
SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 1 of 148






User’s Manual and Quick Reference Guide

Written and programmed by Ángel M. Martin
January 18th, 2021

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 2 of 148

This compilation revision 5.1.02

Copyright © 2012 – 2021 Ángel M. Martin

Acknowledgments.-

Documentation wise, this manual begs, steals and borrows from many other sources – in particular
from the HP-41 Advantage Manual. Not so much from the CCD Manual but obviously that was how it
all began – with the excellent implementation of the Array Functions by W&W GmbH.

Thanks to the following contributors must be given: Jean-Marc Baillard; Valentín Albillo; Eugenio
Úbeda; Ulrich Deiters and Thomas Klemm. Original authors retain all copyrights and should be
mentioned in writing by any party utilizing this material. No commercial usage of any kind is allowed.

Screen captures taken from V41, Windows-based emulator developed by Warren Furlow. Its
breakpoints capability and MCODE trace console are a godsend to programmers. See HHTUTUwww.hp41.orgUUTTHH

Published under the GNU software licence agreement.

No commercial use is allowed in any way, shape and form.

http://www.hp41.org/

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 3 of 148



1. Introduction: the SandMatrix 4

HH

Preamble to latest revisions 6
Introduction 7

HHLogical next chapter after the SandMath 7
HHThe many names of Dr. Who 8
HHWhat isn’t included? 8
The H9
HHFunction index at a glance UUTTHH. 9
Subfunctions in the Auxiliary FAT 11

2. Lower Page Functions in Detail

UU 2.1. SandMatrix 4 Group

 HHAlpha String Manipulation HH. 14
Function Launcher and Matrix keyboards 15
HHFunctions in the header section 16

 HHThe main MATRX program 16

UU2.2. Matrix-101

 HHSetting up a matrix 21
 How a matrix is stored. Matrix Editors. 22
 How to Specify a matrix 23
 Storing and Recalling Matrix Elements 25
 Updated Matrix Editor 26
 Matrix Catalogs - Where’s my stuff? 27
 Appendix. Harmonic Determinants 28

UU2.3. Matrix Functions

 HHMatrix Arithmetic 30.
 HH Major Matrix Operations 31
 LU Decomposition 32
 Working with Complex Matrices 33

Using Functions with Complex Matrices 34
Appendix: Complex Matrix Determinants 38
Appendix. Complex Transposed Matrix. 40
Storing and Recalling Complex Elements 44

Other Matrix Functions (“Utilities”) 45

Moving and Exchanging sections 46
Maxima and minima 46
Norms and Sums 46
Matrix Reductions 46
Appendix: Pascal and Random Matrices 49
Appendix: Matrix Minors. 50

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 4 of 148

3. Upper Page Functions in Detail

UU 3.1. Advanced Matrix

 HH The Enhanced Matrix Editor(s) 52
 New Matrix Utilities / housekeeping 53

Finding elements / Driver for M*M 58
 Exponential of a Matrix 59
 Logarithm of a Matrix 60
 Square Root of a Matrix 62

Appendix: Square root of a 2x2 matrix 64
Matrix Integer Powers and Roots 65
Lie Product 69
Matrix Trace. Unitary Diagonal 71
Sum of Diagonal/Crossed element products 72
Transposing matrix elements 73
Appendix: Matrix Pseudo-Inverse 74
Matrix Polynomial 76

3.2. Polynomials and Linear Algebra.

 Eigenvectors and Eigenvalues 78
 Characteristic Polynomial 79
 SOLVE-based implementation 80
 Formula-based 3-Dimensional Case 82
 General n-dimensional case: Faddevv-Leverrier 84
 Jacobi method for Symmetric Matrices 86

3.3. Managing Polynomials

 Defining and Storing Polynomials 88
 Polynomial Arithmetic 90
 Swapping and Copying Polynomials 92
 Evaluating Polynomials and their Derivatives 93
 Appendix: Irreducible Polynomials over Z[X] 95
 Polynomial Root Finders 97
 Quartic Equation 98
 General case: Bairstow Method 99

3.4. Applications of Polynomials

 Equations for Curve Fitting programs 105

Polynomial Interpolation 106
Prime Factors Decomposition. Totient function 108

 Fitting data to Polynomials 110
 Orthogonal Polynomials 115
 From Poles to Zeros and back 119

Partial Fractions Expansion 122
Extra bonus: Polynomial Launchers 123

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 5 of 148

4. Geometry and Vector Analysis

4.1. Subfunctions, Catalog and Launchers 123
 The “Last Function” functionality 124

U 4.2. Vector Analysis

 HHVector Stack Implementation 125
 Vector Operations 126

 Table of Vector functions 130
 Coordinate Transformation 131
 Calculating 2D- and 3D-distances 132

Other Utility functions 141
N-dimensional Vector operations 142

Appendix “M” and END. UU 143

Note: Make sure that revision “R58” (or higher) of the Library#4 module is installed.

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 6 of 148

SandMatrix_4 Module – Revision “5Y+”

Matrix Extensions for the HP-41 System.

0. Preamble to latest revisions.

The latest revision of the SandMatrix rounds up the module with subtle architectural enhancements, as
well as a few additional new functions to complete the pack. Notable are the all-MCODE versions of
polynomial evaluation and its derivatives, the new Orthogonal Polynomial functions, and the addition
of the FOCAL examples from the manual now available to the user in the function set. Simplification of
the code allowed for optimal allocation of the routines, freeing up space for the new additions.

Revision “M” of the SandMatrix included significant additions to its predecessor – both in contents as
well as in what relates to its internal architecture. Short on the heels of revisions “K” and “L”, the
author figured out a way to enhance the original bank-switching implementation (based on HP-‘s
Advantage Module), adding support for the Hepax-based model to it; and thereby enabling the
utilization of the second bank in the lower page for other purposes. This freed up a substantial amount
of room that now hosts the 3D Vector Calculator ROM almost in its entirety – using a secondary
FAT and auxiliary function launchers like those present in the SandMath module.

The benefits are obvious: all 3D Vector functions are now available within the SandMatrix, saving a
page in the calculator configuration ports. It also facilitated further consolidation of functions,
removing the poor-man FOCAL implementation of the same capabilities from the SandMatrix. The net
result is a much more capable module that now includes all the main components of Algebra: Vectors,
Polynomials and Matrices.

The 3D-Vector functions can be executed by their names (using function “V$”), or using their

indexes within the secondary FAT (using function “V#”). These two functions are further connected

to the main module function launcher ML using the ALPHA and USER keys respectively at its

prompt. Note also that the “ML” prompt toggles cyclically amongst three personalities (or modes)

upon repeated pressing of the + key as follows: “M:_” for matrix functions, “P:_” for polynomial

functions, and ‘V:_” for vector functions. These refer to the dedicated keyboards as can be seen in the
custom overlays shown later in the manual.

Because prompting functions cannot be easily located in secondary FATs, a few of the vector functions
have also been placed in the main FAT of the module. These are VRCL, VSTO, V<>, and VVIEW –
which use the prompt to select the register set needed in their operation. To make room for their
entries, the non-prompting auxiliary functions (mainly dealing with ALPHA string management) have
been relegated to the auxiliary FAT. The FOCAL programs that use them have also been modified
accordingly to reflect the new arrangements.

Like it was the case in the Vectors ROM, the coordinate transformation and vector calculator programs
TR and VC from the Advantage Pac have been re-written using the new 3D-Vectors functions included
in the module – and included in the main FAT. User instructions and capabilities are identical, but its
execution speed is largely faster, as they take advantage of the MCODE implementation of the
underlying functions. Besides, a few other new geometry functions also went to the auxiliary FAT -
completing the coordinate transformations and 2D/3D distances function set. They’ll be described in
section 4 of the manual.

Note that all these important additions required making some changes to the Library#4 – make sure
you use revision “R58” or higher in conjunction with the SandMatrix revision “Y”.

Note: Make sure that revision “R58” (or higher) of the Library#4 module is installed.

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 7 of 148

1. Introduction.

The release of the CCD Module by W&W in 1983 provided for the first time convenient and reliable
tools for matrix algebra in the 41’s platform. It was an MCODE quantum leap ahead, beyond the very
many user programs written on the subject in the previous years. Looking back, it’s clear that the
“ARRAY FNS” was beyond a doubt an amazing landmark in the legacy of the 41 platform. So much so
that rather than re-invent the wheel HP decided to use it almost in its entirety in the Advantage Pac,
only enhancing it with the major matrix operations sorely missing in the CCD implementation (which
incidentally were the subject of the majority of Matrix programs written for the CCD).

