 55 FS?C 00
 56 +
 57 RTN
 58 GTO 09

 59 *LBL A ‘ Addition

 60 XEQ 12
 61 SF 00
 62 RTN
 63 GTO 09

 64 *LBL B ‘ Subtraction

 65 XEQ 12
 66 SF 01
 67 RTN
 68 GTO 09

 69 *LBL C ‘ Multiplication

 70 XEQ 13
 71 SF 02
 72 RTN
 73 GTO 09

 74 *LBL D ‘ Division

 75 XEQ 13
 76 SF 03
 77 RTN
 78 GTO 09

 79 *LBL E ‘Power

 80 XEQ 14
 81 SF 04
 82 RTN

 83 *LBL J ‘R/S

 84 *LBL 09 ‘Core routine

 85 XEQ G
 86 FC? 05
 87 RTN
 88 GTO 09
 89 *LBL 11

 90 SAVEX
 91 CLX
 92 +
 93 RTN

 94 *LBL F ‘“Close Parenthesis

 95 SF 05

COMPILED BY Á. MARTIN - 2020 5

HP-41 AOS ROM

 96 ENTER^
 97 RDN
 98 FS? 04
 99 XEQ 11
100 FS? 03
101 XEQ 11
102 FS? 02
103 XEQ 11
104 FS? 01
105 XEQ 11
106 FS? 00
107 XEQ 11
108 CLX
109 X<>F
110 XEQ 11
111 R^
112 RTN
113 GTO 09
114 *LBL 10

115 STO M
116 CLX
117 RCLPT
118 DSE X
119 ""
120 SEEKPT
121 X<> M
122 GETX
123 X<> M
124 SEEKPT
125 CLX

126 X<> M
127 RTN

128 *LBL G ‘Open Parenthesis

129 XEQ 12
130 RCLPT
131 X=0?
132 GTO 00
133 RDN
134 XEQ 10
135 *LBL 00

136 X<>F
137 RDN
138 ENTER^
139 ENTER^
140 ENTER^
141 FS? 00
142 XEQ 10
143 FS? 01
144 XEQ 10
145 FS? 02
146 XEQ 10
147 FS? 03
148 XEQ 10
149 FS? 04
150 XEQ 10
151 R^
152 RTN
153 GTO J
154 END

Note that the version in the module includes global labels for the main arithmetic

operations, LBL “+”, LBL “-“, LBL “*”, LBL “/”, and LBL “^”.

COMPILED BY Á. MARTIN - 2020 6

HP-41 AOS ROM

COMPILED BY Á. MARTIN - 2020 7

HP-41 AOS ROM

COMPILED BY Á. MARTIN - 2020 8

HP-41 AOS ROM

COMPILED BY Á. MARTIN - 2020 9

HP-41 AOS ROM

COMPILED BY Á. MARTIN - 2020 10

HP-41 AOS ROM

COMPILED BY Á. MARTIN - 2020 11

HP-41 AOS ROM

Algebraic Operation System (AOS) ; by Thomas Klem

https://www.hpmuseum.org/forum/thread-18271.html

Description

This program allows you to use the Algebraic Operation System (AOS) similar to how

old Texas Instruments calculators work.

The shunting yard algorithm is used with a data and an operator stack.

Their stack size is configurable and is only limited by the amount of memory available.

Functions

The functions just operate on the X register in postfix notation.

This is how the TI-57 and other older calculators from Texas Instruments work.

For example, to calculate √(3^2+4^2) use:

3 x^2 + 4 x^2 = √x

Alternatively we can use:

(3 x^2 + 4 x^2) √x

However, this requires one more keystroke.

Apparently we use a mixture of infix notation for arithmetic operations and postfix

notation for functions.

Change Sign

It behaves similarly to an ordinary function.

E.g. an expression like −3^4 has to be keyed in like:

3 y^x 4 = +/-

Or alternatively:

(3 y^x 4) +/-

Intermediate Results

The intermediate results of a calculation are viewed and may also be printed.

Example

https://www.hpmuseum.org/forum/thread-18271.html

COMPILED BY Á. MARTIN - 2020 12

HP-41 AOS ROM

(1 * 2 + 3 * 4 + 5 * 6 + 7 * 8) / 4 =

ST X= 2
ST X= 12
ST X= 14
ST X= 30
ST X= 44
ST X= 56
ST X= 100
ST X= 25

Implicit Data Entry

The current value in the X register is used as data entry.

This allows to reuse the first entry:

3 + =

This results in 3+3 = 6.

3 * * =

This results in 3^4 = 81.

The Monster Formula

The formula is from A case against the x<>y key:

Here's how it is entered with this program.

1 - 2 * 3 ^ 4 / 5 + (6 - 7 X^2 ^ 3 1/X) SIN * 8 FACT + (9 ^

2 ^ 3 * 45 ^ (6 / 7)) CHS X^2 LN =

1657.008948

https://www.hpmuseum.org/forum/thread-3810.html

COMPILED BY Á. MARTIN - 2020 13

HP-41 AOS ROM

Intermediate Results

ST X= 81

ST X= 162

ST X= 32.4

ST X= -31.4

ST X= 3.65930571002

ST X= 2.34069428998

ST X= 1646.72764773

ST X= 1615.32764773

ST X= 8

ST X= 43046721

ST X= 8.57142857143ᴇ-1

ST X= 26.1239772883

ST X= 1124551561.74

ST X= 1657.00894809

Registers

This is a list of the registers after the

calculation:

00: 5
01: 10
02: -4.1
03: 0
04: 0
05: 0
06: 1615.32764773
07: 43046721
08: 45
09: 6
10: 0

Mark Hardman’s solution

(05-10-2015 03:12 PM)Mark Hardman Wrote:

