PPC User Applications Rom
RomID 17/18

Application programs from the
PPC ROM manual

For the HP 41CL

ROM by: Angel Martin

DOC by: Sylvain Coté

RomXrom FatPosition FatType FatName FatGroup References Dependencies Author(s) Description
17 00 MCODE -PPCAPPS -PPCAPPS Angel Martin none Angel Martin ppc application programs
17 01 FOCAL "ACMP" -PPC APPS PPC-MAN P.040 none Roger Hill indirect mode alpha comparator
17 02 FOCAL "ACP" -PPCAPPS PPC-MANP.099 PR Ron Yankowski alpha column print formatting
17 03 FOCAL "ACV" -PPCAPPS PPC-MAN P.212 PR Cliff Carrie vertical character accumulation
17 04 FOCAL "AORD" -PPCAPPS PPC-MAN P.040 none Roger Hill indirect mode alphabetizer
17 05 FOCAL "BLK" -PPCAPPS PPC-MAN P.320 PPC;PR Jack Sutton n/d
17 06 FOCAL "CAL" -PPCAPPS PPC-MAN P.320 PPC;PR Jack Sutton n/d
17 07 FOCAL "COMP" -PPCAPPS PPC-MAN P.028 PPC Roger Hill random music composer
automatic multiple numeric column
17 08 FOCAL "CPP" -PPCAPPS PPC-MAN P.100 none n/a formatting
PPC-MAN
P.116;PPC-CA
17 09 FOCAL "CRV" -PPC APPS V7N5P46 PPC;PR Bill Barnett curve fitting program
PPC-MAN
P.116;PPC-CA
17 10 FOCAL "CvPL" -PPC APPS V7N5P46 PPC;PR Bill Barnett curve fitting program
17 11 FOCAL "FAST" -PPCAPPS PPC-MAN P.158 PPC Don Dewey reducing interest solution time
recursive factorial demonstrating Irs & srs
17 12 FOCAL "FCT" -PPCAPPS PPC-MAN P.257 "ISX" Harry Bertuccelli & Keith Jarett routines
17 13 FOCAL "HPP" -PPCAPPS PPC-MAN P.201 PPC;PR PPC Group Effort high resolution plot parameters prompting
17 14 FOCAL "HPT" -PPC APPS PPC-MAN P.190 PPC;PR PPC Group Effort high resolution plot runtime estimation
17 15 FOCAL "INIT" -PPCAPPS PPC-MAN P.257 "ISX" Harry Bertuccelli & Keith Jarett recursive factorial initialization
17 16 FOCAL "IRX" -PPCAPPS PPC-MAN P.255 PPC Harry Bertuccelli & Keith Jarett Irr & srr initialization routine
17 17 FOCAL "ISX" -PPC APPS PPC-MAN P.256 PPC Harry Bertuccelli & Keith Jarett Irs & srs initialization routine
17 18 FOCAL "LBW" -PPCAPPS PPC-MAN P.027 PPC;WD Roger Hill load bytes with wand
17 19 FOCAL "LPAS" -PPCAPPS PPC-MAN P.157 PPC;PR Don Dewey loan payments and amortization schedule
17 20 FOCAL "LRR" -PPCAPPS PPC-MAN P.255 PPC Harry Bertuccelli & Keith Jarett lengthen return stack for recursion
lengthen return stack with single return
17 21 FOCAL "LRS" -PPCAPPS PPC-MAN P.256 PPC Harry Bertuccelli & Keith Jarett address
print y min & y max foreach 10 values of x
17 22 FOCAL "MAXMIN" -PPCAPPS PPC-MAN P.320 PPC Jack Sutton between the x limits
17 23 FOCAL "MIO" -PPCAPPS PPC-MAN P.265 PPC John Kennedy matrix input/output operations
multiple variable plot parameters
17 24 FOCAL "MPP" -PPCAPPS PPC-MAN P.201 PPC;PR PPC Group Effort prompting
17 25 FOCAL "MPT" -PPC APPS PPC-MAN P.190 PPC;PR PPC Group Effort multiple variable plot estimation time
17 26 FOCAL "POP" -PPC APPS PPC-MAN P.257 "ISX" Harry Bertuccelli & Keith Jarett recursive factorial pop stack
17 27 FOCAL "PUSH" -PPCAPPS PPC-MAN P.257 "ISX" Harry Bertuccelli & Keith Jarett recursive factorial push stack
determine phi(n) where n is the absolute
17 28 FOCAL "PHN" -PPCAPPS PPC-MAN P.347 PPC n/a value of the intergral part of x
transform a matrix into a row reduced
17 29 FOCAL "RRM" -PPCAPPS PPC-MAN P.264 PPC John Kennedy echelon form
PPC-MAN
P.439;PPC-CA
17 30 FOCAL "sC" -PPCAPPS V7N10P11 PPC Jake Schwartz & Roger Hill special printing characters
17 31 FOCAL "SCDEMOQ" -PPCAPPS PPC-MAN P.423 "SC";PR Jake Schwartz & Roger Hill sc demo application
high resolution super-plot (multiple paper
17 32 FOCAL "SHP" -PPCAPPS PPC-MAN P.201 PPC;PR PPC Group Effort widths)
multiple variable super-plot (multiple
17 33 FOCAL "SMP" -PPCAPPS PPC-MAN P.201 PPC;PR PPC Group Effort paper widths)
17 34 FOCAL "SRR" -PPCAPPS PPC-MAN P.255 PPC Harry Bertuccelli & Keith Jarett shorten return stack for recursion
shorten return stack with single return
17 35 FOCAL "SRS" -PPCAPPS PPC-MAN P.256 PPC Harry Bertuccelli & Keith Jarett address
demonstration of extended subroutine
17 36 FOCAL "SUB1" -PPCAPPS PPC-MAN P.254 PPC Harry Bertuccelli & Keith Jarett stack depth
Irr & srr demonstration of extended
17 37 FOCAL "SUB2" -PPC APPS PPC-MAN P.255 "IRX";"SRR";"LRR" Harry Bertuccelli & Keith Jarett subroutine stack depth
17 38 MCODE -PPC KAS -PPC KAS Angel Martin none Angel Martin key assignments programs
PPC-MAN
P.294;PPC-TN
17 39 FOCAL "C16" -PPC KAS VIN3P55 none Bill Wickes n/d
PPC-MAN
P.293;PPC-TN
17 40 FOCAL "CA" -PPC KAS VIN3P57 none Richard Collett clear assignment
PPC-MAN
P.294;PPC-TN
17 41 FOCAL "CKA" -PPC KAS VIN3P55 none Bill Wickes clear key assignments
PPC-MAN
P.294;PPC-TN
17 42 FOCAL "D~C" -PPC KAS VIN3P55 none Bill Wickes n/d
PPC-MAN
P.294;PPC-TN
17 43 FOCAL "FEA" -PPC KAS VIN3P55 none Bill Wickes find empty assignment

BOOKSAPPS_Reference_20150330a (2).xIsx[PPCAPS1]

Page 1 of 2

ROM by: Angel Martin

DOC by: Sylvain Coté

PPC-MAN
P.294;PPC-TN
17 44 FOCAL "GTE" -PPC KAS VIN3P55 none Bill Wickes n/d
PPC-MAN
P.292;PPC-TN
17 45 FOCAL "KA" -PPC KAS VIN3P57 none Richard Collett key assignment
PPC-MAN
P.294;PPC-TN
17 46 FOCAL "MKA" -PPC KAS VIN3P55 none Bill Wickes make key assignment
PPC-MAN
P.293;PPC-TN
17 47 FOCAL "NN" -PPC KAS VIN3P57 none Richard Collett non normalized number maker
PPC-MAN
P.294;PPC-TN
17 48 FOCAL "NNN" -PPC KAS V1N3P55 none Bill Wickes make non normalized number
PPC-MAN
P.293;PPC-TN
17 49 FOCAL "PA" -PPC KAS VIN3P57 none Richard Collett pack assignment
PPC-MAN
P.294;PPC-TN
17 50 FOCAL "PKA" -PPC KAS VIN3P55 none Bill Wickes pack key assignments
PPC-MAN
P.294;PPC-TN
17 51 FOCAL "RAX" -PPC KAS VIN3P55 none Bill Wickes n/d
PPC-MAN
P.294;PPC-TN
17 52 FOCAL "SAX" -PPC KAS VIN3P55 none Bill Wickes n/d
PPC-MAN
P.447,PPC-CA
17 53 FOCAL "VK" -PPC KAS V7N7P18 none Richard Collett & Tom Calwallader view keys assignment
17 54 MCODE -PPC HANOI -PPC HANOI Angel Martin none Angel Martin hanoi tower program
17 55 FOCAL "GHT" -PPC HANOI PPC-MAN P.033 PPC;PR Harry Bertuccelli generalized hanoi tower
17 56 FOCAL "IGT" -PPC HANOI PPC-MAN P.033 PPC;PR Harry Bertuccelli initialize generalized tower
17 57 FOCAL "MOVE" -PPC HANOI PPC-MAN P.033 PPC;PR Harry Bertuccelli move disk from peg
17 58 FOCAL "PARTS" -PPC HANOI PPC-MAN P.033 PPC;PR Harry Bertuccelli build up the partitionning
17 59 FOCAL "SHOW" -PPC HANOI PPC-MAN P.033 PPC;PR Harry Bertuccelli show current distribution of disks on pegs
18 00 MCODE -PPCAPP2 -PPCAPP2 This project none Angel Martin ppc application programs 2
alphabetic tone generator (local labels A
to J are used to generate the tone for
18 01 FOCAL "ALFA_TN" -PPCAPP2 PPC-MANP.434 none n/a these letters)
18 02 FOCAL "K" -PPCAPP2 PPC-MAN P.434 none n/a tone for letter K
18 03 FOCAL "L" -PPCAPP2 PPC-MAN P.434 none n/a tone for letter L

BOOKSAPPS_Reference_20150330a (2).xIsx[PPCAPS1]

Page 2 of 2

=B - STORE PART OF LB

and @ together comprise a subroutine version
of . (B initializes the byte Toading process
without any prompting, returning to the calling
program. @3 is then used to load each byte from
its decimal equivalent under program control.

Examg]e 1: The following program segment prompts for
input and loads an XROM instruction into program
memory (after the user has supplied the usual LBL "++"
++....+.XROM @@ sequence). This program checks for
sufficient SIZE, converts the XROM numbers Y and X to
decjma] codes for , and Toads two bytes from the
decimal codes. It then prompts for another pair of
XROM numbers.

01 LBL "XLB" 13 XROM
02 12 14 X<>Y

03 XROM 15 STO 05
04 FC?2C 25 16 X<>Y

05 PROMPT 17 XROM @33
06 XROM (B 18 RCL 05
07 CF 22 19 XROM W3
08 LBL 00 20 GTO 00
09 "XROM Y, X ?" 21 LBL 01
10 PROMPT 22 CF 09

11 FC?C 22 23 XROM ®B
12 GTO 01 24 END

To use "XLB" first key in the LBL "++" ++...+ XROM
sequence as described in the instructions for HEB.
Then XEQ "XLB" and supply two XROM numbers in response
to the prompt. For instance for XROM 10, 00 key in 10
ENTER+ 0. Press R/S to calculate and load two bytes.
When the next prompt for XROM numbers appears you can
e1ther enter another pair of numbers or press R/S
without an input to terminate the byte-loading process.
The usual prompt "SST, DEL 00p" will be given.

Example 2: If you change Jine 23 of "XLB" (Example 1)
From CF 09 to CF 08, pressing R/S without an input
will not terminate the byte Toading. Instead, the

CF 08 instruction switches to the manual & operation,
allowing additional bytes to be loaded from the key-
board.

COMPLETE INSTRUCTIONS FOR)

These routines allow bytes to be Toaded under the
control of your own program . The general rules for
their use are as follows:

1. In the program that you are writing which controls
the loading of bytes, put the instruction XROM .
This initializes the byte-loading process and then
(instead of prompting for Byte #1) returns to your
control program.

2. Have your control program calculate or otherwise
place each byte (only decimal allowed in this version)
in the X-register, and put an XROM 3 in your program
to load that byte. Flags 22 and 23 are ignored, as
well as whether the calculator is in ALPHA or non-
ALPHA mode. The call to routine @3 causes one byte
to be loaded and then returns to your control program.

3. To terminate the byte-loading process, put the
instructions CF 09, XROM B3 in your control program.
Executing the routine B with Flag 09 cleared will
cause no additional byte to be loaded, but rather a
termination of the byte loading, in this case not
returning to your control program, but ending with a
“SST, DEL 00p" prompt. Executing B3 with Flag 08
cleared will switch from automatic to manual byte

Joading, allowing more bytes to be Toaded directly
from the keyboard.

4. Before running your control program, check for
size 12, and make room in program memory where you
want the bytes to be Toaded in exactly the same way
as when using the prompting version EER. That is,
key in (in PRGM mode) LBL"++", a string of +'s, and
XROM .

5. Switch out of PRGM mode and instead of pushing
R/S to start the byte loader, execute your own con-
trol program. Then sit back while your program (if
correctly written) calculates, prompts for, or other-
wise creates and loads each byte.

6. Execution will terminate with the "“SST, DEL 0op"
prompt, whereupon you can perform the “cleanup"
operations just as with the ordinary 3 program.

7. If you want your control program to correct a byte
that it previously loaded, have it enter a negative
number in X and execute @@ to get rid of the last-
entered byte.

8. Your control program is welcome to make use of any
of the contents of registers 06-11 (see above), as
Tong as it doesn't change any of these registers.

WARNING: Don't execute B3 (or let your program do it)
without having first initialized the process by execut-
ing (M@! A few flag and other safeguards have been

incorporated, but executing @3 by itself could cause
MEMORY LOST or destruction of existing programs.

When used properly, and B3 can be very powerful,
ultimately allowing one to write a program which writes
programs! A somewhat less exotic application is a
byte loading program which allows bytes to be scanned
in by a wand instead of keyed in.

APPLICATION PROGRAM 1 FOR (B3

The following program "LBW" (Load Bytes With Wand)
allows bytes to be loaded by scanning 2-byte paper
keyboard {type 5) barcodes. Only the second byte of
the barcode is loaded into program memory, but in
order to avoid scanning errors the entire barcode is
checked for checksum consistency. Using this program
along with a barcode hex table {such as in PPC CJ,
VIN6P25-26) and HP's Wand Paper Keyboard, one can
rapidly scan in the bytes to be loaded in a manner
which for many functions is similar to the normal
use of the paper keyboard.

For example, the synthetic instruction X<> can be
obtained by scanning X<> in the Paper Keyboard
(which will supply the correct prefix) and then byte
78 (hex) in the hex table for the postfix, and TONE 26
can be obtained by scanning TONE from the paper
keyboard and byte 26 (decimal) from the hex table.
For alpha characters, the barcode hex table can be
used, but not the alpha character codes in the Paper
Keyboard (or in the character table of PPC CJ,
V7N6P23) which use a different format for encoding
the character.

Instructions for using "LBW" are as follows:

1. Insert LBL ++, a string of +'s, and XROM R in
the desired part of program memory, just as when

using .

2. Switch out of program mode and XEQ "LBW". (Note:
SIZE 012 or greater is required. If you get the
insufficient SIZE message, re-size the calculator

26 PP C ROM USERS MANUAL

APPLICATION PROGRAM FOR: m

BIeLEL "LEW" 36 GT0 81

82 KROM "L-- 74LBL 14

B3+LEL Bi 3@ SIGH

64 FI¥ @ 33 X7

85 CF 29 48 GTO 14

B85 "W 41 98

a7 ARCL 86 42 RCL 81

83 "t OF 43 ¥=97

83 ARCL 97 44 GT0 18

18 AROM VA" 43 189

11 TOHE 7 46 yay?

1z 47 GT0 12

13 OF 22 4geLEL 73

14 ¥ROM 27,95 49 -1

15 F§7 22 58 GT0 11

15 570 11 S1+LEL 14

172 S HMY

15 %2v7 53 4=87

19 G670 14 54 GT0 18

28 RCL 81 555

21 16 S6 Kit7

22 FROK "GR 37 G610 13

23 RCL 82 SgeLBL 12

24 + 59 "BAR/CKSH ERR"

25 Kea7 68 EROM VA"

26 15 61 TONE 1

27 %7 52 GTD 81

25 MOD 6I4LBL 18

29 %297 64 CF 8%

/oL 65 GT0 11

31 K7 6beLBL 13

2 670 12 67 “LOAD ABORT"

33 RCL @2 53 TOHE T

34¢LBL 11 53 PROMPT

35 XROH “-B~ 78 670 i3
71 END.

NOTE: This program also appears under L- .
and then key in XEQ_"LBW" again to restart the
process. JusF pushing R/S after re-sizing will
cause the ordinary [byte loading version to
be initiated instead of the wand version.

3. At.each prompt "W: N OF M", scan in the appro-
priate 2-byte barcode (the WNDSCN command is in
effect here). After verifying the checksum, the
second byte of the barcode will be loaded.

A decimal entry can be made directly from the key-
board by clearing the "W: N OF M" prompt (using
f—-), making the entry, and pushing R/S. Flag 22
is used to detect such an entry. Afer loading

Ehe byte, the program will resume with the

W: N+1.0F M" prompt. Hexadecimal entries are
not provided for in this program however.

To correct an entry, either (a) scan the 1-byte
<—barcode, or (b) clear the prompt and XEQ 03,

or (c) clear the promp%, enter a negative number,
qnd push R/S. Method {a) can be used to conven-
iently clear up to 3 bytes by making up to 3 scans

at once and waiting while they are processed
one by one.

Durjng the prompt for a new byte, X=0 while Y=
decimal value of previous byte. If you wish to
clear the prompt to check the previous byte value,
make elementary calculations, etc., push XEQ 01
afterward to get a re-prompt before continuing
with the loading.

7. To terminate the byte-loading process, either (a)
scan the one-byte . (decimal point) barcode, or
(b) push R/S twice. Then follow the usual "clean-
up" procedures as with . The loading process
will also terminate itself automatically after the
maximum number of bytes is reached.

8. If you have accidentally terminated and wish to
add more bytes or make corrections, push GTO 03
R/S or GTO 01 R/S (rather than XEQ 03 or XEQ 01,
which would disable the return to the "LBW" pro-
gram).

9. Scanning any 1-byte barcode other than <— or .
or any barcode of 3 to 5 bytes will cause the
message "BAR/CHKSM ERR" and a re-prompt. The same
applies to a 2-byte barcode whose checksum does
not check. However, scanning a 6-byte or longer
barcode will cause vital information in RO6-RI1 to
be wiped out, so in such a case the whole process
is terminated with a "LOAD ABORT" message.

To give a brief analysis of the program:

Lines 01-23 initialize the loading process, and lines
03-14 set up the prompt and execute the WNDSCN
command. Lines 15-16 detect an entry from the
keyboard and branch to lines 34-35 to load the byte
(or backup, if the entry is negative). Otherwise a
scan with the wand is assumed to have occured, in
which case WNDSCN causes the number of bytes to be in
X and the decimal byte values in RO1-ROk. If k#2, a
branch is made {lines 17-18) to line 37; otherwise the
4-bit wraparound checksum of the last 3 nybbles is
calculated and compared with the first nybble (lines
20-32). A mismatch causes a branch at line 32 to

LBL 12 (line 58) where the error message is given;
otherwise the second byte of the barcode is recalled
and loaded (lines 33-35) and we start over (line 36).

PPC ROM USERS MANUAL 27

If k#2 then we had branched to 1ine 37, after which we
check for k=1, and if true we check whether the

one byte was 90 decimal (5AH, the decimal print code)
or 189 (BDH, the back-arrow code) and branch
accordingly, otherwise branching to the error
message. Lines 51-57 deal with the case where k is
neither 1 nor 2; if k=0 then no scan has taken place
and it is assumed that R/S R/S was pushed, so we
branch to line 63 and initiate the termination
procedure by clearing flag 09. If k>5 we branch to
line 66 to produce the "LOAD ABORT" message. For
other values of k the "BAR/CHKSM ERR" message is
produced in lines 58-61, and Tine 62 branches to a
re-prompt.

*The checksum can be calculated by adding up the
decimal values of the nybbles; if the result is zero
proceed no further. Otherwise take the result mod 15
and if the result of that is zero, change it to 15.
In the present case, we are concerned with the last
nybble (call it n2) of ROl and both nybbles (call
them n3 and n4) of R02, and since n2 + n3 + n4 is
equivalent to n2 + 16*n3 + n4 when taken mod 15, it
is necessary to decompose the byte in R02 (=16*n3 +
nd) into its separate nybbles before adding. Routine
3 is used, however, to decompose the byte in ROl
into its separate nybbles nl and n2; nl is the number
to be compared with the calculated checksum.

APPLICATION PROGRAM 2 FOR 3

As an example of a program which writes programs, the
following program, "COMP", composes random music by
generating a program consisting of tone instructions
selected at random from tones O through 127 using
routine EIdto generate the random numbers. To use
it, initialize the desired section of program memory
with the usual LBL ++, string of +'s, and XROM s
and then go into non-PRGM mode, make sure the SIZE is
at least 012, and execute "COMP". The program will
prompt for a seed; enter any number and push R/S.

The tone instructions will be loaded into program
memory until there is no room left, whereupon the
usual "SST, DEL OOP" termination will occur. After
performing the usual cleanup operations you can
execute your newly composed program and hear the
music.

This.program can be directly compared with
Application Program 2 for , "MUS", which
generates and plays the tones in "real time". The

generation of the random numbers is exactly the same
for the two programs (see the description of "MUS"
under for an explanation), and the tones produced
by "Mus" and "COMP" for a given initial seed,

will be the same up to the point where the latter

runs out of memory space. "MUS" has the advantage

of producing tones indefinitely with no initial
compilation time, but the listener must put up with
the approximately 2-second delay between tones, making
the "music" rather tedious. "COMP" requires an initial
compilation time (3-4 minutes to generate a 49 tone
sequence) and the length of the piece is limited by
the number of +'s initially put into program memory,
but once the compilation is done the music can be
played with no intertone delays. Thus, the results of
"COMP" (though they may not become instant hits) are
1ikely to be much more satisfying to the listener.
Lines 02-13 of "COMP" initialize the random numbers
(see "MUS" under), store frequently used
constants, and initialize the byte-loading procedure.
Lines 14-21 take the integer part of RO7, which is

the maximum number of bytes that can be Toaded,

determine whether it is even or odd, and load a null
byte (line 21) if the number is odd. This ensures
that there is an even number of bytes left over that
can be loaded so we can simply load tone instructions
repeatedly (at 2 bytes per instruction) until we run
out of bytes, at which time B@ will terminate the
loading automatically, and the termination will not
be in the middle of an instruction. Lines 22-30 form
the tone-loading loop in which we first (lines 23-24)
load byte 159 (decimal) corresponding to the TONE
prefix, then obtain a random number whose integer
part is uniformly distributed from 0 to 127 (lines
25-28) and use it for the postfix byte (1ine 29).

As an aid to the mass production of music (or other
byte loading operations) one can record on a single
track of a card the following 112-byte program: LBL
++, a string of 104 +'s, XROM UEB . (When recording
and reading this card there will be a prompt for side
2 which you can ignore and clear). Reading this card
and using any of the versions of the byte loader will
always allow exactly 98 bytes to be loaded, on our
present case allowing 49 tones. The final 49-note
piece will then fit onto one track of a card with a
few bytes to spare for labels, etc.

As an example of HP-41 generated music, the author
found particularly nice the 49-note piece (which
coincidentally, takes just 49 seconds to play)
obtained by using the card described in the Tast
paragraph and inputting a seed of 4; the initial
compilation took 3.25 minutes. If however, the user
is not so enthralled by this particular composition,
he has plenty of others to choose from. And whether
or not he would agree that such music is a
manifestation of the true soul of the HP-41, it is
undeniable that all of this is an interesting example
of calculator composed music, programs that generated
programs, and the art of synthetic programming in
general. Further refinements could include, for
example, weighting factors to favor (say) the short
duration tones, and even some "rules of composition"
to produce particular musical effects.

o APPLICATION PROGRAM FOR: n
<
w BL4LEL “CONP” 162
= 42 "SEED” 17 HoD
& @3 FROMPT 15 {
= @4 ABS -
i 85 L 20 ¥=w7
W 86 RBS 21 %ROM "-B
S 87 FRC 224LBL 81
© B3 370 08 23 RIL &4
&~ 83 159 24 XROM "-B"
ol : AT ERY as CL\'
19 570 84 25 CLX
- 11 128 25 XROM “RK"
12 570 85 27 ROL 85
13 XROM “L-" 2%
14 RIL &7 29 ¥ROM *-B°
{5 INT 36 570 ol
31 .ENL.

LINE BY LINE ANALYSIS OF

See 3.

CONTRIBUTORS HISTORY FOR ()

and B3 were conceived and written by Roger Hill
(4940) as an integral part of the ROM version of E .

28 PP C ROM USERS MANUAL

AL - ALPHABETIZE X & Y

I is a general-purpose alphabetizing subroutine. It

compares two alpha strings and, if they are not already

in proper alphabetical order, exchanges them.

18 nay be used in either of two modes, which are
selected automatically according to the nature of

the contents of the X & Y registers: (1) Direct mode-
If the X & Y registers contain alpha strings, XEQ IEXS
will Teave them in ascending alphabetical order in

X & Y; that is, the string which is "lower" or closer
to the beginning of the alphabet will be left in X,
and the "higher" string in Y. (2) Indirect mode-

If the X & Y registers contain numbers, EX@will
interpret them as indirect addresses and will
alphabetize the character strings in the two data
registers addressed by X & Y. If the register

addresses in X & Y are in ascending order, the strings

will be alphabetized in ascending order; if the
register addresses in X & Y are in descending order,
the strings will be alphabetized in descending order.

Example 1: Direct mode. (d= don't care, g= garbage)

T d T g

Z d z g

Y "ALPHA" XEQ M~ Y "BETA"
X "BETA" X "ALPHA"
L d L g
ALPHA d ALPHA [clearl
T d T g

VA d A g

Y "BETA" XEQ X8 -~ Y "BETA"
X "ALPHA" X "ALPHA"
L d L g

ALPHA d ALPHA [clearl
Example 2: Indirect mode (ascending).

T d T 90

YA d Z 89

Y 90 XEQ X8~ Y g

X 89 X g

L d L g
ALPHA d ALPHA [clearl
R89 "BETA" R89 "ALPHA"
R90 "ALPHA" R90 “BETA"
Example 3: Indirect mode (descending).

T d T 89

YA d YA 90

Y 89 XEQ &Y% -~ Y g

X 90 X g

L d L g

ALPHA d ALPHA [clearl
R89 "ALPHA" R89 "BETA"
R90 "BETA" R90 "ALPHA"

COMPLETE INSTRUCTIONS FOR

The alpha strings on which EMoperates may be of
different lengths, up to the maximum of six characters
which can be held in a data register as a result

of the ASTO command. For example, "AAAA" will be
placed ahead of "AAAAAA". Any character in the
41C's character set (including those from the Tower
half of the combined hex table) can be included,
and they will be "alphabetized" in the order of
their decimal or hex numbers as set forth in the
combined hex table. For example, "3BB" will be
placed ahead of "4AA". In terms of printable
characters, the strings will be alphabetized in

40

the order of their "BLDSPEC" numbers. One unfortun-
ate consequence to remember (common to all systems
using ASCII codes) is that the entire set of lower
case letters comes after the entire set of upper
case letters, so that "alpha" will be placed after
"BETA".

Stack usage is shown in the Examples, above.

APPLICATION PROGRAM 1 FOR

The routine ACMP Tisted below is a faster alphabetizer
that works only in the indirect mode. In that mode it
operates identically to . The AORD routine below
accepts an ISG/DSE pointer of the form bbb.eeeii and
uses ACMP to alpha-sort the contents of the chosen
block of registers in ascending order. Both routines
were written by Roger Hi1l (4940). If you need more
§peed than and you don't need the direct mode, or
if you want to sort alpha data, use these routines.

§ APPLICATION PROGRAM FOR:
w| BieLEL “ROPT" 24 ISC ¥ 45 %0 IND 2
S| mzcrie 25 CT0 85 46 KO IND T
a| g3 EHTER? 26 RTH 47 % IND 2
=| 84 EHTERY 49 RTH
Sl g5 FRe 274LBL ~ACHP" 49¢LBL 03
wl o a6 sT- ¥ 29 SF 8% 58 Rt
Sl e 3 51 Rt
ol pgar-T 29eLBL 81 s2 SF 83
[~ a2 5T+ 7 R cEs
a 18 31 ARCL IND Y 53¢LEL 94
1+ 2 CFaees 54 -#er
33 A5 { S5 ARCL IND ¥
126061 85 3 e 56 ASHF
13 ags 35 ROL L 57 6570 T
36 FSOC 89 58 *xn
37 610 8t 59 QRCL T
15eLEL 8% 38 (Y7 68 “Fesseer
16 %EQ "ACHPT 39 RTH §1 ASTO [
17 Bt 49 ¥=y? 62 “ko-
18 Rt 41 €10 83 63 RCL [
19 T5E ¥ 64 FSIC B9
20 G0 8 42eLBL 87 §5 G0 a4
21 LASTY 43 FS7C 19 86 K317
2 E-3 44 RN 67 GT0 82
23 + 68 LEND.