Perhaps because the relative tardiness of its appearance, with the HP-42S already on the horizon - or
due to other factors like the HP-48S luring folks into RPL - the fact is that Matrix programs using the
Advantage Pac functions were very few and in between. The demise of PPC and the newsletter wars
that followed suit certainly didn’t encourage the scene either, and the end result was slightly
disappointing in terns of net results.

About 30 years later the SandMatrix picks up the gauntlet and compiles a collection of noteworthy
programs and routines on Matrix and Polynomial algebra, with the specific criteria to be based on the
CCD/Advantage function set – in an attempt to straighten the record and pay the due credit to that
superb toolset that had been so underutilized.

1.1. The logical next chapter after the SandMath

In many respects previous revisions of the SandMatrix were very conventional. Back then there were
no auxiliary FATs with sub-functions a la SandMath, and not even a dedicated function launcher with
an alternate keyboard. All that is now completely changed and you can find all those ammenieties and
a few more surprises in revisions “M,N, and Y”. Many of the new routines are written in FOCAL, and
the programs are typically large ones. Programming with the Matrix functions is more about Alpha
strings and auxiliary data sets than concerning with data registers and to some extent even
algorithmic strategy. Because they are FOCAL programs, they are slower than other areas - although
the 41CL has blurred the lines separating MCODE and FOCAL in terms of speed.

In terms of its contents, it was clear from the beginning that it should be an extension to the
SandMath. However, the dilemma was how to manage the dependencies: should it be a self-contained
ROM or rely on functions from other modules? The former option implied including many auxiliary
functions in the FAT’s, taking precious entries and causing redundancy in the global scheme. The latter
option however meant a potential loss of usability, since several modules were involved – the Library
#4, the SandMath, AMC_OS/X, the Solve & Integrate ROM, the Polynomial ROM, etc.

The solution to this riddle came only with the latest revision of the SandMath 3x3, which added a third
bank with Solve and Integrate – plus an important consolidation of functions in its auxiliary FAT. This
really cleared things out for the SandMatrix, in that the only dependencies left are the Library#4 and
the SandMath itself – for a total of only 8k “effective” footprint needed additionally (since the
Library#4 is located in the otherwise reserved page-4).

So there you have it, the SandMatrix kind of replaces all previous versions of the “Advanced Matrix
ROM”, the “Matrix ROM”, and the “Polynomial ROM” (not counting the one co-produced with JM
Baillard). Also in this regard it’s worth mentioning that the SandMatrix is totally independent from the
“JMB_Matrix ROM”, which doesn’t use the Advantage function set at all.

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 8 of 148

1.2. The many names of Dr. Who.

The SandMatrix is the last incarnation of a series of different modules previously released that also
dealt with Matrix and Polynomial algebra. Some of them were based on the Advantage itself,
combining the matrix functions with other applications and thus followed the same bank-switching
implementation: two pages, with two banks in the upper page. The differences amongst them were
about what else (beyond the matrix set) they included – once you removed the less notorious content
of the Advantage.

The table below illustrates this, showing the dependencies and choices made in all the predecessors of
the SandMatrix.

We sure have a much simpler situation now, glad to say we left all those behind.

What isn’t included?’

When compared to the original Advantage Pac, the following functionality areas are not included in the
SandMatrix – but in other dedicated modules (and in a superior implementation if I may add), as
shown in the table below:

Section In Module Also Available in Comments

Digital Functions SandMath 4x4 Digit Pac Includes 16C Emulator

Solve & Integrate SandMath 4x4 Solve & Integrate ROM Fully embedded

Curve Fitting SandMath 4x4 AECROM Fully embedded

Complex Operations HP-41Z - Dedicated 8k ROM

Vectors / Coordinates Now also included ! Vector Calculator ROM Fully Embedded

Differential Equations Diffeq ROM Math Pac Dedicated 8k ROM

Time Value of Money SandMath 4x4 TVM Module Fully embedded

Note: Make sure that revision “R58” (or higher) of the Library#4 module is installed

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 9 of 148

Function index at a glance.

And without further ado, here’s the list of functions included in the module:-

Function Description Input Output Author

1 -SNDMTRX 4 Section Header none Displays "Order=?" Ángel Martin

2 ML _ Matrix Function Launcher Prompts for function Executes Function Ángel Martin

3 DST _ Distance Functions Launcher Prompts "PP PL LL PPL" Executes function Ángel Martin

4 V# _ _ _ Sub-Function Launcher Prompts for index Executes Function Ángel Martin

5 V$ _ Sub-Function Launcher Prompts for name Executes Function Ángel Martin

6 "MATRX" ‘Easy” Matrix Program Driver for Major Matrix Ops. Under prgm control HP Co.

7 "TR" Coordinate Transformation Prompts for Data Under prgm control HP Co.

8 "VC" Vector Calculator Prompts "DP CP <) M UV" Under prgm control HP Co.

9 V<> _ _ Vector Swap Vector register in Memory Swaps vector with with V1 Ángel Martin

10 VRCL _ _ Vector Recall Vector register in Memory Recalls vector to V1 Ángel Martin

11 VSTO _ _ Vector Storage Vector register in Memory Stores V1 in Memory Ángel Martin

12 VVIEW _ _ Shows Vector Components Vector register in Memory Shows vector components Ángel Martin

13 V*VN N-dimensional Dot product Prompts for coeffs Result in Matrix Ángel Martin

14 -CCD MTRX Checks for LU, Square Matrix MNAME in Alpha Displays "Running..." Ángel Martin

