HP- RANDOM ROM QRG

RANDOM_ROM Manual
HP-41 Module

Introduction and Credits.

Welcome to the Random ROM (“RANROM” for short), yet another HP-41 little adventure around the
whimsical realm of aleatory confines, where we should have some fun learning about sequences of
random numbers and how to determine the goodness of those mystifying little buggers, for the lack of
a better term ;-).

As the name implies this module gathers a collection of routines and utilities about Random Numbers
on the HP-41 platform. This includes a few MCODE pseudo-random number generators (p-RNG) from
diverse sources like the (never released!) Toulouse Math ROM; Journal contributions (eventually
coalescing into the the SandMath module); as well as a ported version of the Voyager implementation.
As a second category, other MCODE and RPN-based p-RNGs are also included, both from the
PPC/Datafile archives and Jean-Marc Baillard’s collection.

Besides the expected set of utilities and small routines on the random topic, an attempt has been made
to have a self-contained group of routines and programs to make the content as complete as possible -
within the space constraints imposed by the ROM format. To that effect, a couple of UPL programs are
included to evaluate the different p-RNGs in terms of their randomicity, normality, etc. Due credit is
given to the original programmers in the respective sections of this manual.

Special thanks are due to Valentin Albillo who suggested numerous enhancements and additional
subjects to include, such as Gaussian-distributed p-RNGs and others. He also provided critical feedback
on several sections and steered the development towards a wider range of subjects that have no doubt
shaped up the module for the better. Make sure you don't miss the adaptation of his brilliant
“Mandelbrot Set Area Estimation” from his HP Collection.

On the programming side, thanks to Mark Power and Hdkan Thoérgren for their classic contributions in
Datafile and PPC. Credit is also due to “"Mike (Stgt)” for porting the HP’s M-code featured in the
Voyager series (HP-11C / HP-15C). And lastly, thanks to the programmers of the Toulouse Math ROM
and the CCD Module for their seminal work on the subject.

Caveat Lector: Not being an expert on the field I have used this project as a learning vehicle myself,
hoping that the discovery path and final result can also be interesting to other people as well. Whether
it has worked or not I can say that at least I tried, but of course you are free to do your very own ;-)

Dependencies.

This ROM is designed for the HP-41CX O/S, obviously housed in Q-RAM-capable hardware devices like
Clonix/NoVRAM, MLDL_2k and others. As a general rule no additional software dependency exists, so it
will also run on any CX-equivalent system such as the SY-41CL (with a TIME module) and the DM-41X.
The exception to this rule is the Mandelbrot Set Area, which needs the 41Z Module - and in turn the
Library+#4 as well.

__|
© ANGEL M. MARTIN — MARCH 2022 PAGE 1 OF 58

HP- RANDOM ROM QRG

Without further ado, here is a list of the functions in the Main FAT table.

XROM# Function Description Author

06.00 -RANDOM 1C Section header n/a

06.01 SEEDT Sets initial Seed / Manual or Time-based Hdkan Thérgren
09.02 RNDM RNG Sequence from SEEDT Hdkan Thérgren
06.03 1RAN Time-based initial Seed JM Baillard

06.04 RANOO RNG from seed in ROO Mark Power

06.05 RAN20 RNG from seed in R20 Mark Power

06.06 RANR _ _ RNG from seed in prompt register Power-Martin
06.07 RCLSD Recalls Voyager Seed HP Co./ Mike (Stgt)
06.08 RN RN from SEED | HP Co./ Mike (Stgt)
06.09 SEED Sets initial Seed HP Co./ Mike (Stgt)
06.10 RAND RNG from SEED Toulouse Math ROM
06.11 RANDXY RNG formatted by XY Toulouse Math ROM
06.12 STORAND Stores new initial seed Toulouse Math ROM
06.13 -MONTECARLO Section header n/a

06.14 AINT Append integer X Frits Ferwerda
06.15 IROUND Integer Round Angel Martin

06.16 “MCE MC-based calculation for e Valentin Albillo
06.17 “MCPI MC-base calculation for p Albillo-Martin
06.18 “MCLN2 MC-base calculation for Ln2 Albert Chan

06.19 “MCLN2+ Driver for MCLN2 AM

06.20 “MBA Mandelbrot Set Area Estimation Albillo-Martin
06.21 “MCITG+ Driver for MCITG Angel Martin

06.22 “MCITG MC Integration functions one variable AM

06.23 “FX Example function got MCITG — 1 variable AM

06.24 “MCITG3 MC Multiple Integration (up to thee vars) Angel Martin

06.25 “FXY Example function for MCITG2 — 2 variables AM

06.26 “FXYZ Example function for MCITG — 3 variables AM

06.27 “MCITGN MC Multiple Integration — n variables Greg McClure
06.28 -RANDOMNESS Section header n/a

06.29 BXMR Gaussian RNG using Box Muller Angel Martin

06.30 ERF Error function Baillard-Martin
06.31 MREV Mantissa Digit Reversal Angel Martin

06.32 RANG Gaussian RNG using “12R-6" Angel Martin

06.33 XDGT Mantissa Digit Sum Angel Martin

06.34 “EVAL Evaluation of p-RNGs L. H. Gilbert

06.35 “RNG1 p-RNG Sequence 1 JM Baillard

06.36 “RGN2 p-RNG Sequence 2 JM Baillard

06.37 “RNG3 p-RNG sequence 3 JM Baillard

06.38 “RNG4 p-RNG Sequence 4 JM Baillard

06.39 “STRAT Stratified Random Sampling ravi — MoHP forum
06.40 “BENCH Benchmarking Gaussian RNGs Angel Martin

06.41 “TRANG Testing Gaussian RNGs Angel Martin

06.42 “12R-6 “12x minus 6” Method Angel Martin

06.43 “BX-MR Box Muller Method Angel Martin

© ANGEL M. MARTIN — MARCH 2022

PAGE 2 OF 58

HP- RANDOM ROM QRG

XROM# Function Description Author

06.44 “INDEX Deviation Index from Normal distribution Angel Martin
06.45 “TSTRNG Testing Integer RNG’s Charles T. Tart
06.46 “CHI Chi-Square Test AUG 1982, 10 pgs.
06.47 “UC1 Ulam’s Conjecture — V1 Robert G. Wilson
06.48 “Uc2 Ulam’s Conjecture — V2 Ward Edwards
06.49 “Uc3 Ulam’s Conjecture — V3 Gerhard Kruse

The contents in a nutshell:

Normality Test

Randomicity Tests Box-Muller

Voyager

Monte Carlo

Others
Mandelbrot Set

P-RNGs

Benchmarking & Applications

© ANGEL M. MARTIN — MARCH 2022 PAGE 3 OF 58

HP- RANDOM ROM QRG

SandMath Random Numbers

The first set of RNG functions is taken from the SandMath, which used versions of Hdkan Thorngren’s
p-RNGs published in the PPC Calculator Journal. The functions are:

Function Description Input Output
SEEDT Sets initial seed Value in X Loaded in buffer
RNDM Randon Mumber Current RN in buffer Next RN in the sequence

SEEDT takes the fractional part of the value in X as initial seed for the RN’s sequence. If the value in
Xis zero then the function will use the actual Time & Date information to generate the seed, assuming
of course that the Time Module is present (not a problem when using a HP-41CX).

The value is saved in the first register (right above the header) of Buffer #9, thus it's compatible with
the OSX, SandMath and CCD versions of the same functionality.

On the other hand, RNDM generates the next random number in the sequence, which obeys to the
following LCG rule (albeit using 0 for the final term, *‘mod 0”):

r(k+1) = FRC [r(k) * 9,821 + 0.211327]

well-known to PPC members, since it was also used in the RN routine — albeit using a regular data
register instead of a buffer for the actual storage of the sequence terms.

Variations on a theme.-

The formula above is good because it already provides the RNs in canonical form. i.e. their values are
between 0 and 1 (this one excluded). It however shows a flagrant weakness in that the last three
decimal digits are always zero. You can check this using the PPC ROM, the CCD Module or previous
versions of the SandMath itself (*), as the three use the same LCG expression (Linear Congruent
Generator).

In the RANROM I have used a different approach, simply overwriting the last three digits with the first
three of the mantissa /n reversed order. Now, you may argue (and probably will be right) that this isn't
an orthodox way to tackle the problem but intuitively /t’s got to be better than the three-zero case, thus
the choice was clear. (**)

Examples: using pi as initial seed calculate the first six RANs:
You'd key: PI, SEEDT, RNDM, RNDM, RNDM, RNDM, RNDM and RNDM

To obtain: O = i I R VR == § S B =
AHEYSAESAEH, ASHYLESRAY S,
AdHAES (A SH, AH ISELIHASY

(*) The SandMath has since been patched with the same variation to remove the zeros.
(**) We'll make a more formal comparison between both cases later on, using the program “EVAL"

__|
© ANGEL M. MARTIN — MARCH 2022 PAGE 4 OF 58

HP- RANDOM ROM QRG

Toulouse Math ROM Random Numbers

The second set is a very interesting one, as it'll be determined by the comparisons made for the
“benchmarking” sections later on. It's also interesting because the source was never released to the

public - at least to my knowledge, pls. send feedback if you know better?

Function Description Input Output

STORAND Sets initial seed Value in X Loaded in buffer

RAND Randon Number Current RN in buffer Next RN in the sequence
RANDXY RN between [a, b] Values in X,Y Integer RN in [a,b]
RCLRAND Gets current RN from buffer Current RN in buffer Current RN in X

Here’s a short description for the functions in this group:

STORAND is used to store the initial seed in the buffer. It uses Buffer #3, storing the seed value in
digits <9:0> of the header register. This conflicts with the system standards used across the board and
may cause havoc if you use other buffer utilities. BFCAT in particular will partially overwrite the RN
value, as it uses the buffer header digits <2:0>; so better not to use it to be safe.

RAND calculates the next RN in the sequence and stores its value as new seed
RCLRAND recalls the current seed — not changing its value in the buffer.
RANDXY provides a boundary for the resulting random number, which must be withing that interval.

This implementation is also different ("Cest /a France, vive la différence!” :-)in that it uses a digit level
algorithm (see chapter on this later) instead of an LCG approach to generate the sequence of RNs.
There’s a byte table in the code with values used to generate the RN digits according to the algorithm,
still not sure how exactly but working on it as we speak.

Same Example using pi as initial seed:

AdTY B4 5 AOSHSIHHESH

. = - S e e aa
Acbd (5 09 L AYANYYS TR
ATHHABNSHS 5 A48 244 1Y

And if now we want a RN between, say 12 and 17:

12, ENTER”, 17, RANDXY => {AXA A AL A A0

This last function comes very handy for your Lottozahl needs (a.k.a “Loteria Primitiva”) — assuming
your faith in science goes that far of course ;-)

__|
© ANGEL M. MARTIN — MARCH 2022 PAGE 5 OF 58

HP- RANDOM ROM QRG

Voyager Random Numbers

The RANROM module includes a version of the Voyager implementation of random numbers capability,
taken from the VORANOGE-2 ROM, prepared by mike-stgt and published here:

https.//forum.hp41.orq/viewtopic.php 2f=13&t=428%p1279

The use in the RANDOM module is covered under the Q Public license, see here for details. A copy of
the license document is included as attachment to this manual.

The functions included are shown below:

Function Description Input Output

SEED Sets initial seed Value in X Loaded in buffer

RN Randon Mumber Current RN in buffer Next RN in the sequence
RCLSD Gets current RN from buffer None Current RN in X

This set operates very much like the previous two cases for the SandMath and Toulouse Math ROM
implementations. The values are stored in a buffer (with id# = 4) and like the Toulouse Math case —
and contrary to the HP-41 default standards — the values are store in the buffer header itself,
specifically in digits <9:0> (i.e. 10-digit mantissa format). This criterion was probably used by HP to
save RAM memory, which was more at a premium in the 11C and 15C than in the HP-41C.

In addition to the conflict mentioned in the previous case with BFCAT (overwriting of the current RN),
here it gets more interesting because it will show this buffer as non-committed, i.e. unclaimed by any
module and thus will be erased by the OS next time the calculator does a power off/on cycle.

3rauvcoagsas

USER

With that out of the way, the actual RNG scheme is given by the expression below:

The Voyager (HP-11C and -15C) function RAN# is of the LCG-kind (affine transformation) with the constants

i1 = (37 (292010667 - x; + 131 - 449 - 641)) mod 10"

Which is another case of a Linear Congruent Generator (LCG) as defined here:
https.//en. wikipedia.org/wiki/Random_number_generation

As far as the functions are concerned, we have a repeat (although chronologically speaking they came
earlier) of the buffer-based design, with an initial seed function and a RAN instance for the elements of
the sequence. RCLSD is a handy twist that can be used to know the current term in the sequence
without generating the next one (for instance to make sure the seed is the desired one).

Same example again, with pi as initial seed:

AHYHAH T (14 > A4 d84HHSH
R = B = B B R P = =
T T A T b | YR A

ATTHABNSHS 5 A5 (HHaHY 1Y

__|
© ANGEL M. MARTIN — MARCH 2022 PAGE 6 OF 58

https://forum.hp41.org/viewtopic.php?f=13&t=428%23p1279
https://opensource.org/licenses/QPL-1.0

HP- RANDOM ROM QRG

Digit-Level Random Number Generator

The functions below were written by Mark Power, an old hand in MCODE and active DataFile member,
with many remarkable feats under his belt — such as the MCODE Debugger and PLAY ROMs.

See http.//'www.hp41.org/LibView.cfm?Command=View&ItemID=1471

and Ahttp.//www.hp41.org/LibView.cfm?Command=\View&IltemID=1472

Function Description Input Output

RANOO RAN from seed in ROO Value in ROO Next RN in the sequence
RAN20 RAN from seed in R20 Value in R20 Next RN in the sequence
RANR _ _ RAN from sed in prompt reg Value in Rnn Next RN in the sequence

These functions were published in DataFile V6N8 p9. They expect the seed (or previous RN) stored in
the corresponding data register. The result is placed in X and stored in the same register upon
completion.

Examples. Storing pi in ROO we'll key:
PI, STO 00, RNDOO, RND0OO, RNDOO, RNDOO, RND0O, RNDOO

To get: AASAHEYEY 0 DSUAHHIANE (7, ZIHTERZ T 1SS
AEY TEHS (dbH, AMTASHHIESY, dudbRSH TN

RANR is a prompting function, accepting also INDirect registers — but not stack registers, sorry.

RANR _ _ RANR INIT _ _

UZER 1 UZER 1

-

In manual mode just enter the register number where you seed is stored. In a running program it will
take it from the X-register instead, so it'll be RANR IND X so to speak.

Time-Based Seed Generator

This function was written by Jean-Marc Baillard, see: http.//hp41programs.yolasite.comy/alea.php

Use it to generate a time-based seed that can be used to generate a sequence of RN’s by any of the
methods reviewed so far, (perfect complement for RANOO/RAN20 indeed) and a few more still to cover
in the manual.

Example:

XEQ “1RAN" => oAb SEHSSA54

Note: don't use 1RAN to generate a sequence of RNs; doing so will generate skewed results due to the
fairly similar “seeds” used — all taken from the internal Timer registers, which can be very similar in
cases of TURBO running programs!

__|
© ANGEL M. MARTIN — MARCH 2022 PAGE 7 OF 58

http://www.hp41.org/LibView.cfm?Command=View&ItemID=1471%20
http://www.hp41.org/LibView.cfm?Command=View&ItemID=1472

HP- RANDOM ROM QRG

MCODE listing for RANOO, RAN20, and RANR.