LINE BY LINE ANALYSIS OF

The byte manipulation undertaken by the routine at

LBL 14 left-justifies shorter strings in the register,
else leading null bytes would result in shorter
strings being alphabetized ahead of Tonger strings
even if their first character was high~r. The left-
justification is cleverly achieved by lines 158-160.
The alpha register was first cleared to nulls at 1ine
121. Line 158 then pushes even a one-character string
into the sixth position from the right, by appending
five nulls. ASTO L then stores six alpha bytes into
the L register, beginning with the left-most character
in the alpha register -- that is, with the first
character of the original string. In the case of a
one-character string, for example, ASTO L places that
one character followed by the five appended null bytes
into the L register. Finally, ARCL L appends the
resulting six-character string back onto the right end
of the alpha register, whence it is pushed five places
to the left by Tine 161.

The second LBL 14 at line 167 then obliterates the
trailing two bytes of the string by storing 0 in the M
register, pushes the string the rest of the way into N,
and recalls it into X. At this point, the first four

PP C ROM USERS MANUAL

1304.5 1,304.5 3rd value into
XEQ 1,304.5 print buffer
ENG O 1. 03 4th display mode
CF29 1. 03 and commas off
3 STO 06 3. 00 4th skip index
3 EEX 6 CHS 3. -06 4th value into
XEQ 3. -06 print buffer
PRBUF 3. -06 Prints last line

The above keystroke sequence would print the first line of
table 1. To print the other lines of the table, one would
follow the sequence for the first line, except to substitute
the line 2 values 3.26, 8, 6814.3 and 1 EEX +30 for line 1
values 3.21, 8, 1304.5 and 3 EEX -6, then line 3 values, and
finally the last set of values.

.21 2 1,384.5 3.-686
43.26 8 6,814.3 1.+30
8.56 18 1,313.1 6.-8%
618.18 1 4.441.% 3.-12

MORE EXAMPLES OF 43

Example 2. Print the information in table 3 on the 82143A
printer using the EE@ routine:

ROM PERIPHERAL ROUTINES:

NAME BYTES DEVICE SIZE
45 PRINTER 0
1] 40 PRINTER 6
[Ha] 50 PRINTER 6
60 PRINTER 7
(4] 337 WAND 19
(e VN WP 596 PRINTER 35

Table 3. Information to be printed using the @ routine
for example 2

Here is a case where we must have both ALPHA and numeric
columns in the same printed lines. The length of the ALPHA
information is not consistent down the two ALPHA columns,
so there should be a way that the 41C can know how to left
justify the ALPHA entries. Below is a routine, written by
Ron Yankowski (2980) which left justifies ALPHA entries.

ALPHA Column Print Formatting: This routine will left-
justify data in the ALPHA register and accumulate it into the
print buffer. If the information is shorter than a user
designated length, then spaces will be added to fill the
remaining columns. If the ALPHA is too long, the string will
be truncated at the designated length. The width may be
from | to 18 characters. The instructions are listed below:

Keystrokes Display Result
N N Enter maximum column
STO 07 N width (18 or less)
ALPHA (text) (text) Key the text into the
ALPHA ALPHA register
XEQ ACP (text) Text is added to the print

buffer left justified

PP C ROM USERS MANUAL

The column width value in register 07 remains unchanged
after executing ACP, so it does not need to be reloaded if the
same column is being left justified repeatedly. The listing of
ACP is below:

APPLICATION PROGRAM FOR: E

Bi+LBL "RCP"
82 6

83 RCL &7
#4 “F “
B3 #{=Y?

86 G10 14

7 RCL Y

1 to 6 char's long

89 AT 2
18 ASHF
11 SF 18
2t
13 %¢=y7
14 GT0 14
15 RCL ¥
1 -
17 RSTO T
15 ASHF
19 SF 89
2% -t .
21+LBL 14
23 ASTO T
24 CLA
5 8387
26 ¥EQ 13
27 MRCL T
28 ASTO ¥
29 LASTX
30 CLA
31 %EQ 13
32 ARCL ¥
33 ASHF
34 8570 %
35 (LA
36 FS7C 19
37 ARCL 2
38 FS7C 89
39 ARCL T
48 ARCL %
41 ACH
42 RTH
43+LBL 13
44 -
45 DSE X
46 010 13
47 END

BAR CODE ON PAGE 479

7 to 12 char's long

Greater than 12
characters long

Restoring ALPHA
register

Append X no. of
blanks onto string

Routine ACP uses R07 and flags 10 and 09 as well as the
stack. It leaves ALPHA intact for later use.

Returning to example 2, we nay now use the ACP routine to
create both of the ALPHA columns in the example. Use the
column width values of 5 and 7 for ALPHA columns | and 2
respectively. The first numeric column is FIX 0 with no
commas and 3 maximum digits (skip index = 2 from table 2),
and the second numeric column is FIX 0 with 2 maximum
digits left of the decimal point. However this second numeric
column is an extra 2 characters to the right of the previous
one, allowing a position for the sign. Therefore, use 2+2 or 4
digits, yielding a skip index of 3 from table 2. The resulting
keystroke sequence is:

99

KEYSTROKES DISPLAY RESULT
ALPHA ROM (space)
PERIPHERAL (space
ROUTINES: ALPHA (text) Enter header
XEQ PRA (text) Print line
XEQ ADV Skip a line
ALPHA (space) NAME
(space) BYTES (space
SIZE {(space) DEVICE
ALPHA (text) Header
XEQ PRA (text) Print header
FIX 0 Set display mode
5 STO 07 5 Ist ALPHA column
ALPHA LG ALPHA LG ALPHA entry
XEQ ACP LG Left justifies
2 STO 06 2 Ist skip index
45 XEQ 45 Add to buffer
1 SKPCHR 1 Skip a space
7 STO 07 7 2nd ALPHA column
ALPHA PRINTER
ALPHA (text) ALPHA entry
XEQ ACP (text) Left justifies
4 STO 06 4 2nd skip index
0 XEQ 3 0 Add to buffer
XEQ PRBUF (text) Prints buffer
5STO 07 5 1st ALPHA column
ALPHA HS ALPHA HS ALPHA entry
XEQ ACP HS Left justifies
2 STO 06 2 Ist skip index
40 XEQ 3 40 Add to buffer
7 STO 07 7 2nd ALPHA column
ALPHA PRINTER
ALPHA (text) ALPHA entry
XEQ ACP (text) Left justifies
4 STO 06 4 2nd skip index
6 XEQ 3 6 Add to buffer
XEQ PRBUF 6 Prints buffer
etc.

(Continues for lines 3 to 6 similarly.)

The Printer Preparation Form.

In order to better prepare printer outputs for column
alignment, a form has been provided which allows composition
of the full 24-character lines for determination of K@ skip
indexes. Along with the printer columns, the format of each
column may be included, for easier programming. Remember
that for columns which will be aligned by &3, an extra space
must be allotted for a sign position, whether one is present or
not. This is because A uses function ACX, which leaves
room for the sign before the number. Since one would usually
leave a space between columns anyway, this is not a problem.
However, if an extra space is inserted, then 2 spaces will
appear if all the numbers in the column are positive.

100

Two copies of the preparation form are included. The first is
filled out for the two previous examples. The other is blank,
and should be photocopied for use in preparing future outputs
requiring I8 .

Automatic Multiple Numeric Column Formatting:

Routine CPP is one which automates the formatting of
multiple columns of all-numeric information. It can also be
used before or after ALPHA columns have been placed in the
buffer, leaving a string of consecutive numeric columns to be
added. The instructions are shown below:

Load the data registers with the information required for the
first line of the table:

RO8 = bbb.eee where bbb=first reg. of data
eeezlast reg. of data
R{bbb) = Ist column numeric value

R(bbb+1) = +a.bc where a = skip index for Ist column

b: 1=FIX, 2=SCI, 3=ENG

¢ = # display digits (0 to 9)

+a.bc = CF29 {no commas), -a.bc = SF29 (commas)

R(bbb+2) = 2nd column value
R(bbb+3) = +a.bc for second column

R(eee) = nth column value
R(eee+!) = +a.bc for nth column

Place any ALPHA information in the buffer, then XEQ CPP.
Now add trailing ALPHA if any, and PRBUF and the line is
printed. The procedure for each successive line of the printed
table is: Accumulate columns into the buffer, load data
registers, XEQ CPP for the string of consecutive numeric
columns, add any other columns to the buffer, then PRBUF.
The listing of CPP is below:

APPLICATION PROGRAM FOR:

g1eLBL “CPP"
8z CF 29
83 2 E-5
84 5T+ 83
85+LBL B8
86 RCL 88
87 1
B2 +
89 RCL IHD X
18 ¥<@?

11 8F 29

12 ENTERY

13 INT

14 ABS

15 570 86
16 RDH

7 FRC

18 18

19 *
20 ENTER?

21 IHT

22 KOV

23 FRC

24 18

25 *

26 X

27 1

28 =17

29 FIX IND 2 Testing for
38 RDM specified
N2 display mode
32 ¥=Y?

I3 SCIIND 2
34 RN

Set counter in R0O8

Recall next registen

BAR CODE ON PAGE 479

Test for commas

Store skip index

PP C ROM USERS MANUAL

display should show 6 after entering the first new
data palr below.

Do: See:
4 CHS ENTERY 0.713 [T+] 6.0000
2.5 ENTERY 10.93 [£+] 7.0000
6 ENTERY 47.53 [Z+] 8.0000
10 ENTERY 254,95 [Z+] 9.0000

For a new linear fit key 1 [SOLVE TYPE jl.
returned Is:

The data

Z: 0.765698771 = r

Y: 0.978958100 = a

X: 15,33154618 = b
For a new exponential fit key 2 [SOLVE TYPE JjJ. The
data returned lis:

Z: 0.993615263 = r

Y: 3.825595338 = a

X: 0.419945301 = b
Now choosing the best r we see that the new data
reflects a change In the curve type. Since the
exponentlal parameters should still be In the machine
we can predict y when x = -10. Key 10 CHS L y 3, y =
0.057398396.

Example 4: Fit the best curve to the following set of
data points.
(1, 2), (2, 2.828), (3, 3.464), (4, 4), (5, 4.472),
(6, 4.899), (7, 5.292), (8, 5.657), (9, 6).

In this example the x-coordinates start counting from
1 and are consecutive integers. So we need only input
the y-coordinates, but they must be In the proper
order. The count in the display will serve as the
x=coordinates.

EEE_ See:
CINITIALIZE]D 1.0000
2[T+] 2.0000
2.828 [£+] 3.0000
3,464 [Z+] 4,0000
4 [z+] 5.0000
4,472 [I+] 6.0000
4,899 [Z+] 7.0000
5.292 [£+] 8.0000
5.657 [Z+] 9.0000
6 [L+] 10.0000

Since all the data are positive we may use the best
f1+ function to let the program find the best fit
among all 4 curve types. Press [SOLVE BEST]. The
contents of the stack when the program stops are:

T: 0.999999994 = r
Z: 1.999855865 = a
Y: 0.500043886 = b

X: 4.000000000

best curve type

This Indicates a power curve (type 4) where the
equation is of the form:

0.50

y = (2.00)*x (values rounded to 2 piaces)

APPLICATION PROGRAM 1 FOR

Curve fit solutions are often more meaningful when the
points Input are also plotted, superimposed on the
plot of the "best fit" or selected equation type. The
CVPL program will function exactly as functions

112

and, after calculating the parameters a, b, r and rfz,
the program will stop with the prompt: "TO PLOT: R/S"
To plot the equation calculated with the polnts Input
superimposed, simply press the R/S key. Nothing else
need be done to obtain a plot. When accomplished in
this way, the default situation, all numbers will be
printed with 2 decimal places and the resulting plot
will contain 50 plotted points. The detalled
Instructions Include options to print other than 2
decimal places and to plot a smaller or greater number
of points., The same key captions used by are
used, plus the shifted keys b, ¢, and d for the
optional features indicated.

Note that thls program can also be used without the
printer and will function essentially the same as
but with the display labeling the points entered,
showing deletions indentifled as such, and labeling
the parameters calculated.

The plotting program takes Into account all
possibilities: duplicate, identical points; almost
Identical points that would plot as Identical; points
with ldentical x~values but with significantly
different y~values; Individual single points. Any
quantity of duplicate points can be handied. The
points are plotted with 4 plotting characters as
follows:

a. The equation of type J is plotted using a small
square dot (box). One equation point Is normally
plotted before the first Input polnt and after the
last polnt. |f the first Input polnt is close to
zero, it will be plotted first.

b. Individual single points are plotted with a large
X.

c. Two (or more) essentially Identical points are
plotted with a double X, two small x's, one above the
other.

d. Two (or more) points having essentlally the same
x-value but having different y-values are plotted with
an asterisk located where the largest of the point's
(based on x-value) plot should be. If desired the
other points not shown for this value of x could be
drawn In by hand or more points could be seiected for
the plot to separate very close x=-values.

To simplify the program and reduce the number of
registers required to store the data points, both the
x- and y-value of a point are stored in one reglster,
using a decima! point to separate them. This |imits
the magnitude and sign of the numbers to the
following: data points must be nonzero, posltive
numbers and less than 1000 in magnitude. |f you need
to deal with larger numbers, shift alt decimal points
before entering them. Note: If the program is used
without the printer, or by pressing "NO PLOT" with a
printer, none of these restrictions apply and the
“data error" message will not be encountered if you
try to use negative or large numbers. See the valld
use of negative entries In the Instructions,
however .

This program was developed originally as a
modification to Gary Tenzer's curve fit program,

"CF |T" in t+he PPC JOURNAL, V7N5P46, and was to be
published 1n the JOURNAL as a stand alone program.
The program was 691 steps in length (1414) bytes.
With the routine (plus others such as the
sorting routine) the plotting routine was completely
re-written to utilize as many of the ROM routines as

PP C ROM USERS MANUAL

possible and the end result is presented below,
significantly improved over my ear!ler version, with
439 steps and using 865 bytes (8 tracks on 4 cards).
Most of Gary's displays and labeling are used in this
program which partlally account for the length of the
program. | fee! these extras are desirable,
especially when using a printer.

Example 1 for CVPL: Use the same problem as Example

1 for . Find the |Inear equation for the

following data: (1.1, 5.2), (4.5, 12.6), (8.0, 20.0),
(10.0, 23.0), (15.6, 34.0).

Then predict y when x=20 and predict x when y=25,

Plug the in and using the card reader,
read In all 8 sides of the program CVPL. Put the
calculator In USER mode. Connect printer and put iIn
MAN mode. Press Initialize (shift E) and the display
will tell you to SIZE 038 plus the number of points
you plan to input. For thls example SIZE 043 (=38 + 5
points). Press R/S to complete intiallzation of the
program. See 1.00 in the display asking for the flrst
point's values. First however, we will select 4
decimal places In the printout so key in 4 and press
shift C (for the number of decimal places). See 1.00
agaln asking for the first polnt's values. Key In
each polnt exactiy as in the Instructions by

keying In X ENTERY Y

[Z+]. Keyboard functions assigned to keys are shown
In square braces [[] below.

Do: See:

[('nitialize] "S|ZE=38+ PTS"

XEQ "SIZE"™ 043 0.00 (slze=38+5)

R/S 1.00 TONE 9

4 [No.Dec.Piaces] 1.00 TONE 9

1.1 eNTERY 5.2 [Z+] X1=1.0000, Y1=5.2000
2.0000 TONE 9
X2=4.5000, Y2=12.6000
3.0000 TONE 9
X3=8.0000, Y3=20.0000
4.0000 TONE 9
X4=10.0000, Y4=23.0000
5.0000 TONE 9
X5=15.6000, Y5=34.0000
6.0000 TONE 9

4.5 ENTERY 12.6 [£+]

8.0 ENTERY 20.0 [£+]
10.0 ENTERY 23.0 [T +]

15.6 ENTERY 34.0 [Z+]

Since we want a |inear curve, we key in 1 and push
[SOLVE TYPE J]. When execution stops the following
will be printed.

In the calculator display see “TO PLOT: R/S"

If we now press R/S the plot will consist of 50
points. To select plot of 25 points, key in 25 and
press [No.Pts.!In Plot], the shifted B key. The same
display will appear in the calculator (nothing is
printed). Before plotting, we will first find the
predicted y and x values asked for. Key In 20 and

push [§ J, the C key. Printed (and displayed) see:

"I{F X = 20.0000, Y = 42.9401"
Key in 25 and push [x 1, the D key and see:

"IF Y = 25,0000, X = 10.9028"

PP C ROM USERS MANUAL

Now press R/S to plot the data. When the plotting iIs
complete, walt for the BEEP before stopping the
calculator,

The total time for this example, except for sizing the
calculator was 4 min. and 25 sec. The primary
consumer of time Is normally the plotting, so the
number of points selected greatly effects execution
time. Often a short plot of 15 points Is adequate.

After the BEEP has sounded the completion of the plot
you can find other predicted values of x or y, select
a different curve type, add points or delete points
and see the effect on the new plot.

No. POINTS No. DECIMAL

- IN PLOT PLACES NO PLOT INITIAL,
SOLVE A A SOLVE
Z + TYPE Y X BEST
J TYPE
INSTRUCT IONS INPUT KEYS OUTPUT
DATA
1. Load cards,slides 0.00
1-8 In USER mode
2. Initialize shift E "SIZE=38+PTS"
3. If SIZE inadequate XEQ "SIZE"

Otherwise go to step 4

4. Complete Initialization R/S TONE 9 1,00
5. Optional - To print

without plotting (Including

negative or larger numbers)

shift D 1.00

(Note: for new problem
with plotting, must
CF 24)

6. Optional - Select no.
of decimal places to
be printed. Default is
2. Or key Inn n shift+ C

TONE 9 1.00

7. Enter data point X
enTer?
Y

CZ+]

Note: where x-values
are same as displayed jEm—m—
of next point, input
oniy Y and press A # next point
8. If point input is correct go

to step 9. If Incorrect,

press R/S to delete the polnt

Just entered.

R/S mxxDELETE**n
To delete any previously

entered point, re-enter Yomm e
exact X & Y values and TONE 9
press # next point

113

[z-] (same)
9. For each new point wait
for TONE 9 and repeat (same as 7)
step 7.
Note: Program wiil accept only positive values of X

and Y In the range .01-999.99. For numbers outside of
range shift decimal before entering. For a zero value

use ,01. M"DATA ERROR" message will be displayed after
an invalld entry. This note only appllies with printer
connected. Any values for X and Y will be accepted

wlthout a printer or after pressing "NO PLOT" with a
printer. See instructlons regarding acceptable
negative numbers.

10. Calcuiate a,b,r,rz:

a.For "best fif" based on

largest ABS value of r: E (typlical)
"1:LIN"
(Note: r & r2 {PAESRS |
display correctly Mh=ee wmmtt
only on prinfer. Final NprSee et
captlion not shown 1f et 2zem et

printer not connected) "TO PLOT: R/S"

b.For selected type "j" curve

Case:
1: Linear 18
2: Exponential 2B (same)
3: Logarithmic 3B
4: Power 4B

NOTE: Step 10 must be accomplished after all data
points have been entered before steps 11, 12, or 13
may be attempted.

11. Optional: select number of
points to be plotted {(polints
input plus equation polints).

a. Default value = 50 points
no action required.
b. Enter # of desired polnts

n shift B "TO PLOT: R/S"
NIF X = = mmmet
"

12, Project y given x x C

MY = e m—em

"TQ PLOT: R/S"

ME Y = em et

13. Project x given y y D

NY = —— '____"

"TO PLOT: R/S"

14. To add additional polnts to
same data, go to step 7.

15. Plot curve and data points R/S Cugve
an
The following symbols are used: points
plotted

points on curve type "j"

data polnts, no duplicate X or Y value
2 or more data points with the same X
and Y values within the plotting
tolerance.

2 or more data points with same X-value
but different Y-values. Only one of
the polints 1s plotted.

wom

LS

BEEP sounds
after plot
Is complete

114

Note: after plotting walt for BEEP. Then you can add
more points, delete points, predict new X or Y values,
plot with a different number of points, calculate
curve parameters with a different number of decimal
pltaces displayed or select a different curve type by
going back to the above Instructions.

Example 2 for CVPL: This example will demonstrate
all four plotting characters described above and show
how deletions and points can be added. The initial
points are the following:

(70.00, 11.10), (10,40, 71.86), (22.30, 38.71),
(10.50, 73.12), (40,90, 21.73), (4.20, 85.20)
(100.30, 1.34), (41.30, 34.70)

Print with 4 decimal places and solve for the best fit
curve. Then find the predicted value of y for X=35
and the predicted value of X for Y=100. Then plot
using 30 points in the plot. Size for one additlonal
point to be added. In the following the data iIn
parentheses are not printed.

Do: See:

Cinttialize]

XEQ "SIZE" 047

R/S to complete
Inltlalization

4 [# dec, places]

("S|ZE=38+PTS")
(0.00)

(1.00 TONE 9)
(1.00 TONE 9)

70 ENTERY 11,1 [E+] "X1=70.0000"
"Y1=11,1000"
(2.0000 TONE 9)
10.4 ENTER} 71.86 [Z+] "X2=10.4000"
"y2=71.8600"
(3.0000 TONE 9)
[£+] "X3=22.3000"
"y3=38,7100"
(4.0000 TONE 9)
10.5 ENTER} 73.12 [£ +] "X4=10.5000"
"Y4=73,1200"
(5.0000 TONE 9)
40.9 eNTERY 21.63 [£+] "X5=40.9000"
ny5=21,6300"
(6.0000 TONE 9)

22.3 eNTER} 38.71

Y5 was entered In ERROR so to delete:
R/S "DELETE"
"X=40,9000"
"y=21,6300"
(5.0000 TONE 9)

Now continue entering the correct values
40.9 ENTERY 21.73 [Z+] "X5=40.9000"
"Yy5=21,7300"
(6.0000 TONE 9)
[£+] "X6=4,2000%
"Y6=85,2000"
(7.0000 TONE 9)
100.3 ENTER* 1.34 [£+] "X7=100.3000"
"y7=1.3400"
(8.0000 TONE 9)
[+] "x8=41.3000"
"Y8=34,7000"
(9.0000 TONE 9)
Now push E for [SOLVE BEST]
"3: LOG"
"a=132.4456"
"b=-28.2822"
"r=-0,9812"
nrd2=0.9627"
("TO PLOT: R/S™)

4.2 enTert 85.2

41.3 eNTER} 34.7

PP C ROM USERS MANUAL

Find the predicted values:

350y] "[F X=35,0000"
) ny=31,8925"
100 [x] ("TO PLOT: R/S")

"|F Y=100.0000"
"X=3.1494"
("TO PLOT: R/S™)

Now select a 30 point plot:
("TO PLOT: R/S™)

30 [# polints In plot]
R/S to plot the data

After the BEEP sounds and the plotting is complete,
add an additional polnt (71.1, 11.0), almost the same
as polnt 1, and delete what appears to be the worst
fitting point (22,30, 38.71).

71.1 enTERY 11.0 [Z+] "X9=71.1000"
"Y9=11.0000"
(10.0000 TONE 9)
22.30 ENTER} 38.71 [z-]
*% DELETE **
nX=22.3000"
ny=38.7100"
(10.0000 TONE 9)

Now again solve for the best fit.

"3 LOG"
"a=133,8645"
"h=-28.5171"
"r=-0,9858"
nr$2=0.9719"
("TO PLOT: R/S™)

[SOLVE BEST]

We have slightly Improved the fit to a log curve and
the parameters a and b have of course changed. Now
make a new plot by pressing R/S. After replotting the
data, again find the predicted values of y If x=35 and
x 1f y=100.

350y] "[F X=35.0000"
\ ny=32,4761"
100 [% 1] "IF Y=100.0000"
nxX=3,2789"

Looking at the plot, note the value of having the
first input point be preceded by a point on the LOG
curve. Note the double x at x=11 representing 2
almost identical polnts X2 and X4. The asterisk at
x=41 means 2 or more points have essentlally the same
x=-value but very different y-vatues. They are X5 and
X8 and because X8 has a larger x-value than X5, the
asterisk Is plotted for Y8.

LINE BY LINE ANALYSIS OF CVPL

Lines 02-11 set up gefault conditions for 50 point
plot and 2 decimal place printout. Lines 14-21
display next point to be Input. Lines 22-30 are the
delete routine using R/S. Lines 31-70 are the delete
routine for later deletion of a point which first
combines x and y In a single number as YYYYY, XXXXX
after rounding to 2 decimal places, then searches
stored points registers for the same point. When the
point Is found a copy of the last point stored is made
in that register. Flag FO5 prevents display of point
number for a delete. Input of new points are added to
statistical registers (71-118), then x and y
values are checked for sign and magnitude and rounded

P PC ROM USERS MANUAL

to Z decimal places and stored In YYYYY.XXXXX format.
Lines 86-186 recal! full numbers (not rounded) from
@3 for printing to number of decimal places selected
and printout Is formatted for input points, deleted x
and y, and calculated parameters a, b, r, and rt2z.
Lines 187-192 display plotting prompt "TO PLOT: R/S"
only If printer connected, so program can be used
without printer. Lines 193-200 store the barcoded
Input plotting symbols. Lines 201-217 exchange
registers RO7-11 with R33-37 using A so data
needed for statistical registers will be saved
for later use, not lost when "PRPLOT" in printer ROM
uses registers RO7-11. Lines 218-236 use 3 +o
find maximum and minimum y values of tnput points,
then Increase maximum and decrease minimum y by 25% of
range to allow for equation polnts to be plotted
outside of range of input points. Lines 237-241 make
Ymin=0 If this value would have become negative after
the 25% adjustment. These lines also determine the
y-piotting increment used to see If 2 points have
essentially same y-value. Llnes 244-258 store "CRV"
as the curve name for PRPLOT. The next function
performed is a reverse of the left and right sides of
the decimal point. Points are now stored as
XXXXX.YYYYY (244) and B s used to sort the stored
points to find maximum and minimum x and for faster
plotting (246). Also calculated Is the x-plotting
Increment using the range of x-values and number of
points wanted In plot. If the x=minimum Is smaller
than plotting Increment, |ines 259-266 make the 1st
point plotted the smallest x-value of the polnts;
otherwise the x-minimum is set so one equation polnt
will be plotted first. X-max made large enough that
PRPLOT will never stop plot so one equation polnt can
be plotted after largest x-values of input points
(267-275). Stop routine initlated when one equation
point beyond last point has been plotted. Lines
277-292 restore the statistical reglsters for by
XEQ A , then reverse stored points to original
YYYYY.XXXXX format (284). Lines 293-296 reset the
counter and "BEEP", ready for changes to data, etc.
Flags 02 and 00 are used to determine if plotting is
complete, |ines 329-330, Routine to check stored
points to see If they should be plotted at this
x~value (297-323), checks +50% of plotting Increment
from this plotting point. If flag F03 Is set (324) at
least one point to be plotted here, and stili checking
for others., Piotting symbo! to be used selected
(340-360) and stored in RO3 for "PRPLOT" to use for
plotting. Where 2 input polnts have essentlially the
same x-value, checks to see if their y-values are also
essentlally the same (361-378). Flag F04 is set when
2 polnts have the same y-values, FO1 s set when they
have significantiy different y-values (375-377).
Plotting routines for the 4 curve types are In steps
379-399. The routine to reverse the left and right
sides of the stored points (from the decimal point) Is
LBL 16, steps 400-419, Storage routines for optional
selection of number of points In plot and number of
decimal places in printout are in steps 425-435,
NOTE: The BLSPEC numbers for the plotting characters,
If barcodes are not used, are:

box: 0, O, 28, 28, 28, 0, O
large X: 0, 34, 20, 8, 20, 34, 0
double x: 0, 0, 73, 54, 54, 73, 0
asterisk: 0, 20, 8, 62, 8, 20, 0

The ROM routine can also be used to create the
equivalent of these BLDSPEC characters.