15 C<>C Column exchange (k<>l) kkk,lll in X Columns swapped W&W GmbH

16 CMAX Column Maximum Col# in X, "OP1" in Alpha Element value in X W&W GmbH

17 CNRM Column Norm Col# in X, "OP1" in Alpha Column norm in X W&W GmbH

18 CSUM Column Sum "OP1,RES" in Alpha Sum of Cols in RES matrix W&W GmbH

19 DIM? Matrix Dimension "OP1" in Alpha Dimension placed in X W&W GmbH

20 FNRM Frobenius Norm "OP1" in Alpha Value in X W&W GmbH

21 I+ Increase row index "OP1" in Alpha increased i HP Co.

22 I- Decrease row index "OP1" in Alpha decreased i HP Co.

23 J+ Increase column index "OP1" in Alpha increased j HP Co.

24 J- Decrease column index "OP1" in Alpha decreased j HP Co.

25 M*M Matrix Product "OP1,OP2, RES" in Alpha matrix product in RES W&W GmbH

26 MAT* element multiplication value in X, "OP1,X" in Alpha aij = aij * x W&W GmbH

27 MAT+ addition of scalar value in X, "OP1,X" in Alpha aij = aij + x W&W GmbH

28 MAT- element substraction value in X, "OP1,X" in Alpha aij = aij - x W&W GmbH

29 MAT/ Division by scalar value in X, "OP1,X" in Alpha aij = aij / x W&W GmbH

30 MATDIM Dimensions a matrix mmm,nnn in X, "OP1" in Alpha Matrix Dimensioned W&W GmbH

31 MAX Maximum element "OP1" in Alpha Element value in X W&W GmbH

32 MAXAB Absolute maximum "OP1" in Alpha Element value in X W&W GmbH

33 MDET Determinant "OP1" in Alpha Determinant in X HP Co.

34 MIN Minimum element "OP1" in Alpha minimum element in X W&W GmbH

35 MINV Inverse Matrix "OP1" in Alpha Matrix replaced w/ Inverse HP Co.

36 MMOVE Moves part of a matrix I,j; k,l; b,m,n in XYZ Elements moved W&W GmbH

37 MNAME Get current Mname to Alpha none Matrix Name in Alpha W&W GmbH

38 MR Recall element from pt none value in X HP Co.

39 MRC+ Recall and advance in Column "OP1" in Alpha element in X, increased i W&W GmbH

40 MRC- Recall and back one in Column "OP1" in Alpha element in X, decreased i W&W GmbH

41 MRIJ Recall ij pointer of current none pointer in X W&W GmbH

42 MRIJA Recall ij pointer of Alpha "OP1" in Alpha pointer in X W&W GmbH

43 MRR+ Recall and advance in Row "OP1" in Alpha element in X, increased j W&W GmbH

44 MRR- Recall and back one in Row "OP1" in Alpha element in X, decreased j W&W GmbH

45 MS Store element at pointer value in X, OP1 in Alpha Element stored HP Co.

46 MSC+ Store and advance in Column value in X, OP1 in Alpha element stored, increased i W&W GmbH

47 MSIJ Sets pointer of current matrix iii,jjj in X pointer set W&W GmbH

48 MSIJA Sets points of Matrix in Alpha iii,jjj in X; OP1 in Alpha pointer set W&W GmbH

49 MSR+ Store and advance in Row value in X, OP1 in Alpha element stored, increased j W&W GmbH

50 MSWAP Swapps part of a matrix I,j; k,l; b,m,n in XYZ Elements Swapped W&W GmbH

51 MSYS Linear Systems "OP1,OP2, RES" in Alpha Resolves Linear System HP Co.

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 10 of 148

52 PIV Sets pointer to pivot element Col# in X, "OP1" in Alpha Element value in X W&W GmbH

53 R<>R Row Exchange (k<>l) kkk,lll in X Rows swapped W&W GmbH

54 R>R? Row comparison test kkk,lll in X skip line if false W&W GmbH

55 RMAXAB Absolute maximum row# in X, OP1 in Alpha element in X, pointer to ij W&W GmbH

56 RNRM Row Norm "OP1" in Alpha Row Norm in X W&W GmbH

57 RSUM Row Sum "OP1,RES" in Alpha sums of rows in RES matrix W&W GmbH

58 SUM Element Sum "OP1" in Alpha element sum in X W&W GmbH

59 SUMAB Absolute Values Sum "OP1" in Alpha element absolute sum in X W&W GmbH

60 TRNPS Transpose "OP1" in Alpha Matrix replaced w/ transposed HP Co.

61 YC+C Adds Y*Col(l) to Col(k) value in Y, kkk.lll in X column k changed W&W GmbH

62 "MEDIT" Matrix Editor prompts for elements Edits Matrix HP Co.

63 "CMEDIT" Complex Matrix Editor prompts for coeffs Edits Complex matrix HP Co.

64 “CMDET” Complex Matrix Determinant MNAME in ALPHA Up to degree 4 Ángel Martin

1 -ADV MATRIX Section Header none Displays "Not Square" Ángel Martin

2 CMR Recall complex element Complex i,j in X Puts value in {Y,X} Ángel Martin

3 CMS Store Complex element Complex i,j in X, value in {Z,Y} Leaves pointer at (2i, 2j) Ángel Martin

4 CMTRC Complex Matrix Trace Mname in ALPHA Result in {X,Y} Ángel Martin

5 I<>J Swaps indexes iii,jjj in X j,00i in X, i00j in LastX Ángel Martin

6 IMC Input Matrix by Columns "OP1" in Alpha Inputs elements by columns Ángel Martin

7 IMR Input Matrix by Rows "OP1" in Alpha Inputs elements by rows Ángel Martin

8 LU? Tests for LU-decomposed MName in Alpha YES/NO, Do if True. Ángel Martin

9 M^1/N p-th. root of a Matrix "OP1" in Alpha, p in X Matrix replaced by its root Ángel Martin

10 M^2 Matrix Square "OP1" in Alpha Matrix replaced by [M][M] Ángel Martin

11 MAT= Copy Matrix "OP1,RES" in Alpha Copies matrix A into B Ángel Martin

12 MATP Driver for M*M Driver for M*M Under prgm control Ángel Martin

13 MCON Constant "OP1" in Alpha, x in X Makes all elements =x Ángel Martin

14 MDPS Diagonal Product Sum "OP1" in Alpha Sum of diagonal products Ángel Martin

15 MEXP Matrix Exponential "OP1" in Alpha Matrix replaced by exp(M) Ángel Martin

16 MFIND Element finder "OP1" in Alpha, x in X Element pointer if found Ángel Martin

17 MIDN Identity Matrix "OP1" in Alpha Makes it Identity Matrix Ángel Martin

18 MLIE Matrix Lie Product "OP1,OP2,RES" in Alpha [A][B] - [B][A] Ángel Martin

19 MLN Matrix Natural Log "OP1" in Alpha Matrix replaced by LN(M) Ángel Martin

20 MPINV Matrix Pseudo-Inverse MName in Alpha Pseudo-Inverse name in Alpha Ángel Martin

21 MPOL Matrix polynomial Mname in Alpha, Cnt'l word in X Calculates P([A]) Ángel Martin

22 MPWR Matrix Integer Power "OP1" in Alpha, N in X Matrix replaced by [M]^INT(x) Ángel Martin

23 MRDIM Matrix Redimension "OP1" in Alpha, dim in X Matrix redimensioned Ángel Martin

24 MSORT Sorts matrix elements "OP1" in Alpha Matrix Elements sorted Ángel Martin

25 MSQRT Matrix Square Root "OP1" in Alpha Matrix replaced by SQRT([M]) Ángel Martin

26 MSZE? Matriz Size "OP1" in Alpha Matrix size in X Ángel Martin

27 MTRACE Matrix Trace "OP1" in Alpha Trace in x Ángel Martin

28 MXIJ Exchanges element pointer Pointer in matrix header Returns new pointer to X Ángel Martin

29 MZERO Zeroes a Matrix "OP1" in Alpha All elements zeroed R.D. Kendon

30 OMC Output Matrix by Columns "OP1" in Alpha Shows elements by columns Ángel Martin

31 OMR Output Matrix by Rows "OP1" in Alpha Shows elements by rows Ángel Martin

32 PMTM Prompts for Matrix "OP1" in Alpha Prompts for complete Rows Ángel Martin

33 SQR? Tests for Square Matrix MName in Alpha YES/NO, Do if True. Ángel Martin

34 IJJI Sum of crossed products "OP1" in Alpha [aij*aji] in X Ángel Martin

35 -ADV POLYN Section Header none Displays "(ak*X^k)" Ángel Martin

36 PIPJ Symmetric Polyn Cnt’l word in X Sums coeffs. Products JM Baillard

37 BAIRS Bairstow Method Cntl word in Z, guesses in Y,X shows results JM Baillard

38 CHRPOL Characteristic Polynomial "OP1" in Alpha Characteristic Pol Coefs/Roots Ángel Martin

39 EIGEN Eigen Values by SOLVE Under prgm control Eigen Values by Solve Ángel Martin

40 EV3X3 Eigen values 3x3 Prompts Matrix Elements Eigen Values by Formula Ángel Martin

41 "LL3" 3D Line-to Line distance Under prgm control Result in X Ángel Martin

42 "PL3" 3D Point-to-Line distance Under prgm control Result in X Ángel Martin

43 "PPL3" 3D Point-to-Plane distance Under prgm control Result in X Ángel Martin

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 11 of 148

44 MPT Matrix Index prompt Adds i,j and “=” to ALPHA Prompts and waits HP Co.

45 P+P Polynomial Addition Driver for PSUM w/CF 01 shows results Ángel Martin

46 P-P Polynomial Substraction Driver for PSUM w/SF 01 shows results Ángel Martin

47 P*P Polynomial Multiplication Driver for PPRD shows results Ángel Martin

48 P/P Polynomial Division Driver for PDIV shows results Ángel Martin

49 PCPY Copy of Polynomial from, to cntl words in Y,X polynomial copied JM Baillard

50 PDIV Euclidean Division cntl words in Y and X cntl words remainder & result JM Baillard

51 PEDIT Polynomial Editor cntl word in X prompts for each coeff value Ángel Martin

52 PFE Partial Fraction Expansion Under prgm control see description to decode JM Baillard

53 PMTP Prompts for Polynomial cntl word in X prompts for complete list Ángel Martin

54 POLFIT Polynomial Fit Under prgm control calculates polynomial fit Valentín Albillo

55 POLINT Aitken Interpolation Under prgm control interpolation made Ulrich Deiters

56 “POLZR” From Poles to Coeffs Under prgm control shows Polynomial coeffs Martin-Baillard

57 PPRD Polynomial Product cntl words in Z, Y, bbb in X cntl word result in X JM Baillard

58 PRMF Prime Factors Decomposition number in X prime factors in XM Matrix Ángel Martin

59 PROOT Polynomial Roots Under prgm control Shows all roots Ángel Martin

60 PSUM Polynomial Sum cntl words in Z, Y; bbb in X cntl word result in X JM Baillard

61 PVAL Polynomial Evaluation Cntl word in Y, x in X Result in X JM Baillard

62 PVIEW Polinomial View Cntl word in X Sequential listing of coeffs Ángel Martin

63 QUART Quartic Equation Roots coeffs in Stack (a4=1) shows results Martin-Baillard

64 "#EV" Subroutine for EIGEN Under prgm control Under prgm control Ángel Martin

Functions in blue are all in MCODE. Functions in black are MCODE entries to FOCAL programs.

