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SandMatrix_4 Module – Revision “5Y+” 

Matrix Extensions for the HP-41 System. 

 

0. Preamble to latest revisions. 

 
The latest revision of the SandMatrix rounds up the module with subtle architectural enhancements, as 
well as a few additional new functions to complete the pack. Notable are the all-MCODE versions of 
polynomial evaluation and its derivatives, the new Orthogonal Polynomial functions, and the addition 
of the FOCAL examples from the manual now available to the user in the function set. Simplification of 
the code allowed for optimal allocation of the routines, freeing up space for the new additions. 
 
 
Revision “M” of the SandMatrix included significant additions to its predecessor – both in contents as 
well as in what relates to its internal architecture. Short on the heels of revisions “K” and “L”, the 
author figured out a way to enhance the original bank-switching implementation (based on HP-‘s 
Advantage Module), adding support for the Hepax-based model to it; and thereby enabling the 
utilization of the second bank in the lower page for other purposes. This freed up a substantial amount 
of room that now hosts the 3D Vector Calculator ROM almost in its entirety – using a secondary 
FAT and auxiliary function launchers like those present in the SandMath module. 
 
The benefits are obvious: all 3D Vector functions are now available within the SandMatrix, saving a 
page in the calculator configuration ports. It also facilitated further consolidation of functions, 
removing the poor-man FOCAL implementation of the same capabilities from the SandMatrix. The net 
result is a much more capable module that now includes all the main components of Algebra: Vectors, 
Polynomials and Matrices. 
 
The 3D-Vector functions can be executed by their names (using function “V$”), or using their 

indexes within the secondary FAT (using function “V#”).  These two functions are further connected 

to the main module function launcher ML using the  ALPHA  and  USER  keys respectively at its 

prompt. Note also that the “ML” prompt toggles cyclically amongst three personalities (or modes) 

upon repeated pressing of the + key as follows: “M:_” for matrix functions, “P:_” for polynomial 

functions, and ‘V:_” for vector functions. These refer to the dedicated keyboards as can be seen in the 
custom overlays shown later in the manual. 
 
Because prompting functions cannot be easily located in secondary FATs, a few of the vector functions 
have also been placed in the main FAT of the module. These are VRCL, VSTO,  V<>, and VVIEW – 
which use the prompt to select the register set needed in their operation. To make room for their 
entries, the non-prompting auxiliary functions (mainly dealing with ALPHA string management) have 
been relegated to the auxiliary FAT. The FOCAL programs that use them have also been modified 
accordingly to reflect the new arrangements. 
 
Like it was the case in the Vectors ROM, the coordinate transformation and vector calculator programs 
TR and VC from the Advantage Pac have been re-written using the new 3D-Vectors functions included 
in the module – and included in the main FAT. User instructions and capabilities are identical, but its 
execution speed is largely faster, as they take advantage of the MCODE implementation of the 
underlying functions. Besides, a few other new geometry functions also went to the auxiliary FAT - 
completing the coordinate transformations and 2D/3D distances function set. They’ll be described in 
section 4 of the manual. 
 
Note that all these important additions required making some changes to the Library#4 – make sure 
you use revision “R58” or higher in conjunction with the SandMatrix revision “Y”. 
 
 

Note: Make sure that revision “R58” (or higher) of the Library#4 module is installed. 
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1. Introduction. 
 
The release of the CCD Module by W&W in 1983 provided for the first time convenient and reliable 
tools for matrix algebra in the 41’s platform. It was an MCODE quantum leap ahead, beyond the very 
many user programs written on the subject in the previous years. Looking back, it’s clear that the 
“ARRAY FNS” was beyond a doubt an amazing landmark in the legacy of the 41 platform. So much so 
that rather than re-invent the wheel HP decided to use it almost in its entirety in the Advantage Pac, 
only enhancing it with the major matrix operations sorely missing in the CCD implementation (which 
incidentally were the subject of the majority of Matrix programs written for the CCD). 
 
Perhaps because the relative tardiness of its appearance, with the HP-42S already on the horizon - or 
due to other factors like the HP-48S luring folks into RPL - the fact is that Matrix programs using the 
Advantage Pac functions were very few and in between. The demise of PPC and the newsletter wars 
that followed suit certainly didn’t encourage the scene either, and the end result was slightly 
disappointing in terns of net results. 
 
About 30 years later the SandMatrix picks up the gauntlet and compiles a collection of noteworthy 
programs and routines on Matrix and Polynomial algebra, with the specific criteria to be based on the 
CCD/Advantage function set – in an attempt to straighten the record and pay the due credit to that 
superb toolset that had been so underutilized.  
 
 
 

1.1. The logical next chapter after the SandMath 

 
 
In many respects previous revisions of the SandMatrix were very conventional. Back then there were 
no auxiliary FATs with sub-functions a la SandMath, and not even a dedicated function launcher with 
an alternate keyboard. All that is now completely changed and you can find all those ammenieties and 
a few more surprises in revisions “M,N, and Y”. Many of the new routines are written in FOCAL, and 
the programs are typically large ones. Programming with the Matrix functions is more about Alpha 
strings and auxiliary data sets than concerning with data registers and to some extent even 
algorithmic strategy.  Because they are FOCAL programs, they are slower than other areas - although 
the 41CL has blurred the lines separating MCODE and FOCAL in terms of speed. 
 
In terms of its contents, it was clear from the beginning that it should be an extension to the 
SandMath. However, the dilemma was how to manage the dependencies: should it be a self-contained 
ROM or rely on functions from other modules? The former option implied including many auxiliary 
functions in the FAT’s, taking precious entries and causing redundancy in the global scheme. The latter 
option however meant a potential loss of usability, since several modules were involved – the Library 
#4, the SandMath, AMC_OS/X, the Solve & Integrate ROM, the Polynomial ROM, etc. 
 
The solution to this riddle came only with the latest revision of the SandMath 3x3, which added a third 
bank with Solve and Integrate – plus an important consolidation of functions in its auxiliary FAT. This 
really cleared things out for the SandMatrix, in that the only dependencies left are the Library#4 and 
the SandMath itself – for a total of only 8k “effective” footprint needed additionally (since the 
Library#4 is located in the otherwise reserved page-4). 
 
So there you have it, the SandMatrix kind of replaces all previous versions of the “Advanced Matrix 
ROM”, the “Matrix ROM”, and the “Polynomial ROM” (not counting the one co-produced with JM 
Baillard). Also in this regard it’s worth mentioning that the SandMatrix is totally independent from the  
“JMB_Matrix ROM”, which doesn’t use the Advantage function set at all. 
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1.2.  The many names of Dr. Who. 

 
The SandMatrix is the last incarnation of a series of different modules previously released that also 
dealt with Matrix and Polynomial algebra. Some of them were based on the Advantage itself, 
combining the matrix functions with other applications and thus followed the same bank-switching 
implementation: two pages, with two banks in the upper page. The differences amongst them were 
about what else (beyond the matrix set) they included – once you removed the less notorious content 
of the Advantage. 
 
The table below illustrates this, showing the dependencies and choices made in all the predecessors of 
the SandMatrix. 
 

 
 
We sure have a much simpler situation now, glad to say we left all those behind. 
 
 
What isn’t included?’ 

 
When compared to the original Advantage Pac, the following functionality areas are not included in the 
SandMatrix – but in other dedicated modules (and in a superior implementation if I may add), as 
shown in the table below: 
 
 

Section In Module Also Available in Comments 

Digital Functions SandMath 4x4 Digit Pac Includes 16C Emulator 

Solve & Integrate SandMath 4x4 Solve & Integrate ROM Fully embedded 

Curve Fitting SandMath 4x4 AECROM Fully embedded 

Complex Operations HP-41Z - Dedicated 8k ROM 

Vectors / Coordinates Now also included ! Vector Calculator ROM Fully Embedded 

Differential Equations Diffeq ROM Math Pac Dedicated 8k ROM 

Time Value of Money SandMath 4x4 TVM Module Fully embedded 

 
 
 

 
 
 
 
 
 

Note: Make sure that revision “R58” (or higher) of the Library#4 module is installed 
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Function index at a glance. 
 
And without further ado, here’s the list of functions included in the module:- 
 

# Function Description Input Output Author 

1 -SNDMTRX 4 Section Header none Displays "Order=?" Ángel Martin 

2 ML _ Matrix Function Launcher Prompts for function Executes Function Ángel Martin 

3 DST _ Distance Functions Launcher Prompts "PP PL LL PPL" Executes function Ángel Martin 

4 V# _ _ _ Sub-Function Launcher  Prompts for index Executes Function Ángel Martin 

5 V$ _ Sub-Function Launcher  Prompts for name Executes Function Ángel Martin 

6 "MATRX" ‘Easy” Matrix Program Driver for Major Matrix Ops. Under prgm control HP Co. 

7 "TR" Coordinate Transformation Prompts for Data Under prgm control HP Co. 

8 "VC" Vector Calculator Prompts "DP CP <)  M UV" Under prgm control HP Co. 

9 V<> _ _ Vector Swap Vector register in Memory Swaps vector with with V1 Ángel Martin 

10 VRCL _ _ Vector Recall Vector register in Memory Recalls vector to V1 Ángel Martin 

11 VSTO _ _ Vector Storage Vector register in Memory Stores V1 in Memory Ángel Martin 

12 VVIEW _ _ Shows Vector Components Vector register in Memory Shows vector components Ángel Martin 

13 V*VN N-dimensional Dot product Prompts for coeffs Result in Matrix Ángel Martin 

14 -CCD MTRX Checks for LU, Square Matrix MNAME in Alpha Displays "Running..." Ángel Martin 

15 C<>C Column exchange (k<>l) kkk,lll in X Columns swapped W&W GmbH 

16 CMAX Column Maximum Col# in X, "OP1" in Alpha Element value in X W&W GmbH 

17 CNRM Column Norm Col# in X, "OP1" in Alpha Column norm in X W&W GmbH 

18 CSUM Column Sum "OP1,RES" in Alpha Sum of Cols in RES matrix W&W GmbH 

19 DIM? Matrix Dimension "OP1" in Alpha Dimension placed in X W&W GmbH 

20 FNRM Frobenius Norm "OP1" in Alpha Value in X W&W GmbH 

21 I+ Increase row index "OP1" in Alpha increased i HP Co. 

22 I- Decrease row index "OP1" in Alpha decreased i HP Co. 

23 J+ Increase column index "OP1" in Alpha increased j HP Co. 

24 J- Decrease column index "OP1" in Alpha decreased j HP Co. 

25 M*M Matrix Product "OP1,OP2, RES" in Alpha matrix product in RES W&W GmbH 

26 MAT* element multiplication value in X, "OP1,X" in Alpha aij = aij * x W&W GmbH 

27 MAT+ addition of scalar value in X, "OP1,X" in Alpha aij = aij + x W&W GmbH 

28 MAT- element substraction value in X, "OP1,X" in Alpha aij = aij - x W&W GmbH 

29 MAT/ Division by scalar value in X, "OP1,X" in Alpha aij = aij / x W&W GmbH 

30 MATDIM Dimensions a matrix mmm,nnn in X, "OP1" in Alpha Matrix Dimensioned W&W GmbH 

31 MAX Maximum element "OP1" in Alpha Element value in X W&W GmbH 

32 MAXAB Absolute maximum "OP1" in Alpha Element value in X W&W GmbH 

33 MDET Determinant "OP1" in Alpha Determinant in X HP Co. 

34 MIN Minimum element "OP1" in Alpha minimum element in X W&W GmbH 

35 MINV Inverse Matrix "OP1" in Alpha Matrix replaced w/ Inverse HP Co. 

36 MMOVE Moves part of a matrix I,j;  k,l;  b,m,n  in XYZ Elements moved W&W GmbH 

37 MNAME Get current Mname to Alpha none Matrix Name in Alpha W&W GmbH 

38 MR Recall element from pt none value in X HP Co. 

39 MRC+ Recall and advance in Column "OP1" in Alpha element in X, increased i W&W GmbH 

40 MRC- Recall and back one in Column "OP1" in Alpha element in X, decreased i W&W GmbH 

41 MRIJ Recall ij  pointer of current none pointer in X W&W GmbH 

42 MRIJA Recall ij pointer of Alpha "OP1" in Alpha pointer in X W&W GmbH 

43 MRR+ Recall and advance in Row "OP1" in Alpha element in X, increased j W&W GmbH 

44 MRR- Recall and back one in Row "OP1" in Alpha element in X, decreased j W&W GmbH 

45 MS Store element at pointer value in X, OP1 in Alpha Element stored HP Co. 

46 MSC+ Store and advance in Column value in X, OP1 in Alpha element stored, increased i W&W GmbH 

47 MSIJ Sets pointer of current matrix iii,jjj in X pointer set W&W GmbH 

48 MSIJA Sets points of Matrix in Alpha iii,jjj in X; OP1 in Alpha pointer set W&W GmbH 

49 MSR+ Store and advance in Row value in X, OP1 in Alpha element stored, increased j W&W GmbH 

50 MSWAP Swapps part of a matrix I,j;  k,l;  b,m,n  in XYZ Elements Swapped W&W GmbH 

51 MSYS Linear Systems  "OP1,OP2, RES" in Alpha Resolves Linear System HP Co. 
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52 PIV Sets pointer to pivot element Col# in X, "OP1" in Alpha Element value in X W&W GmbH 

53 R<>R Row Exchange (k<>l) kkk,lll in X Rows swapped W&W GmbH 

54 R>R? Row comparison test kkk,lll in X skip line if false W&W GmbH 

55 RMAXAB Absolute maximum row# in X, OP1 in Alpha element in X, pointer to ij W&W GmbH 

56 RNRM Row Norm "OP1" in Alpha Row Norm in X W&W GmbH 

57 RSUM Row Sum "OP1,RES" in Alpha sums of rows in RES matrix W&W GmbH 

58 SUM Element Sum "OP1" in Alpha element sum in X W&W GmbH 

59 SUMAB Absolute Values Sum "OP1" in Alpha element absolute sum in X W&W GmbH 

60 TRNPS Transpose "OP1" in Alpha Matrix replaced w/ transposed HP Co. 

61 YC+C Adds Y*Col(l) to Col(k) value in Y, kkk.lll in X column k changed W&W GmbH 

62 "MEDIT"  Matrix Editor prompts for elements Edits Matrix HP Co. 

63 "CMEDIT" Complex Matrix Editor prompts for coeffs Edits Complex matrix HP Co. 

64 “CMDET” Complex Matrix Determinant MNAME in ALPHA Up to degree 4 Ángel Martin 

1 -ADV MATRIX Section Header none Displays "Not Square" Ángel Martin 

2 CMR Recall complex element Complex i,j in X Puts value in {Y,X} Ángel Martin 

3 CMS Store Complex element Complex i,j in X, value in {Z,Y} Leaves pointer at (2i, 2j) Ángel Martin 

4 CMTRC Complex Matrix Trace Mname in ALPHA Result in {X,Y} Ángel Martin 

5 I<>J Swaps indexes iii,jjj in X j,00i in X, i00j in LastX Ángel Martin 

6 IMC Input Matrix by Columns "OP1" in Alpha Inputs elements by columns Ángel Martin 

7 IMR Input Matrix by Rows "OP1" in Alpha Inputs elements by rows Ángel Martin 

8 LU? Tests for LU-decomposed MName in Alpha YES/NO, Do if True. Ángel Martin 

9 M^1/N p-th. root of a Matrix "OP1" in Alpha, p in X Matrix replaced by its root Ángel Martin 

10 M^2 Matrix Square "OP1" in Alpha Matrix replaced by [M][M] Ángel Martin 

11 MAT= Copy Matrix "OP1,RES" in Alpha Copies matrix A into B Ángel Martin 

12 MATP Driver for M*M Driver for M*M Under prgm control Ángel Martin 

13 MCON Constant "OP1" in Alpha, x in X Makes all elements =x Ángel Martin 

14 MDPS Diagonal Product Sum "OP1" in Alpha Sum of diagonal products Ángel Martin 

15 MEXP Matrix Exponential "OP1" in Alpha Matrix replaced by exp(M) Ángel Martin 

16 MFIND Element finder "OP1" in Alpha, x in X Element pointer if found Ángel Martin 

17 MIDN Identity Matrix "OP1" in Alpha Makes it Identity Matrix Ángel Martin 

18 MLIE Matrix Lie Product "OP1,OP2,RES" in Alpha [A][B] - [B][A] Ángel Martin 

19 MLN Matrix Natural Log "OP1" in Alpha Matrix replaced by LN(M) Ángel Martin 

20 MPINV Matrix Pseudo-Inverse MName in Alpha Pseudo-Inverse name in Alpha Ángel Martin 

21 MPOL Matrix polynomial Mname in Alpha, Cnt'l word in X Calculates P([A]) Ángel Martin 

22 MPWR Matrix Integer Power  "OP1" in Alpha, N in X Matrix replaced by [M]^INT(x) Ángel Martin 

23 MRDIM Matrix Redimension "OP1" in Alpha, dim in X Matrix redimensioned Ángel Martin 

24 MSORT Sorts matrix elements "OP1" in Alpha Matrix Elements sorted Ángel Martin 

25 MSQRT Matrix Square Root "OP1" in Alpha Matrix replaced by SQRT([M]) Ángel Martin 

26 MSZE? Matriz Size "OP1" in Alpha Matrix size in X Ángel Martin 

27 MTRACE Matrix Trace "OP1" in Alpha Trace in x Ángel Martin 

28 MXIJ Exchanges element pointer Pointer in matrix header Returns new pointer to X Ángel Martin 

29 MZERO Zeroes a Matrix "OP1" in Alpha All elements zeroed R.D. Kendon 

30 OMC Output Matrix by Columns "OP1" in Alpha Shows elements by columns Ángel Martin 

31 OMR Output Matrix by Rows "OP1" in Alpha Shows elements by rows Ángel Martin 

32 PMTM Prompts for Matrix "OP1" in Alpha Prompts for complete Rows Ángel Martin 

33 SQR? Tests for Square Matrix MName in Alpha YES/NO, Do if True. Ángel Martin 

34 IJJI Sum of crossed products "OP1" in Alpha [aij*aji] in X Ángel Martin 

35 -ADV POLYN Section Header none Displays "(ak*X^k)" Ángel Martin 

36 PIPJ Symmetric Polyn Cnt’l word in X Sums coeffs. Products JM Baillard 

37 BAIRS Bairstow Method Cntl word in Z, guesses in Y,X shows results JM Baillard 

38 CHRPOL Characteristic Polynomial "OP1" in Alpha Characteristic Pol Coefs/Roots Ángel Martin 

39 EIGEN Eigen Values by SOLVE Under prgm control Eigen Values by Solve Ángel Martin 

40 EV3X3 Eigen values 3x3 Prompts Matrix Elements Eigen Values by Formula Ángel Martin 

41 "LL3" 3D Line-to Line distance Under prgm control Result in X Ángel Martin 

42 "PL3" 3D Point-to-Line distance Under prgm control Result in X Ángel Martin 

43 "PPL3" 3D Point-to-Plane distance Under prgm control Result in X Ángel Martin 

      



SandMatrix_4 Manual  -  Revision “5Y+” 

(c) Ángel M. Martin                                 January 2021 Page 11 of  148 
 

44 MPT Matrix Index prompt Adds i,j and “=” to ALPHA Prompts and waits HP Co. 

45 P+P Polynomial Addition Driver for PSUM  w/CF 01 shows results Ángel Martin 

46 P-P Polynomial Substraction Driver for PSUM  w/SF 01 shows results Ángel Martin 

47 P*P Polynomial Multiplication Driver for PPRD shows results Ángel Martin 

48 P/P Polynomial Division Driver for PDIV shows results Ángel Martin 

49 PCPY Copy of Polynomial from, to cntl words in Y,X polynomial copied JM Baillard 

50 PDIV Euclidean Division cntl words in Y and X cntl words remainder & result JM Baillard 

51 PEDIT Polynomial Editor cntl word in X prompts for each coeff value Ángel Martin 

52 PFE Partial Fraction Expansion Under prgm control see description to decode JM Baillard 

53 PMTP Prompts for Polynomial cntl word in X prompts for complete list Ángel Martin 

54 POLFIT Polynomial Fit Under prgm control calculates polynomial fit Valentín Albillo 

55 POLINT Aitken Interpolation Under prgm control interpolation made Ulrich Deiters 

56 “POLZR” From Poles to Coeffs Under prgm control shows Polynomial coeffs  Martin-Baillard 

57 PPRD Polynomial Product cntl words in Z, Y, bbb in X cntl word result in X JM Baillard 

58 PRMF Prime Factors Decomposition number in X prime factors in XM Matrix Ángel Martin 

59 PROOT Polynomial Roots Under prgm control Shows all roots Ángel Martin 

60 PSUM Polynomial Sum cntl words in Z, Y; bbb in X cntl word result in X JM Baillard 

61 PVAL Polynomial Evaluation Cntl word in Y, x in X Result in X JM Baillard 

62 PVIEW Polinomial View Cntl word in X Sequential listing of coeffs Ángel Martin 

63 QUART Quartic Equation Roots coeffs in Stack (a4=1) shows results Martin-Baillard 

64 "#EV" Subroutine for EIGEN Under prgm control Under prgm control Ángel Martin 

 
Functions in blue are all in MCODE.  Functions in black are MCODE entries to FOCAL programs.  
 
I have adapted most of the FOCAL programs for optimal fit in the SandMatrix, but as you can see the 
original authors are always credited – including W&W for the array functions set, renamed here as  
 ‘-CCD MATRIX”.  Many of the routines in this manual include the program listing; this provides an 
opportunity to see how the functions are used and of course adds completion to the documentation.  
 
 
Sub-functions in the secondary FAT. 
 
The Vector Calculator and remaining subfunctions come next. Note the three sections in the listing, 
with the second and third groups of auxiliary functions covering polynomials and other geometry 
applications. Note also the new Matrix Catalogs at the very end of the table. 
 

 # Function Description Input Output Author 

0 -V CALC Section Header none Triggers CAT+ Ángel Martin 

1 A+V Vector addition Data in V1 and V2 Sum vector in V1 Ángel Martin 

2 A-V Vector Subtraction Data in V1 and V2 Difference vector in V1 Ángel Martin 

3 A*V Vector Dot Product Data in V1 and V2 Result in X-reg Ángel Martin 

4 AXV Vector Cross Product Data in V1 and V2 Product vector in V1 Ángel Martin 

5 A/V Vector Division Data in V1 and V2 Division vector in V1 Ángel Martin 

6 EXSCR Alpha Exchange Vector in V2 Swapped with scratch Ángel Martin 

7 LASTV Last Vector recall none V1 pushed to V2, LastV to V1 Ángel Martin 

8 X*V Multiplication by Scalar Data in stack Result in V1 Ángel Martin 

9 V<>A Swaps vector levels Data in V1 and V2 Swaps vectors Ángel Martin 

10 VADST Distance between vectors Data in V1 and V2 Distance in X-reg Ángel Martin 

11 VANG Angle between vectors Data in V1 and V2 Angle in X-reg Ángel Martin 

12 VCHS Negative vector Vector in V1 Negative vector in V1 Ángel Martin 

13 VENTER^ Enters V1 into V2 level Vector in V1 Pushes V1 into V2 Ángel Martin 

14 VIEWV Views V1 vector coordinates Vector in V1 Shows X:, Y:, Z: coordinates Ángel Martin 

15 VINV Vector Inverse Vector in V2 Inverse vector in V1 Ángel Martin 

16 VMOD Vector Modulus Vector in V2 Modulus in X-reg Ángel Martin 

17 VNORM Vector Norm Vector in V2 Norm in X-reg Ángel Martin 

18 VUNIT Unitary Vector Vector in V2 V/|v| in V1 Ángel Martin 

19 V=0? Conditional V1=0? Vector in V2 YES/NO, Do if True. Ángel Martin 
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20 V=A? Conditional V1=V2? Data in V1 and V2 YES/NO, Do if True. Ángel Martin 

21 V#0? Conditional V1#0? Vector in V2 YES/NO, Do if True. Ángel Martin 

22 V#A? Conditional V1#V2? Data in V1 and V2 YES/NO, Do if True. Ángel Martin 

23 -AUX FNS High Rollers Game none The game begins… Ross Cooling 

24 ^MROW Input Row "OP1" in Alpha, row# in x Prompts for Row Ángel Martin 

25 ABSP Alpha Back Space Text in Alpha Last chr deleted W&W GmbH 

26 AIP Appends integer part  x in X INT(x) appended to Alpha Ángel Martin 

27 ASWAP Alpha Swap "A,B" in Alpha "B,A" in Alpha Ángel Martin 

28 CLAC CLA from Comma Text in Alpha Removed from left to comma W&W GmbH 

29 DTC Delete Tiny Coefficients Cntl word in X Tiny coeffs deleted Ángel Martin 

30 DOTN N-dimensional Dot product cnt'l words in Y,X cnt'l word result in X JM Baillard 

31 I*J Multiplies indexes iii.jjj in X Product i*j in X Ángel Martin 

32 I#J? Are indexes the same? iii,jjj in X YES/NO, Do if True. Ángel Martin 

33 MTR Matrix Subroutine Under program control Under program control HP Co. 

34 OCX Output x-th column "OP1" in Alpha, Col# in X Shows Col elements Ángel Martin 

35 ORX Output x-th row "OP1" in Alpha, Row# in X Shows Row elements Ángel Martin 

36 PF>X Prime Factors to Number Matrix w/ Prime Facts in XMEM Restores the original argument Ángel Martin 

37 PL2 2D Point-to-Line distance Coordinates in Stack Distance in X-reg Ángel Martin 

38 PP2 2D Point-to-Point distance Coordinates in Stack Distance in X-reg Ángel Martin 

39 ST<>A Swaps Alpha/Stack V1 in Stack, V2 in Alpha V2 in Stack, V1 in Alpha Ángel Martin 

40 TOTNT Totient Function Argument in X Result in X Ángel Martin 

41 -REV Revision Message none Splash screen (!) Nelson Crowle 

42 ?IRR Irreducibility Criteria Control word in X Stops If irreducible, R04 has # Ángel Martin 

43 CROUT Outputs Cubic Roots Roots in Stack Shows messages Ángel Martin 

44 CT Subroutine for "TR" Under program control See Advantage’s manual HP Co. 

45 dPL Polynomial 1st. derivative Cntl word in Y, x in X P’(x)  in X, argument in L Ángel Martin 

46 dPL2 Polynomial 2nd. derivative Cntl word in Y, x in X P”(x) in X, argument in L Ángel Martin 

47 HMT Hermite Polynomials N in Y, x in X H(n, x) in X, argument in L Ángel Martin 

48 ITPL Polynomial Primitive Cntl word in Y, x in X Integralin X, argument in L Ángel Martin 

49 LAG Laguerre Polynomials N in Y, x in X H(n, x) in X, argument in L Ángel Martin 

50 LANX Associated Laguerre Pols. A in Y, N in Y, x in X Result in X Ángel Martin 

51 LEG Legendre Polynomials N in Y, x in X H(n, x) in X, argument in L Ángel Martin 

52 P4 Auxiliary Code for QUART Coeffs. In stack, UF 00 status Coeffs for CROOT Ángel Martin 

53 PSWP Polynomial Swap Control word in Y, new rg in X Coeeficients Swapped JM Baillard 

54 CAT+ _ Sub-function Catalog Has hot keys Lists/Launches functions Ángel Martin 

55 CMINOR Complex Matrix Minor MNAME in ALPHA, (I,j) in X Result in ALPHA and (Y,X) Ángel Martin 

56 CMTRP Complex Matrix Transpose MNAME in ALPHA Transposed Matrix Ángel Martin 

57 M^1/X Matrix inverse Power X in X, MNAme in ALPHA Result in Matrix if convergence Ángel Martin 

58 MRND Random Matrix Dim in X, MName in ALPHA Random Elements Ángel Martin 

59 MSQ2 2x2 Matrix Square Root MNAME in Alpha Square root replaces Matrix Ángel Martin 

60 MZDG Matrix Zero Diagonal “OP1" in Alpha Clears the Diagonal Elements Ángel Martin 

61 PSCAL Pascal Matrix "OP1" in Alpha Pascal elements Ángel Martin 

62 RMCAT R-Matrix Catalog Has hot keys: D,H,SST,SHF, R/S Lists R-Matrices in RAM Ángel Martin 

63 YMCAT Y-Matrix Catalog Has hot keys: D,H,SST,SHF, R/S Lists R-Matrices in RAM Ángel Martin 

64 @+ Append Element Under program control Used by MCEDIT and IMR Ángel Martin 

65 AIM Anti-Identity Matrix Matrix name in ALPHA Unitary with zero diagonal Ángel Martin 

66 EQT Display CurveFit  Equation Eq# in R00 (1-16) Eq. displayed in Alpha Ángel Martin 

67 EV2X2 2x2 Matrix Eigenvalues Matrix Name in ALPHA Eigenvalues in Y,X Ángel Martin 

 
The function groups are distributed in both lower and upper pages, as follows: 
 

• The lower page contains the general intro section plus the CCD Matrix set. Very much like the 
lower page of Advantage Pac minus the digital functions. It also hosts the auxiliary FAT, a 
necessity in order to have the subfunctions available to the FOCAL programs within the ROM. 
The second bank in the lower page contains the 3D Vector calculator functions, the execution 
tables for the three launchers, the code for the orthogonal polynomials, the Matrix CATAlogs, 
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and and the EQT function. Also there are the “return” snippets to support the Advantage-style 
bank-switching calls to the upper page. 

 

• The upper page has the Advanced Matrix and Polynomial sections. Basically all new and 
additional to the Advantage Pac. Finally, The second bank in the upper page is practically 
identical to that in the Advantage, with a few changes made after removing the Digital 
functions as well. It mostly contains the MCODE for the CCD Matrix functions and the major 
matrix calculations (MSYS, MINV, MDET, TRNPS). 

 
The SandMatrix checks for the presence of its dependencies, i.e. The Library#4 and the SandMath. 
Note that if the SandMath module is not plugged in the calculator a warning message is shown every 
time the calculator is switched on -- but not halting the polling points process, whereas if the 
Library#4 is missing or the machine is not a CX, the errors will halt it to avoid likely problems. 
 

     
 

     
 

Note that there’s also a punctual check for the CL board – needed to ensure the Y-registers existence 
if a matrix is to be stored in the CL-RAM area. This check is only performed within the affected 
functions, and not at initialization. 
 
Summarizing, the SandMatrix is a complete algebra module not only with powerful Matrix capabilities 
(inherited and extended on its own), but also Vectors and Polynomial functions second to none in the 
HP-41 platform. Yet its FAT internal architecture and launcher menus should make its usage intuitive 
and easy to learn… hopefully you’d agree and have as much fun using it as I’ve had putting it 
together. 
 
 
 

Xtra Bonus:- High Rollers Game. 
 
There is a gigantic Easter egg included in the SandMatirx – hidden somewhere there’s a rendition of 
the High Rollers game, so you can relax in between hard-thinking sessions of math, really!  There was 
simply too much available space in the “new” bank of the lower page to leave it unused, so this 500+ 
bytes MCODE rendition of the game (written by Ross Cooling, see PPCJ V14N2 p31) was begging to be 
included. As to how to access it… the discovery is part of the enjoyment :-) Hint: ever wondered about 
those section header functions?... 
 

      ,     
 

Choose any combination from the available digits on the right which sum matches the target on the 
left, repeating until there’s no more digits left (YOU WIN) or there aren’t possible combinations (YOU 
LOSE).  Use R/S to proceed, back-arrow to delete digits. The game will ask you to try again and will 
keep the count of the scores. 

 

      ,     
 

Note: Make sure that revision “R58” (or higher) of the Library#4 module is installed. 
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2.  Lower-Page Functions in detail 
 
The first section groups the auxiliary functions used for ALPHA string management, plus some leftover 
functions that either didn’t belong to the other categories or were added at latest stages of the 
development. 
 

UU UU 

 

 
 

2.1. Alpha String Management sub-functions 
 
The use of the ALPHA register for Input/Output certainly isn’t new in the 41 platform, but the 
utilization by the Matrix functions effectively turned it into a primary abstraction layer for 
programming; therefore the importance of auxiliary utilities like these. 
 
Some of these functions are also included in the AMC_OSX Module – yet it appeared convenient not to 
add that module as another dependency (even if it’s just a 4k footprint for its 4 banks), so here they 
are as well.  
 

# Function Description Input 

1 ABSP Alpha Back Space Text in Alpha 

2 AIP Appends integer part  x in X 

3 ASWAP Alpha Swap A,B in Alpha 

4 CLAC CLA from Comma Text in Alpha 

5 ST<>A Exchanges Alpha and Stack Values in Stack and Alpha registers 

 
Note that already in revision “M” all these functions weren moved to the secondary FAT, and therefore 
you need to use the V$ or V# launchers to execute them, or to enter them in a FOCAL program.  

See the sub-function table at the introduction section for details on their reference indexes. 
 
 

•  ABSP  deletes the rightmost character in ALPHA – equivalent to “back space” in manual 

mode.  
 

 

•  AIP  was HP’s answer to the need to append just the integer part of the number in X to 

Alpha – not changing the FIX and radix settings. Note also that AIP appends the absolute 
value of the number, which is not the case with ARCLI or AINT from the CCD and AMC_OS/X 
modules. 

 
   

•  ASWAP  handles comma-separated strings, exchanging the strings placed left and right of 

the first comma found in Alpha. Very handy to manage all those operations that have an input 
and output matrix names defined in ALPHA, separated by comma. 

 
 

•  CLAC  deletes the contents of ALPHA located to the right of a comma (i.e. after the comma 

but not including it). It is adapted from CLA- in the CCD Module. 
 

 

•  ST<>A  simply exchanges the contents of the stack and the four Alpha registers {M,N,O,P}. 

This is different from V<>A, in that only the three stack registers are swapped. V<>A is 
used in 3D-vector operations where one of the operands is stored in Alpha. 
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2.2. The Matrix function launcher and Keyboards. 

 
It has become customary in the author’s modules to always use function launchers to enhance the 
user interface, as the most convenient way to save key assignments. As expected, there is a function 
launcher in the SandMatrix that groups many of the most frequently used matrix functions; plus a few 
others thrown to the mix.  All functions can be accessed from the “M: _” prompt, there is no need to 
make any key assignment other that for the main launcher itself. 
 
This becomes active when you execute “ML” - the function launcher in run mode.  When executed, it 

presents the “M:” prompts and awaits your next selection. Pressing [A] in turn activates the Vector 
prompt V:_, and pressing it a second time the Polynomial prompt P:_. 
 

 
 
 
 
 

            
 
 
The following pictures of the Matrix and Polynomial Overlays show the available functions in the 
dedicated keyboards. Note that those with blue names (on the keys) are called using the main keys 
(ie. unshifted), and those in green (above the keys) require pressing the [SHIFT] key in the 

corresponding prompt. It also shows the M: launcher assigned to the   +    key, as usual. 
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2.3. Functions in the Header section. 
 

# Function Description Input 

1 "MATRX" "Easy Matrix" Program Driver for Major Matrix Ops. 

2 ML _ Matrix Function Launcher Prompts for function 

3 DST _ Distance Functions Launcher Prompts "PP PL LL PPL" 

4 V# _ _ _ Sub-Function Launcher  Prompts for index 

5 V$ _ Sub-Function Launcher  Prompts for name 

 
 

MATRX  is the main driver program provided in the Advantage Pac for the major matrix calculations 
(MDET, MINV, SIMEQ, TRNPS). Nice and easy, maybe the only one to use for users not needing any 
further functionality.  MTR was part of the same program, but has been eliminated in this revision. 
 
The following extract describing the use of MATRX is taken from the Advantage Pac manual – and it’s 
included here for convenience and completeness. It’s useful to revise the underlying concepts as well. 
 
 

2.3.1  The Matrix Program 

 
This chapter describes the matrix program, MATRX - the menu-driven, easy "user-friendly" way to 
use the most common matrix operations on a newly created matrix. To use MATRX you do not need 
to know how the calculator stores and treats matrices in its memory. The next chapter lists and 
defines every matrix function in the pac, including those called by MATRX. Using these functions on 
their own requires a more intimate knowledge of how and where the calculator stores matrices. 

 
What this program can do. 
 
Consider the equations: 

3.8 x1 + 7.2 x2 = 16 .5 
1.3 x1 - 0.9 x2 = -22.1 

 
for which you must determine the values of x1 and x2 . These equations can be expressed in matrix 
form as  AX = B, where A is the coefficient matrix for the system, B is the column or constant matrix, 
and X is the solution or result matrix. 
 

 

 
 

For such a matrix system, the MATRX program creates (dimensions) a square real and complex 
matrix, A, and a column matrix, B. You can then: 
 

• Enter, change ('edit"), or just view elements in A and B. 
• Invert A. 
• Transpose A if A is real. 
• Find the determinant of A if A is real. 
• Solve the system of simultaneous equations by finding the solution to AX = B. 
 

The size of your matrix is limited only by available memory (each real matrix requires one register plus 
one register for each element.) If you want to store more than one matrix, you will need to use the 
matrix function MATDIM, described in the next chapter. The MATRX program does not store or 
recall matrices; it works with a single square matrix A and a single column matrix B. When you enter 
new elements into A you destroy its old elements. 
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Instructions 

 
MATRX has two menus to show you which key corresponds to which function. The initial menu you 
see is to select a real ox complex matrix: (picture on the left below) 
 

 
 
After you make this selection, input the order of the matrix, and press R/S, you will see the main 
menu (picture on the right above). This menu shows you the choice of matrix operations you have in 
MATRX. Press [J] to recall this menu to the display at any time. This will not disturb the program in 
any way. 
 
To clear the menu at any time press “Back Arrow”. This shows you the contents of the X-register, but 
does not end the program. You can perform calculations, and then recall the menu by pressing [J]. 
(However you don’t need to clear the program’s display before performing calculations.) 
 

• The program starts by asking you for a new matrix. It has you specify real vs. complex and 
the order (dimension) of a square matrix for A. 

 
• The program does not clear previous matrix data, so previous data – possible meaningless 

data – will fill your new matrices A and B until you enter new values for their elements. 
 

• Each element of a complex matrix has two values (a real part and an imaginary part) and 
requires four times as much memory to store as an element in a real matrix. The prompts for 
real parts x11, x12, etc. are “1:1=?”,  “1:2=?”, etc. The prompts for complex parts x11+ i 
y11,  x2+ i y22, etc. are “RE.1:1=?”, “IM.1:1=?”, etc. 

 
 

Remarks 

 
Alteration of the Original Matrix. The input matrix A is altered by the operations finding the 
inverse, the determinant, the transpose and the solution of the matrix equation. You can re-invert A-1, 
and re-transpose AT to restore the original form of A. However, if you have calculated the determinant 
or the solution matrix, then A is in its LU-decomposed form. To restore A, simply invert it twice. The 
LU-decomposition does not interfere with any subsequent MATRX operation except transposition and 
editing (do not attempt to edit an LU-decomposed matrix unless you intend to change every element). 
For more information on LU-decomposition, refer to "LU-Decomposition" in the next chapter ('Matrix 
Functions"). 
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Matrix Storage. The MATRX program stores a matrix A starting in R0 of main memory; it is named 
“R0”. Its column matrix B is stored after it, and the result matrix X overwrites B. Refer to the chapter 
"Matrix Functions' for an explanation of how matrices are named and stored, and how much room 
they need. MATRX cannot access any other matrices, with the exception of the previous R0 and its 
corresponding column matrix. 
 
Redefined Keys. This program uses local Alpha labels (as explained in the owner's manual for the 
HP-41) assigned to keys [A]-[E], [J] , [a], [b], and [d]. These local assignments are overridden by 
any User-key assignments you might have made to these same keys, thereby defeating this program. 
Therefore be sure to clear any existing User-key assignments of these keys before using this program, 
and avoid redefining these keys in the future. 
 
Example 1. 
 
Given the system of equations at the beginning of this section, find the inverse, determinant and 
transpose of A, and then find the solution matrix of the equation AX = B 
 

            

 

 
 
Keystrokes  Display    Comments    
XEQ “MATRX”   “”    Starts the MATRX program 
[A] (RL)  “”   Selects a real Matrix 
2, R/S   “”   Dimensions a 2x2 square matrix 
[A]   “a11?”   Enters the Editor and displays old value 
3.8, R/S   “a12?”   enters the new value for a11 
7.2, R/S   “a21?”   
1.3, R/S   “a22?”  
.9, CHS, R/S  “”  enters a22 and returns main menu 
 [B]  (I)   “”  Inverts A 
[SHIFT][A]  “”  Displays the current contents 
R/S   “”   of A after the inversion 
R/S   “”  
R/S   “”  
R/S   “” 
[B] (I)   “”  Re-inverts A-1 to the original 
[SHIFT][B]  “”  Transposes A 
[SHIFT][A]  “”  Displays the current contents 
R/S   “”   of A after the transposition 
R/S   “” 
R/S   “” 
R/S   “A  I  DT B SE” 
[SHIFT][B]  “”  Re-transposes AT to the original A 
[C] (DT)  “”  Det(A) 
[D] (B)   “b11?“    editor for B and displays old elements 
16.5, R/S  “b12?”   Enters the new value for b11 
22.1, CHS, R/S  “”  Enters b22 and returns main menu 
[E] (SE)   “”  Solves the system AX = B, placing X in B 
[SHIFT] [D]  “”  displays the solution matrix 
R/S   “”   
R/S (or [J])  “E”  Exits the editor 
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Example 2.  Find the inverse of the complex matrix: 
 

          
 
Note that the original MATRX has been slightly edited in the SandMatrix so that the program sets the 
required SIZE if not enough registers are currently available to store the matrices – so you don’t need 
to worry about that mundane detail. This example is also interesting because also shows how to make 
corrections to the data entered by mistake. 
 