Header ALEF 080 "o
Header aaTo D30 "o Seed in ROD
Header AATL QOE "N
Header aa72 - ‘ooz “A" DataFile VENE p2
Header AATS 012 “R" Muorx Power
RANOD AA74 046 C=0 58X
AATS T3 INC 08 — jump to common part
Header AATE 080 "o
Header aaT7 D32 e Seed in R20
Header AATE QOE "N
Header aame ‘Doz “A" DataFile VENE p2
Header AATA D12 “R" Muorx Power
RAMN20 AATB .'131] LD S&X offset to 20 dec
AATC {014 CON: 20
MERGE AATD ?1’.'-'5'1 NCXQ e selects register with offset
ALTE "EIUU -=0024 [OVRSTK]
ALTF 280 SETDEC decimal so we don't get hex digits
AABD {385 PNC X load digits used by [P1/3]
ARl ,?054 -=1941 [TRC1O]
AARD OEE C<>=B ALL get seed out of B and save constant
ARE3 1EE C=C+C ALL double the seed
AbRA 14E A=psC ALL add it into A
ALES 12E A=A+B ALL add constant to A
AAMRE 01E A=0 ME force positive sign
ANRT 06 A=0 SEX set exponent to 0, this gives
AARE 354 PAED M a value of 0. below
AARS 033 INC+H06 jump down if mantissa is all zeroes
LOOP AARA 146 A=8-1 S8 decrement exponent
AMER 42 A0 @PT check that mantissa is normalized
AARC 027 JC +04 if it is then end
AARD 3FA LEHFA M otherwise shift mant left
AMBE BE3 INC -04 go back & decrement exp again
ENDO AMBF 0OE A=D ALL =—- zero whole word if mant=0
END1 AASD DAE AeCALL get value into © and write it back
AnG] 2F0 WRTDATA to the seed register, still selected
AAG2 A5 NC GO [ift stack and put Cin X
ARS3 044 -=1229 [LXEX]
Header ALDA 092 “R"
Header ARDS O0E "N
Header angs 201 4
Header AAST P12 “R" A ngel Martin
RAMNR AADE DAB Ae=C SEM
AASE 2CC PFSET 13 RUN'ing o program 7
AASA 01F JC 03 yes, read from X
AASE 0ac PFSET 4 55T'ing o program 7
AASC 308 JNC -31d g, jump over
SETPGM ARSD OFE READ 3(X) yes, get arg from X
ANGE 350 NCXQ Convert it to hex - uses F8
ARSE ,’m& -=02E3 [BCDBINT
AAND 2EB JNC-35d —

]
© ANGEL M. MARTIN — MARCH 2022

PAGE 8 OF 58

HP- RANDOM ROM QRG

Other Random Number Generators for the HP-41

This section is taken from Jean-Marc Baillard web pages, see:
http://hp41programs.yolasite.comy/alea.php

Overview
Several pseudo random number generators are listed on this web page:

"RNG1" "RNG2" "RNG3" work on every HP-41.
"RNG4" & the M-Code routine 1RAN require a Time-Module.
Finally, the last program is an attempt to play (win?) the lottery...

Program #1 (35 bytes / SIZE 001)

A well-known RNG is given by the formula: Xn+1 = FRC (9821 Xn + 0.211327) which provides 1
million random numbers.

The following program gives 1,000,000,000 random numbersr (0 <=r < 1). The formula used is:
Xn+1 = FRC (98 Xn + 0.236067977)

The coefficient 98 = 43,046,721 may be replaced by a where a =1 (mod 20)
and the value in line 0.236067977 may be replaced by b where b*109 is not divisible by 2 or 5.

01 LBL "RNG1" 14 *
02 9 15 FRC
03 ENTERA? 16 *
04 ENTER? 17 FRC
05 R~ 18 *
06 * 19 FRC
07 FRC 20 *
08 * 21 FRC
09 FRC 22 5
10 * 23 SQRT
11 FRC 24 +
12 * 25 FRC
13 FRC 26 END
STACK INPUTS OUTPUTS
X XN xn+1
Example:
0.2 XEQ "RNG1" yields R S e
R/S R I =

]
© ANGEL M. MARTIN — MARCH 2022

PAGE 9 OF 58

http://hp41programs.yolasite.com/alea.php

HP- RANDOM ROM QRG

Program #2 (26 bytes / SIZE 001)

"RNG2" provides 9,999,999,996 random numbers with the formula: Xn+1 = (1059 Xn) MOD p
where p = 9,999,999,967 is the greatest prime < 1010

Xn are integers between 0 and p (exclusive) which are then divided by p to be reduced to a number
between 0 and 1.

This routine works well because the MOD function gives exact results even when the operands are
greater than 1010.

Actually, the exponent E59 in line 3 may be replaced by any integer m provided m is relatively prime to
p-1 = 2*¥3*11*457*331543, but I don't know what the best choice is.

Unlike "RNG1" and other routines based upon the same type of formulae, the least significant digits
don't go through any cycle of ten, one hundred and so on.

Register R0O0 is used to store the different xn integers.

01 LBL "RNG2"

02 RCLOO STACK INPUTS OUTPUTS
03 E59 X / O<r<1
04 *

05
06
07
08
09
10
11
12
13

10
107X
33
MOD
STO 00
LASTX

END

Example:

1 STO00 XEQ "RNG2" gives

These ideas may be used to create your own RNG.

ROO = 3129146787 = mod (1059, p)
ROO = 6904570181 ... etc ...

Actually if p is a prime, (Z/pZ-{0} ; *) is a group and if a is an integer, the number of distinct

elements in the subset {1;a;a2;

;ak; ...} (modp) divides p-1

If p-1is the smallest positive integer q such that ag = 1 (mod p) , then the sequence
is a permutationof 1;2; ; p-1

a;az2;

;ak;;ap-1(modp)

© ANGEL M. MARTIN — MARCH 2022

PAGE 10 OF 58

HP- RANDOM ROM QRG

In particular, if p =2p'+ 1 where p'is also a prime, and if ap' is not equalto 1 (mod p) then a
satisfies the required property.

For instance, p = 7,841,296,787 = 2*3,920,648,393 + 1
7,841,296,787 and 3,920,648,393 are primes and -1024 = 4,851,307,369 (mod p)

satisfies (-1024)p' = -1 therefore the routine below gives 7,841,296,786 random integers
{ E24, *, CHS, 7841296787, MOD}

Program #3 (17 bytes / SIZE 001)

The following algorithm is given by Clifford Pickover in "Keys to Infinity" (John Wiley & Sons) ISBN 0-
471-11857-5

01 LBL "RNG3"

02 LN STACK INPUTS OUTPUTS
03 E2 X Xxn xn+1
04 *

051

06 MOD

07 END

Example:

0.1 XEQ "RNG3" produces .1

{
! (
R/S AASE TINEY Letc...

Program #4 (25 bytes / SIZE 000)

01 LBL "RNG4"

02 DATE STACK INPUTS OUTPUTS
03 TIME X / O<r<1
04 +

05 E49

06 *

07 PI

08 MOD

09 LN1+X

10 R-D

11 FRC

12 END

No examples can be provided since the result depends on the instant you press R/S

__|
© ANGEL M. MARTIN — MARCH 2022 PAGE 11 OF 58

HP- RANDOM ROM QRG

M-Code Routine

This M-Code routine uses the TIME module - or an HP41-CX

Header AFAL 08E N
Header AFAB A 1x RAN using Timer seed
Header AFAC "R
Header AFAD " Jean-Marc Boillord
1RAN AFAE NC XQ Enables Timer
AFAF -=50E2 [ENTMR]
AFBD READATA
AFB1 RCR 11 FRotates C-register 11 digits right
AFB2 C=0 58X
AFB3 RAMSLCT Chpl is selected again
AFBS OSE coms_] |
AFBS LD S&X |
AFBE (041 cow.] R
AFBY SETDEC
AFBE A=C ALL
AFBD C=0 ALL
AFBA PT=12
AFEB LD@PT-7
AFBC LD@PT- B
AFBD LD@PT- 4
AFBE LD@PT-1
AFBF LD@PT- 2 [7.841298737
AFCO LD@PT- 5
AFC1 LD@PT- &
AFC2 LD@PT-7
AFC3 LD@PT- B
AFC4 LD@PT-7
AFCS CLRF 4
AFCE M=C ALL
AFCY PNC XQ C=AmodC
AFCE ->195C [MODI10]
AFCS A=C ALL
AFCA C=N ALL 'E’,SEIIES'S?E?
AFCB PNC XQ C=A/C
AFCC -=1898 [Dv2_107
AFCD NCGo lift stock and put Cin X
AFCE -=1229 [LXEX]

__|
© ANGEL M. MARTIN — MARCH 2022 PAGE 12 OF 58

HP- RANDOM ROM QRG

Monte Carlo Methods

This chapter covers the application of Monte Carlo method to do diverse calculations, like integrals of
functions of several variables, Mandelbrot set Area estimation, and approximations for numerical
constants, such as Ln2, pi and e. If there’s something they all have in common it’s their long execution
time (ger ready to use V41 in TURBO mode) and the relative small accuracy of the results — unless
many more iterations are done, which worsens the execution time, Be that as it may, this is an
appropriate subject for the random topic so ready or not, here it comes.

1. Monte Carlo Integration.

The RANROM includes specific routines for the cases of functions of one, two, and three variables; as
well as a general case for n-variables written by Greg McClure

Function Description Input/Output Author
“MCITG+ Driver for MCITG Prompts for params Angel Martin
“MCITG MC Integration — One var. FNAME in ALPHA Angel Martin
“FX” Example function n/a A. Martin
“MCITG3 MC Integration, up to 3 vars Prompts for params Angel Martin
“FXY” Example with 2-vars n/a A. Martin
“FXYZ” Example with 3-vars n/a A. Martin
“MCITGN MC Integration, n-vars See below. Greg McClure

Let's see a brief description for them, starting from the top.-

MCITG and MCITG+ deal with integration of functions of a single variable (such as the example
provided “FX"). It's the simplest case but also the most likely to be used thus the dedicated routine for
it. The driver function does all the parameter prompting for the user, and then calls the main
subroutine — which can also be run separately provided that the user sets all those parameters
manually prior to the call.

The basic formula involves a repeat application of RNs {Xi}, at a very large scale:
1 N-1
N
(FN) = (b—a) Y f(X0).
i=0
The program uses the SandMath-type p-RNG, i.e. functions SEEDT an RNDM.

So let’s integrate f(X) = X2 . e*X between [0,1] using different number of iterations to see how that
influences the result.

XEQ “MCITG+" n b

0, ENTER®, 1,R/S N='

100, R/S FNFHME ; (ALPHA is turned ON)

“FX”, R/S AbH TR TdEBY Y quite clearly we need more points...

__|
© ANGEL M. MARTIN — MARCH 2022 PAGE 13 OF 58

HP- RANDOM ROM QRG

If flag 10 is set the program will display a countdown showing the current iteration, decreasing to
“1"before presenting the result.

Let’s repeat the integration using 1000 iterations as follows:

1000 XEQ B 1

=

[
|

L
L
3
-

—]
=> i,

The correct result is shown below:

*1
j x* e dx = e - 2 ~ 0.718281828459045
0

MCITG3 can handle functions of up to three variables, thus the number of variables is also an input
parameter to be entered — as well as the integration limits for each dimension and the number of
iterations to run. The program will prompt for the input date so no need to set them up in advance.
You can use MCITG3 for functions of a single variable, although MCITG will be easier and slightly
faster.

Let's use MCITG3 to calculate an approximation of the provided functions FXY and FXYZ, between
the intervals [0,1] in each dimension.

f(x,y) = x"2 + y"2

1 1 2
j J (}(2 + yz)d_)f dx = — = 0.666667
0 Jo 3

=
<

L'l
-~

X

-
(A
~

XEQ “MCITG3” > TIM="W

2, R/S => M AR DR

0, ENTERA, 1, R/S => o/ h{Zd) =%

0, ENTER®, 1, R/S => FNHME ; (ALPHA is turned ON)

“FXY”, R/S => H#POINTG5=z7

1000, R/S => Q14785 dHL , not quite good, try w/ more runs:
R/S (or XEQ B) > HHLOINTL W

10,000 R/S > WhbHYTY (ZR T, getting better...

R/S => HPOINTS =W

100,000 R/S => Vbbb RS

Very long execution times with slow “convergence” (for the lack of a better word), but
surprising nonetheless... at least good to have as “the last resort” when everything else fails!

© ANGEL M. MARTIN — MARCH 2022

PAGE 14 OF 58

HP- RANDOM ROM QRG

Going now for the 3D example:

f(x,y,z) = x"2 + y"2 + "2

‘1 1 1
J j J [.r2+_y2+zz)dzdydx= 1
o Jo Jo '

XEQ “MCITG3" => HIM=" il

3, R/S => o/ h{{) =7

0, ENTERA, 1, R/S => o/ h{d) =%

0, ENTER™, 1,R/S => oAk H) =

0, ENTER™, 1,R/S => FNHME

“FXYZ", R/S => HHOINTS =W

1000, R/S => YUY TdHBY S D, not quite good, try w/ more runs:
R/S => HPOINTG:=7

10000, R/S => AHBRHYEREY S - it didn't get better!

This is an unexpected result and *may* be related to the lackluster quality of the p-RNG. Further
testing should be done using other pairs of { SEED, RAN } functions instead to see if that gets things
back to the “logical” path, i.e. “the more number of points, the better accuracy”.

Program listings.

01*LBL "MCITG+" 18 STO 02 35 DSE 01
02*LBL A 19 - 36 GTO 00
03 "gb=o" 20STO 03 37CLD
04 PROMPT 210 | 38%1BLC
05 "N=?" 22510 04 39 RCL 04
06 PROMPT 23 SEEDT 40 RCL 05
08 AON 25 RNDM 42 RCL O3
09 PROMPT 26 RCLO3 43 *
10 AOFF 27 ABS 44 RTN
11*LBL "MCITG" 28 * 45 GTO B
12*LBLB 29 RCL 02 26*LBL "FX"
30 +

47 XA2
1457001 31XEQIND 00 45 LASTX
15STO 05 325T+04 49 EAX
16 RDN 33FS? 10 0+
17 Yesy 34 VIEW 01 =1 END

__|
© ANGEL M. MARTIN — MARCH 2022 PAGE 15 OF 58

HP- RANDOM ROM QRG

01*LBL "MCITG3" 36ST-Y 71RCLIND 00
02*LBLA 37 X<>Y 72 +

03 E 38 ST* 02 73 1SG 00

04 STO 02 39 ABS 74 GTO 01
053 40 STO IND 00 75 XEQ IND M
06 "DIM=?(1,2,3)" 411SG 00 76 ST+ 03

07 PROMPT 42 X<>Y 77 VIEW N

08 X>Y? 43 STO IND 00 78 DSE N

09 GTO A 44 1SG 00 79 GTO 03

10 ST+ X 45 GTO 00 80 RCL 03
114 46 "FNAME?" 81 RCLO2

12 + 47 AON 82 *

13 E3 48 STOP 83 RCLO1
14/ 49 AOFF 84/

155 50 ASTO 01 85RCLM

16 + 51*LBLB 86 STO 01

17 STO 00 52 "#POINTS=?" 87 RDN
18*LBL 00 53 PROMPT 88 "MCIT="
190 54 STO\ 89 ARCL X

20 ENTERA 55 X<>01 90 PROMPT
21 E 56 STO M 91GTOB

22 "a’b(" 57 CLX 92*LBL "FXYZ"
23 RCL 00 58 SEEDT 93 XEQ 05

24 4 59 STO 03 94 X<>Y

25 - 60*LBL 03 95 X"2

262 61 RCLOO 96 +

27/ 62 FRC 97 RTN

28 INT 635 98*LBL "FXY"
29 E 64 + 99*LBL 05
30+ 65 STO 00 100 X2

31 AINT 66*LBL 01 101 X<>Y

32 RDN 67 RNDM 102 X~2

33 ")=?" 68 RCL IND 00 103 +

34 PROMPT 69 * 104 END

35 X<>Y 70 1SG 00

Note. The Central Limit Theorem establishes that the error in the calculation is proportional to 1/sqgr(N),
with N being the number of points used. This explains the poor accuracy results for the reduced sets
used in the previous example. In practice we should be using N>= 1,000,000 for a decent
approximation.