I have adapted most of the FOCAL programs for optimal fit in the SandMatrix, but as you can see the
original authors are always credited – including W&W for the array functions set, renamed here as
 ‘-CCD MATRIX”. Many of the routines in this manual include the program listing; this provides an
opportunity to see how the functions are used and of course adds completion to the documentation.

Sub-functions in the secondary FAT.

The Vector Calculator and remaining subfunctions come next. Note the three sections in the listing,
with the second and third groups of auxiliary functions covering polynomials and other geometry
applications. Note also the new Matrix Catalogs at the very end of the table.

 # Function Description Input Output Author

0 -V CALC Section Header none Triggers CAT+ Ángel Martin

1 A+V Vector addition Data in V1 and V2 Sum vector in V1 Ángel Martin

2 A-V Vector Subtraction Data in V1 and V2 Difference vector in V1 Ángel Martin

3 A*V Vector Dot Product Data in V1 and V2 Result in X-reg Ángel Martin

4 AXV Vector Cross Product Data in V1 and V2 Product vector in V1 Ángel Martin

5 A/V Vector Division Data in V1 and V2 Division vector in V1 Ángel Martin

6 EXSCR Alpha Exchange Vector in V2 Swapped with scratch Ángel Martin

7 LASTV Last Vector recall none V1 pushed to V2, LastV to V1 Ángel Martin

8 X*V Multiplication by Scalar Data in stack Result in V1 Ángel Martin

9 V<>A Swaps vector levels Data in V1 and V2 Swaps vectors Ángel Martin

10 VADST Distance between vectors Data in V1 and V2 Distance in X-reg Ángel Martin

11 VANG Angle between vectors Data in V1 and V2 Angle in X-reg Ángel Martin

12 VCHS Negative vector Vector in V1 Negative vector in V1 Ángel Martin

13 VENTER^ Enters V1 into V2 level Vector in V1 Pushes V1 into V2 Ángel Martin

14 VIEWV Views V1 vector coordinates Vector in V1 Shows X:, Y:, Z: coordinates Ángel Martin

15 VINV Vector Inverse Vector in V2 Inverse vector in V1 Ángel Martin

16 VMOD Vector Modulus Vector in V2 Modulus in X-reg Ángel Martin

17 VNORM Vector Norm Vector in V2 Norm in X-reg Ángel Martin

18 VUNIT Unitary Vector Vector in V2 V/|v| in V1 Ángel Martin

19 V=0? Conditional V1=0? Vector in V2 YES/NO, Do if True. Ángel Martin

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 12 of 148

20 V=A? Conditional V1=V2? Data in V1 and V2 YES/NO, Do if True. Ángel Martin

21 V#0? Conditional V1#0? Vector in V2 YES/NO, Do if True. Ángel Martin

22 V#A? Conditional V1#V2? Data in V1 and V2 YES/NO, Do if True. Ángel Martin

23 -AUX FNS High Rollers Game none The game begins… Ross Cooling

24 ^MROW Input Row "OP1" in Alpha, row# in x Prompts for Row Ángel Martin

25 ABSP Alpha Back Space Text in Alpha Last chr deleted W&W GmbH

26 AIP Appends integer part x in X INT(x) appended to Alpha Ángel Martin

27 ASWAP Alpha Swap "A,B" in Alpha "B,A" in Alpha Ángel Martin

28 CLAC CLA from Comma Text in Alpha Removed from left to comma W&W GmbH

29 DTC Delete Tiny Coefficients Cntl word in X Tiny coeffs deleted Ángel Martin

30 DOTN N-dimensional Dot product cnt'l words in Y,X cnt'l word result in X JM Baillard

31 I*J Multiplies indexes iii.jjj in X Product i*j in X Ángel Martin

32 I#J? Are indexes the same? iii,jjj in X YES/NO, Do if True. Ángel Martin

33 MTR Matrix Subroutine Under program control Under program control HP Co.

34 OCX Output x-th column "OP1" in Alpha, Col# in X Shows Col elements Ángel Martin

35 ORX Output x-th row "OP1" in Alpha, Row# in X Shows Row elements Ángel Martin

36 PF>X Prime Factors to Number Matrix w/ Prime Facts in XMEM Restores the original argument Ángel Martin

37 PL2 2D Point-to-Line distance Coordinates in Stack Distance in X-reg Ángel Martin

38 PP2 2D Point-to-Point distance Coordinates in Stack Distance in X-reg Ángel Martin

39 ST<>A Swaps Alpha/Stack V1 in Stack, V2 in Alpha V2 in Stack, V1 in Alpha Ángel Martin

40 TOTNT Totient Function Argument in X Result in X Ángel Martin

41 -REV Revision Message none Splash screen (!) Nelson Crowle

42 ?IRR Irreducibility Criteria Control word in X Stops If irreducible, R04 has # Ángel Martin

43 CROUT Outputs Cubic Roots Roots in Stack Shows messages Ángel Martin

44 CT Subroutine for "TR" Under program control See Advantage’s manual HP Co.

45 dPL Polynomial 1st. derivative Cntl word in Y, x in X P’(x) in X, argument in L Ángel Martin

46 dPL2 Polynomial 2nd. derivative Cntl word in Y, x in X P”(x) in X, argument in L Ángel Martin

47 HMT Hermite Polynomials N in Y, x in X H(n, x) in X, argument in L Ángel Martin

48 ITPL Polynomial Primitive Cntl word in Y, x in X Integralin X, argument in L Ángel Martin

49 LAG Laguerre Polynomials N in Y, x in X H(n, x) in X, argument in L Ángel Martin

50 LANX Associated Laguerre Pols. A in Y, N in Y, x in X Result in X Ángel Martin

51 LEG Legendre Polynomials N in Y, x in X H(n, x) in X, argument in L Ángel Martin

52 P4 Auxiliary Code for QUART Coeffs. In stack, UF 00 status Coeffs for CROOT Ángel Martin

53 PSWP Polynomial Swap Control word in Y, new rg in X Coeeficients Swapped JM Baillard

54 CAT+ _ Sub-function Catalog Has hot keys Lists/Launches functions Ángel Martin

55 CMINOR Complex Matrix Minor MNAME in ALPHA, (I,j) in X Result in ALPHA and (Y,X) Ángel Martin

56 CMTRP Complex Matrix Transpose MNAME in ALPHA Transposed Matrix Ángel Martin

57 M^1/X Matrix inverse Power X in X, MNAme in ALPHA Result in Matrix if convergence Ángel Martin

58 MRND Random Matrix Dim in X, MName in ALPHA Random Elements Ángel Martin

59 MSQ2 2x2 Matrix Square Root MNAME in Alpha Square root replaces Matrix Ángel Martin

60 MZDG Matrix Zero Diagonal “OP1" in Alpha Clears the Diagonal Elements Ángel Martin

61 PSCAL Pascal Matrix "OP1" in Alpha Pascal elements Ángel Martin

62 RMCAT R-Matrix Catalog Has hot keys: D,H,SST,SHF, R/S Lists R-Matrices in RAM Ángel Martin

63 YMCAT Y-Matrix Catalog Has hot keys: D,H,SST,SHF, R/S Lists R-Matrices in RAM Ángel Martin

64 @+ Append Element Under program control Used by MCEDIT and IMR Ángel Martin

65 AIM Anti-Identity Matrix Matrix name in ALPHA Unitary with zero diagonal Ángel Martin

66 EQT Display CurveFit Equation Eq# in R00 (1-16) Eq. displayed in Alpha Ángel Martin

67 EV2X2 2x2 Matrix Eigenvalues Matrix Name in ALPHA Eigenvalues in Y,X Ángel Martin

The function groups are distributed in both lower and upper pages, as follows:

• The lower page contains the general intro section plus the CCD Matrix set. Very much like the
lower page of Advantage Pac minus the digital functions. It also hosts the auxiliary FAT, a
necessity in order to have the subfunctions available to the FOCAL programs within the ROM.
The second bank in the lower page contains the 3D Vector calculator functions, the execution
tables for the three launchers, the code for the orthogonal polynomials, the Matrix CATAlogs,

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 13 of 148

and and the EQT function. Also there are the “return” snippets to support the Advantage-style
bank-switching calls to the upper page.

• The upper page has the Advanced Matrix and Polynomial sections. Basically all new and
additional to the Advantage Pac. Finally, The second bank in the upper page is practically
identical to that in the Advantage, with a few changes made after removing the Digital
functions as well. It mostly contains the MCODE for the CCD Matrix functions and the major
matrix calculations (MSYS, MINV, MDET, TRNPS).

