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HP-41 Module: 

Non-Linear Systems 

 

Overview 
 

This module includes a selection of programs from Jean-Marc Baillard’s collection with the “non-linear” 

common theme as selection criteria. There are basically three categories in the module: 

1. Non-Linear Systems of equations 

2. Nth. Degree Differential Equations 

3. Laplace, Poisson and Diffusion Equations.  

It comes without saying that this module wouldn’t exist without Jean-Marc’s excellent core routines. 

The topics are wide and the selection is necessarily incomplete but the goal was to make it fit into a 

single ROM with a 4k footprint. Every effort has been made to make the operation as automated and 

simplified as possible. Many driver programs are included for a more convenient access, with 

automated data entry and output.  Most of the chapters also include examples of utilization pre-

programmed in the module to quickly familiarize the user in the techniques. All in all, this module is as 

close to a “plug and play” solution as it gets. 

So here you have it, an interesting foray into subjects not typically treated by calculators but that so 

well showcases the power and versatility of the HP-41 with some masterful programming behind it. 

 

Module Programs by functional area.  

Rather than providing a linear list of functions (pun intended), the following tables show a summary of 

all programs in the module, grouped by the functional area they belong to. This should provide some 

clarification as to the scope and role of each function. 

1. non-linear systems routines,  - http://hp41programs.yolasite.com/system-eq.php 

System Driver Prog Math Routine Aux Routines Examples 

2 Equations 2NLS+ 2NL n/a FG 

3 Equations 3NLS+ 3NL n/a FGH 

n-Equations NNLS+ NLS, LS FIN, XIN, XOUT F1, F2, F3 

n-Equations (Advtg) NLSYS MSYS FIN, XIN, XOUT F1, F2, F3 

 

 

2. numerical analysis routines, - http://hp41programs.yolasite.com/poisson.php 

System Driver Prog Math Routine Examples 

Laplace Eq. LAP+ LAP VLX, VX0, CLX 

Poisson Eq. POIS+ POIS UX0, UY0, UXL, ULY, FXY 

Diffusion Eq. DFSN+ DFSN aXT, bXT, cXT, FX0, F0T, FLT 

 

http://hp41programs.yolasite.com/system-eq.php
file:///C:/HP-41/JMB%20Modules/Non-Linear/-%20http:/hp41programs.yolasite.com/poisson.php
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3. differential equations routines,  - http://hp41programs.yolasite.com/n-thorderdifeq.php 

System Driver Prog Math Routine Examples 

Second Order 2DFEQ 2RGK d2/dX2 (Lane-Emden) 

Third Order 3DFEQ 3RGK d3/dX3 

Nth. Order 4DFEQ NRGK d5/dX5 

 

 

4.Successive Approximation routines, - http://hp41programs.yolasite.com/approx.php 

System Driver Prog Math Routine Examples 

Real XSAM FXN X=, Y=, Z= 

Complex ZSAM FZN Z1=, Z2= 

 

 

List of functions from CAT 2: 

 
Driver programs are shown in bold, underlined font. Section headers have no functionality. The 
Library#4 is not required, but some dependencies exist, like function PMTA (from the OS/X Module) 
is used by the Laplace and Poisson driver programs. 
 

-NON LINEAR 

"2LS" 
"2NLS+" 
"3NL" 
"3NLS+" 
"LS" 
"NLS" 
"NNLS+" 
"FIN" 
"XIN" 
"XOUT" 
"FXN" 
"XSAM" 
"FZN" 
"ZSAM" 
"2RK4" 
"2DFEQ" 
"3RK4" 
"3DFEQ" 
"NRK4" 
"NDFEQ" 

-NMRCL MTH 

"DFSN+ " 
"DFSN" 
"3DLS" 
"aXT" 
"bXT" 
"cXT" 
"FX0" 
"F0T" 
"FLT" 
"LAP+" 
"L" 
"POIS+" 
"POIS" 
"FXY" 
"OUT" 
"UX0" 
"UY0" 
"UXL" 
"ULY" 
 

-TOOLTIPS 

AIP 
E3/ 
E3/E+ 
"CLX" 
"F1" 
"F2" 
"F3" 
"FG" 
"FGH" 
"VLX" 
"VX0" 
"X=" 
"Y=" 
"Z=" 
"Z1=" 
"Z2=" 
"d2/dX2"  
"d3/dX3"  
"d5/dX5" 

 

  

http://hp41programs.yolasite.com/n-thorderdifeq.php
http://hp41programs.yolasite.com/approx.php


Non-Linear Analysis ROM 
 

(c)2012 Martin-Baillard  Page 3 
 

1.- 2 Equations in 2 Unknowns:   f(x,y) = 0 ; g(x,y) = 0 

"2NL" uses the Newton's iterative method - more exactly a generalization of the secant method to 

approximate the partial derivatives. It requires 2 initial guesses ( x , y ) and ( x' , y' ) which are to be 
stored in R01 , R02 and R03 , R04 respectively.  You must choose x # x'  and y # y' (very important).  
Registers R00 thru R11 are used by the program. 

You also have to load a subroutine that takes y in Y-register and x in X-register and calculates f(x;y) 

in Y-register and g(x;y) in X-register. Registers from R11 and greater are available for this job. Thus, 
your subroutine changes the stack as follows:     

Stack From To 

Y y f(x,y) 

X x g(x,y) 

To call “2NL” you store the name of this subroutine into R00 (global label of 6 characters maximum)  

and XEQ "2NLS". The successive x-values are displayed and when the program stops the results are 
arranged as follows: 

• x is in X-register and in R01 

• y is in Y-register and in R02  

• Z-register contains | f(x,y) | + | g(x,y) |  

• f(x,y) is in R05  

• g(x,y) is in R06  

To find another solution, re-initialize R01 thru R04 and R/S . 

Warning: The program stops when the approximate Jacobian determinant equals zero. This happens 
when x =x' or y = y' but it may also happen by a stroke of bad luck, for instance if x converges much 

more quickly than y to the solution. That's why it's always wise to check the value of   =|f| +|g| . 