115

BAR CODE ON PAGE 481

APPLICATION PROGRAM FOR: m

BLoLBL *CYPL® 74 RIN 147 2 228 * 293eL8L 11 366 156 30
G24LBL ¢ 75 ¥ROM -C¥” 148 GTO 11 221 870 @8 294 FS? 82 367 RCL IND 30
83 4968 76 ROL 88 149¢LBL E 222 XN 295 GT0 88 368 FRC
B4 37O 29 77 ¥EG 14 158 5 223 .81 296 STD 269 -

83 2 781 E3 151+LBL 11 224 * 297¢LBL 86 78 1 E3
#6 &TD 38 79/ 152 FIX IND 38 225 570 ot 298 RCL IND 38 70 %

87 . 38 5T0 IHD 38 152 SF 12 226 - 299 XEG 68 372 ARS

29 PROMPT 32 XE@ 14 155 RBM 228 .25 I8l s 374 156 28
19 STO 86 21E 156 XROM -CV* 229 382 RCL [75 SF @4
11 XROM =C¥~ 54 % 157 *1: LIN® 238 ST+ 81 3983 + 76 WY?
12 39.999 85 5T+ IND 38 158 ASTH 81 231 §T- 88 384 Y7 27 SF 81
13 570 38 36+LEL 89 159 =2: EXP" 232 RCL @8 385 GT0 89 278 CTO 86
{44LBL 12 37 SF 12 168 A5TC 82 233 ¥@? 386 F5? 83 I794LBL 82
15 RCL 18 98 FIX # 161 =3: LOG" 234 8 387 GTO 18 388 RCL 34
161 89 "x° 162 ASTO 63 235 570 @6 388 GT0 68 291 *

i7 + 98 FC7 85 163 =4: PWR" 236 570 A4 1a9+1BL 88 387 £t

18 CLR 91 ARCL 18 164 ASTO B4 237 RCL 61 318 INT 383 RCL 35
19 ARCL % 92 FIx IND 38 163 CLA 238 - i1 E2 194 *

28 TOME 9 93 = 166 ARCL IND 87 239 62 32 7 385 RTH

21 PROMPTY 94 ARCL A8 167 AVIEN 248 / I3 RCL 18 3864LBL 03
22 DSE 38 95 AVIENW 168 PSE 241 sT0 32 314 RTH 287 LN

23 SIN 96 PSE 169 =a=" 242 =CRY" 319¢LBL 89 188¢LBL 81
24 SF 18 97 FIx 8 178 ARCL 89 243 R8T 11 316 XY 389 RCL 34
25 6 i 171 AYIEK 244 JEQ 16 M7 RCLE 798 *

26 570 86 99 FC7 83 172 PSE 245 RCL 25 318 RCL 18 791 REL 35
27 RCL 68 180 ARCL 18 71 *p=" 246 ¥ROM =52- 349 2 92 +

28 RCL 69 181 FI% IND 38 174 ARCL 88 247 510 38 328 / 393 RTN

29 XROW "CY- 192 =" 179 AVIEW 248 RCL 24 321 - 394¢LBL 94
31eLBL a 184 AVIEN FiEl 298 - 323 G610 U 396 Y1

32 SF 18 185 PSE 178 ARCL 18 251 RCL IND % 324 F5? €3 397 RCL 35
3346 196 AV 179 AVIEN 252 INT 329 GTO 18 298 *

34 ST0 86 187 FC?C 85 188 PSE 253 RCL 39 326¢LBL 88 399 RTH

35 RN 108 156 38 181 =rt2=" 254 INT 327 RCL 3 4904LBL 16
36 XROM -C¥" 189 G610 12 182 RCL 19 293 - 328 STO 83 491 RCL 25
37 RCL 83 119¢LBL 14 183 x12 256 RCL 29 329 FS7C B2 482 ST0 38
391 E3 112 999.99 185 AYIEN 258 570 18 INRCLE 494 RCL IND 39
48 7 113 XY 186 ADY 259 RCL 39 332 GTO IND 33 495 ST0 Z
41 STD 68 {14 RND {87+LBL 67 268 ¥ED 98 233+LBL 11 486 FRC

42 RCL 89 115 8?7 188 FL? 55 261 XY 334 FS5? 83 487 1 £S5
42 RND 116 &3Y? 189 RTH 262 ¥#Y? 335 GTO 68 408 %

44 1 E2 117 #EQ 17 198 =T0 PLOT: R/S” 263 B¥Y? 336 SF 82 409 STO Y
49 % 118 RTH 191 CF 12 204 - 337 1SG 38 418 RCL 2
46 ST+ @8 {19¢LBL C 192 PROMPT 263 ABS 338 GT0 86 411 INT

47 RCL 30 128 SF 83 192 “#4e" 266 570 08 339 SF 82 412 1 E5
48 1 {21¢LBL B 194 ASTD 26 267 RCL 24 J48¢1BL 18 413 /

49 - 122 FIX IND 38 195 “¢q " 268 1 3411 414 ST+ Y
51 39.999 124 570 28 197 -=0ABO+~ 278 RCL IND X 343 CF 83 416 ST0 IND 38
52 570 3@ 125 3 198 ASTO 28 271 #EQ 08 344 RCL 26 417 1SC 38
53+LBL 13 126 FC? 83 199 =exé" 272 3 345 FS2C 81 418 CTO 85
54 RCL IND 38 127 4 268 AST0 31 273 # + 346 GT0 1 419 RTN

56 %=Y? 129 RCL 28 282 ENTER? 275 §T0 89 348 FS7C 64 421 FC? 24
97 GT0 14 130 XROM "CY* 283 33.837 276 XROM -PRPLOTP" 349 GT0 15 422 FC? 55
58 I1SG 3@ 131 IF X== 204 XROM ~BE" 774LBL "CRY" 356 RCL 28 423 RTH

59 GT0 13 132 FC? 83 285 RCL 38 278 FC2C 88 351eLBL 15 424 0
68eLBL {1 133 =IF ¥=" 206 IHT 279 GT0 11 352 CF 64 425 7

&1 RCL IND 27 134 ARCL 28 287 STO Y 280 7.811 353 ST0 83 426+LBL b
62 STO IND 39 135 AVIEN 208 1 281 ENTER? 354 RCL IKD 38 497 1

63 RCL &7 136 PSE 209 - 282 33.837 355 FRC 428 -

64 STO 30 137 y=" 218 1 E-3 203 XROM “BE- 396 1 E3 429 169
63¢LBL 88 138 FC2C 63 21 % 284 %EB 16 357 % 430 *

66 SF 12 139 x=" 212 + 285 RCL 24 358 156G 39 431 5T0 29
67 &% DELETE #+- 148 ARCL X 213 570 24 286 INT 359 RTH 432 GT0 67
69 SF 85 142 PSE 215 39 288 + 361+LBL 88 434 570 38
78 GT0 89 143 ADY 216 + 289 ST0 340 362 1 435 CTO 12
71¢LBL A 144 GTO &7 217 ST0 25 298 FIX IND 38 363 ST- 38 4364LBL d
721 145¢LBL B 218 XRON ~BX" 291 BEEP 364 RCL IND 3@ 437 SF 24
73 STD 96 146 ENTER? 219 .81 292 STOP 365 FRC 438 .END.
116 PP C ROM USERS MANUAL

monthly basis and compute the equivalent monthly PMT.

Do:. See: Result:

e "pEN Clear, Discrete/End status
(PF=1 after clearing)

12 H 12,00 CF=12

10 A 10.00 n=10

10.5 B 10.50 NAR=10,58=%1

5029.71 CHS b -5,029.71 PMT=$5,029.71

c 29,595.88 PV=$29,595.88

12 1 12.00 PF=12, set monthly basis

10 a 120.00 n=120 (monthly)

D -399.35 PMT=$399.35 (monthly)

%522212Ll§i_ Perpetulty - Continuous Compounding

f you can purchase a single payment annulty with an
Inttial Investment of $60,000 that wlll be Invested at
15% NAR compounded continuously, what Is the maximum
monthly return you can receive without reducing the
$60,000 principal? |f the Interest rate Is constant
and the principal Is not disturbed the payments can go
on Indefinitely (a perpetuity). Note that the term
"'n" of a perpetuity Is Immaterial., it can be any
non-zero value. Set status to "CE".

Do: See: Result:

e “DE" Clear, Dlscrete/End status
(CF=1 after clearing)

c "cg"® Contlnuous/End status

12 A 12.00 n=12

1 12.00 PF=12

15 B 15.00 NAR=15%=%1

60000 E 60,000.00 Fv=$60,000.00

CHS 1 X C -60,000.00 Data entry flag is set so
PV is stored as $60,000.00

D 754.71 PMT=$754.71

SUPPORT | VE PROGRAMS FOR N

There are two optional routines provided below to
extend the capabllity of the ROM routine W@B . These
routines are not located In the ROM, and must be
loaded Into RAM memory for thelr execution. They are
named LPAS and FAST.

1. LBL LPAS

LBL LPAS "Loan Payments and Amortlzation Schedule" is
really a full program In Its own right, although it
does use ROM routines W, , and 3. LPAS
extends the capabilities of T to accommodate
"shifted" payment situations, when the first periodic
payment does not fall at the beginning (BEGIN) or the
end (END) of the first perlod, but at any date after
the effective date. LPAS also provides an
amortlzation schedule as an option.

2. LBL FAST - Reducing Interest Solution Time

LBL FAST Is an optional routine used when solving for
interest. Its purpose Is to provide an initial
starting guess for the Interest-solving loop which is
closer to the exact solution than that provided by LBL
IEB initial guess. The result Is that interest
solving execution time Is usually shorter.

Don Dewey (5148) produced both supporting programs.

152

APPLICATION PROGRAM 1 FOR B
LPAS - Loan Payments and Amortization Schedule

The W@ program, |like most financial programs and
calculators, assumes that the first perlodic payment
occurs on either the flrst or last day of the payment
period as specified by the beginning of period/end of
period switch or toggle. Many financial agreements do
not follow this convention. An agreement may call for
the regular perlodic payments to start ear|ler or
later in order to provide a better match to other cash
flow considerations of the borrower or lender. These
agreements with "shifted" initlal payment dates can be
handled by conventional flnanclal programs by
computing an effective present value (PV) that
compensates for the difference In Interest accrued
during the irreguiar first payment period. This
computation becomes more complex when the compounding
and payment frequencies (CF and PF) are unequal.

Shifting the inltial payment date forces a change In
the number or amount of the periodic payments or in
the amount of the final or balloon payment. However,
the participants to an agreement may want to specify
the number and/or amount of the regular payments, and
adjust the final payment to complete the amortization.
Even wlthout a shifted initlal payment date or other
restrictions the regular periodic payments seldom
precisely complete the amortization and the final
payment must be adjusted to accomplish this.

For the uninttiated or Infrequent user of financial
programs, the accomodation of a shifted first payment
date and/or the computation of the correct final
payment amount can cause problems. The following
program easily handles these cases and also takes the
drudgery out of computing an amortization schedule.

The LPAS program uses the WEB program and the
and routines In the MEIIITMto expand the
capabilities of the WM program to accomodate
"shifted" initlal payment dates and to compute the
number and amount of perlodic payments, and the final
payment required to amortize a loan or fto accumuiate a
speciflic future value. The iInformation needed to
prepare a loan amortization schedule may also be
computed on an optlional basis. The extensive
capabl!itles of the W@ program are used In thelr
normal manner to deflne the parameters of a specific
problem and to develop the initial solution. Two
additional input parameters are provided; the
effective date (ED) and the initial payment date (IP).
These two dates define the length of the flrst payment
period which need not be equal to the normal payment
period Implled by the payment frequency value (PF).
The Initial payment date (IP) also establishes the
number of payments that wiil occur in the first year.
The program computes the regular periodic payment and
the final payment required to amortize a loan or to
accumulate a specified future value over a specified
term (n), or the number of payments and the final
payment necessary to amortize a loan or to accumulate
a specified future value with a specified perlodic
payment amount.

Conventional loans, mortgages with or without balloon
payments, and Canadian or European mortgages are all
acceptable to the LPAS program. Cases with payment
frequencies of semi-monthly (PF=24) or less, use a 30
day month convention for determining the number of
days of shift In the flrst payment date and the number
of payments occurring in the first year. For payment

PP C ROM USERS MANUAL

frequencies greater than semi~ monthly (l.e., daily,
weekly, or bi-weekly) the acutal number of calendar
days is used.

LPAS Program -~ Operation

The LPAS program computes the regular perliodic payment
and the final payment for both present value (PV¥) and
future value (FV¥) cases. PV¥* cases involve periodic
payments that reduce or amortize a present value. FV¥
cases Involve appreciation or accumulation to a future
value. The amortization schedule portion of the
program supports PV¥ cases only. The LPAS program can
be used with or without a printer (CF21).

The WER program is accessed and used to set the
status (CB, CE, DB, DE), the compounding frequency
(CF), the payment frequency (PF), the standard
financial values (n, %i, PV, PMT, FV) and to solve for
any missing financial value. Note: The WEM program
can be accessed by pressing "J" when the LPAS program
has control. After entering the normal flnanclal
program data, the effective date of the financial
agreement (ED) and the date of the Initial payment
(IP) are entered into the X and Y registers in the
form MM.DDYYYY (Y=ED, X=IP). The IP date must not be
earller than the ED date.

The LPAS program [s then executed. For easy access
the LPAS program should be assigned to a key. The
LPAS program was assigned to the X<>Y (F) key in the
keystroke solutions In the example programs below.

The program computes the regular perlodic payment
required to maintain the specified interest rate. The
computation compensates for any fractional portion of
the term and for any deviation from the normal initlal
payment date. When the program first stops, the
computed payment (rounded to two decimal places) is in
the PMT register (R04) and Is displayed in the X
register.

First Stop - The computed payment may be accepted, or
a modifled payment may be entered and substituted by
pressing key "D". To continue the computation, select
one of the followlng two options:

1. By pressing "H" the amortizatlion period Is |imlted
to the Integer portion of the term (n) and the flnal
or balloon payment Is adjusted to compiete the
amortization.

2. By pressing ™J" the term (n) Is recomputed to
accompl ish the amortization with the specified
periodic payment with a minimum adjustment to the
final or balloon payment.

The amortization cholce restarts the program and the
number of periodic payments and the amount of the
flnal payment are computed. At the second stop the
stack contains:

number of payments occuring In first year
number of regular periodic payments
amount of the regular periodic payment
amount of the comblined final and bal loon
payments

X <N -

Tt ouon

Second Stop - An amortization schedule may be computed
by pressing "E" (for PV¥ cases only) or control may be
returned to the [EB program by pressing "J".

If an amortization schedule Is computed and a printer
Is not avallable (FC?21) the program will stop after

computing the values for each year. At each stop the
stack will contain:

PPC ROM

cumulative Interest paid

balance outstanding after last PMT for year
interest pald during the year

year (YY)

X <N—-

To compute the amortization data for each succeeding
year press R/S. Completion of the amortization is
Indicated by ** in the display. The total Interest
pald is In the Y register at this final stop.

After completion of the amortization, control may be
returned to the WEWM program by pressing "J",

Keyboard Functions: (LPAS Program)

PMT AMORT,
LPAS OPT. | OPT. 2 FI
Key Function (Flag/Reg)
D Enter revised periodic payment "PMT" (R04)

E Compute amortization data (PV* case only) (R0O0-R13)
F Enter ED and IP dates and compute periodic PMT
H Select Option 1 and compute final PMT (F07)
I Select Option 2 and compute term n and fina! PMT
J Transfer to EEM program and display status

R/S Compute amortization data for next year

Program requirements and |Imitations. [, A, GA
are the QEITEIYEE required routines., LPAS {s 655

bytes SIZE=014 Flags 06-10,21,28,29

Acceptable Payment Frequencies (PF) are:

1 = annual 12 = monthly

2 = seml-annual 24 = semi-monthly
3 = tri-annual 26 = bi-weekly

4 = quarterly 52 = weekly

6 = bi-monthly 365 = dally

WARNING: Solutlons using or resulting In a zero rate
of Interest (%1) will cause a "DATA ERROR",

The output of LPAS is printed in three sections
separated by horizontal |ines. The first section
records the original parameters of the case. The
second sectlion records the amount and number of
regular payments and the final payment necessary to
satisfy the options selected. The third section
displays the optional amortization schedule.

Examples:
In the keystroke solutlion for each example, the lower

case |etters a through e represent shifted functions
of keys A through E. Key in the Indicated quantities

USERS MANUAL 153

and press the user defined keys as Indicated In the
"Do" column., Contents of the display or the printed
output at significant points In the solution are shown
In the "See" column and are followed by identification
In the "Result" column. Use FIX 2 display mode, and
assign LPAS to key F (X<>Y).

Example A: Conventional Mortgage. Develop the data
for an amortlzation schedule for a fully amortized

30-year, $100,000 mortgage at 14.75% NAR compounded

monthly with end of period payments of $1,244.48 with
the first payment due on November 1, 1981. Effective
date of the loan Is September 25, 1981. Use option 1
(H) to 1imit the amortization period to 360 payments.

Bo: See: Result:
CLX STO 06 0.00 Store B functlion call
XEQ "IEA " wpEY Discrete/End status
12 H 1 12.00 CF=PF=12
30 a 360.00 n=360
14,75 B 14.75 NAR=14,75%=%1
100000 CHS C -100,000.00 PV=$100,000.00
1244.48 D 1,244.48 PMT=$1,244.48
E -27.98 Fv=$27.98
9.251981
ENTER}
11.01198t1 F 1,247.52 PMT, shifted P $1,247,52
H 1,248.31 Final PMT=$1.248.31
E ** Compute amortlzation
data, see print out
below.
ExBHPLE A CF=12 PF=12 24 14,214, 43,951,
Y T T TR T A R 2 92 14.895. 95,876,
PYxDE PY -198,0880.0@ 93 13,957, 94,863,
368 PHTS 1,244,453 9% 1379, 92,389,
14.758% FY -27.93 35 13812 31,531,
ED 9-25-31 IP 1i- 1-31= ap 13,397, 3.9
FEXNXATEXXXNTEXSTXNTLXAZEE .? 131149- 88)13?-
152 PHTS 1,247.52 38 12.861. 85,825,
+FINRL PHT 1,243.31 9 12,528, £3,38¢.
FENZSIYNEXTIIXIXNIIIZAETNNX BB 2!143- 88)?58|
‘ g NG B 81 11,69, 77,485,
o o, e, TR)
32 14,768, 188,912, 93 18,581, 69,305,
81 14,73, 93,778, (] 9,888. 64,222
34 14,699, 99,587, 95 9.883. 38,33
85 14,657, 99,193, 8 %1%, 5l
86 14,687, 93,938, 7o 7,880, 45634,
87 14,558, 98,419, 83 5,835, 24,49,
a5 14,483, 97,923,] 4,392, 23,9249,
29 14.487. 97,399, 18 722, 1Leve.
@ 14,318, 96,767, i 584, 8.
342,068,

Note: 2 payments In 1981. The negative amortization

during the first two years Is due to the delayed first
payment date. The asterisk following the IP date
Indlcates a shifted Initlal payment date.

If a printer Is not used when working Example A, after
executlon the stack will contaln the following:

after F after H after E*
T= = T= 2.00 T= 2,464, ZIlint.
= - Z= 359.00 Z = 100,214, E.Bal.
= - Y= 1,247.,52 Y= 2,464, Yr.Int.
X= 1,247.,52 X= 1,248.31 X= 81. Year

*Press R/S to advance amortlzation to next year. the
end of the amortization Is Indicated by ** In display.

154

Example B: Sinking Fund / Savings Plan Starting
with an initfal deposit of $3,000 compute the number
of bl-weekly deposits of $200 and the amount of the
flnal deposlt needed to accumulate a balance of
$20,000 In an account paying 8% compounded
continuously, if the Intial deposit (PV) Is made on
December 1, 1981 and the first bi-weekly deposit (PMT)
is made on December 11, 1981, Set the status to CB.

Do: See: Result:

J "DE" Return to EB

c "CE" Set Contlinuous compounding

d "cB" Set Beginning of perlod
payments

e "ceY Clear Financlal
Status=Continuous/Beginning
CF=1 after clearing

26 1 26.00 PF=26

88 8.00 NAR=8%=% 1

3000 CHS C -3,000.00 PV=$3,000.00

200 CHS D -200.00 PMT=$200.00

20000 E 20,000.00 Fv=$20,000.00

A 72.43 n=72.43

12.011981

ENTER}

12.111981 F =197.29
200 CHS D -200.00
| -91.67

E FVX M

PMT, shifted IP $197.29
Enter revised PMT $200.00
Final PMT=$91.67
indicates attempted
amortization of FV¥* case

EXAMPLE B CF=1 PF=26
PR T T A S

FysCB PV -3.908.08
72+ PHTS -268.80
8.809% FY 20,890,908
ED 12- 1-81 IP 12-11-81»
71 PHTS -2088.00
+FINAL PNT ~91.67

FY*CB = Future Value case with Continuous compounding
and Beginning of perlod payments/deposits. The plus
(+) sign following the number of payments Indicates
that the term includes a fractional payment perlod as
developed from the original speciflcations.

Example C: Loan with Balloon Payment. Develop the
amortization data for a $500,000 loan at 15% NAR with
monthly compounding, to be repaid with 30 monthly end
of perlod payments of $20,000 and a balloon payment of
$3,225.30 coincldent with the final payment. The loan
effective date 1s September 14, 1981 and the first
payment Is scheduled for October 14, 1981.

Do: See: Result:

J ncg" Return to ER
Status from previous example

c "pB" Set Discrete compounding

d "DE"™ Set End of period payments

e "DE" Clear Financial, final status=
Discrete/End

12 H I 12.00 CF=PF=12

30 A 30.00 n=30

15 B 15.00 NAR=15%=% |

500000 CHS C

-500,000.00 PV=$500,000.00

20000 D 20,000.00 PMT=$20,000.00

E 3,225,30 Balloon=$3,225.30

9.141981

ENTER?

PP C ROM USERS MANUAL

10.141981 F 20,000.00 PMT=$20,000.00

H 23,225.30 Ftinal + Balloon = $23,225.30

E *% Compute amortization data, see
print out below.

EXAMPLE C CF=12 PF=12
L T T T AR T Y Y

PY«DE PY -508,080.00

3@ PHTS 20,800, 6@
15.0880% FY 3,225.38
ED 9-14-81 IP 1@-14-81

29 PHTS 20,0880, 58
+FINAL PNT 23,225.38
YR INTEREST ENDING BAL
81 18,232, 458,232,
82 56,436, 274,688,
83 26,958, 61,638,
84 1,587, 8.
= 143,225,

Because the Initial payment occurs exactly one month
after the loan effective date there Is no change In
the re-computed PMT,

Example D: Delayed First Payment This example will
IlTustrate the effect of a different repayment plan
for the loan defined in Example C. Develop the data
for amortizing a $500,000 loan at 15% NAR wlth monthly
compounding, to be repald with 60 seml-monthly end of
period payments of $10,000 and a bal!oon payment
colncident with the final payment. The loan effect!ive
date Is September 14, 1981 and the first payment Is
scheduled for November 1, 1981.

Do:_ See: Resul+t:

J "DE" Return to WUiR
Status left from
Exampie C

12 H 12.00 CF=12

24 | 24.00 PF=24

60 A 60.00 n=60

15 B 15.00 NAR=15%=%1

500000 CHS ¢ -500,000.00 PV=$500,000,00

10000 D 10,000.00 PMT=$10,000

E 974.25 Fv=$974,25

9.141981

ENTER}

11.011981 F 10,268.92 PMT=$10,268.92

10000 D 10,000.00 Set PMT=$10,000.00 exact!y

H 30,466,27 Final+Bal loon=$30,466.27

E ** Compute amortization data

See print out below

EXAMPLE D CF=1z PF=24
Y YR R TR T 2L

PY«DE PY -5&@.ged.8d
68 PHTS 19,380, 68
15.888% £V 974.23
ED 9-14-81 IP i1- 1-31%
39 PHTS 10,688,048
+FINAL PHT 38, 466,27
YR INTEREST EMDING BAL
i 12,541, 435, %8,
g2 6,113, 365,881,
83 319, 57,277,
24 3,189, B,
187,838,

PPC ROM

The total interest on this repayment plan is $3,813
more than in Example C due to the delayed first
payment date and the smaller payments. The borrower
has the use of more money for a longer time.

LPAS Program - Equations
All equations assume the use of standard financial
transaction sign conventions of money received as

positive (+) and money pald out as negative (-),

Notation used:

d = number of days In payment perlod

Ie = effective interest rate per payment period
m = integer portion of term n

n = number of payment periods in ferm

s = number of days first payment is shifted
CF = compounding frequency per year

ED# = effective date - day number

Fv = future value after n periods

FVm = future value after m perlods

va—1 = future value after m=-1 periods

FvV¥ = future value case

INT = Interest for the year

IP# = Initial payment date - day number

NP = number of payments in the year

PF = payment frequency per year

PMT = perlodic payment

PMTf = final payment

PV = present value

PVe = effective present value

PV*¥ = present value case

£ |Fv]<=]PV{, then PV¥* case
If JFV|>|PV], then FV* case

The Initial payment date fs "shifted" when: s # 0
where: s = |P# - ED# for beginnling of period
payments
s = |IP# - ED# + d for end of period

payments

For financlal calculations involving a "shifted" first
payment date, the present value (PV) must be converted
to an effective present value (PVe) that

Is adjusted to compensate for the difference In
Interest accrued during the Irregular first payment
period.

PV_ = Py(1+]) SPF/dCF)
e e

To precisely complete the amortization of a present
value or the accrual of a future value, the flnal
payment must be calculated separately from the regular
periodic payment. The LPAS program Incorporates eight
variations of final payment calculations.

PMT, = PV¥* case, annuity due,

f m=1 Option 1
= FV PV* case, annuity due,
Option 2
= FV_ + PMT PV* case, ordinary annuity,
m
Option 1

USERS MANUAL 1585

PMT PV¥ case, ordinary annulty

§=FV_(1+1))
mo e Option 2
= va—1 - FV/(1+le) FV* case, annuity due,

Option 1

FV* case, annulty due

FV_ = FV/(141)
m e Option 2

FVm + PMT - FV FV* case, ordinary annulty

Option 1

FVm(1+le) - FV FV¥* case, ordinary annuity

Option 2

N.B. Values m and n are different for Options 1 and 2

The interest pald during each year of amortization [s
determined by the dIfference between the ending and
beginning balances plus the sum of the payments for
the year.

INT = (NP¥PMT) + PV + FV

LPAS Program - Line by Line Analysls
LBL LPAS - Malnilne - First Section

001 store ED and IP dates. Print separator |ine
007 set flag FO6 (FV* case) 1f: |FV|>|PV|

014 calculate term (n). Print [lne 1 (PV)
026 Format data. Print line 2 (n) (PMT)

038 Format date. Print line 3 ($1)(FV)
044 \f PF>24 set Flag 07 (calendar year basls)

050 Calculate day number of effective date (ED#)
053 Calculate day number of first PMT date (IP#)
056 Develop number of days from ED thru IP date (s)
058 Develop number of day from IP thru year end

069 Develop number of days In normal PMT period (d)
079 AdJust s for end of perlod payments (s)
081 Develop number of payments in first year

086 If PMT = 0, set s = 0

090 If s # 0, append ¥. Print line 4 (ED)(IP)
095 Develop PVe to adjust for shifted IP date (PVe)

107 Save |IP year (YY) and calculate payment (PMT)

113 -~FIRST STOP--

At this stop the calculated periodic payment may be
accepted or the original or a modified payment can be
entered and stored by pressing key D before selecting
an amortization option (H or 1).

Subroutines
LBL 0! Reformat date for and load print buffer
LBL 02 Calculate day number using 30/360 convention
LBL 03 Calculate day number using (calendar
basis)

LBL 04 Format month (MM) and day (DD) for printing
LBL 05 Display control -

06 - and column format subroutine
LBL 07 Execute specified W El routine
LBL 08 Fill buffer with specified character -

09 - and printer separator |ine
LBL D Store PMT in RO4
LBL J Transfer control to @B and display status

- Malniine - Second Section

LBL H Option 1 - If PMT#0, set flag FO7 (set=opt. 1)
LBL | Optlon 2

205 Calculate new (n). 1f n=0 use original n (n)
213 Select (n): option 1=original option 2=new

156

216 Calculate FV and modify to -

LBL 10 - develop final payment (PMTf)
LBL 11 Store final PMT Print separator 1lne

263 Format data. Print line 5 (n=1)(PMT)
269 Format data. Print line 6 (PMTf)

278 -~SECOND STOP--

At this stop the amortization schedule calculation may
be selected by pressing key E (for PV¥ cases only), or
control may be returned to the E8 program via key J.