The SandMatrix checks for the presence of its dependencies, i.e. The Library#4 and the SandMath.
Note that if the SandMath module is not plugged in the calculator a warning message is shown every
time the calculator is switched on -- but not halting the polling points process, whereas if the
Library#4 is missing or the machine is not a CX, the errors will halt it to avoid likely problems.

Note that there’s also a punctual check for the CL board – needed to ensure the Y-registers existence
if a matrix is to be stored in the CL-RAM area. This check is only performed within the affected
functions, and not at initialization.

Summarizing, the SandMatrix is a complete algebra module not only with powerful Matrix capabilities
(inherited and extended on its own), but also Vectors and Polynomial functions second to none in the
HP-41 platform. Yet its FAT internal architecture and launcher menus should make its usage intuitive
and easy to learn… hopefully you’d agree and have as much fun using it as I’ve had putting it
together.

Xtra Bonus:- High Rollers Game.

There is a gigantic Easter egg included in the SandMatirx – hidden somewhere there’s a rendition of
the High Rollers game, so you can relax in between hard-thinking sessions of math, really! There was
simply too much available space in the “new” bank of the lower page to leave it unused, so this 500+
bytes MCODE rendition of the game (written by Ross Cooling, see PPCJ V14N2 p31) was begging to be
included. As to how to access it… the discovery is part of the enjoyment :-) Hint: ever wondered about
those section header functions?...

 ,

Choose any combination from the available digits on the right which sum matches the target on the
left, repeating until there’s no more digits left (YOU WIN) or there aren’t possible combinations (YOU
LOSE). Use R/S to proceed, back-arrow to delete digits. The game will ask you to try again and will
keep the count of the scores.

 ,

Note: Make sure that revision “R58” (or higher) of the Library#4 module is installed.

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 14 of 148

2. Lower-Page Functions in detail

The first section groups the auxiliary functions used for ALPHA string management, plus some leftover
functions that either didn’t belong to the other categories or were added at latest stages of the
development.

UU UU

2.1. Alpha String Management sub-functions

The use of the ALPHA register for Input/Output certainly isn’t new in the 41 platform, but the
utilization by the Matrix functions effectively turned it into a primary abstraction layer for
programming; therefore the importance of auxiliary utilities like these.

Some of these functions are also included in the AMC_OSX Module – yet it appeared convenient not to
add that module as another dependency (even if it’s just a 4k footprint for its 4 banks), so here they
are as well.

Function Description Input

1 ABSP Alpha Back Space Text in Alpha

2 AIP Appends integer part x in X

3 ASWAP Alpha Swap A,B in Alpha

4 CLAC CLA from Comma Text in Alpha

5 ST<>A Exchanges Alpha and Stack Values in Stack and Alpha registers

Note that already in revision “M” all these functions weren moved to the secondary FAT, and therefore
you need to use the V$ or V# launchers to execute them, or to enter them in a FOCAL program.

See the sub-function table at the introduction section for details on their reference indexes.

• ABSP deletes the rightmost character in ALPHA – equivalent to “back space” in manual

mode.

• AIP was HP’s answer to the need to append just the integer part of the number in X to

Alpha – not changing the FIX and radix settings. Note also that AIP appends the absolute
value of the number, which is not the case with ARCLI or AINT from the CCD and AMC_OS/X
modules.

• ASWAP handles comma-separated strings, exchanging the strings placed left and right of

the first comma found in Alpha. Very handy to manage all those operations that have an input
and output matrix names defined in ALPHA, separated by comma.

• CLAC deletes the contents of ALPHA located to the right of a comma (i.e. after the comma

but not including it). It is adapted from CLA- in the CCD Module.

• ST<>A simply exchanges the contents of the stack and the four Alpha registers {M,N,O,P}.

This is different from V<>A, in that only the three stack registers are swapped. V<>A is
used in 3D-vector operations where one of the operands is stored in Alpha.

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 15 of 148

2.2. The Matrix function launcher and Keyboards.

It has become customary in the author’s modules to always use function launchers to enhance the
user interface, as the most convenient way to save key assignments. As expected, there is a function
launcher in the SandMatrix that groups many of the most frequently used matrix functions; plus a few
others thrown to the mix. All functions can be accessed from the “M: _” prompt, there is no need to
make any key assignment other that for the main launcher itself.

This becomes active when you execute “ML” - the function launcher in run mode. When executed, it

presents the “M:” prompts and awaits your next selection. Pressing [A] in turn activates the Vector
prompt V:_, and pressing it a second time the Polynomial prompt P:_.

The following pictures of the Matrix and Polynomial Overlays show the available functions in the
dedicated keyboards. Note that those with blue names (on the keys) are called using the main keys
(ie. unshifted), and those in green (above the keys) require pressing the [SHIFT] key in the

corresponding prompt. It also shows the M: launcher assigned to the + key, as usual.

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 16 of 148

2.3. Functions in the Header section.

Function Description Input

1 "MATRX" "Easy Matrix" Program Driver for Major Matrix Ops.

2 ML _ Matrix Function Launcher Prompts for function

3 DST _ Distance Functions Launcher Prompts "PP PL LL PPL"

4 V# _ _ _ Sub-Function Launcher Prompts for index

5 V$ _ Sub-Function Launcher Prompts for name

MATRX is the main driver program provided in the Advantage Pac for the major matrix calculations
(MDET, MINV, SIMEQ, TRNPS). Nice and easy, maybe the only one to use for users not needing any
further functionality. MTR was part of the same program, but has been eliminated in this revision.

The following extract describing the use of MATRX is taken from the Advantage Pac manual – and it’s
included here for convenience and completeness. It’s useful to revise the underlying concepts as well.

2.3.1 The Matrix Program

This chapter describes the matrix program, MATRX - the menu-driven, easy "user-friendly" way to
use the most common matrix operations on a newly created matrix. To use MATRX you do not need
to know how the calculator stores and treats matrices in its memory. The next chapter lists and
defines every matrix function in the pac, including those called by MATRX. Using these functions on
their own requires a more intimate knowledge of how and where the calculator stores matrices.

What this program can do.

Consider the equations:

3.8 x1 + 7.2 x2 = 16 .5
1.3 x1 - 0.9 x2 = -22.1

for which you must determine the values of x1 and x2 . These equations can be expressed in matrix
form as AX = B, where A is the coefficient matrix for the system, B is the column or constant matrix,
and X is the solution or result matrix.

For such a matrix system, the MATRX program creates (dimensions) a square real and complex
matrix, A, and a column matrix, B. You can then:

• Enter, change ('edit"), or just view elements in A and B.
• Invert A.
• Transpose A if A is real.
• Find the determinant of A if A is real.
• Solve the system of simultaneous equations by finding the solution to AX = B.

The size of your matrix is limited only by available memory (each real matrix requires one register plus
one register for each element.) If you want to store more than one matrix, you will need to use the
matrix function MATDIM, described in the next chapter. The MATRX program does not store or
recall matrices; it works with a single square matrix A and a single column matrix B. When you enter
new elements into A you destroy its old elements.

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 17 of 148

Instructions

MATRX has two menus to show you which key corresponds to which function. The initial menu you
see is to select a real ox complex matrix: (picture on the left below)

After you make this selection, input the order of the matrix, and press R/S, you will see the main
menu (picture on the right above). This menu shows you the choice of matrix operations you have in
MATRX. Press [J] to recall this menu to the display at any time. This will not disturb the program in
any way.

To clear the menu at any time press “Back Arrow”. This shows you the contents of the X-register, but
does not end the program. You can perform calculations, and then recall the menu by pressing [J].
(However you don’t need to clear the program’s display before performing calculations.)

• The program starts by asking you for a new matrix. It has you specify real vs. complex and
the order (dimension) of a square matrix for A.

• The program does not clear previous matrix data, so previous data – possible meaningless

data – will fill your new matrices A and B until you enter new values for their elements.

• Each element of a complex matrix has two values (a real part and an imaginary part) and
requires four times as much memory to store as an element in a real matrix. The prompts for
real parts x11, x12, etc. are “1:1=?”, “1:2=?”, etc. The prompts for complex parts x11+ i
y11, x2+ i y22, etc. are “RE.1:1=?”, “IM.1:1=?”, etc.