Code:

x y z t

1 [Enter] 1 - - -

3 [Enter] 3 1 - -

4 4 3 1 -

y^x 81 1 - -

2 2 81 1 -

x 162 1 - -

5 5 162 1 -

/ 32.4 1 - -

- -31.4 - - -

6 [Enter] 6 -31.4 - -

7 7 6 -31.4 -

x^2 49 6 -31.4 -

3 3 49 6 -31.4

1/x 0.3333 49 6 -31.4

y^x 3.6593 6 -31.4 -31.4

- 2.3407 -31.4 -31.4 -31.4

sin 0.0408 -31.4 -31.4 -31.4

8 8 0.0408 -31.4 -31.4

x! 40320 0.0408 -31.4 -31.4

x 1646.7276 -31.4 -31.4 -31.4

+ 1615.3276 -31.4 -31.4 -31.4

45 [Enter] 45 1615.3276 -31.4 -31.4

6 [Enter] 6 45 1615.3276 -31.4

7 7 6 45 1615.3276

/ 0.8571 45 1615.3276 1615.3276

y^x 26.1240 1615.3276 1615.3276 1615.3276

2 [Enter] 2 26.1240 1615.3276 1615.3276

https://www.hpmuseum.org/forum/post-34678.html#pid34678

COMPILED BY Á. MARTIN - 2020 14

HP-41 AOS ROM

3 3 2 26.1240 1615.3276

y^x 8 26.1240 1615.3276 1615.3276

9 [Chs] -9 8 26.1240 1615.3276

x<>y 8 -9 26.1240 1615.3276

y^x 4.3047e07 26.1240 1615.3276 1615.3276

x 1.1246e09 1615.3276 1615.3276 1615.3276

x^2 1.2646e18 1615.3276 1615.3276 1615.3276

ln 41.6813 1615.3276 1615.3276 1615.3276

+ 1657.0089 1615.3276 1615.3276 1615.3276

TI-57

These are the key strokes for the TI-57:

1 - 2 × 3 y^x 4 ÷ 5 + (6 - 7 x^2 INV y^x 3) 2nd sin * 40320

+ (9 y^x (2 y^x 3) × 45 ^ (6 ÷ 7)) +/- x^2 lnx =

We get the same result: 1657.0089

or this I used the TI-57 Programmable Calculator.

However I had to cheat a little: since the factorial function is missing I just

replaced 8!8! with 4032040320.

Also since the y^x operation apparently is not right associative I used another pair of

parenthesis to calculate: (2^3)^2

Key Assignments

Of course you are free to choose differently buy I recommend the following key

assignments:

| Label | Key | Code

|-------|--------|-----

| + | + | 61

| - | - | 51

| * | * | 71

| / | / | 81

| ↑ | Y↑X | -12

| = | ENTER↑ | 41

| < | X<>Y | 21

| > | R↓ | 22
| AOS | CLx/A | -44

https://www.pcjs.org/machines/ti/ti57/

COMPILED BY Á. MARTIN - 2020 15

HP-41 AOS ROM

Program

This is the program for the HP-41C:

01▸LBL "AOS57"

02 CLRG

03 3

04 STO 00

05 10

06 STO 01

07 CLST

08 RTN

09▸LBL "+"

10 -1.2

11 GTO 00

12▸LBL "-"

13 -2.2

14 GTO 00

15▸LBL "*"

16 -3.1

17 GTO 00

18▸LBL "/"

19 -4.1

20 GTO 00

21▸LBL "^"

22 5.1

23▸LBL 00

24 STO 02

25 FRC

26 X>0?

27 GTO 11

28▸LBL 09

29 RCL IND 01

30 X=0?

31 GTO 10

32 FRC

33 X<Y?

34 GTO 10

35 X<> Z

36 LASTX

37 XEQ 06

38 R^

39 GTO 09

40▸LBL 10

41 RDN

42▸LBL 11

43 RDN

44 RCL 02

45 XEQ 07

46 ISG 00

47 RTN

48 STO IND 00

49 RTN

50▸LBL "<"

51 0

52▸LBL 07

53 ISG 01

54 RTN

55 STO IND 01

56 RDN

57 RTN

58▸LBL ">"

59 XEQ 08

60 DSE 01

61 RTN

62▸LBL "="

63▸LBL 08

64 RCL IND 01

65 X=0?

66 GTO 13

67 XEQ 06

68 GTO 08

69▸LBL 13

70 RDN

71 RTN

72▸LBL 06

73 DSE 01

74 X<>Y

75 RCL IND 00

76 DSE 00

77 X<>Y

78 XEQ IND Z

79 VIEW X

80 RTN

81▸LBL 01

82 +

83 RTN

84▸LBL 02

85 -

86 RTN

87▸LBL 03

88 *

89 RTN

90▸LBL 04

91 /

92 RTN

93▸LBL 05

94 Y^X

95 END

Registers

The program needs 3 register to control the data and the operator stack:

| Register | Comment

|----------|----------------------

| 00 | top of data stack

| 01 | top of operator stack
| 02 | current operator

COMPILED BY Á. MARTIN - 2020 16

HP-41 AOS ROM

Synthetic Programming

We could use the alpha registers M, N and O instead of register 00-02.

With this the data stack could be started at register 00.

For now I'm leaving that as an exercise for the dear reader.

Operators

The decimal part of the code is used as precedence.

A negative code means left associativity.

The code for the left parenthesis (is 0.

Thus we already have an implicit open parenthesis.

This makes handling the right parenthesis) and = similar.