For your convenience, the module also includes “2NLS+”, a driver program that prompts you through 
all the data entry process (including the name for the function subroutine), and then redirects the 

execution to “2NL” . Furthermore, the example below is also pre-programmed under the label “FG”, 
so you can check the results and get familiar with the operation. 

Example:   Find x and y such that   x.y = 7 and  x2 + y4 = 30 with (2; 2) (3; 3 ) as initial guesses 

XEQ “2NLS+”  “FG(X,Y)?”  prompts for function label 
“FG”, R/S  “G1=? Y^X”  first guess pair 
2, ENTER^, 2, R/S  “G2=? Y^X”  second guess pair 
3, ENTER^, 3, R/S successive approximations, then convergence: 
   X=3.368200265,  also stored in R01 
R/S   Y=2.078261222,  also stored in R02 
 

And this is how the function has been programmed:

01 LBL "FG"  
02  RCL Y  

03  RCL Y  

04  *  
05  7  

06  -  
07  X<>Y  

08  X^2  

09  R^  
10  X^2  

11  X^2  
12  +  

13  30  

14  -  
15  RTN 

Stack Inputs Outputs 

Z / |f|+|g| 

Y / y 

X / x 

ALPHA FNAME FNAME 
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2.- 3 Equations in 3 Unknowns: f(x,y,z)= g(x,y,z)= h(x,y,z)= 0 

“3NL” uses the same method for solving a system of 3 non-linear equations. Registers R00 thru R20 

are used by this program. It also requires two initial guesses (x , y , z) and (x' , y' , z') which are to be 
stored into  {R01 , R02 , R03} and {R04 , R05 , R06} respectively  (ensuring that  x#x' , y#y' , z#z'). 

You must write a subroutine that takes x from the X-register; y from the Y-register; and z from the Z-
register to compute  f(x,y,z) in Z-register,  g(x,y,z) in Y-register,  h(x,y,z)  in X-register: 

     

 

 
To call “3NL” you store the name of this subroutine into R00 (global label of 6 characters maximum)  

and XEQ "3LS". The successive x-values are displayed and when the program stops the results are 
arranged as follows: 

• x is in X-register = R01 

• y is in Y-register = R02  

• zis in Z-register = R03  

• T-register contains |f(x,y,z)| + |g(x,y,z)| + |h(x,y,z)|  

• f(x,y,z) = R07  

• g(x,y,z) = R08  

• h(x,y,z) = R09  

 

For your convenience, the module also includes “3NLS+”, a driver program that prompts you through 
all the data entry process (including the name for the function subroutine), and then redirects the 

execution to “3NL” . Furthermore, the example below is also pre-programmed under the label “FGH”, 
so you can check the results and get familiar with the operation. 

Good guesses are not always easy to find but in any case, always check the values of   f , g , h – or at 
the very least the value in the T-register! 

Example:   Find a solution of the system below, with ( 2,2,2 ) and (1,1,1) as initial approximations: 

      x.y2 - z/y = 0  

      x - y - z   = 0  

      ln x + y.z = 0  

XEQ “3NLS+”   “FG(X,Y,Z)?”  prompts for function label 
“FGH”, R/S   “G1=? Z^Y^X”  first guess pair 

2, ENTER^, ENTER^, R/S  “G2=? Y^X”  second guess pair 
3, ENTER^, ENTER^, R/S successive approximations, then convergence: 
 
    X=0.865408832,  also stored in R01 

R/S    Y=0.639295476,  also stored in R02 
R/S    Z=0.226113356, also stored in R03 

 

 

Stack From To 

Z z f(x,y,z) 

Y y g(x,y,z) 

X x h(x,y,z) 

Stack Inputs Outputs 

T / |f|+|g|+|h| 

Z / z 

Y / y 

X / x 

ALPHA FNAME FNAME 
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3.- N Equations in N Unknowns:  fk( x1,... ,xn ) = 0;  k=1…n 

In this case we deal with the general case of a system of (n x n) non-linear equations.  This task will 

need to call  ”LS" as a subroutine – which therefore has been added to the module as well. The main 
routine is “NLS”. 

Once again, the same (quasi-) Newton's method is used: each iteration solves a linear system of n 

equations in n unknowns and that's why "LS" is needed. Unlike "2NL" and "3NL", it’s of course 

impossible to take the n variables from the stack and calculate the n functions in the stack if n > 4, 

therefore you'll have to key in n different subroutines for computing the fi in the X-register with x1 in 

R01, x2 in R02, ... , and xn in Rnn  

Synthetic registers {M N O} and data registers R00 thru Rn2+4n are used by the program. It also 

requires two initial guess-vectors (x1, x2,..xn) and (x1', x2',… xn') which components are to be stored 

into {R01- Rnn} and {Rnn+1 to R2n} respectively  (and ensuring that  xi # x'i   for  i = 1 , 2 , ... , n). 

The successive x1-values are displayed during the calculations, and when the program stops, | f1 | + 

.... + | fn | is in the X-register; and the solution ( x1 , .... , xn )  is  in { R01 , ..... , Rnn }. 

The table below summarizes the data input requirements for “NLS”: 

Register Value  Register Value  Register Value 
R00 n     

R01 x1  Rnn+1 x1’  R2n+1 F1 Name 

R02 x2  Rnn+2 x2’  R2n+2 F2 Name 

….. …..  ….. …..  ….. ….. 

Rnn xn  R2n xn’  R3n Fn Name 

The module includes several auxiliary routines to make the complete process more convenient. First 

off, the driver program “NNLS+” will present all needed prompts for the input parameters 
automatically, storing them in the appropriate data registers. Within the driver program there are calls 

to other utilities to input the initial guesses (“XIN”) and the function names (“FIN”). Finally, after the 

system has been resolved, the driver program will invoke a data-output routine (“XOUT”) to show the 
results. All this will happen transparently to the user. 

Also for your convenience the module includes a practical example, programmed with the routines 
“F1”, “F2”, and “F3”, defined and programmed as follows: 

 

f1(x,y,z) = x^2 + y – 3 

f2(x,y,z) = y^2 - z -1 

f3(x,y,z) = x - z^2 + 8 

 

The three solutions are:   

x3 = 3,  x2 = 2, x1 = 1 

Go ahead and execute NLSN+, using (1, 1, 1) and (2, 2, 2) for the initial guesses for the values. 