Keystrokes  Display    Comments    
XEQ “MATRX”   “”    Starts the MTRX program 
[B]  (CX)  “”   Selects a complex Matrix 
2, R/S   “”   Dimensions a 2x2 complex matrix 
[A], R/S  “”   Enters the editor and displays old value 
1, R/S   “”   ditto for the imaginary part 
2, R/S   “”   
3, R/S   “”   
4, R/S   “”   Wrong entry! Should be 3, not 4... 
1,002, [A]  “3.000”  Moves editor back to x12 
R/S   “4.000”  The wrong imaginary part 
3, R/S   “”   Correct value is entered for y12. Proceed  
4, R/S   “”    
5, R/S   “” 
6, R/S   “” 
7, R/S   ” Enters last element and returns main menu 
[B]  (I)   ” Inverts A 
[SHIFT][A]  “”  Viewing A-1 
R/S   “” 
R/S   “” 
R/S   “” 
R.S   “” 
R/S   “” 
2.002, [A]  “”  Displays x22 + i y22 
R/S   “” 
R/S (or [J])  “”  Exits the editor 
 
 
Other (more advanced) examples are available in the next sections of the manual, with the description 
of the individual matrix functions.  
 
 
Note that if any of the element registers currently contains alpha data you’ll get an ALPHA DATA error 
message during data entry. Simply clear the X register (using tha back arrow key) and continue with 
R/S. 

 
See the program listing in next page for your reference. 
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*LBL "MATRX" 1 
*LBL 00 2 
 CF 02 3 
 SF 27 4 
 "RL CX" 5 
 PROMPT 6 
 GTO 00 7 
*LBL B 8 
 SF 02 9 
*LBL A 10 
 ?ORDER 11 
 STOP 12 
 ABS 13 
 INT 14 
 ENTER^ 15 
 FS? 02 16 
 + 17 
 STO 00 18 
 X^2 19 
  E 20 
 + 21 
 SIZE? 22 
 X<>Y 23 
 X>Y? 24 
 PSIZE 25 
  E 26 
 E3/E+ 27 
 RCL 00 28 
 * 29 
 "R" 30 
 MATDIM 31 
 GTO 01 32 
 RTN 33 
*LBL “MTR” 34 
*LBL J 35 
*LBL 01 36 
 CF 08 37 
 SF 27 38 
 " A I DT B SE" 39 
 AVIEW 40 
 "R" 41 
 STOP 42 
 GTO 01 43 
*LBL 03 44 
 MDET 45 
 "DET=" 46 
 ARCL X 47 
 PROMPT 48 
 GTO 01 49 

*LBL a 50 
 SF 08 51 
*LBL A 52 
 GTO 14 53 
*LBL B 54 

  MINV 55 
  GTO 01 56 
 *LBL C 57 
  FC? 02 58 
  GTO 03 59 
  XROM "CMDET" 60 
  F# 032 61 
  (ZOUT) 62 
  STOP 63 
  GTO 01 64 
 *LBL E 65 
  XEQ 02 66 
  ASTO X 67 
  "R," 68 
  ARCL X 69 
  MSYS 70 
  GTO 01 71 
 *LBL b 72 
  FC? 02 73 
  TRNPS 74 
  FC? 02 75 
  GTO 01 76 
  V# 056 77 
  (CMTRP) 78 
  GTO 01 79 
 *LBL d 80 

  SF 08 81 
 *LBL D 82 
  XEQ 02 83 
 *LBL 14 84 
  SF 07 85 
  FS? 02 86 
  XROM "CMEDIT" 87 
  XROM "MEDIT" 88 
 *LBL 02 89 
  DIM? 90 
  INT 91 
  ENTER^ 92 
  X^2 93 
   E 94 
  + 95 
  AINT 96 
  RDN 97 
  SF 25 98 
  MATDIM 99 
  FS?C 25 100 
 RTN 101 
 R^ 102 
 + 103 
  E 104 
 + 105 
 PSIZE 106 
 GTO J 107 
 END 108 
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UU UU 

 

 
 

2.2.1. Setting up a matrix: Name, Storage, and Dimension 

 
The first group of matrix functions are used to create, populate and store the matrices. 
 

 Function Description Inputs 

1 MATDIM Dimensions a Matrix Name in Alpha, dimensions in X 

2 MNAME? Returns name of current Matrix to Alpha none 

3 DIM? Returns the dimension of Matrix Name in Alpha 

4 “MEDIT” Matrix Editor Name in Alpha 

5 “CMEDIT” Complex Matrix Editor Name in Alpha 

 
You can create, manipulate, and store real and complex matrices. The size and number of matrices is 
limited only by the amount of memory available in the calculator. If you have extended memory you 
can also store matrices there. 
 
To create a matrix you must provide its name and dimensions. The function MATDIM uses the text in 
the Alpha register as its name, and the dimensions mmm.nnn in the X-register to create a matrix. It 
does not clear (zero) the elements of a new matrix in main memory, but retains the existing contents 
of the previous matrix or registers. It does clear the elements of a new matrix in extended memory. 
You then enter values- numeric or Alpha- into a matrix via the matrix editors. 
 

Naming a Matrix 

 
Use the Alpha register to specify matrix names. When specifying more than one name (as parameters 
for certain functions), separate them with commas. The name you give a matrix determines where it 
will be stored:  
 
A matrix to be stored in main (non-extended) memory must be named Rxxx, where xxx is up to three 
digits. (You can drop leading zeros.) The matrix will be stored starting in Rxx. For example, R007 is 
the same as R7, which would store this matrix header in R07. As a shortcut, if you specify matrix R, 
its name and location will be R0. A maximum square matrix size of 17x17 is possible in this modality. 
 
A matrix to be stored in extended memory can be named with up to seven Alpha characters, excepting 
just the letter “X” (which is reserved to name the X-register) and the letter “R” followed by up to three 
digits (which is reserved to name the main memory arrays). You do not need to specify a file type; it 
will automatically be given one unique to matrices. A maximum square matrix size of 24x24 is possible 
in this modality. 
 
For the SY-41CL there’s a third option available that uses the expanded memory zone, which 
provides a storage space for additional 3,072 data registers (aka. the Y-Registers). To store your 
matrix in that area simply name it Yxxx, with the same conventions given for the standard main 
memory case. For example, using Y525 will store the matrix elements starting at the 526th expanded 
register. Note that the expanded memory area allows for larger sizes – up to 55 x 55 square matrices ! 
 

Dimensioning a Matrix 

 
Specify the dimensions of a new matrix as mmm.nnn, where m is the number of rows and n is the 
number of columns. You can drop leading zeros for m and trailing zeros for n. For a complex matrix, 
specify mmm.nnn as twice the number of rows and twice the number of columns. (Refer to “Working 
with Complex Matrices”). A zero part defaults to a 1, so 0 is equivalent to 1.001, 3 to 3.00 1, and .023 
to 1.023. 
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•  MATDIM  Dimensions a new matrix or redimensions an existing one to the given 

dimensions. Displaced elements are zeroed if an existing matrix is being enlarged. 
 

•  MNAME?   Returns the name of the current matrix to the Alpha register. 

 

•  DIM?   Returns the dimensions mmm.nnn of the matrix specified in the Alpha register to the 

X-register. (A blank Alpha register specifies the current matrix.) 
 
 

How a Matrix Is Stored 

 
The elements of a matrix are stored in memory in order from left to right along each row, from the 
first row to the last. Each element occupies one data-storage register. A complex number requires four 
registers to store its parts.  
 
Memory Space.- A matrix in main and expanded Y-memory occupies (m x n) + 1 data storage 
registers, one register being used as a status header. A complex matrix uses (2m x 2n) + 1 registers, 
where m is the number of rows and n is the number of columns in the complex matrix. 
 
A matrix in extended X-memory has a file length of (m x n). (2m x 2n for a complex matrix). Two 
more X-mem registers are used for the header and the file name. Its file type is unique to matrices. 
Do not use the function CLFL with a matrix in extended memory: this destroys part of the file's header 
information. Instead, use MZERO  - or PURFL to purge the entire matrix. 
 
Changing Matrix Dimensions.- If you redimension a matrix to a different size, then the existing 
elements are reassigned to new elements according to the new dimensions. Extra old elements are 
lost; extra new elements take on the values already present in the new registers- except in extended 
memory, where new elements are set to zero. 
 
Redimensioning 2 x 3 to 2 x 2 : 
                                                     
 
 
Redimensioning 2 x 3 to 2 x 4 : 
      
                                                      
 
 
This is what happens each time you dimension a new matrix since the old elements from the previous 
current matrix remain until you change them. 
 
Caution.- When MATDIM is used to redimension a matrix stored in extended memory, the position 
of the matrix pointer is not readjusted. If the pointer happened to be positioned to an element that is 
outside the new bounds of the redimensioned matrix, it must be repositioned to be within the new 
bounds by executing either MSIJ or MSIJA with valid indices before the pointer can be used again. 
 
Existing matrices in extended memory cannot be redimensioned to completely fill extended memory. 
The maximum allowable size of a redimensioned matrix is one register less than the currently available 
extended memory. A new matrix can, however, be dimensioned to completely fill available extended 
memory. 
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Using the Matrix Editors 

 
There are two matrix editors: MEDIT for real matrices and CMEDIT for complex matrices. They are 
otherwise quite similar. The matrix editors are used for three purposes: 
 

• Entering new values into the elements of a matrix. 
• Reviewing and changing (editing) the elements of a matrix, either in order or by “random 

access” of specific elements. 
• Viewing (without being able to change) the elements of a matrix (flag 08 set). 

 
When you execute MEDIT or CMEDIT, the editor displays element 1,1 of the matrix specified in the 
Alpha register or of the current matrix if the Alpha register is empty. Pressing R/S steps the display 
through the elements; for a complex matrix, each part of the complex element is shown separately. 
 

                    
 
The “?” at the end of the display line indicates that you can change that value. In effect, you are 
being asked whether this is the value you want. If you want to change the element you see, just enter 
the new value and press R/S. You do this for a brand new matrix as well as for correcting or altering a 
single value. If you press R/S without entering a new value, the current value remains unchanged. 
 
Viewing without editing.- If you set flag 08, the editor will let you only view the elements, not 
change them. The display appears without the “?” at the end of the line.  1:1= 1.0000 
If you have a printer attached while flag 08 is set, it will print out all the elements of the matrix 
without pausing. 
 
Directly accessing any element.- You can directly access any specific element while the editor is 
active (and the User keyboard is also active). To access the element in the i-th row and the j-th 
column, enter iii.jjj and press [A]. (This is as in the MATRX program.) You can drop leading zeros in iii 
and trailing zeros in jjj. For a complex matrix, you can directly access the real part of element i, j 
.Then use R/S to access its imaginary part. You can drop leading zeros in the i-part and trailing zeros 
in the j-part. A zero part defaults to a 1. 
 
Exiting the Editor.- To leave the editor before it has reached the last element, do either: 

• Press [J]. 
• Try to access a nonexistent element. For instance, in a 4 x 4 matrix, press 5 [A]. 

 

 
How to Specify a Matrix 

 
Given the matrix multiplication operation AB = C, you know A and B and are looking for the product 
matrix, C. In performing this operation, the calculator must be given the identities of the existing 
matrices A and B, and also be told where to put the result matrix, C. (However, the result matrix can 
be the same as one of the input matrices.) All given matrices must al ready exist as named, 
dimensioned matrices. Naturally, only A and B must contain valid data. 
 
Some functions use only one input matrix, and some functions automatically use one of the input 
matrices for output. So the minimum number of matrices to specify is one, and the maximum is three. 
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A matrix function checks the Alpha register for the names (that is, the locations) of the matrices it 
needs for input and output. Before executing that function, you should specify all needed parameters 
on one line in the Alpha register, separating each with a comma: 

                       
Scalar Operations.- Scalar input and output must be in the X-register, and so this location does not 
need to be specified unless the function in question can use either a scalar or a matrix for the same 
input parameter. To specify the X-register, use X. 
 
For instance, MATDIM requires a scalar input and a matrix name, so you do not need to specify the 
X- register. On the other hand, the scalar arithmetic functions, such as MAT+, can use either two 
matrices or a scalar and a matrix for input. Therefore, you must specify X if you want to use it. 
 
 
The Current Matrix.- The current matrix is the last one accessed (used) by a matrix operation. If 
the Alpha register is clear and you execute a matrix function that requires a matrix specification, the 
current matrix is used by default. (If there is no current matrix, “UNDEF ARRAY” results). 
  
The result matrix of a matrix function becomes the current matrix following that operation. To find out 
the name of the current matrix, execute MNAME?. Its name is returned into the Alpha register, 
overwriting its previous contents. 
 
 
Default Matrix Parameters.- If you don’t specify any or all the matrices that a matrix function 
needs, then certain default parameters exist. (Default parameters are those automatically assumed if 
you don't specify them). The most common default you will probably use is the current matrix. If you 
don't specify a particular matrix name and the Alpha register is clear, then the default matrix is the 
current one. 
 
For matrix operations requiring up to three matrix names in the Alpha register, the following table 
gives the conventions to interpret the parameters. 
 
 

Alpha Register's Contents 
 

Matrices Specified 
 

A,B,C A, B, C 

A,B A, B, B 

A A, A, A 

A,,B A, A, B 

,A,B current, A, B 

,A current, A, A 

,,A current,  current, A 

X,A,B X-reg, A, B 

X,A X-reg, A, A 

A,X A, X-reg, A 

A,,X A, A, A (ignores X) 

X X-reg, current, current 

(blank) current, current, current 
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Program Listings.- 

 

 01*LBL "MEDIT" 

 02 SF 27 
 03 0 
 04 MSIJA 

 05*LBL A 

 06 CF 10 
 07 SF 25 
 08 MSIJ 
 09 FC?C 25 
 10 GTO 05 
 11*LBL 00 

 12 AOFF 
 13 MRIJ 
 14 FS? 10 
 15 GTO 05 
 16 CLA 
 17 MPT 
 18 MR 
 19 ARCL X 
 20 FS? 08 
 21 GTO 08 
 22 >"?" 
 23 CF 23 
 24 PROMPT 
 25 MR 
 26 X<>Y 
 27 X#Y? 
 28 MS 
 29 ASTO X 
 30 FS? 23 
 31 MS 
 32*LBL 09 

 33 J+ 
 34 GTO 00 
 35*LBL 08 
 36 PROMPT 
 37 GTO 09 

 38*LBL J 

 39 GTO J 
 40  END 
 

01*LBL "CMEDIT" 

 02 SF 27 
 03 CF 06 
 04*LBL 06 

 05 DIM? 

 06 ODD? 
 07 GTO 00 
 08 FRC 
 09 I<>J 
 10 X=1? 
 11 GTO 00 
 12 EVEN? 
 13 GTO 00 
 14 "NOT CPX" 
 15 PROMPT 
 16 MNAME? 
 17 GTO 06 
 18 SF 06 
 19 CF 10 
 20 CLST 

 21*LBL A 

 22 ST+ X 
 23  E 
 24 E3/E+ 
 25 - 
 26 SF 25 
 27 MSIJ 
 28 FC?C 25 
 29 GTO J 
 30*LBL 01 

 31 FS? 10 
 32 GTO J 
 33 XEQ 03 
 34 "RE." 
 35 XEQ 05 
 36 FS? 08 
 37 GTO 08 
 38 PROMPT 
 39 MS 
 40 FS? 06 
 41 GTO 08 
 42 J+ 
 43 I+ 
 44 MS 
 45 J- 
 46 I- 
 47*LBL 08 

 48 SF 21 
 49 FS? 08 
 50 AVIEW 
 51 XEQ 03 
 52 "IM." 

 53 I+ 
 54 XEQ 05 
 55 FS? 08 
 56 GTO 09 
 57 PROMPT 
 58 MSR+ 
 59 FS? 06 
 60 GTO 10 
 61 I- 
 62 CHS 
 63 MSC+ 
 64 GTO 10 
 65*LBL 09 

 66 AVIEW 
 67 J+ 
 68 FS? 06 
 69 GTO 01 
 70*LBL 10 

 71 FS? 10 
 72 GTO J 
 73 FC? 06 
 74 J+ 
 75 FC? 09 
 76 I- 
 77 GTO 01 
 78*LBL 03 

 79 MRIJ 
 80  E 
 81 E3/E+ 
 82 + 
 83 2 
 84 / 
 85 RTN 
 86*LBL 05 

 87 V# 

 88 64 
 89 FC? 08 
 90 >"?" 
 91 RTN 

 92*LBL J 

 93 FS? 07 
 94 GTO 01 
 95 MNAME? 
 96 END 
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2.2.2.- Storing and Recalling Individual Matrix elements. 

 
The matrix editor provides a method of storing and reviewing matrix elements. For programming, you 
can use the following functions to manipulate individual matrix elements. A specific element is 
identified by the value iii.jjj  for its location in the i-th row of the j-th column. You can drop leading 
zeros in the i-index and trailing zeros in the j-index. The value of the pointer defines the current 
element. 
 
Setting and recalling the Pointer 
 

 Function Description Inputs 

1 MSIJA Sets element pointer of matrix in Alpha Name in Alpha, iii,jjj in X-reg. 

2 MSIJ Sets element pointer of current matrix iii,jjj in X-reg. 

3 MRIJA Recalls element pointer of Matrix in Alpha Name in Alpha, iii,jjj in X-reg. 

4 MRIJ Recalls element pointer of current matrix iii,jjj in X-reg. 

 
 
The following functions increment and decrement the element pointer rowwise (iii) or column wise 
(jjj). If the end of a column is reached (with the i-index) or the end of a row is reached (with the j-
index), then the index advances to the next larger or smaller column or row and sets flag 09. If the 
index advances beyond the size of the matrix, both flags 09 and 10 are set. These functions always 
either set or clear flags 09 and 10. If the conditions listed above don't occur, the flags are cleared 
every time the functions are executed. 
 
Incrementing and Decrementing the Pointer 
 
The following functions were not in the original CCD ARRAY FNS group, therefore are HP’s: 
 

 Function Description Inputs 

5 I+ Increments iii pointer by one None – uses current matrix pointer 

6 I- Decrements iii pointer by one None – uses current matrix pointer 

7 J+ Increments jjj pointer by one None – uses current matrix pointer 

8 J- Decrements jjj pointer by one None – uses current matrix pointer 

 
 
Storing and Recalling the Element’s Value. (alone or sequentially) 
 
The following functions provide a faster, more automated alternative to adjusting the pointer value to 
access each element. These combine storing or recalling values and then incrementing or 
decrementing the i- or j-index, so that the pointer is automatically set to the next element. 
 

 Function Description Inputs 

9 MS Stores value in X-reg into current element Value in X-Reg 

10 MR Recalls current element to X-reg None. Returns element to X-reg 

11 MSC+ Stores value in X-reg to current element and 
advances pointer to next element in column 

Value in X-reg. 

12 MSR+ Stores value in X-reg to current element and 
advances pointer to next element in row  

Value in X-reg. 

13 MRC+ Recalls current element to X-reg and then 
advances pointer to next element in column 

None.  
Returns element value to X-reg 

14 MRR+ Recalls current element to X-reg and then 
advances pointer to next element in row 

None.  
Returns element value to X-reg 

15 MRC- Recalls current element to X-reg and then 
decrements pointer to previous  in column 

None.  
Returns element value to X-reg 

16 MRR- Recalls current element to X-reg and then 
decrements pointer to previous  one in row. 

None.  
Returns element value to X-reg 
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When the end of a column or row is reached, the pointer's index advances to the next (or previous) 
column or row. If the pointer’s index is moved beyond the boundaries of the matrix, it cannot be 
moved back using these functions. You must use MSIJ or MSIJA . 
 
The following sequence of keystrokes will create the matrix ABC (in extended memory). 

 
 
Keystrokes   Display   Comments 

ALPHA, “ABC”, ALPHA 

2.003, XEQ “MATDIM”     Dimensions matrix ABC in X-Mem. 
0, XEQ “MSIJA”     Sets pointer to 1.001 position 
5, XEQ “MSR+”      Enters element and advances pointer 
       to next column for next entry 
6, XEQ “MSR+”      Ditto as above 
7, XEQ “MSR+”      Pointer automatically moves to second row, 
       also setting flag 09. 
8, XEQ “MSR+”    
9, XEQ “MSR+”    
10, XEQ “MSR+”    This sets both flags 09 and 10. 
SF 08       This sets the editor to display only. 
XEQ “MEDIT”   “”    
R/S    “”     
R/S    “” 
R/S    “” 
R/S    “” 
R/S    “” 
 
 
 

Updated Matrix Editor: Row Input mode. 

 
Another, more effective way to enter the element values involves using PMTM (instead of MEDIT) to 
handle them “one row at a time”.  This drastically speeds up the process, although some limitations 
apply: 
 

• The maximum length for all values and the blank spaces in between them is 24 characters, as 
it uses the Alpha register to temporarily hold them. 
 

• Decimal and negative values are supported in this mode, but values with exponential notation 
(i.e. 2.4 E23) cannot be entered using PMTM.  

 
Here’s the how the sequence would change using this approach: 
 
Keystrokes    Display  Comments 

ALPHA, “ABC”, ALPHA 

2.003, XEQ “MATDIM”      Dimensions matrix ABC in X-Mem. 
XEQ “PMTM”    “:”   prompts to enter the first row 
5, ENTER^, 6, ENTER^, 7, R/S  “”   prompts for the second row 
8, ENTER^, 9, ENTER^, 10, R/S    done! 
 
 

Function  PMTM  will be covered later in the manual, as part of the new functions section. 
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2.2.3.- Matrix Catalogs. Where is my stuff?   {  RMCAT  ,  YMCAT  } 

 
The ability to use both X-Mem and standard data registers was a design crtiteria in the Array functions 
of the CCD Module. The reason was clearly to make the functionality available to plain HP-41C 
machines, without the X-Functions and X-Memory. This was proven to be the right decision, albeit it 
made the internal routines more complex since they needed to support two memory areas. 
 
You can use CAT’4 (or EMDIR) to list all files in X-Mem, including the Matrix files of course. With the 
AMC_OS/X module plugged in the “M” type is shown in the LCD, indicating the Matrix type.  
 

 
 
Until now, there was no way to enumerate the matrices “configured” in the standard registers – with 
matrix names “Rxxx” as described in the previous sections of the manual. Even if these were 
assumed to be more volatile than the X-Mem counterparts, it would have been very helpful to have a 
matrix catalog of some sort.  
 
Support for the CL expanded memory adds another dimension to the same feature, and given the vast 
increase of available memory – and the fact that it is much less labile -  it becomes even more 
important to know which matrices are already configured in the standard and Y-Registers. 
 
 

New Matrix Catalogs 
 
The SandMatrix includes two sub-functions to enumerate the matrices configured in the standard and 
CL register areas; RMCAT and YMCAT respectively.  No input data is required, and the enumeration 
will sequentially show all matrices present in the corresponding zone. Like in the EMDIR case, both the 
matrix “name” and size will be shown in the display: 
 

   or:    
  
The listing can be stopped and resumed using the R/S key. Whilst stopped you can use the SST and 
BST keys to advance or backtrack the listing. Other hot keys are available to delete the matrix, enter 
its name to ALPHA, or decode the header register: 
 

• R/S  Switches between single-step or automated enumeration 
• [SHIFT]  reverse or direct enumeration 
• SST  moves to next matrix if present 
• BST  moves to previous matrix if present 
• [H]  Decodes the header register 
• [D]  Deletes the matrix (asks for confirmation first) 
• ENTER^ Enters the matrix name in ALPHA, ready to use all matrix functions. 
• Back Arrow Exits the enumeration 

 
Finally, if no matrices are found in that memory area the function will put up one of the info messages 
shown below, depending on the case: 
 

   or:    
 
I trust you’ll agree this pair of functions is a welcome addition to the SandMatrix, well worth the price 
of admission and the extra code added to the project. 
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Appendix. Harmonic Determinants. {  DNN  ,  DN  } 

 
This section reflects the discussion started by Valentín Albillo on the HP-Museum forum. It’s useful to 
showcase the capabilities of the CL_Y-Registers for very large size matrices. 
 
Consider the determinant D(N) defined as follows: 
 

 
 

This type of determinants have an exact formula using the Harmonic function, H(N): 
 

  D(N) = (N+1)! . H(N) 
 
The sum of harmonic series is thus:  H(N) = D(N-1) / N! 
which surely would be one of the most inefficient ways to compute it ;-) 
 
Using the CL_Y-Registers area, write a routine to compute D(N) – and verify the direct formula for the 
values N=11, 13, 30, 40 and N=55  - which will use 3,025 Y-Registers. 
 
The routines are listed below. Both expect the order N in the X-register: 
 

01 LBL "DDN"  
02 RCL X 
03 E3 
04 / 
05 + 
06 "Y" - matrix will start at RY-001 
07 MATDIM 
08 1 
09 MCON  
10 CLX 
11 MSIJA 
12 2 
13 LBL 00 
14 E 
15 + 
16 MSC+ 

17 SF 25 
18 J+ 
19 FS?C 25 
20 GTO 00 
21 MDET 
22 END 
 
01 LBL "DN"  
02 E 
03 + 
04 HARM 
05 LASTX 
06 FACT 
07 * 
08 END 

 
And the table below shows the results from each approach: 
 

N D(N) Time (@Turbo50) Formula 

11 1,486,442,880.0 1.8 sec 1,486,442,880.0 

13 2.834656472 E11 2.01 sec 2.834656474 E11 

30 3.311538747 E34 11 sec 3.311538746 E34 

40 1.439439902 E50 1 min 20 sec 1.439439902 E50 

50 3.278748200 E75 2 min 30 sec 3.278748199 E75 

 
 
Warning: Remember that the CL is required to store a matrix in the Y-Registers area. Otherwise you’ll 
get the error message below: 

      



SandMatrix_4 Manual  -  Revision “5Y+” 

(c) Ángel M. Martin                                 January 2021 Page 30 of  148 
 

UU 

 

 
This section briefly defines the matrix functions besides the dimensioning, storing, and recalling 
functions discussed above. Note that most of these functions are not meaningful for matrices 
containing Alpha data and that many of these functions are not meaningful for complex matrices. In 
any case. A complex matrix appears as a real matrix to all functions except CMEDIT. Refer to 
“Working with Complex Matrices'” for more information on using these functions with complex 
matrices. 

 
2.3.1. Matrix Arithmetic 
 

 Function Description Input 

1 MAT+ Adds scalar or element to each element A,B,C, or X,B,C in Alpha 

2 MAT- Subtracts scalar/element to each element A,B,C, or X,B,C in Alpha 

3 MAT* Multiplies scalar/element to each element A,B,C, or X,B,C in Alpha 

4 MAT/ Divides each element by scalar or element A,B,C, or X,B,C in Alpha 

5 M*M Calculates the true matrix product A,B,C in Alpha  

 
The matrix arithmetic functions provided are scalar addition, subtraction, multiplication, and division, 
as well as true matrix multiplication. The scalar arithmetic functions can use two matrices as operands, 
or one scalar and one matrix. When using two matrices, the matrices do not have to be of the same 
dimension, but the total number of elements in each must be the same. This also applies to the result 
matrix. (Note that the i-j notation below assumes that the dimensions of the matrices are the same. If 
this is not the case, the i-j notation does not apply.) 
 
Matrix multiplication, on the other hand, calculates each new element by summing the products of the 
first matrix's row elements by the second's column elements. The number of columns in the first 
matrix must equal the number of rows in the second matrix. The result matrix must have the same 
number of rows as the first matrix and the same number of columns as the second matrix. 
 
If there is a scalar operand, it must be in the X-register, and X must be specified in the Alpha register. 
 
The input specifies matrix name A (or X), matrix name B (or X), result matrix C in Alpha register. The 
outputs are respectively:  
 
 

       

 

 
 

                
 
The true matrix multiplication calculates each new element i.j by multiplying the i-th. row in A by the j-
th. column in B. The input is the three matrix names in Alpha where C must be different from the two 
operands A and B. The output is: 

       
,     where A has p columns and B has p rows. 
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2.3.2.  Major Matrix Operations. 
 
The major matrix operations are: inversion, finding the determinant, transposition, and solving a 
system of linear equations. 
 

 Function Description Input 

1 MDET Finds the Determinant of a square matrix Matrix Name in Alpha 

2 MINV Inverts and replaces the square matrix Matrix Name in Alpha 

3 MSYS Solves a system of linear equations Matrix Name A. Name B in Alpha 

4 MTRPS Transposes and replaces the real matrix Matrix name in Alpha 

 
This is where the Advantage really took the original CCD implementation to its fulfillment, as the CCD 
was sorely lacking the major operations - no doubt due to the size constrains in a module that already 
had tons of other wonders and was packed bursting to its seams. 
 
I recall the awe with which we used to run MINV and the other functions: just a single keystroke 
doing the same as all those intricate FOCAL programs did using Gaussian algorithms, element pivoting 
and row simplification...  simply amazing back then. It was the ultimate Matrix function set, pretty 
much surpassing the HP-15C implementation in this area. If you’re reading this now I suspect you 
probably had a similar experience too;  but enough reminiscing and let’s get on with the manual. 
 
The output of these operations always replaces the original matrix with the result. Moreover, for 
MDET and MSYS the result matrix is placed in its LU-decomposed form, which makes it not suitable 
for some direct subsequent operations. 
 
Note: You cannot transpose or change any element of a matrix A that has had its determinant found 
or has had its solution matrix found because MDET and MSYS transform the input matrix A into its 
LU-decomposed form. (Refer to '"LU-Decomposition” for more information.) However, you can retrieve 
the original form of A from its decomposed form by inverting it twice (execute MINV twice). The LU-
decomposition does not interfere with the calculations for MINV, MSYS, or MDET. 
 

 
Example 1. 
 
Find the determinant of the inverse of the transpose of the matrix :  
Storing it in Main Memory, starting in Register R0. 
 
First make sure that the calculator SIZE is set at least to 10 to accommodate the elements plus the 
header register, typing XEQ “SIZE” 010. Next we begin by creating the matrix in main memory, using 
the name ‘R0” in Alpha and the dimension in X: 
 

ALPHA, “R0”, ALPHA 

3.003, XEQ “MATDIM”  
 
Since the elements are all integer numbers, this is an ideal candidate for PMTM: 
 
XEQ “PMTM” ,  -> at the prompt “R1: _” we type:  6, ENTER^, 3, ENTER^, CHS, 2, R/S 

-> at the prompt “R2: _” we type:  1, ENTER^, 4, ENTER^, CHS, 3, R/S 
-> at the prompt “R3: _” we type:  2, ENTER^, 3, ENTER^, CHS, 1, R/S 

 
And now the festival begins - type: 
 
XEQ “TRNPS”,   R0 is transposed 
XEQ “MINV”,   R0 (which was transposed) is inverted 
XEQ “MDET”     -> 0.040 is the solution. 
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Note that if you had wanted to find the transpose of the original matrix after having found its 
determinant, you would have needed to invert the matrix twice to change the LU-decomposed form 
back to the original matrix. 
 

 

LU-Decomposition 

 
The lower-upper (LU) decomposition is an unrecognizably altered form of a matrix, often containing 
Alpha data. This transformation properly occurs in the process of finding the: 
 

• Solution to a system of equations (MSYS; [SE] in the MATRX program). 
• Determinant (MDET; [DT] in MATRX program). 
• Inverse (MINV; [I] in MATRX program). 

 
The first two of these operations convert the input matrix to its LU-decomposed form and leave it 
there, whereas inversion leaves the matrix in its inverted form. When you use functions that produce 
an LU-decomposed form, there are several things that you need to be aware of: 
 
• You cannot edit an LU-decomposed matrix unless you edit every element. Also care must be 
exercised when viewing an LU-decomposed matrix. Certain operations can alter elements without 
your knowledge (refer to "Editing and Viewing an LU-Decomposed Matrix” below for more details). 
 
• You cannot perform any operation that will modify the matrix (other than MINV) because the LU 
status of the matrix will be cleared and it will become unrecognizable. Operations that have this effect 
are: R<>R, C<>C, MS, MSR+, MSR-, MSC+, MSC-, MMOVE (intramatrix), MSWAP, and  
TRNPS. 
 
• LU-decomposition destroys the original form of the matrix. So if you perform MSYS or MDET and 
then try to look at your input matrix (A in the MATRX program), you will find only the altered, 
decomposed form. 
 
• You cannot calculate the transpose (TRNPS; [SHIFT][B] in MATRX program) of a matrix in LU-
decomposed form. LU-decomposition does not hinder the correct calculation of the inverse, 
determinant, or solution matrix, since these operations require the LU-decomposition anyway. 

 
Reversing the LU-Decomposition.- To restore a matrix to its original form from its decomposed 
form, simply invert it twice  (in effect: find the inverse and then re-invert to the original). Naturally, for 
this to work the matrix must be invertible (non-singular). The result can differ slightly from the original 
due to rounding-off during operations. 

 
Editing and Viewing an LU-Decomposed Matrix.- LU-decomposed matrices are stored in a 
different form than normal matrices:  
 

• Certain elements contain alpha data. (or Non-normalized numbers to be precise) 
• The matrix status register is modified to indicate that the matrix is in LU form. 

 
Editing any element of the matrix will clear the LU-flag in the status register, which makes the matrix 
unrecognizable to the program. Because of this, if you edit one element, you must edit them all if you 
wish to use the matrix again. Note that the matrix will no longer be in LU-decomposed form after this 
action.  You can view the contents of an LU-decomposed matrix by doing one of the following: 
 

• From the MATRX main menu press [SHIFT][A] to view individual elements without modifying 
them. 

 

• Set flag 08 before executing MEDIT or CMEDIT. This allows you to view the elements 
without modifying them. 
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Header Register X-ray.  {  LU?  } 

 
The graphic below shows the different fields in the Matrix header register (14 bytes in total): 
  

 

 
Note that a matrix file in X-mem has its type set to 4 (in leftmost byte), and that the matrix 
dimensions can be derived from the information in the file size field (nybbles 0,1,2) and the number of 
columns field (nybbles 6,7,8), whereby:  Number of rows = File size / Number of Columns. 
 
Lastly the pointer field stores the information on the current element as a counter starting from the 
first element (1) to the last (nxm). Given the length of this field it follows that a maximum of 4,096 
elements (FFF) can be tracked, equivalent to a square matrix of dimensions 64 x 64 or any equivalent 
(m x n) combination. 
   

You can use the function  LU?  to check whether a matrix is in its LU-decomposed form. It’ll return 

YES/NO in Run mode, but in a program will halt the execution if true (i.e. it’s decomposed).  
 
 

Working with Complex Matrices. 

 
When working with complex matrices it is most important to remember that, in the calculator, a 
complex matrix is simply a real matrix with four times as many elements. Only the MATRX program 
and the complex-matrix editor (CMEDlT) “recognize” a matrix as complex and treat its elements 
accordingly. All other functions treat the real and imaginary parts of the complex elements as separate 
real elements. 
 
How Complex Elements are represented 
 
In its internal representation a complex matrix has twice as many columns and twice as many rows as 
it "normally' would. 
 
 
The complex number 100 + 200i is stored as   
 
 
 
 
The 2 x 1 complex matrix  
 
 
 
There is one important exception to this scheme: for the column matrix (a vector) in a system of 
simultaneous equations. 
 
 
Solving Complex Simultaneous Equations.- The easiest way to work with complex matrices is to 
use the MATRX program. It automatically dimensions, input and output complex matrices. However, 
MSYS can solve more complicated systems of equations than MATRX can. 
 
In addition, a complex result-matrix from the MATRX program cannot be used for many complex-
matrix operations outside of MATRX. This is because MATRX will dimension a complex column matrix 
differently than 2m x 2. Instead, it uses the dimensions 2m X 1, in which the real and imaginary parts 
of a number become successive elements in a single column. 
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This form has the advantage of saving memory and speeding up operations. The complex-matrix 
editor and MSYS can also use this 2m X 1 form, though they do not require it. This means you can 
use MSYS on a matrix system from MATRX. You can convert an existing 2m x 2 complex column 
matrix to the 2m X 1 form by transposing it, redimensioning it to 1 x 2m, then retransposing it. There 
is no easy way back. 
 
Accessing Complex Elements.- If you use the complex-matrix editor (CMEDIT or the editor in the 
MATRX program), you can access complex elements as if they were actual complex numbers. 
Otherwise (such as when you use pointer-setting functions), you must access complex elements as 
real elements stored according to the 2m x 2n scheme given above. 
 
Storage Space in Memory.- Since the dimensions required for a complex matrix are four times 
greater than the actual number of complex elements (an m X n complex matrix being dimensioned as 
2m x 2n), realize that the number of registers a complex matrix occupies in memory is correspondingly 
four times greater than a real matrix with the same number of elements. In other words, think of a 
complex matrix's storage size in terms of its MATDlM or DIM? dimensions, not its number of complex 
elements. 

 
 
Using Functions with Complex Matrices 

 
Most matrix functions do not operate meaningfully on complex matrices: since they don't recognize 
the different parts of a complex number as a single number, the results returned are not what you 
would expect for complex entries. 
 
Valid Complex Operations. Certain matrix functions work equally well with real and complex 
functions. Both the input and result matrices must be complex. These functions are: 
 

• MSYS Solving simultaneous equations 
• MINV Matrix inverse 
• MAT+ Matrix add 
• MAT-  Matrix subtract 
• MAT*  Matrix scalar multiply, but only by a real scalar in X-reg. 
• M*M Matrix multiplication  

 
 
Example 2. 
 
Engineering student A.C. Dimmer wants to analyze the electrical circuit shown below. The impedances 
of the components are indicated in complex form. Determine the complex representation of the 
currents i1 and i2 

                

 

 
The system can be represented by the complex matrix equation: AX = B, or 
 

                  

 

 
 
We’ll use the individual matrix functions instead of MATRX program, already covered in the previous 
sections. 
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The main thing to sort out in this example is the dimension of the matrices involved. The coefficients 
matrix A is a 2 x 2 complex matrix, thus as per the previous paragraphs we will need (4x4 +1) = 17 
registers. The independent terms matrix B is a 2 x 1 complex matrix, thus will need (4x2 +1) = 9 
registers. 
 
This makes for a total of 26 registers needed for the example; therefore we adjust the SIZE 
accordingly first typing:  XEQ ‘SIZE” 026. 
 
Next we create the two matrices in main memory, starting at R00 and R17 respectively. Note the 
shortcut in the R0 name – dropped the zero. 
 

ALPHA, “R”, ALPHA    ALPHA, “R17”, ALPHA 

4.004, XEQ “MATDIM”    4.002, XEQ “MATDIM” 
 
The next step is entering the element values – using CMEDIT because that is the only editor capable 
of editing complex matrices, as we know.   
 

 
 
Finally it comes the time for the real work: using MSYS to solve the system, and MCEDIT again (in 
view-only mode) to review the results: 
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The solution is: 

                          
 
As you can see this is an EE student’s dream for circuit 
analysis – if this is in your area of interests you should check 
out the macro-program written by Ted Wadman, Chris Coffin 
and Robert Bloch as one of the proverbial three best 
examples of utilization of the Advantage Module.  
 
The program is documented in its dedicated Grapevine 
booklet, available at: 
 
http://www.hp41.org/LibView.cfm?Command=View&ItemID
=523 
 
and for further convenience Jean-Francois Garnier put it in 
ROM module format, available at:  
 
http://www.hp41.org/LibView.cfm?Command=View&ItemID
=613 
 
The module also contains the other two famous applications 
of yore: 
 
1. “Electrical Circuits for Students”,  
2. “Statics for Students” , and  
3. “Computer Science on your HP-41”   (a.k.a. the HP-16C Emulator). 
 
Anybody curious enough to see what could be done with the Advantage is encouraged to check those 
out – you’ll be rewarded. 
 

 
 
The last example asks you to solve a set of six simultaneous equations with six unknown variables. 
This requires the use of MSYS, as the constant matrix B is not a column matrix. 
 
Example 3. 
 
Silas Farmer has the following record of sales of cabbage and broccoli for three different weeks. He 
knows the total weight of produce sold each week, the total price received each week, and the price 
per pound of each crop. The price of cabbage is $0.24/kg and the price of broccoli is $0.86/kg. 
Determine the weights of cabbage and broccoli he sold each week. 
 

 Week-1 Week-2 Week-3 

Combined Weight (kg) 274 233 331 

Combined Value  $130.32 $112.96 $151.36 

 
 
The following set of linear equations describes the two unknowns (the weights of cabbage and 
broccoli) for all three weeks, where the first row of the constant matrix represents the weights of 
cabbage for the three weeks and the second row represents the weights of broccoli. Since the 
constant matrix is not a column matrix, you must use MSYS and not the SE function in the MATRX 
program. 

http://www.hp41.org/LibView.cfm?Command=View&ItemID=523
http://www.hp41.org/LibView.cfm?Command=View&ItemID=523
http://www.hp41.org/LibView.cfm?Command=View&ItemID=613
http://www.hp41.org/LibView.cfm?Command=View&ItemID=613
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Where the subindices indicate the crop (1= broccoli, 2=cabbage), and the week (1,2,3), and the first  
row describes the weight equations, and the second the prices relationship. 
 
Calling “FACTORS” the coefficients matrix and “LINKS” the constant matrix, we first create them by 
dimensioning in X-Memory as follows: 
 

ALPHA, “FACTORS”, ALPHA,  ALPHA, “LINKS”, ALPHA, 

2.002, XEQ “MATDIM”   2.003, XEQ “MATDIM” 
 
 
Next we’ll use PMTM to input all the element values. Note that even the “longest” row has 20 
characters (including the separator blanks), which is below the limits of the ALPHA register length, of 
24 characters max. 
 