Operator	Label	Code	Precedence	Associativity

| (| | 0 | |

| + | 01 | -1.2 | -0.2 | left

| - | 02 | -2.2 | -0.2 | left

| * | 03 | -3.1 | -0.1 | left

| / | 04 | -4.1 | -0.1 | left
| ^ | 05 | 5.1 | 0.1 | right

Code Walkthrough

Initialisation

The registers and the stack is cleared with:

XEQ AOS

Here you can configure the start of the data and the operator stack.

Be warned that there are no checks in the program.

Thus the data stack could grow into the operator stack and vice versa.

It's up to you to select reasonable values.

LBL "AOS"

CLRG

3 ; top of data stack
STO 00

10 ; top of operator stack

STO 01

CLST
RTN

COMPILED BY Á. MARTIN - 2020 17

HP-41 AOS ROM

Enter Operator

Each operator pushes a specific code onto the stack in which label, precedence and

associativity is encoded.

LBL "+"
-1.2
GTO 00 ; new operator

LBL "-"
-2.2
GTO 00 ; new operator

LBL "*"
-3.1

GTO 00 ; new operator

LBL "/"
-4.1
GTO 00 ; new operator

LBL "^"
5.1

LBL 00 ; new operator

New operator

Each time we reach a new operator, we pop operators from the stack until we reach one

that has lower precedence.

In the case of a right associative operator, we also stop if we reach an operator of the

same precedence.

| X | Y | Decision

|------|------|-----------

| -0.2 | -0.2 | pop

| -0.1 | -0.2 | pop

| 0.1 | -0.2 | pop

| -0.2 | -0.1 | no more

| -0.1 | -0.1 | pop

| 0.1 | -0.1 | pop

| -0.2 | 0.1 | no more

| -0.1 | 0.1 | no more
| 0.1 | 0.1 | no more

There's no lower precedence than -0.2, thus + and - always pop.

On the other hand, ^ never pops previous operators.

This leaves us with * and / which pop unless an operator on the stack has lower

precedence like + or -.

Stack diagram: (x op -- x')

LBL 00 ; add new operator

STO 02 ; save new operator

FRC ; precedence of new operator

X>0? ; it is ^

GTO 11 ; no more pop

LBL 09 ; while higher precedence
RCL IND 01 ; top of stack operator

X=0? ; is left parenthesis ?

GTO 10 ; no more pop

COMPILED BY Á. MARTIN - 2020 18

HP-41 AOS ROM

FRC ; precedence of top of stack operator

X<Y? ; has lower precedence ?

GTO 10 ; no more pop
X<> Z ; x

LASTX ; top of stack operator

XEQ 06 ; pop operator

R^ ; precedence of new operator

GTO 09 ; while higher precedence

LBL 10 ; no more pop

RDN ; drop precedence of top of stack operator

LBL 11 ; no more pop

RDN ; drop precedence of new operator

RCL 02 ; current operator

XEQ 07 ; push operator

ISG 00 ; push data

RTN ; no op

STO IND 00 ; store data
RTN

Push Operator

The left parenthesis (is just pushed onto the operator stack.

The RTN command after ISG is used as a no-operation which is always skipped.

LBL "("

0
LBL 07 ; push operator

ISG 01 ; increment top operator

RTN ; no op

STO IND 01 ; store operator

RDN ; drop operator
RTN

Right Parentheses and Equals

while the operator at the top of the operator stack is not a left parenthesis:

pop the operator from the operator stack into the output queue

pop the left parenthesis from the operator stack and discard it

LBL ")"

XEQ 08

DSE 01 ; pop left parenthesis

RTN

LBL "="

LBL 08 ; while not (

RCL IND 01 ; top of operator stack
X=0? ; is left parenthesis ?

COMPILED BY Á. MARTIN - 2020 19

HP-41 AOS ROM

GTO 13 ; pop (

XEQ 06 ; pop operator

GTO 08 ; while not (
LBL 13 ; pop (

RDN ; drop operator
RTN

The = operator does not pop the implicit left parenthesis.

But otherwise it behaves like the right parenthesis and removes any leftover operators

from the operator stack.

Pop Operator

Stack diagram: (a x op -- a a op x')

LBL 06 ; pop operator

DSE 01 ; decrement top of operator stack

X<>Y ; (a op x)

RCL IND 00 ; y: top of data stack

DSE 00 ; pop data

X<>Y ; (a op y x)

XEQ IND Z ; execute operator

VIEW ST X ; view result

RTN

References

• Shunting-yard algorithm

• Dijkstra's original description of the Shunting yard algorithm

Also note the “AOSKY6”and “AOSKY5” utilities included in the module for a convenient bulk

user key assignment for the last two AOS programs.

 01 *LBL "AOSKY5"

 02 "+"
 03 61
 04 PASN
 05 "-"
 06 51
 07 PASN
 08 "*"

 09 71
 10 PASN
 11 "/"
 12 81
 13 PASN
 14 "="
 15 41
 16 PASN
 17 "^"

 18 -12
 19 PASN
 20 "("
 21 24
 22 PASN
 23 ")"
 24 25
 25 PASN
 26 END

https://en.wikipedia.org/wiki/Shunting-yard_algorithm
http://www.cs.utexas.edu/~EWD/MCReps/MR35.PDF

COMPILED BY Á. MARTIN - 2020 20

HP-41 AOS ROM

Formula Evaluation ; by Stefan Fegert

From “HP-41 in der Praxis”

A typical problem for the author's field of study (computer science) is the evaluation of an

expression given in algebraic form

One can solve this problem in Pascal and with recursive functions, but also with this

program "INF16".

The expression may contain the following symbols:

- The digits from 0 to 9

- The operation signs +, - *

- Parentheses

Whereby the numbers may only be single digits.

In addition, the formula may need to be broken as it cannot be longer than 24 characters.