Subroutine
LBL 12 Format control subroutine

LBL E - Malniine - Third Section - Amortization
284 If FV* case stop and display "FV¥* " (Invalld)
288 Print separator !ine. Print heading |lne
294 Reduce payment count by number 1st yr payments
LBL 13 Develop Iinterest for year -

14 - and calculate ending balance
LBL 15 TINT and format data. Print amortization line
346 Load stack for review and stop If Fc?21
351 -~AMORTIZATION YEAR STOP--

If flag F21 Is cleared this stop will occur after the
amor+ization calculations have been made for each

year. Amortization data Is available In the stack.
352 If not final year, update year & payment count
LBL 16 End routine Print total (%) (TINT)
384 END

Other LPAS program technical details:

Global Label: LPAS

Local Labels: D,E,H,!,J, and 01-16

Byte Count: 655 (requlres one memory moduie)
Stze Required: SIZE=014

ROM Routines called: , 3, OB
Subroutine Levels: 3

Flags Used: LPAS - 06,07,21,28,29
=R - 08, 09, & 10
@ - 10
3 - 29 & 40

Data Reglsters Used:
R0O0: multl use store
RO1: n term

RO7: 1 as decimal

RO8: CF compounding freq.
RO2: $i as percentage R09: PF payment frequency
R0O3: PV present value R10: multl use store

R04: PMT periodic pmt R11: muiti use store

R0O5: FV future value R12: multl use store

RO6: IND addr. R13: multi use store

Status Reglsters: none used

Alpha Reglisters: all used

L REG: not used

Peripherals: printer recommended but not required
Stack Usage: 1/0 see program description
Execution Time: variable

PP C ROM USERS MANUAL

BAR CODE ON PAGE 480

APPLICATION PROGRAM FOR: n
+

Bls#LBL "LPAS-
B2 STO 18
a3 2Y
64 STD 88
8 8
Bt AEG 88
47 [F 86
8g RCL 83
89 HBS
18 RCL 85
i1 BBS
12 X972
13 SF 8&
i4 1
15 XEB &7
16 ASTO &
{7 P
18 F57 86
19 "F=
28 "¥ee
21 ARCL X
22 *F P¥"
23 RCL 83
24 XEG 85
25 ADY
26 %ER 12
27 RCL 81
28 EHTER?
29 INT
38 ARCL X
-
32 %87
33 ket
34 °F PMTS®
35 RCL 84
36 XEG 63
37 ADY
38 FIX 3
39 RARCL 82
48 “H% Py
41 RCL 85
42 XEQ B3
43 ADY
44 XE@ 12
45 OF &7
46 24
47 RCL 89
48 X317
49 5F 87
58 “tb *
51 RCL 88
52 XEG 81
53 %) 18
54 °F P "
55 XEG 681
56 $T- 1@
57 570 88
58 FIX 2
59 SF 28
68 5F 29
611
62 57+ 11
63 STD 12
64 LR
65 570 13
o6 XE@ 82
67 RCL 68
68 -
69 368
78 ENTERt
e
72 FC2C &7
73 L%

L]

el LR e

RCL 8%
/

IKT
510 13
FL? 89
5T+ 18
+
LASTX
7/

INT
sTo 12
b RCL 16
RCL 84
38 ¥+a?
89 KOY
98 CHS

91 X7
92 "
93 F57 21
94 PRA

95 CLA

96 RCL 88
97 RCL 13
98 *

99 s

180 RCL 89
181 #

182 RCL &7
183 LH1+X
184 *

185 Et2
186 5T* 83
187 RCL 86
188 STO 11
189 4

118 XEQ &7
111 RND
112 570 84
112 RTH
114+LBL 41
115 INT
116 -188
117 810 11
118 870 2
119 ROy
128 570 12
121 XEQ 84
122 INT
123 ST0 13
124 XEQ 84
125 CHS
126 5T 11
127 FRC
128 *

129 570 86
138 18

131 X¥Y?
132 "Ho"
133 ARCL ¥
134+LBL 82
135 FS? 87
136 GT0 83
137 RCL 11
138 368
139 *
148 RCL 12
141 28
142 *
143 +
144 RCL 13
145 +

P e et]

ey
[~V = - -]

R
[

CO CO GO Ol
o LN B L)

[==1
4

APPLICATION PROGRAM FOR:

146 RTH

147+LBL 83
148 RCL 11
149 REL {2
158 RCL 13
151 XROW -CJ"
152 RTH
153+LBL 84
154 18
155 ¥x1?
136 =k *
157 ARCL ¥
158 RDN
159 LASTY
168 -
il *
162 +--
163 RTH
1644LBL 83
163 FI4 2
166 9
167¢LBL 86
168 570 86
169 XOY
178 5F 28
171 5F 29
172 FC7 21
173 RTH
174 ACA
{75 XROM ~CP~
176 CLA
177 RTH
78+LBL 87
179 570 86
138 ¥ROM "FI-
131 RTH
182+LBL 88
183 FC? 21
184 RTH
185 24
186 XY
157+LBL 89
188 ACCHR
189 BSE Y
198 GTO 89
191 PRBUF
192 RTH
193+LBL D
194 570 84
195 RTH
196+LBL J
197 18
198 570 86
199 GT0 "FI-
208+LBL H
281 RCL 84
282 x8?
283 SF @7
204+LBL |
285 RCL 81
286 INT
287 ST0 1@
288 1
209 XEQ 97
218 INT
211 ¥=@?
212 RCL 18
213 FC? &7
214 STO 18
215 RCL 18
26 1
217 F$? &7
218 5T- 1@
219 F§? 87

228 FC? 89
221 CLA

227 570 13
228 RCL 65
229 570 6@
238 5

231 ¥eQ &7
232 RCL o8
233 ST0 85
234 FC7 86
235 CLE
236 570 o4
237 wO
238 RCL 13
239 F57 89
248 ST/ @8
241 ¥OY
242 FC? 89
243 GT0 19
244 RCL 08
245 -

246 GT0 1t
247+LBL 18
248 FC? 87
249 *

258 RCL @8
251 FL? @6
252 CL¥
233 -

254 RCL 84
255 FL? @7
256 CLX
257 +
258+LBL 11
239 RND
268 STO 13
261 4

262 XEG 88
263 XEQ 12
264 fARCL 1@
263 " PHTS®
266 RCL 64
267 XE@ 85
268 ALY
269 “+FINRL PNT~
278 RCL 13
271 XER 85
272 ALY
273 RCL 12
274 RCL 18
275 RCL 84
276 RCL 13
277 FIX 2
278 RTH
279eLBL 12
288 FIX 8
281 CF 28
282 CF 29
283 RN
284¢LBL E
285 "Fyx 2~
286 FS5? 86
287 PROMPT
288 1

289 XEO 88
298 "YR INTEREST
291 “HENDING BAL-
292 F57 21

PP C ROM USERS MANUAL

Listing continued on page 158.

157

Listing continued from 157.

2 APPLICATION PROGRAM FOR: m
o
w 293 PRA 348 XEQ 86
4 294 CF &7 341 RCL 85
& 293 tL 342 RND
= 296 CLY 3 8
o 297 ¥{r 12 244 XEQ 86
w 298 RCL 19 245 AV
s 299 X(=Y7 346 RCL 12
o L EOY 348 RCL 08
a 382 ST0 81 349 REL 11
363 - 356 FC2 21
304 570 18 351 STOP
3A5¢LBL 13 252 FS20 87
306 ¥ER 12 3 610 16
397 REL 11 54 1 £2
388 19 355 RCL 11
389 Y2 ot 1
38 "H8" 357 +
341 MREL ¥ -
312 RECL 83 359 -
314 RCL 81 261 RCL 18
H3 ¥ 362 ST0 81
3 + 363 RCL 89
317 570 69 264 ST- 18
318 LK 365 4(=1?
319 570 83 366 ST 81
328 FC? 07 267 -
321 670 14 168 X{=@?
322 REL 13 369 SF 67
323 5T+ B4 378 610 13
324 GT0 15 F710LBL 16
3254LBL 14 72 ~esn
% 3 373 ROL 12
327 ¥EQ 7 274 3
3B FIR 2 375 XEQ 86
329 RND 76 11
330 o1+ 88 77 FS? 21
331 510 83 378 SKPCHR
332 CHS 379 ADY
333 570 63 200 w4
335 FIX @ 382 FI% 2
336 RCL 28 383 LEND.
337 RHD
338 ST+ 12
339 8

APPLICATION PROGRAM 2 FOR [

FAST - Reducing Interest Solution Time

When the solution for Interest is required for PMT#0,
LBL 02 of WEE produces an initial guess for the
Interest which Is supplied to the Iterative loop
starting at LBL 06. In most cases the LBL 02 guess Is
usually "close" (in the mathematical sense) to the
actual solution Insuring that the Interest sotlution is
found In a reasonably short time.

Unfortunately, there will always exist a problem which
will cause the LBL 02 guess to be far enough away from
the actual solution to cause the execution time to be
long. The optional routine presented below wl!ll
provide an Initial guess which tends to be "closer" to
the actual solutlon than that provided by LBL 02,
allowing a shorter execution time for most problems.

in use, the optional routine is executed in RAM memory
and produces an initlal guess for the Interest. The
guess Is stored in reglster RO7, and control of the
calculator Is transferred from the FAST routine to LBL
06 of the ROM program KN .

158 PP C ROM USERS

For the condltion when PMT=0, the routine transfers to
LBL 09 of the ROM program for an explicit solution.
When solving for n, PV, PMT, or FV, the ROM is used in
the usual manner. Don Dewey (5148) produced the
mathematical expressions and wrote the program.

LBL FAST INSTRUCTIONS
1. Load the routine below Into the calculator memory.
2. Go to LBL EER In the ROM,

3, Select desired status and enter known variables In
+he usual manner.

4, Either a) or b):

a) solve for n, i, PV, PMT, or FV in the usual
manner.

b) Execute FAST to solve for Inferest using
the optional routine. Do not use LBL B.
The Interest value Is returned In the usual
manner.

5. Repeat as needed from step 2.

APPLICATION PROGRAM FOR:

@i#LBL “FRST" 27 RCL 81
829 281

83 ST0 86 29 -

84 RCL 84 38 X2

05 ¥-8? 31 RCL 84
86 GT0 “FI" 32

87 6 33 RCL 85
88 510 #6 34 -

@9 RCL 85 35 RCL 83
18 RCL 04 36 +

{1 RCL 81 373

12 * k]

i3 - 39/

14 LASTX 48 ABS

{5 RCL 85 41 RCL 83
16 + 42 X=8?

17 RCL 83 43 GTD "FI-
18 + 44 RCL 94
19 RCL 81 45 *

28 RCL 83 46 X)8?

21 * 47 GT0 °FI"
22 X#8? 48 RIN

23 7 49 S5T0 87
24 ABS 58 GI0 “FI-
25 STO @7 51 .END.

26 ROY

EQUATIONS USED IN FAST ROUTINE

If PMT*FV < 0 +then FV case.
|f PMT*FV >= 0 then PV case.

1. PV CASE:
N*PMT + PV + FV
n¥PY

I0 =

Problem valid only If PV¥PMT < 0.

MANUAL

2. FV CASE:
a) For PV#£0:
Coa FV - n*PMT
0=
3% (n-1)2*PMT + PV - FV]
b) For PV=0:
= FV + n*PMT
0"

3% (n=1)2%PMT + PV = FV]

FormuLAs UseD IN I

The baslc flnanclal equation used in thls program was
first reported in the Hewlett-Packard Journal of
October 1977 (Ref. 3) where the description of Its
Implementation in the HP-92 Financial Calculator was
glven. In this unlque equation, all five financial
variables (n, 1, PV, PMT, FV) are accounted for, using
the simple rule that money pald out Is considered
negatlive in sign, while money received 1s considered

positive in sign.

The equatlon from page 23 of Ref. 3, is:
(1) Pvx(1+" + PMTXL(1+D" = 11/1 + FV = 0

Ordinary Annulty and Annulty Due Selection

In I+s present form, equation (1) is suitable for the
ordinary annuity condition, when payments are made at
the end of each period. To enable (1) to solve the
annuity due condition when payments are made at the
beginning of each perlod, a small modification Is
required. When this modification is added, equation

(1) becomes:

(2) pvx(1+D" + PMT*(1+1X)*[(1+D)" = 11/1 + FV = 0

where X=0 for ordinary annuity condition
X=1 for annuity due conditlon

When flag F09 Is cleared, the ordinary annuity
condition Is selected. When flag FO9 is set, the

annulty due condition Is selected. Flag FO9 is
toggled by LBL d.

With a simple algebralc rearrangement, (2) becomes:
(3 [PV+PMT(1+]X)/I][(1+i)n-1] +PY +FV =0
or

(4) (PY +C)A+PV+FV =20

where

(5) A= (1+n" =1
(6) B = (1+1X)/1
(7) C = PMT*B

The form of equation (4) simplifles the calculation
procedure for all flve variables, which are readlly

PP C ROM USERS MANUAL

solved as follows:
(8) n = LNL(C-FV)/(C+PV)J/LN(1+1)
n Is solved using LBL 01
(9) 1 = [rv/ev]/m oy
For PMT=0, I Is solived using LBL 09
For PMT#0, | must be solved by iteration
(10) PV = ~[FV + (A*C)]/(A+1)
PV 1s solved usling LBL 03
(11) PMT = <[FV + PV(A+1)]/(A¥*B)
PMT Is solved using LBL 04
(12) Fv = =[PV + A(PV + O]

FV Is solved using LBL 05

Solution of Interest When PMT#0

To solve for Interest i when PMT#0, an iterative
technlque must be employed, as equation (1) cannot be
explicitly solved for I. This program uses Newton's
Method, using exact expressions for the function of I
and Its derivative. The expressions are:

(13) i

k+t = !

K™ f(lk)/f'(lk)

where

(14) f(1)

A(PV+C) + PV + FV
(15) f1(1) = n*D*¥(PV+C) - (A*C)/1
where

(16) D = (1+1)"""

17)

(A+1)/(1+1) as caliculated by LBL 06

The iterative interest solving loop using equations
(13), (14), and (15) starts at LBL 06. d

Starting Guess For Interest

To solve for interest using Newton's Method, an
Initial starting guess must be provided. The program
uses the following expression to provide the Inltial
guess, IO:

iy = PMT IPV] + [FV]
_]t —

IPV] + |FV]

(18)

RO *PMT

The closer the initial guess IO is to the actual

solution 1, the greater Is the probability that the
required solutlion will be obtained, and the shorter is
the execution time.

Further Program Refinements

As well as being able to setect elther an ordlinary
annulty or annulty due situattion, +the program also
enables solutions to be obtained when

159

This routine was run beginning with 1 in the Y, Z and T
registers and with X clear. R/S was pressed, and then pressed
again after 100 seconds to establish a speed count. Results
ranged from the low 1600's to middle 1700 for various 41Cs,
so 1700 was established as a reference count. Execution
times presented for each example have been normallized to
the 1700 speed count. If you have sped up your HP4l, you
should expect significantly faster execution times than
reported below.

The following relationship was obtained for the €I routine,
using nonlinear regression analysis:

Execution
time, min = -0.8905 + 0.1952*L + 0.3615*%L*F

where L = Number of printed lines in the plot, and
F = Number of functions plotted simultaneously

This relationship holds for a 1700-count HP#1C. Program
HPT has been provided for the estimation of run times for
€3 plots, due to the wide range of times possible. This
program will calculate estimated run times normallized to
any count in the 100-second speed count test above and then
executes . If the speed count is not known for the
particular 41C being used, then simply pressing R/S at the
appropriate time will assume a reference count of 1700.

Enter parameters for B into data registers, including the
number of functions in X, and then:

KEYSTROKES
XEQ HPT

Enter count, or just
press R/S for 1700
count time

DISPLAY
COUNT?

RESULT
Prompts for count
Prints "EST RUN TIME:"
and time, then runs I3

The listing for program HPT:

APPLICATION PROGRAM FOR:

B1eLBL "HPT"
82 SF 88

83 GTO 08
B4¢LBL "HPT"
85 CF 8¢
a6eLBL B0
87 STO 03
88 1708

@9 -COUNT?"
18 PROMPT

11 570 84

12 RCL 89

13 RCL 88

14 -

15 RCL 1@ Compute the number
16 7 of lines to be

17 1 plotted

18 +

19 F5? 88
28 GT0 8f
21 11
22/
23¢1BL 81
24 RCL X
25 RCL 83
26 *

27 F§? 88
28 .89966
29 FC? 88
38 .3615
3 *

32 XOY

g e

Store # functions
plotted in RO3

Store 1700 or count
in RO4

BAR CODE ON PAGE 480

Calculate estimated
run time for GI3
or 03

190

33 F5? 88
34 -.02144
IS FL? 08
36 .1952
37«

38 +

39 F57 08
49 .82516
41 FC? 08
42 -.8965
43 +

44 1709

45 *

46 RCL 94
47 /

48 “EST RUN TIME:~
49

58 FIX 2

51 ARCL X
92 "k RIN.”
53 PRA

54 RCL 83
35 FS? 08
56 XROM “MP"
57 FC? 08
58 XRON “HP-
59 RTH

68 .END.

Print run time

Call C@ or 3

The listing for HPT appears in section A.3 of the B@ routine
writeup, since HPT is a subset of program MPT, which
performs timing for the @ routine in a similar fashion. The
barcode for HPT/MPT appears in Appendix N.

A.4. Changing Display Annunciators.

As part of the operation of LI, flag 55 (the printer existence
flag) is synthetically cleared using the @@ routine in order to
trick the calculator into assuming that no printer is present.
This speeds up non-printing operations some 20 percent,
which is significant in a plot that may take several minutes
to complete. During the execution of the M@ routine, the
display annunciators may change, such as 'RAD' coming on, or
flag annunciators going on or off. This situation will remain
until the I routine stops. If the user halts execution
prematurely, the annunciators will return to their original
configuration. This will also reset flag 55, since the printer
will now be detected to be present. Pressing R/S to restart
will eventually cause GI3 to detect that F55 is set, and again
call the [routine to clear it, and annunciators will again
change. No changes will have actually occurred to flags or to
any modes.

B. Variable Plot Width.

The plot width in columns is stored by the user in register
RO2. This can vary from 1 to 168 columns. This feature will
be used extensively in many of the examples below.

C. Skip Standard Header.

If flag 07 is clear, a standard set of initial header lines is
printed before the plot. This consists of each function name
and its corresponding function identifier, plus the limits in
the Y and X directions along with the X increment value.
Setting flag 07 causes EI to skip the header information
entirely and just print the Y axis, whether it is the standard
12 dashes or a user-defined axis (to be described later). This
allows another header to be substituted and printed
immediately before BT is called, if the user desires.

PP C ROM USERS MANUAL

Figure 16. Plot of the Y=sinX function of Example 14 using
€. Three axes have also been plotted by storing the
constants ;0 and -! into the function name registers R16 to
R18. Execution time: 17 min 55 sec.

H. Prompting for User Inputs to [GId.

Because of the large number of inputs to the B3 routine, it
may be inconvenient to remember where all the input
information belongs. The following program provides some
assistance by prompting the user for all the basic inputs to
€: function names, Ymin, Ymax, plot width, Xmin, Xmax,
and X increment. It then calls the GI@ routine. Simply set all
the flags to their correct status, set the other options
appropriately and XEQ HPP. The listing is presented below:

APPLICATION PROGRAM FOR: m

91+LBL “NPP"
#2 SF 08

83 GT0 6@
B4+LBL “HPP"
a5 CF @8
f6¢LBL 98
87 “NO. FCHS?-
88 PROMPT
89 STD B4

18 | E3

11 s

12 15.014
{3+

14 570 83

15 FIX 8
16+LBL 81

17 “NAKE -
18 RCL 83

19 14

28 -

21 ARCL X

22 k"

23 RON

24 PROMPT
25 F57 48
26 ASTO IND 83
27 FC? 48
28 STO IND 83
29 15C 83

38 GT0 A

31 Y MIN?-
32 PROMPT

33 510 @8

34 Y MAY?"
35 PROMPT

36 STO 81

37 -PLOT WIDTH?®
38 PROMPT

39 ST0 @2
48 "X RIN?"
41 PROMPT

42 STO @8

43 "X HA¥?"
44 PROMPT

45 ST0 89
46 =X INC?"
47 PROMPT

48 570 18

49 RCL 84

58 FI¥ 4

51 F57 88

52 XEQ “MP-
53 FC? 88

54 ¥EQ “HPT-
55 RTN

96 .EKD.

Input # of functions

BAR €ODE ON PAGE 479

Input each name or
X axis value

Input Ymin

Input Ymax

Input plot width

Input Xmin

Input Xmax

Input X increment

Calls i3 or CI@

PPC ROM USERS MANUAL

This routine may also be used for passing input to W@ by
pressing XEQ MPP. In that case, (I would be executed as
the final step. If estimated execution times are also desired,
one could replace the lines XROM GI@ and XROM B with
XEQ HPT and XEQ MPT respectively. Then, after all
prompting, the run time would be printed before the plot
routine was executed.

The barcode for HPP/MPP appears in Appendix N.

I. Plots using Multiple Paper Widths - 'Superplotting'.

When higher plot resolution is desired in the Y direction
(across the printer paper) than can be obtained with 168
columns, it is possible to plot graphs with BI@ which require
multiple widths of printer paper. This has been referred to as
'superplotting’. The routine shown below takes care of the
housekeeping involved in printing each section of the plot, re-
initializes the inputs and increments the Y limits. The only
difference between the inputs for this program and for EI is
that Ymax is stored in R42 instead of R0O1, and a Y increment
value (the desired width of each printed plot section) is
stored in R43. After all the function names are stored, simply
set the limits and XEQ SHP:

1. Place the function names {and axis values) in R15 and up

2. Set disappearing overflow mode (CF05, SF06) so functions
jump from strip to strip

3. Store Xmin, Xmax and Xinc in R08, R0% and R10

4. Store plot width in R02

5. Store Ymin in R00, Ymax in R42 and Yinc in R43

6. Enter the number of functions to be plotted

7. XEQSHP, and the plot is printed, a strip at a time, moving

from Ymin to Ymax, in steps equal to the Y increment stored

in R43.

The SHP listing is as follows:

Lo
> APPLICATION PROGRAM FOR:
W 14LBL "SHP" @ superplotting
< 82 §T10 38 Save # fcns in R38
& 83 RCL 68
= 84 510 37 Ymin in R37
85 RCL 08
b 86 RCL 36
o 97 +
© 88 ST0 81 Ymin + Y increment
o 9¢LBL 89
@ 18 RCL 38 Restore # fcns
11 XEQ “NP- Call to IR
12 RCL 81
13 RCL 35
14 ¥{=Y?
13 RTH If done, stop
16 RDH
{7 ST0 @8
18 RCL 36 If not, increment
19 5T+ 81 Ymin, Ymax
28 RCL 37
21 570 88
22 GT0 0@
23¢LBL "SHP- L3 superplotting
24 570 45 Save # fcns in R45
295 RCL 88
26 STO 44 X min in R44
27 RCL 08
28 RCL 42
29 +
3@ 5T0 81 Ymin + Y increment
31+LBL 81
32 RCL 45 Restore # fcns
33 ¥EQ “HP" Call to CI

201

34 RCL @t
35 RCL 42
36 2(=Y?
37 RN

38 RIN

39 ST0 68
40 RCL 43
41 ST+ @l
42 RCL 44
43 §T0 @8
44 GTO 81
43 END

If done, stop

If not, increment
Ymin, Ymax

Note that the SHP program listing also includes SMP, which
is the superplotting routine for @UA. See the WA writeup
elsewhere in this manual. The barcode for SHP/SMP appears
in Appendix N.

The first plot strip has Ymin = Ymin and Ymax = Ymin +
Yinc. The next strip has Ymin = the previous Ymax and Ymax
= (new Ymin) + Yinc. This process repeats until the current
Ymax exceeds that which was stored in R42. If Yinc is not
chosen properly, the last plot strip will exceed the designated
upper limit in the Y direction, but the excess may be removed
by the user with a scissors if so desired.

Example 15. Use @I superplotting to plot the following 2
functions: Y=XM4 - 20*X12 + 64 and Y = X3 - 9X
simultaneously. Use Y limits of -100 and +100 with a Y
increment of 66.67 (3 strips wide). Let the X limits be -5 and
+5 with an X increment of 0.02. Use function identifiers #l
and #2 for the 2 functions and also plot X axes at Y=-3, Y=0
and Y=+3 using identifier #3 for each.

APPLICATION PROGRAM FOR:

B1eLBL -X4*
82 510 Y
824

a4 11X

85 RO

86 Xt2

a7 28

88 *

8 -

18 64

1+

12 RTH
13#LBL ~X3"
14 ST0 ¥

15 3

16 YHX

17 ROY

18 9

19 *

28 -

21 RN
22+LBL "SP2"
23 XROM “RF-
24 5F 21

25 35

26 XROM -IF-
27 SF 86
28 "¥4-

29 ASTC 13
38 X3

31 ASTO 16
32 -58

32 870 17
ELR

35 STO 18
36 50

37 5T0 13
38 12444
39 STO 12

Function #1

Function #2

Plot routine

Clear FQO - F28,
SF21, SF55

Set disappearing mode

Store fcn names

Store symbol map

202

49 5F 94

41 -5

42 STD 88 Xmin

43 CHS

44 STO 89 Xmax

45 .82

46 STO 18 X increment

47 168

48 ST 82 Plot width

49 -180

58 STO @8 Ymin

51 CHS

52 S10 42 Ymax

53 66.67

54 ST0 43 Y increment

959 No. functions

56 XE@ “SHP" Call to SHP

57 END

i X4 I %4
l ig . ¥ X3
. -58 . -98.098 . -50,080
.8 . 8.008 . 8.008
58 58,088 58. 908

Y: -108.808 T0 -33.333 ¥: -33.333 T0 33.333 ¥: 33.333 T0 100.068
%: -5.808 T0 5.008 X: -5.899 T0 5.008 X: -5.888 T0 5.808
4¥=8.6820

PP C ROM USERS MANUAL

186 F5? 81
187 = *-
188 FS7C 81
189 ACA
118 PRBUF
111 END

Add asterisk

We initialize by clearing registers 6 through 22 with the
routine, and load in the input to GER . Then, the user
is prompted 'READY' for test scores. After all scores have
been entered, the histogram is printed, along with the mean
and standard deviation:

Keystrokes Display Result
XEQ 'TSTPLT READY Initializes registers,
clears R06-R22
Ist score, XEQ A 1.0000 First score in, prints
value
2nd score, XEQ A 2.0000 2nd score in, printed
Nth score, XEQ A N.0000 Last score in, printed
XEQB Prints histogram, mean,
and standard deviation
To begin again,
XEQ a READY Initializes, etc.
1st score, XEQ A 1.0000 First score in, prints

value

After all the scores have been entered and printed, the
histogram in figure 3 is produced.

1 = 78.0000
2 = 80.8000
3 = 32.6000
4 = 75,8008
5 = 76.8000
6 = 89.0800
7 = 95.8000
8 = 62.0080
9 = 100.0886
18 = 79,6068
11 = 74,0008
12 = 81,6008
13 = 79.0808
14 = 77.0000
13 = 73.8008
16 = 51.8088
17 = 76.8000
18 = 65.0008

—
o

wonon
-~
kg -
@
o=
)
]

212

3% PER DIAMOND
{ MRX. = 56%)
8-9

18-1%

28-29

IR-39 -

48-49

58-39 -

66-69 +
78-79 #404404404 X
88-89 4+
98-99 -

188 -

* =) 584

HEAK = 74.8508

S.0. = 14.40893

Figure 3. A histogram of class grades entered into program
TSTPLT from table 3 above.

The original goal of the histogram plot here was to have each
single diamond character in a bar represent 5 percent of the
total value of the student population. Thus, if the maximum
height of a column could represent 50 percent, then a 70
column maximum height would assure 5 percent per fill
character. However, because the last full 7 columns would
be made up of fill columns since the tenth diamond wouldn't
quite reach the 70th position, this goal couldn't be met. (See
the limitation discussion above.) In order to assure a 10
diamond column for a full column, the plot width was made
to be 71 columns. Then, EE would fill it with ten complete
diamond characters plus a single additional fill column of
ACCOL 8.

This program was submitted by Jack Sutton (5622) during the
documentation phase of the [TTEIRIIBproject.

FURTHER DISCUSSION OF [GEB

Vertical Character Accumulation. This routine, originally
submitted for inclusion in the IEZTAIR, was written by Cliff
Carrie (834). It is extremely useful for labelling the X
direction of histograms, bar charts or any plots on the
82143A printer. Merely key in a number between 0 and 99
inclusive and the 2 digits will be accumulated into the print
buffer as 5 ACCOL columns. If flag 12 is set when ACV is
called, then the digits become twice as tall. The routine ACV
listing:

(423

- APPLICATION PROGRAM FOR:

§ 8lelBL "ACY"

& 82 18

= 83 s Separate into

e 84 ENTER? first and second
w 85 FRC digits

S 96 18

© Y

o~ 88 XEQ IND Y Get lst digit code
iy 89 XEQ INB Y Get 2nd digit code

PP C ROM USERS MANUAL

18+LBL 14
il 18

12 *

13 FRC

14 LASTE Combine two codes
15 INT to create ACCOL
16 16 values and accum-
17 % ulate them into
18 RCL Z print buffer

r
-

AccoL
FRC
XY
25 X#8?
26 GT0 14
27 RTH Codes for digits:
2BeLBL 0@ 0

29 ,25552
36 RTH
31eLBL Bl 1
32 22232
32 RTH
344[BL 62 2
35 .72452
36 RTH
37eLBL 93 3
38 .34243
9 RN
48¢LBL 84 4
41 47564
42 RTH
43¢LBL B3 5
44 34317
45 RTH
464LBL 86 6
47 . 25318
48 RTH
49¢LBL 67 7
56 22247
5¢ RTH
S2+LBL 88 8
53 .29252
54 RTH
S5eLBL @9 9
56 .34652
57 END

™3 A Pa
A R

The barcode for routine ACV appears in Appendix N.

APPLICATION PROGRAM FOR: m

81eLBL ~PLOT"
82 .82

83 570 98

84 153

85 ST0 84

86 127

87 570 83

8g STO 85
89+L6L Bd

18 RCL 08

i1 5F 12

12 ¥EG "ACY*
13 CF 12

14 2

13 SKPCOL

16 RCL B8

17 X2

18 1 B2

28 CHS
21 EtX
22 ¥ROM "HZ"
23 PRBUF

24 156 9@

5 GT0 88
26 END

Numeric counter
Plot width

Fill character
Fill column

X label value
Set double width
Accumulate label

Compute Y height
of bar

call EB

Print buffer

SHHHEFHHHHHHEHHHEHR
ZHHHHFHHHEFREHEEFFEHE
SHHHERHEHEHEEHEHEH
SHHHHFEHEHHEHFERHFH
SHHHHHHHHHRHEH
SEFHEFHHFRRHFEHHEH
SHHHHHRHFFRHFEH
SHHHEFHERFEFH
FHHHHHHFERH
SHHHHHHHH

SHEHHHE

ZHHHEHE

SHRHHH

SHHE

1]

SFH

#H

=H

= |

=1

=l

Figure 4. Plot of the function in Example 4, using the ACV
routine to accumulate X labels, and using HS to produce

histogram bars.