 

(*) Note that you cannot use FG of FGH as examples, because their data input/output conventions 

are different and not compatible with NLNS. 

1 LBL "F1" 9 LBL "F2" 17 LBL "F3"

2 RCL 01 10 RCL 02 18 RCL 01

3 X^2 11 X^2 19 RCL 03

4 RCL 02 12 RCL 03 20 X^2

5 + 13 - 21 -

6 3 14 E 22 8

7 - 15 - 23 +

8 RTN 16 RTN 24 END
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4.- N Equations in N Unknowns w/ Advantage Pac 

Another version of the same program is available in the “Advantage Math” Module. This alternative 

version was written by Greg McClure, and uses the Advantage Pack’s (or SandMatrix’) MSYS to solve 

the linear systems involved in the resolution of the non-linear problem. Refer to the module 

documentation for details and examples. 

 

 

5.- Successive Approximations Method. 

A change in the paradigm, the Successive approximations method can also be used to solve systems 

of non-linear equations, as it’s described in this section. The basis of the method is the following 

theorem:   

If F is a contraction mapping on a complete metric space, then the equation F (X) = X  has a 

unique solution, which is the limit of the sequence:  X(k+1) = F(X(k))  where X(0) is arbitrary. 

 

This theorem is used in the following program to solve a system of n equations in n unknowns written 

in the form: 

x1 = f1 ( x1 , ... , xn )  

 x2 = f2 ( x1 , ... , xn )  

   .............................  

  xn = fn ( x1 , ... , xn )  

The advantage of this method is its simplicity: there is no need to solve a n x n linear system like with 

"NLS" (see previous sections), but unfortunately, it's not always easy to find the good function F that 
leads to convergence. When it does, it can be used to solve large linear or non-linear systems, with n 
> 16 , which otherwise would be impossible to solve on an HP-41.  

The routines “XSAM” and “ZSAM” are driving programs for the real and complex cases of the 

successive approximation method, “FXN” and “ZXN” respectively. As usual, the driver programs 
automate the data entry process, prompting for the needed initial conditions and guesses. 

Both programs require an initial guess, i.e. a vector of n components with initial estimations for the 

solution. Besides, the user must program the n functions linking the variables in the form shown 
above. These will assume the variables X1,… Xn are to be taken from data registers R01, … Rn. 

The program calculates a new estimation (x'1 , ... , x'n)  from the precedent(x1 , ... , xn)  by using the 

formulae:  

x'1 = f1 ( x1 ,  x'2 , ... , x'n-1  , x'n )  

x'2 = f2 ( x1 ,  x2 , ... , x'n-1  , x'n )  

   .............................  

x'n-2 = fn-1 ( x1 ,  x2 , ... , x'n-1  , x'n )  

x'n-1 = fn-1 ( x1 ,  x2 , ... , xn-1  , x'n )  

x'n =  fn   ( x1 ,  x2 , ... , xn-1 , xn )  
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In other words, every new estimation of  xi replaces the previous one as soon as it is computed. 

Therefore, the program is shorter, it requires less registers and convergence is improved. This 
however comes at a price: not surprisingly the execution takes longer than the explicit cases. 

 
Example 1. Solve the system of three real equations shown below, re-writing it as a successive 
approximation case getting each variable in the first term. Use the vector (2, 2, 2) as initial guess. 

    x2 / y + y / z - z2 = 0  

     x.y.z  -  x  -  y2  = 0   ➔ 

    x.ln y - z = 0 

     x = z / ln y  

     y = ( x.y.z - x )1/2 

     z = ( x2 / y + y / z )1/2 

For your convenience, these three functions are already pre-programmed in the module as follows: 

01  LBL "X=" 
02  RCL 03  
03  RCL 02  
04  LN  
05  /  
06  RTN  
07  LBL "Y=" 
08  RCL 02  
09  RCL 03  

10  *  
11  RCL 01  
12  ST* Y  
13  -  
14  SQRT  
15  RTN  
16  LBL "Z=" 
17  RCL 01  
18  X^2  

19  RCL 02  
20  ST/ Y  
21  RCL 03  
22  /  
23  +  
24  SQRT  
25  END 

 
And here’s the sequence of instructions using “XSAM“. Note that each prompt already suggests the 

current content in the relevant register. If this is already correct, all you need to do is press R/S to 
continue with the data entry process. 

XEQ “XSAM“  “N=?“ 
3, R/S   “F#1? 0.0000“,  it shows the current value in R04, ALPHA is ON. 
“X=“, R/S  “F#2? 0.0000“. ditto as above, with R05 
“Y=“, R/S  “F#3? 0.0000“,  same as above, with R06 
“Z=“, R/S  “X0(1)=4.0030?“ 
2, R/S   “X0(2)=7.1000?“ 
2, R/S   “X0(3)=0.0000?“  
2, R/S   successive iterations shown, then convergence: 
 

   X3= 1.703912160  in R03 
R/S   X2=2.457696043   in R02 
R/S   X1=1.894868809   in R01 

 

 
Example 2. Solve the system of two complex equations shown below, which is already expressed as 

a successive approximation case with each variable in the first term. Use the vector (1+i; 1+i) as 
initial guess. 

  z1 = ( z12 – z2 )1/3  ,   z2 = [ (z2)2 – z1 ]1/4 

The equations are programmed using functions from the 41Z Module, as shown below. Note the 
expected order of registers for the real and imaginary parts of each variable, starting in (R01 + j R02) 
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01 LB “Z1=“ 

02 RCL 02 
03 RCL 01 

04 Z^2 
05 ZENTER^ 

06 RCL 04 

07 RCL 03 
08 Z- 

09 3 
10 1/X 

11 Z^X 
12 RTN 

13 LBL “Z2=“ 

14 RCL 04 
15 RCL 03 

16 Z^2 
17 ZENTER^ 

18 RCL 02 

19 RCL 01 
20 Z- 

21 4 
22 1/X 

23 Z^X 
24 END 

 

Note that the pre-imposed order of variable’s real and imaginary parts is not compatible with the 41Z 
function ZRCL, and thus the native RCL function has to be used instead. 