Remarks

Alteration of the Original Matrix. The input matrix A is altered by the operations finding the
inverse, the determinant, the transpose and the solution of the matrix equation. You can re-invert A-1,
and re-transpose AT to restore the original form of A. However, if you have calculated the determinant
or the solution matrix, then A is in its LU-decomposed form. To restore A, simply invert it twice. The
LU-decomposition does not interfere with any subsequent MATRX operation except transposition and
editing (do not attempt to edit an LU-decomposed matrix unless you intend to change every element).
For more information on LU-decomposition, refer to "LU-Decomposition" in the next chapter ('Matrix
Functions").

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 18 of 148

Matrix Storage. The MATRX program stores a matrix A starting in R0 of main memory; it is named
“R0”. Its column matrix B is stored after it, and the result matrix X overwrites B. Refer to the chapter
"Matrix Functions' for an explanation of how matrices are named and stored, and how much room
they need. MATRX cannot access any other matrices, with the exception of the previous R0 and its
corresponding column matrix.

Redefined Keys. This program uses local Alpha labels (as explained in the owner's manual for the
HP-41) assigned to keys [A]-[E], [J] , [a], [b], and [d]. These local assignments are overridden by
any User-key assignments you might have made to these same keys, thereby defeating this program.
Therefore be sure to clear any existing User-key assignments of these keys before using this program,
and avoid redefining these keys in the future.

Example 1.

Given the system of equations at the beginning of this section, find the inverse, determinant and
transpose of A, and then find the solution matrix of the equation AX = B

Keystrokes Display Comments
XEQ “MATRX” “” Starts the MATRX program
[A] (RL) “” Selects a real Matrix
2, R/S “” Dimensions a 2x2 square matrix
[A] “a11?” Enters the Editor and displays old value
3.8, R/S “a12?” enters the new value for a11
7.2, R/S “a21?”
1.3, R/S “a22?”
.9, CHS, R/S “” enters a22 and returns main menu
 [B] (I) “” Inverts A
[SHIFT][A] “” Displays the current contents
R/S “” of A after the inversion
R/S “”
R/S “”
R/S “”
[B] (I) “” Re-inverts A-1 to the original
[SHIFT][B] “” Transposes A
[SHIFT][A] “” Displays the current contents
R/S “” of A after the transposition
R/S “”
R/S “”
R/S “A I DT B SE”
[SHIFT][B] “” Re-transposes AT to the original A
[C] (DT) “” Det(A)
[D] (B) “b11?“ editor for B and displays old elements
16.5, R/S “b12?” Enters the new value for b11
22.1, CHS, R/S “” Enters b22 and returns main menu
[E] (SE) “” Solves the system AX = B, placing X in B
[SHIFT] [D] “” displays the solution matrix
R/S “”
R/S (or [J]) “E” Exits the editor

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 19 of 148

Example 2. Find the inverse of the complex matrix:

Note that the original MATRX has been slightly edited in the SandMatrix so that the program sets the
required SIZE if not enough registers are currently available to store the matrices – so you don’t need
to worry about that mundane detail. This example is also interesting because also shows how to make
corrections to the data entered by mistake.

Keystrokes Display Comments
XEQ “MATRX” “” Starts the MTRX program
[B] (CX) “” Selects a complex Matrix
2, R/S “” Dimensions a 2x2 complex matrix
[A], R/S “” Enters the editor and displays old value
1, R/S “” ditto for the imaginary part
2, R/S “”
3, R/S “”
4, R/S “” Wrong entry! Should be 3, not 4...
1,002, [A] “3.000” Moves editor back to x12
R/S “4.000” The wrong imaginary part
3, R/S “” Correct value is entered for y12. Proceed
4, R/S “”
5, R/S “”
6, R/S “”
7, R/S ” Enters last element and returns main menu
[B] (I) ” Inverts A
[SHIFT][A] “” Viewing A-1
R/S “”
R/S “”
R/S “”
R.S “”
R/S “”
2.002, [A] “” Displays x22 + i y22
R/S “”
R/S (or [J]) “” Exits the editor

Other (more advanced) examples are available in the next sections of the manual, with the description
of the individual matrix functions.

Note that if any of the element registers currently contains alpha data you’ll get an ALPHA DATA error
message during data entry. Simply clear the X register (using tha back arrow key) and continue with
R/S.

See the program listing in next page for your reference.

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 20 of 148

*LBL "MATRX" 1
*LBL 00 2
 CF 02 3
 SF 27 4
 "RL CX" 5
 PROMPT 6
 GTO 00 7
*LBL B 8
 SF 02 9
*LBL A 10
 ?ORDER 11
 STOP 12
 ABS 13
 INT 14
 ENTER^ 15
 FS? 02 16
 + 17
 STO 00 18
 X^2 19
 E 20
 + 21
 SIZE? 22
 X<>Y 23
 X>Y? 24
 PSIZE 25
 E 26
 E3/E+ 27
 RCL 00 28
 * 29
 "R" 30
 MATDIM 31
 GTO 01 32
 RTN 33
*LBL “MTR” 34
*LBL J 35
*LBL 01 36
 CF 08 37
 SF 27 38
 " A I DT B SE" 39
 AVIEW 40
 "R" 41
 STOP 42
 GTO 01 43
*LBL 03 44
 MDET 45
 "DET=" 46
 ARCL X 47
 PROMPT 48
 GTO 01 49

*LBL a 50
 SF 08 51
*LBL A 52
 GTO 14 53
*LBL B 54

 MINV 55
 GTO 01 56
 *LBL C 57
 FC? 02 58
 GTO 03 59
 XROM "CMDET" 60
 F# 032 61
 (ZOUT) 62
 STOP 63
 GTO 01 64
 *LBL E 65
 XEQ 02 66
 ASTO X 67
 "R," 68
 ARCL X 69
 MSYS 70
 GTO 01 71
 *LBL b 72
 FC? 02 73
 TRNPS 74
 FC? 02 75
 GTO 01 76
 V# 056 77
 (CMTRP) 78
 GTO 01 79
 *LBL d 80

 SF 08 81
 *LBL D 82
 XEQ 02 83
 *LBL 14 84
 SF 07 85
 FS? 02 86
 XROM "CMEDIT" 87
 XROM "MEDIT" 88
 *LBL 02 89
 DIM? 90
 INT 91
 ENTER^ 92
 X^2 93
 E 94
 + 95
 AINT 96
 RDN 97
 SF 25 98
 MATDIM 99
 FS?C 25 100
 RTN 101
 R^ 102
 + 103
 E 104
 + 105
 PSIZE 106
 GTO J 107
 END 108

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 21 of 148

UU UU

2.2.1. Setting up a matrix: Name, Storage, and Dimension

The first group of matrix functions are used to create, populate and store the matrices.

 Function Description Inputs

1 MATDIM Dimensions a Matrix Name in Alpha, dimensions in X

2 MNAME? Returns name of current Matrix to Alpha none

3 DIM? Returns the dimension of Matrix Name in Alpha

4 “MEDIT” Matrix Editor Name in Alpha

5 “CMEDIT” Complex Matrix Editor Name in Alpha

You can create, manipulate, and store real and complex matrices. The size and number of matrices is
limited only by the amount of memory available in the calculator. If you have extended memory you
can also store matrices there.

To create a matrix you must provide its name and dimensions. The function MATDIM uses the text in
the Alpha register as its name, and the dimensions mmm.nnn in the X-register to create a matrix. It
does not clear (zero) the elements of a new matrix in main memory, but retains the existing contents
of the previous matrix or registers. It does clear the elements of a new matrix in extended memory.
You then enter values- numeric or Alpha- into a matrix via the matrix editors.

Naming a Matrix

Use the Alpha register to specify matrix names. When specifying more than one name (as parameters
for certain functions), separate them with commas. The name you give a matrix determines where it
will be stored:

A matrix to be stored in main (non-extended) memory must be named Rxxx, where xxx is up to three
digits. (You can drop leading zeros.) The matrix will be stored starting in Rxx. For example, R007 is
the same as R7, which would store this matrix header in R07. As a shortcut, if you specify matrix R,
its name and location will be R0. A maximum square matrix size of 17x17 is possible in this modality.

A matrix to be stored in extended memory can be named with up to seven Alpha characters, excepting
just the letter “X” (which is reserved to name the X-register) and the letter “R” followed by up to three
digits (which is reserved to name the main memory arrays). You do not need to specify a file type; it
will automatically be given one unique to matrices. A maximum square matrix size of 24x24 is possible
in this modality.