Routine Listing For:

Example 4. Plot the following function: Y = EXP(-(X2)/100)
using HS . Let X values range from 0 to 20, in increments
of 1. Labe!l the columns using routine ACV. Y limits shall be
from 0 to 1 inclusive.

Since ACV only occupies 5 printer columns, let us use 155 for
the plot width and print the X labels double width (10
colums). We can choose printer symbol number 127 for a fill
character and ACCOL number 127 for a fill column:

48eLBL "HE" 62 ISE Y

45 RCL 84 62 GT0 8
S ox &4 RDH

) 3 INT

32 85 8

3R a7+

34 INT 68 RCL 85
53 7 E-S 59 GT0 24
36 + 70+LBL B2
37 RCL 82 71 ACCOL

38 677 eg 72eLBL B8
J9¢LBL Bl FIDSEY

&8 ACCHR 74 GT0 @2
6leLBL @8 7% RTH

PPC ROM USERS MANUAL

B]

LR - LENGTHEN RETURN STACK

The 41C operating system provides for six levels of

subroutine calls by storing the six return addresses in

status registers a and b. If more pending returns are

needed, existing returns can be stored in a data

register pair by the EEroutine, freeing the status

registers to held six more addresses. However, there

can be a maximum of five return addresses pending when
@¥is called, since the instruction XEQ WEBuses

the sixth return address. The old return addresses

can be restored by the ERRroutine.

Example 1: Suppose that you wish to call a hypotheti-
cal ROM routine XX, which is known to use three sub-
routine levels from the fourth subroutine level of
your program ABC. This requires seven subroutine
levels and normally would not be possible on the 41C.
However, by using a single call to EG@(and to EB)
up to eleven levels may be used. The following
program uses registers 11 and 12 to store the return
stack.

LBL "ABC"

LBL.Ol LBL 01 called at 4th subroutine Tevel

1n

XROM Saves return stack in registers 11 & 12
XROM XX Can freely use up to six subroutine levels
11

XROM E@ Restores original return stack

END

COMPLETE INSTRUCTIONS FOR

B will store up to five subroutine return addresses
in a data register pair selected by the user. The
routine does not alter the contents of status registers
a or b. Theuser's program must put the number of the
first register of the pair in the X register before [N
is called. The Y, Z, and T registers are returned in
X, Y, and Z after execution, and LastX and all ALPHA
registers are lost.

BB recalls five return addresses from a data regis-
ter pair and stores them in status registers a and b.
The information in the data register pair is not alter-
ed by EGR, and may be used again if desired. The
number of the first register of the pair must be in X
when ggBis called, and Y, Z, and T are returned in
X, Y, and Z after execution. LastX and ALPHA are

Tost.

MORE EXAMPLES OF

Example 2: The SUB1 routine is a demonstration of
extended subroutine stack depth. The user places in

X the desired subroutine depth, which can be up to 770
levels, depending on the amount of available memory.
The formula is max levels = S5*[INT (SIZE/2) +11. When
the routine is run, it executes repeated subroutine
calls, displaying the current subroutine level, until
the desired depth has been reached, when it beeps and
starts executing repeated returns, counting back down
until all subroutines have been returned from. This
program was written by Keith Jarett (4360) as a test
routine for [and EGBduring the ROM Toading process.

254 PP C ROM USERS

2 APPLICATION PROGRAM FOR: n
s B14LBL “SUBI" 31eLBL 14
< 92 E3 2 Rt
& 83 / 33 Rt
g B4+LBL 81 34 XEQ 01
85 VIEN & 35 RCL X
a 8 156 X % E
S 87 GTO 14 37 4=%?
83 BEEP 38 10 14
o 89 INT 39 -
@ 18 DSE X 485
11 RTH 41 ¥ROM “QR"
1200BL 14 42 %287
13 REL X 43 CT0 14
14 INT 44 RIN
15 E 5 E
16 %=Y? 4 -
17 €10 14 4 2
18 - 48 *
195 49 ROM ~SR"
28 ¥RON “GR" 58 Rt
21 ¥e8? st Rt
22 10 14 S20LBL 14
23 RIN 53 Rt
24 E 54 Rt
25 - 55 VIEW X
2 2 56 DSE X
27 * 57 RTH
28 ¥ROM “LR" 58 PSE
29 Rt 59 VIEN X
39 Rt 69 BEEP
61 .END.

APPLICATION PROGRAM 1 FOR

E3and EJare simple to use when the depth of sub-
routine calls is a constant. However, for recursive
algorithms the program determines the depth of sub-
routine usage, and managing the return stack becomes
more difficult. The two programs LRR (lengthen return
stack for recursion) and SRR (shorten return stack for
recursion) provide automatic management of the return
stack by calling @@ and EBonly when needed. These
routines require two data registers for level counting,
two registers for each use of B, and a short
initialization (IRX) before the routines can be used.
LRR and SRR automatically allow for curtain moving,
which is usually needed to support recursion. They
use the top 2+2k data registers, where k represents
the maximum number of times EEMis called. Since
is called for each 5 subroutine levels this means that
2+2*INT(n/5) registers are used, where n is the
maximum number of subroutine levels. The top data
register is used by LRR and SRR as a subroutine level
counter, while the penultimate register contains a
pointer of the form iii.fff02 used to access registers
for E@and ED, with iii = fff,

[

The return stack management routines are used as
follows:

1) Make sure your SIZE is sufficient for what you
want to do. Then place in X the number of low-
est register to be used for the extended return
stack. (The return stack is actually construct-
ed from high registers to low registers, but
this number will provide a lower bound to pro-
tect other data that you may need. If you don't
need this protection use 1 or 0.) XEQ "IRX" _
(initialize for recursive execution) to
initialize the top two registers for LRR
and SRR.

MANUAL

2) After each LBL which initiates a chain of calls
more than two deep (this includes all recursive
labels, but does not include utility routines
which themselves call only one level) you
must XEQ "LRR". The XEQ "LRR" may be anywhere
between the LBL and the first XEQ instruction,
but the recommended location is immediately
after the LBL.

3) Likewise, before a RTN is executed from a
program segment that initiates a chain of calls
more than two deep you must XEQ "SRR".

The XEQ "SRR" may be anywhere between the last
XEQ instruction and the RTN, but the recommended
location is immediately before the RTN. It is
also recommended that all return paths be fun-
nelled to a single RTN instruction , so that
only one XEQ "SRR" is required.

4) Because of the nature of LRR and SRR it is
always possible to call a two level subroutine
without using LRR and SRR. In this way, utility
routines which themselves call at most one other
subroutine may be used efficiently. An example
of this technique is the use of PUSH and POP in
Example 4.

5) Only two parameters in the stack (X and Y
registers) remain intact after execution of
LRR or SRR. However, you may insert any number
of steps between the LRR call and its associated
RTN. In this way, the stack and ALPHA may be
emptied or filled as required.

6) The routines are shown here with global labels
for clarity; however, if possible they should be
used with local labels to allow the XEQ branches
to be compiled. This will increase execution
speed as well as reduce the byte count.

Example 3: The SUB2 routine operates identically to
the SUB1 routine, except for some unavoidable display
scrolling (see IF Example 6), but it has been modified
to use LRR and SRR. The modified version is more com-
pact and is easier to understand, since return stack
management is not performed by the routine itself.
However, the SUB1 routine is more efficient because

it does not use data registers (all indexing is done in
the stack) and it is shorter because it only calls PPC
ROM routines, whereas LRR, SRR, and IRX must all be

in memory for SUB2 to operate. There is an interesting
tradeoff, though, because a routine such as SUB2 can be
written and debugged in a much shorter time. Unless
the maximum capacity of the 41C is needed, it is prob-
ably not worth the required programming effort to make
your routine perform its own return stack management.

P APPLICATION PROGRAM FOR: m
b B14LBL -SUB2" 13 GT0 83
& 5, 14eLBL 82
= 8 E 15 ¥EQ 81
N 85 XEQ “IRY" 16 VIEW X
[~
174L8L 83
o
© e LR 18 XEQ “SRR"
87 %EQ "LRR
e 88 VIEN X 19 ISE X
A #9 156 X 2 KN
18 €10 82 21
11 TONE 9 22 TONE 5
12 T 23 €L
24 END

PP C ROM USERS MANUAL

b APPLICATION PROGRAM FOR: n
w PLeLBL ~IRK" 57 E
-4 82 CHS 58 -
& 83 .82 59 570 [
= 84 + 68 X{: L
® g5 XROM -g7- 61 FCOC 14
w % E 62 GTO 85
s o7 - 63 %O IND L
e 88 . 64 ST+ IND L
o 89 STO IHD Y 65 ¥=07
& 18 RDN 66 CT0 84
11+ 67 5
12 B2 68 HOD
13 5T/ ¥ 69 X287
14 RN 70 GTO 84
15 BSE L 71 DSE I
16 5T0 IND L 72 RN
17 RIN 73 1SG IND [
18 RTH 74 F57 53
75 GT0 03
196LBL “LRR" 76 RCL IND [
28 SF 14 77 INT
21 GTO 9@ 78 §T- [
79 % [
22¢LBL ~SRR" 88 CT0 “LR*
23 CF 14
81eLBL 83
24¢LBL 98 §2 “NO ROOM- LRR"
25 ROL ¢ 83 PRONPT
26 §T0 [
27 "Leese" B4+LBL a4
2 %O [85 RN
29 %< d 86 CLA
38 CF 82 87 RTN
31 CF 03
2 %0 d 8BeLBL 05
33 ENTERt 89 ST- IND L
34 INT 98 RDN
75 HHE 91 RCL IND L
3 XOY 92 ¥=9?
37 SICN 93 GT0 84
8 RN 9% 5
397 95 NOD
49 ST* Y 9% X687
RO L 97 GT0 84
PRI 98 DSE [
-l 99 RN
44 168 RCL IND [
45 INT 181 INT
46 64 182 X=0?
47 WOD 183 €70 86
48 SF 25 104 DSE IND I
185 -
49¢LBL B! 186 ST- 1
58 RCL IND X 187 X I
51 FC? 25 188 GTO “SR-
52 £T0 82
53 % L 1694LBL 86
54 + 118 *T0D FAR-SRR*
55 610 01 111 PRONPT
112 END
SGeLBL 82

The LRR and SRR routines are especially useful for
implementing recursive algorithms on the 41C. If your
algorithm is not recursive, the direct method of
Example 1 may be better. There are many problems that
lend themselves to. recursive solutions--one of the
simplest of these is the computation of a factorial.
With a high level computer language that supports
recursion, a factorial algorithm could be implemented
in the following two statements:

255

PROCEDURE FACT(N)

FACT =1
IF N = 1 THEN RETURN
ELSE FACT = N * FACT(N-1)

If the 41C had a large enough operational stack and
return stack, a factorial routine could be written as
follows:

01 LBL "FCT"

02 ENTER#

03 DSE X

04 XEQ "FCT"

05 X=07?

06 SIGN

07 *
08 RTN

The zero test and SIGN merely prevent multipTication by
zero. This routine correctly calculates the factorial
of 1, 2, or 3 but fails for larger numbers, because all
four stack registers are used. By using the PUSH and
POP routines (and the IRX initialization routine) to
form an indefinitely long stack in memory, and the LRR
and SRR routines to provide an extended return stack,

a recursive factorial routine can easily be written for
the HP-41.

Example 4: This program is given for illustrative
purposes only. Because of its simplicity, it is a good
example of recursive programming techniques; however,
it obviously has no use as a computational tool since
the 41C FACT function is hundreds of times faster and
uses no data registers.

Both the return stack management routines and the
‘infinite' stack routines need initialization before
FCT can be run. To evaluate up through 69!, execute
the following:

SIZE > 98 (=n+ 3+ 2 * INT (n/5))
XEQ "IRX"

To evaluate factorials, just enter an integer between
1 and 69 and XEQ "FCT". The registers do not have to
be re-initialized unless the program is stopped before
completion or if register 00 or the highest two data
registers are altered.

APPLICATION PROGRAM FOR:

APPLICATION PROGRAM 2 FOR [}

If‘your recursive program calls itself from only one
point, then the return addresses stored by ELE are
redundant. This means that there is probably a simple
nonrecursive looping solution to your problem, but if
you want to use recursion you need not pay LRR's heavy
penalty in register usage.

The LRS (lengthen return stack with single return
address) and SRS (shorten return stack with single
return address) supportive routines are similar to LRR
and SRR with the following exceptions. [CRis called
only once, at the fifth level. LRS assumes that all
return addresses are identical. SRS calls Elevery
five levels as does SRR, but it always places the same

BIeLBL “FCT*

82 XEQ "LRR" 17 STO IND 88
93 XEQ -PUSH" 18 ISG @@
84 DSE X 19 ==
85 670 21 28 RTH
86 ¥=8?
87 SIGN 21+LBL "POP-
88 G610 22 22 DSE 6@
23 =
89+LBL 21 24 RCL IND 08
18 ¥EB “FCT" 25 RTH

11lBL 22 26eLBL "IHIT®
12 XEQ -POP- 27 E

13 28 ST0 86
14 XEQ "SRR" 29 XE@ "IRX"
15 RTH 38 END

{6¢LBL “PUSH"

While the factorial program has a simpler non-recursive
solution on the 41C, there are many routines that are
extremely difficult to solve unless recursive methods
are used. An example of this is the Towers of Hanoi
program by Harry Bertuccelli (3994), covered elsewhere
in this manual.

256 PP C ROM USERS MANUAL

return pointers in status registers a and b.

the top three data registers are used.

required for ISX (initialize for single return address
execution).

Ao
® APPLICATION PROGRAM FOR: m
S BleLBL IS¥" 46 CT0 81
= a2 ¥ROM "5
93 DSE ¥ 47eLBL 82
=z 8 . 8 E
- 85 ST0 IND ¥ 49 -
a 86 Rt 58 FC2C 14
bt 97 Rt 51 GTO 94
88 RTH 52 % L
P 53 X WD L
a B9¢LBL "LRS" 54 ST+ IND L
19 SF 14 55 5
11 GTo 99 56 X=Y?
57 CT0 03
12¢LBL SRS 53 Rt
13 CF 14 59 Rt
68 RTH
14¢LBL 89
15 RCL ¢ 614LBL 83
16 5T0 { 62 Rt
17 “Foeser 63 Rt
18 X0 [64 LASTX
19 %O 4 65 2
28 CF 82 66 -
21 CF 83 67 GT0 “LR"
22 %3 d
23 ENTERt 634LBL A4
24 INT §9 ST0 [
25 HHS 78 %0 L
26 %Y 71 ST- IND L
27 SIGN 72 RDM
28 RIN 7IRCL IND L
297 74 %=07
3| STEY 75 670 D L
NEOL 76 %=07
324 77 C10 85
3 -E 785
341 79 MOD
15 INT 89 X8?
36 64 81 CT0 85
37 NOD 82 %¢ [
38 SF 25 83 CLA
9 CLA g4 2
85 -
484LBL 91 86 CTO "SR*
41 RCL IND X
42 FC? 25 g7eLBL 85
43 €10 82 88 RDN
O L 89 END
45+

No input is

APPLICATION PROGRAM FOR: E
A1+LBL "SuB2- 12¢(BL 82
82 £2 13 XEQ “LRS-
83 / 14 XEQ 1
84 XEQ “ISk" 15 XEQ "5RS"
16 VIEN X
85¢LBL @1
86 YIEW X 17+LBL 83
87 1S ¥ 12 DSE ¥
a8 GT0 82 19 RTN
89 TONE 9 28 PSE
18 INT 21 TONE 5
11 GTO 83 22 CLD
23 END

The modified versions of SUB2 and FCT shown here use

LRS and SRS.

This saves registers and increases speed.

Both SUBZ and FCT satisfy the essential constraint
that there is only one XEQ instruction that is

recursive.

Because of this constraint it is simplest

to surround the recursive XEQ instruction with XEQ
"LRS" above and XEQ "SRS" below.

11 XE@ "5RS®

f2+LBL 22 27 E
13 XEQ ~POP- 28 ST0 oa
4 * 29 XEB "ISX*
15 RN 38 END

-

@ APPLICATION PROGRAM FOR:

S @leLBL *FCT" 164LBL ~PUSH-

= 82 XEQ “PUSH- 17 STO IND 89
83 DSE X 18 156 98

3 84 610 21 19 -

- 85 X=8? 20 RTH

a 86 SIGH

S 87 670 22 21¢LBL ~POP

« 22 DSE 88

= BgeLBL 21 23 ="

@ #9 XEQ "LRS" 24 RCL IND 0@
18 XE@ “FCT® 25 RTH

26eLBL "INIT-

LINE BY LINE ANALYSIS OF

Status registers a and b contain the program pointer
and six return addresses - each of these are two bytes

(16) Tong.

In the following analysis, a letter "P"

will be used to represent each byte of the program
pointer, a digit "1" for each byte of the first
return address, a "2" for the second return address and

S0 on.
following configuration:

Using this notation, registers a and b have the

b

2{1{1}|P|P
616(5(5141413] a

To extend the return stack, only the second through the
sixth return addresses must be stored- the first return
address provides a return to the program that called

@3 or ER®., and the pointer just contains the abso-
lute address of the program step where register b
was recalled. The five return addresses that are

STACK AND ALPHA REGISTER ANALYSIS FoR [GR

[TTTTTT]

=
o
—
— — -
= = . =]
Dloe = * =
o - - »* -
~1° m - et d * ™
= = * =]
Nt S 2 1 DS S D =D # D E
e = R S I e R R e T R B R i T
] R e o X ol O o
O e 0D Y D vt O D W LD D P 00 O O vt O T
FPN NN MMM MMM P e o o
1
|
+ 1+ |+ [+]+ | alo|x B [k 1x
[« oo |® X ¥ |x
1 ¥ X |*
= — Lo Sl Lonl &S o 3 & 30 B
(aV] (V] [aV] [aN] {qV¥] £ 3 X §X
[aN} aN] [aF¥] [Q¥] Q] fa T (o} (ol oW
[ap% (s 192] [3p) [ep] [a T} T [« Fa B
(58] (s2] (ap] {901 {30] (a0’ Tapl (a7 Lopl Lop] —y
<t |[<F << <<t o]
< < | <t] < <t | N e e o
= LO JLO JLOJLO FLOJLOT LOJLO | OO O] 8
LO JLO JLOSLO [LO| LOF LOILO O [On oy o)
(Vo] Vel (Vo {¥e] [Va! {Ve [Vo] (Vo] Iepl(op] o2 Nop
O RONOO RO O ORO | <<t =t] <
H A+ H]+
LY
Loy
o WO
O
+
a.

L
n
n
]
n
_n
n
n
n
n
n
nt+l
ntl
n+l
nt+l
ntl
ntl

|

Yo

Y
0655443
0655443

Y
32211PP

Yo
Y

7y
Ly
Yn
Yg
Yo
Y

Yo

Ly

Z

Zo
Zo
To
Io
n
Lg
Zo
Zo

Zo

Zg

7o

To

To

To

H e

To
Tg

Ta
6655443
Ty
To
To

To

o
[

=
]

Routine Listing For:

264LBL "LR"

27 SIGH 37 Is6 L

28 RIN 3 =

29 "4 39 “frkrkee
38 RCL a 49 570 1
50N 41 ASTO IND L
32 RN 42 RN

3 ROL D 43 CLA
MR L 44 RTH

35 870 1

36 ASTO INB L

PPC ROM USERS MANUAL

257

stored by E@constitute ten bytes, five of which are
stored in each register of the pair. Since some of the
bytes may be nulls (hex 00), and they are stored
directly from the ALPHA register using ASTO (which

will store six characters, but skips over leading
nulls), an alpha character delimiter must be used

to force ASTO to take the correct five bytes. This
delimiter is the character "+", which is the sixth

byte stored in each register. After execution of (KW,
the register pair contains the following information
stored as alpha strings:

"+66554"
"+43322"

Reg n
Reg n+ 1 :

The ER routine expects to find the return addresses
store in this form and merges these addresses onto
the current program pointer and first return address
and then stores the results into registers a and b.

The majority of both routines consists of ALPHA regis-
ter shifting--to analyze this in detail, it is probably
easiest to use a STACK/ALPHA analysis sheet such as the
one in PPC TECHNICAL NOTES, VIN3P38. Analysis sheets
for (€8 and BB are printed in this manual. A blank
analysis sheet may be found on page 259 of the manual.

CONTRIBUTORS HISTORY FOR

Harry Bertuccelli (3994) wrote the first subroutine
level extension routines (see PPC CALCULATOR JOURNAL,
VINGP8). Paul Lind (6157) completely rewrote
and EX®, and Roger Hill (4940) independently wrote
virtually identical routines.

The application programs were written by Harry
Bertuccelli and Keith Jarett (4360) based on Paul
Lind's idea.

FURTHER ASSISTANCE ON

Call Paul Lind (6157) at (206) 525-1033.
Call Harry Bertuccelli (3994) at (213) 846-6390.

NOTES

258

TECHNICAL

XROM: 20,02

Stack Usage:

DETAILS

Flag Usage: NONE USED

o T: USED 04:

1 Z: PREVIOUS T 05:

2 Y: PREVIOUS Z 06:

3 X: PREVIOUS Y 07:

w Ly X+ 1 08:
Alpha Register Usage: 09:

5 M: 10:

6 N:

7 0 ALL CLEARED

8 P: 25:
Other Status Registers: Display Mode: UNCHANGED

s Q: NOT USED

10 F: NOT USED

11 a: NOT USED Angular Mode: UNCHANGED

12 b: NOT USED

13 ¢: NOT USED

14 d: NOT USED Unused Subroutine Levels:

cowrsn SBLRS
TREG: UNCHANGED Global Labels Called:

Data Registers:

ROO: TWO CONSECUTIVE
REGISTERS SPECIFIED
BY THE USER ARE
RO6: ALTERED

RO7:
RO8:

Direct Secondary
NONE NONE

Local Labels In This
Routine:

NONE

Execution Time: .7 second

S.

Peripherals Required: NONE

Interruptibie? YES
Execute Anytime? NO
[SR |
Bytes In RAM: 40

Program File:

Registers To Copy: 40

Other Comments:

PP C ROM USERS MANUAL

—

R22: Robert R40: Joe

R23: Jeffer R41: Roblins
R24: son R42: on

R25: 261.2347 R43: 756.4438
R26: Fresno R44: Peoria
R27: CA R45: L

To further exchange Mary Adams and James Masterson
(records 1 and 5) key 1 ENTER} 5 and XEQ "B ™.
check the data registers to see that the proper
exchange has been made.

Then

APPLICATION PROGRAM 1 FOR [N}
Matrix Support Routines RRM AND MIO
The routines called RRM and MIO are provided as matrix

support routines. RRM calls the ROM routines @,
B, (83, b, 3@, and 3. MO calls [and

s .

The program titied RRM will transform a matrix into
row reduced echelon form. This means the program will
calculate determinants and inverses and will solve

systems of equatlions. The RRM program is only 70
lines long (104 bytes), and handles the three matrix
problems, either individually or simultaneously, and
uses the technique known as partial pivoting which
helps reduce round-off error. Moreover, the only
ITmitation on the size of the matrices is the number
of avallable data registers. The RRM program can even
be applied to more than one matrix In data memory. I[f
more than 319 registers ever become avallable for the
HP-41C the RRM program may be run without any
modifications to handle any size matrix.

Given our present |imitation of 319 registers RRM can
be used to compute the determinant of a 17x17 matrix,
to solve a system of up to 16 linear equations in 16
unknowns, or compute the Inverse of a 12x12 matfrix.
To solve any of these problems simply load the
appropriate matrix in the 41C and XEQ "RRM". The
desired result, whether it be a determinant or an
Inverse or the solution to a system of equations will
be calculated and ieft in the 41C.

The second program called MIO is to be used for matrix
input/output operations that will automatically store
or recall the entries of a matrix consistent with the
requirements of the ROM matrix routines D - EH.
Although RRM and MIO can be merged into one program,
the reason for writing two separate mairix modules is
to handle as large a matrix as possible. RRM does all
the hard work; MIO 1s only an example of an
input/output scheme.

I+ shouid be pointed out that it is possible fo use
other methods to solve the same matrix problems, but
for completely automatic operation as RRM and MIO
provide we have approached the theoretical 1imit. I[f
you plan on writing your own matrix routines that will
call @D - @B the following suggestions will be
helpful.

1. OB - B3 require the starting register of the
matrix to be stored in RO7 and the number of columns
In the matrix be stored in R08. Matrices are stored
row by row with each row occupying a block of
consecutive registers. The entire matrix Is stored as
one large block of consecutlve registers.

2. Although B - @ do not require the number of
rows, the number of rows, if used, should be stored in

262

R0O9. Later you may find matrix uses for HIB and LI}
which do use R09.

3. To achleve maxImum size start storing the matrix
entries in R10 on up and use registers R06 and below
for program scratch area.

4. Given the above 3 constralnts consider further the
storage requirements. For the determinant problem, to
store a 17x17 matrix requires 289 registers. For the
systems of equations problem to hold a 16x16 matrix
and one extra column for the constants requires 16x17=
272 registers. For the inverse, unless you are
calculating the Inverse in place, you will need to
store two matrices, one belng the original and the
other being a form of the identity matrix. Since
12x12 times 2 = 144x2 = 288, you will need 288
registers for the Inverse of a 12x12 matrix.

Thus you will need a maximum of 289 registers to solve
all 3 types of problems. |f you are using RO0-R09 for
the registers your program requires then 299 registers
will already be accounted for before you even start to
enter your program. Since 319 - 299 = 20, your
program may use approximately 20x7 = 140 bytes.

Both RRM and MI0O have been restricted to use less than
140 bytes; RRM is 104 bytes and MIO is 129 bytes. |If
you are not particular about the maximum capacity
avallable you can combine these two programs and add
many of your own bells and whistles to MIO and still
have enough data memory avallable to perform some
fancy operations on 10x10 matrices. |If RRM is used
alone you will have 295 registers available for matrix
data. |If MIO is used alone 291 data registers will be
avallable for matrix data. When RRM and MIO are
combined 276 registers are available.

Three examples follow which illustrate the use of RRM
and MIO. To run the examples, first perform "MEMORY
LOST" and then S!ZE 031 (minimum). Read in the MIO
program first and then GTO .. Next read in the RRM
program and GTO .. again. Then key CAT 1 and
immediately press R/S so that you are in the MIQ
program. Switching to USER mode makes the following
functions available on keys A, B, C.

New
Matrix

Recal |
(Y, Xx)

Review
Matrix

Problem 1: Solve the system of equations:

-5X + 10Y + 152 = 5
2X+ Y+ Z=6
X+ 3¥Y - 22=13

Perform the following operations.

Press Function See In Display
A Inttialization for "START REG. ?"
a new matrix
10 R/S Start storing matrix npiM: R2YCon
In R10 and above
3 ENTERY Key in dimension as 3 -TONE 9-
4 R/S rows and 4 columns. "(1,1)="

PP C ROM USERS MANUAL

We next enter one by one the entries of the
coefficient matrix starting with the first row.

-5 10 15 i 5
i

2 1 1 1 6
1

1 3 -2) 13

The program will sound TONE 9 when 1t is ready for the
next entry and will prompt with "(row,column)=?" where
row and column are numbers. Key in the next
coefficient followed by R/S. For example, the display
should still show "(1,1)=?" and the first row would
be keyed in as:

See in Display Press
"(1,1)=2" 5 CHS R/S
"(1,2)=3" 10 R/S
"(1,3)=3" 15 R/S
"(1,4)=2" 5 R/S
"(z,1)=2"

Continue keying in the 2nd and 3rd rows. After keying
in 13 and pressing R/S for the last (3,4) entry the
program will sound BEEP to Indicate you should be
finished entering the data.

You may now verify the data Input by pressing B,

First however, store a number (say 4) in R0O5 for the
number of decimal places to be displayed. Pressing B
will automatically run through the entire matrix. I[f
a printer is connected and turned on key B will give a
printout of the entire matrix. I|f you prefer
sclentific notation change line 43 in the MIO program
from FIX IND 05 to SCI IND 05. A BEEP will sound when
the output is finished.

You may also Inspect any particular element using key
C. Key In the row and column numbers of the matrix
element you wish to view and press C. For example, to
verify that the (3,2) element (s 3, key 3 ENTER} 2
and press C. You should first see "R19.0000" and then
"(3,2)=3.0000". The Indication here is that the (3,2)
element Is stored in register R19 and is equal to 3.

Note: If you make an Incorrect entry during the
automatic input phase simply continue entering
elements as directed by the display. After all
entries have been made you can use key C to make
corrections, since pressing C ftells you in which
register you should manually store the element in
question.