__|
© ANGEL M. MARTIN — MARCH 2022 PAGE 16 OF 58

HP- RANDOM ROM QRG

Finally, MCITGN is the general-case for functions of N-variables. Unfortunately there’s no driver
section (ran out of room in the ROM!), therefore all the parameters must be manually entered (yes,
this can be onerous...) in the expected registers prior to calling the routine, as follows:

e ORDER SHOULD BE IN ROO

e NUMBER OF ITERATIONS (N) SHOULD BE IN RO1

e POINTER TO RANDOM REGISTERS WILL BE SAVED IN RO2 FOR USERS

e NAME OF USER FUNCTION SHOULD BE IN ALPHA, IT WILL BE SAVED IN R03
e INTEGRAL SUM WILL BE SAVED IN R04 (AS WILL BE FINAL RESULT)

e LIMITS IN RO5-R2N+4

e RANDOM VALUES FOR USER FUNCTION IN R2N+5 TO R3N+4

MCITGN was written by Greg McClure and posted on the MoHP Forum here:
https://www.hpmuseum.org/forum/thread-6311.html?highlight=montecarlo

Let's see an example of a quintuple integral next.

f(x,y,z,u,v) = sqrt (6 - x"2 - y"2 - 22 - u"2 - v2)

EXAMPLE OF QUINTUPLE INTEGRAL OF SQRT(6-X*X-Y*Y-Z*Z-U*U-V*V)
FROM © TO 0.7
FROM © TO 0.8
FROM @ TO 0.9
FROM © TO 1.0
FROM @ TO 1.1

e W Lo Lo L. W

< C N < X

ALPHA = "S5DINT"

REGISTER 00 = 5

REGISTER 01 N (10, 100, AND 1000 USED FOR RUNS BELOW)
REGISTERS 05, 07, 09, 11, 13 = 0

REGISTER 06 = 0.7

REGISTER 08 =
REGISTER 10 =
REGISTER 12 =
REGISTER 14 =

e Me e Wl Le e We We G
1]

P RPrOO
R ® O

01 LBL "SDINT" -

02 6 11 RCL 18
03 RCL 15 12 X72

04 X~2 13 RCL 19
05 RCL 16 14 X722

06 X"2 15 +

07 RCL 17 16 -

08 X*2 17 SQRT
09 + 18 END

10 +

__|
© ANGEL M. MARTIN — MARCH 2022 PAGE 17 OF 58

https://www.hpmuseum.org/forum/thread-6311.html?highlight=montecarlo

HP- RANDOM ROM QRG

; 9 RUNS FOR N=10:

1.150 1.229 1.193 1.179 1.193 1.194 1.204 1.189 1.174

5 6 RUNS FOR N=100: 1.192 1.190 1.179 1.193 1.187 1.192

5 4 RUNS FOR N=1000: 1.186 1.192 1.192 1.190

Commented Program Listing.

01 LBL "MCINT"

02 CF21 ; AVIEW will show countdown.
03 CLX

04 STO04 ;clear sum

05 SEEDT ; Seed - randomize

06 ASTO 03 ; save user function name
07RCLO1 ;save countin O(7)

08 STOO

09 RCLOO ; get dimension

10 ST+ X ; double for # of regs for limits
11 E3

12/

13 E

14 + ; convert to I1SG value

154.004 ; bump to point to first LL
16 +

17STOM ; save in M(5)

18 RCLOO ; create pointer to random regs.
19E3

20/

21 RCLOO

22 ST+ X

23+

24 +

25STON ; save in N(6)

26 STO02 ; for user

; PRODUCE RANDOM VALUES

27 LBLOO

37STOINDN

38ISGM ; continue

39STOX

401I1SGN ; bump random reg. pointer

41 GTO 00
42 RCLOO
43 ST-N ; reset limits and values counters
44 ST-M

45 ST-M

; CALL USER FUNCTION, SUM IN R0O4

46 XEQ IND 03

47 ST+ 04

48 VIEW O

49 DSEO

50 GTO 00

; FINAL RESULT. ; CALC MULTIPLIER

511 ; init multiplier

52 LBLO1

; continue until done

28 RCLINDM ; LL(N)in X

29 ENTER” ; LL(N) inXand Y

30ISGM

31RCLINDM ; UL(N)IN X, LL(N) INY AND Z
32 X<>Y

33- ; UL(N) - LL(N) in X, LL(N) in Y

34 RNDM ; RAND

35 *

36 + ; rand value between LL(N) UL(N)in X

53 RCLINDM ; LL(N)IN X

54 ISG M

55 RCLINDM ; UL(N)in X, LL(N) inY
56 X<>Y

57 - ; UL(N) - LL(N) in X
58 * ; new multiplier
59 ISG M

60 GTO 01

; MULTIPLY RESULT, DIVIDE BY NUMBER OF
POINTS

61 ST* 04

62 RCLO2

63 ST/ 04

; RESTORE ALPHA NAME, DISPLAY RESULT
64 CLA

65 ARCLO3

66 RCL 04

67 CLD

68 END

© ANGEL M. MARTIN — MARCH 2022

PAGE 18 OF 58

HP- RANDOM ROM QRG

2. Approximating Math Constants — Monte Carlo method

This section uses a variation of the Monte Carlo strategy to evaluate both pi and e. It's not, however,
based in circle relationships derived from randomly throwing needles or shooting at targets, but on
probability theory instead. It was explained by Valentin himself in his HP Challenge VA511 - 2020-03-
14 - SRC 006 Pi Day 2020 Special.pdf

Quoting directly from that article:

“It's quite simple, actually. My recent program is this:

1 DESTROY ALL @ RANDOMIZE 1 @ FOR K=1TO 5 @ N=10"K @ S=0
2 FORI=1TO N @ IF NOT MOD(IROUND(RND/RND),2) THEN S=S+1
3 NEXTI @ P=S/N @ STD @ DISP N, @ FIX 3 @ DISP 5-P*4 @ NEXT K

which is computing the probability that the closest integer to A/B is even, where A and B are
uniformly distributed random numbers in [0,1), as produced by the RND keyword. Each time
the rounded value is even (i.e., it's 0 modulo 2) the number of favorable outcomes (S) is
incremented by one (see line 2). After N tries have been sampled, the probability P for the even
case will be the number of favorables outcomes (S) divided by the number of tries (N), thus we
have the estimated probability P = S/N.

But I know from theory that in the limit, for N -> Infinity, the exact probability P = (5-Pi)/4, so
isolating Pi we have Pi = 5-P*4, which is displayed by the program in line 3 above.”

Note that he goes on to include yet another possible approach, which results in an even shorter BASIC
program. Here's the explanation:

“Now, my earlier program, the one-liner, namely:
10 INPUT K @ N=0 @ FOR I=1 TO K @ N=N-MOD(IROUND(RND/RND),2) @ NEXT I @ DISP 1-4*N/K

is computing the probability that the closest integer to A/B is odd, where A and B are uniformly
distributed random numbers in [0,1), as produced by the RND keyword. Each time the rounded
value is odd (i.e., isn't 0 modulo 2) the number of favorable outcomes (N) is decremented by
one, and after K tries have been sampled, the probability for the odd case will be the number of
favorable outcomes (-N) divided by the number of tries (K), thus we have the estimated
probability P = -N/K.

As the probability of the rounded division being either even or odd is 1 (certainty), the probability for
the odd case is 1 minus the probability for the even case, thus it's P = 1-(5-Pi)/4 = (Pi-1)/4, so isolating

Pi we have Pi = 1+4*P = 1+4*(-N/K) = 1-4*N/K, which is then displayed by the one-line program.”

I chose to use the first approach in this module, partially because it also requires the IROUND function,
and I was intrigued by it. I ended up writing a short MCODE utility for that purpose, which facilitates
the porting of the BASIC code to HP-41 FOCAL, shown in next page.

__|
© ANGEL M. MARTIN — MARCH 2022 PAGE 19 OF 58

https://albillo.hpcalc.org/challenges/HP%20Challenge%20VA511%20-%202020-03-14%20-%20SRC%20006%20Pi%20Day%202020%20Special.pdf
https://albillo.hpcalc.org/challenges/HP%20Challenge%20VA511%20-%202020-03-14%20-%20SRC%20006%20Pi%20Day%202020%20Special.pdf

HP- RANDOM ROM QRG

With regard to the e calculation, the source has also been Valentin’s HP Challenge VA030 - Short Sweet
Math Challenge 25 San Valentin Special - Weird Math.pdf. In that thread there’s one section (the first
“concoction”) about calculating a “weird limit” that can be used for the calculation of e (making the
sum--to-exceed s=1).

“The limit average count for the sum of a series of [0,1) uniformly distributed random numbers to
exceed 1 is exactly e = 2.71828182845904523536+, the base of the natural logarithms, which is pretty
"weird" and can be considered an analog of Buffon's Needle experiment to estimate the value of Pi.
Here we don't throw needles on a grid but merrily add up random numbers keeping count and we get e
instead.”

“This is the general formula to numerically compute the theoretically exact value and my simple 1-
line, 53-byte HP-71B program to instantly compute them given the sum to exceed. *

2]
_k
f@) =Y (-1 (A

k=0 k!

1 DESTROY ALL @ INPUT X @ $=0 @ FOR K=0 TO IP(X) @ S=S+(K-X)"K/FACT(K)*EXP(X-K) @
NEXT K @ DISP S

For the porting we'll certainly need the new IROUND utility and obviously capable random number
capabilities, which shouldn’t be much of a problem using the SandMath’s functions SEEDT and RNDM.
E’ll use a time-generated initial seed (input zero for SEEDT), and RNDM will do the work using the well-
known RNG recurrence:

r(k+1) = FRC [r(k) * 9,821 + 0.211327]

A few results are given in the table below:

Iterations MCE MCPI

10 cHAAARAAAY ARRAR AR a0
100 cHSAARAAAY AN ARARaan
1,000 AN SARAnaY AidbdAAaAN
10,000 P R R N % Aid ibdaaan
100,000 AR AR R Y R
1,000,000

As you can see from the table results above both routines require a very large number of iterations to
get to a reasonably accurate result, which of course was expected as “it ‘comes with the territory”
when resorting to this type of approaches. See below for the actual program code.

© ANGEL M. MARTIN — MARCH 2022 PAGE 20 OF 58

https://albillo.hpcalc.org/challenges/HP%20Challenge%20VA030%20-%20Short%20Sweet%20Math%20Challenge%2025%20San%20Valentin%20Special%20-%20Weird%20Math.pdf
https://albillo.hpcalc.org/challenges/HP%20Challenge%20VA030%20-%20Short%20Sweet%20Math%20Challenge%2025%20San%20Valentin%20Special%20-%20Weird%20Math.pdf

HP- RANDOM ROM QRG

F oo LBL "MCE" 10 LBL "MCPI"
2 LBL A 11 LBLB
r 3 STO 01 number of iterations 12 STO DD number of iterations
r 2 E sum limit f 11 Q initial value
3 Q 12 SEEDT Time-based Seed
F s STO 00 initial count 13 1BL1
Foo3 E~X ¥ 12 RNDM PPC Method +
4 SEEDT initial seed 13 RMNDM PPC Method +
F'os LBL 01 | T /
F'og CLX reset sum o3 IROUND
5 LBL 0D | 14 B
F 5 ISG 00 increase count F 15 MOD
Foos NOP ¥ 14 -
& RNDM PPC Method + 15 FS? 10
F 3 + update sum ¥ 1 VIEWY
r & FS# 10 need to show? 16 DSEY
7 VIEW £ yes, obiige r 17 GTO 11
r B L4 iy sum less than limit? 17 RCL OO number of iterations
F 3 GTO 00 yes, get next RAN T /
B DSE Z decrease counter 1B -4
F 9 GTO 01 do next if not finished T 19 .
F o= RCL 00 final count 19 F
9 RCL 01 number of iterations r 20 +
F 1w / 20 LD
F g9 CLD F n RTN
10 RTN 21 GTO B
F 1n GTO A F END

Note:- The poor-man version of IROUND would consist of setting FIX 0 before the LBL 11 loop, and
adding an INT instruction after the division of both random numbers (i.e. replacing IROUND with INT).
That's almost equivalent but doesn’t handle the EVEN condition for the result, i.e. IROUND(5.5)=5
whereas INT(4.5) in FIX 0 is equal to 4 instead. Not a show-stopper though, considering how unlikely it
is to find such an occurrence amongst the hundreds of random points used by the routine.

© ANGEL M. MARTIN — MARCH 2022 PAGE 21 OF 58

HP- RANDOM ROM QRG

One more for the road.

And as the adagio goes “there’s never two without three”, so let's add a third constant to this section —
namely Ln 2 — another proud member of the irrational family.

The following is taken from this Albert Chan’s post in the MoHP forum.

He uses another condition from probability, not so well-known:

LN(2) = 2 * probability of integer part of RND/RND is odd

10 INPUT K @ N=0 @ FOR I=1 TO K @ N=N+MOD(IP(RND/RND),2) @ NEXT | @ DISP 2*N/K @ GOTO 10
Moreover, we can improve LN(2) estimate by scaling RND/RND:

> 10 DEF FNL(K) @ N=0
>20 FOR L1=1 TO K @ N=N+MOD(IP(10*RND/RND),2) @ NEXT L1
> 30 FNL=N/(5*K)+1501/2520 @ END DEF

See below the HP-41 version of the code. The driver program just adds the prompts for the initial seed
and the number of points, then fall into the main subroutine — that expects N in X and the seed in Y
registers.

1 LBL "MCLN2+" 20 RNDM

2 o 21 /
3 "SEED=7" 22 Ft
4 PROMPT 3 -
5 STO 01 24 INT
6 p=7 s 7
7 PROMPT 26 MOD
g GTO 01 27+
9 LBL "MCLN2" 22 DSEY
10 0 29 GTOO0D
11 sTOO1 30 RCLOO
12 RDN 31 %6
13 LBLO1 32 -
14 STO00 33 /
15 RCLO1 34 "so1
16 SEEDT 35 ENTER®
17 CLx 36 2520
18 LBLOD 37 /
19 RNDM 38+

3 END

Examples:

PI, 500, XEQ “MCLN2" => &

L3
gl
—IJ
L

-
-t
L3
A

__|
© ANGEL M. MARTIN — MARCH 2022 PAGE 22 OF 58

https://www.hpmuseum.org/forum/thread-13796-post-129470.html#pid129470

HP- RANDOM ROM QRG

3. Mandelbrot set Area estimation

Saving the best for last, here is a brilliant example of RN’s utilization provided by Valentin Albillo’s
excellent articles on the estimation of the Mandelbrot set area on the HP-42 and Free42 (see here:
HP Article VAO40a - Boldly Going - Mandelbrot Set Area (42S).pdf)

Quoting sections or copying parts of that article is bound to do the reader and the article itself a huge
disservice, so you're encouraged to read the original — included in this manual in its entirety. Thanks to
Valentin for graciously granting permission to do so.

Porting it to the HP-41 platform was relatively straight-forward, once the function set was enhanced to
deal with the required utilities. Obviously the HP-41 has its own limitations compared to the HP-42S
and more so to Free42, however it does a good-enough job aided by the 41Z_Complex Number
Module, needed for the complex math functions required by the program.

Here's the program listing on the HP-41 w/ the 41Z Module.

01*LBL "MBA" 29 X#0? 57 RDN 85 DSE 00
0225 30 SF 00 58 X<Y? 86 GTO 00
03 STO 06 31*LBL OO 59 GTO 02 87*LBL O3
042 32 RCLOS 60 SIGN 88 RCL OO
05 STO 07 33STO 01 61 ZRUP 89 RCLO3
06 1.2 34 FS? 00 62 RCLZ 90 MOD
07 STO 08 35XEQ 03 63 - 92 X#0?
08 .25 36 RNDM 64 ZMOD 93 RTN

09 STO 09 37 RCLO6 65 RCL 09 94 CLA
101 38 * 66 X>Y? 95 RCL 04
11 SEEDT 39 RCLO7 67 GTO 02 96 RCL 00
12 "POINTS=?" 40 - 68 ZRUP 97 -

13 PROMPT 41 RNDM 69 ZRPLA 98 X=0?
14 STO 04 42 RCL 08 70*LBL 01 99 RTN
15STO 00 43 * 71272 100 AINT
16 256 44 X<>Y 72 7+ 101 """
17 "#ITERS=?" 45 ZRPLN 73 ZMOD 102 RCL 02
18 PROMPT 46 ZSIGN 74 RCL 07 103 AINT
19 STO 05 47 ZENTERAM 75 X<=Y? 104 PROMPT
20 CLX 48 RCL 07 76 GTO 04 105RCLY
21 STO 02 49 - 77 ZRDN 106/

22 "EVERY=?" 50 z- 78 LASTZ 107 6

23 PROMPT 51ZMOD 79 DSE 01 108 *

24 STO 03 52 RCL 09 80 GTO 01 109 "AREA="
25CF 21 53 * 81*LBL 04 110 ARCL X
26 "WORKING..." 54 Z<>W 82 1SG 02 111 AVIEW
27 AVIEW 55ZMOD 83*LBL 02 112 END

__|
© ANGEL M. MARTIN — MARCH 2022 PAGE 23 OF 58

https://albillo.hpcalc.org/articles/HP%20Article%20VA040a%20-%20Boldly%20Going%20-%20Mandelbrot%20Set%20Area%20(42S).pdf

HP- RANDOM ROM QRG

Boldly Going - Mandelbrot Set Area

£ 2020 Valentin Albillo

Welcome to a new article n my “Boldly Going” senes, this time staming the Mandelbrot zet and the difficult task of
computing an accurate estimation of its area. The task 15 franght with difficulties and it’s been attacked with really powerful
hardware (think 4 GPUs), complex software and extremely long computation fimes (think 35 davs) but all that work has
produced only about 8-9 comect dizits. Here I'll attempt the feat using just my trusty HP calenlators, many orders of
magnitude slower and less capable but nevertheless I'll manage to get about 3-8 comect digits in much shorter times.