 

Here’s the sequence of execution using the driver program “ZSAM“- don’t forget to plug in your 41Z 
module! 

XEQ “ZSAM“  “N=?“ 
 2, R/S   “F#1? Y=“ the previous function is still in R04 
“Z1=“, R/S  “F#2? Z=“ ditto as above 
“Z2=“, R/S  “Z(1)=? Y^X“ enter first initial guess, imaginary part in Y 
1, ENTER^, R/S  “Z(2)=? Y^X“ enter second initial guess 
1, ENTER^, R/S  successive iterations shown, then convergence: 
 
   1.041713087-J0.462002407,   in R01 + i R02 
R/S   1.038322757 +J0.715596478,  in R03 + i R03 
  

More examples are shown in Jean-Marc’s web pages :http://hp41programs.yolasite.com/approx.php 

you’re encourages to check those for additional insight into this method. 

 

 

 

 

  

http://hp41programs.yolasite.com/approx.php
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Numerical methods: 2-D Laplace & Poisson Equations. 

The programs hereafter use finite differencing to solve these partial differential equations with 
boundary conditions defined on a 2x2 rectangle  [0,L]x[0,H]. They employ a method of order 2. 

1. Laplace Equation:   u/x2 + u/y2 = uxx + uyy = 0 

This program solves numerically the partial differential equation:  u/x2 + u/y2 = uxx + uyy = 0  

  y                                                                 with the boundary conditions: 

 H| --------------------------|-                              u(x,0)  = f1(x)     u(x,L') = f2(x)     0 <= x <= L  

    |                        |  u(0,y) =  g1(y)    u(L,y) =  g2(y)     0 <= y <= L' 

    |      u = u(x,y) |  

    |                           |  

 --|----------------------------|--------x  

   0                                L 

The interval  [0,L]  is divided into M parts, and the interval  [0,H] is divided into N parts. With this 
arrangement, the partial derivatives are approximated by  

        u/x2 = uxx ~  ( ui-1,j - 2.ui,j + ui+1,j )/h
2     where  h = L/M     ,    ui,j = u(i.h,j.k)  

        u/y2 = uyy ~  ( ui,j-1 - 2.ui,j + ui,j+1 )/k
2     where  k = H/N  

which yields:        ui-1,j + ui+1,j + h2/k2 (  ui,j-1 + ui,j+1 ) = 2.( 1 + h2/k2 ).ui,j 

So, we have to solve a linear system of (M-1).(N-1) equations in (M-1).(N-1) unknowns. Fortunately, 

this is a sparse system and we can use an over relaxation method. The over relaxation parameter 

(usually between 1 and 2) is chosen to be 1.2, but it may not always be the best choice. 

  

The program shows successive iterations, which stop when the last correction is rounded to 0; 

therefore, the accuracy is controlled by the display format. However, say a 4-place accuracy in the 

solution of the linear system doesn't necessarily mean a 4-place accuracy in u(x,y). 

 

From the boundary conditions we see we’ll need to program up to four functions (which may be the 

same in some instances but not necessarily so), to describe the behavior in the boundary regions, as 

follows: 

• f1(x) in the “lower| boundary, {y=0 } 

• f2(x) in the “upper” boundary, {y=L}  

• g1(y) in the “left” boundary,   {x=0} and  

• g2(y) in the “right” boundary,  {x=H}  

Obviously we’ll need to input the geometric parameters that define the region, i.e. L, H , M, and N. 

The step sizes are derived from the M,N values, as h =  L/M and k = H/N. 

The program uses data registers R00 to R(16+(m+1)(N+1) – as you can expect the calculator SIZE 

will be checked and adjusted accordingly in case it’s needed (and enough data registers exist). No 

user flags are used at all. 
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The results are the values of the function U(x,y) in the points defined by the MxN grid, i.e. the 

intersection of the grid coordinates. They are stored in contiguous data registers, and the control word 

of the data range “bbb.eee” is left in X upon completion of the calculation. It is therefore a 

parameterized solution of the problem. 

For your convenience the module includes a driver program “LAP+” to handle the data input 

automatically, then it transfers the execution to a main routine “LAP”, and to finally use a data output 

routine “OUT” that sequentially shows the data registers values. 

• Data input includes the geometric dimensions, the grid dimensions and the name of the 

functions defining the boundary conditions. 

 

• You can use “OUT” independently for any general register visualization. It uses the control 

word in X as input. 

Example 1. The following example should be used for familiarization. In this case the function is 

defined in the rectangle 0 <= x <= 1 , 0 <= y <=/2  ( i.e. L = 1 , H =/2 ) and subject to the 

boundary conditions: 

u(x,0) = sinh x                  u(0,y) = 0  

u(x,/2) = 0                     u(1,y) = (sinh 1) cos y 

For your convenience, the four boundary conditions are already included in the module, under the 

program labels {“VX0”, “VLY”, and “CLX”}, programmed as follows: 

 
 

Note how two boundary conditions can be “shared” by the same function, so we save one global 

label. “CLX” can be used in your own programs to denote null boundary conditions. Also note that on 

all cases the independent variable is expected to be in the X register – as these conditions are 

functions of a single variable, not two. 

Set FIX 3, and RAD mode, then we proceed to execute the driver routine: 

XEQ “LAP+”   “U(x,0)? _” with ALPHA mode ON 

 “VX0”,  R/S   “U(X,L)? _” with ALPHA mode ON 

“CLX”,  R/S   “U(0,Y)? _” with ALPHA mode ON 

“CLX”,  R/S   “U(1,Y)? _” with ALPHA mode ON 

 “VLY”, R/S   “DIM(LXL')=?” use ENTER to separate the values 

1, PI, 2, / R/S   “GRID(MXN)=?” use ENTER^ to separate the values 

4, ENTER^, 6, R/S  17.05105 in X after 3 min 45s, then results shown: 

1 LBL "VX0" 12 LBL "VLY"

2 E^X 13 COS

3 ENTER^ 14 1

4 1/X 15 E^X

5 - 16 ENTER^

6 2 17 1/X

7  / 18 -

8 RTN 19 2

9 LBL "CLX" 20  /

10 CLX 21 *

11 RTN 22 END
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The results are arranged in an (m+1)x(n+1) array, with registers in ROW order as shown below:    .  