To solve the above system simply XEQ "RRM"., This
first example will run in about 34 seconds. When the
program ends key CAT 1 R/S to insure you are in the
MIO program and then press B in USER mode to display
the final matrix which Is:

1 0 0 ! 2
]

o 1 0 | 3
]

0 0 1 4 -1

PPC ROM USERS MANUAL

The solution 1s X=2, Y=3, and Z=-1. The determinant
of the square coefficient matrix Is stored in RO1.
det. = 150.0000

Problem 2: Find the Inverse of the matrix:

2 =3 1
3 2 -t
5 =2 1

To use RRM to find the inverse of a square matrix we
form the auxlllary matrix which consists of the
original matrix augmented by an Tdentity matrix of the

same size., For this problem we will Input the 3x6
matrix:
2 -3 1 11 0 0
1]
302 -1 1 0 1 0
!
]
5 =2 1 v 00 1
Press Function See In Display
A Initiallzattion for "START REG. ?"
a new matrix
10 R/S Start storing matrix wpimM: R2fcon
tn R10 and beyond
3 ENTER* Key tn size as 3 rows -TONE 9-
6 R/S and 6 columns. "(1,1)=3n

Now continue as in the first example and enter the
matrix starting with the first row. Then XEQ "RRM",
The program will finish in about 45 seconds. Key CAT
1 R/S when the program finishes and press B to display
the result:

1 o o ! 0 0.1250 0.1250
[}

o 1 0 E -1 -0.3750 0.6250
]

o 0 1 4 -1.375 1.6250

The right hand 3x3 matrix Is the Inverse of the
original matrix. The determinant of the original
matrix Is found by recalling RO1., det. = 8.0000

Problem 3: Use RRM to simultaneousiy solve the
following system of equations, find the inverse of the
coefficient matrix, and find the determinant of the
coefficient matrix.

14X + 2Y - 6Z = 9
-4X + Y +92 =73
6X =~ 4Y + 3Z = -4
The matrix to be entered will consist of the original

coefficient matrix augmented by the Identity matrix
and augmented by the final cotumn of constants. This
Is a 3x7 matrix.

263

14 2 -6 4, 1 0 0 i 9
]
-4 o ' o 1 0 1 3
)]
6 -4 3 1 0 0 1 1 -4
Press Function See In Display
A Inftialization for "START REG. 2"
a new matrix
10 R/S Start storing matrix "pIM: R?bcem
in R10 and beyond
3 ENTERY Key in dimension as 3 -TONE 9-
7 R/S rows and 7 columns "(1,1)=2"

Next enter the rows of the above matrix as directed by
the display. Then simply XEQ "RRM", When the program
ends (about 49 seconds) key CAT 1 R/S. Then press B
to display the matrix:

10 0 0.0631 0.0291 0.0388 | 0.5000
]

0 1 0 1-0.1068 0.1262 -0.1650 1 2.0000
]]

O 0 11 0.0162 0.1100 0.0356 | 0.3333

The inverse of the original matrix Is the 3x3 matrix
in the middle. The ROM routine EI# can be used to
convert these decimals to fractions. For the
mathematical purist who then wishes to see the exact
inverse:

13/206 3/103 4/103
11/103 13/103 -17/103
5/309 34/309 11/309

The fast column contalns the solutions of the system

of equations and would be interpreted as X=1/2, Y=2,

Z=1/3. The determinant of the coefficient matrix can
be recalled from R0O!1. det. = 618.

Some final comments about RRM are in order. I[f you
are only Interested in the determinant of a matrix
then a square matrix is all that RRM requires. In
this case the matrix need not be augmented by any
extra columns., RRM always leaves the determinant In

RO1 but this can be changed to any register by
changing lines 06, 34, 50, and 52 In the RRM listing.

Systems of equations are solved as In problem 1,
inverses are solved as in problem 2, and the
combination of inverse and a system of equations is
solved as in problem 3. RRM is just as useful for
systems of equations which do not have unique
solutions. |f the determinant in RO1 Is O (or is so
small as to be considered 0) then the system of
equations may have no solutions or an Infinite number
of solutions. Since RRM returns the row reduced
echelon form, the final matrix will always be row
equivalent to the original. The final matrix may then
be used to tell immediately where parameters should be
Inserted and any and all solutions may then be
immediately determined. The coefficient matrix need
not be square for RRM to operate on it.

264

Line By Line Analysis of RRM:

Lires 02-07 initialize the program by storing a 1 in
RO1 for the determinant and setting flag F10 for the
X3 routine.

Lines 08-12 make R03 & R04 point to the next plivot
position.

Lines‘13-20 determine when the program ends by
checking if either a row or column boundary has been
exceeded.

Lines 21-31 set up the block control word for the [BX |
routine,

Lines 32-36 find the pivot number and check if all the
remaining column entries are zero In which case the
determinant must be zero and only the next column is
Incremented by branching to LBL 06.

Lines 37-43 make a 1
number.

in the row containing the pivot

Lines 44-48 check if the pivot number is already in
the pivot position. Lines 049-052 perform a row
interchange to move the pivot to the true pivot
position and adjust the sign of the determinant
accordingly.

Lines 53-70 make O's in the current pivot column in
all rows except the pivot row.

§ APPLICATION PROGRAM FOR: m
W BLeLEL “RRM® 3
<a
1Y)
=
=Y
w . 5
W . 5T @
S #7 9F 18
BE+LBL 85
o B9 1% &3
@ 1ReLEL 85
i1 156 84

12 -

13 BC

14
s
i

if

o

18 8

L S i

[I R |

o
Gl Tod wee GGy B0) QT

nn

Ry

RCL 82
x=7?

6T 87
RCL 82

&4 RCL 84

65 RROM "M
Bl 86 RIH

32 ¥ROM "BX- Bf RCLINE T
33 RCL IND I 58 CHE

34 57+ @t 55 XROM "W~
3 =87 7

L= ot~ S)

PP C ROM USERS MANUAL

APPLICATION PROGRAM FOR:

BielBL "

BAR CODE ON PAGE 480

il
45 AYIEH
4e4LBL B4
47 156 84

45 =»

2% 100
&3

86 Y 53/
48 RT0 “BE 54+
41 RTH 55 RTH

LINE BY LINE ANALYSIS oF XD

LB feeds Into the block exchange routine EB after
setting up the two block control words for the two
rows by calling the local label LBL 00 twice. If
R07=s=starting register of the matrix and R08=c=the
number of columns in the matrix and i=the row number
of the 1th row, then with i In X, LBL 00 computes
bbb.eee=the block contro! word for row f.

bbb = s + c¥(i-1) eee = s + c¥i - 1

CONTRIBUTORS HISTORY FOR [}

The EHH routine and documentation are by John Kennedy
(918).

FURTHER AsSISTANCE oN LD

phone: (213) 472-3110 evenings
(213) 447-6574 eve,

John Kennedy (918)

Richard Schwartz (2289) phone:

TECHNICAL

XROM: 20, 33

Stack Usage:

o T: used
1 7: used
2 Y: used
3 X: used
4 |1 used

KN

Alpha Register Usage:

5 M: not used
6 N: not used
7 0: not used

8 P: not used

DETATLS

depends on
matrix size

Flag Usage:

04: not used
05: not used
06: not used
07: not used
08: not used
09: not used
10: not used
25: not used

Other Status Registers:

Display Mode:

9 Q: not used not used

10 F: not used

11 a: not used Angular Mode:

12 b: not used not used

13 ¢: not used

14 d: not used Unused Subroutine Levels:

15 e: not used 4
LREG: not used Global Labels Called:
Data Registers: Direct Secondary
RO0: not used none none

R06: not used

RO7: s=start reg. matrix
RO8: c=# columns In matrix
R09: not used

R10: not used

falls into
3 routine

R11: not used
R12: not used

Local Labels In This
Routine:

00

Execution Time:

depends on matrix size.
1.07C + 0.56 seconds where C = # columns in matrix

Peripherals Required:

none

Interruptible? vyes
Execute Anytime? no
Program File: B
Bytes In RAM: 56

Registers To Copy: 61

Other Comments:

PP C ROM USERS MANUAL

265

X

- TIE!

- TIC2

- TIC3

1 g.00

¥: -1,508 10 1.504
¥: 9.888 TQ 360.688
4%=18.908

Figure 22. Plot of the function Y = sin X +
(L/3)sin 3X from Example 19 with tic marks
printed on tne axis every 30 degrees. Execu-
tion time: 18 min 19 sec.

J.4. Automatic Computation of Y Limits of a

function,

In some cases, a user may wish to plot a
function whose penavior is unknown in the
desired range of X values. Here is a program
written by Jack Sutton (5622) which accepts X
inputs and will print tne Y minimum and Y
maximum of a given function for each 10 val-
ues of X between tne X limits, inclusive.
This program uses the ROM routine [EE (Block
Extremes) to find tne Y limits for each 1l0-
value range.

320 PP C ROM USERS

()]
hn APPLICATION PROGRAM FOR: m
w BLeLBL ~MAXMIN® 39 156 88
2 82 CF 21 49 GTO0 “CAL"
& 87 .814 414LBL 82
= #4 ¥ROM =BC" 42 -70 -
85 ¥ MIN?, R/§" 43 RCL 11
W 96 PRONFT 44 RCL 13
S 87 ST0 11 45 -
g 88 -¥% MAX?, R/S" 46 MRCL %
& #9 PROMPT 47 -
@ 18 5T0 12 48 PRA
11 *% INC?, R/S" 49 RCL 80
12 PRONPT 59 1
13 570 13 51 -
14 AN 52 INT
15 "F(X) HAME* 53 1 E3
16 *F7, R/S" 54 /
17 PROMPT 55 1
18 RSTO 14 56 +
19 AOFF 57 XRON -BX
20 5F 2 58 XEQ B8
21¢LBL "BLK" 59 RLL 12
22 “FRON - 68 RCL 11
27 ARCL 11 1 ¥{=1?
24 PRA 62 GT0 "BLK"
25 1.681 1 /DY
26 STO 89 64 ~DONE*
27 ¥ROM -BC" 65 PRA
28¢LBL “CAL® 66 XROM “PO*
29 RCL 12 67 RTN
38 RCL 11 QeLEL 08
31 Y7 69 "HIN="
12 70 82 78 ARCL %
33 ¥EQ IND 14 71 PRA
34 STO IND @@ 2 "HAX="
35 RCL 11 73 BRCL ¥
36 RCL 13 74 PRA
7+ 75 RDY
38 ST0 11 76 .END.

Thne barcode for MAXMIN appears in Appendix N.

Example 20, JUse tne MAXMIWN progran to find
Tne ¥ Limits for the function Y=3*XT2+6*X+4
petween the £ values of -10 and lu, with X
increment of X=0.2:

First, write tne program for the function to
be analyzed:

8leLBL “POLY-
82 ST0 ¥
83 ¥t2
84 3
85 *

86 O
7 6
B8 *
09 +

18 4
i+

12 END

MANUAL

Now, XEQ MAXMIN and enter
prompted:

the data when

KEYS TROKES DISPLAY RESULT
XEQ MAXMIN X MIN?, R/S Prompt for Xmin

10 CHs R/S X MAX?, R/S Store Xmin, prompt
CHS R/3 X INC?, R/S Store Xmax, prompt
.1 R/S F(X) NAME?, R/3 3tore Xinc, prompt
POLY R/S3 -——— Store Fcn nane,

then print Ymin,¥Ymax
for eacn 10 X values

FROM -18.800 FRON 2.088
10 -8.200 - T0 3.808 -
HIN=136.520 HIH=28. 808
HAX=244.080 KAZ=78.120
FROM -G.000 FROM 4.008
T0 -6.208 - T0 5.808 :
HIN=82.128 NIN=76.008
NA¥=148.000 NAX=133.720
FROM -6.080 FROK 6.8608
T0 -4.208 - 10 7.860 -
HIN=31.728 HIN=143.080
HAX=76. 808 MR¥=233.328
FROM -4.0068 FROM 8. 008
T0 -2.208 - T0 9.880 -
NIN=5.328 NIN=244. 0608
NAX=28. 880 NAX=358.928
FRON -2.080 FRON 10,808
T0 -0.288 - T0 18.869 :
NIN={.008 HIN=364.080
HAxX=4.088 MAX=364.090
FROM 6.008

To 1.808 : DONE
NIN=4.800

NAx=24.528

Figuare 23. Jutput of tine MAXMIN program
snowing Y linits of tne function in Example
20. hese values may now be used to select
the Yunin and Y max inputs to M@ for plottinyg.
Execution time: 3 min lo sec

J.5, Plots Using Multiple Paper wWidths -
“3uperplotting’.

Wwhen higher plot resolution is desired in tne
Y Jdirection (across the printer paper) than
can be obtained with 168 columns, it is pos-
sible to plot graphs witn @@ wnich reguire
multiple widtns of printer paper. [ais nas
been referred to as ’“superplotting’. The rou-
tine snown below takes care of the nhousekeep-
ing involved in printing eacn section of the
plot, re-initializes tne inputs and incre-
ments the Y limits., The only difference be~
tween tne inputs for tnis prograam and for 0@
is tnat Ymax is stored in R35 instead of RO1,
and a Y increment value (tne desired width of
eacn printed plot section) is stored in R36.
After all the function names are stored,
simply set tne limits and XEQ SMP:

PP C ROM USERS MANUAL

l. Place the function names in R15 and up

2. Set disappearing overflow mode (CF05,5F06)
so functions jump from strip to strip

3. Store Xmin, Xmax and Xinc in R08,R09 & R10

4, Store plot width in RO2

5. Store ¥Ymin in R00, Ymax in R35 and Yinc in
R36

6. Enter the number of functions to be plot-
ted

7. XEQ SMP, and the plot is printed, a strip
at a time, moving from Ymin to Ymax in
steps egual to the Y increment stored in
R36.

The SMP listing is as follows:

APPLICATION PROGRAM FOR: m
@1¢LBL “5HP" l&@ superpTotiing

82 510 38 Save # fcns in R38
83 RCL a8

84 ST0 37

85 RCL 68

86 RCL 36
97 +

88 570 8
89¢LBL 88

18 RCL 38

11 XROM -MP-
12 RCL 81

13 RCL 35

14 ¥(=Y?

15 RTH

16 RDN

17 ST0 @@

18 RCL 36

19 5T+ 81

208 RCL 37

21 §T0 88
22 GTO 88
23¢LBL -5HP"
24 570 45
25 RCL 83

26 STO 44
27 RCL 98
28 RCL 43

29 +

38 570 81
JleLBL 81

32 RCL 45

33 XROM -HP"
34 RCL At

Xmin in R37

Ymin + Yincrement
Restore # fcns
Call to I3

If done, stop

If not, increment
Ymin, Ymax

C@ superplotting
Save # fcns in R45

X min in R44

Ymin + Yincrement
Restore # fcns
Call to CIA

If done, stop

If not, increment
Ymin, Ymax

Tne first plot strip nas Ymin=Ymin and Ymax=
Yain+yinc. The next strip nas Ymin= the prev-
ious Ymax and Ymax=(new Ymin)+Yinc. Tnis pro~
cess repeats until the current Ymax exceeds
tnat wnica was stored into R35. If Yinc is
not cnosen properly, tne last plot strip will
exceed tne designated upper limit in the Y
direction, put the excess may be removed by
tne user witn a scissors if so desired.

321

NP - NEXT PRIME

This routine will search to find prime factors of an
Integer n. More specifically, the routine begins its
search from a starting trial divisor that the user
inputs. EI returns only the next divisor of n.
When BB Is iterated on itself, starting with 2 as
the first trial divisor, all the prime factors of n
can be found one by one In increasing order.
Intermediate processing can be done between successlive
prime factors and the routine MA@ can easily be
returned to in order to continue the factorization of
n. EB Is valld for 10-digit integers n.

Example 1: Find the prime factors of 27,930.

The starting trial divisor will be 2.
Do: See: Result:

27930 ENTER} 2 enter Initial inputs

XEQ """ 2 first prime factor

R/S 3 second prime factor
R/S 5 third prime factor

R/S 7 fourth prime factor
R/S 7 fifth prime factor

R/S 19 sixth prime factor

R/S 1 routine finished

The factor just before 1 is returned Is the last prime
factor. For this example,

27,930 = 2%3*5%7%7%19
Example 2: The number 40,013,933 is known to have
only two prime factors, one of which Is greater than

5000. Find the two factors of 40,013,933,

We may start with the next odd number greater than
5000.

Do: See: Result:

40013933 ENTER* 5001 Enter initial inputs
XEQ »@E@" 5,309 after 41 seconds

R/S 7,537 second factor

R/S 1 routine finished

The two factors of 40,013,933 are 5,309 and 7,537.

COMPLETE INSTRUCTIONS FOR I

€ will find the next divisor of an Integer n
starting from a given trlal divisor d which may be 2
or any odd number. The search does not extend beyond
the square root of n and If no divisor Is found up to
that point then n is returned. The divisor the
routine returns will be prime provided n has no prime
factors strictly smaller than d. Otherwise the
divisor returned need not be prime. n may be any
10-digit integer.

1) The Integer n may be any positive integer greater
than or equal to 1. The trial divisor d must be 2 or
an odd integer greater than 2.

and XEQ "@@".

3) The routine ends with n in Y and p In X where p is
a divisor of n. p Is also returned in LAST X.

2) Key n ENTER} d

346

4) |f GO is executed from the keyboard, when the
next divisor Is returned, Immediately pressing R/S
will cause EI to continue searching for the next
factor. The divisor returned may repeat, but when the
routine returns 1 there are no more factors of n.

Example 3: Determine whether or not 99,991 Is prime.

@ can be used to test potential primes by choosing
2 as the starting trial divlsor. If the original

number Is returned then that number s prime. Key
99991 ENTERY 2 and XEQ "EE@". 99,991 Is returned
after about 41 seconds and hence 99,991 is prime.
MORE EXAMPLES OF [N

Example 4: Find all the prime factors of
4,019,788,151.

The starting trial divisor will be 2.

Do: See: Result:

4019788151

ENTERY 2 enter Initlal Inputs
XEQ "ER@" 37 first prime factor
R/S 89 second prime factor
R/S 163 third prime factor
R/S 7,489 fourth prime factor
R/S 1 routine finished

4,019,788,151 = 37%89%163*7489.

APPLICATION PROGRAM 1 FORrR N3

The following routine called PNG for Prime Number
Generator makes use of @I to generate prime numbers.
Input to this routine Is an odd number which serves as
the starting point for the search for primes. If a
printer is connected the generated primes will be

printed.

LBL*PNG
2
LBL 01
XROM 0@
X=Y?
VIEW X
CLX
2
ST + Y
GTO 01

Key In any odd number and XEQ "PNG", The following
| ist of primes was obtained by keying In 3 and XEQ
"PNG". Press R/S to end the routine when you are
+ired of looking at prime numbers.

PP C ROM USERS MANUAL

—

LIST OF PRIMES

Jojiet 229 373 1 521 | 673 | 829
3 | 183 | 233} 379 | 523 | 677 | 853
7 1187 | 239} 383 | 341 | 83 | 857
f1 | 189 | 241] 389 | 547 | 691 | 859
13 | 13| 251 397 § 557 | 701 | 863
17 | 127 | 257 | 481 | 563 | 7@9 | 877
19 | 131 | 263 § 489 1 569 | 719 | 88t
23 V137 | 269 | 419 | 57 727 | 883
29 | 139 | 271) 421 | 577 | 733 | 887
30| 149 | 277 | 421 | 587 | 739 | 967
30 L IS1 | 281) 433 | 393 | 743 | 9t
41 | 157 | 283) 4391 599] 751 | 919
43 1 163 | 293 | 443 | 66t | 757 | 929
7 167 | 3B7 | 443 | 687 | 761 | 937
5 172] i 57| 6131 769 | 94!
59 1179 | 312] 461 | 817 | 773 | 947
61 | 181 | 317 } 463 | 619 | 787 | 953
67 | 191 | 331] 467 | 831 | 797 | 967
70 193) 337) 479 | 64t | 89 | 971
73 1 197 | 347 | 487 | 643 | 811 { 977
791 199] 39| 491 | 647 | 821 | 983
B3] 211) 353) 499 | 653 | 823 | 99t
89 | 223 | 359 | se3 | 659 | gaz | 997

7| 227 | 367 | ses | eel | a29 | 1889
LIST OF LARGE PRIMES
9,999,394, qs. 9,999,999,673
9,999,999,9 9,999,999, 661
9,999,999, 929 9,999,999, 531
9,999,999,881 | 9.999,999.619
3,993,999,85¢ | 9-999.993,557
9,999,999,833 | %.99%:993,511
3,999,999,817 | 9.999,999,431
9,999,995,757 [9:999,999,479
9,999,999,781 | 9.999,999,379
9,939, 999,,bq 9,999,999,371
9, 999,999,,37 9,999,999,337
9,999,999,783 | 9,99%,999.319
4,999,990,7p | 9,999.999.233
9! 999: 9991 679 9‘Q‘39 qg.:n.
List of large primes found by Richard

Nelson (1) using calls to IIA.

APPLICATION PROGRAM 2 FOR [N

Use M@ +to help evaluate the Euler Phi-function

¢ (n), the number of Iintegers smaller than and
relatively prime to n. Two Integers are called
retatively prime if there is no prime number which Is
a common factor of both integers. An equivatent
mathematical description is that the greatest common
divisor of the two Integers is 1.

The ¢ function s useful In the arithmetic of
residues modulo an integer n, or In the structures of
cyclic groups of n elements. For example, If an
Integer m is relatively prime to n, it Is invertible
modulo n and is a generator of the cyclic group of n
elements. ¢ (n) Is_also the number of Invertible
residues mod n, or the number of generators of a
cyclic group of n elements,

A closed form for ¢

$(0) = 0 by convention
¢ (1) =1 by conventlion
o (pky = pkTip-1)
d(m*n) = o(m)* ¢(n)

The program

Is glven by:

if p Is prime
1f m & n relatively prime

"PHN" glven here will determine ¢ (n)

where n is the absolute value of the Integral part of

the number found in the X-register.

In addition to

the stack, It uses two extra registers M and N (these
alpha registers may be replaced by two ordinary

registers If desired).

Reglister M contalns the

accumulation of a product which eventually bullds up
Reglster N carries successlive prime factors

to ¢ (n).

of n.

If a prime factor repeats, It is Immediately

multiplied to the product in the M reglster and the
factorization continues via
new, the factor decreased by 1 Is multiplied to the
quantity In the M reglster.
DSE X, which also detects the end of the factorization

o ;

of n.
o APPLICATION PROGRAM FOR: m
Aol
w BI¢LBL “PHH" 134LBL 83
4 82+LBL C 16 5T# [
o 83 INT 17 Rt
= 84 ABS 18 Rt
© 85 X=07 19 %ROM *HP*
w 86 RTH 28 81/ ¥
s 87 21 ENTERt
w 68 ¥=y? 22 By N
= 89 RTH 2T RCL Y
2 18 570 [24 %377
11 ENTER? 25 DSE £
12 570 © 26 GT0 23
12 ENTER® 27 REL €
14 §T+ 2 28 RTN
Exampies: ¢ (2) =1
$€(17) =16
$(41) = 40
$(697) = ¢ (17#41) = 16%40 = 640
$(289) = ¢ (17%17) = 17%16 = 272
Routine Listing For: m
984LBL ¢ 112 5O L
9941 8L “NP* 13 2
108 RCL ¥ 114 ¥=y?
181 SGRT 115 SIGH
182 LASTX 116 +
103 %0 7 117 GT0 89
1844L8L 89 118+LBL 10
185 %)7? 119 Rt
186 Rt 120 LASTA
167 &t 121 17
188 X(¥Y 122 ENTER?
189 MOD 123 RTH
118 %=97 124 5T/ ¢
111 G0 18 125670 e

PP C ROM USERS MANUAL

1f the factor is

This Is accomp!lshed by a

347

APPENDIX L - SPECIAL CHARACTERS - SC

This routine was planned to be included in
the ROM until it was replaced by the matrix
routines M1 through M5, which were felt to be
more useful, Special Characters extends the
82143A printer standard character set by an
additional 60 characters. These include sub-
scripts, superscripts, math and game symbols,
and more frequently used greek letters. A
complete list of all the symbols included
appears in table 1, below.

SC - SPECIAL CHARACTERS
standard character set

CHARACTER

» SFi8 CF1e X CHAR.
8 o o 29 =
i a2 i 38 =
2 a 2 31 £
3 3 3 32 =
4 4 " 33
3 s 5 4 vV
6 =B B 35 I
F | T 3 €
8§ 8 B 37 9
9 9 T 38 v
8 = ¥ 39 W
it ¥ ¥ 48 w
12 z 2 4 @&
13 - * 42 W
4 - - 42 0O
15 = < 44 &
6 <« « 4 ©
F Y 46 H
8 ° P 5 |
13 - 48 m
20 I 49 #
21 dx 50 W
22 d» 51 M
23 dt 2 -
24 a 3 q
25 * LI
26 - 33 o
27 ~~ %

Table 1. The complete list of new symbols ad-
ded to the printer’s standard ACCHR set by
use of the Special Characters routine. This
table was produced by the “SCDEAQO’ program.

Note that the first 18 characters, numbered

0 through 17, produce superscripts if F10 is
clear and subscripts if F1l0 is set. The re-
mainder, characters 13 through 56, are unaf-
fected by the status of flag 10. A listing of
the program to produce table 1 is presented
here:

APPLICATION PROGRAM FOR: SC

BAR CODE ON PAGE 482

B1¢LBL "SCDEMO"
82 “SC - SPECIAL"
83 =k CHARACTERS-
84 ACA

85 PRBUF

86 "~ standard ch-
87 "Faracter set”
88 AcA

@9 PRBUF

18 ADY

11 = CHARACTER"
12 ACA

13 PRBUF

14 SF {2

15 =X~

16 ACA

17 CF 12

13 - SFia CFi@ -

26 PRBUF
27 FIX @
28 CF 08
29 CF 29
38 CF 12
31 .009
32 570 68
329

34 STO 81
35+LBL 88
36 FS? 88
37 670 B2
38 1

39 SKPCHR
49+LBL B2
41 RCL @8
42 INT

43 CLA

44 ARCL ¥
45 ACA

46 3

47 SKPCHR
48 SF 12
43 RDN

a8 SF 18
91 XE@ -5C-
32 ACSPEC
53 CF 12
34 3

35 SKPCHR
36 SF 12
57 RCL 0@
38 CF 18
39 XEQ -5C°
68 RCSPEC
61 CF 12

62 3
63 SKPCHR
o4 CLA
65 ARCL a1
66 RCA
67 3
68 SKPCHR
6% SF 12
78 RCL 81
71 XE@ =SC"
72 RACSPEC
73 PRBUF
74 CF 12
731
76 ST+ 81
77 156 80
78 GT0 88
79 FS5? 00
80 GT0 83
81 18.817
82 570 9@
83 5F 0@
84 GTO 88
85eLBL 03
86 18.828
87 570 00
88+LBL 81
89 CLA
96 ARCL @9
91 ACR
9235
93 SKPCHR
94 SF 12
95 RCL 80
% XEQ “SC-
97 ACSPEC
98 CF 12
993
188 SKPCHR
181 RCL 81
182 57
183 X=Y?
184 GTO 04
185 X#Y?
186 RDN
187 ACX
188 3
189 SKPCHR
116 5F 12
t11 RDN
112 XEQ *5C"
113 RCSPEC
114¢LBL 84
115 PRBUF
116 CF 12
17 1
118 ST+ 81
119 156 @8
128 670 81
121 END

The barcode for both SC and SCDEMO appear in
appendix K of this manual.

APPENDIX L CONTINUED ON PAGE 429.

PPC ROM USERS MANUAL

423

APPENDIX L CONTINUED FROM PAGE 423.

COMPLETE INSTRUCTIONS FOR SC

Since this is a RAM program, one must first
load it into the 41C, eithner by scanning the
barcode or reading magnetic cards recorded
earlier. Now, each time a character from the
set in SC is desired, one needs only to place
the character number into X and LEQ SC. The
syntnetic text string corresponding to the
special printer character will be placed in
X, to either be placed immediately into the
print buffer by ACSPEC, or stored in a data
register for later use.

Tne first 18 characters may be printed as
either superscripts (by clearing flag 10) or
subscripts (by setting flag 10). If flag 10
is set while accessing a character which has
only one form (characters #18 - #56), the
character will not be printed correctly.
Therefore F10 should remain clear during the
use of these characters. After F1l0 is set
before executing SC, the flag is automatic-
ally cleared so no characters are accident-
ally modified.

One efficient use of SC would be to load all
the desired characters into data registers
first, and then to recall them when needed.
An example of this would be if a program
using the symbols of the six faces of dice.
Once the text strings are in six registers,
they are later recalled and ACSPEC ‘ed into
the print buffer. Thus the 3C program would
only have to be called once for each differ-
ent character desired, rather tnan each time
the character was required.

A convenient routine for exploring the special
characters is labeled PSC below:

01 LBL PSC 04 STOP
02 XEQ SC 05 PRBUF
03 ACSPEC 06 RIN

Read the SC program into the HP-41. Key the
routine and assign LBL PSC to a key. ENTER the
number of the symbol and press the PSC key. If
you want it to print, press R/S. Build up the
buffer with up to six SC symbols (no spaces)
using the 82143A printer.