With “FACTORS” in Alpha we type: 
 
XEQ ”‘PMTM”  -> at the prompt “R1: _” we type:  1, ENTER^, 1, R/S 

-> at the prompt “R2: _” we type:  0, [,], 2, 4, ENTER^, 0, [,], 8, 6, R/S  
 
With “LINKS” in Alpha we type: 
 
XEQ “PMTM” -> at the prompt “R1: _”   we type: 2,7,4, ENTER^, 2,3,3, ENTER^, 3,3,3, R/S 

-> at the prompt “R2: _ ”  we type: 1,2,0,[,],3,2, ENTER^, 1,1,2,[,],9,6, 
 ENTER^, 1,5,1,[,],3,6, R/S 

 
All set up we simply execute MSYS to obtain the solutions sought for: 
 

ALPHA, “FACTORS,LINKS”,  ALPHA 

XEQ “MSYS”   
 

 Week-1 Week-2 Week-3 

Cabbage Weight (kg) 186 141 215 

Broccoli Weight (kg) 88 92 116 

 
 
Note: using OMR (or OMC) to output the elements of the matrix B you can see how the results are all 
integer values – which speaks of the accuracy of the internal operations, taking advantage of the 13-
digit math routines available in the OS for MCODE.  
 
Note also that with these programs the integer results are shown without any zeros after the decimal 
point, regardless of the current display settings (FIX or otherwise). 
 
OMR and OMC are extension functions – pretty much like PMTM is -  and will be described in detail  
in chapter 3. 
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Appendix. Complex Matrix Determinants.  {  CMTRC  ,  CMDET  } 

 
The programs below are a first-pass successful attempt at calculating Complex Matrix determinants up 
to order 4. The Complex Matrix is to be stored using the SandMatrix convention - which is identical to 
the HP-41 Advantage's. With this convention each complex number is represented by four elements in 

the complex matrix - refer to the manuals for details. 

 

  example for 3x3 case 
 

The SandMatrix comes well-equipped with routines to calculate the trace and integer powers of a 
matrix (MTRACE, M^2 and MPWR), therefore it lends itself rather nicely to the direct formulas using 

those elements, as described at:  https://en.wikipedia.org/wiki/Determinant 

 

 
 
The complex matrix won't be altered in any way, as all operations are made on a scratch copy. It can 
be stored in X-Mem, CL_Y-Mem, or standard data registers area. The easiest way to enter the matrix 
is by using the CMEDIT routine - which expects the matrix name in ALPHA. It expects the matrix 
already created, using 2n x 2n as dimension - with "n" being the order. 
 
If you place it in the standard registers area, be aware that data registers R00, R01 are used by the 
routine MPWR for scratch. Additionally, data register R02 is used to store the Matrix Name (thus it 
can't exceed 6 characters). 
 
As you can see there are numerous 41Z functions - used for the complex arithmetic using the Complex 
Stack. This has the additional advantage that doesn't require additional data registers, be that 
standard or CL Y-RAM. 

 
Example.- Calculate the determinant of the 4x4 Complex Matrix: 

 

        Solution:  det = -62-8i 
 

https://www.wolframalpha.com/input/?i=det(%7B%7B1%2Bi,+2%2B2i,+3%2B3i,+4%2B4i%7D,+%

7B0,+1,+-3-3i,+-4-4i%7D,+%7B-1%2Bi,+1-i,+1,+i%7D,+%7B-i,+-1%2Bi,+1,+0%7D%7D) 

 
The program is slow in non-turbo settings- there are lots of moving pars behind the scene, despite the 
straight-forward program listing. Using TURBO_50 the 4x4 determinant is obtained in 5 seconds 
approx. 
 
The accuracy for integer matrices holds up nicely, giving exact integer real and imaginary parts in the 
solution. 

 

https://en.wikipedia.org/wiki/Determinant
https://www.wolframalpha.com/input/?i=det(%7B%7B1%2Bi,+2%2B2i,+3%2B3i,+4%2B4i%7D,+%7B0,+1,+-3-3i,+-4-4i%7D,+%7B-1%2Bi,+1-i,+1,+i%7D,+%7B-i,+-1%2Bi,+1,+0%7D%7D)
https://www.wolframalpha.com/input/?i=det(%7B%7B1%2Bi,+2%2B2i,+3%2B3i,+4%2B4i%7D,+%7B0,+1,+-3-3i,+-4-4i%7D,+%7B-1%2Bi,+1-i,+1,+i%7D,+%7B-i,+-1%2Bi,+1,+0%7D%7D)
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Program Listing. 
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Update: Complex (n x n) Matrix Determinants. {  CDMET   } 

 
What follows is a more powerful approach to the calculation of the determinant without restriction of 
the complex matrix dimension, other than the available memory of course.  This new approach is not 
only more powerful but it also has the advantages of less execution time and shorter program length, 
a winner by all accounts. 
 
The beauty of this approach is that we’ll put the characteristic polynomials coefficients to work bigtime 
to obtain the matrix determinant (independent tern). So CMDET works uses an iterative method to 
calculate the coeficients, given the fact that the determinant is the last coefficient of said characteristic 
polynomial with an order-dependent changed sign: 
 

   ,  and:    ,  
 

i.e. the coefficient of the independent term. The program will leave the original matrix unchanged and 
its name in ALPHA upon completion. 
 
It’s worth mentioning that the same iterative approach is also used by the CHRPOL routine to 
calculate the Characteristic Polynomial and its roots (i.e. the Matrix Eigenvalues); although in the 
CHRPOL implementation the coefficient of the independent term is obtained via MDET – which is 
pretty sensible for the real matrix case of course. 
 
Note: You can refer to the Complex Matrix ROM manual for an extended version of this routine that 
exploits this method to its full extent to also calculates the inverse of a complex n x n matrix – along 
with the complete complex characteristic polynomial of course. 
 
 

Register, Flags, etc. 

Data registers {R00 – R01}  are used in main memory. 

Only user flag 7 is used to signal when the routine is called from the main MATRX program.. 

Two auxiliary matrices are needed, each of the same size of the original one – therefore the maximum 

complex matrix size is n= 7 in X-Memory, (for a total of 588 X-mem registers), and n= 15 in the CL Y-

Memory (for a total of 2,700 Y-registers). This limitation stems from the MCODE function M*M, which 

cannot have the result matrix equal to any of the operands (i.e. it’s not an in-place multiplication). But 

I’m not complaining, since it does support complex matrices as well as real ones! 

 
 
 
 
 
 
 
 
 
 
 
 
Acknowledgment- Many thanks to Valentín Albillo for piquing my curiosity with his powerful and 
elegant implementation of the same algorithms on the HP-71, described with numerous examples and 
insights in the article posted here: 
 
HP Article VA047 - Boldly Going -Eigenvalues and Friends 
 

 

https://albillo.hpcalc.org/articles/HP%20Article%20VA047%20-%20Boldly%20Going%20-%20Eigenvalues%20and%20Friends.pdf
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Program listing. 
 
 

 01*LBL "CMDET" 

 02 FC?C 07 ‘ called from MATRX? 
 03 GTO 10 ‘ yes, divert 
 04 "R,=" ‘no, uses data regs 
 05 MAT= 
 06 MNAME? 
 07*LBL 10 

 08 ASTO 01 
 09 >",P" ‘ aux. matrix 
 10 MAT= ‘make equal  
 11 DIM? 
 12 "#"  ‘aux. matrix  
 13 MATDIM 
 14 FRC 
 15 2 
 16 / 
 17 LASTX 
 18 + 
 19 STO 00 
 20 CF 21 
 21*LBL 00 

 22 VIEW 00 
 23 XEQ 01 
 24 "#" 
 25 MIDN 
 26 "X,#,#" 
 27 MAT* 
 28 X<>Y 
 29 "#" 
 30 . 
 31 XEQ 02 
 32 "P,#,#" 
 33 MAT+ 
 34 CLA 
 35 ARCL 01 
 36 >",#,P" 
 37 M*M 
 38 ISG 00 
 39 GTO 00 
 40 XEQ 01 
 41 RCL 00 
 42 ODD? 
 43 GTO 04 
 44 CLX 
 45 - E 

 46 ST* Z 
 47 ST* Y 
 48*LBL 04 

 49 RDN 
 50 "#" 
 51 PURFL 
 52 "P" 
 53 PURFL 
 54 V# ‘sub-routine? 

 55 GTO 04 ‘yes, skip 

 56 F# 

 57 32 

 58*LBL 04 
 59 CLA 
 60 ARCL 01 
 61 RTN 
 62*LBL 02 

 63 2.002 
 64 + 
 65 SF 25 
 66 MSIJA 
 67 RDN 
 68 FC?C 25 
 69 RTN 
 70 I- 
 71 CHS 
 72 MSC+ 
 73 J- 
 74 CHS 
 75 MSR+ 
 76 MRIJ 
 77 GTO 02 
 78 RTN 
 79*LBL 01 

 80 "P" 
 81 CMTRC 
 82 RCL 00 
 83 INT 
 84  E 
 85 - 
 86 CHS 
 87 ST/ Z 
 88 / 
 89 END 
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Appendix. Complex Transposed Matrix.  {  CTRNP  ,  ZTRNP  } 

 
Also missing from the original Advantage was a way to transpose a complex matrix; a fact that is duly 
corrected here with the routines below. Two solutions are offered, one following an element-based 
approach to illustrate the concept, and another using a block approach – faster and with fewer 
progam steps / byte count. 
 
For a complex element pointer (i,j) the relationship with the individual marix pointers holding the four 
real and imaginary parts are as follows: 
 

C(i,j)  = [(2i-1, 2j-1) ; (2i-1, 2j) 
       (2i, 2j-1)   ;  (2i, 2j)  ] 
 

• The element-based approach will simply do a cursory scan of the matrix, swapping the 
complex element with pointer (i.j) with its transposed one, (j,i), letting the real matrix pointers 
be determined by the relationships above.  It also includes two subroutines for complex 
element recall and storage, CMR and CMS that can be used independently, entering with the 
complex pointer in X and the matrix name in ALPHA. 

 
• The block-based approach takes advantage of the MMOVE function, applied to the four-

element block as per the complex values storage convention. This requires just n x m 
iterations, whereas the previous approach needs 2n x 2m repeats of the single-element 
copying. Also no need to worry about the matrix pointers, MMOVE will take care of that for us. 
 

• In either case one auxiliary matrix is required to perfrom the task, which will be purged on 
completion - leaving the (now transposed) matrix name in ALPHA. Neither of the two 
approaches requires data registers, but the first one uses flags 00 and 01. 

 
 
 
Program listing – Block approach. 
 

1 LBL "ZTRNP" FROM 21 MMOVE

2 "|-,#" FROM,TO 22 X<>Y 2i,2j

3 DIM? 23 MSIJA position element in from matrix

4 I<>J transpose dimension 24 R^ complex pointer (i,j)

5 ASWAP TO,FROM 25 J+ test the location for bounds

6 MATDIM 26 FS? 10 out of matrix?

7 ASWAP FROM,TO 27 GTO 02 yes, exit

8 1,001 complex pointer 28 FS? 09 out of rows?

9 LBL 01 prepare prameters 29 INT yes, integer

10 ENTER^ i,j 30 1.001 offset factor

11 ST+ X 2i,2j 31 FC? 09 within rows?

12 ENTER^ 32 FRC yes, fractional

13 I<>J 2j,2i 33 + update complex pointer

14 1,001 34 GTO 01 do next block

15 ST-  Z (2i-1),(2j-1)  in Z 35 LBL 02

16 - (2j-1),(2I-1) 36 ASWAP

17 X<>Y 37 MAT= copies result & redims matrix

18 R^ i,j 38 PURFL purges TO

19 ST+ X 2i,2j 39 MNAME? FROM

20 X<>Y 40 END 85 bytes  
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Program listing - Element-based approach 
 

1 LBL "CTRNP" FROM 32 GTO 01 next complex element

2 "|-,#" FROM,TO 33 LBL "CMR" X holds (i,j)

3 DIM? 34 ENTER^ complex (i,j)

4 I<>J transpose dimension 35 ST+ X 2i,2j

5 ASWAP TO,FROM 36 MSIJA

6 MATDIM 37 RDN

7 ASWAP FROM,TO 38 MRR- Re(a i j)

8 1,001 complex pointer 39 MRR+ Im(a i j)

9 CF  00 40 X<>Y leaves pointer at (2i,2j)
10 LBL 01 41 RTN

11 CF  01 42 LBL "CMS" X holds (j,i)

12 XEQ "CMR" 43 ST+ X 2j,2i

13 J+ 44 MSIJA

14 FS? 09 45 RDN

15 SF  01 46 MS Re(aij)

16 FS? 10 47 J-

17 SF 00 48 I-

18 ASWAP FROM,TO 49 MSC+

19 RCL  Z i,j 50 X<>Y Im(aij)

20 I<>J j,i 51 MSR+

21 XEQ "CMS" 52 CHS -Im(aij)

22 ASWAP TO,FROM 53 I-

23 FS? 00 54 MS
24 GTO 02 55 RTN

25 RCL  Z 56 LBL 02

26 FS? 01 57 ASWAP TO,FROM

27 INT next complex row 58 MAT=

28 1,001 59 PURFL purges TO

29 FC? 01 ran out of columns? 60 MNAME? FROM

30 FRC next complex column 61 END 142 bytes

31 + update complex pointer  
 
This method can be of further use if the Conjugate Transpose needs to be calculated. To that effect all 
that would be needed are the instructions { X<>Y, CHS, X<>Y } right after step 20 to negate the 
imagnary parts – with no impact to the CMR and CMS sub-routines. 
 
Example.- Transpose the 3x3 complex matrix shown below and use CMEDIT to review the result. 
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Update: Storing and Recalling Complex Matrix Elements.  {  CMS   ,  CMR  }   

 
Revision “5Y+” includes MCODE versions of the CMS and CMR routines to store and recall complex 
matrix elements. This may sound like a fairly trivial feat given that all required STO/RCL components 
are already implemented in MCODE, but because of the way the MCODE were originally written (a 
direct inheritance from the CCD module) it wasn’t possible to chain them without running out of CPU 
registers, including the RTN address stack.  
 
So a couple of tricks were needed to pull this off, most notably stack register T was needed as scratch 
– and therefore should not be used when CMS/CMR are used in upir programs or manual calculation. 
This is not a very limiting restriction (usually T is normally overwritten by natural occurrences, such as 
ENTERing new values in the stack) but you should bear it in mind for advanced cases. 
 
Note that this limitation does not affect all other Matrix functions, such as MSIJ, MR, MS, J+, etc. 
And that in manual more CMR will show the complex value on the display: 
 

Stack usage for CMR and CMS     
 
The table below summarizes the Input/Output assumptions for these functions. Note that contrary to 
their real-matrix counterparts MR and MS, the complex versions require the complex pointer in the X-
Register. This pointer will be saved in LastX so you can retrieve it in case it’s needed for further 
operations. 
 

Register CMS CMR 

Input Output Input Output 

X Cpx. Pointer Re(z) Cpx. Pointer Re(z) 

Y Re(z) Im(z) - Im(z) 

Z Im(z) 0 - Y 

T - 0 - Z 

L - Cpx. Pointer - Cpx. Pointer 

 
With this convention you can chain Recall/Storage actions easily, forr instance the sequence of 
instructions below will copy complex element z(1,2) into z(2,1): 
 

1,002,  CMR,  LASTX,  I<>J,  CMS 
 
Finally, note that  
 

• CMR and CMS have been promoted to the Main FAT in the upper page of the module. They 
traded places with two little-used routines (MRND and PSCAL), which now reside in the 
auxiliary FAT for subfunctions. Be aware of the XROM numbers displacement in your FOCAL 
programs 
 

• If there’s a data error condition (UNDEFined Array, END of Array, etc.) the register T will 
contain a non-normalized number of the form:  “F|000000ADDR|000”. You should disregard 
this value. 

 
• Upon successful execution, the complex pointer (i,j) will remain selected in the matrix on 

completion of the action, which is the same as saying that the real pointer (2i,2j) will be 
active. 

Cpx(i,j)  = [(2i-1, 2j-1) ; (2i-1, 2j) 
           (2i, 2j-1)   ;  (2i, 2j)  ] 
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2.3.3.- Other Matrix Functions (“Utilities”) 
 
The remaining matrix functions, also called utilities, are those for copying and exchanging parts of 
matrices, and miscellaneous, extra arithmetic functions: finding sums, norms, maxima, and minima, 
and matrix reduction. 
 

Moving and Exchanging Matrix Sections. 

 

 Function Description Input 

1 C<>C Exchange columns k and l in a matrix Name in Alpha, kkk.lll in X-reg 

2 R<>R Exchange Rows k and l in a matrix Name in Alpha, kkk.lll in X-reg 

3 MMOVE Matrix Move Names in Alpha, Pointers in stack 

4 MSWAP Matrix Swap Names in Alpha, Pointers in stack 

 
MMOVE and MSWAP Copies or Exchanges the submatrix defined by pointers in the source matrix to 
the area defined by one pointer in the target matrix. The inputs require both matrix names in Alpha 
separated by a comma, plus the pointers in the stack as follows: 

 

 
 

When executing MMOVE and MSWAP if A and B are the same matrix and the source submatrix 
overlaps the target submatrix, the elements are processed in the following order: reverse column 
order (last to first) and reverse element order (last to first) within each column. 

 

         
 
When an input of the form iii.jjj is expected in the X-register, a zero value for either the i-part or the j-
part is interpreted as 1. (Zero alone equals 1.001.) This is true for the iii.ijj-values that MMOVE and 
MSWAP expect in the X- and Z-registers, but not for the pointer value in the Y-register.  
 
For the Y-register input, a zero value for the i-part is interpreted as m, the last row, while a zero value 
for the j-part is interpreted as n, the last column. This convention facilitates easy copying (or 
exchanging) of entire matrices because simply by clearing the stack (CLST) or entering three zeros 
you specify the elements 1.001 (X) and mmm.nnn (Y) for the first matrix and element 1.001 (Z) for 
the second matrix, thus defining two entire matrices. 
 
For example, in a 4 x 5 matrix:  
 
 
 
 
 



SandMatrix_4 Manual  -  Revision “5Y+” 

(c) Ángel M. Martin                                 January 2021 Page 46 of  148 
 

Miscellaneous Arithmetic Functions: Maxima and Minima 

 

 Function Description Input / Output 

5 MAX Finds the maximum element in matrix. 
Sets element pointer to it. 

Matrix Name in Alpha.  
Outputs element value to X-reg 

6 MIN Finds the minimum element in matrix. 
Sets element pointer to it. 

Matrix Name in Alpha 
Outputs element value to X-reg 

7 MAXAB Like MAX but in absolute value. Sets 
element point to it. 

Matrix Name in Alpha 
Outputs element value to X-reg 

8 CMAXAB Finds maximum absolute value in  k-
th. column. Sets element pointer to it. 

Matrix name in Alpha, kkk in X-reg. 
Outputs element value to X-reg 

9 RMAXAB Finds maximum absolute value in k-th. 
row. Sets element pointer to it. 

Matrix name in Alpha, kkk in X-reg. 
Outputs element value to X-reg 

 
 
Examples. Calculate the different maxima and minima for the following matrix: 
 

         
 

 
Miscellaneous Arithmetic functions: Norms and Sums 

 

 Function Description Input / Output 

10 CNRM Column Norm. Finds the largest sum 
of the absolute values of the elements 
in each column of matrix. 

Matrix name in Alpha. 
Outputs column norm to X-reg. 
Sets pointer to first element of column. 

11 FNRM Frobenius Norm. Calculates the square 
root of the sum of the squares of all 
elements in matrix. 

Matrix name in Alpha. 
Outputs Frobenius norm into X-reg 

12 RNRM Row Norm. Finds the largest sum of 
the absolute values of the elements in 
each row of matrix. 

Matrix name in Alpha. 
Outputs row norm to X-reg. 
Sets pointer to first element of row. 

13 SUM Sums all elements in matrix. Matrix name in Alpha. 
Outputs the sum to X-reg 

14 SUMAB Sums absolute values of all elements 
in matrix. 

Matrix name in Alpha 
Outputs the sum to X-reg 

15 CSUM Finds the sum of each column and 
stores them in a result vector. 

Matrix name , result matrix name 
(Vector) in Alpha. (*) 

16 RSUM Finds the sum of each row and stores 
the sums in a result vector. 

Matrix name , result matrix name 
(Vector) in Alpha. (*) 

 
(*) For CSUM and RSUM the number of elements in the result matrix (vector) must equal the 
number of columns/rows in the input matrix. 
 

Function Result Pointer Result value 

MAX a14 12 

MAXAB a44 36 

CMAXAB a43 24 

RMAXAB a24 12 

MIN a44 -36 
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Examples. Calculate the Colum and Rows Sums for the matrix below, using the names “RSUM” and 
“CSUM” for the result matrices.  
 
 

 
The result matrices (vectors) are located at 
the bottom and right of the original matrix.  

 
Note that those must have been created 
previously using MATDIM, or otherwise the 
“UNDEF ARRAY” will be shown. 

 
 
 
 
 
 
 
 
 

Miscellaneous Arithmetic functions: Matrix Reductions 

 

 Function Description Input / Output 

17 YC+C Multiplies each element in column k of 
matrix by value in Y-ref. and adds it to 
corresponding element in column l 

Matrix name in Alpha, kkk.lll in X-reg, 
y in Y-reg. 
It changes the elements in column l 

18 PIV Finds the pivot value in column k, that 
is the maximum absolute value of an 
element on or below the diagonal. 

Matrix Name in Alpha, kkk in X-reg 

19 R>R? Compares elements in rows k and l. If 
(and only if) the first non-equal 
element in k is greater than its 
corresponding element in l, then the 
comparison is positive for the “do if 
true” rule of programming. 

Matrix name in Alpha, kkk.lll in X-reg 
Outputs “YES” if first non-equal 
element in row k is greater than 
element in row l. “NO” in all other case. 

 
 
Examples.-  Calculate the pivot element under the second column and compare the first and third rows 
for the matrix below.  
 

   
 
Both PIV and YC+C are vestigial from the CCD “-ARRAY FNS” group, and arguably not very useful 
now that the major matrix operations are also available. 
 
 

10 

26 

42 

-72 

15 6 -3 -12 

Input Function Pointer Output 

2 PIVOT a42 12 

1,003 R>R?  “NO” 

    



SandMatrix_4 Manual  -  Revision “5Y+” 

(c) Ángel M. Martin                                 January 2021 Page 48 of  148 
 

The last two functions are not operating on a matrix, but are auxiliary for the FOCAL programs: 
 

 Function Description Input / Output 

20 AIP Appends the absolute value of the 
integer part of the number in X to the 
contents of the Alpha register. 

Value in X. 

21 MPT Appends a matrix prompt “rrr.ccc=” to 
the contents of the Alpha register 
(dropping leading zeros in each part) 

rrr.ccc in X-reg 

 
Note that AIP and AINT in the SandMath are very similar – but AINT won’t take the absolute value. 
This fact is useful to append integer values to alpha without decimal numbers, but respecting the sign. 
 
Note that MPT in the SandMatrix is an enhanced version written in MCODE – that replaces the mini-
FOCAL program used in the Advantage. 
 
 
Example.   Calculate the Row, Column and Frobenius norms for the matrix 
 

        
  

 
 
The results are:  Row Norm  = 19 

Column Norm   = 15 
Frobenius Norm  = 14,38749457 

 
The Frobenius norm will come very handy for some programs in Chapter-3 as convergence criteria, 
and to determine whether two matrices are “equivalent” in reduction algorithms. 
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Appendix. Pascal and Random matrices.  {  PSCAL  ,  MRND  } 

 
In mathematics, particularly matrix theory and combinatory, the Pascal matrix is an infinite matrix 
containing the binomial coefficients as its elements. There are three ways to achieve this: as either an 
upper-triangular matrix, a lower-triangular matrix, or a symmetric matrix. The 5×5 truncation of these 
is shown below. 

                  

 

 
 

The elements of the symmetric Pascal matrix are the binomial coefficients, i.e. 
 

 
 

in other words, see the relationships for the general term and the matrix trace below: 
 

 

 
 
Random matrices are implemented in the SandMatrix using a time-based seed, applying a pseudo-
random algorithm on it and then summing the digits of the mantissa to come up with an integer 
number. It is furthermore rounded to the current display settings, thus you can limit the values as 
required. Functions SEEDT, RAND, and DGT in the SandMath, are used. 
 
 

See the program listings below. For the Pascal matrix, function NCR in the SandMath calculates each 
element value. Note how the subindices are tweaked to return ones in the first row and column – a 
nice trick courtesy of JM Baillard.  
 

1 LBL "PSCAL" MNAME in Alpha 1 LBL "MRND" MNAME in Alpha

2 0 2 0

3 MSIJA set pointer to 1:1 3 MSIJA set pointer to 1:1

4 LBL 00 3 SEEDT time-based seed

5 MRIJ recall pointer 4 LBL 00

6 INT i 6 RAND random number

7 MRIJ recall pointer 7 RND current settings

8 FRC 0,jjj 8  DGT sum of digits

9 I<>J j 9 MSR+ store element

10 + I+j 10 FC? 10 end of matrix?

11 2 11 GTO 00 no, loop back

12 - i+j-2 12 END yes, done

13 MRIJ recall pointer

14 INT i 

15 E 

16 - i-1

17 NCR C(i+j-2;  i-1)

18 MSR+

19 FC?10 end of matrix?

20 GTO 00 no, loop back

21 END yes, done  
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Appendix.- Matrix Minors.  {  MINOR  ,  CMINOR  } 

 
In linear algebra, a minor of a matrix A is the determinant of some smaller square matrix, cut down 
from A by removing one or more of its rows or columns. Minors obtained by removing just one row 
and one column from square matrices (first minors) are required for calculating matrix cofactors, 
which in turn are useful for computing both the determinant and inverse of square matrices.  
 
If A is a square matrix, then the minor of the entry in the i-th row and j-th column (also called the (i,j) 
minor, or a first minor[1]) is the determinant of the submatrix formed by deleting the i-th row and j-th 
column. This number is often denoted Mi,j. The (i,j) cofactor is obtained by multiplying the minor by  
(-1)^{i+j}.  
 

 
 
Two programs are included, one for Real matrices (not limited in order, courtesy of MDET) and 
another for Complex Matrices – only up to degree 5, due to on the restriction imposed by CMDET. 
The programs are a good example of utilization of the utility functions C<>C, R<>R, and MMOVE. 
 
 
Program listing.- Real Matrix Minors 
 

1 LBL "MINOR" 28 MNAME?

2 LBL 01 29 RTN

3 ASTO 01 MNAME 30 GTO 01

4 STO 00 i,j pointer 31 LBL 02

5 "|-,#1" 32 INT j 

6 MAT= scratch copy 33 ENTER^
7 DIM? 34 DSE X j-1

8 1,001 35 X=0?

9 - one order less 36 RTN don’t bother if j=1

10 "#2" 37 X<>Y

11 MATDIM scratch sub-array 38 ENTER^
12 MZERO clear it 39 ENTER^

13 "#1" 40 I<>J 0,00(j-1)

14 RCL 00 41 E

15 I<>J i,j pointer 42 -

16 SF 00 43 + j,00(j-1)

17 XEQ 02 44 LBL 00

18 RCL 00 45 FS? 00

19 CF 00 46 C<>C bubble left column

20 XEQ 02 47 FC? 00

21 CLST 48 R<>R bubble up row

22 2,002 49 1.001 offset

23 "#1,#2" 50 - k,00(k-1)

24 MMOVE 51 DSE Y j=j-1

25 PURFL 52 GTO 00

26 CLA 53 END

27 MDET  
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Program listing: Complex Matrix Minors. 
 

1 LBL "CMINOR" 33 ST+ X 2i,2j

2 LBL 01 34 STO 02

3 STO 00 35 XEQ 03

4 ASTO 01 36 RCL 02 2i,2j

5 "|-,#1" 37 1,001

6 MAT= scratch copy 38 - (2i-1),(2j-1)

7 DIM? 39 LBL 03

8 2,002 40 RCL 00 i,j

9 - one order less 41 FS? 00

10 "#2" 42 I<>J

11 MATDIM scratch sub-array 43 INT

12 MZERO clear it 44 DSE X discard first column

13 "#1" 45 X=0?

14 RCL 00 46 RTN don’t bother if j=1

15 CF 00 do the rows 47 X<>Y

16 XEQ 02 48 INT

17 RCL 00 49 ENTER^

18 I<>J i,j pointer 50 ENTER^

19 SF 00 do the columns 51 2

20 XEQ 02 52 -

21 CLST 53 I<>J

22 3,003 54 + k,00(k-2)

23 "#1,#2" 55 LBL 00

24 MMOVE 56 FS? 00

25 PURFL 57 C<>C bubble left column

26 CLA 58 FC? 00

27 XROM "CMDET" 59 R<>R bubble up row

28 CLA 60 2.002 offset

29 ARCL 01 61 - k,00(k-2)

30 RTN 62 DSE Y j=j-1

31 GTO 01 63 GTO 00

32 LBL 02 64 END  
 

Example: Calculate all element minors for the example matrix used in the Complex Transposed 
dexample: 

       
 
You need to provide the matrix name in ALPHA and the complex pointer value in X  - i.e. from 1,001 
to 3,003 in this example. Also remember that the 41Z Module needs to be plugged for the complex 
determinat calculation. 
 
The solutions are: 
 
 

 -28+J31 -44-J18 -29+J71 
Minors: 5+J6 9+J49 38+J10 

 -47-J9 -46-J2 -19+J51 
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3.  Upper-Page Functions in detail 
 
This chapter is all above and beyond the matrix functionality present in the Advantage Pac – a true 
extension of its capabilities into new and often uncharted territories. 
 

 

 

 
 

3.1. The Enhanced Matrix Editor(s) 
 
Often the most tedious part of a matrix calculation becomes the data entry for the input matrices and 
the review of the results. With this in mind the SandMatrix includes convenient alternatives to MEDIT, 
the “standard” Matrix Editor from the Advantage, seen in the previous chapter. There are as follows: 
 

 Function Description Input / Output 

1 PMTM Prompt Matrix by Rows Matrix name in Alpha 

2 IMR Input Matrix by Rows Matrix name in Alpha 

3 IMC Input Matrix by Columns Matrix name in Alpha 

4 OMR Output Matrix by Rows Matrix name in Alpha 

5 OMC Output Matrix by Column Matrix name in Alpha 

6 OXC Output Column k Matrix name in Alpha, kkk in X-reg 

7 OXR Output Row k Matrix name in Alpha, kkk in X-reg 

 
Of all these, the most remarkable one is of course PMTM – which expedites element data entry to the 
maximum possible on the 41 platform, almost as if it were a full-fledge editor in a graphical screen. 
The idea is to use the Alpha register as repository for all the elements, separating the individual values 
by spaces (entered using the ENTER^ key). The data input is terminated by pressing R/S.  
 
The back-arrow key is always active to correct a wrong entry, and will terminate the function if Alpha 
is completely cleared. PMTM allows for negative and decimal numbers to be entered, thus the CHS 
and RADIX keys are also active during the data entry prompt. Furthermore, the logic will only allow 
one occurrence of these per each element within the prompt string. 
 
PMTM knows how many rows should be input (it is part of the matrix dimension), thus the prompts 
will continue to appear until the last row is completed. A row counter is added to the prompt to 
indicate the current row being edited. 
 
If you enter fewer elements in the prompt than existing columns, the remaining elements will be left 
unchanged and the execution will end. Conversely, if you enter more elements in the prompt than 
existing columns, those exceeding the quota (the extra ones) will simply be ignored. 
 
The two limitations of PMTM are as follows: 
 

• A maximum length of 24 characters is possible during the prompt. This includes the blank 
separators, the comma (radix), and the negative signs if present.  
 

• No support for the Exponential format is implemented (EEX). You need to use any of the other 
editors if your element values require such types of data. 

  
Obviously, this makes PMTM the ideal choice for matrices containing integer numbers as elements – 
but not exclusively so as it can also be used for other values (real-numbers) as long as the two 
conditions above are respected. 
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At the heart of PMTM there is the function ^MROW (“Enter Matrix Row”), responsible for the 
presentation of the prompt in Alpha and accepting the keyboard inputs there to make up the string (or 
list) with all values. It also provides the logic of actions for the control keys, like ENTER^, Back arrow, 
R/S, etc.  
 
^MROW is called in a loop as many times as rows exist in the matrix, while ANUMDL (in the 
SandMath) is used every iteration (each time a row is being processed) to “extract” the individual 
element data from the global string in the prompt. 
 
Below is the program listing for PMTM, and as you can see it’s just a sweet & short driver for 
^MROW that also takes advantage of the auxiliary functions in the SandMatrix. 
 
 

                                 

1 LBL "PMTM"

2 0

3 MSIJA position pointer to 1.1

4 LBL 01

5 MRIJ recall pointer

6 INT row number

7 ^MROW prompts for string

8 CF 22 default reset

9 LBL 00 separate elements

10 ANUMDL

11 FC?C 22 last one reached?

12 GTO 02 yes, exit

13 MSR+ store element

14 FC? 09 end of row?
15 GTO 00 no, do next element

16 FC? 10 end of matrix?

17 GTO 01 no, do next row

18 LBL 02
19 MNAME? recall Mname

20 END done.  
 
 
^MROW is available as a sub-function listed within the aux CATalog – and rightfully so. Note that 
even if PMTM is not strictly an MCODE function, de-facto it is a hybrid one, and therefore it’s denoted 
in blue color all throughout this manual.  If PMTM is the beauty then ^MROW is the beast. If you’re 
interested you can peruse the MCODE listings for it in appendix “M”. 
 
Below are two examples of the lists being edited, for the first two rows of a given matrix: 
 

   , and   
 
The built-in logic allows for just one negative sign and one radix character per each value entry. 
 
Note that ^MROW is also used by PMTP, the “Polynomial Input” function, which has a very parallel 
structure to PMTM and is used to enter the coefficients of a polynomial into data registers. It will be 
covered in the polynomial section later on. 
 
 
The remaining routines in this section all deal with Input and Output of the matrix elements, 
depending on whether it’s done following the Row or Column sequence, as well as OXR and OXC, two 
sub-functions (i.e. they require F$ to launch) to only view one specific row or column.  
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They are very much equivalent to MEDIT in many aspects, although the symbol “a” is used in the 
prompts. They are slightly faster and offer the added convenient feature: when the matrix is not LU 
decomposed, for integer element values  the zeros after the decimal point are not shown in the 
prompt – regardless of the current display settings (FIX or otherwise). This makes for a clearer UI. 
 
The program listing is shown below; note how the different entry points set the appropriate subset of 
user flags, and that they all share the main section for the actual element input and review. 
 
 

1 LBL "OMR" 35 FS? 04 LU decomposed?

2 0 clears F0-F7 36 GTO XX synthetic jump (!)

3 GTO 05 37 INT? integer?

4 LBL "OMC" 38 AINT yes, append IP

5 2 sets F1 39 FRC? fractional?

6 GTO 05 40 ARCL X yes, append all

7 LBL "IMR" 41 FC? 00 view only?

8 E sets F0  42 AVIEW yes, show it

9 GTO 05 43 FC? 00 view only?

10 LBL "IMC" 44 GTO 02 yes, skip editing

11 3 sets F0 & F1 45 "|-?" append "?"

12 LBL 05 46 PROMPT show current value

13 XEQ 06 check status 47 MS store new value

14 CLX 48 LBL 02

15 MSIJA resets pointer to 1:1 49 FC? 01 by column?

16 GTO 00 go to first element 50 J+ yes, next column

17 LBL "OXC" 51 FS? 01 by row?

18 E1 sets F1 & F3 52 I+ yes, increase row

19 GTO 04 53 E1 F10

20 LBL "OXR" 54 FS? 03 by row?

21 8 sets F3 55 DSE X yes, F9

22 LBL 04 56 FC? IND X end of matrix/row?

23 XEQ 06 check status 57 GTO 00 no, next element

24 RDN colum/row number 58 MNAME? yes, recall Mname

25 INT just in case 59 RTN done.

26 E3/E+ 1,00x 60 LBL 06

27 FC? 01 row? 61 X<>F set case lags

28 I<>J yes, transpose 62 SF 25 prepare test

29 MSIJA set pointer to row/col 63 LU? is LU decomposed?

30 LBL 00 64 NOP will clear F25 if so

31 "a" element symbol 65 FC?C 25 was it LU?

32 MRIJ recall index 66 SF 04 yes, flag this fact

33 MP prompt index= 67 END and return

34 MR recal value  
 
Other pointer utilities included are listed in the table below; they are used in many of the FOCAL 
programs described in the following sections. 
 

 Function Description Input / Output 

8 ^MROW Prompts the list and controls input 
 

Element values as Alpha List 

9 I<>J Swaps iii and jjj in X 
(also does E3/ for integers) 

iii.jjj in X-reg. 
Index swapped to jjj.iii 

10 I#J? Tests whether iii is different from jjj iii.jjj in X.  
YES/NO, do if true. 

11 SQR? Tests for Square Matrices MNAME in Alpha.  
YES/NO, do if True.. 

12 MFIND Finds an element in a given matrix 
and sets element pointer to it 

Element value in X-reg 
Outputs the pointer iii/jjj to X-reg 
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3.2. New Matrix Math functions. 
 

3.3.1. Utility / housekeeping functions: rounding the capabilities. 
 
This group comes very handy for the handling and management of intermediate steps required as part 
of more complex algorithms. As a rule, the functions work for matrices stored either in main memory 

or in X-memory. Only  MATP  and  MAT=  create new matrices; all other functions expect them to be 

already dimensioned. 
 

 Function Description Input / Output 

1 MAT= Creates & Makes matrix B equal to A: 
B = A 

Matrix names in Alpha: “A,B”.  
Matrix A must already exist. 

2 MATP Driver for M*M operation 
Prompts for element values 

Under program control. Creates both 
matrices on the fly. 

3 MCON Matrix from a constant 
Makes aij = x, i=1,2,..m; j=1,2,..n 

Matrix name in Alpha, constant in X-reg 
Makes all matrix elements equal to x 

4 MFIND Finds an element within a matrix Matrix Name in Alpha, element in X-reg. 
Returns pointer to X and set to element. 

5 MIDN Makes identity Matrix 
Makes aii =1 and aij=0 for i#j 

Matrix name in Alpha. (must exist) 
 

6 MRDIM Re-dimensions Matrix (properly) 
It keeps existing elements in place. 

Matrix name in Alpha, dimension in X. 
Output is a new matrix (adds ‘ to name) 

7 MSORT Sorts all elements within a matrix Matrix Name in Alpha. Reorders 
elements in ascending order. 

8 MSZE? Calculates the Matrix size 
Size = m x n 

Matrix name in Alpha. 
Output is placed into X-reg. 

9 MZERO Zeroes (clears) all elements in matrix 
Makes aij = 0, i=1,2..m;  j=1,2,..n 

Matrix name in Alpha  
All elements are set to zero. 

10 MZDG Zeroes (clears) the diagonal elements 
in matrix (makes aii = 0 , i= 1, 2..m) 

Matrix name in Alpha: “A”.  
The diagonal is zeroed. 

 
A few remarks on each of these functions follow, as well as the program listings. 
 
 

 MAT=  copies an existing matrix into another, with names in Alpha. Prior to doing the bulk element 

copy, it redimensions the target matrix to be the same as the source one. It is however not required 
that the target matrix already exist – it will be created if not already there. 
 
 

 MCON  does a simple thing: converts the value in the X-Reg into a matrix with all elements equal to 

this value. This is useful in some calculations and for matrix manipulations. See the simple program 
listings for these routines below; 
 
 

1 LBL "MAT=" "A,B" expected in Alpha 1 LBL "MCON" MNAME in Alpha

2 DIM? dimension 2 MZERO clear all elements

3 ASWAP swap Alpha 3 RDN get constant back to X

4 MATDIM re-dimension target 4 "X" prepare alpha string

5 ASWAP undo the swap 5 MAT+ add x to all elements

6 CLST prepare pointers 6 MNAME? recall MNAME to Alpha

7 MMOVE move all elements 7 END done

8 END done  
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 MZERO  is the unsung hero behind other routines – as the proper way to clear a matrix file, since 

CLFL cannot be used because it also clears the header register (it was meant for Data files). Use it 
safely for matrices in main and x-memory. MZERO is implemente entirely in MCODE. 
 

A related function is  MZDG  , which only deletes the diagonal elements. It can be used to construct 

an anti-Identity matrix, applying it to a all-ones matrix  - created using the three-step sequence:  
{ 1, MCON, MZDG }. These matrices have the interesting (unproven) property that their 
determinants obey the expression: 
     Det [AI(nxn)] = (-1)^(n-1) . (n-1) 
 
 

 MSORT  uses an auxiliary matrix in main memory (“R0”) where RGSORT (from the SandMath) is 

applied to; then data are copied back to the original matrix. It also checks for available registers, 
adjusting the calculator SIZE if necessary. The contents of those (n x m +1) data registers will be lost. 
 
 

1 LBL "MSORT" MName in Alpha 1 LBL "MZERO" MNAME in Alpha

2 SIZE? current SIZE 2 DIM? get dimension

3 MSZE? matrix size 3 SF 25

4 E 4 PURFL purge file

5 + plus one 5 FC?C 25 was in main mem

6 X>Y? is it larger? 6 GTO 01 jump over

7 PSIZE yes, adjust size 7 MATDIM re-create file

8 "|-,R" prepare Alpha string 8 RTN done

9 MAT= make matrix R0 equal 9 LBL 01

10 MSZE? its size again 10 ANUM get first reg from title

11 E3/E+ prepare control word 11 ENTER^ copy in Y-reg

12 RGSORT sort registers 12 MSZE? get matrix size

13 ASWAP swap alpha 13 + add to first reg

14 CLST prepare pointers 14 E3/3+ prepare index format

15 MMOVE move all elements 15 + add to first reg

16 MNAME? recall original name 16 CLRGX clear registers

17 END done 17 END done  
 
 
 

 MSZE?  has a new MCODE implementation in this revision – directly reading the matrix header 

register. Its functionality is equivalent to FLSIZE for matrices stored in X-mem – and of course it also 
does the equivalent for matrices stored in main memory. MSZE? is implemented entirely in MCODE. 
 