 

R17            R22           R27         R32           R37           R42           R47  

R18            R23           R28         R33           R38           R43           R48  

R19            R24           R29         R34           R39           R44           R49  

R20            R25           R30         R35           R40           R45           R50  

R21            R26           R31         R36           R41           R46           R51 

 

The numbers in black are the boundary conditions; the numbers in red are obtained by the finite 

differences method – and they approximate the solution of a linear system of 15 equations in 15 

unknowns.  The numeric values are tabulated below: 

   x \ y        0    /12   2/12   3/12   4/12   5/12     /2 

0        0       0       0       0       0       0       0 

1/4   0.2526   0.2441   0.2189   0.1788   0.1264   0.0655       0 

2/4   0.5211   0.5036   0.4516   0.3688   0.2608   0.1350       0 

3/4   0.8223   0.7946   0.7125   0.5818   0.4114   0.2130       0 

1   1.1752   1.1352   1.0178   0.8310   0.5876   0.3042       0 

 

For instance,  u(3/4; /12) ~ 0.7946   whereas the correct value is  0.794297. .. We can get a better 

accuracy with larger M- and N-values and if we execute with FIX 6 or greater. For instance, with M = 

8 , N = 12 it gives  u(3/4; /12) ~ 0.794380 = R41 (albeit the execution time is considerably longer). 

The exact solution is  u(x,y) = sinh x  cos y 

 

 

 

2. Poisson Equation:  u/x2 + u/y2 = uxx + uyy = F(x,y) 

This case adds to the previous one the source term F(x, y) as a non-zero member of the differential 

equation. The methodology and resolution is very similar, thus we’ll just mention the differences from 

the previous case. 

The system of equations is in this instance: 

-h2.Fi,j + ui-1,j + ui+1,j + h2/k2 (  ui,j-1 + ui,j+1 ) = 2.( 1 + h2/k2 ).ui,j    ;    where   Fi,j = F(i.h,j.k) 

This will also be resolved using an over-relaxation method with parameter 1.2.Also here the same 

considerations to accuracy and methodology apply, as mentioned in the Laplace equation paragraphs. 

Obviously now we’ll need a fifth program to define the source term, F(x,y) under its own global label. 

This will assume the variables to be in the X- and Y- registers on entry, and the result should be left in 

the X register upon completion. 
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Besides the longer execution times, another consideration of using denser grids is that increased 

number of data registers needed to store all the result values. This can be partially addressed by using 

data files in X-Memory instead of main memory for the storage – and this approach has been used in 

the program described below. 

Example 2.  Solve the Poisson equation defined below in the rectangle with both base and height 

equal to one, and  on a (4 x 5) grid: 

 

  u/x2 + u/y2 = uxx + uyy = 2.exp(-x-y)    ;  0 <= x <= 1 , 0 <= y <= 1  ;  (L = H = 1) 

 

with boundary conditions:  u(x,0) = exp(-x)                   u(0,y) = exp(-y)  

      u(x,1) = exp(-1-x)                u(1,y) = exp(-1-y)  

The exact solution is  u(x,y) = exp(-x-y) 

For your convenience, both the source term and the four boundary conditions are already included in 

the module, under the program labels “FXY”, and {“UX0”, “UY0”, “UXL”, “UYL”}, programmed as 

follows: 

 

Note how the functions can be re-used, as they have the same expressions even if they apply to 

different variables. Here’s the sequence of operation using the driver program “POIS+”: 

XEQ “POIS+”   “F(X,Y)? _”, with ALPHA mode ON 

“FXY”, R/S   “U(X,0)? _” with ALPHA mode ON 

“UX0”,  R/S   “U(X,L)? _” with ALPHA mode ON 

“UXL”,  R/S   “U(0,Y)? _” with ALPHA mode ON 

“U0Y”,  R/S   “U(L,Y)? _” with ALPHA mode ON 

“ULY”, R/S   “DIM(LXL')=?” use ENTER to separate the values 

1, ENTER^, R/S   “GRID(MXN)=?” use ENTER^ to separate the values 

4, ENTER^, 5, R/S  18.047 in X after 3 min 45s, then results shown: 

The results are arranged in an (m+1)x(n+1) array, with registers in ROW order as shown below: 

                       R22            R27           R32         R37           R42           R47  

                       R23            R28           R33         R38           R43           R48  

                       R24            R29           R34         R39           R44           R49  

                       R25            R30           R35         R40           R45           R50  

                       R26            R31           R36         R41           R46           R51 

The numbers in black are the boundary conditions; the numbers in red are obtained by the finite 

differences method – and they approximate the solution of a linear system of 12 equations in 12 

unknowns.  The numeric values are tabulated below: 

 

 

1 LBL "UX0" 7 LBL "UXL" 13 LBL "FXY"

2 LBL "U0Y" 8 LBL "ULY" 14 +

3 LBL 00 9 E 15 CHS

4 CHS 10 + 16 E^X

5 E^X 11 GTO 00 17 ST+ X

6 RTN 12 RTN 18 END
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   x \ y        0      1/5      2/5      3/5      4/5        1 

0        1   0.8187   0.6703   0.5488   0.4493   0.3679 

1/4   0.7788   0.6377   0.5222   0.4276   0.3500   0.2865 

2/4   0.6065   0.4967   0.4067   0.3330   0.2727   0.2231 

3/4   0.4724   0.3868   0.3168   0.2594   0.2123   0.1738 

1   0.3679   0.3012   0.2466   0.2019   0.1653   0.1353 

 

For instance,  u(3/4; 2/5) ~ 0.3168   whereas the correct value is  0.316637 –however the results are 

more accurate than what one could expect!  We can get a better accuracy with larger M- and N-

values and if we execute it in FIX 6, for example with M = 8 and N = 10 we find that register R64 = 

u(3/4,2/5) ~ 0.316677.   