Example 1. Print the following lines on the
printer using the SC program:

H20 «—> H+ + OH-

Jex dx = ex

-b + SQR (b2-4ac)/2a

(Print the 4 phases of the moon)

8ielBL -H20" 14 “H-

02 SF 12 15 ACR

87 “H" 16 CF 18
84 ACA 17 13

85 SF 10 18 XEQ -SC-
a6 2 19 ACSPEC
87 XEQ "SC- 28 +0K-

88 ACSPEC 21 AacA

89 -0- 22 14

18 ACR 23 XE@ "SC-
11 26 24 ACSPEC
12 ¥EQ@ -SC- 23 PRBUF

13 ACSPEC 26 END

HaO=H *+0H -

PPC ROM

USERS MANUAL

BlelBL "ed 13 SKPCOL
82 5F 12 14 21

8l 20 15 XE@ =5C*
84 XEG °5C- 16 ACSPEC
85 RCSPEC {7 = = e"
86 “e” 18 ACA

87 ACA 19 18

88 CF 18 20 XEQ "SC"
89 18 21 RCSPEC
18 XEG -SC° 22 PRBUF
11 ACSPEC 23 END

122

fedde = e ¥

BleLBL "BU" 12 ACSPEC
82 CF 12 13 “(b-

83 *-b " 14 ACA

B4 ACA 15 CF 18
85 25 16 2

86 XEQ "5C- 17 XE@ =5C-
-87 RCSPEC 18 RCSPEC
ag - - 19 =-4ac)s2a"
89 ACA 28 ACA

18 19 21 PRBUF
{1 Xeg@ -SC- 22 END

-b + {(b-4ac)/2a

a1eLBL “PH" 14 ACSPEC
82 CF 12 151

83 “MOON PHASES: ™ 16 SKPLOL
84 PRA 17 RIN

85 53 18 ACSPEC
86 XEQ °SC- 19 53

@7 ACSPEC 20 XEQ -SC*
88 1 21 RCSPEC
85 SKPCOL 22 56

18 RDN 23 ¥EQ -5C*
11 ACSPEC 24 ACSPEC
12 4 25 PRBUF
13 Xe@ -sC* 26 END

MOON PHASES:
LL 11

FURTHER DISCUSSION OF SC

For those who do not wisn to load the entire
500-plus bytes of SC into RAM memory each
time a handful of special characters is de-
sired, the barcodes below will suffice. These
are the data barcodes for the individual
characters, which can be scanned directly
into the ALPHA register or into a program
line. WARNING: Many of these codes will not
operate correctly if scanned in normal mode.
Those containing bytes from row zero of the
hex table will usually lock up the calculator
when scanned if not in program mode. They do
operate correctly, however, as program lines.

The codes, below, which lock up the 41C if
scanned in normal mode are marked with an

asterisk. pPENDIX L CONTINUED ON PAGE 439.

APPENDIX L CONTINUED FROM PAGE 429.

In addition, certain of the data barcodes

are 7-byte text lines. These load into ALPHA
in such a way that a RCL M instruction is re-
quired to bring it into X for correct accum-
ulation into the print buffer. The other,
shorter text lines may be placed into X by

~ ASTO X, since the lines do not contain infor-

mation in the first byte, which includes the
nybble which is the sign of the mantissa.

In the barcodes to follow, those marked ‘M~
require RCL M and those unmarked require
ASTO X before ACSPEC.

LINE BY LINE ANALYSIS OF SC

Lines 01 through 06 determine which text line
is to be placed in the X register, by a com-
puted branch to a numeric label.

Lines 07 through 14 determine whether the
text string is to be brought into the X reg-
ister via RCL M (if the text line is 7 char-
acters long) or by ASTO X (if the string is
shorter than 7 characters). In addition, for
the characters which may be superscripts or
subscripts, 2 null bytes are appended if
flag 10 is set, converting the superscript
string to a subscript.

Lines 15 through 197 consist of the 57 indi-
vidual subroutines which place the text lines
into ALPHA.

© Routine Listing For: SC
[A1eLBL =SC- J6eLBL 86
Q 82 15 7y
Q 83 XROM "GR" 38 RTH
= a4 28 33ei8L 07
© 85 5T+ Z 48 -8~
w 86 XE@ IND Z 41 RTH
a8 87 F57C 18 42¢LBL 08
A 88 “hees 43 4"
o« 89 RCL [44 RTH
= 18 SF 23 45¢LBL 09
11 CHS 46 ="
12 FS7C 23 47 RTN
13 ASTO X 48¢LBL 18
14 RTH 49 TE"
15+LBL 28 38 RTH
16 XEQ@ IND Y S1eLBL 11
17 RTH 52 "=
18+LBL @8 53 RTH
19 ==H" S4eLBL 12
20 RTH 59 "FJ*
21+1BL 8{ 56 RTH
22 ~q0" S7eLBL 13
23 RTH 98 “rda”
24+1BL 82 39 RTH
25 - 6B+LBL 14
26 RTH 61 "rxe”
27+LBL 83 62 RTH
28 "BJ° 63+LBL 21
29 RTN 64 XEQ IND Y
38eLBL 04 65 RTH
3 = 664LBL 00
32 RTN 67 "XXX"
33¢LBL 83 68 RTN
34 B~ 69+LBL 81
39 RTH 78 e

71 RTH
72¢1BL 82
73 "a"
74 RTH
79¢LBL 83
76 "p
77 RTN
78¢LBL 84
79 -8¢
e-
88 RTH
81eLBL 85
82 ~Xaif"
83 RTN
84+LBL 86
85 -0GooH"
86 RN
874LBL 87
88 -0GaBo"
89 RTN
99+LBL 88
91 =0GxMH"
92 RTH
93¢LBL 83
94 124"
95 RTH
96¢LBL 10
97 ~X$K"e"
98 RTH
99eLBL 11
10@ - xa*
181 RTH
182¢1BL 12
183 = flaas"
184 RTN
185¢LBL 13
106 ~8%a8"
187 RTH
108+LBL 14
189 -aQ=""
118 RTH
111eLBL 22
112 XEQ IND Y
113 RTH
114¢LBL 08
115 =R Jos
116 RTH
117¢LBL 81
118 %
119 RTH
128418l 82
121 =x*(¢"
122 RTH
123¢LBL 83
124 =<QABQe"
123 RTH
1264LBL 84
127 "wvko,F*
128 RTH
{29¢LBL 85
138 ~x¥?

131 RTN
132¢LBL 86
133 = Je"

134 RN
135¢LBL 87
136 “8G#="
137 RIK
138+LBL 88
139 =cal'e-
148 RTN
141+LBL 89
142 “palle
143 RTH
144¢LBL 18
145 =$48°8"
146 RTH
147¢LBL 11
148 *aa

Qe"

149 RN
198eLBL 12
151 “ahpax®
152 RTN
153¢LBL 13
194 “Qu@*"
153 RTR
196+LBL 14
157 ~Qpid""
158 RTN
1959¢LBL 23
160 XEQ INB Y
161 RTN
162¢LBL 0@
163 =QwY4"=
164 RTN
165+LBL 81
166 =D4X3""
167 RTN
168¢LBL 82
169 "04Y5""
178 RN
171+LBL 83
172 0477
173 RTH
174+LBL 84
175 = &°
176 RTH
177+LBL 85
178 8-

179 RN
188¢LBL 86
181 -8-

182 RN
183¢LBL 67
184 “pe*
185 RIN
186+LBL 68
187 =x =
188 RTN
189¢LBL 89
198 “Qee"
191 RTH
1924L8L 18
193 ==H-
194 RTN
195¢18L 11
196 “OF+$Gee~
197 END

REFERENCES FOR SC

See PPC Calculator Journal,

Vidl0Pllb.

APPENDIX L CONTINUED ON PAGE 443.

PPC ROM USERS MANUAL

APPENDIX L CONTINUED FROM PAGE 443.
CONTRIBUTORS HISTORY FOR SC

The SC program was originally writted by
Jake Schwartz (1820), and was modified by
Roger Hill (4940) to reduce the byte count
significantly. Additional assistance for
choice and design of the special printer
characters was provided by John McGechie
(3324), Earnest Gibbs (4610), William Wim-
satt (5807) and Randall Pratt (2860).

FINAL REMARKS FOR SC

This program exemplifies the value of the
wand as a device for creation of 41C synthet-
ic program lines. In conjunction with the
printer, the wand and barcode can provide

new character sets for almost any special
application. The characters chosen for the SC
program were those wnich were felt to be most
useful to the people who would have the PPC
ROM. when the PPC Barcode Book is produced,
we will be able to further exploit the advan-
tages of scanning synthetic text lines dir-
tectly into HP41C program memory.

Synthetic text lines in the SC program:

08: Append 2 nulls 46: F3 01 C2 9F
19: F4 01 C4 48 8E 49: F3 06 C2 1B
22: F3 04 4r 90 52: F2 CE 03

25: F3 07 4A 97 55: F3 06 4A 93
28: F3 05 4A 9F 58: F3 01 07 04
34: F3 01 C2 1F 61: F3 01 02 04
34: F3 05 CA 9D 67: F3 02 02 02
37: F3 07 CA 9D 70: F3 03 838 80
40: F2 40 9F 73: F2 08 8E

43: F3 07 CA 9F 76: F4 70 Al CO 00

79: F6 02 04 07 CO 40 80
82: F6 40 82 OF EO 40 81
85: F7 11 E2 47 FO 12 18 48
88: F7 11 E£E2 47 FO 16 10 18
91: F7 11 E2 47 FO 02 3E 48
94: F6 01 3C 99 32 9E 00

121: F6 02 8D 2A 96 28 00
124: F6 71 11 41 05 11 1C
127: F6 0C 6B 18 2C 46 83
130: F6 02 OF F8 3F EOQ 80
133: F5 01 C5 4A 80 00

136: F6 20 23 C8 8E 80 80
139: F5 27 84 04 06 00

142: F6 0C 61 OF E4 06 03
145: F6 E2 24 07 10 22 38
148: F6 71 15 DA B5 51 1C
151: F6 04 7F 91 0C 04 78
154: F7 11 FE 0C 19 30 60 FF
157: F7 11 FE 0C 58 34 60 FF
163: F7 11 FE 0C 59 34 60 FF
l66: F7 11 FE OD 58 35 60 FF
169: F7 11 FE 0D 59 35 60 FF
172: F7 11 FE 0D D8 37 60 FF
175: F6 20 E3 EF EF 8E 08
178: F6 38 FB EF 8F 8F 8E
181: F6 30 F3 CF EF (OF OC
184: F6 70 E5 FF F7 CE 1C
187: F5 01 C7 CF BF FF

190: F7 11 FF FB E7 C7 00 00
193: F5 01 C4 48 A0 C1

196: F7 11 06 OA 24 47 00 00

PPC ROM USERS MANUAL

TECHNICAL DETATILS

RAM ROUTINE SC |[s1zE: 000
Stack Usage: Flag Usage:

o T:USED 04: NOT USED

1 Z:USED 05: NOT USED

2 Y: USED 06: NOT USED

3 X:USED 07: NOT USED

% L:USED 08: NOT USED
Alpha Register Usage: 09: NOT USED

5 M:USED 10: USED

6 N:NOT USED

7 0: NOT USED

8 P:NOT USED 25: USED
Other Status Registers: Display Mode:

3 Q: ANY

10 FNONE USED

11 a: Angular Mode:

12 b: ANY

13 C:

1 d: Unused Subroutine Levels:

15 e 3
LREG: NOT USED Global Labels Called:
Data Registers: Direct Secondary
ROO: QR NONE
RO6: NONE USED
RO7:
R08:
R09:
R10:
R11: Local Labels In This
R12: Routine:

00 to 14, 20 to 23

Execution Time:
Less than 3 seconds.

Peripherals Required:
None to run SC, but printer required to print char's

Interruptible? YES Other Comments:
Execute Anytime? YES Use to load data regis-
ters with special char-
acters, then RCL and
ACSPEC later when they
are needed.

Program File: N/A
Bytes In RAM: 518

Registers To Copy: N/A

APPLICATION PROGRAM 3 FOR R

TOM is experimenting with a voice recognition
program on his HP-85. The program and interfacing
hardware is really an amplitude/time waveform recog-

nition system that is "taught" specific sound patterns.

After studying the synthetic tones on the HP-41, Tom
wonders if he could have the HP-41 "talk" to the HP-
85. Looking over the HP-41 TONE table, Tom selected
a three tone system using the short duration tones,
TONE 70, TONE 87, and TONE 89. Three tones in com-
binations of three provide 33=27 different codes.
This is adequate for the 26 letters of the alphabet.
Using this concept, Tom, wrote the ALFA TN program
shown below. Each letter routine is assigned to its
corresponding key for demonstration and test purposes.
A full alphabet sequence is accomplished by calling

Lip]
® APPL.ICATION PROGRAM FOR: m
W gretpL -ALFA TN 34 TORE 9 187¢LBL "V
< a2eLBL A 55 TOME 7 188 TONE 7
Sl g3 TONE 9 56 RTN 189 TONE @
z 94 TONE 9 S7eLBL "L 118 TONE 9
#5 TONE 8@ 58 TONE 8 111 PTH
al e ww 59 TONE 9 1124LBL *H*
S @7+LBL B 68 TONE 9 113 TONE 7
88 TONE 9 61 RTH 114 TONE @
& @9 TONE 9 620LBL "H* 115 TONE 7
@ 18 TONE 7 63 TOKE @ 116 RTH
11 RTH 64 TONE 8 {17+LBL *X"
12¢LBL € 65 TOME 8 118 TONE 7
13 TONE @ 66 RTH 119 TONE 7
14 TONE @ 67+LBL “H* 128 TONE 9
15 TOME 9 68 TONE @ 121 RTH
16 BTN 69 TOHE 8 1224LBL *Y*
17¢LBL D 78 TOKE 7 123 TONE 7
18 TOME 9 71 BTN 124 TONE 7
19 TONE @ T2eLBL "0" 125 TONE ©
26 TONE @ 73 TONE @ 126 RTH
21 RTH 74 TONE 7 1274LBL =Z2"
224LBL € 75 TOHE 9 128 TONE 7
23 TONE 9 76 RTH 129 TONE 7
24 TONE @ TTeLBL "P° 138 TONE 7
25 TONE 7 78 TONE 8 131 RTH
26 RTH 79 TONE 7 1326LBL ==
27eLBL F 88 TONE @ 133 KEG A
28 TONE 9 81 RTH 134 XEQ B
29 TONE 7 g2¢LBL -8" 135 XEQ €
2@ TOME 9 83 TONE @ 136 XEG D
31 RTH 84 TONE 7 137 XER E
226LBL G 85 TONE 7 135 ¥EQ F
33 TOME 9 86 RTN 139 XE@ 6
74 TONE 7 37+LBL "R 148 XEQ H
35 TONE @ 88 TONE 7 141 ¥E@ 1
36 RTH 83 TONE 9 142 ¥EQ J
I7eLEL H 98 TONE 9 143 ¥EQ "K-
38 TOME 9@ 91 RTH 144 SE@ *L*
39 TONE 7 924LBL 5" 145 AEQ =W
48 TONE 7 93 TONE 7 146 XEQ "N
41 RTH 94 TONE 9 147 XEQ 0"
42¢1BL I 95 TOME @ 148 ¥E@ "P*
43 TOME @ 96 KTN 149 ¥EQ 0
44 TONE 9 97+LBL -T" 158 XEQ “R-
45 TONE 9 98 TOHE 7 151 ¥EQ -5
46 RTN 99 TONE 9 152 ¥E@ "T*
474LBL J 189 TOKE 7 153 XEQ “U-
48 TOHE 9 181 RTN 154 XE@ -V
49 TONE 9 1B2¢LBL U 155 XEQ "H"
56 TONE 8 182 TOKE 7 156 XEQ “¥°
51 RTN 184 TONE @ 157 ¥E@ 1"
52eLBL K- 185 TONE 9 158 XEQ 2°
53 TONE @ 186 RTN 159 STOF
168 END
434

all 26 routines one after another.
under Label "=" at line 132.

This is done

Tom used a voice input TIC-TAC-TOE game on the HP-85
to test the concept. He used a bender coupler-
amplifier speaker on the HP-41 and executed the
sequence of ten codes (A-J) as digit inputs to the
HP-85. Much to everyones amazement, it actually
worked. Perhaps those tones have some use after all.

APPLICATION PROGRAM 4 FOR i}

This program is used with a bender coupler and tone
detector that "outpulses" a relay on the telephone
line for dialing purposes. The operating philosophy
of the program is to prompt for a NAME? of six charac-
ters. Once a name is input, R/S causes the program

to "look up" the seven digit telephone number and
produce a short tone sequence for each digit.
produces five short tones, Nine produces nine tones,
Zero ten tones, etc. The "fall through" label scheme
used allows a fast "pulse". This is too fast for
most local offices, but is easily slowed down.

Five

Label "DIAL" is assigned to the "D" key.
is assigned to the "C" key. To dial press "D". Key
NAME? after prompt, then R/S. If a new number is to
be added, press "C", followed by PRGM. The Line "25
LBL:NAME?" serves as a prompt to key in a new number
in the format shown below.

ENTER

LBL ABCDEF {up to 6 characters)
. NNNNNNN (7 digits, could be up to
GTO 11 10, see line 11)

A-F is the Alpha name, and .NN is the seven digit
telephone number entered as a decimal. The GTO 11
instruction actually does the "dialing". Two
telephone numbers are in the program for demonstra-
tion purposes. They may be deleted. The ? entry
may be used to time a particular HP-41 for dialing
speed.

Here is a line by line description of the program.

The label at line 01 provides a display description
of what the key does. Line 02 is a local label used
to save bytes, because it is addressed twice--Tines
22 and 76. The CLX at line 03 insures that the SIN
at line 06 operates on zero. Lines 04 and 05 display
"AUTO DIALER" briefly while the SIN of zero is cal-
culated. Lines 03 and 06 simply provide a delay.

The NAME? prompt is displayed in lines 07 thru 09.
The NAME is assumed in ALPHA when R/S causes program
resumption at Tine 10 where ALPHA is turned off.

The ISG value 0.006 is stored in ROO and the entered
name is stored in the X register in lines 11 thru 13.
The display shows SEARCHING using lines 14 and 15.
ROM routine is used at lines 05, 15, 19, and 34
as good practice, even though the printer is not to
be connected when using this program. Flag 25 is set
at Tine 16 in case the indirect GTO at Tine 17 can't
be executed. If a nonexistent label is searched for,
Tine 17 is "skipped" and a "CAN'T FIND" display is
shown by lines 18 and 19. A two second low frequency
tone (TONE 30) at line 20 provides a notice of
failure to find the name and a fixed duration of the
CAN'T FIND display. The GTO 13 at line 21 restarts
the program.

If the global label is found at 1ine 17, the routine
format is to enter the telephone number into X and
go to LBL 11 at Tine 31. The clear flag 25 instruc-
tion at line 32 is included as good practice to
avoid too wide a window of a non-indicating error

PP C ROM USERS MANUAL

145 GT0 ae
146¢(BL 87
147 3> d
148 -USED-
149+LB1 @9
138 AYIEW
151 TONE 2
152 670 22
13341BL -HH~
154 CLa

135 PRONPT
156+LBL B8
157 INT

158 256

139 0D

168 LASTY
161 +

162 OCT

163 X5 d
164 FS7C 11
163 SF 12
166 FS2C 1@
167 §F 11
168 FS70 89
169 5F i8
178 FS7C #7
171 SF 89
172 FS?C 86
173 SF 88
174 X3 d
175 ASTO [
176 ¥ 1
177 ks
178 570 ~
179 “kx-
180 X~
181 CLA

182 576 [
183 RN

184 &T0 BB

185+LBL 89
186 CF @9
187 CF 18
188 CF 139
189 CF 28
198 CF 21
191 §F 29
192 AVIEW
193 RCL ¢
194 570 [
195 “Heesex”
19 RCL [
197 %> d
198 CF 8@
199 CF 81
268 (F @2
281 CF a3
282 F57C 87
283 5F 85
284 FS?C 88
285 SF 86
286 FS2C 89
287 SF 87
288 FS7C 48
289 SF 89
218 £S7C 11
211 SF 18
212 F87C 12
213 SF 11
214 (v d
215 BEC

216 2

217 -

218 181

219 XY
228 X(Y?
221 GT0 83
222 &3
223 /

224 +

223 mziefé-
226 RTH

227+LBL ~Cf°
228 ~CLEAR A-
229 X¥to 89
238 ST0 88
31 AL I
2312 ¥ ¢
213 .

234 570 89
235 ST0 14
236 RCL b
237 RO
238 STO IND T
239 RGY
248 1SC T
241 ST0 b
242 PR

243 RDN

244 X0 ¢
243 610 25

246+LBL 84
247+LBL -PA-
248 “PACK A=
249 XEQ 49
238 ENTER?
231 FIX 8
232 E

233 -

254 .

255 RCL I
256 GT0 12

237+LBL 18
258 CF 28
239 X ¢
268 OV
261 ¥ IHD Z
262 KOY
263 ¥(> ¢
264 KO
263 CLA
266 ARCL [
267 ST0 [
268 SIGN
269 X087
278 610 81
271 “herkx
272 ASHF
273 XN
274 X=4?
275 SF 19
276 XO L
217 S10
278 ASHF
279 X0 I
280 X=0?
281 SF 28
282 FL2 19
283 F5? 28
284 GT0 82
285 X0 [
286 --

317¢LBL @2
287 ARCL X 318 2y
288 (> [9 FS2C 19
328 FC? 28
289¢LBL 11 321 F§7 4
298 XY 322 670 12
291 G ¢ 323 -
292 XY 324 FC?2C 28
293 X D T 325 “haax-
294 X(0Y 326 XY
293 X0 ¢ 327 CLX
296 ISG T 328 STO
329 FS7C 10
297LBL 12 338 GTQ 13
298 ISG 72 331 SF 18
299 GT0 18 332 ASTO 88
388 XOY 333 RO
334 670 12
381+LBL 81
382 FC2C 18 33518l 82
383 670 63 336 Rt
384 SF 89 337 EMTERY
385 CLA 338 INT
339 192
Jo6eiRL 13 340 -
307 X [341 .5
3eg == 342 FC? 89
309 30 [343 SIGN
318 X~ 344 +
311 ASTO [345 TOME @
312 ASTO I 346 CLA
313 ARCL 88 347 FIX 1
314 beexx- 348 ARCL X
35 RO N 349 “F REGC USED-
316 £70 {1 338 AVIEW
351 .END.

MKA Melbourne

This key assignment program appeared in PPC CJ,
V7N10P19. It was written by Tom Cadwallader (3502)

and modified stightly by John McGechie (3324) and
Richard Collett (4523). When using MKA you need not
make an even number of key assignments, but you must
press R/S in response to the prompt for the second

of each pair of key assignments. No data registers

are used, so SIZE 000 is OK. The same user constraints
apply as for KA#18 (END above MKA in Catalog 1, don't
SST, don't mix assignments with).

Note on MKA Tisting: The following lines are not
represented accurately in the printed listing. Their
hexadecimal equivalents are given here.

Line Hex Equivalent

08 F7 FO 00 00 00 00 00 00
144 F1 FO

285 F5 FO 04 01 €9 01

393 F1 FO

404 F1 FO

416 F1 FO

FURTHER ASSISTANCE ON

Call Tom Cadwallader (3502) at (406) 727-6869.
Call Roger Hill (4940) at (618) £56-8825.

PP C ROM USERS MANUAL 293

P

of [aieLBL THKR” | g9 x<v? 140¢LBL 16 288 CLX 270¢LBL 68 338 NEQ 08 4gg -Fitttete
<« g2+L8L 17 78 GT0 81 141 FS7 82 289 STO ¢ 271 XEQ FEA- 339 CLA 489 %O N
w 63 SF 83 71 RDN 142 GT6 19 218 ¥() 272 193 348 CF 83 410 %O IND L
© 72 5T- a 43I ASTO X 211 RO 273 - 411 SIGN
& B44LBL 24 73 4 144 =* 212 870 [274 %97 3410LBL 20 412 %287
= 85 CF 08 74 %=1? 145 FC?C 22 213 RDN 275 610 18 342 FS2C 83 493 cTO 14
= 86 CF 01 75 SF 84 146 “Feee™ 214 RTH 276 176 343 GT0 2t 414 CLX
w 87 Xea 88 76 RDN 147 ARCL % 277 + 344 (LR 415 LASTX
e B8 “eerees” 77 LASTX 148 RCL I 215¢L8L 96 278 E3 345 ¥ IND 2 4i6 ="
0 89 8GO 1 78 FRC 149 XE@ 11 216 =Fe- 279 / 346 SF 25 M7 RO 1
« 18 % IND L 79 %=0? 158 176 217 sTo ¢ 280 176 347 %=9? 418 “H-
= 80.CF 84 151 Rt 218 570 1 281 + 348 F57C 25 419 RO
H1oLBL 83 81 .1 152 STO IND Y 219 RDN 282 ENTERt 49 6T0 21 429 HHttHHE
12 = 82 FCC 84 153 Rt 228 RTH 356 ASTO a 421 ¥~
13301 83 CLY 154 %< ¢ 283¢LBL 11 351 CF @4 422 ST0 IND T
14 oher 84 + 155 CLST 221eBL "CKA- 284 XEQ 12 352 STO [
15 %~ 85 88 156 “R/5 TO CONT-" 2224LBL 22 285 "qriz” 353 ASHF 423+LBL 14
16 ¥=0? 86 * 157 BEEP 223 ¥EQ 80 286 XO [354 KO [424 RN
17 GT0 81 87 $T- a 158 PRONPT 287 510\ 355 4=8? 425 570 ¢
1§ *ho=-mmn To88e 159 GT0 17 224elBL 88 288 "HAB" 356 SF 81 426 RDN
19 %0 N 89 * 225 CLX 289 ¥ N 357 CLX 427 NT
20 156 2 98 + 160¢LBL 81 226 X<> IND 2 290 ENTERt 358 "ker 428 176
21 GTO 8z 31 8 161 "HERROR® 227 SF 23 291 8O ¢ 359 ST0 429 -
2 STO IND L 9z FC? 09 228 %=07 292 %Y I 43 ¥=0?
23 RIM 33 CLY¥ 162¢1BL 82 229 FS?7C 25 293 SF 25 361 XN 431 GT0 22
24 510 ¢ 94 + 163 AVIEW 230 GT0 89 294 RTH 362 ke 432 RON
23 O @3 95 %() a 164 TONE 8 231 156 2 363 %O N 433 INT
26 GT0 18 96 X(8? 165 X N 232 GT0 88 295#LBL “GTE* 364 %=87 434 175
27 XE@ "PKA" 97 470 61 166 CLA 296 %EQ 12 365 GT0 13 435 -
28 GT0 84 93 24 167 X0 L 233+LBL 09 297 %O d 366 % N 436 BEEP
99 &{=Y? 168 RSTO L 234 RDH 298 SF 82 367 ASTO € 437 LEND.
2LBL 82 198 SF 61 69CT015 23550 ¢ 299 SF 83 3683 ke
38 %O IND 2 yp1 Xov? 236 CLX 388 O d 369 570
ICT0 g2 oy 178BL 18 o gr0r 381 CLA 378 “ke-
163 - 7L QST p3gcr0e 302 5T0 71RO
32uBL O 164 FS? 09 12 TONE @ 53 ggep 33 -HAB"
33 RO g5 RcLe 173 WO ROON g oy 304 %O \
34 8T0 ¢ 186 FC? 80 174 PRONPT 385 ST0 b 3724LBL 13
35 CLA 187 RCL T 175 GT0 18 i 373 5T0
36 SF 82 183 ASTO L 2410LBL "SRR P 374 e 81
37 CF 83 189 §T0 (I764LBL “NNN- 242 XER 1B 3ggeLBL -FEA" 375 *hees”
118 FS? 81 177 (LA 243 RN 07 KEQ 12 376 KON
384LBL 15 111 “heess 244 XY 388 % d 377 CLA
39 0F 22 12 % L 17gelBL 87 A4S XO IND L 389 Fg2c 97 378 670 (
48 ASTO L 13 40 d 179 PROMPT 246 GTO 89 318 SF 65 379 A5T0 X
114 FC? INDy 188 XEQ “DHC” 311 FS2C 88 388 CLA
41eLBL 19 115 &T0 05 181 RCL [312 SF 86 381 ARCL a
42 “PRETPOSTHKEY" (¢ %O d 182 GT0 97 313 FS2C 89 382 ARCL X
43 TONE 9 117 cLa 247+LBL "RAX" 314 SF 87 383 5F 83
44 PROMPT 118 ARCL L 183+L8L “DtC” 248 XEQ 18 315 FS7C 10 384 156 Z
46 ARCL L 126 TONE 8 185 0CT 258 RCL IND L 317 FS7C 11 386 CLX
47 FC? 22 121 ¢T0 82 186 %=8? 251 FC? 25 318 SF 10 87 RCL
48 GTO 16 187 GT0 86 252 ENTERt 319 FS2C 12 388 ¥=0?
49 5 2 188 570 1 328 SF 11 389 GT0 20
36 4 189 RIN 253¢LBL B9 321 %> d 398 ASTO X
51 RIH 1224LBL 85 199 4 E2 254 %OV 322 TEC 191 ASHF
52 %=8? 123 SF IND ¥ 191 5T+ 1 255 %> ¢ 323 RTH 392 ASTO a
53 %0 T 124 %<5 d 192 %¢ 1 256 RIN 393
54 ¥E@ "IC* 125 570 (193 %> d 257 FSIC 25 324eLBL 12 394 ARCL ¥
S5 KEQ "DAC" 126 “Fesss 194 FS?C 11 298 RTN 325 CLA 195 CLX
96 36 127 FC2C o1 195 SF 12 259 SF 99 326 RCL © 396 %O [
57 570 a 128 “Feesn 196 FS7C 10 327 %0 [397 STO IND T
5§ RDH 129 RCL © 197 SF 11 2684LBL 10 328 "heedsxs 398 ARCL 3
59 ENTERt 138 F3? @9 198 FS?C 89 261 16 329 %0 [399 156 T
60 %87 131 §T0 e 199 SF 10 262 - 338 %O d 488 CT0 20
&1 SF 0@ 132 FC2C 08 208 F$? @7 763 ABS 331 CF 88 481 RTH
62 ABS 133 670 ° 201 S5F 89 264 RDH 132 CF Bl
63 .1 134 CLA 282 F5? 66 265 GT0 11 333 CF 02 4824LBL 21
64 * 135 ARCL L 203 SF 88 134 CF 83 483 % [
65 LASTX 136 RCL a 264 SF 83 2664LBL "C16" 335 X() d 404 "
&6 - 137 ¥EQ “DfC* 285 ARCL d 267 XEQ 11 33 RTH 45 %0 I
7 INT 138 F52C @2 286 5T0 d 268 RON 486 "Ht-
68 8 139 GT0 15 207 “hes" 269 RTH 3I7eLBL "PKR" 487 X0