For the SY-41CL there’s a third option available that uses the expanded memory zone, which
provides a storage space for additional 3,072 data registers (aka. the Y-Registers). To store your
matrix in that area simply name it Yxxx, with the same conventions given for the standard main
memory case. For example, using Y525 will store the matrix elements starting at the 526th expanded
register. Note that the expanded memory area allows for larger sizes – up to 55 x 55 square matrices !

Dimensioning a Matrix

Specify the dimensions of a new matrix as mmm.nnn, where m is the number of rows and n is the
number of columns. You can drop leading zeros for m and trailing zeros for n. For a complex matrix,
specify mmm.nnn as twice the number of rows and twice the number of columns. (Refer to “Working
with Complex Matrices”). A zero part defaults to a 1, so 0 is equivalent to 1.001, 3 to 3.00 1, and .023
to 1.023.

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 22 of 148

• MATDIM Dimensions a new matrix or redimensions an existing one to the given

dimensions. Displaced elements are zeroed if an existing matrix is being enlarged.

• MNAME? Returns the name of the current matrix to the Alpha register.

• DIM? Returns the dimensions mmm.nnn of the matrix specified in the Alpha register to the

X-register. (A blank Alpha register specifies the current matrix.)

How a Matrix Is Stored

The elements of a matrix are stored in memory in order from left to right along each row, from the
first row to the last. Each element occupies one data-storage register. A complex number requires four
registers to store its parts.

Memory Space.- A matrix in main and expanded Y-memory occupies (m x n) + 1 data storage
registers, one register being used as a status header. A complex matrix uses (2m x 2n) + 1 registers,
where m is the number of rows and n is the number of columns in the complex matrix.

A matrix in extended X-memory has a file length of (m x n). (2m x 2n for a complex matrix). Two
more X-mem registers are used for the header and the file name. Its file type is unique to matrices.
Do not use the function CLFL with a matrix in extended memory: this destroys part of the file's header
information. Instead, use MZERO - or PURFL to purge the entire matrix.

Changing Matrix Dimensions.- If you redimension a matrix to a different size, then the existing
elements are reassigned to new elements according to the new dimensions. Extra old elements are
lost; extra new elements take on the values already present in the new registers- except in extended
memory, where new elements are set to zero.

Redimensioning 2 x 3 to 2 x 2 :

Redimensioning 2 x 3 to 2 x 4 :

This is what happens each time you dimension a new matrix since the old elements from the previous
current matrix remain until you change them.

Caution.- When MATDIM is used to redimension a matrix stored in extended memory, the position
of the matrix pointer is not readjusted. If the pointer happened to be positioned to an element that is
outside the new bounds of the redimensioned matrix, it must be repositioned to be within the new
bounds by executing either MSIJ or MSIJA with valid indices before the pointer can be used again.

Existing matrices in extended memory cannot be redimensioned to completely fill extended memory.
The maximum allowable size of a redimensioned matrix is one register less than the currently available
extended memory. A new matrix can, however, be dimensioned to completely fill available extended
memory.

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 23 of 148

Using the Matrix Editors

There are two matrix editors: MEDIT for real matrices and CMEDIT for complex matrices. They are
otherwise quite similar. The matrix editors are used for three purposes:

• Entering new values into the elements of a matrix.
• Reviewing and changing (editing) the elements of a matrix, either in order or by “random

access” of specific elements.
• Viewing (without being able to change) the elements of a matrix (flag 08 set).

When you execute MEDIT or CMEDIT, the editor displays element 1,1 of the matrix specified in the
Alpha register or of the current matrix if the Alpha register is empty. Pressing R/S steps the display
through the elements; for a complex matrix, each part of the complex element is shown separately.

The “?” at the end of the display line indicates that you can change that value. In effect, you are
being asked whether this is the value you want. If you want to change the element you see, just enter
the new value and press R/S. You do this for a brand new matrix as well as for correcting or altering a
single value. If you press R/S without entering a new value, the current value remains unchanged.

Viewing without editing.- If you set flag 08, the editor will let you only view the elements, not
change them. The display appears without the “?” at the end of the line. 1:1= 1.0000
If you have a printer attached while flag 08 is set, it will print out all the elements of the matrix
without pausing.

Directly accessing any element.- You can directly access any specific element while the editor is
active (and the User keyboard is also active). To access the element in the i-th row and the j-th
column, enter iii.jjj and press [A]. (This is as in the MATRX program.) You can drop leading zeros in iii
and trailing zeros in jjj. For a complex matrix, you can directly access the real part of element i, j
.Then use R/S to access its imaginary part. You can drop leading zeros in the i-part and trailing zeros
in the j-part. A zero part defaults to a 1.

Exiting the Editor.- To leave the editor before it has reached the last element, do either:

• Press [J].
• Try to access a nonexistent element. For instance, in a 4 x 4 matrix, press 5 [A].

How to Specify a Matrix

Given the matrix multiplication operation AB = C, you know A and B and are looking for the product
matrix, C. In performing this operation, the calculator must be given the identities of the existing
matrices A and B, and also be told where to put the result matrix, C. (However, the result matrix can
be the same as one of the input matrices.) All given matrices must al ready exist as named,
dimensioned matrices. Naturally, only A and B must contain valid data.

Some functions use only one input matrix, and some functions automatically use one of the input
matrices for output. So the minimum number of matrices to specify is one, and the maximum is three.

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 24 of 148

A matrix function checks the Alpha register for the names (that is, the locations) of the matrices it
needs for input and output. Before executing that function, you should specify all needed parameters
on one line in the Alpha register, separating each with a comma:

Scalar Operations.- Scalar input and output must be in the X-register, and so this location does not
need to be specified unless the function in question can use either a scalar or a matrix for the same
input parameter. To specify the X-register, use X.

For instance, MATDIM requires a scalar input and a matrix name, so you do not need to specify the
X- register. On the other hand, the scalar arithmetic functions, such as MAT+, can use either two
matrices or a scalar and a matrix for input. Therefore, you must specify X if you want to use it.

The Current Matrix.- The current matrix is the last one accessed (used) by a matrix operation. If
the Alpha register is clear and you execute a matrix function that requires a matrix specification, the
current matrix is used by default. (If there is no current matrix, “UNDEF ARRAY” results).

The result matrix of a matrix function becomes the current matrix following that operation. To find out
the name of the current matrix, execute MNAME?. Its name is returned into the Alpha register,
overwriting its previous contents.

Default Matrix Parameters.- If you don’t specify any or all the matrices that a matrix function
needs, then certain default parameters exist. (Default parameters are those automatically assumed if
you don't specify them). The most common default you will probably use is the current matrix. If you
don't specify a particular matrix name and the Alpha register is clear, then the default matrix is the
current one.

For matrix operations requiring up to three matrix names in the Alpha register, the following table
gives the conventions to interpret the parameters.

Alpha Register's Contents

Matrices Specified

A,B,C A, B, C

A,B A, B, B

A A, A, A

A,,B A, A, B

,A,B current, A, B

,A current, A, A

,,A current, current, A

X,A,B X-reg, A, B

X,A X-reg, A, A

A,X A, X-reg, A

A,,X A, A, A (ignores X)

X X-reg, current, current

(blank) current, current, current

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 25 of 148

Program Listings.-

 01*LBL "MEDIT"

 02 SF 27
 03 0
 04 MSIJA

 05*LBL A

 06 CF 10
 07 SF 25
 08 MSIJ
 09 FC?C 25
 10 GTO 05
 11*LBL 00

 12 AOFF
 13 MRIJ
 14 FS? 10
 15 GTO 05
 16 CLA
 17 MPT
 18 MR
 19 ARCL X
 20 FS? 08
 21 GTO 08
 22 >"?"
 23 CF 23
 24 PROMPT
 25 MR
 26 X<>Y
 27 X#Y?
 28 MS
 29 ASTO X
 30 FS? 23
 31 MS
 32*LBL 09

 33 J+
 34 GTO 00
 35*LBL 08
 36 PROMPT
 37 GTO 09

 38*LBL J

 39 GTO J
 40 END

01*LBL "CMEDIT"

 02 SF 27
 03 CF 06
 04*LBL 06

 05 DIM?

 06 ODD?
 07 GTO 00
 08 FRC
 09 I<>J
 10 X=1?
 11 GTO 00
 12 EVEN?
 13 GTO 00
 14 "NOT CPX"
 15 PROMPT
 16 MNAME?
 17 GTO 06
 18 SF 06
 19 CF 10
 20 CLST