Introduction

The Mandelbrot set (M for shert) is the most well-known fractal of all, an amazing mathematical object which
mystified everyone since its discovery by B. Mandelbrot ca. 1975 and subsequent popularization in the August
1985 issue of Scientific American. There is an incredible amount of readily available literature dealing with all
aspects of M from the very basic to the most advanced so I'll refer the reader to it and won’t discuss them here.

— _ M has a fractal boundary which encleses a finite area whose
precise value is still an open question, and an estimation of it is
what this article is all about. To wit, there are several ways to try
and estimate the area, im:ludingl:

+ the Monte Carle approach, where a large number of
random points are generated within some enclosing box, and a
tally is kept of how many belong to M. which 15 then used to
compute the estimation.

* the pixel-connfing approach, where finer and finer grids are
averaged to tally the number of gnd points belonging to M.

= the theorefical approach, where a large number of terms of
an exact formmla converging (extremely slowly) to the area of M
| i are evaluated and added up to get an estimate.

The Monte Carle approach has some advantages (such as not being prone to potential aliasing problems as may
happen with equally-spaced grids) and disadvantages, the main one being that as is typical of standard Monte
Carlo approaches, to get one more comect digit (1.2, increasing the resolution 10x) the number of generated
pizels would need to be increased 100x, which would result in approximately 100x the nmning time. It also
requires a very good, non-biased random mumber generator with a large cycle (at least several billions long).

The pivel-counting approach has been widely used For example, back in 2012 E. Munafo launched an 8-day
mun to calculate almost 17 trillion pixels (at 2.4 million px/sec) to get an estimated area of 1506591856 with
an estimated emror of 0.0000000236.

Later, T. Forstemann used some powerful hardware (Tnfel Core i7 2600K CPU, 2x GPU Radeon HD 3970 for a
total of 4 GPUs with 1600 stream processors each, 350W under load) and software (Mathematica 8.0.4.0 under
Windows 7, ATT dover Catalyst 11.2 with AMD Stream SDE 2.3 and installation of a C-compiler [Fisual Studio
2011 for Mathematica) running for 33 days straight with a gnd size of 2097152 for a total of
37,960,930 222,520 caleulated pixzels (at more than 29 million px/sec and depths starting at §,389,934 592
iterations) to get an estimated area’error of 1 3063918849 and 00000000028, ten times better than Munafo’s.

! Other methods include the g-arom method. used by J. Hill to zet a lower bound which is close to the pixel counting
methods. He included the area of all components up to peried 16 (main cardioid 1= P1, main disk 15 P2}, and all of peniod 16
but one, and got an area of 1. 506307622, which differs from Forstemann s by ~ 000025833 (0.010%).

1

__|
© ANGEL M. MARTIN — MARCH 2022 PAGE 24 OF 58

HP- RANDOM ROM QRG

Finally, the theorefical approach uses Laurent Series, in parficular a specific one introduced by Ewing and
Schober, which allows computing the area of M by evaluating an infinite series of the form:

4]

Mye =7 (1—Zn.bn2)

n=l

where by are the coefficients of the Laurent series, the first ones being by =-1/2, by = 1/, b; =-1/4, by = 13/12§,
by=0 by=-471024, etc. For a finite number of terms this formula always gives an upper bound of the area but
despite its mathematical elegance it is absolutely unsuitable to compute the area as it converges incredibly slowly,
with an estimated 6.4.10" terms needed to get just one comect digit and more than 10" terms to get two |

Matter of fact, Ewing et al used 500,000 terms (Bappopn ~ 5.5221313-107°) in 1990 to get an estimated area of
1.72 and later in 2014 Bitmer ef al used 5,000,000 terms (whose by, coefficients took 3 months to compute,
B sueen ~ 5.0532-107"") and got an estimation of 1.68788.

To complicate the matter even further, this theoretical approach seems to converge to a value between I.60 and
1.70 while the empincal approaches (Monfe Carle and pixel counting) give estimates around I.50659. This
might be due to the fact that the boundary of M has Hausdorff dimension 2 and thus might have positive (le.,
non-zere) area, which would account for the discrepancy as none of the empirical approaches can ever generate
and calculate points or pixels exactly belonging to M's boundary, so their potential contmbution fo the area
would never be included in the computation. As of 2020, this is still in the realm of speculation but nevertheless
it seems quite plausible’.

Boldly going ...

As stated in the Tnfroduciion above, the purpese of this article is to use nothing but my trusty HP calculators
(whether in physical or virtual form) to try and compute an estimation as accurate as possible (say 5-6 correct
digits) for M’s area in reasonable imes: less than half an hour for a virtual cale, a day or two at most for a
physical one), which is no mean feat.

In view of the above described hardware, software and computation time requirements, it's clear that
accomplishing nry goal will require a good algorithm and pretty optimized code. As this is an informal Article,
not a formal research paper, I'll adopt a Machiavellian approach (“The Ends Justify the Means ") and I'll nux
sound mathematical optimizations with more informal heuristics as required.

To begin with, I'll use a Monte Carlo approach, generating a suitably large number N of random peints within a
rectangular box which completely encloses M, and counting how many actually belong to M. The sought-for
area will then be proportional to the count. Te make the task manageable I'll use the following optimizations:

+ Each pomt (x,)) will be generated as a random complex number z within a rectangular box enclesing M.
Actually, the leftmost extreme of M is at x = -2, the nghmost extreme 1s at x = 0.471185334933396+, the
topmost extreme is at y = 1. 122737063632597+ and the downmost extreme is at y = -1.122757063632597+.

* As M iz gmmeiric, I only need to compute the area of the top half and the total area of M will then be twice
this value. This means that I can use a smaller rectangular boex with x ranging from -2 to 0.5 and with y
ranging from 0 to 1.2 and I'll generate all random complex points = within that box.

» Each randomly generated complex z has to be tested for inclusion in M, which is done via the wsual escape
time algonthm: start with zp = (0,0) and ¢ = z, then iteratively compute z,.; = z, + ¢ unfil either the
absolute value of z; = 2, in which case z escapes to infinity and so definitely does nof belong to M, crelse a
max. number of iterations is reached and z 15 considered to belong to M and the count 15 increased by 1.

! D. Allingham (see References) wrote: “B. Mandelbror himself conjetures that the boundary of the zer may have Hausdorff
dimension 2, which would imply that it actually contributes to the area.”

__|
© ANGEL M. MARTIN — MARCH 2022 PAGE 25 OF 58

HP- RANDOM ROM QRG

+ As computing whether every z belongs to M is a very time-consuming iterative process {(which will reach the
maximum number of iterations if = actually belongs to M) we can try and avoid it altogether for those =
which we can easily ascertain in advance as belonging to M without performing any iterations. That's the
case for those £ either in the main cardioid (below lgff) or in the largest circular bud fmain disk, below right):

4 |

ke - ke

* The main cardicid’s area i3 3x8 = [178097+ (about 78 20% of the total area), while the main disk has an
area of w16 = 0.196350+, (another 13.032;) and their combined total iz 7x/16 = 1.374447+, which already
accounts for 91.23% of the total area of M so we need to compute just the remaining §.77%5, thus the
expensive iterative process will be executed in full less than 927 of the time, a considerable savings.

* Towit, if we can guickly check whether a given z belongs or not to the main cardioid or the main disk we’ll
save lots of nmning time and as it happens. indeed we actually can, using just a few steps for the RPN
version of just 2 lines of code for the BASIC version.

® As for those points not belonging fo either the main cardicid or the main disk, checking whether they belong
to some other minor disks or cardicids quickly becomes more expensive and complicated than performing
the E iterations, which will proceed faster if K is relatively small, say 256 iterations max.

However, this will adversely affect the accuracy because there will be points which do not escape to mfinity
in 256 iterations but would if performing 512 iterations, say, and the same would happen with a bigger K,
there will always be points (i.e.: those sufficiently close to the boundary) which will require more iterations
than any limit we might specify in advance and se those points would be miscounted as belonging to M
while actually they don’t. Nevertheless, there will be fewer of them as E grows bigger, which will help
increase the accuracy but negatively impact the nmning time.

[l attempt to alleviate this dilemma by calculating a large number N of random points but using a relatively
low maximum number of iterations, say K = 236, which will speed the computation as desired. To increase
the accuracy, I'll apply afterwards a correction factor to the resulting area, which will be heunstically
computed like this: we’ll choose a suitably smaller number of random pomts Ny == N and we’ll obtain the
count of the points belonging to M using first £ = 234, then K = 1024 iterations. The resulting correction
factor would then be:

Seore = countyags /countysg

Simple as it is, this non-Tigorous, heuristic appreach works quite nicely and will allow us to use a relatively
low number of max. iterations without actually compromising the obtained accuracy too much.

In short, my algonithm will rely on: fa) ngorous math (statistically-sound Monde Carle method, tight box,
symmetry, main cardioid and disk detection, etc.), (b) nonngorous heunistics (the correction factor) and last
but not least (¢) a little Juck. When dealing with random mumbers you always need a litfle luck, as the
sequence 7,77, ... has the same probability as any other more random-looking sequence. In practice this
means that the results might be werse than average or betfer than average and the latter case 1s the lucky part.

__|
© ANGEL M. MARTIN — MARCH 2022 PAGE 26 OF 58

HP- RANDOM ROM QRG

Program Listing for the HP42s"

0] | LBL "aM" | 26 | cF zZ1 51| &8s 76 | 5TO o0 Dises:
.5 "Working." YT LEL 03
3TO 06 EVIEW ETO 04 RCL 00 - 05 srgns (199 Bytes)
z CE 00 SIGH RCL 032 - flags 00, 21
83 | aTo a7 30 | x#o02 55 | moz+ aT = | 80 | Moo - labeis OO-04
1.2 3T 00 285 QD - regiziers 00-09
3TO 08 LEL 00 RCL 0% RTH - rets RECT mode
0.25 RCL 05 Y7 CLRE - @y amguiar moda
3TO 0% 3TO 01 ETO 04 RCL 04
| 1 35 | a7 oo a0 | rt 85 | rCL- 00
ZEED XEQ 03 RCL 07 =072 Registers:
"Foins=l" RAN RCL ST ¥ RTH
PROMET ECLm 06 LEL 01 ATD 88: Noloop index
3TO 04 RCL- 07 X1z |-"—+" 01 E-loop index
15 | aTo oo 40 | raw 67 | rocz+ 3T 2 | 90 | BOL 02
58 RCLx OB EES AIP 62: M fcount)
"ItersI" COMPLEX HEY? RCL: 5T ¥ 03: ewn P
PROMET ENTER TS 02 £ 0d: N Epoiniz)
3TO as EHNTER H<= BT L = o5- E (2 itarations)
0| cix 45 | s1=m 70 | DSE 01 a5 |-"‘-yAre.'|.~" P
3TO 02 BCL~ 07 ETO 01 BBCL 3T X pr—
"Every® RCLx 5T L LEL 04 HVIEW
EROMET aES Is56 02 25 | mvD gg: 1.2
3TO 02 RCLx 08 LBL 02 09 025
25 | rECT 50 | xesw 75 | osE o0

Program details

Steps 01-31- main entry point: initialization” and prompting input from the user. { 3] steps }

Steps 32-36 start of the main loop. {3 steps }

Steps 37-44: generation of a random point within the box, plus 2 copies on the stack. | § sfeps }

Steps 43-33: checking whether the point belongs to the main cardioid (thus, to M). {9 séeps }

Steps 54-39: checking whether the point belongs to the main disk (thus, to M. {6 steps }

Steps 60-71: checking whether the point belongs elsewhere in M (iterations). { 1.2 steps }

Steps 72-73: 1f the point does indeed belong to M. merement the count. { 2 steps }

Steps 74-76: decrement the mumber of points yet to generate/check and loop until no more left. {3 sigps }
Steps 77-98: cutput routine, displays either the intermediate results and/or the final result. {22 steps }

! To enter text lines use the ALPHA menu; | iz the dppend charzcter and LP 15 the Line Feed character, which can be
found at the end of the second row of the PUNC submenu of the ATPHA memn.

! The initialization part stores four small constants in storage registers Rus-Roe because of speed considerations. Simply
having the constants as program lines and performung the relevant anthmetic operations takes teo program steps each and 1=
much slower than using recall anthmetic, which st takes a smgle step and 15 faster as well. As these operations are part of
the main loop, every speed gam 1s essential when bemg repeated many thousands of tmes.

Also, to save a register and a program step the constant 2 15 stored just in R, then used at 3 different locations in the program,
but the very first use at step 39 depends on the enclosing box x-range being fom -2 to 0.5, If using a different box x-range
this constant mught change and would need to be stored m 1= own remster, say R, the other mstances remaimng unaltered.

© ANGEL M. MARTIN — MARCH 2022 PAGE 27 OF 58

HP- RANDOM ROM QRG

Usage Instructions
The program accepts the mumber ¥ of points to generate, the maximum number of iterations £ and whether you
want to display intermediate results every F pomts or just the final estmation for the area.

The program doesn’t automatically compute/apply any correction factor, that's left at the discretion of the user to
decide whether and how to compute it since there’s no optimal approach valid for all N and K there’s plenty of
leeway. Of course, the program will greatly assist in computing it, as we’ll see in the main nn below.

To compute an estimation of the area of M proceed as follows:

"AM" — Points? { asks for the number of points fo generate, N }
N — Iters? { asks for the max.num. of iterations’, K. Default=256, just press @}
K — Every? { asks if vou want to display intermediate results every P points”:

if you don't and just want the final result, stmply press R7S|}
F —+ Point p —=Countp | the mtermediate tally of points generated and resulting counis }
Area ~ Area p { the infermediate estimations of the area }

—+ Point y =County | the final tally of points generated and resulfing count }
Aren ~ Area y { the final estimation of the area |

Further Considerations
To choose the number of points ¥ and max. iterations K, we’ll take into account the following considerations:

& Both the comectmess of the estimated area and the ninming time depend on N and K, the larger the better
as far as the estimated area is concerned but the longer the munning time will be. Also, whether you're
using a physical HP425/DA42 or a virtual HP425 and its underlying OF (i05, Android, Windows, Mac,
Linux, other) and hardware, all of it will greatly influence the choice of calculation parameters.

Generally speaking, a physical original HP425 will be the slowest by far, and this will limit the mmning
times allowable without depleting the batteries, probably 1-2 days at most. The DM42 15 ~100x faster
and can use an USE power source, so it can mun the program for much longer. Some experimentation
will be required, starfing at a low value of N, K (say N = 1,000 and K = 256) and noting the ninning
time. Then it’s possible to select how big N and K should be, as the time will be proportional to both

® On the other hand. a virtual HP42S will be orders of magnitude faster. For instance, using Freed ¥
BCD on an Android mid-range Samsung tablet (as done below) will generate and check about 1,000
points per second at 256 max. iterations per point. This means I can use N = 300,000 points and K =
256 max. iterations, say, and get the result in less than 10 min. Using a faster version of Free4? and'or a
faster emulator/0\5" hardware combination can easily get results even 10x or 100x faster

* Increasing the number of iterations K will always reduce the estimated area because performing more
iterations weeds out points that never escaped to mfinity when using E iferations, and thus were
meluded in the count. but actually did escape when using more iterations and so weren't included now.

* However, increasing the number of points N while leaving £ fixed results in estmated areas which
overshoot'undershoot the area. slowly converging to the correct value of the area for thar number of
iterations, Mg, not to the comrect area of M, which would be the value for infinite iterations.