294

PP C ROM USERS MANUAL

BAR CODE ON PAGE 483

ALTERNATE VERSION OF: m
62 ¥{(» d

81eLBL VK-
828 63 ST0 »
83 570 a 64 O 2
84 SF 25 65 570 [
85 PRBUF 66 INT
#6 FC? 25 67 123
#7 CF 21 68 +
88 ~KEYS USED:" 69 8
89 AYIEM 78/
18 “Baesess 71 INT
11 RCL 7 72 LASTX
12 X0 1 73 FRC
f3RCL ¢ 74 8@
14 XG5 5
15 870 1 76 +
16 FIZ 3 77 41
17 CF 29 78 X{Y?
18 ARCL ¥ 79 BSE Y
19 FIX 8 80 3
20 20 1 81 +
21 810 [82 ¥(Y?
22 "k " 83 ISG Y
23 RGO 84 --
24 3> d 85 FS5? 42
25 RCL { 86 FC? IND [
26 CLA 87 CHS
88 ROV
27+LBL 81 89 ABS
28 10 2 9 X0
29 fBs 91 Rt
38 FRC 92 RLL ~
31 CHS 93" -
32 LASTY 94 FC? 42
33 INT K- -
34+ 9 XY
35 39 97 ¥ d
3 - 98 ARCL L
AL 99 IS6 T
188 GT0 {3
J8eLBL B2 181 °F --
39 FC? IND Z 182 ARCL L
48 FC? 58
41 670 15 183+LBL 12
42 ¥ d 184 AVIEW
43 FC? IHD 2 165 FC? 21
44 FC? 58 186 TONE 6
45 GT0 15 187 X3 d
46 Xy d 188 X%
189 F57 42
47+LBL 03 118 ¥ 4
48 ISG 2 111 679 83
49 GT0 82
58 DSE a 112¢L8L 15
51 GTG &1 113 RN
32 RO 114 5T0 4
33 ST0 d 115 CLD
54 FS? 21
35 CLA 116¢LBL 14
36 “F END" 117 FC2C 25
57 AVIERW 118 §F 21
38 G610 14 119 CLST
128 FI¥ 2
J9e¢LBL 15 121 END
68 FC? 58
61 670 15

B1eLBL -VK*

82 SF 21 68 LASTX
83 F57 55 61 *

84 PRKEYS 62 INT

85 F5? 55 631 ST0 a

86 RTH 64 43

87 CF 2t 65 -

85 8 66 ABS

89 RCL * 67 1

18 XEG 87 68 ¥(Y?
11 “re 69 §T+ a
12 %> (78 FS? 42
13 %(r d 71 FC? IHD
14 RCL e 72 CHS
15 XEQ 87 73 8BS
16 *+ * 7430 1
17 %> 2 75 RIN
18 R0 [76 %y

77 RN

194LBL 81 78 -

28 -27.08808 79 FC7 42
21 RCL [g9 - -
22 - 81 F§? 58
23 70 » 82 X0 d
24 RDN 83 XOY

84 FC7 50
25¢LBL 82 85 C70 84

26 FC? IND » 86 X¢3 d
27 FC? 58 87 %Y _
28 GT0 85 88 CLY
29 #> d 89 RCL 4

38 FC? IND ~ 99 FIY 8
31 FC? 58 91 CF 29
32 GT0 85 92 ARCL a
13 %> d 97 I5C L

94 GT0 86
J4eLBL 83 95 =} =
35 156~ 96 ARCL a
36 70 82
37 DSE I 974LBL 86
38 GT0 81 98 ST0 d
39 XY 99 %(> _
188 AVIEW
49¢LBL 84 181 TONE @
41 570 102 Rt
42 €L 163 570 »
43 CLA 104 Rt
44 PSE 105 STO [
43 (LD 186 RDM
46 RTH 187 RDN
188 X<> d
47+LBL 85 189 ROY
48 ¥ d 118 F§? 42
49 35 1t %43 d
38 RCL ~ 112 670 63
51 INT
iz 113eLBL 87
33 007 114 CLA
34 1 15 83 [
99 ST+ ¥ 116 “FHerexxe
5 % 17 8O~
57 + 118 X0 I
5% 10 119 RTH

Routine Listing For: m
59 HOD

PP C ROM USERS MANUAL

447

| S

APPENDIX A -
ADVANCED APPLICATIONS OF LR/SR & HD/UD

HANOI TOWER PUZZLE GENERALIZED

Given: m pegs, n discs of varying size stacked in
order of size (large on the bottom, small
on the top) on peg 1.

Problem: 1In the smallest number of moves, one disc

at a time, in such a way that a disc is
never placed on top of a smaller one, move
the n discs (similarly stacked) from peg 1
to peg m.

A brief glance at the original 3-peg problem (Tower
of Hanoi) will prove helpful. The crux of the solution
to this simplest version is the need to uncover the
bottom disc, which in turn leads to the need to trans-
fer n-1 discs to peg 2. This perspective Teads to a
repeated reduction by one of the number of discs to be
moved, until we are led to the need to move only one
disc. The immediately preceding problem was the need
to move 2 discs; and the solution has become: first
move the top disc to the other peg, then move the
bottom disc to the target peg, and finally move the
top disc again. The top disc was moved twice. If
there were 3 discs to move, the top disc would be
moved twice in loading the alternate peg., and then
twice more in unloading to the target pea. The in-
ductive argument shows that if there are n discs to

, . n-1 .
move, the top disc uncergoes 2 moves, the disc

2

below undergoes 2""¢ moves, etc., while the bottom

disc requires only 2"" - 1 move. There are easier
ways of establishing the total number of moves (1+2

2422+ 42" 122" 1)) but this way of looking at it

has value for resolving the problem with more than
3 pegs.

We need to explicitly note some parallel features
of the m-peg version of this puzzle.

(A) If using m pegs, we have m-2 pegs (pegs 2,3,...,
m-1) to temporarily hold the top n-1 discs while we
move the bottom disc to peg m.

B) Unpacking the top n-1 discs can be viewed as
2 subtasks to be performed sequentially:

HES

(1) Using all m pegs, first load N discs
onto peg 2.

(2) Using m-1 pegs (by the rules peg 2 can't
be used), Toad N1 discs onto peg 3.

(3) Using m-2 pegs (pegs 2 and 3 can't be used),
load n__, discs onto peg 4.

(5—2) Using 3 pegs (pegs m, 1, and m-1),

load Ns discs onto peg m-1.

(C) After moving the bottom disc to peg m, unload
the substacks in a sequence opposite to the loading:
(1) Using 3 pegs (m-1, 1, and m) transfer the
Ny discs on peg m-1 to peg m.

PP C ROM USERS MANUAL

(2) Using 4 pegs (m-2, 1, m-1, and m) transfer
the ng discs on peg m-2 to peg m.

{(m=2) Using all m pegs transfer the n_ discs
on peg 2 to peg m. m

(D) .Note that unloading a peg to the target peg
entails the same number of moves as loading the peg
from the original stack.

Again we can show that the number of moves any disc
undergoes in arriving at its final location is a

power of 2, but the reasoning is more complicated than
when we assume that m=3.

Suppose we want to know the number of moves required to

place the top disc of a stack of QKO) discs when we're

using m pegs. By observation B, we know that if n (0)
> 1, our first subtask is to move n (1)

(1 . (0

where n <n If g‘l) > 1, we can proceed to the
first subtask of the first subtask, and that would en-

(2) discs to some peg, where Q(z)

discs to peg 2,

tail the movement of n

< DKl). By this recursion, we arrive at the transfer
of the top disc to some peg. By observation D, unrav-
eling this recursion leads to repeated doubling of the
number of moves undergone by the top disc. Of course,
when m > 3, the total number of moves of the top disc

of a stack containing n discs is less than 21 The
disc below will require either as many or half as many
moves. Let's proceed to make this more definite.

Let Zn(m) = number of moves required to transfer n

discs using m pegs. Clearly Zl(m) = 1. How does o4

(m) - Zn(m) behave?? Certainly Zz(m) - Zl(m) =2,

since the top disc has to be placed on and removed

from an intermediate peg. Obviously, in fact, Zn+l

(m) - Zn(m) remains 2 up to n = m-2, there being m-2

intermediate pegs available. At this point we're out
of intermediate pegs, so at least one disc will re-
quire more than one intermediate resting place. By
observation D and the preceding discussion, that disc
will require 4 moves. As n increases, Z ,,(m) - Z (m)

n
eventually becomes 8, still later 16, etc. To be
more specific, we need an appropriate recursive rela-
tionships.

Let Q(m,e) = the maximum n such that Zn(m) -7 (m) =

n-1

Ze. In order to extend this definition to Q(m,0), let
Zo(m) = 0. Suppose we know Q{u,e) for u = 3 to m, and
let N =1+ I Q(u,e), (where the summation is from u=3
to u:m), be the number of discs we will transfer
using m pegs. Using the strategy noted in observa-
tions B and C: (1) Transfer Q{m,e) discs to peg 2 from

peg 1.

(2} Transfer Q(m-1,e) discs to peg 3
from peg 1.

APPENDIX A CONTINUED ON PAGE 37

APPENDIX A CONTINUED FROM PAGE 33.

Transfer Q(3,e) discs to peg m-1 from
peg 1.
(m-1) Transfer 1 disc to peg m from peg 1.
(") Transfer Q(3,e) discs to peg m from
peg m-1.
(m+1) Transfer Q(4,e) discs to peg m from
peg m-2.
(2m-3)

Transfer Q(m,e) discs to peg m from peg
2.

We see that no disc required more than 2 ° 2€ = 2E+1

moves. On the other hand, transferring N+1 discs would

have required that one disc undergo 2 ° 2E+1 = 2e+2

moves. In other words, N = Q(m,e+tl). We've establish-
ed that

Q(m,et+l) = 1 + z{Q(u,e):p=3,...,m}
But then Q(m,e) = [1 + 2{Q(u,e-1): =3,...,m-1}]

+ Q(m,e-1)
Q(m-1,e) + Q(m,e-1)

A table of values for Q(m,e) will reveal the simple
pattern:

AN 3 4 5 6 7 8 9
0 1 1 1 1 1

1 2 4 5 6 7 8
2 3 10 15 21 28 36
3 4 10 20 35 56 84 120
4 5 15 35 70 126 210 330
5 6 21 56 126 252 462 792

We now have all we need to know to solve our problem.
Suppose, for example, we wish to move 25 discs using

6 pegs. This calls for partitioning the upper 24 discs
into four substacks in a way which will minimize the
total number of required moves. If we look at the
Q(m,e) table, we see that the second row of values for
m=3, 4, 5, 6 contains 2, 3, 4, 5 totaling 14, while
the third row contains 3, 6, 10, 15 totaling 34. Thus,
we see that an optimum strategy requires as many as

23 = 8 moves, but never more, for some discs. Any

combination of four numbers Nas Ngs Mgy Ng such that
Q(i,1) < ny < Q(i,2) and Z{ni:1=3,4,5,6} = 24 will
suffice for a partitioning corresponding to a minimum
number of moves. Note that in general there is more
than one solution to a given problem. In our sample

problem

Ny = 2, ng = 3, ng = 10, ng = 9
will work as well as

ng = 3, Ny = 6, ng = 10, Ng = 5,

to mention but two of 56 possibilities.

Each of these subproblems (e.g., move ng = 10 discs

using 5 pegs) can be handled similarly, until the
requirement is reduced to moving a single disc.

PP C ROM USERS MANUAL

To evaluate the number of moves required for a specific
problem is straightforward: simply add up the number

of moves required for each disc. Consider, for instance,
our example of moving 25 discs using 6 pegs:

24-(2+3+4+5)=10 discs each requiring 2-22 moves -- 80
14-(1+1+1+1)=10 discs each requiring 22! moves -- 40
4 discs each requiring 2-20 moves -- 8
1 disc

for a total of 129 moves.

requiring 1 move -- 1

“As a second example, consider moving 13 discs using

5 pegs:
12-(2+3+4)=3 discs each requiring 2.22 moves -- 24
9-(1+1+1)=6 discs each requiring 2.21 moves -- 24
3 discs each requiring 2~20 moves -- 6
1 disc requiring 1 move -- 1

for a total of 55 moves.

The recursive routine GHT (Generalized Hanoi Tower)
implements the strategy outTined for solving the m-

peg version of this puzzle. Such a routine would
probably be regarded as outside the scope of the HP-41
were it not for the curtain-moving and return-stack
extension routines provided by the PPC Custom ROM.
Naturally the memory Timitations of the HP-41 impose
some constraints, but cases requiring more memory than
is available are also, for the most part, cases entail-
ing too many moves for recreational interest. The data
compaction schemes employed in GHT do not permit m>9
nor n>45, The number r of data registers required for
legal values of m and n is given by

r=9n, +mp+ 2e + max (6, m+ 1)

3
where:
ny = number of discs (as evaluated by 'PARTS') to be
moved to peg m-1 using only 3 pegs;
p = number of data registers allocated to each peg

r(n/5);

e = number of required extensions of the return stack
= L[{ny-1)/51;

Fz = least integer not less than z ('ceiling' of z);

Lz = greatest integer not greater than z ('floor' of z).

As long as SIZE = 4, set-up routine IGT will proceed
successfully, issuing prompting messages if more data
registers are needed. The calling sequence is

of pegs + # of discs, XEQ 'IGT'.

If resizing prompts are displayed, resize as requested
and press R/S to continue. When "READY?" is displayed,
all required data for calling GHT have been established.
At this point you have the option of turning on the
printer to record the successive moves; press R/S to
continue.

Each call on recursive routine GHT (except the first)
is preceded by a call on EIE to hide 9 data registers:

00 for curtain moving: set up by CE3: used by DD

01 .1112-——1m. = indices of pegs currently in use
02 n' = # of discs currently being moved
03 m' = # of pegs currently in use

04 W.pm, = global work area specification

05 subtask cogtrolz peg count
06 subtask control: peg indices

APPENDIX A CONTINUED ON PAGE 61.

37

APPENDIX A CONTINUED FROM PAGE 37.

07 partition data
08 also partition data, if # of parts > 5

The global work area is accessible to GHT regardless
of the depth of recursive call (sn3-1). The specifi-

cation w.me is a compact storage of three items of

information needed by MOVE (the subroutine for
moving one disc to peg Y from peg X) and SHOW (the
subroutine for displaying the current distribution
of discs on pegs):

W = pointer to global work area
p = # of data registers allocated to each peg
my = original number of pegs (m passed to IGT)
Partition data is in a compact form (aja,b.b....), a

1727172
pair of decimal digits to each part, beginning with
number of discs to be moved using 3 pegs, and ending
with the number of pegs to be moved using m'-2 pegs.
(This data is set up in Tines 03 through 22 of GHT;
register 08 is only needed when m'-2 > 5 orm' > 7,
but to avoid the Togic overhead GHT always uses 9
registers per recursive call.) The position of the
decimal point varies during the process. When load-
ing the intermediate pegs, the decimal point moves
to the left; it moves back to the right when the
intermediate pegs are being unloaded.

The global work area is allocated as follows:
W: move counter, initialized to -1
W+l -~ W+p:
Wip+1l - W+2p:

discs for peg 1
discs for peg 2

w+(mo-1)p+1 > W+m discs for peg my

oP*
Discs are designated by integers from 1 to n, where
i<j whenever disc i is smaller than disc j. Each
disc designation i is kept in compact storage (at
most 5 to a register) as two decimal digits d1.1 d1.2

IGT initializes the work area and RQl through R0O4,
given the number (m) of pegs in register Y and the

number (n) of discs in register X:
.12---m ---> RO1

n ---> RO2

m ---> RO3

W.pm ---> RO4

-1 ---> Rw
dy1d12d919p07 751952 == Rysy
===dn1dn2 -- RN+p

(in fact, IGT begins with a CLRG, so any register not
explicitly addressed in IGT starts out with a zero
value.) Additionally IGT calls on IXR to initialize
return stack management. (See Application Program 1
in description for further details regarding IXR.)
Note that the pointer in R13 is set to 9 less than
pointer in RO4 before GHT calls itself. (See lines
231 through 234.) Of course, before a call on itself
GHT must also set up R10 through R12 which become RO1
through R0O3 after the curtain is raised. (Lines 51
through 83 do this during the Toading of the interme-

PPC ROM

diate pegs; Tines 139 through 193 do the same task for
the unloading process.)

Finally, to avoid loss of a return path as a conse-
quence of excessive subroutine nesting, GHT calls LRR
upon entry and SRR just before exit. No other calls
for safeguarding the return path are necessary, since
GHT does not initiate any other chain of calls more
than two deep. (See Application Program 1 in
description for further details regarding LRR and SRR.)
However, a brief examination of the Q(m,e) table will
show that the two cases with the smallest number of
moves that require an extension of the return stack
(n3 26) arem=3and n =7 or 8, which entail 127

and 255 moves respectively. Other stack-extending
cases are far more prolonged. If you plan to avoid
such time consuming cases (by restricting yourself

to cases where n, < 6) you can avoid the execution
overhead of IXR,”LRR, and SRR by removing Tines

80 through 81 in IGT, lines 02 and 218 through 219 in
GHT, and replace 'GTO 15' in Tine 165 of GHT by "RTN'.

The logic of 'MOVE' and 'SHOW' (disc stacks are dis-
played from top to bottom), although using some tedious
housekeeping to unravel compact storage, can be gleaned
by careful perusal of the listing, keeping in mind the
allocation scheme already described. However, a few
words about 'PARTS' are needed to ease comprehension
of its logic.

If we examine the Q(m,e) table, a simple method for
evaluating the optimum distribution of discs on
intermediate pegs quickly becomes apparent. We'll
use an earlier example of m=6 and n=25 to keep our
description concrete. 'PARTS' builds up the parti-
tioning using RO9 through R(6+m), which would be R0O9
through R12 in our example. We begin with all parts
set to zero, and the count k of discs to distribute
to n-1=24.

REPEAT WHILE k > 0:

INC < 1
REPEAT FOR j 9 through 12:
R. <« R. + INC
J J
k < k - INC
INC « Rj

i

IF k=0, EXIT
IF k<0, Rj« Rj + k and EXIT

The following table shows the changing states of R0O9
through R12 and of k:

R0O9 R10 R11 R12 k
0 0 0 0 24
1 0 0 0 23
1 1 0 0 22
1 1 1 0 21
1 1 1 1 20
2 1 1 1 19
2 3 1 1 17
2 3 4 1 14
2 3 4 5 10
3 3 4 5 9
3 6 4 5 6
3 6 10 5 0

A final word of caution. You may want to abort
program execution for some reason. If you note your
size (via &, e.qg.) before execution, then XEQ
if you stop the program before it finishes execution,
subtract the original size, and call K} to re-
establish communication with all your data registers.

APPENDIX A CONTINUED ON PAGE 133.

USERS MANUAL

APPENDIX A CONTINUED 16 STO IND z ~ 88+LBL 83 lel k2 233 9 2206l 81 52¢LBL 20 55 /
FROM PAGE 61. 17 %O 9 89 18X 162 * 234 81- 13 93 RCL 04 56 +
675 18 1SG 2 98 / 163 - 235 xRoW ~Hp+ 23 RCLIND L gy cor 57 1
68 7 91 El 164 %=0? 236 END 4 “?8 35 Ef 58 +
69 INT 19+LBL 83 92 * 165 GT0 15 gz g;g 2§ % * 59 $T0 11
782 20 156 Y 93 INT 166 KEG 79 7 1684 97 INT 60 RCL IND X
TSR 21 g70 62 94 RCL 86 167 RCL 86 S 98§10 J 61 4287
72+ 2sompz % El 168 El 28 5102 99 RTN 62 610 81
734 23 RCL 63 % / 169 / goRCL @2 29/ 63 TONE 4
74 XRON *¥S* 24 2 97 FRC 178 ST0 86 @3ST0 8 BENTERt joouim o5 64 TONE 4
82 CLRG TS 25 - 9% Ef 171 FRC P S gs IBLENTERt 65+ weEhpTYss"
83 570 82 76 PRONPT 26 5T0 05 99 # 172 El L o i 182 LOC 66 RO “VA*
B84 XY 77RCL 86 27 RCL 81 188 8OY i3 an 183 2 67 CT0 94
85 570 83 78 -1 28 1 181 XEQ "NOVE- 174 FRC 8; 2 34 ¥=67 184 /
86 8 796TO INDY 29 * 175 LASTX 0 o 35 SF 08 185 INT 63eLBL 01
87 + 86 RCL 67 38 INT 182¢L8L 89 176 INT & 3% ST T 186 2 69 RCL IND 11
88 XRON V5" g1 XEQ "IRK" 31 ST0 06 183 RCL 86 177 RCL @1 16 A, 187 * 78 k=87
89 FC7C 25 g2 RCL 6 32RCL @3 184 EI 178 El Do of 168 END 71 670 04
18 PRONPT B3RCLB2 33870 (165 / 179 5T+ Z G 49 FS7C 40 2 -
11 RCL 83 84 E3 34 1813 186 INT 180 * 0 i 73 ENTERt
12 S10 64 85 / 35 RCL @1 187 STO 96 181 INT 14 ST0 86 41 619 82
13 8 86 1 36+ 188 DSE 05 182 + 15570 87 42 RCL 18 744LBL 82
§75T+Z 37 BSEL 189 GT0 85 183 + 8 43+ 82 FIX 8 75 RIN
14eLBL 88 88 + 118 RCL 81 134 FS7C 81 44+ 83 ¢F 29 7% E?
15 RCL ¥ 89 .5 33eLEL 84 111 RCL @3 185 GT0 13 17¢LBL 00 84 RCL 84 27/
16 + 98 ST+2 38 E 12 1 186 E2 18 STO IND 87 45¢LBL 82 85 RCL IND X 28 ENTER
o I 13 - 157 / 19 ISC 87 46 STOIND [g g % INT
18 / 91eLBL 85 4l / 114 19X 188 ST0 18 28 GT0 28 87 + 88 Y87
19 ISE ¥ 92 CLX 42 ENTER 115 * 189 RCL 05 ., 474LBL B3 g 570 IND ¥ 81 0 82
28 GT0 99 935 43 FRC 116 FRC 198 INT Z10LBL 8L 48 DSE [89 X7 82 RN
21 570 81 94 57085 44 EI 17 El 191 2 el o O] 18 670 10
22 RCL 82 95 CLY 454 118 » 192 + IRCL GG sBLTO Bl . gy - §3eLBL 83
23 5 & IHT 119 RCL a1 193 570 12 24 510 97 31 REL 89 12 ARCL X 84 .
24 7 96+LEL 96 47 5T+ 06 128 Ei 194 XEQ 75 92 STO [13 p-—-= 85 B2
25 ENTERT 97 E2 48 RIN 121 * 195 XEQ "CHT" 25eLBL 82 33 XEQ 28 14 BEEP 86 *
26 INT 93 « 49 ISE I 122 INT 196 XRON -up- 26 XOY 54 CF @@ 15 ADY 87 ENTERt
27 4= 99 RCL Y 56 CTo @4 123 XEQ “NOVE* 197 GTO 14 27 ST+ IND &7 16 ADY g5 IHT
28 GT0 81 188 INT 124 RCL 83 28 5T- @9 554LBL 85 17 %ROM =va" 89 £
291 18] + 5{eLBL @5 125 2 198+LBL 13 29 RCL IND &7 56 E8 90 ¥
3 + 162 05E 85 525 126 - 193 INT 30 RCL 85 57 ROL IND 184LBL 18 9 f -
183 GT0 87 53 RCL 09 127 §T0 86 268 LRSTX 3128 38 X(Y? 19 RCL 84 92 ARCL Y
JGLBL 81 184 STO IND 2 54 O¥? 128 €3 281 FRC 32GI0 8 59 SF g8 28 INT 93 RDN
32 STO @8 185 156 2 55 GTO 86 129 7 202 RCL 85 33 X=8? 68 RCL [21 RCL 04 34 -
33 %EQ PARTS" {@6 ISGY 56 RCL 67 138 1 283 INT 34 RTN 61 570 Z 22 FRC gt %247
34 RCL 00 187 GT0 85 57 E2 131 5T+ 86 284 1 35 ST+ IND 87 42 RDH 23 El 3 10 83
35 570 85 168 CT0 18 58/ 132 + 285 - 36 RTH 63 FS? 88 248 97 TONE 4
36 RCL 09 59 ST0 87 133 ST0 85 206 184% &4 G0 86 25 ST0 @9 98 TONE 4
7 El 1096LBL 87 68 LD 87 134 RCL 96 207 37eLBL B3 g5 ROL X 26 INT 99 XRON “VA-
38 ST/ 84 118 156 ¥ 135 1043 288 FRC 38 ISG 87 66 RCL 10 27 - 188 1SC 11
39 5T/ 84 111 GTO 86 GleLBL 86 136 RCL 1 289 El 39 G0 82 67 wop 28 ST0 19 181 GT0 81
48 5T/ 85 {12 STO IND Z 62 RCL 98 137 # 218 51/ 2 461081 gy 70 L 29 RCL 89
41 DSE ¥ 63 E2 138 570 86 21l « 41 END 69 RDN 36 FRC 1020LBL 84
42 * 113¢lBL 18 64 / 212 3O 78 RCL 18 3 E2 183 ISG 89
43 RCL 03 114 "READY?" 65 5TO 88 139+LBL 10 213 INT 7/ 2/ 184 10 88
442 115 PRONPT 148 5 214 XEQ “NOVE* 72 INT 31 185 EHD
45 - 116 XEQ “SHOM* 66eLBL 87 141 RCL 85 34+
46 ST+ Y 117 GTO "GHT" 67 FRC 142 INT 215+LBL 14 73eLBL 86 3551009 gLy
473 118 END 63 E2 143 %5¥? 216 1SG 85 8z E2 74 %=07 oy —
43 - 69 % 144 GTO 11 217 GT0 14 83 570 18 73 GI6 67 36¢LEL 08 LBL'GHT
49 %(=8? 76 INT 145 RCL 87 24 RIN 76 XEQ 23 37 ALY END 359 BYTES
58 57- ¥ 71 %=8? 146 RCL 07 2184LBL 15 85 XEQ 29 772 38 "PEG ° (Bl *PARTS
51 RDN 72 GT0 89 147 E2 219 KEQ "SRR™ @5 ST+ Y 78+ 39 ARCL 89 gyp 68 BYTES
52 §T0 @6 82 XE0 "LRR" 73 XEQ 78 148 » 728 RTH 87 ST* Z 79 1818 48 KRON VA" ["HovE
53 RCL 85 83 XE@ "PARTS" 74 RCL 96 149 ST0 87 88 571- Z 88 5T+ Z TONE 7 gy 176 BYTES
54 + 84 7.5 75 RCL 83 158 €70 12 2214LBL 79 89 RDN B1 RDN 42 TONE 7 (BL"SHON
55 ST+ 84 85 ENTERt 76 2 222 CF ol 18 RCL 64 4IRCL 10 Eyp 198 BYTES
56 INT 86 3 77+ 151¢L8L 11 231 11 INT 82+LBL 87 44 RCL 19
57 RCL 93 07 %O 86 78 FSC 81 152 RCL 88 224 ROY 12 8T+ ¢ 83 + 45 RCL 64
53 RCL 09 88 o 79 GT0 88 153 RCL 88 225 ¥=Y? 13 1.5 84 510 INB N 44 FRe
59 88 570 12 154 E2 226 SF 81 14+ 8SFSUL 80 47 [
68 + B9¢LBL B2 g1 (01X 155 * 227 FE? 81 15 5T+ Z 86 GT0 18 454
61t 18 E2 8 s 156 ST 88 228 ST0 11 16 RIM 87 IS6 A 49 INT
62 + i1 * 83 570 18 229 RTH 17 870 [88 DSE] 58 5T+ 19
6351087 12RCL INDY g4 WEQ 75 1574LBL 12 18 X< BIGTO @S 5y g7y
64 RCL 89 13 + 85 XEQ “GHT* 158 INT 2384LBL 75 19 870 © 52 §T+ Z
65 1 14 I5E 86 g6 XROM -UD* 159 XY 231 RCL o4 28 8 9B+LEL 10 53 +
66 - 15670 83 87 70 09 168 INT 232 STO 13 21 570 89 91 GTO "SHON" 54 3 *EENDE®

PP C ROM USERS MANUAL

[r33]