The principle of the program is based on calculating a partial expression, which is enclosed

in parentheses, and to replace it with a special character whose ASCII value corresponds to

the register in which the value of the parenthesis is located.

If multiplications occur in the parentheses, then they are also replaced by special characters

and treated in the same way as the parentheses. Only when all parentheses and

multiplications have been replaced, addition and subtraction are performed from left to

right.

With this the parenthesis is calculated, and the program looks for another 'close

parenthesis'. If no more are found, the expression is finished.

Instructions.

1. Load the program and start it

2. Enter formula, where the characters "less than" and "greater than" represent the

brackets (< , >)

3. After the result is given, press R/S for a new start.

"INF16“ 1 317 bytes l 46 REG I Size 44 I Peripherals: none

Example:

 (2*3+2-(2*3)+8)*2 = 20

COMPILED BY Á. MARTIN - 2020 21

HP-41 AOS ROM

Data Registers

00 - Counter for special characters = brackets.

01 – 04 ASCII codes = values in brackets

05 - Counter for special characters = products

06 - 13 ASCII codes = values of products

14 - Pointer in ALPHA-REG for bracketing

15 - Counter for read characters

16 – 40 ASCII codes of the characters read in up to 40

41 - Pointer at multiplication

42 - Sum at evaluation in LBL 25

43 - Intermediate memory in LBL 50

Program listing.

 01 *LBL "FORMULA"

 02 CF 05

 03 *LBL 00

 04 SF 25
 05 "FRMLA"
 06 PURFL
 07 CF 25
 08 6
 09 CRFLAS
 10 CLRG
 11 "` ?"
 12 AON
 13 STOP
 14 AOFF
 15 APPREC
 16 E
 17 STO 00

 18 *LBL 02

 19 CLX
 20 SEEKPT
 21 GETREC
 22 16
 23 STO 15
 24 62
 25 POSA
 26 X<0?
 27 GTO 10
 28 STO 14

 29 *LBL 03

 30 RCL 14
 31 AROT
 32 ATOX
 33 X<>Y

 34 CHS
 35 AROT
 36 E
 37 ST- 14
 38 RDN
 39 X<>Y
 40 60
 41 X=Y?
 42 GTO 05
 43 RDN
 44 STO IND 15
 45 E
 46 ST+ 15
 47 GTO 03

 48 *LBL 05

 49 RCL 14
 50 E
 51 +
 52 AROT
 53 RCL 00
 54 XTOA
 55 RDN
 56 E
 57 +
 58 CHS
 59 AROT
 60 CLX
 61 SEEKPT
 62 DELREC
 63 APPREC
 64 RCL 15
 65 E
 66 -
 67 0,016

COMPILED BY Á. MARTIN - 2020 22

HP-41 AOS ROM

 68 +
 69 CLA
 70 STO 15

 71 *LBL 06

 72 RCL IND 15
 73 XTOA
 74 DSE 15
 75 GTO 06
 76 XEQ 20
 77 STO IND 00
 78 E
 79 ST+ 00
 80 GTO 02

 81 *LBL 10

 82 XEQ 20
 83 FIX 0
 84 >"* = "
 85 ARCL X
 86 >" **"
 87 AVIEW
 88 FIX 4
 89 STOP
 90 GTO 00

 91 *LBL 20

 92 6
 93 STO 05

 94 *LBL 21

 95 42
 96 POSA
 97 X<0?
 98 GTO 25
 99 E
100 -
101 STO 41
102 AROT
103 ATOX
104 ATOX
105 ATOX
106 XEQ 42
107 STO IND 05
108 RCL 05
109 XTOA
110 RCL 41
111 CHS
112 E
113 -
114 AROT
115 E
116 ST+ 05
117 GTO 21

118 *LBL 25

119 ATOX
120 X=0?
121 GTO 30
122 XEQ 51
123 STO 42

124 *LBL 26

125 42
126 ATOX
127 X=0?
128 GTO 30
129 ATOX
130 XEQ IND Y
131 STO 42
132 GTO 26

133 *LBL 30

134 RCL 42
135 RTN

136 *LBL 42

137 XEQ 50
138 *
139 RTN

140 *LBL 43

141 XEQ 50
142 +
143 RTN

144 *LBL 45

145 XEQ 50
146 -
147 RTN

148 *LBL 50

149 STO 43
150 RCL Z
151 XEQ 51
152 X<> 43
153 XEQ 51
154 RCL 43
155 X<>Y
156 RTN

157 *LBL 51

158 48
159 X<=Y?
160 SF 05
161 FS? 05
162 -
163 FC?C 05
164 RCL IND Y
165 END

COMPILED BY Á. MARTIN - 2020 23

HP-41 AOS ROM

Alpha Function Interpreter ; by Erik Christensen

PPCCJ V10N1 p33

This. program interprets a RPN representation in ALPHA. It decodes the function one

character at a time. It is useful to have a lot of functions that can be saved in X-Memory

sometimes. A function can be up to 24 chr. long. The operations are limited to +, -, *, /,

Y^X, and % but can be expanded to meet your needs. The variables are restricted to A-J

which are actually registers 1-10. The symbols that can be used are as follows:

Character Description RPN ALPHA

A-J Variables RCL 01, RCL 02… AB..J

0-9 Numbers 9 ENTER 5 95

% Percent 4 ENTER 5 % 95%

^ Powers 3 ENTER 9 Y^X 39^

+ Addition 3 ENTER 8 + 38+

- Subtraction 8 enter 3 - 83-

* Multiplication 9 ENTER 6 * 96*/

/ Division 9 ENTER 5 / 95/

, Pause, show X PSE ,

? Stop for input PROMPT ?

Examples of formulas.