 
1 MSZE? Header A616 0BF "?"

2 MSZE? Header A617 005 "E" Matrix Size?

3 MSZE? Header A618 01A "Z"

4 MSZE? Header A619 013 "S"
5 MSZE? Header A61A 00D "M" Ángel Martin

6 MSZE? MSZE? A61B 379 PORT DEP: Jumps to Bank_2

7 MSZE? A61C 03C XQ adds "4" to [XS]

8 A61D 1D9 ->A5D9 [LNCH0]
9 valid for main and X-mem A61E 388 <parameter> B788

10 the proper way to do it! A61F 00B JNC  +01    

11 A620 100 ENROM1 restore bank-1

12 MSZE? A621 0B0 C=N ALL header register

13 MSZE? A622 106 A=C  S&X

14 MSZE? A623 17D ?NC GO [BIN-BCD] plus [RCL]
15 MSZE? A624 0C6 ->315F [ATOX20]  
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 MIDN  is a good example of a sorely missing function: the majority of matrix algorithms involve 

identity matrices, one way or another, so having a routine that does the job becomes rather 
important. MIDN is implemented entirely in MCODE.  
 
The code follows a single-element approach, storing ones in the main diagonal after zeroing the matrix 
first. This is faster and more convenient that block-based methods, even if they don’t require scratch 
matrices for intermediate calculations. See the example below courtesy of Thomas Klemm: 

 

 

       

 

Of all these functions perhaps  MRDIM  needs further explanation. Contrary to MATDIM, a proper 

re-dimensioning should respect the elements in the re-dimensioned matrix that held the same position 

in the original one.  MRDIM  does this, deleting the discarded elements when the redimensioned sub-

matrix is smaller than the original, and completing the new one with zeroes when it is bigger (super-
matrix). It always starts with a11 (no random origin is possible). 
 

 
1 LBL "MRDIM" MNAME in Alpha 16 X<>Y min(j1,j2)

2 DIM? get dimension 17 RCL Z

3 X<>Y new dimension to X 18 INT min (I) 

4 ASTO T temporary safekeep 19 + min (I), min(j)

5 "|-' " add tilde 20 0

6 MATDIM create new matrix 21 STO Z prepare pointers

7 CLA 22 ASTO T temporary safekeep

8 ARCL T MNAME 23 "|-,"

9 X>Y? 24 ARCL T MNAME

10 X<>Y min(i1,i2) 25 "|-' " prepare Alpha string

11 STO Z keep in Z 26 MMOVE copy elements

12 FRC 27 PURFL purge original file

13 X<>Y 28 MNAME? recall name to Alpha

14 FRC 29 END done

15 X>Y?  
 
A logical enhancement to this routine would be to change the matrix name back to its original one, 
removing the tilde. This can be done in two ways: 
 

1. creating a new matrix file and copying it over once again, or (preferable) 
2. using RENMFL (in the AMC_OS/X module) to rename the X-mem file 
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Finding an element within a Matrix  {  MFIND  } - plus an easy-driver for M*M 

 
 

 MFIND  will search a given matrix looking for an element that equals the value in the X-register. If it 

is found it returns its location pointer to the X-reg (and leaves the pointer set to it). If it’s not found, it 
returns -1 to X and the pointer is outside the matrix. 
 
You can further use this result adding the conditional test function “X>=0?” (available in the 
SandMath) right after MFIND - which in a program will skip a line if the element wasn’t found.  
 
 

 MATP  is nothing more than a user-friendly driver program to automate the complete matrix product 

procedure, without any need to dimension the result matrix in advance. The routine will guide you 
step-by-step thru the complete sequence, including the element data input and output. 
 
 
Note that in MATP I have chosen PMTM to enter the element data values – therefore it’s somehow 
limited by the same constraints described before, ie. total length in Alpha and no support for the EEX 
key. 
 
 
Below are the program listings for your perusal. 
 

1 LBL "MFIND" MNAME in Alpha 1 LBL "MATP"
2 0 2 "DIM1=?" M1 dimension

3 MSIJA sets pointer to 1:1 3 PROMPT prompt for it
4 LBL 05 4 "M1" matrix name - M1

5 RDN target value to X-reg 5 MATDIM create matrix in X-mem

6 MR recall element 6 PMTM input elements

7 X=Y? equal? 7 "DIM2=?" M2 dimension
8 GTO 02 yes, exit 8 PROMPT prompt for it

9 J+ no, increase column 9 "M2" matrix name - M2

10 FC? 10 end of matrix? 10 MATDIM create matrix in X-mem

11 GTO 05 no, next element 11 PMTM input elements

12 RDN target value to X-reg 12 DIM?

13 CLX 13 FRC # of columns for M2

14 - 14 "M1"
15 E put -1 in X 15 DIM?

16 GTO 00 exit 16 INT # of rows for M1

17 LBL 02 17 + cresult matrix dimension

18 RDN 18 "M*" matrix name - M*

19 CLX 19 MATDIM create matrix in X-mem

20 MRIJA 20 "|-M1,M2," prepare Alpha string
21 LBL 00 21 2

22 END done 22 AROT

23 M*M matrix product

24 ASHF remove acratch

25 OMR output values

26 END done  
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3.2.2. New Math functions.- Completing the core function set. 

 
The next group includes advanced application areas in “core” matrix math. 
 

 Function Description Input / Output 

9 M^1/X Brute-force Matrix X-th Root  
A = exp(1/x * Ln[A]) 

Matrix name in Alpha, order in X 
The result matrix replaces the input 

10 M^2 Square power of a square Matrix 
A = [A]^2 = [A].[A] 

Matrix name in Alpha 
The result matrix replaces the input 

11 MDPS Matrix Diagonal Product Sum 
MDPS = [aii*aii+1],  i=1,2…n 

Matrix name in Alpha. 
Output is result in X-reg 

12 MEXP Exponential of a Matrix 
A = exp(A) 

Matrix name in Alpha. 
The result matrix replaces the input. 

13 MLIE Matrix Lie Product  
C = AB – BA 

Matrix names in Alpha: “A,B,C” 
Result matrix C must be different. 

14 MLN Matrix Logarithm 
A= Ln (A) 

Matrix name in Alpha. 
The result matrix replaces the input. 

 MPOL Matrix Polynomial. 
P(A) =  ak [A]^k 

Matrix name in Alpha, control word in X 
Output is matrix “P” in X-Mem 

15 MPWR Matrix Power of integer order 
A = A^x 

Matrix name in Alpha, order in X-reg. 
The result matrix replaces the input. 

16 MSQRT Matrix Square Root 
A = sqrt(A) 

Matrix name in Alpha. 
The result matrix replaces the input. 

17 MTRACE Calculates the Trace of a Square 
Matrix: Trace =  aii,  i= 1, 2,..m 

Matrix name in Alpha. 
Output is put into W-reg. 

18 R/aRR Row division by diagonal element 
akj = akj / akk , j= 1,1,…n 

Matrix name in Alpha, row kkk in X-reg 
All row elements divided by akk 

19 IJJI Sum of crossed-elements products 
SCEP = [(aij * aji)] 

Matrix name in Alpha 
Output is put in X-reg. 

 
Some algorithms used impose some restrictions to the matrices. These are generally not checked by 
the programs, thus in some instances there won’t converge to a solution. Suffice it to say that the 
programs are not foolproof, and assume the user has a general understanding of the subjects – so 
they won’t be used foolishly. 
 
 

Matrix Exponential {  MEXP  } 
 
In mathematics, the matrix exponential is a matrix function on square matrices analogous to the 
ordinary exponential function. Let X be an n×n real or complex matrix. The exponential of X, denoted 
by e^X or exp(X), is the n×n matrix given by the power series 
 

 
 

where X^0 is the identity matrix, I. The above series always converges, so the exponential of X is 
well-defined. Note that if X is a 1×1 matrix the matrix exponential of X is a 1×1 matrix consisting of 
the ordinary exponential of the single element of X. 
 
Finding reliable and accurate methods to compute the matrix exponential is difficult, and this is still a 
topic of considerable current research in mathematics and numerical analysis. The SandMath uses a 
direct approach, so no claims of discovering new algorithms. 
 

       exp(A) = I + A + A2/2! + A3/3! + ..... + Ak/k! + ....                
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The program adds new terms until their contribution is negligible, i.e. it results in the same matrix 
after addng it. This by itself poses an interesting question: how to check whether two matrices are the 
same?  Obviously doing it element-to-element would be a long and impractical method. The 
alternative is to use the matrix Frobenius norm as a surrogate criterion; assuming that for very similar 
matrices, they’ll be equal when they have the same norm. 
 
There’s no saying to the execution time or whether the calculator numeric range will be exceeded in 
the attempt – so you can expect several iterations until it converges. The matrix norm will be 
displayed after each iteration, so you’ll have an indication of the progress made comparing two 
consecutive values. 
 

Logarithm of a Matrix {  MLN  } 

 
In mathematics, a logarithm of a matrix is another matrix such that the matrix exponential of the 
latter matrix equals the original matrix. It is thus a generalization of the scalar logarithm and in some 
sense an inverse function of the matrix exponential. Not all matrices have a logarithm and those 
matrices that do have a logarithm may have more than one logarithm. Furthermore, many real 
matrices only have complex logarithms – making it so even more challenging. 
 
The SandMatrix uses the following algorithm: 

If  || A - I  || < 1 , the logarithm of a n x n matrix A is defined by the series expansion:  

    Ln(A) = ( A - I ) - ( A - I )2/2 + ( A - I )3/3 -  ( A - I )4/4 + ......   where I is the identity matrix. 

 
Example 1-  Calculate the exponential of the matrix A given below, and then calculate its logarithm 
to see how the result matrix compares to the original. 
 
  [[ 1 2      3] 
              A =   [ 0 1      2] 
    [ 1 3      2]] 
 
The first part of the assignment is rather simple: Executing MEXP results in the following matrix: 
 
  [[19.45828375  63.15030507 66.98787675] 
       exp(A) =  [ 8.534640269  32.26024414 33.27906416]      
   [ 16.63953207  58.45323648 61.70173665]]              
 
However trying to calculate the logarithm will not work, because exp(A) doesn’t satisfy the 

requirement:   Det[exp(A)-I] = -52,95249156; therefore trying  MLN  on it will eventually reach an 

“OUT OF RANGE” condition. 
 
Example 2.-  Calculate the Logarithm of the following matrix: 
 
  [[ 1.2  0.1 0.3] 
             A =  [ 0.1  0.8 0.1] 
   [ 0.1  0.2 0.9]]               
 
In this example,   || A - I || = 0.5099...  < 1 , thus the program will work. 
 

The result matrix after executing  MLN  is as follows: 

 
    [[ 0.167083396   0.069577923    0.287707999] 
         Ln(A) =  [ 0.097783005  -0.240971674    0.103424021] 
                  [ 0.086500972   0.235053124   -0.131906636]] 
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So we see that unfortunately the logarithm is not a trivial exercise. The programs are listed below, 
note the combination of both exponential and logarithm into a single program, with flag 01 controlling 
the case. 
 

1 LBL "MLN" 44 LBL 02

2 SF 01 exp flag 45 VIEW 00

3 GTO 00 46 "#,"

4 LBL "MEXP" 47 ARCL 01

5 CF 01 LN flag 48 "|-,P"

6 LBL 00 49 M*M

7 SQR? square? 50 "P,#"

8 LU? yes but LU? 51 CLST

9 -ADV MATRX not square, show error 52 MMOVE

10 ASTO 01 53 RCL 02

11 "|-,^" 54 FC? 01 exp?

12 MAT= safekeeping copy 55 FACT to be used as divisor

13 DIM? get dimension 56 FC? 01 exp?

14 "P" 57 GTO 04

15 MATDIM auxiliary matrix 58 ENTER^

16 "#," 59 ENTER^

17 MATDIM auxiliary matrix 60 E to be used as divisor

18 MIDN 61 +

19 ARCL 01 62 CHSYX

20 FS? 01 LN? 63 LBL 04

21 ASWAP yes, swap names 64 "P,X"

22 "|-,^" 65 MAT/ divide by scalar

23 FS? 01 LN? 66 ABSP remove "X"

24 MAT- 67 " |-^,^" prepare new string

25 FC? 01 exp? 68 MAT= safekeeping copy

26 MAT+ 69 E

27 "^," 70 ST+ 02 increase term index

28 FNRM initial norm 71 "^,"

29 STO 00 store in R00 72 FNRM new frobenius norm

30 FC? 01 exp? 73 X<> 00 swao with old norm

31 CLA 74 RCL 00 recall new again

32 ARCL 01 75 X#Y? are the different?

33 FC? 01 exp? 76 GTO 02 yes, keep at it

34 GTO 04 77 ARCL 01 no, we're done

35 MAT= 78 MAT=

36 CLAC 79 PURFL purges "^"

37 ABSP 80 "P,#"

38 LBL 04 81 PURFL purges "P"

39 "|-,#" 82 ASWAP

40 CLST 83 PURFL purges "#"

41 MMOVE 84 MNAME? recalls name to Alpha

42 2 85 END

43 STO 02  
 

 
Remarks.-  The program is relatively short but hefty in data requirements: three auxiliary matrices 
are created and used during the calculations, meaning that the total numbers of registers needed 
(including the original matrix) is: 4 x dim (A) 
 
Note also that the convergence is based on equal Frobenius norms of two consecutive iterations, and 
that the comparison is made using the full 9 decimal digits (see instruction “X#Y?”in line 75). A 
rounded comparison would result in shorter execution times, but it wouldn’t be as accurate. 
 
As usual, these routines could result in “ALPHA DATA” if the matrix is in LU decomposed form. 
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Square root of a Matrix  {  MSQRT  } 

 
In mathematics, the square root of a matrix extends the notion of square root from numbers to 
matrices. A matrix B is said to be a square root of A if the matrix product BB is equal to A. 
 
Just as with the real numbers, a real matrix may fail to have a real square root, but have a square root 
with complex-valued entries. In general, a matrix can have many square roots, however, a positive-
semidefinite matrix M (that satisfy that  x * M x >=0 for all x in Rn) has precisely one positive-
semidefinite square root, which can be called its principal square root. 
 
Computing the matrix square root in the SandMatrix uses a modification of the Denman-Beavers 
iteration.  Let Y0 = A and Z0 = I, where I is the n × n identity matrix. The iteration is defined by 
 

     
 

Convergence is not guaranteed, even for matrices that do have square roots, but if the process 
converges, the matrix Yk converges quadratically to a square root A1/2, while Zk converges to its 
inverse, A−1/2 

 

Contrary to the exponential and logarithm programs, the square root convergence is checked using 
the rounded values of the norms for two consecutive iterations. You can set FIX 9 for maximum 
accuracy (and longest run time – not a problem on V41 and on the 41CL of course). 
 
 
Example 1. Find a square root of the 3rd. order Hilbert matrix: 
 
  [[ 1 1/2 1/3] 
              A =  [ 1/2 1/3 1/4] 
   [ 1/3 1/4 1/5]]          
 

We’ll use  IMR  to input the element values (as PMTM is not really suitable for this example). 

Previously we need to create the matrix, as follows: 
 

ALPHA, “HILB3”, ALPHA 

3.003, XEQ “MATDIM” 
 

Once all elements are entered, we execute  MSQRT , which shows the norms of the different 

iterations. Let’s assume we set the calculator in FIX 9 for the maximum accuracy available; then the 
result matrix is as follows: 
 
Final Frobenius norm = 1,238278374 
 
  [[0,917390290 0,345469265   0,197600714] 
        Sqrt(A) =  [0,345469265 0,374984280   0,270871020] 
                  [0,197600714 0,270871020   0,295943995]] 
 
 

Squaring the result matrix again (you can use  M^2  for that) we can check the accuracy: 

 
  [[0,999999999  0,499999999 0,333333333] 
   [Sqr(A)]^2 =  [0,500000000  0,333333333 0,250000000] 
   [0,333333333  0,249999999 0,200000000]] 
 
which isn’t bad at all for a 33 years old calculator indeed… 
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Example 2.- Find a square root of the 4 x 4 matrix below, and check the accuracy by squaring it 
back. 

 

  
 

Using FIX 4 and PMTM for the data input (nice integer values), the result is as follows: 
 

 
 
which is exact to 4 decimal places save a couple of ulps here and there. 
 
 

The program listing is shown below. Note the relatively short program, but here too the data 
requirements are equally hefty as three auxiliary matrices are required, for a total of 4 x dim(A) 
registers needed either in main or X-memory (including the original matrix). 
 
 

1 LBL "MSQRT" 30 X=YR? are they equal>

2 SQR? square? 31 SF 00 yes, flag this fact

3 LU? yes but LU? 32 X=YR? are they equal>

4 -ADV MATRX not square, show error 33 GTO 02 yes, jump over

5 CF 00 34 CLA no, keep at it

6 FNRM initial norm 35 ARCL 01

7 STO 00 store it in R00 36 "|-,#" prepare Alpha string

8 ASTO 01 matrix name to R01 37 MINV invert matrix
9 DIM? dimension to X-reg 38 MAT= copy in auxiliary

10 "P" 39 MINV undo the inversion

11 MATDIM auxiliary matrix  P 40 "Q.#,Q"

12 "Q" 41 MINV invert auxiliary

13 MATDIM auxiliary matrix  Q 42 MAT+ sum it to partial result

14 MIDN 43 "Q,X"

15 LBL 00 44 2

16 "Q,#" 45 MAT/ divide by scalar 2
17 MINV 46 LBL 02

18 MAT= auxiliary matrix  # 47 "P,"

19 CLA 48 ARCL 01

20 ARCL 01 49 MAT=

21 "|-,#,P" 50 FC? 00 were norms equal?

22 MAT+ 51 GTO 00 no, next iteration

23 "P,X" 52 PURFL purge P
24 2 53 "Q"

25 MAT/ 54 PURFL purge Q

26 FNRM Frobenius norm 55 "#"

27 VIEW X show progress 56 PURFL purge #

28 X<> 00 swao with old norm 57 MNAME? matrix name to Alpha

29 RCL 00 recall new one again 58 END done  
 
 
As usual, this routine will result in “ALPHA DATA” if the matrix is in LU decomposed form. 
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Appendix.- Square root of a 2x2 Matrix.  {  MSQ2  } 

 
A square root of a 2x2 matrix M is another 2x2 matrix R such that M = R^2, where R^2 stands for 
the matrix product of R with itself. In many cases, such a matrix R can be obtained by an explicit 
formula. Let 

  
 

where A, B, C, and D may be real or complex numbers. Furthermore, let τ = A + D be the trace of M, 
and δ = (AD – BC) be its determinant. Let s be such that s^2 = δ, and t be such that t^2 = τ + 2s. 
That is, 

 
 
Then, if t ≠ 0, a square root of M is: 
 

 
 
 
There it is, directly without doing any iterations or finding inverses. Your assignment now is to write a 
short program to calculate the square root of a 2x2 matrix applying the formula above.- Go ahead and 
try your hand at it … or cheat and look below.- 
 

1 LBL "SQRT2" MNAME in Alpha 15 ARCL T recall MNAME

2 "|-,#" Prepare Alpha string 16 "|-," prepare string

3 MAT= create scratch 17 ARCL T "M,#,M,#"

4 ASWAP bring to hot spot 18 ST+ X 2s

5 MDET determinant 19 MTRACE tr   

6 ABS asolute value 20 + tr + 2s

7 SQRT s 21 SQRT t 
8 MIDN 22 MAT+ [A] = [A] + s[I]

9 R^ get s to X-reg 23 ",X,"

10 ASWAP "M,#" 24 MAT/ [A] = [A] / t

11 ASTO T save MNAME in T 25 "#"

12 "X,," 26 PURFL get rid of scratch

13 MAT* # = s # 27 MNAME? MNAME to Alpha
14 CLA 28 END done  

 
 
Note,- Not as trivial as you may think because the LU decomposition performing the determinant will 
conflict with other functions needed. Therefore, one scratch matrix should be used here as well. 
 
 
Example: calculate one square root of the matrix given below and compare its square power to it.  
 

       
 
or numerically:      sqr(A) = [[2.944271912     -0.472135955] 
    [[1.416407865      1.291796068]] 
 

 

2 



SandMatrix_4 Manual  -  Revision “5Y+” 

(c) Ángel M. Martin                                 January 2021 Page 65 of  148 
 

Matrix Integer Powers and Roots. {  M^2  ,  MPWR  ,  M^1/X  } 

 
This application will be dealt with using a relatively brute force approach, in that the powers will be 
computed by successive application of the matrix multiplication; therefore the restriction to integer 
powers. 
 

 MPWR  calculates the general case n, whilst  M^2  is used to square a matrix (i.e. n=2). The first 

requires the matrix name in Alpha and the exponent in the X-register, whereas for the second only the 
matrix name in Alpha is needed. 
 
The exponent may also be a negative integer. For that case the inverse matrix is calculated first, and 
the positive integer power is used for it. Lastly, for n=0 the result is the identity matrix of course. 
 

A feeble attempt is also made for the integer roots calculation: the sub-function  M^1/X  will attempt 

to calculate the x-th. root of a matrix using the general expression: 
 

[A]^1/x = exp[1/x . Ln(A],          which is only valid when   abs(||A-I||) < 1 

 
Despite the inherent limitations of these programs they are interesting examples of extension of the 
“native” matrix function set, and therefore their inclusion in the SandMatrix. 
 
 
Example1. Calculate the 7-th. power of the matrix below: 
 
         [[ 1   4 9 ]  
           A =  [ 3   5 7 ] 

 [ 2   1 8 ]]  
 
 
 
Type XEQ “MPWR”, and the result is: 
 

[[ 7851276   8652584 31076204 ] 
           A7 =  [ 8911228   9823060 35267932 ] 

 [ 5829472   6422156 23076808 ]] 
 
 
Example 2. Calculate the 5th. root of matrix A below, then compare its 5th power to the original 
matrix. 
 
  [[ 1.2  0.1 0.3] 
           A =  [ 0.1  0.8 0.1] 
   [ 0.1  0.2 0.9]]      
 
 
  
The results are as follows: 
 

  [[1,034632528  0,015156701 0,057916477] 
         A1/5 =  [0,019601835  0,953558110 0,020490861] 
   [0,017823781   0,045426856 0,974937998]]      
 
  [[1,199999994  0,100000000 0,300000000] 
         [A1/5]5 =  [0,100000000   0,800000000 0,100000000] 
   [0,100000000  0,200000000 0,900000000]]      
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Program listing for  MPWR ,  M^2  and  M^1/X . 

 
1 LBL "MPWR" MNAME in Alpha 1 LBL "M^2" MNAME in Alpha

2 SQR? square? 2 SQR? square?

3 LU? yes but LU? 3 LU? yes but LU?

4 -ADV MATRX not square, show error 4 -ADV MATRX not square, show error

5 -CCD MATRX no, show "RUNNING…" 5 -CCD MATRX no, show 'Running…"
6 X<>Y power index to X-reg 6 ASTO L

7 INT make integer 7 DIM? dimension to X-reg

8 X#0? is it zero? 8 "|-,"

9 GTO 01 no, skip over 9 ARCL L

10 MIDN yes, make identity 10 "|-,P" "M,M,P"

11 RTN done. 11 ASWAP "M,P,M""

12 LBL 01 12 ASWAP "P,M,M"

13 X<0? is it negative? 13 MATDIM auxiliary P

14 MINV yes, invert matrix 14 ASWAP "M,M,P"

15 ABS 15 M*M matrix product

16 E 16 CLAC "M,M,"

17 - n-1 17 CLAC "M,"
18 X=0? was n=1? 18 "|-P" "M,P"

19 RTN yes, we're done 19 ASWAP "P,M"
20 STO 00 store in R00 20 MAT= result to M

21 ASTO 01 store Mname in R01 21 PURFL purge P

22 "|-,#" 22 MNAME? MNAME to Alpha

23 MAT= copy to aux matrix # 23 END done

24 DIM? get dimansion

25 "P"

26 MATDIM auxiliary matrix P

27 LBL 00 prepare alpha string 1 LBL "M^1/X" MNAME in Alpha
28 "#," "#," 2 1/X

29 ARCL 01 "#,MNAME" 3 STO 05 store in R05

30 "|-,P" "#,MNAME,P" 4 MLN matrix logarithm

31 M*M matrix product 5 RCL 05
32 VIEW 00 show current index 6 "|-,X" prepare Alpha string

33 "P,#" 7 ASWAP swap string

34 CLST 8 MAT* scalar multiplication

35 MMOVE copy result to # 9 MNAME? recall MNAME

36 DSE 00 decrement index 10 MEXP exponential

37 GTO 00 loop back if not ready 11 END done

38 "#," "#,"
39 ARCL 01 "#,MNAME"

40 MAT= copy result to #

41 PURFL purge #
42 "P"

43 PURFL purge P

44 MNAME? recal MNAME to Alpha

45 END done.  
 

 
Remarks:- Both MPWR and M^2 need one auxiliary matrix (P) to temporarily place the results of the 
matrix product – Additionally; MPWR needs a second auxiliary matrix (#) as well. 
 
 

An alternative listing for M^1/X that includes a convergency check is shown in next page. Note how 
the calculations to check for the condition are a taxing step, in that it requires a scratch matrix to 
calculate its norm.  On the positive side though, it’ll spare us the wait for a non-convergent process 
that would take much longer until it’s apparent so. So after some consideration the longer version is 
now in the module. 
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1 LBL "M^1/X" MNAME in Alpha 19 E

2 1/X 1/n 20 X>Y? meets condition?

3 STO 05 save it in R05 21 GTO 00 yes, go on

4 SQR? square? 22 "#" no

5 LU? yes but LU? 23 PURFL get rid of scratch

6 -ADV MATRX not square, show error 24 "DIVRGNT"

7 -CCD MATRX show "RUNNING…" 25 PROMPT show error message

8 ASTO 01 save MNAME in R01 26 LBL 00

9 DIM? dimansion to X-reg 27 CLA

10 "#" scratch matrix 28 ARCL 01 MNAME to Alpha

11 MATDIM 29 MLN matrix logarithm

12 MIDN make it Identity 30 RCL 05 1/n

13 CLA 31 "|-,X" prepare string

14 ARCL 01 MNAME to Alpha 32 ASWAP

15 "|-,#,#" prepare string 33 MAT* element multiplication

16 MAT- intermediate result 34 MNAME? MNAME to Alpha

17 ASWAP 35 MEXP exponential matrix

18 FRNM get its norm 36 END done  
 
The scratch matrix is removed in case there is divergence, or reused to calculate the logarithm if not – 
thus at least it’s not all a waste of time. If there is no convergence (and you have nothing else to do) 
you may still go ahead and hit R/S after the error message to see how the precision factor keeps 
increasing until the “OUT OF RANGE” condition. 
 
 

 
 
 
 

A general-purpose algorithm for the p-th. root  {   M^1/N  } 

 
The principal p-th root of a non-singular matrix A ( det A # 0 )  may be computed by the algorithm: 
 
    M0 = A   ;   Mk+1 = Mk .{ ( 2.I + (p-2) Mk ) ( I + (p-1) Mk )^(-1) }^p      
 
    X0 =  I   ;    Xk+1  = Xk  ( 2.I + ( p-2 ) Mk )^(-1) . ( I + ( p-1) Mk ) 
 
where  I  is the Identity matrix 
 
    Mk  tends to  I         as k tends to infinity 
    Xk   tends to A^1/p  as k tends to infinity 
 
The convergence is also quadratic if A has no negative real eigenvalue. 

 
Implementing this algorithm requires *six* scratch matrices, mostly due to the fact that the matrix 
product M*M requires the result matrix to be different from both factors. The total byte count is low 
but the memory requirement is a hefty toll because of this.  
 

[Z] =  I + (p-1).Mk,  and:  [Y] = 2.I + (p-2).Mk 
 
and using these the algorithm becomes: 
 

Mk+1 = Mk. { [Y] . ([Z]^(-1) }^p 
Xk+1 = Xk . Y^(-1) . [Z] 
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The listing below shows the program included in the module. Note that in addition to those six scratch 
matrices, the function MPWR uses another two, which brings the total count to eight scratch matrices. 
This makes this approach only valid for small order matrices, as the total memory requirement will be 8 
times the size of the original matrix.  
 
If the original matrix is in the data registers area, then the maximum order is 8x8 with the 8 auxiliary 
matrices stored in the X-Mem section. - Admittedly a little crazy, but it’s better than nothing. 
 
 

 
 
 
Note:  The character “#” represents the standard HP-41 symbol denoting “not equal to”, ASCII value 
29. It’s not the same one used in MPWR, which is the ASCII value 35, the “hash” or pound sign. 
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Lie Product of two Matrices.  { MLIE  } 

 
The lie product is defined as the resulting matrix obtained from the difference between the right and 
left multiplications of the matrices; or in equation form: 
 

Lie(A,B) = - Lie(B,A) = AB – BA 
 
Example.- Calculate the Lie product for matrices: 
 

[[ 1 2      4 ]    [[ 1 4      1 ] 
       A =     [ 3 5      7 ]    and:             B=  [ 5 9      2 ] 
              [ 7 9      8 ]]     [ 6 5      3 ] 
 
The results are: 
 

ALPHA, “A,B,C”, ALPHA    [[ 15  11 -23 ] 

XEQ “MLIE”   ->   Lie(A,B) =   [ 24  19 -65 ] 
       [ 58   85 -34 ]] 
 

ALPHA. “B,A,C”, ALPHA    [[-15 -11 23 ] 

XEQ “MLIE”   ->   Lie (B,A) =  [-24 -19 65 ] 
       [-58 -85 34 ]] 
 
 
The program listing is shown on the left. Note the usage of the scratch matrix “#” to temporarily hold 
the result of the two matrix products (always the same limitation imposed by M*M), and the extensive 
usage of the alpha string management functions, like ASWAP – necessary to deal with the three 
matrix names in the string.   
 
In fact SWAP exchanges the contents of the Alpha register around the first comma character 
encountered; which makes it so interesting in this case. 
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Matrix Trace and remaining functions. {  MTRACE  } 

 
In linear algebra, the trace of an n-by-n square matrix A is defined to be the sum of the elements on 
the main diagonal (the diagonal from the upper left to the lower right) of A, i.e., 

 
where aii represents the entry on the i-th row and i-th column of A. The trace of a matrix is the sum of 
the (complex) eigenvalues, and it is invariant with respect to a change of basis. Note that the trace is 
only defined for a square matrix (i.e., n ×n). 
 
Some of the properties of the trace are quite interesting and useful for other calculations, like 
eigenvalues and even determinants. In particular one could use the relationship that defines the trace 
of a product of matrices: 
 

 
If we use an identity matrix in place of Y on the equation above it’s clear that: tr(A) = SUM {[A] o [i]}, 
where the “o” symbol denotes the Hadamard or entry-wise product - as obtained by MAT*. 
 
The program in the SandMath however uses a direct approach, summing the elements in the diagonal 
– it’s faster and doesn’t require any auxiliary matrix to hold intermediate results. 
 
Eigenvalues relationships. 
 
The trace of a matrix is intricately related to its eigenvalues. In contrast with the determinant (which is 
the product of its eigenvalues); if A is a square n-by-n matrix with real or complex entries and if 
λ1,...,λn are the eigenvalues of A (listed according to their algebraic multiplicities), then   
 

                                        
Another powerful property relates the trace to the determinant of the exponential of a matrix, as 
follows: (Jacobi’s formula): 

                   
 
 

 MTRACE  uses a single-element approach, basically adding all the elements in the principal diagonal. 

For small to mid-size matrices this is faster than a block-approach, redimensioning and transposing the 
matrix such as the one sketched below (courtesy of Thomas Klemm): 
 

Note that as of revision “Y” MTRACE is an MCODE function.  Here’s the sweet and short equivalent 
FOCAL program listing, compared side-by-side to a block-approach alternative implementation – which 
also requires a scratch matrix if one wishes to keep the original matrix unchanged, as well as some 
additional steps for Alpha housekeeping. 
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Note how in the alternative approach function SUM is used, which removes the need to calculate the 
last step of the sketch. Regardless, it’s bigger and takes longer execution time, even without the test 
for square matrix condition. 
 

1 LBL "MTRACE" MNAME in Alpha 1 LBL "TRACE2" 

2 SQR? square? 2 "|-,#" prepare Alpha string

3 LU? yes but LU? 3 MAT= make scratch
4 -ADV MATRX not square, show error 4 ASWAP place  in hot spot

5 0 initial sum value 5 DIM? gets its dimensions

6 MSIJA sets pointer to 1:1 6 E

7 LBL 05 7 I<>J 0,001

8 MRR+ recall element 8 +

9 + add to partial result 9 MATDIM add one more column

10 FC? 09 end of row 10 TRNPS transpose it

11 I+ no, next row 11 INT

12 FC? 10 end of matrix? 12 MATDIM make it a column matrix

13 GTO 05 no, next element 13 SUM summ all elements

14 END done 14 PURFL purge scratch

15 ASWAP bring focus to original

16 CLAC alpha housekeeping

17 ABSP to erase all tracks

18 END  
 
 
 

Row Division by Diagonal element. (Diagonal Unitary) {  R/aRR  } 

 
 
This function is used to modify the values of all elements, dividing each row by its diagonal element; 

that is:   aij = aij / aii,   j=1,2,... n 

 
In effect the result matrix has all its diagonal elements equal to 1 (i.e. diagonal is unitary). This type of 
calculation is useful for row simplification steps in matrix reductions; more like a vestigial function from 
when the major matrix operations were not available (i.e. the CCD days, pre-Advantage Pac). 
 

 
1 LBL "R/aRR" MNAME in Alpha 19 RDN discard product

2 SQR? square? 20 FC? 09 end of row?

3 LU? yes but LU? 21 GTO 00 no, get next element
4 -ADV MATRX not square, show error 22 FS? 10 end of matrix?

5 0 23 GTO 02 yes, exit

6 MSIJA set pointer to 1:1 24 MRIJ recall pointer

7 LBL 01 25 ENTER^

8 MR recall diag element 26 INT

9 1/X inverse value 27 ENTER^

10 X<>Y pointer to X 28 I<>J does E3/ if integer

11 MSIJ set pointer 29 + j,00j

12 X<>Y value back to X-reg 30 MSIJ set pointer

13 ENTER^ 31 X<>Y

14 ENTER^ fill stack w/ value 32 GTO 01 next row

15 LBL 00 33 LBL 02
16 MR recall element 34 DIM? get dimansion

17 * multiply 35 END end

18 MSR+ store and increase column
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Transposing elements with  {  MXIJ   }  

 
A new function is included to facilitate the elmenet transposition. MXIJ exchanges the row and column 
of the selected element, returning the new selected element pointer to the X-Register. The matrix can 
be non-square, but an error message will show if the “transposed” pointer does not exist. Note that 
there’s no need to recall the current pointer first.  
 
The function does the equivalent to the following FOCL snippet:  { MRIJ,  I<>J, MSIJ }, which is simple 
enough but having it as a single function allows simplified FOCAL programs. See for example the 
routines below to make a matrix symmetric (using the upper triangular part), and to swap the upper 
and lower triangular parts of a square matrix. 
 

 
 

MXIJ is now used in a re-written version of IJJI, featuring shorter code and faster execution: 
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Appendix: Moore-Penrose Matrix Pseudo-Inverse {  MPINV  } 

 
In mathematics, and in particular linear algebra, a pseudoinverse A+ of a matrix A is a generalization of 
the inverse matrix. The most widely known type of matrix pseudoinverse is the Moore–Penrose 
pseudoinverse, which was independently described by E. H. Moore in 1920, Arne Bjerhammar in 1951 
and Roger Penrose in 1955.  
 
For A in {M}(m,n;K) , a pseudoinverse of A is defined as a matrix A+ in {M}(n,m;K) satisfying all of the 
following four criteria: 
 

       A A+A = A (AA+ need not be the general identity matrix,); 

       A+A A+ = A+ (A+ is a weak inverse for the multiplicative semigroup); 

       (AA+)* = AA+ (AA+ is Hermitian); and 

       (A+A)* = A+A (A+A is also Hermitian). 

 
The pseudoinverse exists and is unique: for any matrix A, there is precisely one matrix A+ that satisfies 
the four properties of the definition. A matrix satisfying the first condition of the definition is known as 
a generalized inverse. If the matrix also satisfies the second definition, it is called a generalized 
reflexive inverse. Generalized inverses always exist but are not in general unique. Uniqueness is a 
consequence of the last two conditions. 
 
The SandMatrix uses the iterative method known as Ben-Israel & Cohen, defined by the following 
recurrence expression: 

 

 
This recursion produces a sequence converging quadratically to the pseudoinverse of A if it is started 
with an appropriate A0 satisfying [A0][A] = (A0 A)*. The choice A0 =  A* (where 0 <  < 2/^2(A), 

with (A) denoting the largest singular value of A) has been argued not to be competitive to other 

methods (like Greville’s), because even for moderately ill-conditioned matrices it takes a long time 
before Ai enters the region of quadratic convergence. However, if started with A0 already close to the 
Moore–Penrose pseudoinverse and A0 A= (A0 A)*, for example A0:= [(A*A+  I)-1] A*, convergence is 

fast (quadratic). 
 

The SandMatrix uses the trace of the matrix product A.AT instead – which has shown stable 

convergence, even if finicky. Like always, the use of the 41CL in turbo mode or a good PC emulator is 
most recommended. 
 

 A0 = µ AT    where   AT = transposed of A,  and   0 < µ <= 2 / Trace(A.AT) 
 
Example:  verify that the pseudo inverse of the 3x4 matrix: 
  

  [[ 1  1  4  2]      [[ -21  -85    43 ] 

A =  [[ 0  1  2  3] ,      is the 4x3 matrix : A+ = (1/112). [[   7    23    -9  ] 

 [[ 3  2  6  7]]      [[  49     1   -15 ] 
         [[ -35   29    13 ]] 
 
The FOCAL program is listed below for your reference – you’ll be surprised to know that after some 
lengthy conversion of FOCAL code into MCODE the necessary room was freed up in the main bank of 
module to include it. With just 55 program steps the code is relatively short but it requires two auxiliary 
matrices for the calculations, besides the result matrix.   
 
As always, the most limiting step is the M*M instruction that requires the result matrix to be different 
from both operands. Note how all the control strings in Alpha drive the operations, and that the default 
conventions are mostly followed – with a couple of exceptions, like program line #30. 
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The auxiliary matrices [P] and [Q] are purged upon completion, but the result matrix [M+] does not 
overwrite the initial one, so both will remain in memory. 
 

 

 
 
 
The instruction RCL- (00) is from the SandMath module, and can be replaced by the pair: { RCL 00, - } 
 
The convergence factor (in line 37) is chosen to be 1e-7 – feel free to change it to a more stringent or 
a looser one depending on the matrix. The deltas between the matrix norms of the successive 
iterations will be displayed until the final one is obtained.  
 
The Pseudo-Inverse matrix name is left in Alpha, ready for OMR, OMC, or your favorite matrix editor 
program. The final matrix name is formed by adding the plus sign “+” to the original matrix name. 
 
 
 

Warning: The program will leave the pseudo-inverse matrix in X-Memory, regardless of where the 
original matrix is stored. The reason being the naming convention, which makes the pseude-inverse 
name not valid for the Standard or CL-registers areas. 
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Sum of Diagonal / Crossed Elements products. {  MPDS  ,  IJJI  } 

 

Other two functions directly related to the eigenvalues are  MDPS  and  IJJI . They compute sums of 

element pair multiplication, either for those in the diagonal (aii * akk); or for “crossed” (i.e. opposite) 
ones, (aij * aji), with i#j – excluding the diagonal. 
 
Armed with these functions the characteristic polynomial of a 3 x 3 matrix can be expressed very 
succinctly – as we’ll see in Chapter 4 of the manual. 
 
Example. Calculate the trace and the sums of diagonal and crossed elements for the matrix below: 

 
   

Tr(A)  = -2 + 1 – 1 = -2 

MDPS = (-2*1) – (1*1) + (2*1) = -1 

aij aji = -2 * 1 – 4 * 2 + 3* 0   = -10 
 

Program listings – easy does it, element-wise. 
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Matrix Polynomial  {  MPOL  } 

 
MPOL was a last-minute addition to the ROM, which somehow combines both matrix and polynomial 
algebra. Use it to calculate a matrix polynomial P(A) - not to be confused with a polynomial matrix - 
based on an existing square matrix [A] and a polynomial P(x). 
 
P(A) is the result matrix calculated replacing the real variable x with [A], using the polynomial 
coefficients to multiply the different matrix powers as per the order of the polynomial terms. As it’s the 
case all throughout polynomials, Honer’s method proves very useful to reduce all the matrix powers to 
matrix multiplications – with considerable execution time reduction and simplification of the code. 
 
Example.- Calculate P{A) for the following matrix and polynomial: 
 

       P(x) = 2 x4 - x3 + 3 x2 - 4 x + 5 ;  and: 
 

     [[ 4  2  3 ]  
       A  =  [ 3  2  5 ] 
                 [ 2  1  4 ]] 
 
This is also a good example to become familiar with the editor and input routines available in the 
SandMatrix. First we’ll create and populate the matrix using the Matrix Editor input functionality – 
very recommended for integer elements, as follows: 
 

ALPHA, “A”, ALPHA, 3,003, XEQ “MATDIM”  creates the matrix in X-Mem, then: 

 
XEQ “PMTM”  -> at the prompt “R1: _” we type: 4, ENTER^, 2, ENTER^, 3,  R/S 

-> at the prompt “R2: _” we type: 3, ENTER^, 2, ENTER^, 5,  R/S 
-> at the prompt “R3: _” we type: 2, ENTER^, 1, ENTER^, 4,  R/S 

 
The Matrix has been completely input using “batches” (or lists) including all elements of each row 
simultaneously – this is an advantageous way to handle them that results in faster and less error-prone 
method, not based on a single-element prompt. 
 