* This can be remedied by using a correction factor, which uses Ej j to extrapolate K. as we'll see below.

! The mumber of iterations doesn’t need to be a power of 2 (236, 512, ._.J, it can be any positive integer (say 1,000, 637, ...)

% If you enter a positive integer value P, the intermediate results will be displayed every P points as well as the final result
once all N points have been generated. P doesn't need to divide evenly into N, the final result will be displayed regardless. If
P15 () no mtermediate results will be shown, which wall mean faster execuhion but you won't be able to moniter progress.

* Freed? is a fantactic free simmlation of the HP425 created by Thomas Qlken for many operating systems (Windows, Mac
Q5. Android, iQ5, Limux, etc.) which also mns at the beart of SwissMicros physical DMY2 caleulator. It mins many bundred
tumes faster than a phosical HPY2S and features vastly imcreased available RAM, 34-digit BCD precision and mouch more.

| |
© ANGEL M. MARTIN — MARCH 2022 PAGE 28 OF 58

HP- RANDOM ROM QRG

Sample runs
Leat's see several examples. We'll asume display mode for all results that follow.

Example 1
For starters, let's estimate M's area using N = 10,000 points and £ = 256 iterations, showing just the final result.

TEM” —+ Points?
10000 — lters? {we'll use 236 iters. which is the default so just press }
— Every? { we just want the final result so just press [/ }
— 10000 =2572 { the final tally: 10,000 points generated, 2,572 landed in M }

Area ~ 1.54320 { the estimated area of M, just two correct digits, err=2.43%, 11"}

Example 2
Let’s improve the estimation using N = 10,000 points and K = 512 iterations, showing results every 2, 000 points.

TAMT —+ Points?
10000 | B/S | — Iters?
512 —+ Every?
2000 | BRSS| — 2000 =311 Area~153300 { the first infermediate result }

— 4000 =1041 Area~1561350 { the 2 intermediate result }
— 6000 1561 Area~1.56100 { the 3" intermediate result }
— S000 =2053 Area~1 33973 { the 4" intermediate result }
— 10000 = 2560 Area~1.33600 { final reslt, siill 2 corvect digits but erv=1.93%;, 197}

The Ultimate Run

Now for the real McCoy. Taking the above considerations into account and as I'll be using a virtual HP428
(Freed2 BCD for Android) nmning on a mid-rangs Samsung tablet, I'll use half 2 million ponts and a low 256
iteraticns for speed but I'll also compute and apply a correction factor to fry and increase the precision. I'll
compute this comection factor first, using 5x fewer points than the main mun but 4x more iterations, as follows:

Seorr = Areajooeen 1024 £ Areaioooog 256

where Area p j means computing the area using N points and E iterations. Let’s proceed to compute fopp:

“AM” — Points? {we'll use 5x less points, just 100,000 }
100000 — lters? {we Il use first 1,024 itsrations }
1024 — Every? { we won 't be monitoring progress |}

— 100000 25312 Area~1.51872 {the value of Areajpopog jo0e [374577 }
{ we store it for Inter use }

XEQ - —* OInEs! as a , STl just ,
TAM” F ? bove, sall just 100,000
100000 — Iters? { now we'll use 256 iterafions, so just press _,1
—+ Every? { we won t be monitoring progress either }

— 100000 25501 Area~1.53006 { the value of Areajpppog.2ss [1°5877 }

{ Ry now contains the c. factor ~ 099238853 }

© ANGEL M. MARTIN — MARCH 2022 PAGE 29 OF 58

HP- RANDOM ROM QRG

Now it’s time for the the mam computation, to which we’ll afterwards apply the just calculated (and stored)
correction factor. This will take less than 10 min in all and we’ll monmiter progress ...

TAM” — Points? { we'll use the full 500,000 paints }
300000 — Tters? { we'll use 256 iterations, so just press [V5] }
R/S —+ Every? we Il monitor prograss every 100 000 points }
] Prog ¥ P 4

100000 —100000 =235301 Area~1.53006 | the first intermediate result [1'587])

— 300000 —=126486 Area~1.31783 { the main resulf, which in itselfhas err~ 0.75%
before applying the correction facior [9°477] }

Finally, let’s apply to the just computed area in the display the correction factor previously computed and stored:
— 150658 { move precizely, 1.50658 263 ws. Farstemann’s 150659 1558)

which is my final computed estimation for the area of M and it's comect to 6 digits within less than one ulp (unit
in the last place). It differs from Forstemann’s 8§-trillion-pixels-calculated-ai-8 6-billion-iterations-per-pivel
result by just ~ 0.00000923, an emor of ~ 0.000614%.

He got an estimated area accurate to 9 correct digits (within possibly a couple ulps or three) in 35 days at great
expense (both the costly hardware and the 35-day electricity bill), while I got 6 comect digits in less than 20 min.
(actually 17°20" = 9°47" for the main computation plus 545" + 1°58" for the correcfion facior computation) at
negligible expense. so point made. Not bad, 1sn'tit 7

Where to go now

As this 15 an informal article and the point has already been made, we could really call it a day and move on. But
if we were willing to, there’s a number of further techmiques to consider in order to improve the aceuracy and/or
reduce the computation times. For instance, among other possibilities:

* We can avold wasting time generating and checking random points in blank areas (~73% of the enclosing
box used here) where no part of M is, by subdividing M inte a number of rectangular boxes (9 in the sample
partition below) and then computing the total count as the sum of the counts in each individual box.

It is important to distribute the total
mumber of points N among the boxes
proportionally to the area of each box so
that the density of points is the same.
Otherwize we would be adding areas
computed with different precisions and
this is wasteful as the resulting sum will
be no more accurate than the least
accurate area.

To implement this, the program mmst be
converted into a subprogram with no
prompting and no output, which accepts the dimension of each box and the number of points Nj fo use and
refums the count to a main program which first inputs the number of points N and max. iterations K from the
user and then calls the subprogram with the coordinates and the Nj for each box, then adds up the retumed
counts and computes and outputs the total area. There’s no overhead and large blank areas are thus aveided.

Also, the process is faster for each box because some time-consuming checks are avoided altogether:

Box I only needs to check if points belong to the main cardioid, but forfeits the check for the disk.
Box ! only needs to check if points belong to the main disk, but forfeits the check for the cardioid.
all remaining boxes forfeit both checks, which significantly speeds the process.

| -
© ANGEL M. MARTIN — MARCH 2022 PAGE 30 OF 58

HP- RANDOM ROM QRG

* The correction factor could be improved like this: we’ll choose a suitable number of randem points N and
we’ll obtain the count of the points belonging to M for an increasing max. number of iterations, say for K =
236, 512, 1024, 2048, etc.. We'll then analyze the counts obtained and roughly extrapolate what the expected
count would be for K = «. The resulting correction factor would then be:

[earr = counta, S countass

which will presumably get us a more accurate estimation. For instance, for N = 100,000 points we get:

K 256 j12 1024 2048 4,008 8192 oo
connt g 25,501 23,352 25,312 25,277 23,261 25,254

ol

Now we simply use some extrapolation or curve fithng technique to try and estimate county,

*We canuse periodicify checking within the iterations to detect loops and abort the iterations early.
#We can add a check for the secondary disk (the one in box 3 in the partition above) or even other p-atoms.
= And so on and so forth ... and what about the area of ether fractals (Mandelbar, Burning Ship, . 7

Motes

I Quoting D. Allingham (see Rgferemces below): “Thiz method [Monte Carle] was employed using Mathsmatica,
and gfter 20 howrs and nearly 43,000 points being genmerated, the approximare area af the Mandelbrot set was
Jound 1o be 14380 1o 4 dscimal places.” Actually the result barely has 2 comect digits and shows the amazing
progress made in the last 25 vears, as now I"ve used an mexpensive tablet to mon my virtual AP ealeulator’s 98-step
RPN program to caleulate ~ 10x more points ~ 60x faster and zot a result ~ 10,000 more accurate.

2. T've also wmiten a 9-hne (334-byvte) BASC version of thus RPN program for the HP-7IB. Although the random
number generator 15 the same as the one Freed? uses, producing the exact same sequence of random pumbers when
usmg the same seed (venfied up to 100 mlhon consecutive random pumbers when starting from the seed 1, as used
m the RPN program featured here), mntermally the HP-71B uses 15 digits (12 digits avalable to the user) while
Freed? has 34-digit acouracy, which over many generated pomts and iterstions tends to produce shighthy different
results, so the sample and mam runs given here mght not produce the exact same results shown here.

References
Damniel Bittner et al (2014) New Approximations for the area of the Mandelbrot Ser
Thorsten Férstemann (2012) Numerical estimation of the area of the Mandelbrot set

EKemy Mitchel (2001) A Statistical Investigation of the Avea of the Mandelbrot Set

David Allingham (1995} Conformal Mappings and the drea of the Mandelbrot Set

John Ewing (1993) Can We See the Mandelbrot Set ?

Ewing and Schober (1990) On the cogfficients af the mapping to the exterior of the Mandelbrot sef
A K Dewdney (1983 Computer Recreations (Scientific American, August 1983 issug)
Thomas Okken Freed?: An HP-425 Calculator Simulator (website)

Copyrights

Copynght for this arhele and its contents 15 retamed by the author. Permuission to use it for non-profit purposes 15 granted as
long as the contents aren’t modified 1 any way and the copmight 1= acknowledzed

For the pwpeses of this copynght, the defimiion of non-profir does not melude publishing thas article m any media for whach
a subzeniption fee 15 asked and thus such use 15 stnetly disallowed without exphert written permision granted by the aathor.

3
|

© ANGEL M. MARTIN — MARCH 2022 PAGE 31 OF 58

HP- RANDOM ROM QRG

Gaussian Distribution of Random Numbers

Let's move to a different chapter of the module, dealing with Gaussian- (or Normal-) distributed
random numbers. As a way of introduction, Normal distribution of random numbers play an important
role in numerous science fields and therefore must be covered.

The module includes two techniques to obtain gaussian random numbers, both using output from the
SandMath/PPC p-RNG described earlier in the manual. The techniques are the Box-Muller and the “"12R
minus six” methods, described below.

Function Description Input Output
BXMR Gaussian RN (Box Muller) SEED/RN in buffer Normal RN in X
RANG Gaussian RN (12R-6) SEED/RN in buffer Normal RN in X

See: https.//en.wikipedia.orq/wiki/Box%E2%80%93Muller transform
and: https.//mathworld, wolfram.com/Box-Muller Transformation. htm/

Note that both functions generate GRNs "Nr” with "Standard” Normal Distribution, i.e. with mean 0 and
variance 1. This can be “moved” to GRNs “Xr” of any Normal Distribution with mean p and variance o
using the relationship: Nr=(Xr-u)/o; andthus: Xr=p+o.Nr

The Box-Muller method uses two uniformly distributed RN’s { x1, x2 } generated via SEEDT, RNDM to
calculate two GRNs { z1, z2 } using the following transform:

Z1=4/-2Inx; cos (27 xy)
Zy=+/-21Inx; sin (2 7xy).

Whereas the "12R-6" method uses the sum of twelve random numbers generated via SEEDT, RNDM p-
RNG, and subtracts the value 6 from the result to obtain the GRN. Simpler formula but more
demanding requiring 6x more RNs.

z=(x1+x2+x3+..+x12)-6

Both functions are implemented in MCODE, and the execution times are very similar,

(o))

Example. Using pi as initial seed, generate 6 GRNs for each method:

PI, XEQ “SEEDT” => 4 {59IESY
BXMR RANG
- 197 (258994 P EREERETL:
e 229 2833 (2
ZHES5290 (49 CEEEER Y
SCEEEEDERY LEEEHAEA Y
-G 1882 11253 2275395484
-B553735 {52 G

You should be getting the exact same results as the Time seed was not used.

__|
© ANGEL M. MARTIN — MARCH 2022 PAGE 32 OF 58

https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform
https://mathworld.wolfram.com/Box-MullerTransformation.html

HP- RANDOM ROM QRG

Digging deeper: which p-RGN to use?

The MCODE functions are “fixed” to the SandMath/PPC p-RNG but their FOCAL counterparts can use
any of the three sets of p-RNGs, controlled by the user flags as follows:

Function Description Input Output

BX-MR Gaussian RN (Box Muller) SEED/RN in buffer Normal RN in X

12R-6 Gaussian RN (12R-6) SEED/RN in buffer Normal RN in X
p-RNG used:

Flag Set p-RNG Conditions

UF 00 SandMath/PPC None

UF 01 Toulouse Math UF 00 Clear

UF 02 Voyager 11C/15C UF 00 and UF 01 clear

Note that the interrogation follows the flag number order, thus if UF 00 is set that will prevail over the
status of the other two because it's the first one checked.

Repeating last example for the other two p-RNG we obtain: (don't forget to initialize the corresponding
seed with PI, using the corresponding functions: STORAND and SEED instead of SEEDT

For Voyager p-RNG — SF 02

For Toulouse Math p-RNG - SF 01

BX-MR 12R-6 BX-MR 12R-
AHBABHESA5H -AShSI thAWYH S e B o i B e B B R B B R P
MHEAdEYY S h O e i R USSR RS A1 124557

R B R R LS SEREYY S SWLEB T e TEA S AZYE TdHAE N
AR E S A 2 Sb (SHEAES [IR R R % R U I e I R R
AHS 995 HS SAbBAS A A H S Ao B SEYE MUISEHRS S
AbHS 9 RN LS idbEBEHY 1S S R B P2 B = B B R P

And how to make heads or tails of all these GRNs?

Armed with these two additional routines we can do comparative testing, pitting the methods against
each other and choosing which p-RNG to use on every case. The routines "TRANG (Test RANG) and
“"BENCH are provided to that end, as described next. A third program “INDEX is also provided to
evaluate the goodness of each combination of method and p-RNG — by establishing a comparison with
the Normal Probability Function P(x).

Normality Tests Description Input

“BENCH Driver for “TRANG” + “INDEX” Sample Size, p-RNG, Method
“INDEX Calculate Normality Index Quantile data in {R00-R05}, R10
“TRANG Test one Method/p-RNG combo Sample Size & User Flag 0-3

Here's how these work.-

__|
© ANGEL M. MARTIN — MARCH 2022

PAGE 33 OF 58

HP- RANDOM ROM QRG

TRANG. Besides selecting the appropriate p-RNG user flag, "TRANG uses UF 03 to choose which
method to employ: UF 03 Set = Bix-Muller, and UF 03 Clear = 12R-6 method.

Once those four flags are properly set you would execute “TRANG to calculate the 6 quantiles reflecting
the GRN probability distribution amongst them. The width of the quantiles is determined by the sample
size: w = N/6

A final message in ALPHA like the one below shows the results for the first four quantiles — (not six,
need to make it fit in ALPHA), the most important ones since usually the two remaining ones are
always 100% (notice no decimal digits is provided for this cas to save some real state).

For example, for a sample size of 50 GRNs and setting UF 02 (Voyager p-RNG) and also setting UF 03
(Box-Muller method) we'll type:

XEQ “TRANG” => N =
50, R/S => WA

&
i
A A A A (A A {
AN/A A lﬂb.LlLl? [N/A A {

=3
=3

Is that good or bad? Well, here’s where function INDEX comes to the scene. It expects the quantile
GRN probability data already stored (either by TRANG or manually by the user), and compares those
percentages with the theoretical cumulative probability corresponding to a normal distribution, i.e.

1 (7 t— p)?
F(z;pu,0) = f exp| — ﬁ dt.
o2 J - 202

With x being the five abscissas of the five quantiles, and p,c the mean and standard deviation of the
distribution.

The module includes the Error Function erf(x) to calculate that integral by the following expression:

I —
PrX <L ==+ ~erf 2"

22 /3,

The last step is a direct comparison between the theoretical and actual results, i.e. the “"Normality
Index”. For this example:

NEN]
AN

[y Ld Iyl

o
N .. => A aaN N

=3

) {
= 1

[Y]
Al

[N Y]
LA

XEQ “INDEX” => L

Calculated as:
Index = X [sqrt (Q(n)"2 — P(m)"2], n=1,2...,6

A perfect set result would have index = 0, so the lower the better.

__|
© ANGEL M. MARTIN — MARCH 2022 PAGE 34 OF 58

HP- RANDOM ROM QRG

All together now: Driver program

For maximum convenience the driver program "BENCH" does the leg work with the User flag setting for
you, navigating the different options with ALPHA prompts, see next.