With M = 8 and N = 10, we solve a system of 63 equations so a good emulator - like Warren Furlow's 

V41 in turbo mode - is quite useful if you want to execute this routine for (relatively) large M- & N-

values. 

The programs use the function PMTA for the alphabetical entry of the labels used for the boundary 

conditions and source terms. This is more convenient that the default functions as it lets you see the 

input while you enter its values. This also introduces a dependency with the AMC_OS/X module that is 

required as well (it should always be present on your machine anyway). 

 

 

 

 A good tutorial can be found at: http://tutorial.math.lamar.edu/Classes/DE/LaplacesEqn.aspx 

 

http://tutorial.math.lamar.edu/Classes/DE/LaplacesEqn.aspx
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Numerical methods: Linear Diffusion Equation. 

3. Diffusion Equation:  T/t = a(x,t) 2T/x2+ b(x,t) T/x + c(x,t) T 
 
The following program solves the partial differential equation (in one spatial dimension, X): 

T/t = a(x,t) 2T/x2 + b(x,t) T/x + c(x,t) T  

with the initial values: T(x,0) = F(x) and with the boundary conditions:  

           T(0,t)  = f(t)            a , b , c , F , f , g   are  known functions  

           T(L,t)  = g(t)  

Using a simplified notations, we write:   Tt = a(x,t) Txx + b(x,t) Tx + c(x,t) T ;    
where  T , a , b , c  are functions of  x and t  

For parameterization purposes, the interval  [0,L] is sub-divided into M parts, and h = L/M is the 
spatial step-size for the characterization. 

      x  

  L|-----------------------------------------------------  

    |  

    |  

    |  

 --|----------------------------------------------------- t  

   0  

This program uses the Crank-Nicholson Scheme, an implicit - stable - method of order 2 in both space 
and time, thus producing more accurate results than other approaches – even if it may be slightly 
slower. 

The diffusion coefficient  a(x,t)  is assumed to be non-negative. Otherwise, explicit methods may be 

stable whereas the implicit methods are not! The routine uses the REGMOVE function from the X-
Functions module.  

In an implicit method, the partial derivative with respect to t is approximated by    

T/t  = Tt  ~  [ T(x,t) - T(x,t-k) ]/k        ; with k = time step-size 

   

Denoting byTm,n = T( m.h , n.k ), the equation becomes : 

 

Tm-1,n ( a.k/h2 - b.k/(2h) ) + Tm,n ( -1 - 2.a.k/h2 + c.k ) + Tm+1,n ( a.k/h2 + b.k )  =  Tm,n-1       

So, the new values Tm-1,n ,Tm,n ,Tm+1,n  are the solutions of a tri-diagonal system of  M-1 equations  

The approximation  T/t  = Tt  ~  [ T(x,t+k) - T(x,t) ]/k  is of order 1, but this formula becomes 

second-order if it approximates the derivative at  t + k/2 .Therefore using the averages: 
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T/x = Tx  ~ { [T(x+h,t) - T(x-h,t) ]/(2h)  +  [ T(x+h,t+k) - T(x-h,t+k) ]/(2h)  } / 2  
 

  2T/x2 = Txx ~ {[T(x+h,t) - 2.T(x,t) + T(x+h,t) ]/h2  + [T(x+h,t+k) - 2.T(x,t+k) +  

                                     + T(x+h,t+k) ]/h2 } /2  

Where all these approximations are centered at: (t + k/2)  and the formulas are of order 2 both in 

space and time.  Denoting nowTm,n = T(m.h, n.k) the diffusion equation becomes:  

Tm-1,n+1 ( a/h2 - b/(2h) ) + Tm,n+1 ( -2/k - 2a/h2 + c ) + Tm+1,n+1 ( a/h2 + b/(2h) )  = 

                     = -Tm-1,n ( a/h2 - b/(2h) ) - Tm,n ( 2/k - 2a/h2 + c ) - Tm+1,n ( a/h2 + b/(2h) )   

 

 And the functions a(x,t) , b(x,t) , c(x,t)  are to be evaluated at ( x , t + k/2 ) ;This will be done in 

the following auxiliary routines written by the user: 

• one for a(x,t), assuming “x” and “t” are in the X- and  Y-registers upon entry 

• another for b(x,t), assuming “x” and “t” are in the X- and  Y-registers upon entry 

• another for c(x,t), assuming“x” and “t” are in the X- and  Y-registers upon entry 

• another for F(x), assuming “x” is in X-register upon entry  

• another for f(t), assuming “t” is in X-register upon entry, and 

• last one for g(t), assuming “t” is in X-register upon entry 

A modified version of the “3DLS” routine is also included in the module – as it’ll be used as a 
subroutine by “DFSN+”. 

Example 3:        T/t = (x2/2) 2T/x2 - t.x T/x - T     [or:  Tt = (x2/2) Txx - t.x Tx - T  ]  

With initial values:    T(x,0) = 1 + x2      ( t0 = 0 )  

Characterized by:L = 1;M=4; k= 1/16,  and   N = 1 

and  boundary conditions:         T(0,t) = exp(-t)    

        T(1,t) = exp(-t) + exp(-t2)    

For your convenience, the module already has the needed routines programmed under the labels  
“aXT”, “bXT”, “cXT”, “FX0”, “F0T”, and  “FLT”. You’ll enter those names in the data register either 
manually of answering the prompts in the driver program. 