Note how pressing ENTER^ during this process results into a blank space in the display separating each 
of the elements, and that the sequence is terminated pressing R/S. Upon completion the matrix 
elements are stored in the Matrix file in extended memory. 
 
The analogous function for the polynomial is PMTP, which requires the control word in x – a number of 
the form bbb.eee, denoting the beginning and ending registers that contain the polynomial 
coefficients. In this case: 
 
2.006, XEQ “PMTP”  ->  at the prompt “R2: _” we type: 

     2,  ENTER^, CHS, 1, ENTER^, 3, ENTER^, CHS, 4, ENTER^, 5, R/S  
 
Note how in this case the function knows there’s no more “rows” to add, and also that negative values 
are easily input using the CHS key. Upon completion the coefficients are stored in registers R01 to R05. 
 
The last step is executing MPOL itself. To do that we place the matrix name in Alpha and the 
polynomial control word in X, then call MPOL. The resulting P(A) is stored in a new matrix named “P” -  
also located in an XM file - therefore [A] is not overwritten. Note however that this will overwrite [P] if 
it already exists. In this case we have: 
 

                 [[ 3548  1887  4705 ]    
     P (A)  =  [ 3727  1987  4962 ]    
                   [ 2539  1351  3385 ]] 
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The result matrix name is placed in ALPHA when the execution ends, so you can directly use any matrix 
editor routine (like OMR) to review its elements. Note how OMR will display integer values without any 
zeros after the decimal point, regardless of the current FIX settings. Set flag 21 to stop the display of 
each individual element. 
 
In addition to the result matrix P(A), MPOL also requires an auxiliary matrix for intermediate 
calculations. The matrix file “#” is temporarily created during the execution for this purpose, and 
deleted upon completion of the program. While this is transparent to the user you may want to 
remember this fact due to the extended memory needed to allow for it – with a total of 3 x (n^2 + 2) 
registers used (including the file headers). 
 
The last point to remember about MPOL is that it uses data registers R00 and R01 – which therefore 
should not be used to store the polynomial coefficients. 
 

• R00 has the polynomial control word and is used as counter for the loop execution 
• R01 has the matrix name. It’s left unchanged. 

 
Warning: if you use data registers to store the matrix (with “Rxxx”” name in ALPHA) make sure that the 
register range does not overlap with the polynomial coefficients. 
 
Below you can see the program listing for MPOL –  not a long program, albeit not as short as a simple 
polynomial evaluation for real variables. Note the use of function I#J? to check for square matrix, as 
well as the “shortcut” -ADV MTRX that puts the error message “NOT SQUARE” in the display and 
terminates the execution. 

 
01 LBL "MPOL" Mname in Alpha 23 "P,"

02 SQR? is it square? 24 ARCL 01

03 LU? LU form? 25 "|-,#" "P,A,#"

04 -ADV MTRX no, prompt error 26 M*M

05 -CCD MTRX shows 'RUNNING…" 27 "#,P"

06 E-3 cnt'l word in X 28 CLST

07 - 29 MMOVE

08 STO 00 30 ISG 00 next index

09 ASTO 01 saves Mname in R01 31 GTO 00 loop back

10 DIM? dimensions 32 XEQ 02

11 "P" 33 PURFL purge auxiliary mat

12 MATDIM creates scratch 34 MNAME? bring result name

13 "#" 35 RTN

14 MATDIM creates scratch 36 LBL 02

15 "X," 37 "#"

16 ARCL 01 38 MIDN

17 ",P" "X,A,P" 39 "X,#,#"

18 RCL IND 00 40 RCL IND 00 next coeff

19 MAT* initial value 41 MAT*

20 ISG 00 next index 42 "#,P,P"
21 LBL 00 43 MAT+ add it to partial result

22 XEQ 02 44 END  
 
The auxiliary matrix “#” is needed because unfortunately M*M does not allow the result product 
matrix to be the same as any of the multiplication factors. Not ideal, but at least we double-use it for 
other intermediate calculations as well (identity matrix products), killing two birds with the same stone. 
 
 
 

This concludes the core matrix sections; it’s time now to embark into the fascinating journey of 
characteristic polynomials and eigenvalues, as a prelude to the advanced polynomial chapter. 



SandMatrix_4 Manual  -  Revision “5Y+” 

(c) Ángel M. Martin                                 January 2021 Page 78 of  148 
 

4.  Polynomials and Linear Algebra 
 
 

 

 

 
Linear algebra is the branch of mathematics concerning vector spaces, as well as linear mappings 
between such spaces. Such an investigation is initially motivated by a system of linear equations in 
several unknowns. Such equations are naturally represented using the formalism of matrices and 
vectors. 
 

 
4.1. Eigenvectors and Eigenvaules. 

 
An eigenvector of a square matrix A is a non-zero vector v that, when the matrix is multiplied by v, 

yields a constant multiple of v, the multiplier being commonly denoted by  . That is: 

    
 

  
The number  is called the eigenvalue of A corresponding to v. 

 
In analytic geometry, for example, a three-element vector may 
be seen as an arrow in three-dimensional space starting at the 
origin. In that case, an eigenvector of a 3×3 matrix v is an 
arrow whose direction is either preserved or exactly reversed 
after multiplication by A.  
 
The corresponding eigenvalue determines how the length of the 
arrow is changed by the operation, and whether its direction is 
reversed or not, determined by whether the eigenvalue is 
negative or positive. 
 
 
A vector with three elements may represent a point in three-dimensional space, relative to some 
Cartesian coordinate system. It helps to think of such a vector as the tip of an arrow whose tail is at 
the origin of the coordinate system. In this case, the condition "u is parallel to v" means that the two 
arrows lie on the same straight line, and may differ only in length and direction along that line. 
 
If we multiply any square matrix A with n rows and n columns by such a vector v, the result will be 
another vector w = A v , also with n rows and one column. That is, 
 

        

 

 
 

 Function Description Input / Output 

1 CHRPOL Characteristic Polynomial Under prgm control 

2 EIGEN Eigen Values by SOLVE Under prgm control 

3 EV2X2 Eigen values 2x2 Subroutine mode 

4 EV3X3 Eigen values 3x3 Prompts Matrix Elements 

5 JACOBI Symmetrical Eigenvalues Under prgm control 
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where, for each index i, 

     

 

 
In general, if v is not all zeros, the vectors v and A v will not be parallel. When they are parallel (that is, 
when there is some real number  such that A v =  v) we say that v is an eigenvector of A. In that 

case, the scale factor  is said to be the eigenvalue corresponding to that eigenvector. 

 
In particular, multiplication by a 3×3 matrix [A] may change both the direction and the magnitude of 
an arrow v in three-dimensional space. However, if v is an eigenvector of A with eigenvalue , the 

operation may only change its length, and either keep its direction or flip it (make the arrow point in 
the exact opposite direction). Specifically, the length of the arrow will increase if |  | > 1, remain the 

same if |  | = 1, and decrease it if |  |< 1. Moreover, the direction will be precisely the same if  > 0, 

and flipped if  < 0. If  = 0, then the length of the arrow becomes zero.  

 
 

4.1.1. Eigenvalues and eigenvectors of matrices: Characteristic Polynomial. 

 
The eigenvalue equation for a matrix A is: 

     
 

 
 

which is equivalent to  

     

 
 

where I is the n x n identity matrix. It is a fundamental result of linear algebra that an equation M v = 
0 has a non-zero solution v if, and only if, the determinant det(M) of the matrix M is zero. It follows 

that the eigenvalues of A are precisely the real numbers  that satisfy the equation 

  

 

 
 

The left-hand side of this equation can be seen to be a polynomial function of the variable . The 

degree of this polynomial is n, the order of the matrix. Its coefficients depend on the entries of A, 

except that its term of degree n is always (-1)n n. This polynomial is called the characteristic 

polynomial of A; and the above equation is called the characteristic equation (or, less often, the secular 
equation) of A. 
 

4.1.2. Additional properties of eigenvalues 

 
The trace of A, tr{A}, defined as the sum of its diagonal elements, is also the sum of all eigenvalues, 
and the determinant of A, det{A} is the product of all its eigenvalues:  

  ;    
These properties are all that’s needed to calculate the egenvalues of a 2x2 matrix, as the solutions of 

the quadratic eqution:  ^2 – .tr(A) + det(A) = 0.   See the routine below for details: 

 
01  LBL “EV2X2” ; Expects the Matrix name in ALPHA 
02  E   ; second degree coefficient 
03  MTRACE  ; matrix trace 
04  CHS   ; first degree coefficient 
05  MDET  ; this will leave the matrix in its LU form 
06  QROOT  ; quadratic equation roos (in the SandMath) 
07  END  ; done – it doesn’t get any simpler than that! 
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4.1.3  SOLVE-based Implementation.  { EIGEN } 

 
In addition to EV2X2 there are other three programs in the SandMatrix that calculate eigenvalues. The 

first one is aptly named  EIGEN , and is a brute-force approach using the direct definition of the 

eigenvalue given above. What makes it interesting is the direct application of SOLVE (of FROOT in the 
SandMath) plus the combination of matrix functions to calculate the secular equation to solve for. 
 

 EIGEN  can be used in manual mode (with guided prompts and data entry – or in a subroutine. In 

manual mode it creates a matrix named “EV” in X-mem. and will prompt for the elements data. In 
subroutine mode it’ll take the matrix name from Alpha.  
 
The function is “aware” of whether it’s being run in RUN or PROGRAM mode, so that the data entry is 
omitted during a program execution. There’s no need to remember to set user flags or clear it for 
manual mode, saving one FAT entry for a subroutine as well. 
 
 
The program checks that the matrix is square and not in LU-decomposed form – presenting error and 
warning messages respectively. For LU-decomposed matrices you can double-invert them “on the spot” 
(assuming they’re invertible) and keep going just pressing R/S. 
 

      
 
The selection of the interval [a,b] plays an important role in finding the solution – obviously the closer 
to the actual value the faster it’ll find it. Remember also that the accuracy is determined by the display 
settings on the calculator, so FIX 9 will provide for both the most accurate and longest execution time. 
 
 
Example.   Find one eigenvalue for the matrix A below using the subroutine mode. 
 

             
 
Keystrokes    Display   Result 
 
ALPHA, “EV3”, ALPHA   X-reg contents  MNAME is in Alpha 
3.003, XEQ”MATDIM”      Creates matrix in X-Mem 
XEQ “PMTM”    “”  Prompts for the first row 
3, ENTER^, 1, ENTER^, 5, R/S  “”  … second row 
3, ENTER^, 3, ENTER^, 1, R/S  “”  … third row 
4, ENTER^, 6, ENTER^, 4, R/S   
 
XEQ “EIGEN”    “ press R/S to use the Matrix in ALPHA 
R/S     “”  Prompts for lower bound 
5, R/S     “”  Higher bound 
15, R/S     flying goose…  FROOT is working on it 
     “” ev found (in FIX 5). 
 
 
Note that if you entered a value for the “ORDER?” question the program proceeds to create a new 
matrix and prompt for all its elements. If you want to use the matrix in ALPHA just press “R/S”  



SandMatrix_4 Manual  -  Revision “5Y+” 

(c) Ángel M. Martin                                 January 2021 Page 81 of  148 
 

The original matrix is not modified in any way but note that an auxiliary matrix is created for the 
calculations. This scratch matrix “#” is not purged automatically from X-Mem, you’ll have to do that 
after you’re done calculating as many eigenvalues as you need. 
 

Below is the program listing for  EIGEN . Note how the equation to solve already requires an auxiliary 

FAT entry,  #EV  – since a global label is always needed by FROOT. (You can refer to the SandMath 

manual if you need to refresh your understanding of FROOT and FINTG) 
 
 

1 LBL "EIGEN" 23 "HI V'=?"

2 FS? 06 subroutine mode? 24 PROMPT prompt upper bound

3 GTO 01 yes, skip data entry 25 -CCD MATRX show "RUNNING…"

4 -SNDMATRX 4 prompts "ORDER=?" 26 "#EV"

5 STOP 27 FROOT Solve for Ev (!)

6 E 28 TONE 4 found!

7 E3/E+ 1,001 29 "EV="

8 * n,00n 30 ARCL X

9 "EV" hard-coded name 31 PROMPT display result

10 MATDIM create square matrix 32 GTO 00 next guess

11 IMR input elements 33 LBL "#EV" subroutine

12 LBL 01 34 "#"

13 ASTO 00 save MNAME in R00 35 MIDN make matrix identity

14 SQR? not square? 36 "X"

15 LU? LU decomposed? 37 MAT* multiply it by scalar guess

16 -ADV MATRX show error 38 "#,"

17 DIM? dimensions 39 ARCL 00 prepare Aplha string

18 "#" scratch matrix 40 "|-,#"

19 MATDIM as identity one 41 MAT- calculate the eigen matrix

20 LBL 00 42 MDET get its determinant

21 "LOW V'=?" 43 END return

22 PROMPT prompt lower bound  
 
 
 

 EIGEN  works for N-dimensional orders. In that regard its execution time (provided that a decent 

initial guess is given) compares favorably to that of  CHRPOL , the other program that calculates 

eigenvalues. The difference of course is that  CHRPOL  obtains all the eigen values simultaneously, 

whilst  EIGEN  does it one at a time. 

 
 
When compared to other approaches, the program listed above is almost minimalistic – that’s its real 
benefit and the reason that justifies its inclusion in the SandMatrix module. However relying on FROOT 
is clearly not a robust approach to calculate eigenvalues - The calculation of the characteristic 
polynomial using dedicated methods is a necessity. 
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4.1.4. 3-Dimensional case. { EV3X3  } 

 
Let’s start with the particular case n = 3. In this scenario there are simple formulas to calculate the 
characteristic polynomial, which make the calculations simpler and faster. The formulas are derived 
from the properties of the characteristic polynomial. Let’s enumerate the most important ones. 
 
The polynomial pA(x) is monic (its leading coefficient is 1) and its degree is n. The most important fact 
about the characteristic polynomial was already mentioned in the motivational paragraph: the 
eigenvalues of A are precisely the roots of pA(x). The coefficients of the characteristic polynomial are 
all polynomial expressions in the entries of the matrix. In particular its constant coefficient pA(0)  is 
det(−A) = (−1)^n det(A), and the coefficient of  x^(n−1) is tr(−A) = −tr(A), where tr(A) is the matrix 
trace of A. For a 2×2 matrix A, the characteristic polynomial is therefore given by: 
 

   
 
For a 3×3 matrix, the formula specifies the characteristic polynomial to be 
 

     
 
where c2 is the sum of the principal minors of the matrix  =  
 
 

Given the above definitions it is clear now why functions  MDPS  and  IJJI  will be helpful to obtain 

the coefficients of the characteristic polynomial for n=3. In effect, when using those functions the 
formulas change as follows: c2 = ( MDPS - IJJI ) 

 
 
For the manual mode (not as subroutine), two choices are offered: 1) to use the matrix in ALPHA or 
create a new one, and 2) to see the coefficients of the polynomial before calculating its roots (i.e. the 
eigenvalues). Note that these will only take [Y] / [N] as valid inputs. 
 

               ,  
 
 
Example 1. Calculate the eigenvalues for A, with aij = ij 
 
Solution:  pA(x) = 3.25E-8 x3 - 60 x2 -66 x + 1 =0 
 

x1 = 66,897 
x2 = -0,897 
x3 = 2,24000E-9 

 
Example 2. Calculate the eigenvalues for A, with aij = 1,2,3…9 
 
Solution:  pA(x) = 2.7426E-9 x3 -18 x2 -15 x = 0 
 

x1=   16,1168 
x2 = -1,1168 
x3 =  2,89100E-9 

 
It is therefore a relatively easy exercise to write a program to deal with this case, as shown in the 
program listing in next page. 
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Program remarks.-  
 

• Like  EIGEN  before, this function behaves differently in RUN and Program modes – skipping 

the data entry part during a program execution. Note that in manual mode  EV3X3  will create 

a matrix named “EV” if you answer “Y” to the “NEW? Y/N” question, but that in program mode 

it will work with any 3x3 matrix which name is in Alpha. This is compatible with  EIGEN  in its 

subroutine mode as well. 
 

• It’s also important to remark that the used matrix cannot be in LU form – otherwhise the 
MDET function will return an error. 

 

• The three roots are obtained using the SandMath function CROOT, an all-MCODE 
implementation of the Cardano-Vieta formulas. Function QROUT is also used to display them. 
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4.1.5  General case: N-dimensional general matrix. {  CHRPOL  } 

 
 

The original  CHRPOL  - as it appeared in previous versions of the SandMatrix - was written by 

Eugenio Úbeda (as published in the UPLE), and later on adapted to the SandMatrix. Note however that 
it didn’t make use of any advanced Matrix function. It was a user-friendly program; providing step-by-
step guidance for the data entry and didn’t require any set-up preparation (like creating matrices) prior 
to the execution. 
 

In this version  CHRPOL  has been re-written from the ground up, really taking advantage of the 

powerful matrix function set. It is a much-improved solution, about twice as fast and with half the 
(comparable) code - It however now requires you to first create the matrix and input its elements. 
 
Algorithmically it still uses the same modification of the Leverrier-Faddeev method to determine the 
coefficients of the characteristic equation of the n x n matrix; which roots are the eigenvalues of the 
matrix. It also employs the matrix trace in the process. The coefficients are calculated using the 
iterations: 
 

b1 = -tr (B1) , with B1 = the original matrix,  and 

bk = - tr (Bk) / k, with  Bk = A( Bk-1 + bk-1 I ),  k=2,… n 
 
The program works for orders n between 3 and 14. The case n=2 has a trivial solution [given by b2=1, 
b1= tr(A), and b0 = -det(A)] ; therefore doesn’t need to be included.  
 
Example. Obtain the characteristic polynomial for the matrix A given below: 
 
  [[  1 -0.69 0.28 ] 
 A =  [-0.69    1 0.18 ] 
   [ 0.28  0.18    1   ]] 
   
 
Keystrokes   Display   Result 

ALPHA , “AA”, ALPHA  current X-reg   Matrix name in Alpha 

3.003 , XEQ “MATDIM”      Creates matrix in X-Mem 
XEQ “IMR”    “”   Prompts for data, also 
1, R/S    “”   showing current values 
0.69, CHS, R/S   “” 
0.28, R/S   “” 
0.69, CHS, R/S   “” 
1, R/S    “” 
0.18, R/S   “” 
0.28, R/S   “” 
0.18, R/S   “”   Last element 
1, R/S     
XEQ “CHRPOL”   ““  scrolls in the display, then 

   “(”  Reminder of convention 

(*) set F21   “”   (round) Coefficient of x^3 
if you want AVIEW  “”   (round) Coefficient of x^2 
to stop each time  “”  Coefficient of x  
    “”  First coef (independent term). 
    “´   Scrolls in the display, then 
    “X”  First eigenvalue 
R/S    “” Second eigenvalue 
    “” Third and last. 
      
See the program code below in its entire splendor – 
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Remarks: Two auxiliary matrices are used, but the original matrix is left unaltered. The first part of 
the program (up to line 60) calculates the coefficients of the characteristic polynomial – and displays 
them for informational purposes. It then transfers the execution to the root finder routines. Note that 

for cases n=3 and n=4 we take advantage of the dedicated functions  CROOT  (in the SandMath)  and  

QUART , which results in a much faster execution than the general case using  RTSN  . 

 
1 LBL "CHRPOL" MNAME in Alpha 55 STO 01 it's monic (!)

2 SQR? is it square? 55 E3/E+ 1.001

3 LU? yes, but LU form? 56 + 1.00(n+1) - cnt'l word

4 -ADV MATRX not square, show error 57 "#"

5 ASTO 01 MNAME 58 PURFL

6 -CCD MATRIX shows 'RUNNING…" 59 "P"

7 "|-,P" 60 PURFL

8 MAT= B = A 61 PVIEW for information

9 ASWAP 62 -CCD MATRIX shows 'RUNNING…" 

10 DIM? n,00n 63 PDEG new destination

11 INT n 64 STO 00 as expected by RTSN

12 STO 00 65 4

13 E 66 X>=Y? n<=4?

14 + n+1 67 GTO 04 yes, particular case

15 MDET determinant 68 CLX no, general case

16 RCL 00 69 E

17 CHSYX independent term 70 + n+1

18 STO IND Y stored in Rn+1 71 E6

19 ASWAP 72  / 0,000|00(n+1)

20 MAT= avoids LU issues 73 3 build the "from,to"

21 DIM? 74 E3/E+ 1.003

22 "#" auxiliary array 75 + 1.003|00(n+1)

23 MATDIM 76 REGMOVE as expected by RTSN

24 FRC 0,00n 77 RTSN

25 2 78 GTO 00 go to EXIT

26 + 2,00n 79 LBL 04

27 STO 00 80 X#Y? n#4?

28 CF 21 not halting VIEW 81 GTO 03

29 LBL 00 82 RCL 02 a3

30 VIEW 00 shows index 83 RCL 03 a2

31 "#" 84 RCL 04 a1

32 MIDN [#] = [I] 85 RCL 05 a0

33 "P" 86 QUART

34 MTRACE tr (B) 87 GTO 00 go to EXIT

35 RCL 00 88 LBL 03

36 INT k+1 89 RCL 01 a3

37 E 90 RCL 02 a2

38 - k 91 RCL 03 a1

39 / 92 RCL 04 a0

40 CHS 93 CROOT

41 STO IND 00 pk = -tr (B) / k 94 "X="

42 "X,#,#" 95 ARCL Z

43 MAT* [#] = pk [I] 96 PROMPT real root

44 "P,#,#" 97 FC? 43 is RAD on?

45 MAT+ [#] = [B] + p[ I] 98 GTO 01 yes, complex roots

46 CLA 99 X<> Z no, real roots

47 ARCL 01 100 CLX so we clear Z

48 "|-,#,P" 101 X<> Z

49 M*M B= A (B - p I) 102 LBL 01

50 ISG 00 103 QROUT output roots

51 GTO 00 104 LBL 00

52 DIM? n,00n 105 MNAME? bring MNAME back

53 FRC 0,00n 106 END done

54 E  
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Particular case: Symmetric Matrices  {  JACOBI  }  - Moved to Advntg_MATH Module 

 
For symmetric matrices the Jacobi algorithm provides a faster method. JACOBI was written by 
Valentín Albillo, and published in PPCTN, V1N3 (October 1980). I’ve only slightly adapted it to the 
SandMatrix, but basically remains the same as originally written.  The paragraphs below are directly 
taken from the above reference to explain its workings. 
 
This program computes all eigenvalues of a real symmetric matrix up to 22 x 22. It uses the Jacobi 
method, which annihilates in turn selected off-diagonal elements of the given matrix A using 
elementary orthogonal transformations in an iterative fashion, until all off-diagonal elements are zero 
when rounded to a given number of decimal places. Then the diagonal values are the eigenvalues of 
the final matrix. 
 
The method explained. The Jacobi method does not attempt to solve the characteristic equation for 
its roots. It is based in the fact that a n x n symmetric matrix has exactly n real eigenvalues. Given A, 
another matrix S can be found so that:  S A ST = D  is a diagonal matrix, whose elements are the 
eigenvalues of A.  
 
The Jacobi method starts from the original matrix A and keeps on annihilating selected off-diagonal 
elements, performing elementary rotations. Let’s single out an off-diagonal element, say apq,, and 
annihilate it  using an elementary rotation. The transformation R is defined as follows: 
 

Rpp = cos z ; Rpq = sin z ; Rqp = -sin z ; Rqq = cos z 

Rii = 1 ; Rpk = Riq = Rik = 0  ;           for i#p,q and k#p,q 
 
Let’s now denote:  B = RT A R,  which elements are as follows: 
 

bip = aip cos z – aiq sin z 

biq = aip sin z + aiq cos z 

bik = aik ;  where i,k # p,q 

 

bpp = app cos2 z + aqq sin2 z – 2 apq sin z cos z 

bqq = app sin2 z + aqq cos2 z + 2 apq sinz cos z 

bpq = 0,        and the remaining elements are symmetric. 

 
where:  sin z = w / sqrt(2(1+sqrt(1-w^2))), and  cos z = sqrt (1-sin2 z) 

with:     L = - apq,     M = (app-aqq) / 2 ,  and  w = L sign(M) / sqrt (M2+L2) 

 
This is iterated using a strategy for selecting each non-diagonal element in turn, until all non-diagonal 
elements are zero when rounded to a specific number of decimal places.When this is so, the diagonal 
contains the eigenvalues. 
 
Program remarks. The accuracy and running times are display settings-dependent, however the 
computed eigenvalues are very often more accurate that it’d appear; for instance, using FIX 5 it’s quite 
possible to have eigenvalues accurate to 8 decimal digits. The program is written to be as fast as 
possible and to occupy the minumim amount of program memory; the matrix is stored taking into 
account its symmetry, so that all elements are stored only once (as aji = aij). For a nxn matrix 
minimum size is [ ½ ( n^2 + n) + 7]. 
 
        [[ 25 -41  10 -6 ] 
Example.  Find the eigenvalues for the 4x4 matrix: A =  [-41  68 -17 10] 
         [ 10 -17   5  -3 ] 
         [ -6  10  -3  2 ]] 
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Keystrokes   Display    Result 
 
XEQ “JACOBI”   “”   Prompts for dimension 
4, R/S    “”   Data entry starts 
25, R/S    “” 
41, CHS, R/S   “” 
10, R/S    “” 
6, CHS, R/S   “”   Note how the symmetric 
68, R/S    “”   elements are skipped 
17, CHS, R/S   “” 
10, R/S    “” 
5, R/S    “” 
3, CHS, R/S   “”   input the last element 
2, R/S    “”   Asks for precision  
5, R/S    “”  Scrolling on the display   
    “”    
R/S    “”  After a while ~ 2.5m in normal 41 
R/S    “”  the four ev’s are displayed. 
R/S    “” 
 
 
 

Example. Repeat the same case but using  CHRPOL , to obtain the polynomial and its roots. 

 
Keystrokes   Display    Result 
 

ALPHA , “AA”, ALPHA  current X-reg   Matrix name in Alpha 

4.004, XEQ “MATDIM”       Creates mtrix in X-Mem 
XEQ “PMTM”   “”   prompts for row-1 
25, ENTER^, CHS, 41, ENTER^,  
10, ENTER, CHS, 6, R/S  “”   prompte for row-2 
CHS, 41, ENTER^, 68, ENTER^,  
CHS 17, ENTER^, 10, R/S ““   prompts for row-3 
10, ENTER^, CHS, 17, ENTER^, 
 5, ENTER^, CHS, 3, R/S “_“   prompts for row-4 
CHS, 6, ENTER^, 10, ENTER^, 
CHS, 3, ENTER^, 2, R/S  
XEQ “CHRPOL“   “”  Scrolling on the display  
R/S    “”  Reminder of convention 

    “”   Coefficient of x^4 
    “”   Coefficient of x^3 
    “”   Coefficient of x^2 
    “”   Coefficient of x 
    “”  First coef. (independent term) 
    “”  Scrolling on the display  
    “”   Frst root  
R/S    “”  Second root 
R/S    “”  Third root 
R/S    “”  Fourth and last root. 
 
The solution is:  Chr(A) = x^4 -100 x^3 + 146 x^2 – 35 x +1 
with roots shown in the text above. 
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4.2.-  Managing Polynomials. 
 
The remaing of this chapter is about polynomials. Let’s first cover those functions used to manage the 
data entry and output for them, polynomial math and some handy utilities used in the other programs. 
 

 

 

4.2.1. Defining and Storing Polynomials. 

 
A polynomial is an expression of the form 

    
where a(n)#0 
 
Or, more concisely:  

    
Polynomials can only be stored in main memory (ie. not as X-mem files), thus the way to handle them 
will be by a control word of the form bbb.eee, which denotes the beginning and end registers that 
hold the polynomial coefficients, a(i) 
 
The coefficients are stored starting with the highest order term first (ie. x^n) in register bbb, and 
ending with the zero-th term last, stored in register eee. It follows that the degree of a polynomial n 
verifies:  n = (eee –bbb). 
 
For instance, the control word 1,007 represents a polynomial of degree 6, which coefficients are stored 
as follows:  a(6) in R01, a(5) in R02, a(4) in R03, a(3) in R04, a(2) in R05, a(1) in R06 and a(0) in R07. 
 
 
The Polynomial Editor. There are three functions available in the SandMatrix to enter and review 

polynomials in the calculator. The main one is  PEDIT , which takes the input from the control word in 

the X-register and sequentially prompts for each coefficient value. The first thing it does is present a 
reminder of the convention used, relating the subindex to the power of the variable for each term: 
 

        
 
A nice feature is that it’ll check for available data registers to complete all the storage, re-adjusting the 

calculator SIZE if necessary.  PEDIT  does not use any data registers itself. 

 Function Description Input / Output 

7 DTC Deleting Tiny Coefficients Control word in X 

8 P+P Polynomial Sum Driver for PSUM 

9 P-P Polynomial Subtraction Driver for PSUM 

10 P*P Product of Polynomials Driver for PPRD 

11 P/P Division of Polynomials Driver for PDIV 

12 PCPY Polynomial Copy Control word in X-reg, destination in Y 

13 PDIV Euclidean Division Control words in Y- and X-regs 

14 PEDIT Edits Polynomial Coefficients Control word in X-Reg 

15 PMTP Prompts for Coeffs in Alpha List Control word in X-Reg 

16 PPRD Polynomial Multiplication Control words in Y- and X-regs 

17 PSUM Polynomial Addition & Subtraction Control words in Y- and X-regs 

18 PVAL Polynomial Evaluation Control word in Y, argument in X 

19 PVIEW Views Polynomial Coefficients Control word in X-Reg 
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Note that  PEDIT  includes in the prompts the current value held in the corresponding data register, so 

you don’t need to type a new one if it’s already correct.  Alternatively you can use  PVIEW  to review 

the coefficients without any editing capabilities. In this mode the prompts don’t have the question mark 
at the end, which indicates the value cannot be changed from the program. 
 

                   
  In edit mode       In review mode. 
 
You can control wether PVIEW stops after each prompt or does the complete listing without stopping 
by setting or clearing the user flag 21. Note also that if the coefficient is an integer value it will not 
display the zeroes after the decimal point – in both editi and review modes. 
 
 

A faster alternative for data entry is  PMPT   – the polynomial prompt. This one does for polynomials 

what PMTM did for matrices: the data entry is done as a list in Alpha, containing the values of all 
coefficients at once.  
 
This is obviously limited by the total length available in the Alpha register (24 characters), including the 
blank spaces that separate each entry, and the minus signs for negative values. The two leftmost 
characters in the prompt indicate the first data register used to sore the coefficients (not the row# as 
in the Matrix case). These characters are not part of the final list, and therefore aren’t included in the 
total count. 

                            
 

Another restriction of  PMTP  is that values cannot be expressed in exponential form (using EEX), 

which key is ignored during the process. You can use negative and decimal values as the CHS and [,] 
(radix) keys are active. Obviously the back arrow key is always active to correct wrong entries. 
 

 
1 LBL "PEDIT" 27 "|-="

2 SF 08 flags mode 28 RCL IND Y append current value

3 ENTER^ copies cntl word to Y 29 FRC? has fractional part?

4 I<>J swaps bbb and eee 30 ARCL X yes, append as is

5 E 31 INT? integer

6 + 32 AINT yes, append IP only

7 SIZE? current size 33 FC? 00 editable?

8 X<>Y 34 AVIEW no, show already

9 X>Y? not enough? 35 FC? 08 editable?

10 PSIZE adjust size 36 GTO 02 no, next coeff

11 RDN 37 LBL 00

12 RDN cntl word to X-reg 38 "|-?" append "?"

13 GTO 00 skip over 39 CF 22 reset data entry flag

14 LBL "PVIEW" 40 PROMPT

15 CF 00 flags mode 41 FC? 22 value entered?

16 LBL 00 42 GTO 02 no, next coeff

17 -ADV POLYN shows convention 43 STO IND Z yes, store it

18 PSE 44 RDN discard entry

19 ENTER^ copies cntl word to Y 45 LBL 02
20 PDEG polyn degree 46 DSE X decrement counter

21 X<>Y cntl word to X-reg 47 NOP

22 STO L saves it in L 48 ISG Y increment register

23 X<>Y degree to X-reg 49 GTO 01 next register

24 LBL 01 50 LASTX get control word

25 "a" 51 END done

26 AIP append index  
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4.2.2.  Polynomial Arithmetic {  PSUM  ,  PPRD  , PDIV  } 

 
The arithmetic functions provide convenient functionality for the basic operations: addition, subtraction, 
multiplication and eucliedean division. A distinction is made between the three base routines (PSUM, 
PPRD, and PDIV written by JM Baillard), and the four user-friendly drivers that automate the element 
data entry and work out all the details behind the scenes. 
 
For the first group, beside the element data entry, the control words for each operand polynomial and 
the result are typically input in the X- , Y- and Z-registers of the stack. As follows: 
 

Operation 
 

Addition, Subtraction,   
Multiplication 

Euclidean Division Copy 

 
Input 

bbb.eee1 in Z 
bbb.eee2 in Y 

1st. Reg of result in X 

bbb.eee of dividend in Y 
bbb.eee of divisor in Y 

 

bbb.eee of source in Y 
bbb or destination in X 

 
Output bbb.eee of result in X 

 

bbb.eee of reminder in Y 
bbb.eee of quotient in X 

 
bbb.eee or result in X 

Because registers R00 to R03 are used internally, they cannot be used to hold the polynomial 
coefficients. (ie. all control words must start at bbb = 4 at least). Note also that none of the register 
ranges should overlap. In addition, for the Euclidean Division the original polynomials are overwritten 
with the results (quotient and reminder). 

Let      a(x) = a0.xn+a1.xn-1+ ... + an-1.x+an   

and     b(x) = b0.xm+b1.xm-1+ ... + bm-1.x+bm   

then there are only 2 other polynomials q(x) and r(x)  such that:   a = b.q + r , with  deg(r) < deg(b) . 

Note that  PDIV  does not work if deg(a) < deg(b), but in this case q=0 and r=a. 

 
Example 1.- Find the result of the polynomial product of a(x) * b(x), where:  
 

a(x) =  2.x5 + 5.x4 - 21.x3 + 23.x2 + 3.x + 5   and   b(x) = 2.x2 - 3.x + 1     
 

We’ll use  P*P  for convenience. It’ll automatically store the coefficients of the operand polynomial in 

registers {R04 to R09} and in registers {R10 to R12} respectively. The result polynomial will be stored 
starting with register R20, leaving the operand polynomials untouched. 
 

     The solution is:   p(x) = 4.x7 + 4.x6 - 55.x5 + 114.x4 - 84.x3 + 24.x2 - 12.x + 5 

Example 2.-  Find the quotient and reminder for the polynomial division a(x) / b(x), where:: 
 

  a(x) =  2.x5 + 5.x4 - 21.x3 + 23.x2 + 3.x + 5    and    b(x) = 2.x2 - 3.x + 1      

We’ll use  P/P  for convenience. It’ll store the dividend coefficients in registers {R04 to R09} and the 

divisor’s in registers {R10 to R12}. Note that in this case the coefficients are already there – as entered 
in the previous example, so you just have to press R/S during the process. 
 
The solutions are displayed sequentially, starting with the quotient first. The indices convention 
message ” (aK*X^K)” is shown prior to the enumeration of each result polynomial. After completion, 

the control word for the reminder is left in X, and the control word for the quatient is saved in R00. 
 

      The solutions are:   q(x) = x3 + 4.x 2 -5.x + 2    and   r(x) = 14.x + 3  
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Example 3.- Calculate the addition and subtraction of the polynomials a(x) and b(x) below: 

 

        a(x) = 2.x3 + 4.x2 + 5.x + 6     and   b(x) = 2.x3 - 3.x2 + 7.x + 1    

 
We’ll use  P+P  and  P-P  for convenience. It’ll automatically store the coefficients of the operand 

polynomials in registers {R04 to R07} and in registers {R08 to R11} respectively. The result polynomial 
will be stored starting with register R12, leaving the operand polynomials untouched. After completion, 
the control word for the result is left in X 

 
    The solutions are:  a(x) + b(x) = 4.x3 + x2 + 12.x + 7 

a(x) - b(x) = 7.x2 - 2.x + 5 

 

 
Below you can see the program listing for the four arithmetic driver routines. 

 
1 LBL "P*P" 32 LBL 10

2 CF 01 33 "N#1?" order P1

3 GTO 00 34 PROMPT n1 

4 LBL "P/P" 35 4

5 SF 01 36 +
6 LBL 00 37 E3/E+ 1,00(n+4)

7 XEQ 10 combined data entry 38 3

8 FC? 01 product? 39 + 4,00(n+4)

9 GTO 00 yes, go there 40 STO 00

10 RND division 41 PEDIT

11 PDIV 42 XEQ 05 adjust index

12 X<>Y reminder cntl word 43 ENTER^ push stack

13 STO 00 store 44 "N#2?" order P2

14 X<>Y 45 PROMPT n2 

15 PVIEW show quotient 46 + n2+eee1

16 X<>  00 47 I<>J 0,00(n2+eee1)

17 GTO 02 48 + (eee1+1),00(eee1+n2)

18 LBL 00 multiplication 49 PEDIT

19 PPRD 50 RCL 00 bbb.eee1

20 GTO 02 51 X<>Y bbb.eee2

21 LBL "P+P" 52 LBL 05

22 CF 01 53 ENTER^ bbb.eee2

23 GTO 01 54 I<>J eee.bbb2

24 LBL "P-P" 55 INT eee2

25 SF 01 56 E

26 LBL 01 57 + eee2+1

27 XEQ 10 combined data entry 58 END

28 PSUM

29 LBL 02

30 PVIEW show result (reminder)

31 RTN done
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4.2.3. Deleting Coefficients and Moving Polynomials  {  DTC  ,  PCPY  ,  PSWP  } 

 
The functions in this section perform the following housekeeping chores: 
 

• Copy a polynomial from a source to a destination location,  
• Swap polynomial coeffiecients between two locations, and 
• Delete small coefficients (below 1E-7), which typically appear due to rounding errors in the 

intermediate operations. This has a cumulative effect that can alter the final result if not 
corrected.  

 
In revision “N” of the SandMatrix both PCPY and PSWP are implemented as MCODE functions – faster 
and more flexible, as they allow overlapped ranges of data registers.  PCPY is located in the main FAT 
but PSWP is incuded in the secondary FAT, thus you must use one of the launchers to execute it.  
 
These functions require the polynomial control word bbb.eee in Y, and the new 1st. register address in 
X. The new control word is left in X upon completion. Only the control word in X is required as input for 
DTC. 
 
The three small routines below were written by JM Baillard. You can see the program listings for these; 
always a beauty to behold JM’s mastery of the RPN stack. 
 

1 LBL "PCPY" 1 LBL "PVAL" cnt'l word in X
2 RCL Y bbb.eee1 2 0

3 E3 3 LBL 14

4 * 4 RCL Y

5 INT 5 *

6 I<>J does E3/ for integers 6 RCL IND Z

7 SIGN puts bbb.eee in L 7 *
8 RDN 8 ISG Z

9 ENTER^ 9 GTO 14

10 ENTER^ 10 X<>Y

11 LBL 06 11 SIGN

12 CLX 12 RDN

13 RCL IND L 13 END

14 STO IND Y

15 ISG Y

16 CLX 1 LBL "DTC" cnt'l word in X

17 ISG L 2 LBL 05

18 GTO 06 3 RCL IND X

19 CLX 4 ABS
20 SIGN 5 E-7 threshold value

21 - 6 X<Y?

22 I<>J 7 GTO 06
23 + 8 X<> Z

24 X<>Y 9 ISG X

25 FRC 10 GTO 05

26 ISG X 11 E

27 INT 12 ST- Y drecrease Y

28 E5 13 0

29  / 14 STO IND Z overwrite w/ zero
30 + 15 LBL 06

31 END 16 X<> Z cnt'l word to X

17 END  
 
When using the FOCAL program above be careful that the register ranges for both polynomials do not 
overlap. 
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4.2.4. Polynomial Evaluation. 1st & 2nd derivatives.  {  PVAL  ,  dPL  ,  dPL2  } 

 
Calculating derivatives and integrals of polynomial functions is particularly simple. For the polynomial 
function P(x) on the left below the derivative with respect to x and the indefinite integral are shown in 
the center and right formulas respectively: 
 

  ;  ; 
 
The subject of Polynomial evaluation is as old as the HP calculators are – surely you remember 
examples provided in the HP-25 manual and even earlier models. It’s no surprise then that it’s found its 
way to the SandMatrix, with the added bonus of morphing into an all-MCODE implementation, which 
has been extended to include the evaluation of the first and second derivatives as well. 
 