Let's find the normality index of a set of 100 gaussian random numbers generated using the 12R-6
method with the Toulouse Math p-RNG. We'd type:

XEQ “BENCH" presents the first menu-driven screen with the name of the two methods:

FJxMKR - iJdR-b

USER RAD

choose [B] or [D]

XEQ [D], which presents the second selection screen with the name of the three p-RNG choices:

RNTM RN RANT

i USER RAD choose [A], [C] or [E]
XEQ [E] for the Toulouse Math, => Nz

Set UF 10 to see a countdown with the current GRN being calculated. When completed we'll see the
“"RUNNING. . .” message and then the ALPHA screen with the GRN percentages for each quantile:

; 68.00; 95.00; 100; 100 ; 100; 100

pressing R/S => A THSHHE AN

Meaningful comparisons should be made between sets with equal sample sizes, or else the normality
will be totally skewed of course.

And the winner is...

The table below summarizes the results like those obtained in the example above, (sample size = 100),
repeated for all possible combinations. The initial seed is always 1.

Method / p-RNG RNDM RN RAND
Box-Muller AIZASESHMET | APYAYSYSER | BAASHYS (6
12R-6 AISEEIYIZ ! | BPY9PRA (MSY | BZ 14S99HIY

The Toulouse Math ROM takes the gold, and that’s using either of the two methods. Second place is for
the Voyager 11C/15C p-RNG, and the bronze medal is for the SandMath/PPC contender.

__|
© ANGEL M. MARTIN — MARCH 2022 PAGE 35 OF 58

HP- RANDOM ROM QRG

Testing Random Number Generators

There’s quite an abundance of relevant literature on this subject available on the internet. If you google
the title of this chapter, the hit list is long, and the entries are quite informative, ranging from very
pragmatical to heavy on the theoretical side. See for instance this one by Dan Biebighauser.

For the RANROM I decided to take the historic perspective, including two old programs on the direct
subject plus a more recent one about a related topic published in the MoHP forum.

Program Description Author / Source

“EVAL” Evaluation of p-RNGs L. H. Gilbert / UPL #10240
“RNGTST” Randomicity Test Paper Charles T. Tart / Paper
“CHI” Chi-square test

“STRAT” Stratified Random Samplimg Rawi / MoHP Article

1. Evaluation of p-RNGs (by L.H. Gilbert, UPL# 10240)

The original program has been modified slightly to allow for a more convenient handling of the p-RNG
selection, which obviously cannot be entered in the main body of the program when this is in ROM.
Besides I've replaced the data entry section with a new, menu-driven one. No other changes were
made. Quoting from the original UPL document. -

The program executes a user-provided random number generator, and checks the output in the
following ways:

- the mean and standard deviation of a sequence are computed

- The correlation between Xi andX(i+1) is calculated

- Arunning check is made to determine when the generator enters a closed cycle (if ever)
- A histogram is plotted, and

- A Chi-square test of uniformity is calculated.

The program requires one memory module. A printer is recommended.

Application, Equations, Variables.

The random number generator produces a sequence of (uniform) numbers, X ={xi }, i=1,..., N.

- For each xi, x2i is computed and matched. If tzey re equal, a closed cycle of numbers has been
detected.

- A histogram of 20 “bins” on the interval 0 — 1 is constructed, and a count made of where each
xi falls.

- The extended count per bin, N/20, is employed in a Chi-Square test:

yM=2[(fi—-fe)2/fe ;i=12..20
with fi = expected count, and fe = N/20

__|
© ANGEL M. MARTIN — MARCH 2022 PAGE 36 OF 58

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjcmY-2ldn2AhWMKewKHZALAxMQFnoECDYQAQ&url=https%3A%2F%2Fwww-users.cse.umn.edu%2F~garrett%2Fstudents%2Freu%2FpRNGs.pdf&usg=AOvVaw0SGlZbT4zTsAPEpZAUlnw4

HP- RANDOM ROM QRG

At the 5% level of significance the »*2 should be greater that 30 in order toconclude that the N random
numbers are not uniformly distributed.

Operating limits and warnings.

The program is designed to evaluate a generator of uniform random numbers, on the interval [0, 1 [

Using all the program fcacilities, each number takes about 3.6 seconds to generate and evaluate; about
3.0 seconds with the printer switched off.

The RNG must be program under a general label in memory, it will be called by the main program.
Example.

A sequence of N=100 numbers was generated by the formula: Xi+1 = FRC [9821 * xi + 0.211327]
The initial seed was 0.159753, and the formula has been programmed as:

01 LBL “RNGO”
02 9821

03 *

04 211327

05 +

06 FRC

07 RTN

Starting the program now:
XEQ “EVAL” — sets SIZE 36 and resets all flags.

The initial set of questions prepare the flags for the program execution automatically. You just need to
enter the initial letter of the choice you want, and then press R/S. A shortcut is also enabled so if no
letter is pressed the default option is the first choice.

STOF/7EONTY R/S - Clears/Sets UF 00
CLRGB/ZHOD UMY R/S - Clear /Sets UF 01
KN=IN/OMI T R/S - Clear/Sets UF 02

HISTO,/ OoMITH "H” R/S - Clear/Sets UF 03

HLL /DU R/S - Clear Sets UF 04

RNGD HROMY “RNGO”, R/S

SEEI:W 0.159753, R/S

N 100, R/S

The execution starts, showing a countdown as the sample is being processed. Finally, the HP-41 beeps
and halts at end. Pressing R/S again starts the output of result — ending with the value of "2 in the
display.

__|
© ANGEL M. MARTIN — MARCH 2022 PAGE 37 OF 58

HP- RANDOM ROM QRG

Here are the frequency counts on each bin for the first (left) and second (right) 100 digits:

e

E »
e
g2 —_— a
£E =
B s o1
2, 7
%
=
2 - r
Eid e
' E(
& £Rin iz =
Fre & S N
—_— £ FRES e
i A e e e
o
7 LI | S
B 7 : 6 £ .
=3 P 2
1" b ' g iy L ¢)
3 % i e
g 3 : 13 & v
= 4
1573 % S, i5 o .
i] e]
~ z -
g : : B
B = s AR
i B E) > i :
f; %] e o= :
= M i S S
a4z 9 ! A £
4“ 2 = v ; - 0 3
L r— R 2 T
45 4 x ! o .
- ; oy H
cr i e) . 4
i B 2 ¢ 34
&= ¢ !y
gy b H O, £ g 2}
iy 4 : o % H
mE 7 : £ L
- 1 S
E':'.' i i £ 25 -3
i T - i
E-’!’ ; z sz
o4 % 7 g
a8 g x4 < =
c 7 & 4
B‘ & > g 1
K e = T
s ; : :
S : Lol :
X6
oz g * e
Lz 9as ®

i3 AR - E 8o
CHI-Z§ {5h:38) = 14,88

« If FOO is clear the execution halts after N numbers so that the printer can be switched off. If it is
set no halt occurs, the printer is always on.

o IfFO0I is clear each sequence of N numbers is treated separately,. If it’s set the data is
accumulated for each successive sequence.

o IfF02is clear the program, will check for duplicate numbers. If set there won’t be checked 0
faster running time.

o IfF03 is clear the histogram is printed. If set, there’s no print of histogram.

o If FO4 is clear the program does a complete evaluation. If it’s set only a check for duplicate
numbers is done.

When a duplicate number is detected the program halts showing a message that identifies the element

in the sequence causing theevent:: “C YL L E HT rmm”

’

© ANGEL M. MARTIN — MARCH 2022 PAGE 38 OF 58

HP- RANDOM ROM QRG

Let's now run EVAL for our three p-RNGs to — finally! — establish a comparison and therefore
determine their relative ranking. For that we need to write three trivial FOCAL routines for EVAL to call,
as follows:

01 LBL “RPPC” 01 LBL“RTOU” 01 LBL “RVYG”
02 RNDM 02 RAND 02 RN
03 RTN 03 RTN 03 RTN

Using a sequence length of N=1,000 and the same seed = 0.123456789 for all of them.

The results are shown below:

XROM "EVAL"

STOF/CONTH S RUN
CLRLG/HEDUMY A RUN
XN=zdN/OMITH RUN

HILTOD/ OMITY O RUN

HLL/ TUHY RUN

RNLGD FROMTY “RPPC” RUN
SEEDI=W 0.123456789 RUN
Nz 1,000.000000 RUN
N=1,000.

SEED<N>= 1.234567890-01
SEED<2N>=1.234567890E-1

u= 0.4954 s= 0.2791
r=-0.0088 N= 1,000.

E(f)= 50.0

44. 47. 50. 56. 54. 39. 56. 45. 49. 63. 69. 50. 45. 52. 51. 51. 44. 50. 42. 43.

CHI-SQ<5%:30> = 19.80

For the second group we use LBL B - there’s no need to repeat all data entry:

XEQC

“RTOU"” RUN
0.123456789 RUN
1,000.000000 RUN

B
g
oy
0

-1 =
-
=
-

=Z
|
-
==
)

=Z
)
=J

w = 0.5152 s= 0.2884
r=-0.0009 N= 1,000.

E(f)= 50.0

43. 53. 56. 45. 36. 49. 40. 51. 41. 59. 51. 44. 59. 56. 58. 52. 51. 56. 44. 56.

CHI-SQ<5%:30> = 18.20

__|
© ANGEL M. MARTIN — MARCH 2022 PAGE 39 OF 58

HP- RANDOM ROM QRG

And going for the third group now:

XEQ C

RNG PRGM? “RVYG” RUN
SEED=? 0 .123456789 RUN
N=? 1,000.00 RUN
N=1,000.

SEED<N>= 1.234567890-01
SEED<2N>=1.234567890E-1

u = 0.4918 s= 0.2837

r=-0.0304 N= 1,000.

E(f)= 50.0

43. 46. 54. 57. 44. 50. 47. 56. 51. 56. 49. 66. 45. 44. 51. 41. 60. 51. 47. 42.

CHI-SQ<5%:30> = 16.44

Alright then, according to the results above the better p-RNG is the Voyager’ style.

Uniformity Test SandMath/PPC Topulouse Math Voyager 11C/15C
12 {5.H (H.C (B

This is an interesting result, because despite being the better of the three in uniformity, if you recall it
however did not hold the winner place for the normality of the gaussian random numbers generated
from it; so not quite a slam dunk! If anything, this demonstrates that there are different considerations
to the quality of “randomness”.

Going the extra mile, we can widen the comparisons by also testing some of the other p-RNGs available
in the module, like Mark Power’s from DataFile and JM Baillard’s from his web site. Doing so we obtain
the following table of results:

Uniformity Test RANOO RNG1 RNG2
A2

__|
© ANGEL M. MARTIN — MARCH 2022 PAGE 40 OF 58

HP- RANDOM ROM QRG

Program listing.

| 01*LBL "EVAL"

02 SIZE?

03 37

04 X>Y?

05 PSIZE

06 CLX

07 X<>F

08 AON

09 "STOP/CONT?"
10 PROMPT

11 ATOX

12 83

13 X#Y?

14 SF 00

15
"CLRG/ACCUM?"
16 PROMPT

17 ATOX

18 67

19 X#Y?

20 SF 01

21
"XN=2N/OMIT?"
22 PROMPT

23 ATOX

24 88

25 X#Y?

26 SF 02

27 "HISTO/OMIT?"

28 PROMPT
29 ATOX
3072

31 X#Y?

32 SF 03

33 "ALL/DUP?"
34 PROMPT
35 ATOX

36 65

37 X#Y?

38 SF 04

39 AOFF

40 XREG 09

44 AON

45 PROMPT
46 AOFF

47 ASTO 36
48 "SEED=?"
49 PROMPT
50 X=07?

51 1RAN

52 STO 00
5357001
54 FS? 04
55GTO 03
56 "N=?"
57 PROMPT
58 STO 02
59*LBL 01

89 STO 15
90 CF 21
91 FIXO
92*LBL 02

41*LBLC

42 CLRG
43 "RNG PRGM?"

60 RCL 00
61 RCLO1
62 RCL 02
63 RCL 36
64 FC? 01
65 CLRG
66 STO 36
67 RDN

68 FIXO

69 "N="
70 ARCL X
71 ACA

72 PRBUF
73 STO 02
74 STO 03
75 RDN

76 STO 01
77 RDN

78 STO 00
795CI9

80 "SEED<N>="
81 ACA

82 ACX

83 PRBUF
84 "SEED<2N>="
85 ARCLO1
86 ACA

87 PRBUF
8816

93 VIEW 03
94 RCL 00
95 RCL 00
96 XEQ IND 36
97 STO 00
98 s+

99 CLX

100 .05
101/

102 INT
103 RCL 15
104 +

105 E

106 ST+ IND Y
107 FC? 02
108 XEQ 04
109 DSE 03
110 GTO 02
111 BEEP
112 FC? 00
113 STOP
114 FC? 55
115 PRBUF
116 SF 21
117 XEQ 05
118 XEQ 06
119 FC? 00
120 STOP
121 ADV
122 ADV
123 GTO 01
124*LBL 03

125 E

126 ST+ 03

127 VIEW 03
128 RCL 00

129 XEQ IND 36
130 STO 00
131 XEQ 04
132 GTO 03
133*LBL 04

134 RCLO1
135 XEQ IND 36
136 XEQ IND 36
137 STO 01
138 RCL 00
139 X#Y?
140 RTN
141 TONE 9
142 "CYCLE AT "
143 ARCL 03
144 PROMPT
145 RTN
146*LBL 05
147 FIX 4
148 2

149 ACCHR
150 61

151 ACCHR
152 MEAN
153 ACX
1542

155 SKPCHR
156 115

157 ACCHR
158 61

159 ACCHR
160 SDEV
161 ACX
162 PRBUF
163114
164 ACCHR
16561

166 ACCHR
167 SDEV
168 *

169 RCL 09
170 RCL 11
171 *

172 RCL 14
173/

174 RCL 13
175 -

176 CHS
177 RCL 14
178 E

__|
© ANGEL M. MARTIN — MARCH 2022

PAGE 41 OF 58

HP- RANDOM ROM QRG

179 - 212 20 246 ARCL L 279 ST+ 08
180/ 213/ 247 ARCL L 280 RCLIND 03
181 X<>Y 214 FIX 1 248 ACA 281 ACX
182/ 215 ACX 249 ADV 282 RCL 04
183 ACX 216 FIXO 250126 283 RCL 05
184 "N=" 217 RND 251 RCL 05 284 RCL 06
185 FIX O 218 STO 07 252 RCL 04 285 STKPLOT
186 ARCL 14 219 STO 05 253 - 286 ISG 03
187 ACA 220 PRBUF 254/ 287 GTO 07
188 PRBUF 221 FS? 03 255 RCL 07 288*LBL 09
189 RTN 222 GTO 08 256 RCL 04 289 ADV
190*LBL 06 223 RCL 14 257 - 290 RCL 07
191 CLX 2242 258 * 291 ST/ 08
192 STO 08 225/ 259 INT 292 FIX 2
193 RCL 15 226 SQRT 260 E3 293 "CHI-SQ"
194 RCL 15 227 RND 261/ 294 "'<5%:30> ="
195 19 228 ST+ 05 262 126 295 ACA
196 + 229 - 263 + 296 RCL 08
197 E3 230 X<=07 264 STO 06 297 ACX
198/ 2310 265*LBL 07 298 PRBUF
199 + 232 STO 04 266 RCL 03 299 ADV
200 STO 03 233 ADV 267 INT 300 RTN
201 69 234 ACX 268 RCL 15 301*LBL 08
202 ACCHR 2355 269 - 302 RCLIND 03
203 40 236 SKPCHR 2705 303 ACX
204 ACCHR 237 "FREQ" 271 % 304 RCL 07
205 102 238 ACA 272 CLA 305 -
206 ACCHR 2394 273 ARCL X 306 XA2
207 41 240 SKPCHR 274 ACA 307 ST+ 08
208 ACCHR 241 RCL 05 275 RCL IND 03 308 ISG 03
209 61 242 ACX 276 RCL 07 309 GTO 08
210 ACCHR 243 ADV 277 - 310 GTO 09
211 RCL 14 244 "------" 278 XA2 311 END

245 ASTO L

Note that the initial seed is stored in ROO when first entered by the user, and that R0O is used to store
all the random numbers as they re being generated in the sequence. This works well for data-register
based p-RNGs but for buffer-based p-RNGs we may need to initialize them manually entering the seed,
using the corresponding SEED function for each case. This is only needed if we want the results to be
comparable across different p-RNG, of course.