A=BH ; area=base x height would be “BH*”

E=1/2MV ; energy=1/2 m.v^2 would be “12/A*B2”

Instructions.

Step 1. - At the prompt “NAME?” enter the function name into ALPHA. It can be up to 7 chr

long. If such a name is in X-Memory, then the program pulls the function out and runs it.

(go to step 3) If this name is a new one then go to step 2 to create the formula. If you just

press R/S then the function name stays the same as last time.

Step 2. - At the prompt “FORMULA?” enter the chr sequence that represents the formula.

For example AB+ would be A+B

Step 3. - See viewing of “VAR? A-J” and then function. Set values of variables A-J by doing

value (STO) [A] through [J]. When ready to run the function (R/S)

Step 4. - Function will be shown being “eaten” in the display. If the program stops with

some of the function still in ALPHA, then key in an input for “?” and [R/S]. After that. Go to

step 1

The whole stack can be used by the formula. When you make a new function it is

automatically saved in X-Mem. For future use. The program itself uses register 00, and the

variables are registers 01 – 10, leaving a SIZE 011. Variables A-J are key-mapped as Reg.

COMPILED BY Á. MARTIN - 2020 24

HP-41 AOS ROM

01 to 10. They need not initialization every time the function is executed. The program is 26

regs (179 bytes).

Additions can be made in the following manner:

say you want the letter “M” to stand for MOD. Type: { ALPHA, CLA, M, ALPHA, ATOX,

GTO.196. PRGM, LBL 77 (the number in X), MOD, PRGM}.

Now if you made the function “ABMC+” it would be the same as the RPN sequence, RCL

01, RCL 02, MOD, RCL 03, +

Program listing:

COMPILED BY Á. MARTIN - 2020 25

HP-41 AOS ROM

Improved Alpha Function Interpreter

By Erik Christensen, PPCCJ V10N5 p10

The alpha function interpreter from V10 N1 P33a has been improved to accommodate
Algebraic functions rather that RPN representations. This will allow more direct entry of
formulas, without having to worry about stack gymnastics and order of execution.

The old !unctions +, - , *, I .^. and % are included. Varlables are limited to A-J as before,
and the numbers used as constants can range from 0-9 and .1 to .9. One level of
parenthesis can be accessed, using “<” and “>” as the open and closed parenthesis.

The program woks exactly as before as seen by the user, but the program has been totally
rewritten using a different interpreting scheme. The only difference is the structure of the
formulas that you enter. Some examples of formulas and their equivalent representations to
be types into the ALPHA register:

Actual Formula ALPHA Representation
A/B A/B
A*B A*B
A+B A+B
A-B A-B
A+1 a+1
A+0.10 A+.1
1% of A 1%A
A^B A^B
(A+B)/2 A+B/2
2/(A+B) 2/<A+B>
1/2+A+B^2 1/2*A*<B^2>
SQRT(A^2+B^2 <A^2>*<B^2>^.5
(A+B)/(C+0.9) A+B/<C+.9)
(A+1)^2+0.3 A+1^2+.3

The functions are interpreted from left to right, one or two characters at a time.. Up to a 24-
character function can be saved in memory, like the previous program. The HP-41 stack is
transparent to the user, so it need not be worried about. The program is 41 bytes longer
than the last one, and needs SIZE 013 because registers 00, 11, and 12 are used by the
interpreter The total byte count is 238, and 34 registers are used for program space/ Happy
Formulating!

Any questions, comments suggestions, send a letter to the address below, or call 1-206-
852-6719 after 3PM weekdays.

Program listing:

COMPILED BY Á. MARTIN - 2020 26

HP-41 AOS ROM

COMPILED BY Á. MARTIN - 2020 27

HP-41 AOS ROM

Alpha Stack on the HP-41C ; by Godwin Stewart
https://www.hpmuseum.org/forum/thread-12050.html?highlight=alpha+stack

while back, another member of the MoHPC forum mentioned a program he'd written for the
HP-41C that allows the user to manage multiple alpha registers. I responded saying that I
had written something similar many moons ago that behaved like a LIFO (last-in-first-out)
stack rather than an indexed array of datasets and said that I'd look it up.

I have no idea whatsoever what I did with my little utility so I decided to rewrite it, purely
and simply. So here it is.

NB: This program creates and manages a data file in Extended Memory called "ASTACK". If
you already have a file of that name, it will be deleted! Note also that running these
programs uses Flag 01 and trashes registers R07-R10. Finally, since this uses Extended
Memory, you will need to run this on a 41CX or SwissMicros DM41, or on a 41C or 41CV
with the "X-Function" module.

The size of the data file created in Extended Memory depends on the depth of the alpha
stack that you want to create. Two registers are needed for a header in the file and four
registers per stack level are needed. So, if you want a stack that's 6 levels deep, for
example, then you'll need room in your Extended Memory for a file that's 2+6*4= 26
registers in size. You'll actually need 28 registers free because the calculator also steals 2
registers for its own internal housekeeping when you create a file in X-Mem.

The three utilities provided are "ASINIT", "APUSH" and "APOP".

ASINIT
Run this with the depth of the desired stack in X, The '41's own error detection will prevent
you from creating a file that's too big or from running this on a machine with no "X-
Function" module installed (remember, the 41CX and the DM41 have this module baked into
their ROM).

APUSH
This will save the current contents of your alpha register onto the alpha stack and return 0
in X, unless the stack is already full, in which case you'll get -3 back instead. If the alpha
stack hasn't been initialized (by running ASINIT) then you'll get -1 back in X.