The evaluation leaves the result value in X and the argument in LastX – but the control word is 
maintained in the Y-register for convenience. Let’s see a few examples to clarify: 
 
Example. Evaluate the Polynomial and the first two derivatives for P(x) below at points x=2 and x=-3 
 

P(x) = 5 x^5 + 4 x^4 + 3 x^3 + 2 x^2 + x + 1 
 
Using PMTP to enter the coefficients in { R01, R06 }, we type as follows: 
 

1.006, XEQ “PMTP” => “ “ 
5, ENTER^, 4, ENTER^, 3, ENTER^, 2, ENTER^, 1, ENTER^, 1,   R/S   

 
The control word is left in X, therefore just type the point of evaluation and the required function 
names as shown below: 
 

2, XEQ “PVAL”   =>  259,0000000 
RDN, 3, CHS, XEQ “PVAL” => -956,0000000 

 

RDN, 2, V$ “DPL”  => 573,0000000 

RDN, 3, CHS, ML, [ , ]  => 1.663,000000 
 

RDN, 2, V$  “DPL2”  =>  1.032,000000 

RDN, 3, CHS, ML, [ , ]  => -2.318,000000 

 
You can verify the obtained results using the analytical expressions for P’(x) and P”(x);  
 

P’(x) = 25 x^4 + 16 x^3 + 9 x^2 + 4 x +1 

P”(x) = 100 x^3 + 48 x^2 +18 x +4 
 
simply enter their coefficients in memory and use PVAL and dPL as appropriate. For example, 
evaluating P’(x) and its first derivative at x=2: 
 

7.011, XEQ “PMTP”, {25, ENTER^, 16, ENTER^, 9, ENTER^, 4, ENTER^, 1}, R/S 
2,  XEQ “PVAL“   => 573,0000000 
RDN, 2, V$ “DPL”  => 1.032,000000 

 
And finally, closing the circle of derivatives we enter P”(x) in memory: 
 

12.015, XEQ “PMTP”, {100, ENTER^, 48, ENTER^, 18, ENTER^, 4 }, R/S 
2,  XEQ “PVAL”   => 1.032,000000 
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Polynomial Integral and Evaluation  {  ITPL  ,  PVAL  } 

 

But wait, there’s more:  PVAL  can also evaluate the primitive polynomial, i.e. calculating the integral 

between zero and the evaluation point of the original polynomial. Simply change the sign of the control 
word in Y so it’s negative to trigger this mode. 
 

If you prefer a dedicated function, the entry  ITPL , is also available for this purpose that uses the 

control word in its standard form (i.e. positive value). You can choose which way to use as preferred.  
 

Example 1:  Calculate the integral of  Q(x) = x^2 + 3x -7  in the interval [0, 2] 

 
First we enter the coefficients in registers { R09 – R11 } using PMTP as usual, then we type: 
 

9.011, CHS,  2,  PVAL    => -5,333333334  ,  or alternatively: 

9,011, 2,  V$ “ITPL”  => -5,333333334 
 

obtained in a blazing fast short time that sure beats the heck out of INTEG / FINTG  approach. 
 
 
 

Example 2: Calculate the integral between -1 and 2 for  P(x) = 2.x^3 – 2.x^2 – 6.x + 10 
 
 

First we introduce the coefficients in the data registers of choice using PMTM as before. Then we’ll 
modify the integration limits to take advantage if ITPL, thus we can write: 
 
ITG[-1, 2] = ITG[0, 2] – ITG[0, -1] =  ITPL(2) – ITPL(-1) = 10,66666667 – (-11,83333333) = 
               =  22,50000000 
 

 
 
The figure on the left shows the polynomial in question, with an approximation done using trapezoidal 
rule’s rectangles amounting to 22.48 in that example. 
 
The figure on the right shows a book example of a cubic polynomial and its first & second derivatives 
(parabola and straight line), and even the third derivative (constant line) – here all have real roots but 
that’s clearly not always the case. Note how the roots of a function correspond to the points where the 
derivative ot its primitive polynomial is zero, i.e. their local minimum/maximum – as we know well from 
function theory.  
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Appendix.- Polynomial Real Roots 

 
There’s much to be said about simple functions like these, that when implemented in MCODE provide 
maximum speed and convenience. As an exercise, you’re encouraged to write a polynomial real root-
finder routine using Newton’s (left) or Halley’s (right) methods for the successive approximations to the 
roots. Programming them for polynomials should become a near-trivial task using the functions 
described above. 

;   

 
 
The program below is taken from JM Baillard’s web pages,  a perfect example of the applicability of the 
evaluation functions. It solves the equation p(x) = a0.x^n + a1.x^n-1 + ... + an-1.x + an = 0,  
provided all roots are real. 
 
The coefficients { a0 , a1 ,  ...... , an-1 , an } are to be stored into contiguous registers Rbb thru Ree. 
Starting with an initial guess x0 , the Newton's formula is applied until  | p(xk)/p'(xk) | is smaller than 
10-9  (line 24). Then, p is replaced by p/(x-r)  (lines 32 to 39) and the root is stored into Ree. 
 
The process is repeated until all roots are found (polynomial deflation).  Finally, the roots are in 
registers {Rbb+1 , ..... , Ree}, (i.e. the original coefficients are overwritten) - and the control word is 
left in X upon completion. 
 
 

01   LBL "PLR"  
02   STO 01 
03   X<>Y 
04   STO 00 
05   STO 03 
06   STO 04 
07   ISG 04 
08   LBL 01        
09   VIEW 01 
10   RCL 03 

11   RCL 01 
12   dPL  
13   STO 02 
14   X<> L 
15   PVAL 
16   RCL 02 
17   / 
18   ST- 01 
19   RCL 01 
20   X=0? 

21   SIGN 
22   / 
23   ABS 
24   E-9 
25   X<Y? 
26   GTO 01  
27   E-3 
28   ST- 03 
29   RCL 03 
30   STO 02 

31   CLX 
32   LBL 02 
33   RCL 01 
34   * 
35   ST+ IND 02 
36   RCL IND 02 
37   ISG 02 
38   GTO 02 
39   RCL 01 
40   STO IND 02 

41   ISG 04 
42   GTO 01 
43   RCL 00 
44   E 
45   + 
46   CLD 
47   END 
 
  

 
 
Example:   Find all the roots of   P(x) = 2.x^5 + 3.x^4 - 35.x^3 - 10.x^2 + 128.x - 74  
 
For example storing the coefficients in {R05 – R10} and if we choose  x0 = 1 
  

 5.010  ENTER^,  1,  XEQ "PLR"  -> the successive approximations are displayed  
   and finally: =>       6.010  
 

 the control number of the solutions in {R06 - R10} 
  
   RCL 06  =>  -4.373739462  

 RCL 07  =>  -2.455070118  
 RCL 08  =>   2.984066207  
 RCL 09  =>   1.641131729  
 RCL 10  =>   0.703611645  
 

For more examples and other programs to cover non-real roots see Jean’Marc’s pages located at: 
http://hp41programs.yolasite.com/polynomials.php 

http://hp41programs.yolasite.com/polynomials.php
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4.2.5.  Polynomials over Integer field: Cohn’s irreducibility criterion. 

 
 
If F is a field, a non-constant polynomial is irreducible over F if its coefficients belong to F and it cannot 
be factored into the product of two non-constant polynomials with coefficients in F. 
 
Arthur Cohn's irreducibility criterion is a sufficient condition for a polynomial to be irreducible in Z[x] —
that is, for it to be unfactorable into the product of lower-degree polynomials with integer coefficients. 
 
The criterion is often stated as follows: If a prime number p is expressed in base 10 as 

       
where 0<= ak < 9, then the polynomial formed with the same factors below is irreducible in Z[x]: 
 

 
 
 

 ?IRR  is a peculiar function, in that the irreducibility is tested by “brute force”, using a sequence of 

integers looking for a prime number result. If found, the polynomial is irreducible, but if not found 
within the range of the calculator then there’s no conclusive determination. So this is a glorified 
example of the trial and errortechnique, so to speak. 
 
 

Using functions from the SandMath makes 
programming this criterium a simple affair, see 
the program listing on the left with functions  

RGMAX  and  PVAL  doing all the heavy-lifting 

for you, and of course function  PRIME?      

finally testing the results for primality. 
 
  

  
A restriction of this method is that all coefficients 
must be positive, and obviously the independent 
term a0 not null. 

 
 
 
 
 

 
 
Example1:       p(x) = 2 x4 + 3 x2 + 5 x + 1  ,  
 ?IRR  returns n=6,  which result p(6) = 2,731 is a prime 

 

 

Example2:       p(x) = 2 x6 +  3 x5 + 4 x3 + 5 x2 + 2 x + 1   , 
 ?IRR  returns n=8,  which result p(8) = 624,977 is a prime 
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4.3. Polynomial Root Finders. 
 
Once upon a time there was a program called POLYN available in HP’s infamous MATH PAC. That 
program was capable of calculating the roots of a polynomial up to degree *five*, which perhaps back 
then when it first came out could be regarded as a remarkable affair – but by today standards certainly 
isn’t much to write home about. 
 

 
The SandMatrix picks up where the SandMath left things off, providing functions to calculate the roots 
of the quadratic and cubic equations, ie. polynomials of degrees 2 and 3. The next step would then be 
a Quartic equation, or polynomial of degree 4. 
 
 

4.3.1. Quartic Equation solutions.  {  QUART  } 

 

 QUART  solves the equation   x4+a.x3+b.x2+c.x+d = 0    

If you have a polynomial not in monic form (which leading coefficient is not 1), simply divide all the 
equation by this coefficient. With this convention we can use the stack registers {T,Z,Y,X} to hold the 
coefficients a, b, c, and d – which provides a convenient method for data input. 

The method used can be summarized as follows:  

First, the term in x3 is removed by a change of argument, leading to: 
 

            x4+p.x2+q.x+r = 0  (E')  

Then, the resolvant  z3+p.z2/2+(p2-4r).z/16-q2/64 = 0 is solved by CROOT, and if we call  z1 , z2 , 

and z3  the 3 roots of this equation, the zeros of (E') are: 

x =   z1
1/2   sign(-q) +/- ( z2

1/2 + z3
1/2 ); 

x = -(z1
1/2) sign(-q) +/- ( z2

1/2 - z3
1/2 )  

Note that QUART uses the Alpha for data storage, but no data registers at all. 

The program does the data output automatically, presenting the roots as either real or complex 
conjugated. This is done using the status of flags 01 and 02 as appropriate – but the user needs not to 
concern him or herself with the decoding rules. The output uses function ZOUT from the SandMath, 
which shows “J” to denote the imaginary unit “ï” 

 

Example 1:  Solve  x4 - 2.x3 - 35.x2 + 36.x + 180 = 0  

-2 ENTER^ , -35 ENTER^  36 ENTER^,  180 , XEQ "QUART" >>>> 

X1=6,000,   X2=3,000 

X3=-2,000   X4=-5,000  

 

 Function Description Input / Output 

1 QUART Solution of Quartic Equation Polynomial coeffs in Memory 

2 PROOT Polynomial Roots Prompts for all data 

3 RTSN Subroutine mode of PROOT Polynomial coeffs in Memory 

4 BRSTW Quadratic Factors - Bairstow method Cnt’l word in X-reg 



SandMatrix_4 Manual  -  Revision “5Y+” 

(c) Ángel M. Martin                                 January 2021 Page 98 of  148 
 

Example 2:  Solve   x4 - 5.x3 + 11.x2 - 189.x + 522 = 0  

-5, ENTER^, 11, ENTER^, -189, ENTER^, 522 , XEQ “QUART”    >>>>  

Z= -2 + J5,000   

X3= 3,000,   X4= 6,000 

In this and next example, note how true integer values (up to the 9th. digit) don’t display zeros after 
the decimal point, a much clearer display with added informational value. 

 

Example 3:  Solve   x4 - 8.x3 + 26.x2 - 168.x + 1305 = 0  

-8, ENTER^ , 26, ENTER^ , -168, ENTER^ , 1305 , XEQ “QUART”  >>>>   

Z= -2 + J5,000   

Z=  6 + J3,000 

 

Example 4: Calculate the roots of the polynomial:    Q(x) = x^4 + 2 x^3 – 7x^2 – 8 x + 12         

which plot is shown below. 

 

2, ENTER^, 7, CHS, ENTER^, 8, CHS, ENTER^, 12, XEQ “QUART“ >>>> 

X1=  2,000; x2=  1,000 

X3= -2,000; x4= -3,000 

                             

 

 

Example 5:  Solve   x4  + x3 + x2  + x + 1 = 0  

Simply type:  1, ENTER^, ENTER^, ENTER^,   QUART  ,  >>>  

Z=  0.309 + J0.951   ,  R/S 

Z= -0.809 + J0.588 
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4.3.2. General case: degree N.  {  PROOT  ,  BAIRS  }  

 

 
This method is based on quadratic factorizations, that is finding Q(x) - one quotient polynomial of 
degree two, plus R(x), a reminder polynomial of degree one -  reducing the original degree by 2 and 
thereby changing the expression as follows: 
 
P(z) = P”(z) Q(z) + R(z);  with P”(z) = [ bi z^n-i ] , i=2,1...(n-2) 

 
This will then be repeated until the reduced polynomial P”(x) reaches degree one or two/. 
 
Let  Q(x) = x^2 + p x + q;  and   

R(x) = r x + s 
 
Then the reduced polynomial coefficients are given by 
 

bi = a(i-2) – p b(i-1) – q b(i-2) ;   i = 2, 3, ..., (n+2)          (1) 
 
and we have the following expressions for the coefficients of the reminder: 
 

 r = b(n+1) 
s = b(n+2) + p b(n+1)                 (2) 

 
clearly with both r and s depending on the p,q values – formally expressed as: r=r(p,q) and s=s(p,q).  
 
The problem is thus obtaining the coefficients p,q of such a quotient polynomial that would cancel 
the reminder  (i.e. that make r=0 and s=0.  This is accomplished by using an iterative approach, 
starting with some initial guesses for them (p0, q0), iterating until there is no change in two 
consecutive values,  
 

r’(p,q) + r = 0;   or: r’(p,q) = -r 
s’(p,q) + s = 0;   or:  s’(p,q) = -s 

 
Expressing it using their partial derivarives it results: 
 

dp (r/p) + dq (r/q) = -r 

dq (s/p) + dq (s/q) = -s 

 
Using the relationships (1) above, we can formally obtain the partial derivatives using the coefficients of 
the original polynomial, ai. The problem will then be equivalent to solving a system of 2 linear 
equations with two unknowns, dp and dq. 
 
From equation (1) above it follows: 
 

bi/p = ci = -b(i-1) – p c(i-1) – q c(i-2);    i = 2,3...,(n+2) 

bi/q = c(i-1) 

 
Making use of equation (2) to apply it for i=n we have as final expression 

 

c(n+1) dp + cn           dq  =  -b(n+1) 
-q cn    dp + [c(n+1) + p cn] dq =  -[b(n+2) +p b(n+1)]    (3) 
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Starting with (p0=0,5; q0=0,5) as initial guesses we’ll obtain dp and dq for each pair of values (p,q). 
With them we adjust the previous guess, so that the new corrected values for p and q are  
 

p’ = p + dp  
q’ = q + dq 

 
This will be repeated until the precision factor “” is smaller than the convergence criteria; The 

precision factor is calculated as follows: 
 

 = [abs(dp) + abs(dq)] / [abs(p) + abs (q)]   

 
The program dimensions and populates matrices [RS] and [CN] to hold the current values of p,q  and 
the coefficients Cn respectively: 
 

• [RS] is the column matrix, of dimension (2x1).  
• [CN] is the coefficients matrix, of dimension (2x2). 

 
The linear system is solved as many times as iterations needed to establish the convergence.  With 
each factorization the program obtains two roots. This is repeated for, until all roots have been found.  
 

Program Details. 
 

In manual (RUN) mode  PROOT  prompts first for the order n (ie. the degree) and for each of the 

coefficients sequentially. It then presents the option to store the roots into a matrix in X-Mem. To use it 
you just have to press “Y” at the prompt below: 
 

           
 
All roots are stored in matrix [ROOTS], of dimension (n x 2) - with the first column holding the real 
parts and the second the imaginary parts of each root (assumed complex). 
 

The global label  PROOT  is also meant to be used in subroutines for program execution. It expects 

the degree stored in R00, and the coefficients stored in registers R03 until R(3+n). Registers R01 and 
R02 are used internally and cannot be used for your data. In subroutine mode the roots will always be 
stored in the matrix [ROOTS]. 
 
Example 1. Find the five roots of the polynomial below 

P(x) = 2.x5 + 7.x4 + 20.x3 + 81.x2 + 190.x + 150  

Keystrokes   Display   Result 
XEQ “PROOT”   “  Prompts for the degree 
5, R/S    “” Reminder of convention 

    “”  prompts for coeffs, showing current 
2, R/S    “” 
7, R/S    “  
20, R/S    “” 
81, R/S    “” 
190, R/S   “ 
150, R/S   “” prompts for storage option 
“Y”    “” 
 
At this point the different precision factors are shown, which shoud be decreasing as the iterations 
converge towards the solutions – and this repeated as many times at quadratic factors are needed. 
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The solutions are shown below (in FIX 5): 
 

Z=-2,00000+J1,00000  and its conjugate (not shown) 
Z=1,00000+J3,00000   and its conjugate (not shown) 
Z=-1,50000 

 
And the matrix [ROOTS] is left in X-Mem, with 5 rows and two columns, as follows: 
 
    [[ -2  1  ] 
     [ -2 -1  ] 

[ROOTS ] =   [  1  3  ] 
    [  1 -3  ] 

     [ -1.5  0  ]]  
 
To be sure it isn’t the fastest method in town (typically 5-6 iterations are needed, each iteration takes a 
bout one full minute at normal speeds), but it’s applicable to any degree and stores the results in a 
matrix – which makes it very useful as a general-purpose approach. 
 

 
 

Program listing.- 
 
 

 *LBL “PROOT” 1 
 RAD 2 
 F#  ?RTN 3 
 GTO 00 4 
 SF 01 5 
 SIZE? 6 
 ?ORDER 7 
 STOP 8 
 INT 9 
 ABS 10 
 X=0?  Zero? 11 
 1/X`  abort 12 
 STO Z 13 
 ST+ X 14 
 9 15 
 + 16 
 X>Y? 17 
 PSIZE 18 
 RCL Z 19 
 STO 00 20 
 3 21 
 + 22 
 E3/E+ 23 
 2 24 
 + 25 
 PEDIT 26 
 CF 21 27 
 "STO? Y/N" 28 
 AVIEW 29 
 F# 30 
 94  Y/N? 31 
 CLX 32 
 X#0? 33 
 GTO 00 34 

 GTO 07 35 
 *LBL “RTS”  36 
 CF 01 37 
*LBL 07 38 
 RCL 00 39 
 2 40 
 I<>J 41 
 + 42 
 "ROOTS" 43 
 MATDIM 44 
 PURFL 45 
 MATDIM 46 
 , 47 
 MSIJA 48 
*LBL 00 49 
 RUNNING 50 
 "CN" 51 
   E 52 
  E3/E+ 53 
  ST+ X 54 
  MATDIM 55 
  "RS" 56 
  INT 57 
  MATDIM 58 
 *LBL 97 59 
  2 60 
  RCL 00 61 
  X=Y? 62 
  GTO 92 63 
  X=1? 64 
  GTO 91 65 
  ,5 66 
  STO 01 67 
  STO 02 68 

 *LBL 98 69 
  RCL 00 70 
  4 71 
  + 72 
  SIZE? 73 
   E 74 
  - 75 
  I<>J 76 
  + 77 
  CLRGX 78 
  INT 79 
  RCL X 80 
  RCL 00 81 
  + 82 
  I<>J 83 
  + 84 
  STO M 85 
  3.1 86 
  STO N 87 
 *LBL 09 88 
  RCL M 89 
  RCL IND X 90 
  RCL 02 91 
  * 92 
  ISG Y 93 
  "" 94 
  RCL IND Y 95 
  RCL 01 96 
  * 97 
  + 98 
  CHS 99 
  RCL IND N 100 
 + 101 
 ISG Y 102 
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 "" 103 
 STO IND Y 104 
ISG N 105 
ISG M 106 
GTO 09 107 
"RS" 108 
. 109 
MSIJA 110 
RCL 00 111 
ST+ X 112 
6 113 
+ 114 
RCL IND X 115 
CHS 116 
DSE Y 117 
RCL IND Y 118 
CHS 119 
MSC+ 120 
RCL 01 121 
* 122 
+ 123 
MSC+ 124 
6 125 
RCL 00 126 
+ 127 
LASTX 128 
ST+ X 129 
4 130 
+ 131 
I<>J 132 
+ 133 
STO M 134 
RCL 00 135 
ST+ X 136 
7.1 137 
+ 138 
STO N 139 
LBL 10 140 
RCL N 141 
RCL IND X 142 
RCL 02 143 
* 144 
ISG Y 145 
"" 146 
RCL IND Y 147 
STO IND N 148 
RCL 01 149 
* 150 
+ 151 
RCL IND M 152 
+ 153 
CHS 154 
STO IND Y 155 
ISG M 156 
GTO 10 157 
"CN" 158 
, 159 

MSIJA 160 
RDN 161 
 MSR+ 162 
 DSE Y 163 
 "" 164 
 RCL IND Y 165 
 MSR+ 166 
 RCL 02 167 
 CHS 168 
 * 169 
 MSR+ 170 
 LASTX 171 
 / 172 
 RCL 01 173 
 * 174 
 + 175 
 MSR+ 176 
 >",RS" 177 
 MSYS 178 
 MNAME? 179 
 , 180 
 MSIJA 181 
 MRR+ 182 
 ST+ 01 183 
 MRR+ 184 
 ST+ 02 185 
 SUMAB 186 
 RCL 01 187 
 ABS 188 
 RCL 02 189 
 ABS 190 
 + 191 
 / 192 
 VIEW X 193 
 RND 194 
 X#0? 195 
 GTO 98 196 
  E 197 
 RCL 01 198 
 RCL 02 199 
 TONE 2 200 
 XEQ 02 201 
 RCL 00 202 
 5 203 
 + 204 
 3 205 
 E3/E+ 206 
 + 207 
 RCL 00 208 
  E 209 
 - 210 
  E6 211 
 / 212 
 + 213 
 REGMOVE 214 
 2 215 
 ST- 00 216 
 GTO 97 217 

*LBL 92 218 
 RCL 03 219 
 RCL 04 220 
 RCL 05 221 
 XEQ 02 222 
 FC?C 01 223 
 RTN 224 
 GTO J 225 
*LBL 02 226 
 QROOT 227 
 FS? 01 228 
 GTO 08 229 
 QROUT 230 
 STOP 231 
 RTN 232 
*LBL 08 233 
 CF 02 234 
 RCL Z 235 
 X=0? 236 
 SF 02 237 
 RDN 238 
 "ROOTS" 239 
 MRIJA 240 
 RDN 241 
 MSC+ 242 
 FS?C 02 243 
 GTO 00 244 
 X<>Y 245 
 MSC+ 246 
 RTN 247 
*LBL 00 248 
 MSR+ 249 
 I- 250 
 X<>Y 251 
 MSC+ 252 
 CHS 253 
 MSR+ 254 
 RTN 255 
*LBL 91 256 
 RCL 04 257 
 RCL 03 258 
 / 259 
 CHS 260 
 "ROOT=" 261 
 FS? 01 262 
 GTO 00 263 
 ARCL X 264 
 PROMPT 265 
 RTN 266 
*LBL 00 267 

 V# 268 
 25  ABSP 269 
 >"S" 270 
 MRIJA 271 
 RDN 272 
 MSC+ 273 
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*LBL J 274 
 , 275 
MSIJ 276 
*LBL 01 277 
. 278 
278 MRR+ 279 

MRR+ 280 
CF 09 281 
 X#0? 282 
 I+ 283 
 X<>Y 284 
 QROUT 285 
 STOP 286 

 FS? 09 287 
 RTN 288 
 FC? 10 289 
 GTO 01 290 
 END 291 

 
 
 
 
 
 
 
Bairstow Method. 

 

A faster program is  BAIRS , which also uses a factorization method but does not utilize any of the 

matrix functions. Therefore the solutions are just prompted to the display but not saved into an X-Mem 

file.  BAIRS  expects the coefficients already stored in main memory, and the polynomial control word 

in X . Note that they will be overwritten during the execution of the program.  
 
It uses registers R00 to R08 internally, thus cannot be used to store your data. The error message 
“bbb<=8” is shown otherwise. For both programs the accuracy of the solutions (and therefore their run 
times) depends on the display settings.   

BAIRS  factorizes the polynomial   
 p(x) = a0.xn+a1.xn-1+ ... + an-1.x+an  into quadratic factors and solves  p(x) = 0   (n >1)  
 
If deg(p) is odd, we have   p(x) = (a0.x+b).(x2+u1.x+v1)........(x2+um.x+vm);   with  m = (n-1)/2  
If deg(p) is even                p(x) = (a0x2+u1.x+v1)(x2+u2.x+v2)......(x2+um.x+vm) ;   with m  =  n/2  

The coefficients u and v are found by the Newton method for solving 2 simultaneous equations. Then p 
is divided by (x2+u.x+v)  and  u & v  are stored into R(ee-1) & Ree respectively . The process is 
repeated until all quadratic factors are found 

 

Example 2.  Solve    x6 - 6.x5 + 8.x4 + 64.x3 - 345.x2 + 590.x - 312 = 0  

 
Using  PMTP   to store the coefficients beginning in R09, thus the control word is  9,015 

 
Keystrokes   Display   Result 
9.015, XEQ “PMTP”  “” 
1, ENTER, CHS, 6, ENTER^,^8, ENTER^, 64, ENTER^, CHS, 345, ENTER^, 590, ENTER^, CHS, 312, 
R/S    9,015 
XEQ “BAIRS“   shows precisions factors...    
 
The solutions are:  “Z=-4,000”  and   “Z=2,000” 
    “Z=2,000+J3,000” and conjugate (not shown) 
    “Z=1,000”    and   “Z=3,000” 
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Program listing.- 

 
01 *LBL “BAIRS” 

 02 RAD 
 03 CF 21 
 04*LBL 00 

 05 9 
 06 X<>Y 
 07 X>Y? 
 08 GTO 00 
 09 "bbb<=8" 
 10 PROMPT 
 11 GTO 00 
 12*LBL 00 

 13 STO 04 
 14 STO 08 
 15 2 
 16 STO 06 
 17 PI 
 18 STO 07 
 19*LBL 01 

 20 CLX 
 21 STO 00 
 22 STO 01 
 23 STO 02 
 24 STO 03 
 25 RCL 04 
 26 STO 05 
 27*LBL 02 

 28 RCL IND 05 
 29 RCL 00 
 30 RCL 07 
 31 * 
 32 - 
 33 RCL 01 
 34 RCL 06 
 35 * 
 36 - 
 37 X<> 01 
 38 STO 00 
 39 RCL 02 
 40 RCL 07 
 41 * 
 42 - 
 43 RCL 03 
 44 RCL 06 
 45 * 
 46 - 
 47 X<> 03 
 48 X<> 02 

 49 ISG 05 
 50 GTO 02 
 51 STO 05 
 52 RCL 01 
 53 * 
 54 RCL 00 
 55 RCL 02 
 56 ST* 01 
 57 * 
 58 - 
 59 RCL 03 
 60 RCL 05 
 61 * 
 62 RCL 02 
 63 X^2 
 64 - 
 65 STO 05 
 66 / 
 67 ST+ 06 
 68 RCL 00 
 69 RCL 03 
 70 * 
 71 RCL 01 
 72 - 
 73 RCL 05 
 74 / 
 75 ST+ 07 
 76 R-P 
 77 RND 
 78 VIEW 06 
 79 X#0? 
 80 GTO 01 
 81 SIGN 
 82 STO 05 
 83 RCL 04 
 84 7 
 85 I<>J 
 86 5 
 87 + 
 88 PDIV 
 89 STO 04 
 90 RCL 06 
 91 STO IND Z 
 92 ISG Z 
 93 RCL 07 
 94 STO IND T 
 95 RCL 04 
 96 2 
 97 + 

 98 ISG X 
 99 GTO 01 
100 CLD 
101 RCL 08 

102*LBL E 

103 RCL 08 
104 STO 04 

105 F# 
106 93 
107 ODD? 
108 GTO 03 
109 RCL IND 04 
110 ISG 04 
111 GTO 05 
112*LBL 03 

113 . 
114 RCL IND 04 
115 ISG 04 
116 RCL IND 04 
117 X<>Y 
118 / 
119 CHS 
120 TONE 9 

121 F# 
122 32 
123 STOP 
124 ISG 04 
125*LBL 04 

126  E 
127*LBL 05 

128 RCL IND 04 
129 ISG 04 
130 RCL IND 04 
131 QROOT 
132 ISG 04 
133 FS? 30 
134 GTO 06 
135 TONE 9 
136 QROUT 
137 STOP 
138 GTO 04 
139*LBL 06 

140 BEEP 
141 QROUT 
142 STOP 
143 END 
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4.4. Extended Polynomial Applications.   
 
A few related topics - in that polynomials are involved - even if some programs don’t make direct 
utilization of matrix functions. Here too the SandMatrix complements the functionallity included in the 
SadnMath. The table below summarizes them: 
 

 

 

4.4.1. Displaying the Equations for Curve Fitting Programs  {  EQT  } 

 
As there was plenty of available space in the module, I decided to include this routine to complement 

the Curve Fitting program in the SandMath (CURVE). The routine  EQT  will write in Alpha the actual 

equation which reference number is in register R00, ranging from 0 to 15 as per the table below: 
 
 
0. Linear 
1. Reciprocal 
2. Hyperbola 
3. Reciprocal Hyperbola 
4. Power 
5. Modified Power 
6. Root 
7. Exponential 
8. Logarithmic 
9. Linear Hyperbolic 
10. 2nd. Order Hyperbolic 
11. Parabola 
12. Linear Exponential 
13. Normal 
14. Log Normal 
15 Cauchy 
 
 

Note that  EQT  does not perform any 

calculations, thus it’s just an embellishing 
addition to CURVE. 
 
The original FOCAL program listing was 
originally published in the AECROM 
manual, and it’s reproduced here 
practically unaltered.  
 
 
 

The implementation in the SandMatrix is done in MCODE, much longer in size (about 350 bytes in total) 
but possible to tuck away in a second bank – where the space for it was available. 

 

 Function Description Input / Output 

0 EQT Curve Equation Display Equation number in X (0 to 15) 

1 POLINT Polynomial interpolation Under program control 

2 PRMF Prime Factors decomposition Argument in X-reg 

3 PF>X From prime factors to argument Prime factors in matrix [PRMF] 

4 TOTNT Euler’s Totient function Argument in X-reg 

5 POLFIT Polynomial Fitting Under program control 

6 POLZER From Poles to Zeroes Under program control 

7 PFE Partial Fractions Expansion Under program control 
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4.4.2. Polynomial interpolation.  {  POLINT  } 

 
 

The program  POLINT  follows the Aitken’s interpolation method.  It’s an elegant simple 

implementation and a nice example of utilization of the capabilities of the platform. It was written by 
Ulrich K. Deiters, and it is posted at:  http://www.hp41.org/LibView.cfm?Command=View&ItemID=600 
 
 
The program performs polynomial interpolations of variable order on (xi, yi) data sets, with the order 
determined by the number of data pairs. It is applied as follows: 
 
- You have a set of (xi, yi) data pairs. The xi are all different, and they need not be equidistant. 
 
- You need to know the y value at the location x, which is not one of the xi. 
 
- You start the program    XEQ "POLINT" 
  and enter x at the prompt.       x, R/S 
 
- Then you enter the first data pair,     x0, R/S 
  preferably one which has an x_i close to x. y0, R/S 
  The program returns y0. 
 
- You enter another data pair.   R/S 
  The program returns the results of a linear x1, R/S 
  interpolation.     y1, R/S 
 
- You enter another data pair.   R/S 
  The program returns the results of a  x2, R/S 
  quadratic interpolation.   y2, R/S 
 
- You enter another data pair.   R/S 
  The program returns the results of a cubic x3, R/S 
  interpolation.     y3, R/S 
 
- ... and so on, until you exceed the SIZE of your calculator. 
 
Going beyond the cubic interpolation is seldomly useful. High-order interpolations become increasingly 
sensitive to round-off errors and inaccuracies of the input data. 
 
The number of data registers used depends on the order of the interpolation. An nth order interpolation 
(which uses n+1 pairs of data) occupies the registers R00 to R(2n+4), e.g., a cubic interpolation needs 
all registers up to R10. 
 
If a printer is connected, the interpolation results are printed out, and the "empty" R/S entries are not 
required. 
 
 
Example.  Given the table below with a set of vapor pressure data for superheated water, what is the 
vapor pressure at 200 °C (= 473.15 K)? 

 

T/K 380 400 450 480 500 530 560 

p/MPa 0.12885 0.24577 0.93220 1.7905 2.6392 4.4569 7.1062 

 
 
Here’s the sequence followed to resolve it. 

 
 

http://www.hp41.org/LibView.cfm?Command=View&ItemID=600
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input   display   Comment 
XEQ "INTPOL"   
473.15, R/S   
480 , R/S   
1.7905 , R/S  

R/S    
450 ,R/S   
0.9322, R/S    linear interpolation 
R/S    
500, R/S  

2.6392, R/S    quadratic interpolation 
R/S   

400 ,R/S  

0.24577, R/S    cubic interpolation 
R/S    
530, R/S   
4.4569, R/S    4th order 

 
 
From this we conclude that 1.55 MPa is a reasonably good estimate; and that the linear interpolation 
was certainly not sufficient. Incidentally, the true value is 1.554950 MPa..   
 
The program listing is shown below. 

 
1 LBL "POLINT" 33 X<>Y

2 FC? 55 34 AIP

3 SF 21 35 X<>Y

4 "X=?" 36 "|-=?"
5 PROMPT x va lue of point 37 PROMPT prompts for Yk

6 STO 00 38 DSE 02
7 3,05 39 GTO 02

8 STO 01 40 LBL 03

9 LBL 01 41 RCL IND 02

10 RCL 01 42 *
11 INT k 43 LASTX

12 E 44 RCL Z

13 - k-1 45 -

14 E3/E+ 1,00(k-1) 46 ISG 02

15 3 47 RCL IND 02

16 + 4,00(k-1) 48 LASTX

17 STO 02 49 *

18 RCL 01 50 ST- Z

19 INT k 51 LASTX

20 3 52 RDN

21 - k-3 53 RDN

22 2 54  /

23  / 55 LBL 02

24 "X" 56 STO IND 01

25 AIP 57 ISG 02

26 "|-=?" 58 GTO 03

27 PROMPT prompts for Xk 59 "Y="
28 RCL 00 60 ARCL X

29 - 61 AVIEW
30 STO IND 01 62 ISG 01

31 ISG 01 63 GTO 01 next order
32 "Y" 64 END done



SandMatrix_4 Manual  -  Revision “5Y+” 

(c) Ángel M. Martin                                 January 2021 Page 108 of  148 
 

4.4.3. Prime Factors Decomposition {  PRMF  ,  PF>X  ,  TOTNT  } 

 
This section describes the three functions provided in the SandMatrix related to Prime factorization.  
 

 
 

 The first one  PRMF  extends the basic prime factorization capability in the SandMath, PFCT. The 

difference is that whereas PFCT only uses the Alpha register to output the result (as Alpha string), 
here the prime factors and their multiplicities are also stored in a matrix in X-Mem - named [PRFM]. 
This ensures that no information will be lost (scrolled off the display if the length exceeds 24 char), and 
also provides a permanent storage of the results. 
 

You can use  PF>X  to check the result: it re-builds the original argument from the values in the 

[PRMF] matrix, using the obvious relationship: 
 

X =  PF(i) ^m(i) ;  for  i = 1, 2… primes 

 
Euler’s Totient function. 
 
In number theory, Euler's totient or phi function, φ(n) is an arithmetic function that counts the totatives 
of n, that is, the positive integers less than or equal to n that are relatively prime to n.  The graphic 
below shows (well, sort of) the first thousand values of φ(n) 

             
Examples. Calculate the prime factors and the totient for the following numbers: 
 

n  PF   phi 
1,477   7*211   1,260 
819,735  3*5*7*37*211  362,880 
123,456  2^6*3*643  41.088,000 

 Function Description Input / Output 

1 PRMF Prime Factors (Matrix Form) Argument in X-reg 

2 PF>X From Factors to Number Prime factors in Matrix file 

3 TOTNT Euler’s Totient function Argument in X-reg 
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The programs are listed below. There’s no fancy algorithm for  TOTNT , it just counts the number of 

prime factors after doing the decomposition as a preliminary step. 
 

1 LBL "TOTNT" Euler's Totient Function 55 GTO 03 skip i f yes

2 SF 04 flag case 56 ST/ L divide number by PF

3 XEQ 10 get all Prime Factors 57 LASTX Reduced number

4 0 58 GTO 00 loop back

5 MSIJ sets pointer to 1:1 59 LBL 03 Store Exponent

6 X<>Y argument to x 60 RCL 00 recover PF

7 LBL 07 61 MSR+ store in matrix

8 MRC+ get element 62 GTO 01 next factor

9 1/X invert it 63 LBL 02 New PF found

10 CHS sign change 64 STO 01 Store for comparisons

11 E 65 RCL 00 previous  exponent

12 + add 1 66 MSR+ Store Old PF Exponent

13 * multiply 67 RDN

14 FC? 09 end of row? 68 ST/ L divide number by PF

15 GTO 07 loop back 69 LASTX Reduced number

16 CLD refesh display 70 DIM?

17 RTN done. 71 X<> Z Bring the new PF back

18 LBL "PRMF" Prime Factors 72 MSR+ store new PF

19 CF 04 flag case 73 FS?C 00 Was it Prime?

20 LBL 10 74 GTO 01 Bail Out, we're done

21 "PRMF" 75 X<>Y Bring the number back

22 2 76 GTO 05 Start Over

23 E3/E+ 1,002 77 LBL "PF>X" Rebuild number

24 MATDIM Create Matrix 78 SF 04 flag case

25 CLX 79 "PRMF" matrix name 

26 MSIJA sets pointer to 1:1 80 SF 10 fake condition

27 RDN argument to x 81 LBL 01 PF Completed

28 CF 00 default: not prime 82 E 1

29 INT condition x 83 FC? 10 end of matrix?

30 ABS to avoid errors 84 MSR+ store it as last exp.

31 PRIME? is it prime? 85 STO 00 ini tia l  va lue

32 SF 00 FIRST PF found 86 MSIJA sets pointer to 1:1

33 MSR+ Store this PF 87 CLA Clean Slate

34 X=1? is PF =1? 88 LBL 06 Rebuild the number

35 GTO 01 yes, leave the boat 89 MRR+ get prime factor

36 FS?C 00 Was it Prime? 90 FC? 04 if not totient case

37 GTO 01 if Prime, we're done 91 AIP add it to Alpha

38 STO 01 Store PF for comparisons 92 MRR+ get multiplicity

39 ST/ L divide number by PF 93 FC? 04 if not totient and/

40 LASTX Reduced number 94 X=1? or if it is one

41 LBL 05 95 GTO 04 skip adding to Alpha

42 E reset counter 96 "|-^" otherwise put symbol

43 STO 00 97 AIP and add it to the string

44 RDN 98 LBL 04

45 LBL 00 99 Y^X PF^Exp

46 RCL 01 reca l l  PF 100 ST* 00 Rebuilding the number

47 X<>Y Reduced number 101 FS?10 End of Array?

48 PRIME? i s  i t prime? 102 GTO 04 yes, leave the boat

49 SF 00 PF found 103 FC? 04 if not totient case

50 X#Y? Compare this and old PF's 104 "|-*" append symbol

51 GTO 02 skip over if different 105 GTO 06 next PF

52 ISG 00 Same One 106 LBL 04

53 NOP Increase counter 107 RCL 00 final result

54 FS?C 00 Was it Prime? 108 FC? 04 if not totient case

109 AVIEW Show the construct

110 END done.
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4.4.4. Polynomial Fitting  {  POLFIT  } 

 
The next program is taken from Valent’in Albillo article “Long Live the Advantage ROM”  - showcasing 
the matrix functions included in it. As one can expect from that reference, it’s an excellent example and 
therefore more that worth including in the SadnMatrix. 
 
The original article is partially reproduced below – it is so well described that I could not resist adding it 
practically verbatim. 
 

 POLFIT  is a small, user-friendly, fully prompting 62-line program (124 bytes) written specifically to 

demonstrate the excellent matrix capabilities of the Advantage ROM.  POLFIT  can find the coefficients 

of a polynomial of degree N which exactly fits a given set of N+1 arbitrary data points (not necessarily 
equally spaced), where N is limited only by available memory. 
 
Among the many functions we could fit to data, polynomials are by far the easiest to evaluate and 
manipulate numerically or symbolically, so our problem is:    
 
Given a set of n+1 data points (x1, y1), …, (xn+1, yn+1), find an Nth-degree polynomial  
   

y = P(x) = a1 + a2 x + a3 x2 + a4 x3 + ... + an+1 xn   
 
which includes the (n+1) data points (x1, y1), (x2, y2), ..., (xn+1, yn+1). The coefficients (a1, ..., 
an+1) can be determined solving a system of (n+1) equations: 
 

             

 

 
 
Program listing 
 

01  LBL "POLFIT"    to use, simply XEQ "POLFIT" 

02  "N=?"    prompts for the degree N of the polynomial 
03  PROMPT ..   and waits for the user to enter N 
04  1    add 1 to get the number of data points 
05  +    N+1 
06  1.001    the required multiplier 
07  *    forms the matrix dimensions [N+1].00[N+1] 
08  "MX"    specifies matrix MX to be created in X-Mem 
09  MATDIM   creates and dimensions matrix MX in X-MEM 
10  0    specifies first row, first column and .. 
11  MSIJ ..   resets the row/column indexes 

12  LBL 00    loop to ask for data & compute MX elements 

13  MRIJ    recalls the current value of the indexes 
14  "X"    forms the prompt to ask the user to enter xi 
15  AIP    appends the index to the prompt 
16  "|-=?"     appends “=?” to the prompt 
17  PROMPT   prompts to enter xi and resume execution 
18  ENTER^  fills the stack with the value of xi .. 
19  ENTER^   in order to compute all powers of xi .. 
20  ENTER^   from 1 to xi^n and store them in MX 
21  1    initializes the value of xi^0 [i.e.: 1] 
22  MSR+    stores it in MX and updates the indexes 
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23  LBL 01    loop to compute the powers of xi  

24  *    computes xi^j 
25  MSR+    stores it in MX and updates the indexes 
26  FC? 09    are we done with this row ? 
27  GTO 01   not yet, go back for the next xi power 
28  FC? 10    row done. Are we done with all rows? 
29  GTO 00   not yet, go back to ask for the next xi 
30  CLA    all rows done, MX complete. Make it current 
31  DIM?    get its dimensions: [N+1].00[N+1] 
32  INT    get N+1 (avoid using a register) 
33  "MY"    specify vector MY to be created in X-MEM 
34  MATDIM   creates and dimensions vector MY in X-MEM 

35  LBL B      ask for yi data and store them in MY 

36  0    specifies 1st element of the vector and ... 
37  MSIJ ..   resets the index to the 1st element 

38  LBL 02     loop for next data and store them in MY 

39  MRIJ    recalls the current value of the index 
40  "Y"    forms the prompt to ask for yi 
41  AIP ..    appends the index to the prompt 
42  "|-=?"     appends “=?” to the prompt 
43  PROMPT   prompts the user to enter yi 
44  MSR+    stores it in MY and updates the index 
45  FC? 10    are we done with all elements? 
46  GTO 02   not yet, go back to ask for the next yi 
47  "MX,MY"   all yi stored. Specify MX,MY for the system 
48  MSYS    solves the system for the coefficients 

49  LBL C      retrieve and display each coeff. 

50  0    specifies 1st element of the coeffs. vector 
51  MSIJ    resets the index to the 1st coefficient 

52  LBL 03    loop to retrieve the next coefficient 

53  MRIJ    recalls the current value of the index 
54  "A"    forms the prompt to display each coeff. 
55  AIP ..    appends the index to the prompt 
56  "|-="   appends “=” to the prompt 
57  MRR+    retrieves the value of the current coeff. 
58  ARCL X    appends the value to the prompt 
59  PROMPT   shows the value to the user 
60  FC? 10    are we done outputting all the coeffs? 
61  GTO 03   not yet, go back for the next coefficient 
62  END    all done. End of execution. 