__|
© ANGEL M. MARTIN — MARCH 2022 PAGE 42 OF 58

HP- RANDOM ROM QRG

2. Randomicity Testing. (by Charles T. Tart)

This program is designed for INTEGER random numbers and thus cannot be used for our cases-
nevertheless it's got intrinsic value that warrant including in the RANROM. Here's the complete contents
of the paper, available here.

& FRadomicity Test Program for Pseudo—Random Number
Generator Routines on the HF=41C

Charles T. Tart
Univeristy of California, Davis

The awvailabilicty of high quality, relatively inexpensive
programmable scientific caleulators, such as the Hewlett-Fackard
HP—41C, offers a waluable new toel teo parapsychologists. As
described 1in another paper (Tart, 1982), the HP-41C can be
programmed to provide a laboratory quality ESP test and feedback
training instrument. A rapid evolution of features available can
be expected in such “calculators” (they are really hand-held
computers), so they may play a strong role In parapsychological
research in the near future.

In using these instruments for ESP testing devices, it is
essential that they have high quality subroutines for generating
random numbers. At present we are limited to pseudo-randem
number generator (PRNG) subroutines, but with adequate algorithms
for such routines and frequent changing of quasi-randem seed
values, it should not he too difficult te generate adequately
random target numbhers. This paper describes a test routine for
evaluating a PENG. The specific program is for the HP-41C, but
it should be readily adaptable to any programmable scientific
calculator.

A true RBNG has two important properties. First, the
probability of any output is equal to that of any other output,
S0 as a series gets longer the proportion of any particular
output teo the total output appreoaches 1/C, where € is the mumber
of output choices of the BNG. Second, there 1is no sequential
dependency belbtwsen numbers, that 1is, the probability of any
number following some previous output number or sequence of such
numbers is egual to that of any other wnumber following that
previous output mumber or sequence of numbers. This also means
that no matter what output numbers have already been generated,
they give you no useful way of predicting what the next outputs
will Dbe. (For fuller discussion of the non-predictability
criterion see Tart, 1979a; 1979b; Tart & Dromek, 1980).

The adequacy of a BENG or PRENG can be evaluated statistically
by testing a large sample of outputs for equiprobabllity and lack
of sequential dependency. A common way of doing this testing is
to count up not only single outputs (@, ls, s, etec., called
singlets), but alsc sequential outputs (@ followed by @, @
followed by 1, @ followed by 2, ete., called doublets).
Sequential output testing usually includes doublets, and, 1Ff
there iz a theoretical reason teo suspect higher order segquential
dependencies, triplets, quadruplets, etc.

© ANGEL M. MARTIN — MARCH 2022 PAGE 43 OF 58

https://s3.amazonaws.com/cttart/articles/april2013articles/Randomicity+Test+Program+for+Pseudo-Random+Number+Generator+Routines+on+The+New+HP-41C.pdf

HP- RANDOM ROM QRG

The following test program was designed to check the PENG

subroutine used in an ESP test program described elsewhere (Tart
& Puthoff, 1981; Tart, 1982), where nonpredictability is
extremely important. It requires a printer and extended memory.
By putting in vour own PRENG subroutine as step @56 and callimg it
LBL @5, substituting for steps 956 through @66 in the present
program, you can test it.
' The test program assumes that your PRNG produces an integer
(no fractional part) output, which appears as step 67 in this
test program. The particular PRNG subroutine written into this
program starts with a seed number that is stored in register @9,
The algorithm is deseribed in Tart, 1982. It produces a
fractional output between 99999999 and JOPPEEEEL, but the
scaling factor (number of choices) stored in register @B scales
this up toe the proper choice range, and the INT (integer)
function in the HP-41C discards the fractional part of the number
produced. I wuse the time, to the nearest second, as a
quasi-random way of getting a2 seed number for each tun of the
PREMG that is relatively independent of any deliberate control on
my part.

Dperation:

Detailed operation notes are listed with the program. Size
@61 should be executed before running ic. Briefly, the TESTRHNG
program starts with housekeeping chores of clearing registers and
flags, then prompts for the total musber of outputs, trials,
wanted from the PRNG (TOTAL N?) in this run, for the number of
choices (2 to 1§#) the PENG is to have, whether vou want the raw
PRNG output printed (enter "N" for no, otherwise just press R/S),
and whether you want the PRNG output accumulated for later
statistical analysis (ANALYZE?) {apgain enter "N" for no,
otherwise R/5).

A note on limitations. A singlet analysis cam be carried out
if your PRNG output is @ to %, but TESTENG can carry out a
doublet analysis only if there are no more than 3 choices
(outputs @ te 4). Doublet analysis will he automatically skipped
if C » 5. This is due to the difficulty of addressing enough
registers: as it is, registers @@ through 60 (size @#61) are used.
In general I suspect that if your PENG rountine shows no singlet
or doublet biases for outputs @ through 4 it probably doesn't
have them for ocutputs 5 through 9, but den't count en it.

The TESTENG program then prompts for a time or other seed
mumber (SEED?), following which 1t accesses the PRENG subroutine
until it has collected N outputs. This can take a while. For ay
particular PRNG subroutine, it takes about 4 minutes to collect
13# outputs. When N outputs are present the total mumber of

© ANGEL M. MARTIN — MARCH 2022 PAGE 44 OF 58

HP- RANDOM ROM QRG

The following test program was designed to check the PRNG

subroutine used in an ESP test program described elsewhere (Tart
& Puthoff, 1981; Tart, 1982), where nonpredictability is
extremely important. It requires a printer and extended memory.
By putting in your own PRNG subroutine as step @56 and calling it
LBL @5, substituting for steps @56 through @66 in the present
pProgram, You can test it.
' The test program assumes that your PENG produces an integer
(no fractiomal part) output, which appears as step 67 in this
test program. The particular PBNG subroutine written inte this
program starts with a seed number that is stored in register @9.
The algorithm is desecribed in Tart, 1982. It produces a
fractional output between .99999999 and LO@GEEGEL, but the
scaling factor (number of choices) stored in register PB scales
this wup to the proper choice range, and the INT (integer)
functlon in the HP-41C discards the fractional part of the number
produced. I use the time, to the nearest second, a8 a
quasi-random way of getting a2 seed mumber for each run of the
PRNG that is relatively independent of any deliberate control on
my part.

Operation:

Detailed operation notes are listed with the program. Size
@61 should be executed before running ic. Briefly, the TESTRHG
program starts with housekeeping chores of clearing registers and
flags, then prompts for the total mumber of outputs, trials,
wanted from the PRNG (TOTAL MN?) in this run, for the number of
choices (2 to 18) the PENG is to have, whether vou want the raw
PRNG output printed (enter "N" for no, otherwise just press R/S),
and whether vyou want the PBENG output accumulated for later
statistical analysis (ANALYZE?) (agaln enter "N" for no,
otherwise R/S).

A note on limitations. A singlet analysis can be carried out
if wyour PRNG output is B to 9, but TESTENG can carry out a
doublet analysis only 1f there are no more than 3 choices
(outputs B to 4). Doublet analysis will be automatically skipped
if € » 5. This is due to the difficulty of addressing enough
registers! as it is, registers @@ through 60 (size #61) are used.
In general I suspect that if your PENG rountine shows no singlet
or doublet biases for outputs @ through 4 it probably doesa't
have them for outputs 3 through %, but don't count on it.

The TESTENG program then prompts for a time or other seed
number (SEED?), following which it accesses the PRNG subroutine
until it has collected N outputs. This can take a while. TFor my
particular PRNG subroutine, it takes about 4 minutes to collect
1@¢ outputs. When N outputs are present the total number of

© ANGEL M. MARTIN — MARCH 2022 PAGE 45 OF 58

HP- RANDOM ROM QRG

outputs to date are printed { £&=) and a beep signals that a
new seed is wanted. Total outputs equal N on the first run of
TESTENG. 'This feature exists because I usually use my PRHG in
Lhe ESP test program for runs of 25 trials or less and then enter
a new time seed for each run to assure better randomicity. Your
¥ shownld he the usual mumber of outputs vou use at a time from
your PRNG, or an even larger sample.

At this point you can enter a new time seed and get W more
putputs from the PENG. For analysis purposes, these outputs are
accumulated with the preceeding batches of N outputs. For
example, if you used a binary PRNG and in 109 trials had 48 s
and 5@ 1s, then ran another 1#@ trials with 46 Ps and 54 1ls, the
storage reglsters would cumulate 94 @s and 106 1s.

If vou elected to store data for analysis, at the end of any
run of N trials you can XEQ "CHI" to start amalysis of the
cumulated results. This analysis does not affect data storage
registers, so you can cumulate more data after such an analysis.
CHI is a Chi-square statistical test at the singlet and (if C ¢
5) the doublet levels. The resulting wvalues of Chi-square can he
looked up in any table. WNote also that if the expected value of
any particular PRNG output is less than 5, the Chi-square test is
generally not walid: the TESTENG program will automatically print
“E € 3" to alert vou when this happens.

Example:

Here's an example of TESTRNG's operation. Run 2@ trials of a
J=choice PRNG and analyze, using the current FPRNG subroutine.
The time seed is 935.534. The PRNG raw output printed is

2. 1. 2. 8. 1. 2.
1. 1. 1. @#. 1. @.
1. 2. 1. 2. @, 2.
2. 1.
Upon executing “"CHI™ the printer giwes us
4. 9. 7.
S CHI SQ = 1.9¢p
indicating that ¢ was generated 4 times, 1 was generated 9 times,
and 2 was generated 7 times. The Chi-square analysis uses the

formula 2
Chi-square = Z (0-E)

For each possible output category (¥, 1, or 2 in this case) the
observed number of appearances of that output {(0) has the
expected mumber of appearances (E, 28/3 in this case) subltracted
from it, the result is squared and then divided by E, and the
results are summated for all possible oubputs.

© ANGEL M. MARTIN — MARCH 2022 PAGE 46 OF 58

HP- RANDOM ROM QRG

The doublet analysis subroutine then prints out

. 3. 1.

2. 2. 4.

2e 4. 1.

b CHI 50 = 7.@53

E <5
indicating that an output of @ was followed by @ zero times, P
was followed by 1 three times, 1 was followed by P twoe times,
etec. Chi=square is computed by the same formula, but note that
we only have 19 doublets in 2P trials, and we sum over 9 output
categorlies. Because the expected frequencies in each category
were less than 5, "E < 5" is printed out as a warning that this
particular analvsis 1s not wvalid.

Testing External Generators:

The TESTENG program can also be used to analyze an externally
generated set of random mumbers with the following modification.
For the current steps 58 to 67, put in instead

58 “"NUMBER?"

59 PROMPT
The program will renumber itself in the HP=41C so the next step
6@ will be the former step 68, viz. S5T0 16. On each cycle, which
takes about a second, the program will prompt veu Lo enter an
integer number, "NUMBER?" Enter your external generator's output
and press R/S.

I hope other researchers will find this program useful.

© ANGEL M. MARTIN — MARCH 2022 PAGE 47 OF 58

HP- RANDOM ROM QRG

The TESTRNG Program:

@1 LBL “TESTENG"
#2 CF P Clear flags, store loop control #
#3 CF @1 for register clear.
#4s CF @2
#5 CF @3
e P.p59R1
@7 STO 6l
@8 LBL ¢2 Loop for storing s in register
@e 9 P# threugh 59.
1@ STO IND 6@
11 156G 6@
12 GTO @2
13 FIX @
14 "TOTAL N?™
15 PROMPT
16 5TO @5
1/ LBL @7 Prompts for number of outputs of
18 “"CHOICES?®™™ PENG, choices, C.
19 PROMPT
200 5TO @8
21 1 Computes and stores C-1 for later
22 - computational ease.
23 5TOD 46
T Limits C to maximum of 1P.
25 RCL (8
26 ¥ry?
27 GTo @7
28 5 Test: © » 57 If so, no doublet analysis data
29 RCL @B will he stored.
3@ ¥Y?
11 5F @2
32 "m Sheould raw PRNG ouput be printed? Enkter "N”
33 ASTO ¥ if not, R/5 if you want it.
34 AON
35 "PRINT RAMWT™
36 PROMPT
37 AQFF
3B ASTO X
39 ®=Y? .
Y]

© ANGEL M. MARTIN — MARCH 2022 PAGE 48 OF 58

HP- RANDOM ROM QRG

41 "N" Should singlet and doublet data be stored for
42 ASTO Y analysis? Enter "N" if not, R/S if you
43 AON want 1t.
44 "ANALYZET™
45 PROMPT
46 AOFF
47 ASTO X
48 X=Y7
49 SF @1
5@ LBL @1 Frompts for a seed value for the PRNG,
51 TONE 6
52 "SEED?™
53 PROMPT
54 LMW
553 ABS
56 _STO @9
57 LBL @5 Pseudo=Random Number Generator, PENG routine.
58 PL Tour routine should be entered here. This
59 RCL @9 one takes transformed seced from reg. @9,
6l + adds pl, ralses sum to 5th power and
6l 5 stores fractional part in reg. #9.
62 YK Lines 65367 scale result to range of €
63 FRC and take integer.
64 STO 99
65 RCL §8
BE *
67 INT
BB STO 16
69 F57 @@ Test: accumulate PRNG putput for later
T GTO B4 analysis?
71 LBL @3 Accumulate PENG putput in print buffer,
T2 ACK with spaces, for later printing.
731
T4 SKEPCHR
75 LBL (4 Increment trials counter {(reg. #6)
76 1 by one.
77 5T+ @6
78 F51 @1 Test: analysis wanted?
79 GTO {6
8@ BCL 16 Add 5@ to PRENG output number to get control
81 50 number so proper singlet count register
a2 + will be incremented. Increment by one.
83 5TO 17 .
84 1 ’
85 ST+ IND 17
'~ Ef F57 @2 Test: doublet analysis OK?
87 GTO 11)

© ANGEL M. MARTIN — MARCH 2022 PAGE 49 OF 58

HP- RANDOM ROM QRG

88 RCL d6 Test: first trial of run? If so, skip
B9 1 lines 91-96 to increment a doublet
9P K=x7 register.
91 GTO @6
92 RCL 18 Add 1@x previous PRNG output to current
) 93 RCL 16 PENG ocuput to determine doublet storage
- C reglster number.
95 BTO 19
96 1 Increment appropriate doublet register
97 ST+ IMD 19 by one.
98 LEL @6 Multiply current PRNG output by 1@, store,
99 RECL 16 use for doublet increment addressing on
109 19 next trial.
181 *
192 S5TO 18
1#3 LBL 11 Test: end of run? If not, activate another
134 RCL @6 PENG output.
195 RCL 95
16 X7
187 GTO @5
108 PRBUF Print accumulated PRNG output. Add trials
149 RCL W6 of current run to grand trials counter.
119 5T+ @7
111 RCL @7 Print grand total of PRNG trials to date.
112 "ZEZ="
113 ARCL ¥
114 AVIEW
115 ¢ Reset trials counter to P.
116 5TO @6
117 GTO @1
118 LBL "CHI" CHI-S0UARE ANALYSES
119 @
120 STO 26 Clear Chi-square total reglsters.
121 STO 35
122 59 Compute control number for indirect RCL of
123 sTD 27 singlet registers 50 through 53@§+(C-1).
124 RCL 46
125 +
126 1 E3 p=pr el) 4 ppen
127
128 1 E=5 e
129 + = 5p.0@(c-1)p1
139 sT+ 27°
131 5TD 28
132 wcL o7 Computed expected singlet frequency, E,
133 RCL @8 where
134 f E=N/C
135 STO 23

© ANGEL M. MARTIN — MARCH 2022 PAGE 50 OF 58

HP- RANDOM ROM QRG

136 5 ~ Test: E<57 If se, SF (3.
137 X>¥7
138 s5F 03
139 LEL @8 Accumilate frequencles of various singlets
Laf RCL OLWD 27 for later printing.
141 ACK
o142 1
143 SKPCHR
144 RCL IND 27 Compute singlet Chil=square
145 RCL 25 2
146 - Chi-square -ZM
147 %tz E
148 BCL 25
149 / 0 = gbserved frequency, each output
159 ST+ 26 E = expected frequency of each PRNG output
151 156G 27
152 GTO @8
1531 FIX 3
154 PRBUF Frint singlet Chi=square.
155 RCL 26
156 "5 CHI 50= "
157 ARCL X
158 AVIEW
159 FSE
16@ CLA
161 FIX @
162 F57 @3 Test: E<57 1f so, print "E<5".
163 XEQ 13
164 CF @3
165 F57 @2 Test: doublet analysis OK7
166 GTO 12
167 RCL @#7 Compute reduced M for doublet analysis
168 ENTERY {one trial lost on each run)e.
169 ENTER}
17¢ BRCL @5
171/
172 -
173 RCL (B Compute expected doubler frequency, E.
174 xt2
175 /
176 STO 25
177 5 . Testc: E<57 If so, 5F @3,
178 %>¥7
179 SF @3 -

© ANGEL M. MARTIN — MARCH 2022 PAGE 51 OF 58

HP- RANDOM ROM QRG

3. Stratified Random Sampling (by rawi, MoHP Articles)

see. https.// www.hpmuseum.org/forum/thread-15709.htm/

The following is taken verbatim from the MoHP post.