APOP
This takes the string on the top of the alpha stack and transfers it into the '41's alpha
register, removing it from the stack. If all went well, X will contain 0 after returning from this
program. If the alpha stack has not yet been initialized then you'll get -1 back, or if the
stack was already empty (everything already popped off it) when you called APOP then
you'll get -2 back.

You can go and grab these utilities here: alpha-stack.zip

Software provided, as usual, as a text listing, a .raw file and a PDF with bar codes.

https://www.hpmuseum.org/forum/thread-12050.html?highlight=alpha+stack

COMPILED BY Á. MARTIN - 2020 28

HP-41 AOS ROM

Program listing:

LBL "ASINIT" 1

XEQ 10 2

SF 25 3

PURFL 4

CF 25 5

ABS 6

INT 7

STO Y 8

4 9

* 10

2 11

+ 12

CRFLD 13

RDN 14

SAVEX 15

CLX 16

SAVEX 17

RTN 18

LBL 10 19

FS?C 01 20

GTO 11 21

ASTO 07 22

ASHF 23

ASTO 08 24

ASHF 25

ASTO 09 26

ASHF 27

ASTO 10 28

LBL 11 29

"ASTACK" 30

RTN 31

LBL 20 32

XEQ 10 33

CLX 34

SF 25 35

SEEKPTA 36

FS?C 25 37

RTN 38

-1 39

RTN 40

LBL "APOP" 41

SF 01 42

XEQ 20 43

X#0? 44

RTN 45

GETX 46

GETX 47

X#0? 48

GTO 01 49

-2 50

RTN 51

LBL 01 52

4 53

* 54

2 55

- 56

SEEKPT 57

CLA 58

7.01 59

GETRX 60

LBL 03 61

ARCL 07 62

ARCL 08 63

ARCL 09 64

ARCL 10 65

FS?C 01 66

GTO 04 67

1 68

SEEKPT 69

GETX 70

1 71

SEEKPT 72

- 73

SAVEX 74

LBL 04 75

CLST 76

RTN 77

LBL "APUSH" 78

CF 01 79

XEQ 20 80

X#0? 81

RTN 82

GETX 83

GETX 84

X=Y? 85

GTO 02 86

1 87

SEEKPT 88

+ 89

SAVEX 90

4 91

* 92

2 93

- 94

SEEKPT 95

7.01 96

SAVERX 97

CLA 98

SF 01 99

GTO 03 100

LBL 02 101

-3 102

END 103

COMPILED BY Á. MARTIN - 2020 29

HP-41 AOS ROM

COMPILED BY Á. MARTIN - 2020 30

HP-41 AOS ROM

X-Registers ALPHA ; by Tyann
https://www.hpmuseum.org/forum/thread-7384.html?highlight=SIZA

Here is a program that simulates several Alpha registers in a file,

SIZA creates the file of X (integer) registers and returns in X the number of registers
xmemory consumed,

ASTOA copies the register Alpha in register No. X,

ARCLA copies the register X in the Alpha register,

A <> exchanges register Alpha with register n ° X

A =? Test the equality between the register Alpha and the register n° X, returns 1 if =, 0
otherwise in X.

CLRA deletes the registers and destroys the file.

Registers start at 1, register 0 is used for exchanges and tests but can be used if needed.
The number of the Alpha register to be used must be set to X (integer).

The file named XALPHA is the current file and must remain so for instructions to work.

ASTOA, ARCLA and A <> preserve the stack.
A =? Preserves Alpha.

https://www.hpmuseum.org/forum/thread-7384.html?highlight=SIZA

COMPILED BY Á. MARTIN - 2020 31

HP-41 AOS ROM

Program listing.

01 LBL "SIZA"
02 "XALPHA"
03 1
04 +
05 STO Y
06 3,7
07 *
08 INT
09 1
10 +
11 CRFLAS
12 " "
13 LBL 00
14 APPREC
15 DSE Y
16 GTO 00
17 CLA
18 RTN
19 LBL "ASTOA"
20 SEEKPT
21 DELREC
22 INSREC
23 RTN
24 LBL "ARCLA"
25 SEEKPT
26 GETREC
27 RTN
28 LBL "A<>"
29 X<>L
30 CLX
31 SEEKPT
32 DELREC
33 INSREC
34 X<>L
35 SEEKPT
36 GETREC
37 DELREC
38 X<>L
39 SEEKPT
40 INSREC
41 X<>L
42 SIGN
43 SEEKPT
44 GETREC
45 DELREC
46 X<>L

47 SF 25
48 SEEKPT
49 FC?C 25
50 APPREC
51 INSREC
52 X<>L
53 CLX
54 SEEKPT
55 GETREC
56 X<>L
57 RTN
58 LBL "A=?"
59 STO L
60 SEEKPT
61 POSFL
62 X≠Y?
63 GTO 02
64 ALENG
65 X<>Y
66 CLX
67 XEQ "ASTOA"
68 X<>L
69 XEQ "ARCLA"
70 X<>Y
71 ALENG
72 X<>L
73 XEQ "ARCLA"
74 X<>L
75 X≠Y?
76 GTO 01
77 -
78 CLX
79 1
80 RTN
81 LBL 01
82 RDN
83 LBL 02
84 CLX
85 RTN
86 LBL "CLRA"
87 "XALPHA"
88 PURFL
89 CLA
90 END

COMPILED BY Á. MARTIN - 2020 32

HP-41 AOS ROM

Managing X-Mem Registers ; by Peter Reiter

From “HP-41 Hilfen und Anwendungen”

As you will surely know, the HP-41CX has max. 319 data memory.

Since this can be too little in some cases, especially if you have stored long programs, I

have put down on paper a program with which you can store data in a file, whereby also a

register arithmetic is possible. If you now have 2 memory expansion modules in the

computer, you have 601 data registers available.