 

Notes 
 

• As the Advantage ROM can work with matrices directly in X-Mem,  POLFIT  doesn't use any 

main RAM registers and so it will run even at SIZE 000. This has the added advantage (pun 
intended) of avoiding any register conflicts with other programs. 

 

• POLFIT creates two matrices in X-Mem, namely [MX] and [MY], which aren't destroyed upon 
termination. Retaining [MX] allows the user to compute the coefficients of another polynomial 
using the same x data but different y data. In that case, the x data need not be entered again, 
only the new y data must be entered. Further, as the MX matrix is left in LU-decomposed form 
after the first fit, the second fit willproceed much faster. Retaining [MY] allows the user to 
employ the polynomial for interpolating purposes, root finding, numeric integration or 
differentiation, etc. 

 

• Lines 2-11 prompt the user for the degree of the polynomial, then allocate the system matrix in 
Extended Memory (MATDIM) and reset the indexes (MSIJ). 
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• Lines 12-22 set up a loop that will fill up the rows of [MX]. Notice the use of the miscellaneous 
function AIP to build the prompt, and MSR+ to store the value and automatically advance the 
indexes to point to the next element. 

 
• Lines 23-27 form a tight loop that computes each power of xi and uses MSR+ to store it and 

advance the indexes. Flag 9 logs if we’re done with the column in which case we would 
proceed to the next row. If so, Flag 10 is then checked to see if we’re done with all the rows. 

  
• Once the system matrix has been populated, lines 30-45 do likewise dimension, and populate 

the MY matrix, prompting the user for the required yi values. Then, once all the data have 
been input and both matrices are allocated and populated, lines 46-47 solve the system for the 
coefficients of the polynomial using MSYS. 

 
• Finally, lines 48-59 establish a loop that labels and outputs all the coefficients. 

 

Example 
 
Rumor has it that the seemingly trigonometric function y = cos(5 arccos x) is actually a 5th-degree 
polynomial in disguise. Attempt to retrieve its true form. 
 
If it is indeed a 5th-degree polynomial, we can retrieve its true form by fitting a 5th-degree polynomial 
to a set of 6 arbitrary data points (x,y). Any set with different x values (-1.0 <= x <= +1.0) will do, but 
for simplicity’s sake we’ll use x=0, 0.2, 0.4, 0.6, 0.8, and 1. Proceed like this: 
 
- set Rad mode, 4 decimals: XEQ “RAD”, FIX 4 
- start the program:   XEQ “POLFIT”    “” 
- specify degree 5:  5 R/S     “” 
- enter 1st x value:   0 R/S     “” 
- enter 2nd x value:   0.2 R/S     “” 
- enter 3rd x value:  0.4 R/S     “” 
- enter 4th x value:   0.6 R/S     “” 
- enter 5th x value:   0.8 R/S     “” 
- enter 6th x value:   1 R/S     “” 
- enter 1st y value:   0, ACOS, 5, *, COS, R/S  “” 
- enter 2nd y value:  0.2, ACOS, 5, *, COS, R/S “” 
- enter 3rd y value:   0.4, ACOS, 5, *, COS, R/S “” 
- enter 4th y value:   0.6, ACOS, 5, *, COS, R/S  “” 
- enter 5th y value:   0.8, ACOS, 5, *, COS, R/S “” 
- enter 6th y value:   1, ACOS, 5, *, COS, R/S   “” 

R/S     “” 
R/S     “” 
R/S     “” 
R/S     “” 
R/S     “” 

 
So, disregarding the very small coefficients due to rounding errors, the undisguised polynomial is: 
 

P(x) = cos(5 arccos x) = 5 x – 20 x^3 + 16 x^5 
 

You might want to execute now CAT”4 (or EMDIR), to see that the matrices used are still available so 
that you can redisplay the coefficients, solve for a new set of y values, or use the polynomial for 
interpolation, etc. 
 

CAT”4   “” [the system matrix is 6x6 = 36 elements] 
“” [the coeff. matrix is 6x1 = 6 elementss] 
 [EM Room left - this value varies with your configuration] 
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4.4.5. Orthogonal Polynomials. 

 

Hermite Polynomials.  {  HMT  } 
 
The Hermite Polynomials were defined by Laplace (1.810) though in scarcely recognizable form, and 
studied in detail by Chebyshev (1.859). Chebyshev's work was overlooked and they were named later 
after Charles Hermite who wrote on the polynomials in 1.864 describing them as new.  
 
There are two different ways of standardizing the Hermite polynomials; The "probabilists' [He(n)] and 
the “physicists’ [H(n)] Hermite polynomials" given by the following expressions: 
 

 

         

 

 
 

These two definitions are not exactly identical; each one is a rescaling of the other, 

 

 

 
The figure below shows the first six Hermite polynomials Hn, which are those implemented in the 
SandMatrix using the recurrence expression: 
 
 

 

  
 
They are written as fully MCODE functions, thus the execution time is optimized – wich is especially 
relevant given the recurrent nature of the method employed. 
 
Examples.  Calculate H7(3.14)  and H3(-2.5) 
 
we type: 7, ENTER^, 3.14,  V$ “HMT”   =>  73,726.24325 

and:  3, ENTER^, 2.5, CHS, ML, [,]  =>   -95.00000000   
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Legendre Polynomials  {  LEG  } 
 
In mathematics, Legendre functions are solutions to Legendre's differential equation shown below. 
They are named after Adrien-Marie Legendre. This ordinary differential equation is frequently 
encountered in physics and other technical fields. In particular, it occurs when solving Laplace's 
equation (and related partial differential equations) in spherical coordinates. 
 

 

  
These solutions for n = 0, 1, 2, ... (with the normalization Pn(1) = 1) form a polynomial sequence of 
orthogonal polynomials called the Legendre polynomials. Each Legendre polynomial Pn(x) is an nth-
degree polynomial.  

 

  
 

The figure below shows the first six Legendre polynomials, with their explicit expressions on the left: 

 
 

   
 
Like in the Hermite’s case, the SandMatrix implementation (also written in MCODE for better 
performance and accuracy) uses a recursive approach to calculate them, described by the Bonnet’s 
formula below: 
 

       

 

  
 
Examples:   Calculate  L7(4.9), and L3(-2.5) 

 
we type: 7, ENTER^, 4.9, V$ “LEG”   =>  1,698,444.018 

and:  3, ENTER^, 2.5, CHS, ML, [,]  =>   -35.31250000   

 
 
Note: Remember that the SandMatrix includes functions CHB1 and CHB2 to calculate the Chebyshev 
polynomials; you can refer to the SandMatrix Manual for details. The implementation there is also done 
in MCODE, thus as fast and convenient as possible. 

 
Note that despite being sub-functions from the SandMath, both  CHB1 and CHB2 are available from the 
ML “P: _” launcher as well. – and as such they’ll be logged in its own LASTF buffer when used. 
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Laguerre and Associated Laguerre Polynomials.  {  LAG  ,  LANX  } 
 
In mathematics, the Laguerre polynomials, named after Edmond Laguerre (1834 - 1886), are solutions 
of Laguerre's equation - which is a second-order linear differential equation. This equation has 
nonsingular solutions only if n is a non-negative integer. 

 

 
The Associated Laguerre polynomials (alternatively, but rarely, named Sonin polynomials after their 
inventor, Nikolay Yakovlevich Sonin) are solutions of 

 

 
 

One can also define the Laguerre polynomials recursively, defining the first two polynomials as shown 
below (where =0 for the standard type), and then using the following recurrence relation, for any 

term k ≥ 1: 
 

 
 

 
 

 
 

Examples:  Calculate L7(3.14) and L7(1.4, 3.14) 

 
The input parameters are entered similarly in the stack for both case, with “a” in the Z- register for the 
generalized case, and “n” and “x” in the Y- and X-registers in both instances. 

 
7, ENTER^, 3.14, V$ “LAG”   =>  -0.978658720 

and: 
1.4, ENTER^, 7, ENTER^, 3.14, V$ “LANX” =>   1.692567095 

 
 
As a reminder, the SandMath module includes LAYX, another generalization of the Laguerre 
polynomias for non-integer orders.  It is a direct application of the Kumer M function; refer to the 
SandMath manual for details. 
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4.4.6. Orthogonal polynomial Fit.  {  OPFIT  }   - Moved to Curve_Fitting Module 

 
 
Orthogonal polynomials are a very advantageous method for polynomial regression. Not only it allows 
for a more progressive approach, but also the accuracy of the values so obtained is typically better. 
This program employs this method; even if it doesn’t calculate any orthogonal polynomials explicitely. 
 
Given m value pairs (xi, yi) and a maximum degree to explore (n), this program calculates the 
n(n+3)//2 polynomial coefficients of the corresponding n polynomials of degrees 1, 2, 3,… n that best 
fit the given data (therefore equivalent to the least squares method). It also obtains the determination 
coefficients and typical errors for each degree, 
 
The method followed uses the construct Y(x) = d0 P0(x) + d1 P1(x) + … dn Pn(x) ; where p0, 
p1, … pn are the orthogonal polynomials corresponding to the entered data that satisfy the expression 

 Pi Pj = 0, for every i#j 

 
The advantage of this approach is a better accuracy, as it avoids the resolution of the usual n linear 
systems, frequently ill-conditioned, that arise in the least squares method. 
 
 
Example.-   To check the program we took the following 11 value pairs from the polynomial 
 

P(x) = x^4 – 2x^3 + 3x^2 –4 x +5 
 

Xi -3 -2 -1 0 1 2 3 4 5 6 7560 

Yi 179 57 15 5 3 9 47 165 435 953 1839 
 
Using the data above explore up to degree n=4, showing the correlation coefficients, the D-factors and 
the errors for each of the alternatives. 
 
The results are all provided in the table below: 
 

Degree (n) Corrlt. (r^2) Errors (e^2) Determ. (d^2) Coefficients 

n = 1 R1=4,482218E-1 
E0=3,295160E5 
E1=1,818197E5 

D0=3,370000E2 
D1=1,228000E2 

a0=9,140000E1 
a1=1,228000E2 

n =2 R2=9,000134E-1 E2=3,294720E4 D2=4,000000E1 
a0=-1,486000E2 
a1=-3,720000E1 
a2=4,000000E1 

n = 3 R3=9,821452E-1 E3=5,883429E3 D3=6,000000E0 

a0=1,700000E1 
a1=-7,200000E1 
a2=4,000000E0 
a3=6,000000E0 

n = 4 R4=1,000000E0 E4=0,000000E0 D4=1,000000E0 

a0=5,000000E0 
a1=-4,000000E0 
a2=3,000000E0 
a3=-2,000000E0 
a4=1,000000E0 

 
 
Credits: The original version (labeled “APOLO”) was written by Eugenio Úbeda, and published in the 
UPLE. The version in the SandMatrix only had minimal changes made to it. It was by far the longest 
program in the module, and unfortunately had to be removed to make room for the Vector Functions. 
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4.4.6. From Poles to Zeros.. and back. {  POLZR  ,  POLZR  ,   PFE  }   

 
These programs complete the applications section. The first two calculate the coefficients and zeros of 
a polynomial expressed as a partial expansion of factors, as would typically be the case when working 
with transfer functions in control theory. The third program does the reverse, i.e. it builds the partial 
fraction expansion for a polynomial given it its “standard”  (or natural) form. 

 

(*) POLZER ha been - Moved to Advntg_MATH Module 
 
These programs calculate the polynomial coefficients and roots of expressions such as: 
 

P(x) =   [ 1 / (x-pi) ] ; i= 1,2,… n 

 
Which will be transformed into: 
 

P(x) =   ai x^i ;   i= 0,1,… (n-1) 

 
The coefficients are obtained using the following formulae: 
 

a(n-1) = n 

a(n-2) = (n-1)  pi 

a(n-3) = (n-2)   pi pj 

a(n-4) = (n-3)    pi pj pk 

a(n-5) = (n-4)     pi pj pk pl 

a(n-6) = (n-5)      pi pj pk pl pm 

 
in general the n-th. coefficient would require the calculation of n-dimensional product sums. However 

the program   POLZER   is limited to expressions up to 7 poles max (resulting in 6 zeroes), whereas  

POLZR  is not. The caveat is that  POLZR  will only calculate the coefficients of the natural 

polynomial, but not its roorts. You can of course use PROOT or BAIRS manually for that purpose. 
 
 
Example.- To study the stability of the transfer function below, calculate its roots. 
 
G(s) = 1/s + 1/(s-1) + 1/(s-2) + 1/(s-3) + 1/(s-4) 
 

Keystrokes   Display 
XEQ “POLZER”    
5, R/S     
0, R/S     
1, R/S     
2, R/S     
3, R/S    

4. R/S    “        “ 

     “” 
“Y”     
R/S     
R/S     
R/S     
R/S    

 
 

 Function Description Input / Output 

1 POLZER Zeros of transfer functions Under program control 

2 POLZR Coefficients of “Natural” Polyn Under program control 

2 PFE Partial Fraction Expansion Under program control 
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Therefore the “natural” polynomial form is as follows: 
 

G(s) = 5 s^4 – 40 s^3 + 105 s^2 – 100 s + 24 
 

This is where  POLZR  lets thing go, leaving the polynomial control word bbb.eee in the X-Register. 

For POLZER’s case however, the execution is next transferred to  PROOT  (or to  QUART  if #p=5) 

which calculates the roots following the iterative process explained in section 4.3.1. Remember that the 
accuracy is dictated by the number of decimals places set . 
 

R/S   “ ” 
     

R/S    
R/S    
R/S    

   

 POLZER  is also a rather long program – and dates back to the days the author attended EE School 

many moons ago, so I’m somehow attached to it. 
 
 

4.4.7. Partial Fraction Decomposition  {  PFE  } 

 
In algebra, the partial fraction decomposition or partial fraction expansion of a rational fraction (that is 
a fraction such that the numerator and the denominator are both polynomials) is the operation that 
consists in expressing the fraction as a sum of a polynomial (possibly zero) and one or several fractions 
with a simpler denominator. 
 

In symbols, one can use partial fraction expansion (where ƒ and g are polynomials) to change 

expression forms as shown below 

                                     >>>             
 
where gj(x) are polynomials that are factors of g(x), and are in general of lower degree. Thus, the 
partial fraction decomposition may be seen as the inverse procedure of the more elementary operation 
of addition of rational fractions, which produces a single rational fraction with a numerator and 
denominator usually of high degree. The full decomposition pushes the reduction as far as it will go: in 
other words, the factorization of g is used as much as possible. Thus, the outcome of a full partial 
fraction expansion expresses that fraction as a sum of fractions, where: 
 
the denominator of each term is a power of an irreducible (not factorable) polynomial and the 
numerator is a polynomial of smaller degree than that irreducible polynomial. To decrease the degree 
of the numerator directly, the Euclidean division can be used, but in fact if ƒ already has lower degree 
than g this isn't helpful. 
 
 

Implementation  
 

POLZER may be an old program but  PFE  is a much more modern event, written by JM Baillard and 

published at:     http://hp41programs.yolasite.com/part-frac-expan.php 
 

Given a rational function   R(x) = P(x) / Q(x)   with  Q(x) = [ q1(x) ]µ1 ..............  [ qn(x) ]µn     and  
gcd( qi , qj ) = 1  for all i # j ,   this program returns the partial fraction expansion:  

 

http://hp41programs.yolasite.com/part-frac-expan.php
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 R(x) = E(x)  +  p1,1(x) / [ q1(x) ]µ1 + p1,2(x) / [ q1(x) ]µ1-1 + ............ + p1,µ1(x) / q1(x)                   
                   + .......................................................................................................... 
                   + pn,1(x) / [ qn(x) ]µn + pn,2(x) / [ qn(x) ]µn-1 + .................. + pn,µn(x) / qn(x)  

where  deg pi,k < deg qi , and E(x) is the quotient in the Euclidean division  P(x) = E(x) Q(x) + p(x)      
and p(x) is the remainder.  
 
Data entry is a complicated affair but it has been automated – just follow the process carefully.  

It makes extensive use of the polynomial arithmetic routines  PPRD  and  PDIV . Also the polynomial 

entry routine  PEDIT  is called several times... 

 
The program prompts for the number of factors in the denominator, as well as for their degrees and 
multiplicities. It also prompts for the coefficients of the numerator polynomial and of each factor 
polynomial in the denominator; so you don’t need to store those values manually prior to executing 
PFE. 
 

Data output is not automated; therefore you’d need to interpret the control words returned in stack 
registers. Some guidelines will follow in the examples. 
 

 
Example1.   Calculate the partial fraction decomposition for R(x) below. 
 

 R(x) = P(x)/Q(x) =  ( 6 x5 - 19 x4 +20 x3 - 7 x2 + 7 x + 10 ) / [ ( 2 x2 + x + 1 ).( x - 2 )2 ] 
 
Keystrokes   Display   Result 
XEQ “PFE”   “”   Input number of factors 
2, R/S    “”   inputs degree of numerator 
5, R/S    “”  Reminder of convention 

    “”   coefficients data entry 
6, R/S    “”     
19, CHS, R/S   “” 
20, R/S    “ 
7, CHS, R/S   “” 
7, R/S    “” 
10, R/S    “”   Input degree of Q1 in den. 
2, R/S    “”  Reminder of convention 

    “” 
2, R/S    “” 
1, R/S    “” 
1, R/S    “” 
1, R/S    “”  Reminder of convention 

    “” 
1, R/S    “ 
2, CHS, R/S   “”   time to enter the multiplicities now 

    “”   exponent of first factor 
1, R/S    “”   exponent of second factor 
2, R/S    flying goose…   beep sounds 
    “”   informs that E(x) follws 
    “”  Reminder of convention 

    “”  
R/S    “”   end of data output. 
 
 

There are three control words placed registers R05, R06, and R15 upon completion, as follows: 
 

1. The cnt’l word stored in R15 is for the Quotient polynomial, E(x) 
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2. The cnt’l word in R05 gives the entire register range for the coefficients of all the pi(x) 
polynomials – the numerators of the expanded fractions. It needs to be interpreted depending 
on the denominators qi(x) are polynomials of degree 1 or polynomials pf degree 2 with 
negative discriminant.  
 

3. The contents of these registers are to be read  
• by groups of 1  number if  deg qj = 1    the numerators are constants  
• by groups of 2 numbers if  deg qj = 2   the numerators are polynomials of degree 1  
• by groups of 3 numbers if  deg qj = 3   the numerators are polynomials of degree 2 ,  and 

so on ....  
 

4. The third in R06 is for an alternative solution using a new reminder p(x) 
 
 

Thus in this case registers R16 and R17 contain the coefficients for  E(x) = 3x + 1 ; 

And registers R33 – R36 for the denominator polynomials: (which must be three of them!) 
 

p1,1(x) = 2x + 3 ;  p2,1(x) = 4 ;   p2,2(x) = 5 
 
Thus the final result is as follows: 
 

R(x) = E(x) + p1,1(x) /(2x^2 + x +1) + p2,1(x) / (x-2)^2 + p2,2(x) / (x-2) 
 
 
Or alternatively using the data in registers R18 – R21 (cnt’l word in Z): 
 

p(x) = 12 x^3 – 12x^2 – 5x +6 ; and thefore: 
 

R(x) = E(x) + p(x)  /Q(x) 
 
 
 
Example 2.-  Calculate the partial fraction decomposition for R(x) below. 
 
R(x) = P(x)/Q(x) = x^5 /( 3 x^2 + 1 )2 
 
The three control words returned are: 
 
R06: 18.021 with:  R18=-2/3,  R19= 0,  R10 =-1/9,  R21 =0 
R05: 28.031 with   R29=1/9,  R29=0,  |  R30=-2/9, and R31=0 
R15: 16,017  with:  R16 = 1/9 and  R17 = 0 
 
The range in R05 must be split as:  p1,2 = x/9 x + 0;  and  p2,2 = -2x/9 + 0 
 
Therefore: 

R(x)  = E(x) + p1,2(x)/(3x^2 + 1)^2 + p2,2(x)/(3x^2 + 1) 
 
 

All in all a powerful program, which flexibility requires some careful attention to the details involved. 
 
Note:- you can check another Partial Fraction expansion program (by Narmwon Kim) available at the 
HP-41 archive site, which features a simpler user interaction and data entry/output, but at the expense 
of more limited functionality. It is also less general-purpose, and more geared towards control system 
applications. 
 
http://www.hp41.org/LibView.cfm?Command=View&ItemID=776 

http://www.hp41.org/LibView.cfm?Command=View&ItemID=776
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Other Polynomial Launchers – Roots and Utils. 

 
For convenience purposes several root finding and other polynomial utilities functions are grouped in an 
independent launcher – combining functions from both the SandMath and the SandMatrix, under 
common themes.  
 
This launcher is accessed as an alternate “personality” of the DST (*) function (no more FAT entries 

were available), pressing the XEQ key to invoke it. In fact, XEQ toggles between both “personalities”, 
as shown in the picture below: 
 

       <----->     
 
Like DST, the polynomial launcher itself also has two “screens”, toggled with the SHIFT key: 

  

        <----->    
 
The following tables show which functions are available under each of the two screens. Note that some 
are from the SandMath module, in a logical grouping of the roots theme. 
 

# Function Description Input 

1 STLINE Straight Line equation { y1, x1, y2, x2 } in stack 

2 QROOT Quadratic Equation { a, b, c } in stack 

3 CROOT Cubic Equation { a, b, c, d } in stack 

4 QUART Quartic Equation (monic) { b, c, d, e } in stack  (a=1) 

N PROOT Polynomial Roots Follow program instructions 

B BAIRS Bairstow Method Follow program instructions 

F FROOT Roots of f(x) FNAME in ALPHA, a, b in Y- / X-reg 

P POLZER From Poles to Zeros Prompts for poles 

 

# Function Description Input 

C PCPY Polynomial Copy From / to control words in stack 

D DTC Deletion of Tiny coeffs Control word in X 

E PEDIT Polynomial Editor Control word in X 

V PVIEW Polynomial View Control word in X 

L PVAL Polynomial Evaluation Control word in Y, point in X 

F POLFIT Polynomial Fitting Follow program instructions 

I POLINT Polynomial interpolation Follow program instructions 

H CHRPOL Characteristic polynomial MNAME in ALPHA 

 
Notes:-  
 

• The back arrow key cancels the action and returns to the main ML launcher (“M:_”prompt). 
 

• The USER and ALPHA keys are also active to invoke the sub-function launchers V# and F$. 
 

• You can refer to the appropriate section within this manual or the SandMath manual for specific 
details of all these functions. 

 

• The SandMath functions executed from here will also be registerer in the SandMatrix’s “Last 
Function” facility. 

 
(*)  DST will be described in the next section of the manual. 
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The “Last Function” functionality. 

 
Like the SandMath and other advanced modules, the SandMatrix include support for the “LASTF” 
functionality.  This is a handy choice for repeat executions of the same function (i.e. to re-execute the 
last-executed function), without having to type its name or navigate the different launchers to access it. 
 
The implementation is not universal – it only covers functions invoked using the dedicated launchers, 
but not those called using the mainframe XEQ function. It does however support two scenarios:  
 

• functions in the main FATs, from any  plugged-in module; as well as  
• those sub-functions from the auxiliary FATs.  

 
Because the latter group cannot be assigned to a key in the user keyboard, the LASTF solution is 
especially useful in this case. The following table summarizes the launchers that have this feature: 
 

Module Launchers LASTF Method 

SandMatrix 4 ML, DST  Captures sub/fnc id# 

revision “M” V$ _ Captures sub/fnc NAME 

 V# _ _ _ Captures sub/fnc id# 

Revision “N” CAT+ (XEQ’) Captures sub/fnc id# 

 
Note that the Alphabetical launcher V$ will switch to ALPHA mode automatically. Spelling the function 

name is terminated pressing ALPHA, which will either execute the function (in RUN mode) or enter it 
using two program steps in PRGM mode by means of the V# function plus the corresponding index 

(using the so-called non-merged approach). This conversion happens entirely automatically. 
 
With revision “N”, the LASTF operation is also supported when excuting a sub-function from within the 
CAT+ enumeration, using the [XEQ] hot-key -  very handy for those fncs with elusive spelling. 
 
Another new enhancement is the display of the sub-function names when using the index-based 
launcher V# - which provides visual feedback that the chosen function is the intended one (or not). 

This feature is active in RUN mode, when entering it into a program, and when single-stepping a 
program execution - but obviously not so during the standard program runs. 
 

LASTF Operating Instructions 
 
No separate function exists. - The Last Function feature is triggered by pressing the radix key (decimal 
point - the same key used by LastX) while the launcher prompts are up. This is consistently 
implemented across all launchers supporting the functionality in the three modules (SandMath, 
SandMatrix and PowerCL) – they all work the same way.  
 
When this feature is invoked, it first briefly shows “LASTF” in the display, quickly followed by the last-
function name. Keeping the key depressed for a while shows “NULL” and cancels the action. In RUN 
mode the function is executed, and in PRGM mode it’s added as a program step if programmable, or 
directly executed if not programmable.  
 
The functionality is a two-step process: a first one to capture the function id#, and a second that 
retrieves it, shows the function name, and finally parses it.  All launchers have been enhanced to store 
the appropriate function information (either index codes or full names) in registers within a dedicated 
buffer (with id# = 9). The buffer is maintained automatically by the modules (created if not present 
when the calculator is ‘switched ON), and its contents are preserved while it is turned off (during “deep 
sleep”). No user interaction is required. 
 
If no last-function information yet exists, the error message “NO LASTF” is shown. If the buffer #9 is 
not present, the error message is “NO BUF” instead. 
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5.  Vectors and Geometry 
 

 

 

 
This section was first inspired by the Advantage Pac FOCAL programs VC and TR - which have now 
been re-written using the new MCODE functions for enhanced performance and accuracy. 
 
Where the SandMatrix implementation adds significant value is in the convenience and usability 
aspects. The vector calculator for instance is a launcher-based scheme that extends the Advantage 
menu-driven concept a few notches, providing more functionality and wider range – as will be 
described later on. Data registers are also handled in a vector-oriented fashion, operating on 3-
registers blocks at once – and supporting INDirect addressing; all fully programmable using the so-
called “non-merged functions” technique. 
 
 
 

Accessing the Vector sub-Functions. 

 
Multi-Functions V# and V$ provide access to the entire set of vector sub-functions, grouped in two 

sections. The sub-functions can be invoked either by its index within the group, using V#, or its direct 

name, using V$. This is implemented in such a way that they are also programmable, and can be 

entered into a program line using a technique called “non-merged functions”.   
 
This approach is identical to the one used in the SandMath module – and derives from the original 
implementation in the HEPAX module. 
 
A sub-function catalog CAT+ is also available, listing the functions included within the groups. Direct 
execution (or programming if in PRGM mode) is possible just by stopping the catalog at a certain entry 
and pressing the XEQ key. The CAT+ catalog behaves very much live the native ones in the machine: 
you can stop it using R/S, SST/BST them, press ENTER^ to move to the next “sub-section”, cancel or 
resume the listing at any time. 
 
As additional bonus, the sub-function launcher V$ will also search the main FAT if the sub-function 

name is not found within the multi-function group – so the user needn’t remember where a specific 
function sought for was located. In fact, V$ will also find a function from any plugged-in module in 

the system, even outside of the SandMatrix module. 
 
 

 A comprehensive Vector Function Launcher prompt.  

 
The Vector launcher is one of the three modes of the main module launcher, ML, by pressing the [A] 

key at the initial “M:_” prompt – which changes it into the “V:_” prompt. 
 
As it occurs with theme modules, there are a large number of functions that work together and ideally 
should all be available in a USER keyboard for optimal utilization. And as it’s become customary (see 
the 41Z and SandMath manuals) – a dedicated launch pad is the best solution to solve this need. 
 
With this approach it’s not necessary to make multiple key assignments to quickly access all of the 
functions – saving memory and allowing for other USER key mappings. The “V:” prefix indicates a 
prompting for the function keys, which are logically mapped to the same real-functions on the standard 
41C keyboard.  Prompting functions are also included in this implementation. 
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The picture below shows the Vector Keyboard, as invoked by the V: launcher: 
 

 
 
 
Note that with exception of the conditional tests, all mapped keys are direct, no need to use [SHIFT] 
unless for INDirect addressing. Note as well that the prompts also support using keys from the two top 
rows for quick argument entry 1-10 
 

  ;         ;           

 

   ;    
 

 
 
 
Vector Conditionals. 
 
Other useful functions are those used to test whether vectors in V1 and V2 levels are equal/different, or 
whether the V1 level contains a zero-vector: V=0?, V#0?, V=A?, and V#A? They return YES/NO in 
RUN mode, and skip the next line if false when used in a program. 
 
Note: There is a cosmetic limitation in the subfunction names: even if it’s not displayed correctly, the 
“#” character is [SHIFT] [H] in the Alpha keyboard.  
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A word on Vector Stack implementation. 

 
Before you ask: no; there isn’t a memory buffer or any similar fancy trick implemented in the Vectors 
ROM for a full-fledged vector stack.  Because there isn’t a dedicated memory area for it, it follows that 
the implementation must use the standard means for all purposes – meaning the (real) stack and Alpha 
registers.  Even with this limitation it’s possible to implement a poor-man’s version of a vector-RPN 
stack with just two levels, plus also featuring “Last-Vector” functionality for the most important cases. 
The following paragraphs describe the details of such an implementation. 

 
1. Two stack levels (V1 and V2) using the stack and Alpha. 

Logically the three components of the first vector level (V1) will occupy the X,Y and Z registers 
in the stack. Monadic functions should return the result in the X register, placing the x-
coordinate in LastX for easy retrieval, should the original vector is to be recalled.  Dual 
functions will operate on both the stack and the Alpha registers M, N, and O – which hold the 
second vector operand (V2).  In addition to the Vector Recall, Storage and Exchange a few 
other functions are included for convenient handling of the levels:  VENTER^, V<>A, and 
LASTV (see below). With all these the 2-level vector stack becomes useful and suitable for the 
majority of usual scenarios. 

 
2. Fully Programmable VRCL, VSTO, V<>, VVIEW. 

Using the non-merged functions technique, the numeric argument is taken from the next line in 
a program. Zero is not explicitly required and INDirect is done by adding 128 to the address 
(80 Hex). They operate on 3-register blocks, and their indexes are logical and not related to 
the actual underlying data registers. 

 
3. Compatibility with Alpha messages:- Scratch. 

The choice of Alpha for the second vector level (V2) requires some work-around when the use 
of Alpha prompting or displaying is also needed – in a FOCAL program, like VC or TR. This has 
been accomplished with EXSCR, a simple register swapping function to be called both before 
and after the PROMPT or AVIEW actions – effectively preserving V2 in a scratch area: registers 
L,T, and  “a“ during the process. This requires that no more than 2 pending subroutine returns 
are used before calling “VC” - not perfect but clever enough to work in practicality. 
 

4. LASTV functionality:- Level “0” in a dynamic scheme. 

The natural choices for a temporary storage of the LastV (V0) components are the still-unused 
registers L,T, and P.  Using L is a given, since it already works like a LastX  in the real case. T 
is a safe choice but P becomes unusable in all practical cases due to the OS demand for it as 
data-entry scratch. We chose register Q instead, as a better fit despite also being very volatile. 
In reality both P and Q are used to hold the third coordinate in sequence:  it is first stored in P 
when the function execution commences, where it remains during the calculations – which 
allows free usage of Q for the 13-digit math routines. Then it is transferred from P to Q upon 
exiting the function, where it stays for LASTV to pickup (until/unless Q is used by the OS in 
other action). 

 
5. Viewing the vector components. 

Functions VIEWV and VVIEW provide a sequential displaying of the three vector components 
for V1 or any vector stored in memory. The display is used and not Alpha (so level-2 is not 
disturbed), and each component value is tagged with its own label - X:, Y:, or Z:  These 
functions are also fully programmable. The time lapsed in between components display is fixed, 
but the displaying will be halted while any key is kept depressed. 
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New versions of the classic Advantage Programs. 

 
The SandMatrix contains new versions of the popular Vector programs from the Advantage Pac: “VC”, 
and “TR” /“CT”. Their usage is completely compatible, even if they use all new functions instead of 
the original FOCAL programs. Obvious advantages are faster execution, shorter program listings, and 
more accuracy due to the 13-digit math routines employed within the new functions. Also fewer data 
registers are needed since level-2 is in Alpha’s {M,N,O} – and not in {R01, R02, R03} as in the 
Advantage’s case. 

 
Vector operations. 

 
The “VC” program simulates a "Vector Calculator" superimposed on your normal calculator. It redefines 
the functions in the top two rows of keys to these vector operations: addition, subtraction, distance, 
dot product, cross product, angle between vectors, norm, and unit vector. This pac also offers these 
operations to you as regular functions (without the Vector Calculator) that you can execute like any 
other Hp-41 (nonkeyboard) function. Their Alpha names are given under "Summary of Vector 
Operations*. 
 
The vector operations operate on three-dimensional vectors described in rectangular coordinates. That 
is, every vector has three components, Vx, Vy, and Vz. For a two-dimensional vector, Vz must be equal 
to zero. 
 
A complement to VC is the Coordinate Transformations program, TR. This means you can carry out 
vector operations and transformations on the same data, since you can access either program from the 
other one. The use of coordinate transformations is covered in the next section, "Coordinate 
Transformations". 
 

Method. 
 
The Vector Calculator (program VC) creates a vector stack that works in concert with the regular RPN 
stack (X-, Y-, Z-, and T-registers). When you enter the three components of a vector in the order Vz, 
Vy, Vx, they occupy the regular stack like so: 
 

                           
 
 
 
How do the two stacks relate to each other? Basically, the 
"bottom" level of the vector stack (V2) is stored in registers X, 
Y, and Z of the stack, while the "upper" level of the vector 
stack (V1) is stored in ALPHA registers M, N, and O. You can 
imagine the registers shared in a three-dimensional stack like 
so: 
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The Vector stack is two vector-level high, so it accommodates two vectors. Note, however, that each 
level contaris three components, the x-, y-, z-components far each vector. 
 
The diagram below shows you what happens in vector entry and vector stack movement from the 
point-of-view of the vector stack and from the point-of-view of the RPN and vector stacks together: 
 
When you enter two vectors (as you would prior to executing a typical vector operation), the first one 
you key in becomes V1 and the second one you key in becomes V2. A “vector entry" (the function 
VENTER^, or pressing R/S in the Vector Calculator) copies the bottom vector (V2) into the top Vector 
(V1) . Then, when you key in the next vector, it overwrites the copy in the bottom vector (V2), leaving 
the first vector in V1 and the second vector in V2. 
 

                 
 

Instructions. 
 

• Starting VC (invoking the vector calculator) does not clear the vector stack, so you can still 
work with previously stored vectors. 

 

• Be sure to give each vector three dimensions. If it has only two dimensions, then enter a zero 
for Vz. 

 

• Enter the vector's dimensions as rectangular coordinates. If you have polar coordinates 
(magnitude and angle) for a two-dimensional vector, convert them using the function P-R 
(polar to rectangular). 

 

• For those operations involving angles, the units will match the current angular mode setting 
(Degrees, Radians, or Grads). 

 

• The view function ([ ][E]) is very useful for reviewing the components of V2 in the stack. 
 

• V1 refers to the "top” vector; the one in {M, N, and O} Alpha registers. V2 refers to the 
"bottom" vector; the one in {X, Y, and Z} stack registers 
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This menu will show you which key corresponds to which function in VC. Press [ J ] to recall this menu 
to the display at any time. 
 

To clear the menu at any time, press   ; This 

shows you the contents of the X-register, but does 
not end the program. You can perform calculations, 
then recall the menu by pressing [ J ]. (However, you 
do not need to clear the program’s display before 
performing calculations.) 
 
The Vector Calculator provides two methods for 
entering a vector into the vector stack. The vector-
enter function (VENTER^) is analogous to the 
ENTER^ key. A shortcut method of vector entry is 

the R/S key. Whenever you enter the vector 

components from the keyboard when the menu was 
the last thing displayed before keying in the three 
components. Pressing R/S will perform the same 
function as VENTER^. 
 

The following table shows the keystrokes to execute vector operations on the Vector Calculator 
(program VC). For a definition of each operation, refer to the “Summary of Vector Operations" following 
the Instruction Table. 
 

Instructions Key in: Display 

Start the program for the Vector Calculator VC 
 

XEQ “VC” DP CP <)  M UV 

Enter the three components of your first vector (V1). 
Separate two vectors with a vector enter after the first 
set of coordinates: execute VENTER^ or – if the menu 
was the last thing displayed before you entered the first 
component – press R/S. 
 

z1, ENTER^ 
y1, ENTER^ 
x1, R/S  
– or VENTER^ 

z1 
y1 
DP CP <)  M UV 

Key in the second vector (V2). Do not press R/S z2, ENTER^ 
y2, ENTER^ 
x2 

z2 
y2 
x2 

Display the main menu (optional) 
 

[J] DP CP <)  M UV 

Execute a vector operation: 
Dot Product: V1 * V2 
 

Cross Product: V1 x V2 
 
 
 

Angle between V1 and V2 
 

Norm (magnitude) of V2 
 

Unit Vector of V2 
 
 
 

Vector Add V1+V2 
 
 
 

 
[A] (DP) 
 

[B] (CP) 
 
 
 

[C] ( <) 
 

[D] (M) 
 

[E] (UV) 
 
 
 

[ ] [A]  
 
 
 

 
DOT = result 
 

X= x result 
Y= y result 
Z= z result 
 

<) result 
 

M= result 
 

X= x result 
Y= y result 
Z= z result 
 

X= x result 
Y= y result 
Z= z result 
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Vector Subtract V1-V2 
 
 
 

Coordinate Transformations – refer to the next section 
for instructions. 
 

Distance between V1 and V2 

[ ] [B] 
 
 
 

[ ][C] 

USER [ ][C] 
 

[ ][D] 

X= x result 
Y= y result 
Z= z result 
 

Z0,Y0,X0 ? 
DP CP <)  M UV 
 

d= result 
 

Restore the main menu after or between operations 
(optional) 
 

[J] DP CP <)  M UV 

To view the components of V2, the vector in the stack: [ ][E] X= x result 
Y= y result 
Z= z result 
 

To exchange V1 and V2 (the vector components in 
{M,N,O} and {X,Y,Z} 
 

[F] DP CP <)  M UV 

To store V2.s components as vector-register “n” in 
R3n+1, R3n+2, R3n+3: 
 

n, [H] DP CP <)  M UV 

To recall the conents of vector-register n into V2 (X,Y,Z), 
pushing V2 into V1: 

n, [I]  X= x result 
Y= y result 
Z= z result 
 

 
                    

Remarks 
 
You can eliminate the displaying of results on the Vector Calculator by setting flag 04. This lets you 
perform successive calculations more quickly by not having to step through the display of the results. 
You can still view the results when you want by pressing [ ][E]. 
 
This program uses local Alpha labels (as explained in the owner's manual for the HP-41) assigned to 
keys [A]-[F], [H]-[J], and [ ][A]-[ ][E]. These local assignments are overridden by any User-key 
assignments you might have made to these same keys, thereby defeating this program. Therefore be 
sure to clear any existing User-key assignments of these keys before using this program, and avoid 
redefining these keys in the future. 
                 
 

Summary of Vector Operations 
 
The vector operations are accessible in two different ways: 
 

• By using the Vector Calculator and its redefined keys, as explained above. 
 

• By directly executing a vector function using its Alpha name, like any other HP-41 nonkeyboard 
function. 
 

• V1 refers to the first (or “top”) vector: the one in M, N and O. V2 refers to the second (or 
"bottom”) vector: the one in X, Y, and Z. 

 
The operations perform the same calculations regardless of how they are executed. These 
characteristics are given in the table below, along with their Alpha names and descriptions.- You can 
also execute these operations by Alpha name from inside the Vector Calculator, though it is usually 
more convenient to use the Vector Calculator's redefined keys . 
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Table of Vector Functions. This table shows all functions implemented in the module. Note that the 
convention followed indicates V1 level in {X,Y,Z} and V2 level in {M,N,O} – that is reversed from the 
Advantage’s.  