This is my first program for the HP 41 since decades. So it may be that there are numerous ways to
improve the code. | have tested it on a DM 41X and a HP 41CL.

What it does:

The program helps to analyze stratified random samples.

You can either put in the weights (i.e. the shares of the strata in universe) and the standard
deviations within the strata or you can put in a density function and the weights of the strata and
the standard deviations within the strata are computed.

For the allocation of the sample on the strata you can put in numbers or let the program compute
sample sizes for proportional or optimal allocation.

Standard deviation of total mean is computed.
Needs command “FINTG” from the SandMath Module (or INTEG from the Advantage Pac).

Use of registers:

ROO - Final result

R0O1 - Name of density function global label (Alpha)
R0O2 - Number of strata (maximum: 6)

R0O3 - Sample size

R0O4 - Lower limit of first stratum

Stratum 1 2 3 4 5 6

Upper limitRO5 R06 RO7 R08 R09 R10
Weights R11 R12 R13 R14 R15 RI16
Std.dev. R17 R18 R19 R20 R21 R22

RegisterS R23-R30 are used for computations.

The function FINTG from SandMath module needs another 32 unused program registers.
Usage instructions: See program listing.

__|
© ANGEL M. MARTIN — MARCH 2022 PAGE 52 OF 58

https://www.hpmuseum.org/forum/thread-15709.html

HP- RANDOM ROM QRG

Example:

You want to analyze a stratified sample with 4 strata and optimum allocation of sample. The variable
has a standard normal distribution. Strata limits are -1, 0, 1. Total sample size is n=1000.
For convenience you take as lower limit of standard normal distribution -7.5 and as upper limit 7.5.

First type in routine for normal distribution under a global label:

01 LBL “NV” 072
02 X2 08 PI
032 09 *
04/ 10 SQRT
05 CHS 11/

06 EAX 12 RTN

XEQ “STRAT”

> 5MHFL 27 1000, R/S (sample size input)

>N O STHHATHY 4, R/S (input of number of strata)

> =1 {=IF%7 1, R/S (we use the densitiy function, so we type 1)

> NMOIFY “NV”, R/S (input of label of program with density function)
A A 7.5 CHS, R/S (lower limit of first stratum is -7.5)

S L 5 7 1 CHS, R/S (upper limit of first stratum is -1)

> UL 5T 0, R/S

> UL HAT 1, R/S

> UL 54N 7.5, R/S

After about 15 minutes (HP 41) / 20 seconds (DM 41X with USB cable):

-> M-I {=F Z=-0O% 2, R/S (we want optimum allocation, so we type 2)
-> N o= (sample size in stratum 1)

R/S -> N = dHH (sample size in stratum 2)

R/S -> NA = JHH

R/S -> NG = &

R/S -> v b (std deviation of stratified sample mean)

Weights and standard deviations can be seen in registers, e.g. weight in stratum 1:

RCL11-> W {SH 7

__|
© ANGEL M. MARTIN — MARCH 2022 PAGE 53 OF 58

HP- RANDOM ROM QRG

Program listing.

01 LBLSTRAT

02 ”"SMPLSz?”

03 PROMPT Input of sample size

04 STOO03

05 “N STRATA?”

06 PROMPT Input of number of strata (maximum: 6)
07 1E3

08 /

09 1

10 +

11 STO 02

12 0

13 STOO00

14 STO 27

15 “0=I 1=DF?” Input whether weights and std. dev. of strata are individually typed
16 PROMPT (0) or whether they are computed by given density function (1)
17 4

18 +

19 XEQIND X

20 “0=I 1=P 2=07?" Input whether allocation of sample on strata should be individually
21 PROMPT given (0), proportional to weights (1) or optimal (2)
22 STO 30

23 FIXO0

24 10

25 STO 28

26 16

27 STO 29

28 LBLO8 Determination of sample size in strata

29 1

30 ST+28

31 ST+29

32 RCLIND 28

33 RCLIND 29

34 XEQIND 30

35 RCLIND 28

36 RCLIND 29

37 *

38 xM2

39 x>y

40 /

41 ST+00

42 1SG 02

43 GTO 08

__|
© ANGEL M. MARTIN — MARCH 2022 PAGE 54 OF 58

HP- RANDOM ROM QRG

44 FIX4

45 RCLOO

46 SQRT

47 STO 00 Standard dev. of mean of total sample is shown

48 CFO1

49 RTN

50 LBLO4 Manual Input of weights and std. dev. in strata

51 10

52 STO 28

53 16

54 STO 29

55 FIXO0

56 LBLO6

57 1

58 ST+28

59 ST+29

60 “W”

61 ARCLO2

62 |-

63 PROMPT

64 STOIND 28

65 “s”

66 ARCLO2

67 “[-?

68 PROMPT

69 STOIND 29

70 *

71 ST+27

72 1SG 02

73 GTOO06

74 XEQO09

75 RTN

76 LBLO5 Computation of weights and std. dev. in strata with given function

77 AON

78 FIXO0

79 “NM DF?” Asks for name of global program label with density function

80 PROMPT

81 ASTOO01

82 AOFF

83 4

84 STO 28

85 “LLS1?” Asks for lower limit of stratum 1

86 PROMPT

87 STO04

88 STO 23

89 LBLO7

90 1
|

© ANGEL M. MARTIN — MARCH 2022 PAGE 55 OF 58

HP- RANDOM ROM QRG

91 ST+28

92 “ULS”

93 ARCLO02

94 “[-?”

95 PROMPT Asks for upper limit of stratum |
96 STOIND 28

97 1SG 02

98 GTO 07

99 FIX5 Format defines accuracy of integration
100 4

101 STO 28

102 10

103 STO 29

104 XEQO09

105 LBL10O Computation of parameters of strata
106 1

107 ST+28

108 ST+29

109 CLA

110 CFO01

111 ARCLO1

112 RCL23

113 RCLIND 28

114 STO 24

115 INTEG Computation of weight of stratum | = integral(f(x))
116 STOIND 29

117 STO 25

118 “STRAX”

119 RCL23

120 RCL24

121 INTEG Computation of integral(x*f(x))
122 RCL25

123 /

124 STO 26 Mean in stratum

125 SFO01

126 RCL23

127 RCL24

128 STO 23

129 INTEG Computation of integral(x**f(x))
130 RCL25

131 /

132 RCL26

133 X~2

134 -

135 SQRT std. dev. in stratum

136 RCL29

137 6

__|
© ANGEL M. MARTIN — MARCH 2022 PAGE 56 OF 58

HP- RANDOM ROM QRG

138 +

139 x<>y

140 STOINDY

141 RCL25

142 * weight in stratum * std. dev. in stratum
143 ST+27

144 1SG 02

145 GTO 10

146 XEQOQ09

147 RTN

148 LBLO9 Refreshing loop register 02

149 RCLO02

150 FRC

151 1

152 +

153 STOO02

154 RTN

155 LBLOO Manual input of sample size in stratum
156 “N”

157 ARCL02

158 “[-7”

159 PROMPT

160 RTN

161 LBLO1 Computation of proportional sample size in stratum
162 X<>Y (share of stratum in sample and in universe are equal)
163 RCLO3

164 *

165 GTO 03

166 LBLO2 Computation of optimum sample size in stratum
167 * (proportional to weight*std. dev in stratum)
168 RCL27

169 /

170 RCLO3

171 *

172 LBLO3 Output of sample size in stratum

173 AON

174 “N”

175 ARCLO2

176 “[-="

177 ARCLX

178 STOP

179 AOFF

180 END

__|
© ANGEL M. MARTIN — MARCH 2022 PAGE 57 OF 58

HP- RANDOM ROM QRG

| 01 LBL “STRAX” Subroutine for computation of integral x*f(x) and x** f(x) |
02 STO 30 depending of status of flag 01
03 XEQINDO1
04 RCL30
05 FS?01
06 x72
07 *
08 END

Appendix — Original DataFile Article by Mark Power

HP41 MACHINE CODE RANDOM NUMBERS

Mark Power 251

Equipment Required: HP41 (Any model)
M-coding equipment (e,g. ZENROM + RSU)

The two combined routines presented here show the speed advantage of m-code over
FOCAL, The two produce a random number which is in the range 0 (= RAN < 1 and
place it in the X register, observing the normal rules of the Stack Lift
operation, The difference between the two routines is that RANCO takes its seed
from register 00 and RAN20 uses register 20, Both write a new seed back to the
appropriate register ready for the next time. It should be noted that the
technique for creating the random number is designed to be very fast, requiring
a minimm of equipment and so is very “dirty”., The routines are not designed
for statistical purposes but more for use in games., As far as I can tell the
results are random!

DEPENDENCIES: NONE {No User Routines}
ROUTINES USED: {UNLABELED} @ 0024 . TRC10 @ 19A1,
LXEX @ 1229

INPUT: RANOO & RAN20 take seed from appropriate register, May be normalised or
ALPHA data, Non-normalised numbers are set to zero before calculations start,

CUTPUT: Random number in the range 0 <= RAN < 1 is pushed intoc X & seed
register, Stack lift operates as normal (same as RCL)

ERRORS: If the seed register does not exist NONEXISTENT is given,

rCC

DATAFILE V6 No 8 Page 9

© ANGEL M. MARTIN — MARCH 2022 PAGE 58 OF 58

HP- RANDOM ROM QRG

HPOC

ADDE HEX MWEMONIC COMMENTS

®395 OBO 0@

*396 030 O

=397 O0E N

*398 001 A

®399 012 R i .

*39A 046 C=0 3EX iEntry point for RANOO

*398 042 JNC+08 RANC jJump to common part with offset 0

»39C OBO - 0: . :

=39D 032 2

*39E OO0E N

*39F 001 A

*3A0 012 R

*3A1 130 LDI ;Entry point for HAN20

®3A2 014 HEX 014 jOffset of 20 decimal

*3A3 091 NC XQ iClear flag 7 and jump into OVESTK,

*3A4 000 0024 ito find register with OFFSET & select it

*3AS 2A0 SETDEC ;Decimal so we don’t get hex digits

#3hE 285 NC XQ ;Load digits used by PI/2, leaves

®=3A7 084 TRCLO {19A1} ;active pointer at nybble 12 ready for below

“3iA8 OEE COB ALL iGet seed out of B and save constant

#3A9 1EE C=C+C ALL ;Double the seed

*3AA 14E A=A+C ALL jhdd it into A

*3AE 12E As=A+B ALL ;Add constant te A

*3AC OlE A=0 MS ;Force sve sign

*3AD 006 A=0 S&X iSet exponent to 0, this gives

#3AE 3S5A - TAsO M ;a value of 000, ... below

*3AF 033 JNC+06 ENDO jJump down if mantissa is all zeroes

*3B0 1A6 A=A-1 SEX iDecrement exponent

*3B1 342 7TA#0 @R iCheck that mantissa is normalised

*3B2 027 JC+04 END1 ;If it is then end

*3B3 32IFA LSHFA M jOtherwise shift mantissa left

*3B4 3E3 JNC-04 LOOP i0o back & decrement exponent again

*3B5 OO0E A=0 ALL j2ero whole word if mantissa = 000,,..

#*3B6 OAE A<>C ALL iGet value into C and write it back

*3B7 2F0 MWRITE DATA ito the sesd register which is selected still

*3B8 OAS NC GO ;Lift stack if required and put C into

*3E9 O4A LXEX {1229} ithe X register

The David Assembler labels have been omitted from this listing but for

completensss exist as below:

ENDO @ *3BS

END1 @ *3B6

LOOFP @ *3B0

RANC @ *3A3

If there is a statistician out there who can check this routine for randomness

then I'm sure it could become a new fast standard, For people who play games

(who us?) this reutine runs faster than a single FOCAL statement such as *"1° 1!

Nesd 1 say more,

RPrPocCc

Page 10 DATAFILEVE No B8

__|
© ANGEL M. MARTIN — MARCH 2022 PAGE 59 OF 58

HP- RANDOM ROM QRG

Appendix.- Q Public Licence.
THE Q PUBLIC LICENSE version 1.0

Copyrisht {C) 1000 Trolltech AS, Nonway.
Everyone is pen and

dearibine this hicens,

The intent of this license iz to establish freedom to share and change the software regulated by this license under the open source model.

This license applies to any scftware containing a notice placed by the copyright helder saying that it may be distributed under the terms of the Q Public
License version 1.0. Such software 15 herein referred to as the Software. This license covers modification and distribution of the Software, use of third-party
application programs based on the Software, and development of free software which uses the Software.

Granted Rights

1. You are pranted the non-exclusive rights et forth in this license provided you agree to and comply with any and all conditions in this license. Whole or
partial distribution of the Software, or software items that link with the Software, in any form signifies acceptance of this license.

2. You may copv and distribute the Seftware in unmeodified form provided that the entire package, including - but not restricted to - copyTight, trademark
netices and disclaimers, as released by the iitial developer of the Software, 15 distributed.

3. You may make medifications to the Software and distribute vour medifications, in 2 form that is separate from the Software, such as patches. The
following restrictions apply to modifications:

a. Medifications must net alter or remove any copyright notices in the Software.

b. When medifications to the Seftware are released under this license, 2 non-exclusive rovalty-free right is granted to the initial developer of the
Software to distnbute vour modification in firture versions of the Software provided such versions remain available under these terms in addition
to any other license(z) of the mitial developer.

4. You may distribute machine-executable forms of the Software or machine-executable forms of modified versions of the Software, provided that vou meet
these restrictions:

a. You must include this licenze document in the distribution.

b. You must ensure that all recipients of the machine-executable forms are alsc able to recsive the complete machine-readable source code to the
distributed Software, ncluding all modifications, without any charge bevond the costs of data transfer. and place prominent notices in the
distribution explaining this.

¢. You must ensure that all modifications included in the machine-executable forms are available under the terms of this license.
3. You may use the original or modified versions of the Software to compile. link and run application programs legally developed by vou or by others.

6. You may develop application programs, reusable components and other software items that link with the original or medified versions of the Software.
These items, when distributed, are subject to the following requirements:

2. You must ensure that all recipients of machine-executable forms of these items are also able to receive and use the complete machine-readable
spurce code to the items without any charge bevend the costs of data transfer.

b. You must explicitly hicense zll recipients of yvour items to uze and re-distribute original and modified versions of the items in both machine-
executable and source code forms. The recipients must be able to do so without any charges whatsoever, and they must be able to re-distribute to
anyone they choose.

c. If the items are not available to the general public, and the initial developer of the Software requests a copy of the items, then vou must supply
ome.

Limitations of Liability
In no event zhall the imtial developers or copyright holders be liable for any damages whatsoever, meluding - but not restricted to - lost revenue or profits or

other direct, indirect, special, incidental or consequential damages, even if they have been advized of the possibility of such damages, except to the extent
mvariable law; if any, provides otherwise.

No Warranty

The Software znd this license decument are provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE WARFANTY OF DESIGN,
MERCHANTABILITY AND FITNESS FOR. A PARTICULAR PURPOSE.

Choice of Law

This license is governed by the Laws of England.
__|
© ANGEL M. MARTIN — MARCH 2022 PAGE 60 OF 58