Program Instructions.

Before you can use the save commands, if the file you want to use already exists you must

save its name in the ALPHA register and prepare the program with XEQ "FLREG". Thus the

file for the data storage is the current file. If there is no file for the "register arithmetic in the

extended memory:", then enter the file name in the ALPHA register and the number of

required registers in the X-stack. Also start the software with XEQ "FLREG". Now the file for

the register arithmetic is present and besides this file is the current file.

The individual commands can be used by means of an XEQ instruction or key assignment or

via the label "FLAR". The label "FLAR" makes it possible to execute different file register

operations in a frequently repeating program loop, where the operation to be executed is

announced in the ALPHA register.

FLREG

This part of the program is used to create a file or, if it is already present, to declare it to be

the current file. Create file (no file exists yet): File name = ALPHA register

In each case program start with XEQ "FLREG

FLAR

The "FLAR" command allows to work indirectly with del file operations of the program. Save

the command to be processed in the ALPHA register and, after entering the data according

to the operation, start XEQ "FLAR".

Example: to add 50.4 to the contents of the 10th. register:

“FL+”, 10 , ENTER^, 50.4, XEQ “FLAR”

FLSTO

Save data to file (like the STO command).

COMPILED BY Á. MARTIN - 2020 33

HP-41 AOS ROM

Before program start:

Y-stack = File register number

X stack = Number

After processing:

Y-stack = File register number

X stack = Number

FLRCL

Recall data from the file (like the RCL command).

Before program start:

Y-Stack = n/a

X stack = Number

After processing:

Y-stack = File register number

X stack = Number

FL Arithmetic. (FL+, FL-, FL*, and FL/)

These operations are like the STO arithmetic, in that the calculation is made with the

contents of the file register and the value in the X-Register.

Before program start:

Y-stack = File register number

X stack = Number

After processing:

Y-stack = File register number

X stack = Number

FL<>RG (not supported by FLAR !)

This program section exchanges the contents of a data registers within the contents of a file

register.

Before program start:

Y-stack = Data register number

X stack = File Register number

After processing:

Y-stack = File register number

X stack = Number

On completion, the contents of the data and file registers are left in the T and Z registers n

respectively.

FLIND (Not supported by FLAR !)

In the Y-stack, specify the file register that contains the indirect parameter for the

instruction specified in the ALPHA register and the number stored in the X-stack.

ALPHA: function to perform

Y: IND Register number

X: number to add

The result will be left in the X-register on completion – in addition to the register IND Y

COMPILED BY Á. MARTIN - 2020 34

HP-41 AOS ROM

For example, if the File register #6 contains the value “4”, the following sequence will add 5

to the File register #4:

ALPHA: “ST+”, ALPHA, 6, ENTER^, 5, XEQ “FLIND”

The result will be left in the X-register on completion – in addition to register #4 in this

case) – and therefore the stack will be lifted.

FL<>FL (not supported by FLAR)

Exchange between two file registers, specified by their numbers in X- and Y- stack registers

The previous registers values are left in the Z- and T- registers.

FLCLX

Clearing of a set of file registers whose FROM-TO range numbers are specified in the Y- and

X-registers.

Program listing.

1 LBL "FLREG"

2 SF 25
3 R^
4 CLX
5 SEEKPTA
6 FC?C 26
7 GTO 15
8 RTN
9 LBL 15
10 RDN
11 CRFLD
12 RTN
13 LBL A

13 LBL "FLAR"

14 SF 00
15 R^
16 ASTO X
17 GTO IND X

18 LBL "FLSTO"

19 XEQ 22
20 X<>Y
21 SEEKPT
22 X<>Y
23 SAVEX
24 RTN

25 LBL "FLRCL"

26 XEQ 22
27 SEEKPT
28 GETX
29 RTN

30 LBL "FL+"

31 LBL 16
32 XEQ 22
33 X<>Y
34 SEEKPT
35 X<>Y
36 GETX
37 FS?C 01
38 GTO 18
39 FS?C 02
40 GTO 19
41 FS?C 03
42 GTO 20
43 +
44 LBL 21
45 X<>Y
46 SEEKPT
47 X<>Y
48 SAVEX
49 RTN

50 LBL "FL-"

51 SF 01

COMPILED BY Á. MARTIN - 2020 35

HP-41 AOS ROM

52 GTO 16

53 LBL "FL*"

54 SF 02
55 GTO 16

56 LBL "FL/"

57 SF 03
58 GTO 16
59 LBL 18
60 X<>Y
61 -
62 GTO 21
63 LBL 19
64 *
65 GTO 21
66 LBL 20
67 X<>Y
68 /
69 GTO 21
70 LBL 22
71 FC?C 00
72 RTN
73 CLX
74 RDN
75 RTN

76 LBL "FL<>RG"

77 XEQ 22
78 SEEKPT
79 GETX
80 X<> IND Z
81 X<>Y
82 SEEKPT
83 X<>Y
84 SAVEX
85 RCL IND Y
86 RDN
87 RDN
88 RTN

89 LBL "FLIND"

90 X<>Y
91 SEEKPT
92 X<>Y
93 GETX
94 X<>Y
95 GTO A

96 LBL "FL<>FL"

97 XEQ 22
98 SEEKPT
99 GETX
100 X<> Z
101 SEEKPT
102 GETX
103 X<> Z
104 SEEKPT
105 X<> Z
106 SAVEX
107 X<>Y
108 SEEKPT
109 X<> T
110 SAVEX
111 RDN
112 RDN
113 RTN

114 LBL "FLCLX"

115 XEQ 22
116 LBL 00
117 SEEKPT
118 ENTER^
119 CLX
120 XEQ "FLSTO"
121 RDN
122 E
123 +
124 X<=Y?
125 GTO 00
126 CLST
127 END