 
Function Effect 
A+V Adds vectors V1 and V2. Result vector (v2+v2) is placed in V1, with v1 saved 

in LastV (V0). V2 is left unchanged. 
 

A-V Subtracts vectors V1 and V2. Result vector (v2-v1) is placed in V1, with v1 
saved in LastV (V0). V2 is left unchanged. 
 

A*V Calculates the DOT product of V1 and v2. Result is left in X-reg. X-component 
of v1 is saved in LastX, all other registers are unchanged. 
 

AXV Calculates the CROSS product of V1 and V2. Result vector (v2 x v1) is placed 
in V1, with v1 saved in LastV. V2 is left unchanged. 
 

A/V 
 

Calculates V2 x (1/V1). Same result and LastV conventions apply. 

EXSCR 
 

Exchanges Vector in Alpha v2 with registers {L,T,a} 

LASTV 
 

Recalls last vector to level-1 and pushes V1 into V2 

X*V Scales the vector with components in {T,Z,Y}  by the factor in X. Result is left 
in level V1 
 

V<> _ _ Exchanges vector in V1 with the vector-register nn. Supports INDirect 
addressing. 
 

V<>A 
 

Exchanges vectors in levels V1 and V2 

VADST Calculates the distance between V1 and V2. Result is left in X-reg, with X-
component of v1 saved in LastX. 
 

VANG Calculates the angle between V1 and V2. Result is left in X-reg, with X-
component of v1 saved in LastX. 
 

VCHS 
 

Changes sign of all components of v1. Original v1 is saved in LastV (V0). 

VENTER^ 
 

Pushes v1 (in X,Y,Z-regs) into the V2 level (M,N,O-regs). 

VIEWV 
 

Sequentially shows the three components of vector v1 

VINV 
 

Replaces v1 with the inverse of its components. Original v1 is saved in V0. 

VMOD Calculates the modulus of v1 = SQRT(Vx^2+Vy^2+Vz^2). Result is placed in 
X-reg, with the x component saved in LastX. 
 

VNORM Calculates the norm of v1 = (Vx^2+Vy^2+Vz^2). Result is placed in X-reg, 
with the x component saved in LastX. 
 

VRCL _ _ Recalls vector-register nn to V1 level, pushes v1 into V2 – and v2 is lost. 
Supports INDirect addressing. 
 

VSTO _ _ 
 

Stores v1 into vector-register nn. Supports INDirect addressing. 

VUNIT Replaces v1 with its unitary vector, that is v = v1 / |v1|. Original v1 is placed 
in LastV. V2 is unchanged. 
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VVIEW _ _ Sequentially views the components of vector-register nn. Supports INDirect 
addressing. 
 

V=0? Conditional test on the three components of v1 being zero. Returns YES/NO, 
skips line in a program if FALSE. 
 

V#0? Conditional test on at least one component of v1 not zero. Returns YES/NO, 
skips line in a program if FALSE. 
 

V=A? Conditional test on v1 being equal to v2. Returns YES/NO, skips line in a 
program if FALSE. 
 

V#A? Conditional test on v1 not equal to v2. Returns YES/NO, skips line in a program 
if FALSE 
 

 
Remember that of all these, only the prompting functions (with underscores next to the name) are 
located in the main FAT – and the rest are sub-functions in the secondary FAT, therefore you need to 
use V$ or V$ to execute them. 

 
 
Example 1.- 
 
Find the area of the triangle determined by the vectors v1 = ( - 3, - 2, 2) and v2 = ( - 2, 2, 3). Recall 
that the area of the parallelogram determined by v1 and v2 equals the magnitude of v1 x v2. 

                                            
The solution is half the magnitude of the cross product. Using the Vector functions: 
 
Type       Result      
3, ENTER^, 2, ENTER^, 2, CHS, VENTER^  (-2, 2, 3) 
2, ENTER^, 2, CHS, ENTER^, 3, CHS, AXV  (10, -5, 10)  
VMOD       15,000 
2, /       7,500     
   
 
 
 
Example 2.- 
 
Resolve the following three loads along a 175-degree line. Use the dot product on the sum of the three 
loads to do so. You will first need to convert the polar coordinates to rectangular coordinates. 
Remember to set z=0. 
 
Save the results for the polar coordinates of L3 and the 175°-line so that you can re-use them to find 
the resolution (dot product) when L3 is doubled. This example stores those results in vector-registers 1 
and 2. 
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The solution is the dot product of the resulting vector and the unit vector in the desired direction. Each 
vector must be converted to rectangular coordinates, so here are the keystrokes: 
 
Keystrokes    Action   Result 
XEQ “DEG”    Sets angular mode 
0, ENTER^, 143, ENTER^, 170   L1 in polar coordinates 
P-R     rectangular  (-135.768, 102.309,  0) 
VENTER^    pushes it to V2   
0, ENTER^, 62, ENTER^, 185  L2 in polar coordinates 
P-R     rectangular  ( 86.852,  163.345,  0) 
A+V,      adds L1+L2  (-48.916,  265.654,  0) 
VENTER^    pushes it to V2      
0, ENTER^, 261, ENTER^, 100  L3 in polar coordinates 
P-R     rectangular  (-15.643, -98.769,  0) 
VSTO 01      saves L3 
A+V,      adds L1+L2+L3  (-64.559,  166,885, 0) 
VENTER^    pushes it to V2 
0, ENTER^, 175, ENTER^, 1  line polar coordinates 
P-R     rectangular  (-0.996, 0.087,  0) 
VSTO 02     saves unit vector 
A*V     calculates projection 78.859 
 
Note that you need to execute VENTER^ at the end of each intermediate vector calculation, so the 
result is placed in the V2 level (in registers M,N,O) and doesn’t get overwritten by the new vector 
components being entered. 
 
When the load L3 is doubled, since the sum [L1+L2+L3] is still in the level-2, we type: 
 
Keys   Action      Result 
V<>A   brings L1+L2+L3 back to level-1 
VRCL 01   pushes V1 into V2 and recalls L3 to V1 
A+V   adds L3 to the previous sum 
VRCL 02  pushes V1 into V2 and recalls the line unit vector 
A*V   calculates the projection    85,834 
 
 
There’s nothing surprising about the utilization of the vector functions, which use the same logic to 
separate vector arguments as the complex numbers in the 41Z module (using ZENTER^); that you may 
already be familiar with. 
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Coordinate transformations 

 
The TR program performs three-dimensional translation of coordinates, with or without rotation. This 
program uses parts of the VC program for vector operations. You can access TR either directly or from 
VC. 
  
The program prompts you for the coordinates of the origin of the new system (x0, y0, z0), the angle of 
rotation of this system relative to the original system, and the axis about which the rotation is 
performed. You can then enter points in the original system (x, y, z) that you want transformed to the 
new system (x', y', z'), or enter points in the new system (x',y',z') that you want transformed to the 
original system (x, y, z). For a two-dimensional case, enter z0 as zero. 
 

A Two-Dimensional Rotation about the Axis (0, 0, 1) 
 

                      
 
After specifying the new origin (x, y, z), you specify the rotation angle. For a three-dimensional system 
with a non-Zero angle of rotation, you also specify its rotation vector (a, b, c). The rotation vector 
defines the axis about which the rotation is to be done; it can have any non-zero magnitude. Two-
dimensional transformations are handled as a special case of three-dimensional transformations with 
(a, b, c) set to (0, 0, 1). 
 

Equations 
 

 

 
where:   
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Instructions 
 
You can start TR either directly (XEQ “TR”) or from the Vector Calculator ([ ][C]) in VC. The Vector 
Calculator is covered in the “Vector Operations” chapter. 
 
Enter coordinates as rectangular coordinates and specify angles according to the current setting 
(Degrees, Radians, or Grads mode). 
 

• For two dimensions, input zero for the z-value. 
 

• For pure translation, input zero for the rotation angle. 
 

• For pure rotation, input zeros for x0, Y0, and z0 
 

• The sign of the rotation angle is determined by the right-hand rule and the direction of the 
rotation vector. For two dimensions, counter-clockwise rotation is considered positive. 
 

• You can switch into and out of the Vector Calculator by pressing . ([ ][C] (“C” for Calculator 
and Coordinate transformations). You can then perform vector operations upon vector 
coordinates in the stack and in storage registers. (Refer to "Remarks' for the storage locations 
of the vector coordinates.) 
 

• The view function ([ ][E]) is very useful for reviewing the coordinates of the point in the 
stack. 

 

                                                      
 
Once you have entered your variables, this menu shows you which key corresponds to which function 
in TR. To restore this menu to the display at any time, press [J] if the USER annunciator is On. (If it is 

not on, press USER to turn it on.) Or, if the calculator is displaying results, you can press R/S until the 

menu appears. This will not disturb the program in any way. 
 
To clear the menu at any time, press   . This shows you the contents of the X-register, but does not 

end the program. You can perform calculations, and then continue the program by pressing [J]. 
(However, you do not need to clear the program's display before performing calculations.) 
 
 
 
 
 



SandMatrix_4 Manual  -  Revision “5Y+” 

(c) Ángel M. Martin                                 January 2021 Page 135 of  148 
 

Instruction Table for TR 
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Remarks 
 
This program uses local Alpha labels (as explained in the owner's manual for the HP-41) assigned to 
keys [A], [B], [E], [ ][C]], and [J]. These local assignments are overridden by any User-key 
assignments you might have made to these same keys, thereby defeating this program. Therefore be 
sure to clear any existing User-key assignments of these keys before using this program, and avoid 
redefining these keys in the future. 
 
However, these local Alpha labels are active only while the USER annunciator is on. This allows you to 
use the arithmetic functions in the top two rows while the USER annunciator is off. (As long as USER is 
on, the keys mentioned above are redefined and will not execute their Normal functions.) 
 
Data Storage. The vector or point you want to transform is stored in R00, R01, R02, which is vector-
storage register 0 (initially from the X-, Y-, and Z-registers). The rotation vector is stored in R03, R04, 
R05, which is vector-storage register 1. The origin of the new system is stored in R06, R07, R08, which 
is vector-storage register 2. The rotation angle is stored in R13, while R09 , R10, and R11 are used for 
scratch. 
 
If you will be using vector storage operations (VSTO, VRCL, and the Vector Calculator) along with TR, 
keep in mind that TR uses R0-R13 when it is initialized (XEQ “TR”). This means you should not store 
vectors in vector registers 1 through 4 (if you plan to use TR in your vector calculations). 
 
Flags. Flag 01 is used to indicate whether the transformation is to be made to the new system or to 
the original system. When flag 1 is set, the transformation is to the new system. Flag 05 is set when 
the system is rotated. 

 
 
Example 1.- 

 
The coordinate systems (x, y) and (x', y') are shown below. Convert the points P1,' P2, and P3 to 
equivalent coordinates in the (x', y') system. Convert the point P’4 to equivalent coordinates in the (x, 
y) system. 
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Keystrokes    Display  Action 
FIX 4        sets  the  display  format  used  here. 
XEQ “ TR”     “”  prompts for new origin 
0, ENTER^, 4, CHS, ENTER^, 7  7.0000   components in stack 
R/S     “”  prompts for angle of rotation 
27, R/S     “c,b,a ?”  prompts for the rotation vector 
R/S  (2-dimensional)   “” ready for P1 
0, ENTER^, 7, ENTER, 9, CHS,   -9.0000   components in stack 
[A]  (^N)      shows new components 
       (in automated sequence) 
     
R/S  (optional)    “” ready for P2 
0, ENTER^, 4, CHS, ENTER^, 5, CHS -5.0000   components in stack 
[A]  (^N)      shows new components 
       (in automated sequence) 
        
R/S  (optional)    ““ ready for P3 
0, ENTER^, 3.6, CHS, ENTER^, 2.7 2.7000   components in stack 
[B]  (^O)      shows old components 
       (in automated sequence)  
     
  
 
Example 2.- 
 
A three-dimensional coordinate system is translated to (2.45, 4.00, 4.25). After the translation, a 62.5 
degree rotation occurs about the (0, - 1, - 1) axis. In the original system, a point had the coordinates 
(3.9, 2.1, 7.0). What are the coordinates of the point in the translated, rotated sytem? 
 
Keystrokes    Display  Action 
[J]     “ retrieves menu (if USER is on) 
[E]  (NEW)    “”  prompts for new origin 
4.25, ENTER^, 4, ENTER, 2.45  2.4500   components in stack 
R/S     “”  prompts for angle of rotation 
62.5, R/S    “”  prompts for the rotation vector 
1, CHS, ENTER^, ENTER^, 0  0.0000   components in stack 
R/S     ““ ready for P 
7, ENTER^, 2.1, ENTER^, 3.9  3.90000   components in stack 
[A]  (^N)      shows old components 
       (in automated sequence)  
     
 
 

Programming  Information  
 
The subroutine CT can be used in your own programs.  It performs coordinate transformations 
(rotations and translations) in three dimensions. It takes the  x- ,  y-, and  z-values  from  the  stack  
(X-,  Y-,  and  Z-registers) and  transforms  them  to  another system,  or  from  the  new system  to  
the original  system.  
 
Comments.  To  use CT,  load  the  translation  vector (T),  the  unit rotation vector (N),  and  the  
rotation  angle,  set  flag  01 to  go  to  the  new system  or clear flag  01 to go  to the original  
system.  Set flag 05 to rotate the vector’s coordinates (P).  The result is returned to the X-, Y-, and Z-
registers and in R1, R02 and R03.  
 
Note that CT is located in the secondary FAT, thus it requires V$ (or V#) to run. 
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Program listings 

 
As you can see by comparing it to the original programs the code length is drastically reduced – and 
the program clarity is also much improved, with a very intuitive structure behind all functionality. 

 

                      
01 LBL "3VC" 34 LBL a

02 CF 04 35 A+V

03 LBL J 36 GTO 05

04 CF 21 37 LBL b

05 SF 27 38 A-V

06 EXSCR 39 LBL 05

07 "DP CP a M UV" 40 FS? 04

08 AVIEW 41 GTO J

09 EXSCR 42 LBL e

10 STOP 43 VIEWV
11 VENTER^ 44 STOP

12 GTO J 45 GTO J

13 LBL d 46 LBL B

14 VADST 47 AXV

15 EXSCR 48 GTO 05

16 "|V-A|" 49 LBL H
17 LBL 02 50 VSTO

18 "=" 51 GTO J

19 ARCL X 52 LBL I

20 AVIEW 53 VRCL
21 EXSCR 54 GTO 05

22 STOP 55 LBL A

23 GTO J 56 A*V

24 LBL c 57 EXSCR

25 XROM "TR" 58 "V*A"

26 LBL C 59 GTO 02

27 VANG 60 LBL E

28 EXSCR 61 VUNIT

29 "VA<)" 62 GTO 05

30 GTO 02 63 LBL D

31 LBL F 64 VMOD

32 V<>A 65 EXSCR

33 GTO J 66 "|V|"

67 GTO 02

68 END

                        

 

 

01 LBL "TR" 48 LBL "CT"

02 SIZE? 49 FC? 01

03 14 50 GTO 02

04 X>Y? 51 VRCL

05 PSIZE 52 2

06 LBL E 53 A-V

07 CF 27 54 FC? 05

08 "Z0,Y0,X0 ?" 55 RTN

09 PROMPT 56 LBL 02

10 VSTO 57 FC? 05

11 2 58 GTO 01

12 CLX 59 VSTO

13 "ROT<)?" 60 VRCL

14 PROMPT 61 1

15 CF 05 62 AXV

16 X=0? 63 RCL 13

17 GTO 00 64 FC? 01

18 SF 05 65 CHS

19 STO 13 66 SIN

20 CLST 67 X*V

21 E 68 E

22 X<> Z 69 STO 12

23 "c,b,a ?" 70 RDN

24 PROMPT 71 VRCL

25 VUNIT 72 RCL 13

26 VSTO 73 COS

27 1 74 ST- 12
28 LBL J 75 X*V

29 LBL 00 76 A+V

30 SF 27 77 VSTO

31 SF 21 78 3

32 CF 01 79 VRCL

33 "^N ^O    NEW" 80 1

34 PROMPT 81 VRCL
35 GTO 00 82 A*V

36 LBL c 83 ST* 12

37 XROM "3VC" 84 V<>A

38 LBL A 85 RCL 12

39 SF 01 86 X*V

40 GTO 03 87 VRCL
41 LBL B 88 3

42 CF 01 89 A+V

43 LBL 03 90 FS? 01

44 XROM "CT" 91 RTN

45 LBL e 92 LBL 01

46 VIEWV 93 VRCL

47 GTO 00 94 2
95 A+V

96 END
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Calculating 2D and 3D Distances: The DST Launcher  

 
A few example programs in the module illustrate the convenience of using an abstraction layer to 
handle vector expressions – without having to worry about their individual components. The net result 
is shorter, neater programs with higher-level structure, devoid of all those multiple STOnn / RCLnn 
statements so common otherwise – and therefore much easier to understand and debug. 
 

The functions included in this group are as follows: 

 
Elements 3D 2D N-Dim 

Point-Point VADST PP2 DOTN 

Point-Line  “PL3” PL2 - 

Point-Plane “PPL3” - - 

Line-Line “LL3” - - 

 
 
For further convenience these functions are grouped together in its own launcher, DST – which is 

accessed either by pressing  XEQ  at the “V:” or “P:” prompts; or by pressing  USER  at any of the 

three prompts. Once invoked, you can toggle the 2D and 3D cases with the [SHIFT] key, whereby 
changing the displayed choices accordingly. Note also the usage of the user flags annunciators 2/3 to 
denote the corresponding case (where the Shifted screen is for the 2D case). 
 
 

     < --- >   
 
 
Note that VCT and TR are shortcuts for the Advantage’s Vector Calculator and Coordinate 
Transformation programs described before. The formulas used are as follows.- 
 
 

2D Point-to-Point distance:   
 
Where the points are given by P(p1,p2) and Q(q1,q2). 
Enter q2, q1, p2, p1 in the stack; then execute PP2. The result is left in the X-register. 
 
Example: The distance between points M(1,2) and N(3,4) is: 
 

4, ENTER^, 3, ENTER^, 2, ENTER^, 1, V$ “PP2” ->    

 
 

2D Point-to-Line distance:  
 
where the line is given by the equation Y= mx+k, and the point is P(x1,y1). 
 
Enter m,p,y1,x1 in the stack; then execute PL2. The result is left in the X-register. 
 
Example: The distance from the point M(2,5) and the line y= 3x + 4 is: 
 

3, ENTER^, 4, ENTER^, 5, ENTER^, 2, V$ “PL2”   -->   
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3D Point-to-Point distance.   
 
Where the points components are  P(p1, p2, p3) and Q(q1, q2 ,q3). 
Use VENTER^ to separate v1 and v2 in the vector stack; then use VADST. 
 
Example: verify that the distance between points P(1,2,3) and Q(-1,-2,-3) is the double of the 
magnitude of any of them. 
 
3, ENTER^, 2, ENTER^, 1, VENTER^, VCHS, VADST   -->  
3, ENTER^, 2, ENTER^, 1, VMOD, 2, *    -->  
 
 

3D point-to-line distance:   d = || UxAM || / || U ||        
 
Where the point is M(x,y,z) and the line is determined by its anchor point A(a,b,c) and unit vector 
U(u,v,w). The program PL3 will prompt for the components of A, M, and U. 
 
Example:     L: is defined by the point A(2,3,4) & the vector U(1,4,9)   and  M(2,5,3) 
 
XEQ “ PL3”     “” 
3, ENTER^, 5, ENTER^, 2, R/S  “” 
4, ENTER^, 3, ENTER^, 2, R/S  “” 
9, ENTER^, 4, ENTER^, 1, R/S   
 
 
3D Point-to-Plane distance.   For a plane given by (ax + by + cz + d) = 0,  and a point (x1, y1, z1)  
not necessarily lying on the plane, the shortest distance from  to the plane is: 
 

 
The program PPL3 will prompt for the components, 
leaving the result in the X-register. 
 
Example:  P: 2x + 3y + 5z = 9    and  M(4,6,1) 
 
XEQ “PPL3”     “” 
9, ENTER^, 5, ENTER^, 3, ENTER^, 2, R/S ““ 
1, ENTER^, 6, ENTER^, 4, R/S    
 
 

3D Line-to-Line distance. d = | (UxU').AA' | / || UxU' ||        
 
For a line L determined by one point A(a,b,c) and one direction vector U(u,v,w) , and another line L' 
determined by its anchor point A'(a',b',c') and one direction vector U'(u',v',w'). The program LL3 will 
prompt for the different components, leaving the result in the X-register. 

 
Example:  (L) is defined by A(2,3,4) & U(1,4,7), and  (L') is defined by A'(2,1,6) & U'(2,9,5) 
 
XEQ “LL3”     “ ”  
6, ENTER^, 1, ENTER^, 2, R/S  “” 
4, ENTER^, 3, ENTER^, 2, R/S  “ ” 
5, ENTER^, 9, ENTER^, 2, R/S  “” 
7, ENTER^, 4, ENTER^, 1, R/S   
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The programs are shown below – really simple when the right functions are used. 

 

                         

01 LBL "PL3" 30 XEQ 02

02 "^M=?" 31 AXV

03 XEQ 01 32 VUNIT

04 XEQ 02 33 VRCL (00)

05 VUNIT 34 A*V
06 AXV 35 GTO 05

07 VMOD 36 LBL "PPL3"

08 GTO 05 37 "^PL=?"

09 LBL 01 38 PROMPT

10 PROMPT 39 R^

11 VENTER^ 40 STO 00
12 EXSCR 41 RDN

13 "^A=?" 42 VENTER^

14 PROMPT 43 EXSCR

15 EXSCR 44 "^M=?"
16 A-V 45 PROMPT

17 RTN 46 EXSCR

18 LBL 02 47 A*V
19 VENTER^ 48 ST- 00

20 EXSCR 49 V<>A

21 "U^=?" 50 VMOD

22 PROMPT 51 ST/ 00
23 EXSCR 52 X<> 00

24 RTN 53 LBL 05

25 LBL "LL3" 54 ABS

26 XEQ 01 55 "d="
27 VSTO (00) 56 ARCL X

28 "^U'=?" 57 AVIEW

29 PROMPT 58 END  
 
Coordinate Conversions – SandMath Module. 

 
Functions  R-S  and its inverse  S-R  will convert rectangular to spherical coordinates and back. The 

convention used is shown in the figure below, with the azimuth angle (theta) measured in the XY plane 
between the X-axis and the projection of the vector S -, and the Zenith angle (phi) measured from the 
Z-axis to the vector the radius P. The calculations are made using the internal [TOPOL] and [TOREC] 
OS routines, same ones used for the native P-R and R-P functions. 
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N-dimensional Vector Operations  {  DOTN  ,  V*VN  } 

           
 
DOTN is an all-MCODE implementation of a n-dimensional vector dot (scalar) product, the norms of 
each operand and the angle between them.  Originally written by JM Baillard, the input parameters are 
the control words for each vector in registers X and Y (more about this later), and the result values are 
placed in the stack.  
 
Obviously the vector components must be input in the appropriate registers, which you can do using 
any of the available input programs available in the SandMatrix – will be seen with detail in the 
polynomial section later in the manual. Incidentally the code for DOTN is located in the second bank of 
the lower page – taking advantage of the available room after the removal of the digital functions. 
 
 
Example. Calculate the scalar product of vectors  U(2,3,7,1) and  V(3,1,4,6), storing their components 
in registers {R01 - R04} for U, and {R06 - R09} for V. 
 
For the data input we have several choices; here we’ll Use the PMTP function seen before, just 
pretending the vector components are analogous to polynomial coefficients (which is irrelevant to the 
actual inner workings of PMTP). 
 
1.004, XEQ “PMTP”   -> “R1: _”, we type:  2, ENTER^, 3, ENTER^, 7, ENTER^, 1, R/S 
6.009, XEQ “PMTP”  -> “R6: _”, we type:  3, ENTER^, 1, ENTER^, 4, ENTER^, 6, R/S 
 
Re-entering the control codes in X, and Y (if not already there) we execute the function, which returns: 
 

V$  “DOTN”  ->  43, see table below for all the available data. 

 

STACK        INPUTS      OUTPUTS Results 

T / µ 46.52626239° 

Z / || U || 7.874007874 

Y bbb.eee(U) || V || 7.937253933 

X bbb.eee(V) U.V 43,000000 

L / cos µ  

 
This is a good example of Jean-Marc’s very complete and economical programming. Needless to say it 
executes at blazing light speed, as you would expect from an MCODE routine like this. 
 
 
 
Note: The SandMath module includes functions IN and OUT in the auxiliary FAT (therefore you’d need 
to use F$ to execute them) that can be used for data entry in the n-dimensional case, as follows: 

 
IN / OUT, sequentially enter data or review a block of registers: 
 

• Enter the initial register index for IN, then proceed with all required entries and terminate 
with a “blank” R/S to end the sequence. 
 

• Input the control word in X in the form bbb.eee, and OUT will display all registers 
sequentially. Use flag 21 to control the display prompt (set) or not (clear). 

 
 
Initially keeping track of the different sub-function launchers can be a bit challenging , but easy enough 
to remember that it’s just two of them: F$ in the SandMath and V$ in the SandMatrix (or their 

corresponding index-based counterparts F# and V#) 
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The alternative – Vectors as Matrices. 
 
 
V*VN performs the same tasks (n-dimensional vector dot product) but using a different approach: 
treating the vectors as column matrices it simply uses M*M to calculate the result, multiplying the first 
operand vector by the transpose of the second operand vector. All data input/output are driven under 
program control. The execution time is longer than DOTN, trading so convenience for speed. 
 
To appreciate the workings of V*VN you need to consider that it transposes V2 before doing the 
multiplication, and that it calculates the Frobenius norms of each matrix on the fly to obtain the angle. 
The dot product is placed in a 1x1 matrix named “V*V” in X-Mem.  
 
Here’s the listing of the program that clearly shows all the housekeeping chores required to prepare the 
strings needed in ALPHA for the matrix functions as input. Even if it’s somehow slower and less 
efficient, it’s a good “academic example” of utilization of the standard matrix functions. 
 
 

01 LBL "V*V" 31 FNRM

02 FS? 06 subroutine use? 32  /

03 GTO 00 yes, skip data entry 33 "V2"

04 -SNDMTRX 4 prompts "ORDER=?" 34 FNRM

05 STOP 35  /
06 INT 36 ACOS

07 "V1" 37 X<>Y

08 MATDIM 38 "V<)="
09 XEQ 05 V1 data input 39 ARCL Y

10 DIM? 40 PROMPT show angle

11 "V2" 41 RTN

12 MATDIM 42 LBL 05

13 XEQ 05 V2 data input 43 3

14 LBL 00 44 X<>F

15 "V*V" 45 0
16 CLX 46 MSIJA position pointer

17 MATDIM 47 LBL 04

18 "V1" 48 "c"
19 TRNPS 49 MRIJ

20 "|-,V2,V*V" 50 MP

21 M*M 51 MR

22 ASHF 52 ARCLX

23 0 53 "|-?"

24 MSIJA position pointer 54 PROMPT
25 MR recall element 55 MS 

26 ENTER^ 56 I+

27 "|-=" 57 FC? 10 reached the end?

28 ARCL X 58 GTO 04 no, loop back
29 PROMPT show result 59 MNAME?

30 "V1" 60 END  
 
 
The usage of user flag 06 determines whether the program is used as a subroutine – in which case the 
data entry is skipped. This is more or less consistently done throughout the SandMatrix module, and 
has the benefit of saving one entry in the FAT – which would be needed for the subroutine label. 
 
Line 4 uses the header function “-SNDMTRX 4”, which in program mode adds the text “ORDER=?” to 
the display (not ALPHA). This saves bytes and keeps the contents of ALPHA unchanged. 
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Note: - Functions EV3 and PF>X are handy companions to the main programs EV3X3 and PRMF 
respectively. They’ve been placed in this section of the auxiliary FAT purely on a convenience basis, to 
make room in the main FAT for other more relevant functions – so they’re available using the sub-
function launchers VL$ or VL#. Refer to the corresponding sections in the manual for usage 

instructions and details. 

 
Remember to always check Jean-Marc Baillard’s pages on these and related subjects, really a treasure 
trove of solid programs you can use. In particular, the Euclidean distances and the Vector products: 
 

http://hp41programs.yolasite.com/distance.php 
http://hp41programs.yolasite.com/dotcross.php 
 
 

 
 
 
 
 

Appendices. 
 
 
 
 
 
 
 

                                 
 

Note: Make sure that revision “R” (or higher) of the Library#4 module is installed. 

 

http://hp41programs.yolasite.com/distance.php
http://hp41programs.yolasite.com/dotcross.php
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Appendix M.- MCODE listings for  LU?  And  ^MROW  . 

 
There are a few new M-Code functions in the SandMatrix that make direct usage of the module’s 
subroutines. A representative example is given below, showing the very short routine LU? – that checks 
whether the matris is in its decomposed form – simply by reading the appropriate digit in the matrix 
header register. 
 
1 LU? Header A5FA 0BF "?"

2 LU? Header A5FB 015 "U"

3 LU? Header A5FC 00C "L"

4 LU? LU? A5FD 379 PORT DEP: Jumps to Bank_2

5 LU? A5FE 03C XQ adds "4" to [XS]

6 LU? A5FF 1D9 ->A5D9 [LNCH0]

7 LU? A600 388 <parameter> B788

8 LU? A601 00B JNC  +01    

9 LU? A602 100 ENROM1 restore bank-1

10 LU? A603 0B0 C=N ALL header register

11 LU? A604 25C PT= 9 LU digit

12 LU? A605 2E2 ?C#0 @PT

13 LU? A606 0B9 ?NC GO False 

14 LU? A607 05A ->162E [SKP]

15 LU? A608 065 ?NC GO True 

16 LU? A609 05A ->1619 [NOSKP]  
 
 
Lastly, and just in case you though that functions PMTM and PMTP are actually not a big deal (which 
would be the logical conclusion if you only look at their FOCAL program listing) – here is in all its gory 
detail the listing for its MCODE-heart, function ^MROW. 
 
I’ll spare you the more onerous details, but suffice it to say that it was an involved assignment. And 
don’t forget that another function is also used to support the matrix prompt mode: ANUMDL – although 
in this case I just had to copy HP’s code from the HP-IL Development Module (thanks HP! :-) 
 
1 ^MROW Header B658 097 "W"

2 ^MROW Header B659 00F "O"

3 ^MROW Header B65A 012 "R" Input Matrix Row

4 ^MROW Header B65B 00D "M"

5 ^MROW Header B65C 01E "^" Ángel Martin

6 ^MROW ^MROW B65D 0C4 CLRF 10 start anew: no CHS yet

7 ^MROW B65E 184 CLRF 11 start anew: no commas yet

8 ^MROW B65F 344 CLRF 12 start anew: no digits yet

9 ^MROW B660 0F8 READ 3(X)

10 ^MROW B661 070 N=C ALL

11 ^MROW B662 345 ?NC XQ Clears Alpha
12 ^MROW B663 040 ->10D1 [CLA]

13 ^MROW B664 215 ?NC XQ Build Msg - all cases

14 ^MROW B665 0FC ->3F85 [APRMSG2]

15 ^MROW B666 212 "R"

16 ^MROW B667 0B0 C=N ALL row number in BCD format
17 ^MROW B668 37C RCR 12 move the MSB to C{0)

18 ^MROW B669 21C PT= 2

19 ^MROW B66A 010 LD@PT- 0
20 ^MROW B66B 2D0 LD@PT- B add colon to digit

21 ^MROW B66C 3E8 WRIT 15(e) write it in display (9-bit)

22 ^MROW B66D 355 ?NC XQ blank space to LCD
23 ^MROW B66E 03C ->0FD5 DSPL20

24 ^MROW B66F 33D ?NC GO Input List in Alpha
25 ^MROW B670 112 ->44CF [ALIST]  
 
Not such a big deal, you keep saying? Well, let’s have a look at the remaining part in the Libary#4 
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1 ALIST BCKARW 44CD 055 ?NC GO Delete char plus logic

2 ALIST 44CE 116 ->4515 [DELCHR]

3 ALIST ALIST 44CF 115 ?NC XQ Partial Data Entry!

4 ALIST 44D0 038 ->0E45 [NEXT1]

5 ALIST 44D1 3E3 JNC  -04 [BCKARW]

6 ALIST 44D2 00C ?FSET 3 numeric input?

7 ALIST 44D3 093 JNC  +18d NO, KEEP LOOKING

8 ALIST 44D4 0BE A<>C MS recall LS digit from A[13]

9 ALIST 44D5 130 LDI S&X

10 ALIST 44D6 003 CON: pre-load the numeric mask

11 ALIST 44D7 2FC RCR 13 move it to C[S&X]

12 ALIST 44D8 3E8 WRIT 15(e) write it in display (9-bit)

13 ALIST 44D9 348 SETF 12 enable SPACE

14 ALIST TOALPH 44DA 39C PT= 0

15 ALIST 44DB 058 G=C @PT,+

16 ALIST 44DC 149 ?NC XQ Disable PER, enable RAM

17 ALIST 44DD 024 ->0952 [ENCP00]

18 ALIST 44DE 051 ?NC XQ

19 ALIST 44DF 0B4 ->2D14 [APNDNW]

20 ALIST GOBACK 44E0 042 C=0 @PT

21 ALIST 44E1 058 G=C @PT,+ reset PTEMP bits

22 ALIST 44E2 3D9 ?NC XQ Enable Display (not cleared)

23 ALIST 44E3 01C ->07F6 [ENLCD]

24 ALIST ANCHOR1 44E4 35B JNC  -21d ONE PROMPT

25 ALIST 44E5 28C ?FSET 7 decimal key pressed?

26 ALIST 44E6 03B JNC  +07 NO, KEEP LOOKING

27 ALIST 44E7 18C ?FSET 11 been used already?

28 ALIST 44E8 3E7 JC -04 ONE PROMPT

29 ALIST 44E9 188 SETF 11 no more radix (unless deletion)

30 ALIST 44EA 10D ?NC XQ adds proper radix sign

31 ALIST 44EB 114 ->4543 [RADIX4]

32 ALIST ANCHOR2 44EC 373 JNC -18d [TOALPH]

33 ALIST 44ED 0B0 C=N ALL PRESSED KEY CODE

34 ALIST 44EE 106 A=C S&X

35 ALIST 44EF 130 LDI S&X

36 ALIST 44F0 030 CON: ENTER^ keycode [030]

37 ALIST 44F1 366 ?A#C S&X

38 ALIST 44F2 04F JC  +09

39 ALIST 44F3 34C ?FSET 12 digits input already?

40 ALIST ANCHOR1 44F4 383 JNC  -16d ONE PROMPT

41 ALIST 44F5 0C4 CLRF 10 clear CHS flag

42 ALIST 44F6 184 CLRF 11 al low RADIX

43 ALIST 44F7 344 CLRF 12 set SPACE flag

44 ALIST 44F8 355 ?NC XQ       add space to LCD

45 ALIST 44F9 03C ->0FD5 [DSPL20]

46 ALIST 44FA 393 JNC -14d add to Alpha

47 ALIST 44FB 130 LDI S&X

48 ALIST 44FC 370 CON: R/S keycode [370]

49 ALIST 44FD 366 ?A#C S&X terminate digit entry

50 ALIST 44FE 07B JNC  +15d [WAYOUT]

51 ALIST 44FF 130 LDI S&X

52 ALIST 4500 230 CON: CHS keycode  [230]

53 ALIST 4501 366 ?A#C S&X

54 ALIST 4502 023 JNC  +04

55 ALIST 4503 265 ?NC XQ Blink Display - pass #2

56 ALIST 4504 020  ->0899 [BLINK1]

57 ALIST 4505 37B JNC -17d ONE PROMPT

58 ALIST 4506 0CC ?FSET 10 been used already?

59 ALIST 4507 3F7 JC   -02 ONE PROMPT

60 ALIST 4508 0C8 SETF 10 first time

61 ALIST 4509 130 LDI S&X

62 ALIST 450A 02D "-" appends "-"

63 ALIST 450B 3E8 WRIT 15(e) 9-bit LCD write

64 ALIST 450C 303 JNC -32d [TOALPH]

65 ALIST WAYOUT 450D 3DD ?NC XQ Left-justify LCD

66 ALIST 450E 0AC ->2BF7 [LEFTJ]  
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67 ALIST 450F 161 ?NC XQ Clear LCD and reset things

68 ALIST 4510 124 ->4958 [EXIT3]

69 ALIST 4511 175 ?NC XQ Adjust F10 Status

70 ALIST 4512 114 ->455D [ADJF10]

71 ALIST 4513 31D ?NC GO Normal Function ReturnKB

72 ALIST 4514 002 ->00C7 [NFRKB]

73 ALIST DELCHR 4515 3B8 READ 14(d) to delete rightmost chr

74 ALIST 4516 158 M=C ALL save it for later

75 ALIST 4517 149 ?NC XQ Disable PER, enable RAM

76 ALIST 4518 024 ->0952 [ENCP00]

77 ALIST 4519 178 READ 5(M)

78 ALIST 451A 2EE ?C#0 ALL anything in Alpha?

79 ALIST 451B 037 JC  +06 yes, go on

80 ALIST 451C 104 CLRF 8 no, abort if empty

81 ALIST 451D 1B1 ?NC XQ Mainframe Message

82 ALIST 451E 070  ->1C6C [MSGA]

83 ALIST 451F 03C "NULL" from table

84 ALIST fixed bug 4520 37B JNC  -17d Reset everything and leave

85 ALIST 4521 2E5 ?NC XQ remove last Alpha char

86 ALIST 4522 110 ->44B9 [ABSP4]

87 ALIST 4523 198 C=M ALL recall deleted char value

88 ALIST 4524 106 A=C S&X store in A for comparisons

89 ALIST 4525 130 LDI S&X check for SPACE

90 ALIST 4526 020 "space" <space> 

91 ALIST 4527 0AD ?NC XQ complete the logic

92 ALIST 4528 114 ->452B [CHUNK4]

93 ALIST 4529 381 ?NC GO repeat the prompt

94 ALIST 452A 112 ->44E0 [GOBACK]

95 ALIST CHUNK4 452B 366 ?A#C S&X carry if different 

96 ALIST 452C 01F JC  + 03

97 ALIST 452D 348 SETF 12 allow new space entry

98 ALIST 452E 0A3 JNC +20d BAIL OUT

99 ALIST 452F 130 LDI S&X check for "-" chr

100 ALIST 4530 02D "-" "-" char value

101 4531 366 ?A#C S&X carry if not "-"

102 Executed within [DELCHR] 4532 02F JC  + 05

103 an opportunistic routine 4533 34C ?FSET 12 is there SPACE chr?

104 just grouping common code 4534 017 JC  +02

105 4535 0C4 CLRF 10 allow new "-" entry

106 ALIST 4536 063 JNC +12d BAIL OUT

107 ALIST 4537 198 C=M ALL recall deleted char value

108 ALIST 4538 3D8 C<>ST XP Got a radix? If so, we neet to

109 ALIST 4539 14C ?FSET 6 replace it without comma

110 ALIST 453A 043 JNC +08

111 ALIST 453B 3D9 ?NC XQ Enable Display (not cleared)

112 ALIST 453C 01C ->07F6 [ENLCD]

113 ALIST 453D 144 CLRF 6 remove the radix value

114 ALIST 453E 284 CLRF 7 (both if need be)

115 ALIST 453F 3D8 C<>ST  XP  recall deleted char value

116 ALIST 4540 3E8 WRIT 15(e) write i t in display

117 ALIST 4541 184 CLRF 11 Re-allow comma writing

118 ALIST 4542 3E0 RTN

119 ALIST RADIX4 4543 149 ?NC XQ Disable PER, enable RAM

120 ALIST 4544 024 ->0952 [ENCP00]

121 ALIST 4545 3B8 READ 14(d)       put F28 to F9

122 4546 2BC RCR 7

123 transfer staus of UF28 to F9, 4547 248 SETF 9

124 adds the converted crh code 4548 1EE C=C+C ALL comma or period ?

125 to the LCD and prepares ALPHA 4549 013 JNC  +02 overflows if COMMA (cf28)

126 454A 244 CLRF 9 comma  = CF 28

127 ALIST 454B 3D9 ?NC XQ Enable Display (not cleared)

128 ALIST 454C 01C ->07F6 [ENLCD]

129 ALIST 454D 3B8 READ 14(d) read right

130 ALIST 454E 3D8 C<>ST  XP 

131 ALIST 454F 148 SETF 6

132 ALIST 4550 24C ?FSET 9 comma or period ?

133 ALIST 4551 013 JNC  +02      

134 ALIST 4552 288 SETF 7 should replace the last chr 

135 ALIST 4553 3D8 C<>ST  XP with the same one w/ radix

136 ALIST 4554 3E8 WRIT 15(e) 9-bit LCD write

137 ALIST 4555 130 LDI S&X

138 ALIST 4556 02C "," appends ","  [02C]

139 ALIST 4557 24C ?FSET 9

140 ALIST 4558 360 ?C RTN no need, return

141 ALIST 4559 226 C=C+1 S&X

142 ALIST 455A 226 C=C+1 S&X appends "."  [02E]

143 ALIST 455B 3E0 RTN  
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The End. 

 
This concludes the SandMatrix Manual – Hope you have found it useful and interesting enough to keep 
as a reference. Better yet, go ahead and write a few more functions on your own. A few suggestions 
are: 
 

- Program to calculate Eigenvectors from Eigenvalues 
- General-purpose p-th. root of a matrix 
- General-purpose Logarithm of a matrix 
- Extended-memory support for Polynomial files 
- Anything else you feel like going for! 

 
 
 

                                      
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

Note: Make sure that revision “R” (or higher) of the Library#4 module is installed. 
 