We proceed to execute the driver routine “DFSN+”, which will automatically present the prompts for 
the data entry as follows: 

XEQ “DFSN+”   “a(X,T)? _” with ALPHA mode ON  

“aXT”, R/S   “b(X,T)? _” with ALPHA mode ON 
“bXT”, R/S   “c(X,T)? _” with ALPHA mode ON 

“cXT”, R/S   “F(X,0)? _”  with ALPHA mode ON 
“FX0”, R/S   “F(0,T)? _” with ALPHA mode ON 

“F0T”. R/S   “F(L,T)? _” with ALPHA mode ON  

“FLT”, R/S   “T0=?”  initial time 
0, R/S    “L=?”  length 

1, R/S    ”X-STRIPS=?”    value for M 
8, R/S    “T-STEP SZE.=?”value for k 

16, 1/X, R/S   “#. STEPS=?”    value for N 
1, R/S    calculation… and convergence in about  82 sec 

What follows is the parametric listing of the values of the function in the partitions of the interval, at 
the time corresponding to the current iteration, starting at t0. For example: 
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T=0.0625;  R20=0.9394; R21=0.9550; R22=1.0017; R23=1.0795;  
R24=1.1884; R25=1.3285; R26=1.4997; R27=1.7020; R28=1.9355 

The table below summarizes the results for several iterations in time. Note that this version of the 
program also stores all the results in an X-Memory data file, titled “DFGRID”, which in this 
instance it has up to 140 registers in size and contains all data values for the distribution. 

t\x       0     1/8     2/8     3/8     4/8     5/8     6/8     7/8    L=1 

0 1 1.0156 1.0625 1.1406 1.2500 1.3906 1.5625 1.7656 2 

1/16 0.9394 0.9550 1.0017 1.0795 1.1884 1.3285 1.4997 1.7020 1.9355 

2/16 0.8825 0.8978 0.9440 1.0209 1.1286 1.2670 1.4362 1.6362 1.8670 

3/16 0.8290 0.8441 0.8893 0.9647 1.0703 1.2061 1.3721 1.5682 1.7945 

4/16 0.7788 0.7934 0.8375 0.9108 1.0136 1.1457 1.3072 1.4980 1.7182 

5/16 0.7316 0.7457 0.7882 0.8591 0.9583 1.0858 1.2417 1.4260 1.6386 

6/16 0.6873 0.7008 0.7415 0.8094 0.9044 1.0266 1.1759 1.3524 1.5561 

7/16 0.6456 0.6585 0.6972 0.7617 0.8520 0.9681 1.1101 1.2779 1.4714 

1/2 0.6065 0.6186 0.6551 0.7160 0.8011 0.9107 1.0445 1.2028 1.3853 

9/16 0.5698 0.5811 0.6152 0.6722 0.6722 0.8544 0.9796 1.1277 1.2985 

10/16 0.5353 0.5457 0.5774 0.6303 0.7043 0.7995 0.9158 1.0533 1.2119 

11/16 0.5028 0.5125 0.5417 0.5904 0.6585 0.7462 0.8534 0.9800 1.1262 

12/16 0.4724 0.4812 0.5079 0.5524 0.6147 0.6948 0.7928 0.9085 1.0421 

13/16 0.4437 0.4517 0.4759 0.5163 0.5728 0.6455 0.7343 0.8393 0.9605 

14/16 0.4169 0.4240 0.4458 0.4821 0.5330 0.5984 0.6783 0.7728 0.8819 

15/16 0.3916 0.3980 0.4174 0.4499 0.4953 0.5537 0.6250 0.7094 0.8068 

1 0.3679 0.3735 0.3908 0.4195 0.4597 0.5114 0.5747 0.6494 0.7358 

in:    R20    R21    R22    R23    R24    R25    R26    R27    R28 

This can also be plotted graphically, with each curve showing the function values on the data points 
within the interval, at a given time. Observe how their values decrease as the time progresses: 
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Runge-Kutta 4th-Order method. 

Even if a differential equation of n-th order can be replaced by a system of n first-order equations, the 

same order of accuracy may be obtained with less evaluations of the function using formulas specially 
devised for these problems. 

1. Second-order differential equations:   y" = f(x,y, y‘) 

Here we have to solve y" = f(x,y,y’) with the initial 2 values: y(x0) = y0  and  y'(x0) = y'0 

 

This program uses the 4th-order Runge-Kutta formula, which assumes a step-size small enough to 

have a representative characterization of the equation along the independent variable from the initial 

value to the evaluation point: 

y(x+h) = y(x) + h ( y'(x) + k1/6 + 2k2/3 )  

y'(x+h) = y'(x) + k1/6 + 2k2/3 + k3/6                  

where  k1 = h.f (x,y)  ;  k2 = h.f(x+h/2,y+h.y'/2+h.k1/8) ;  k3 = h.f(x+h,y+h.y'+h.k2/2)  

Note that only 3 evaluations of the function are needed for each step.  This is done in a user-written 
program to compute  y" = f(x,y,y'), assuming  x , y , y'  are in registers X , Y , Z ( respectively )  upon 
entry.  

The driver program “2DFEQ” is the convenient way to solve this problem. Not only it takes care of 

setting the calculator’s SIZE to the number of registers required, but consistent with the other sections 
in the module, the data entry section of the program will prompt for the required parameters, and 
then it’ll call the main routine “2RK4”. Let’s see an example of utilization next. 

Example. Let's consider the Lane-Emden equation (LEE) of index 3:   y" = -(2/x) y' - y3    

with the initial values  y(0) = 1 , y'(0) = 0 

There is an initial difficulty because x = 0 is a singular point, but if we use a series expansion, we find 

after substitution that  y = 1 + a.x2 + ....  will satisfy the LEE  if  a = -1/6, whence  y"(0) = -1/3, 
which can be used as a singular point in the following subroutine – already programmed in the 
module with the global label “d2X/dX2”:  

 

 

 

 

1 LBL "LEE" 10 Y^X

2 X=0? 11 +

3 GTO 00 12 CHS

4 RCL Z 13 RTN

5 ST+ X 14 LBL 00

6 X<>Y 15 3

7  / 16 1/X

8 X<>Y 17 CHS

9 3 18 END
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Here’s the sequence using the driver program “2DFEQ”” 

XEQ “2DFEQ”  “F.NAME?” with ALPHA mode ON 

“d2X/dX2”, R/S  “X0=?” 
0, R/S   “Y0=?” 

1, R/S   “Y0'=?” 