COMPILED BY Á. MARTIN - 2020 36

HP-41 AOS ROM

Here’s an alternative set of routines that accomplish the same function, perhaps in a more

straight-forward way. They are unfortunately not included in the module because the

number of available FAT entries in the ROM was already depleted…

The DATA file name is assumed to be in ALPHA (or names for FSWAP):

1 LBL "FRIND" IND rg# in X

2 SEEKPTA
3 CLX
4 GETX

5 LBL "FRCL" rg# in X

6 SEEKPTA
7 GETX
8 RTN

9 LBL "FSIND" rg# in Y, value in X

10 X<>Y
11 SEEKPTA
12 CLX
13 GETX
14 X<>Y

15 LBL "FSTO" rg# in Y, value in X

16 X<>Y
17 SEEKPTA
18 X<>Y
19 SAVEX
20 RTN

21 LBL "FXIND" rg# in Y, value in X

22 X<>Y
23 SEEKPTA
24 CLX
25 GETX
26 X<>Y

27 LBL "FX<>" rg# in Y, value in X

28 X<>Y
29 SEEKPTA
30 X<>Y
31 GETX
32 X<>Y
33 SAVEX
34 RDN
35 RTN

36 LBL "FSWAP" rgs# in Y,X

37 SEEKPTA FL1,FL2 in ALPHA
38 GETX
39 ASWAP
40 RCL Z
41 SEEKPTA
42 GETX
43 RDN
44 RDN
45 SAVEX
46 ASWAP
47 RDN
48 RDN
49 SAVEX
50 X<>Y
51 RDN
52 RCL Z
53 END

COMPILED BY Á. MARTIN - 2020 37

HP-41 AOS ROM

Appendix.- Valentín Albillo’s STKN FOCAL Program

Here’s a verbatim copy of Valentín’s article contributed to the Melbourne PPC Chapter. See this

reference for all the details.

Program characteristics. –

This program simulates a N-level RPN stack, that is a stack with n registers (not just the 4 registers of
the standard, built-in, 4-level stack). The value n is chosen by the user, and is limited only by

available memory. Several functions are provided, ENTER, X<>)Y ,RDN, CLST, +, -, *, / , Y^X,
LASTX, PI, and RCL. The rest of the functions are the built-in functions, for instance, GTO is the built-

in GTO, SQRT, SIN, etc.

The program is 159 lines, 343 bytes. It requires SIZE n+12 for a n-level stack. All operations are very

fast, even for large n, so the program may be used as easi4r as if it were the standard 4-level stack.
All functions are supposed to be assigned to keys for its execution in USER mode.

ET (Enter) is assigned to 41 (ENTER), RD (Roll Down) to 22 (RDN), +N (addition) to 61 (+), -N
(subtraction) to 51 (-), *N (multiplication) to 71 (*), /N (division) to 81 (/), PI to -82 (PI), CLN (Clear

Stack) to -21 (CL), RCLN (Recall) to 34 (RCL), XY (exchange to 21 (X<>Y), and ^N (power) to -12

(Y^X).

The stack behaves exactly like the original one. it lifts and performs the same, register duplication,

etc, but for a minor detail: RCL after ENTER does not overwrite the number in X but the stack is
lifted. This has been done intentionally but can be changed to the overwrite mode easily. Except for

this sequence, all other functions perform as you would expect, the upper register replicates each

time the stack drops because of a two-umber operation, etc.

RCLN, when executed, prompts for an argument with the standard RCL _ _ , and the program stays
in a PSE loop, waiting for you to enter-the argument for the desired register. This can be 00 thru 10

(both included) and from n+12 upwards, where n is the number of levels of your stack. So, when

using STO, remember that you have registers 00 thru 10 and n+12 upwards for your
use. R11, R12 are used as scratch, and R13 thru R(n+11) are used to store part of the stack.

Instructions.

- Make all the necessary assignments, set USER mode

- Use the stack as normal, first, XEQ "STKN" => N=?

- Enter the desired number of levels, n R/S =>READY
- From now on, think of the 41C as a n-level stack machine, and execute desired functions

accordingly. Take into account that STO should be used only with addresses 00 thru 10 and n+12 up,
and the same is true for RCL. The argument for RCL is entered during a pause. RCL after ENTER does

not overwrite X but lifts the stack first.

So, you. see, it is as easy to use as if it were the normal stack. Now let’s compute an example taken

from TI adds…

Compute 1 + 2 * 2.5^(3/7) = ?
if' we want to key in the problem left-to-right, we need a 5-level stack (minimum),

XEQ "STKN” => N=?; ,
5 R/S => READY'

ENTER 2 ENTER 2.5 ENTER 3 ENTER 7 ;

 /N => 0.43 ; YX => 1.48 ; *N => 2.96 ; +N => 3.96 ,

FIX 9 => 3.961936296

COMPILED BY Á. MARTIN - 2020 38

HP-41 AOS ROM

so, the problem was keyed in left-to-right. This is a very good advantage of a n-level stack, you can
hold up to n-1 pending operations. Using the standard 4-level stack, up to 3 operations may be left

pending, and problems requiring more pending operations cannot be keyed left-to-right and have to
be rearranged. But, using a, say, 15-1evel stack, you can hold as many as 14 pending operations,

and thus, you can confidently key in any - problem left to right, without rearranging anything. That’s

the usefulness of the program. You can also use it when leaving someone your 41c, and that person
is not very used to RPN, show him how to use ENTER ,RIN ,and X<>Y, and let the 15 (say) level

stack do the rest !

COMPILED BY Á. MARTIN - 2020 39

HP-41 AOS ROM