0, R/S   “#STEPS=?”  i.e. evaluation points 
10, R/S   “STPSZE=?” i.e. divisions between each step 
0.1, R/S  calculation, and convergence: 

With the results obtained tabulated below: 

X=1.0000   

R/S Y= 0.855057170 
R/S Y'= -0.252129561 

X=2.0000 

R/S Y=0.5829 
R/S Y'=-0.2615 

X=3.0000  

R/S Y=0.3592 
R/S Y'=-0.1840 

y(x1) = 0  for  x1 = 6.896848619    and    y'(x1) = -0.0424297576; and there is an inflexion point I 

with  xI = 1.495999168 , yI = 0.720621687 and  y'(xI) = -0.279913175 

The solutions of the Lane-Emden Equations of index n  can be expressed by elementary functions for 

only 3 values of n: 0,1, and 5:    y" + (2/x).y' + yn = 0 ;  y(0)= 1 , y'(0) = 0  

 

  n = 0   y(x) = 1 - x2/6  

  n = 1   y(x) = (sinx)/x 

  n = 5   y(x) = ( 1+x2/3) -1/2 
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2. Third-order differential equations:   y"' = f(x,y,y',y") 

Here we have to solve y"' = f(x,y,y',y") with 3 initial values:  y(x0) = y0;  y'(x0) = y'0; y"(x0) = y"0 

The main routine is “3RK4”, which expects all parameters to be in the data registers before starting. 

This also includes the name of the global label used to program the differential equation, y" = 

f(x,y,y')  assuming  x , y , y'  are in registers X , Y , Z ( respectively )  upon entry. 

For your convenience, the module includes “3DFEQ”, a driver program that does all the data entry 

automatically for you, prompting for all values sequentially.  Let’s see an example of utilization next. 

 

Example:      y"' =  2xy" - x2y' + y2   with  y(0) = 1 , y'(0) = 0 , y"(0) = -1 

As in previous sections, this example (and the example for next section) is already pre-programmed 

in the module, under the global label “d3/dX3”(and “d5/dX5”) as follows: 

 

Here’s the sequence to solve the example: 

XEQ “3DFEQ”  “F.NAME?” with ALPHA mode ON 
“d3/dX3”, R/S  “X0=?”  initial point 

0, R/S   “Y0=?”  initial value 
1, R/S   “Y0'=?”  initial first derivative 

0, R/S   “Y0"=?”  initial second derivative 

1, CHS, R/S  “#.STEPS=?” increments of variable 
1, R/S   “STPSZE=?” internal slice size 
0.1, R/S  calculation, and convergence: 

With the results obtained tabulated below: 

X=1.0000 

R/S,  Y=0.595434736 
R/S Y ’=-0.776441445 
R/S Y ”=-0.776441445 

X=2.0000 

R/S Y=-0.655723250 
R/S Y ’=-1.708065832 
R/S Y ”=-1.708065832 

X=3.000000000 

R/S Y=2.790989383 
R/S Y'=2.790989383 
R/S Y"=2.790989383 

 

 
 

1 LBL "d3/dx3" 12 LBL "d5/dX5"

2 X^2 13 RCL 14

3 ST* Z 14 RCL 09

4 X<> L 15 ST+ X

5 ST+ X 16 RCL 13

6 ST* T 17 *

7 RDN 18 -

8 X^2 19 RCL 12

9 - 20 +

10 - 21 RCL 10

11 RTN 22 RCL 11

23 *

24 -

25 END
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3.- Nth-order differential equations:   y(n) = f(x,y,y',y",.....,y(n-1))   

The differential equation is now y(n) = f(x,y,y',y",.....,y(n-1))     with the “n” initial values: 

  y(x0) = y0  ,   y'(x0) = y'0  ,  ........  ,  y
(n-1)(x0) = y(n-1)

0 

Now for the user program describing the equation, the values are to be taken from data registers R09, 

to Rn+9 (obviously the stack won’t hold more than four, so it’s discarded altogether). Also the initial 

values should be store in the same registers prior to the execution of the “NRK4” routine.  As usual, 

R00 needs to have the global label used to program the equation. 

Example:      y(5) = y(4) - 2x.y"' + y" - y.y'   with:  y(0) = 1; y'(0) = y"'(0) = y(4)(0) = 0 ; y"(0) = -1 

As mentioned before, this example is pre-programmed in the module with the global label “d5/dX5” 

– so there’s no need to create a program in RAM for it. 

The most convenient way to solve this is using the driver program “NDFEQ”. This will set the required 

SIZE in the calculator, and will go through the data entry process prompting all parameters 

sequentially, as follows: 

XEQ “NDFEQ”  “N=?”  order of equation 
5, R/S   “F.NAME?” with ALPHA mode ON 

“d5/Dx5”, R/S  “X0=?”  initial point 
0, R/S   “Y0=?”  initial function 

1, R/S   “Y0(1)'=?” initial first derivative 
0, R/S   “Y0(2)=?” initial second derivative 

-1, R/S   “Y0(3)=?” initial third derivative 

0, R/S   “Y0(4)=?” initial fourth derivative 
1, CHS, R/S  “#.STEPS=?” increments of variable 

1, R/S   “STPSZE=?” internal slice size 
0.1, R/S  calculation, and convergence: 

With the results obtained tabulated below: 

X=1.0000 

Y(0)=0.481580647 

Y(1)=-1.083569461 

Y(2)=-1.298903838 

Y(3)=-0.779951410 

Y(4)=-1.248671208 

 

X=2.0000 

Y(0)=-1.433907352 

Y(1)=-2.979546824 

Y(2)=-2.681382961 

Y(3)=-1.891414056 

Y(4)=-0.832432414 

X=3.000000000 

Y(0)=-6.123554195 

Y(1)=-6.867842146 

Y(2)=-5.643138017 

Y(3)=-5.603544659 

Y(4)=-10.79708927 

With:  h/2 = 0.025  and:  m = 20,  it yields: 

y(1) = 0.491724223 ,  y'(1) = -1.041200398 ,  

y"(1) = -1.163353549 ,  y"'(1)  = -0.479804004 ,   

y(4)(1) = -0.897594479  

 

End of the manual. 