 21*LBL A

 22 ST+ X
 23 E
 24 E3/E+
 25 -
 26 SF 25
 27 MSIJ
 28 FC?C 25
 29 GTO J
 30*LBL 01

 31 FS? 10
 32 GTO J
 33 XEQ 03
 34 "RE."
 35 XEQ 05
 36 FS? 08
 37 GTO 08
 38 PROMPT
 39 MS
 40 FS? 06
 41 GTO 08
 42 J+
 43 I+
 44 MS
 45 J-
 46 I-
 47*LBL 08

 48 SF 21
 49 FS? 08
 50 AVIEW
 51 XEQ 03
 52 "IM."

 53 I+
 54 XEQ 05
 55 FS? 08
 56 GTO 09
 57 PROMPT
 58 MSR+
 59 FS? 06
 60 GTO 10
 61 I-
 62 CHS
 63 MSC+
 64 GTO 10
 65*LBL 09

 66 AVIEW
 67 J+
 68 FS? 06
 69 GTO 01
 70*LBL 10

 71 FS? 10
 72 GTO J
 73 FC? 06
 74 J+
 75 FC? 09
 76 I-
 77 GTO 01
 78*LBL 03

 79 MRIJ
 80 E
 81 E3/E+
 82 +
 83 2
 84 /
 85 RTN
 86*LBL 05

 87 V#

 88 64
 89 FC? 08
 90 >"?"
 91 RTN

 92*LBL J

 93 FS? 07
 94 GTO 01
 95 MNAME?
 96 END

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 26 of 148

2.2.2.- Storing and Recalling Individual Matrix elements.

The matrix editor provides a method of storing and reviewing matrix elements. For programming, you
can use the following functions to manipulate individual matrix elements. A specific element is
identified by the value iii.jjj for its location in the i-th row of the j-th column. You can drop leading
zeros in the i-index and trailing zeros in the j-index. The value of the pointer defines the current
element.

Setting and recalling the Pointer

 Function Description Inputs

1 MSIJA Sets element pointer of matrix in Alpha Name in Alpha, iii,jjj in X-reg.

2 MSIJ Sets element pointer of current matrix iii,jjj in X-reg.

3 MRIJA Recalls element pointer of Matrix in Alpha Name in Alpha, iii,jjj in X-reg.

4 MRIJ Recalls element pointer of current matrix iii,jjj in X-reg.

The following functions increment and decrement the element pointer rowwise (iii) or column wise
(jjj). If the end of a column is reached (with the i-index) or the end of a row is reached (with the j-
index), then the index advances to the next larger or smaller column or row and sets flag 09. If the
index advances beyond the size of the matrix, both flags 09 and 10 are set. These functions always
either set or clear flags 09 and 10. If the conditions listed above don't occur, the flags are cleared
every time the functions are executed.

Incrementing and Decrementing the Pointer

The following functions were not in the original CCD ARRAY FNS group, therefore are HP’s:

 Function Description Inputs

5 I+ Increments iii pointer by one None – uses current matrix pointer

6 I- Decrements iii pointer by one None – uses current matrix pointer

7 J+ Increments jjj pointer by one None – uses current matrix pointer

8 J- Decrements jjj pointer by one None – uses current matrix pointer

Storing and Recalling the Element’s Value. (alone or sequentially)

The following functions provide a faster, more automated alternative to adjusting the pointer value to
access each element. These combine storing or recalling values and then incrementing or
decrementing the i- or j-index, so that the pointer is automatically set to the next element.

 Function Description Inputs

9 MS Stores value in X-reg into current element Value in X-Reg

10 MR Recalls current element to X-reg None. Returns element to X-reg

11 MSC+ Stores value in X-reg to current element and
advances pointer to next element in column

Value in X-reg.

12 MSR+ Stores value in X-reg to current element and
advances pointer to next element in row

Value in X-reg.

13 MRC+ Recalls current element to X-reg and then
advances pointer to next element in column

None.
Returns element value to X-reg

14 MRR+ Recalls current element to X-reg and then
advances pointer to next element in row

None.
Returns element value to X-reg

15 MRC- Recalls current element to X-reg and then
decrements pointer to previous in column

None.
Returns element value to X-reg

16 MRR- Recalls current element to X-reg and then
decrements pointer to previous one in row.

None.
Returns element value to X-reg

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 27 of 148

When the end of a column or row is reached, the pointer's index advances to the next (or previous)
column or row. If the pointer’s index is moved beyond the boundaries of the matrix, it cannot be
moved back using these functions. You must use MSIJ or MSIJA .

The following sequence of keystrokes will create the matrix ABC (in extended memory).

Keystrokes Display Comments

ALPHA, “ABC”, ALPHA

2.003, XEQ “MATDIM”  Dimensions matrix ABC in X-Mem.
0, XEQ “MSIJA”  Sets pointer to 1.001 position
5, XEQ “MSR+”  Enters element and advances pointer
 to next column for next entry
6, XEQ “MSR+”  Ditto as above
7, XEQ “MSR+”  Pointer automatically moves to second row,
 also setting flag 09.
8, XEQ “MSR+” 
9, XEQ “MSR+” 
10, XEQ “MSR+”  This sets both flags 09 and 10.
SF 08 This sets the editor to display only.
XEQ “MEDIT” “”
R/S “”
R/S “”
R/S “”
R/S “”
R/S “”

Updated Matrix Editor: Row Input mode.

Another, more effective way to enter the element values involves using PMTM (instead of MEDIT) to
handle them “one row at a time”. This drastically speeds up the process, although some limitations
apply:

• The maximum length for all values and the blank spaces in between them is 24 characters, as
it uses the Alpha register to temporarily hold them.

• Decimal and negative values are supported in this mode, but values with exponential notation
(i.e. 2.4 E23) cannot be entered using PMTM.

Here’s the how the sequence would change using this approach:

Keystrokes Display Comments

ALPHA, “ABC”, ALPHA

2.003, XEQ “MATDIM”  Dimensions matrix ABC in X-Mem.
XEQ “PMTM” “:” prompts to enter the first row
5, ENTER^, 6, ENTER^, 7, R/S “” prompts for the second row
8, ENTER^, 9, ENTER^, 10, R/S done!

Function PMTM will be covered later in the manual, as part of the new functions section.

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 28 of 148

2.2.3.- Matrix Catalogs. Where is my stuff? { RMCAT , YMCAT }

The ability to use both X-Mem and standard data registers was a design crtiteria in the Array functions
of the CCD Module. The reason was clearly to make the functionality available to plain HP-41C
machines, without the X-Functions and X-Memory. This was proven to be the right decision, albeit it
made the internal routines more complex since they needed to support two memory areas.

You can use CAT’4 (or EMDIR) to list all files in X-Mem, including the Matrix files of course. With the
AMC_OS/X module plugged in the “M” type is shown in the LCD, indicating the Matrix type.

Until now, there was no way to enumerate the matrices “configured” in the standard registers – with
matrix names “Rxxx” as described in the previous sections of the manual. Even if these were
assumed to be more volatile than the X-Mem counterparts, it would have been very helpful to have a
matrix catalog of some sort.

Support for the CL expanded memory adds another dimension to the same feature, and given the vast
increase of available memory – and the fact that it is much less labile - it becomes even more
important to know which matrices are already configured in the standard and Y-Registers.

New Matrix Catalogs

The SandMatrix includes two sub-functions to enumerate the matrices configured in the standard and
CL register areas; RMCAT and YMCAT respectively. No input data is required, and the enumeration
will sequentially show all matrices present in the corresponding zone. Like in the EMDIR case, both the
matrix “name” and size will be shown in the display:

 or:

The listing can be stopped and resumed using the R/S key. Whilst stopped you can use the SST and
BST keys to advance or backtrack the listing. Other hot keys are available to delete the matrix, enter
its name to ALPHA, or decode the header register:

• R/S Switches between single-step or automated enumeration
• [SHIFT] reverse or direct enumeration
• SST moves to next matrix if present
• BST moves to previous matrix if present
• [H] Decodes the header register
• [D] Deletes the matrix (asks for confirmation first)
• ENTER^ Enters the matrix name in ALPHA, ready to use all matrix functions.
• Back Arrow Exits the enumeration

Finally, if no matrices are found in that memory area the function will put up one of the info messages
shown below, depending on the case:

 or:

I trust you’ll agree this pair of functions is a welcome addition to the SandMatrix, well worth the price
of admission and the extra code added to the project.

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 29 of 148

Appendix. Harmonic Determinants. { DNN , DN }

This section reflects the discussion started by Valentín Albillo on the HP-Museum forum. It’s useful to
showcase the capabilities of the CL_Y-Registers for very large size matrices.

Consider the determinant D(N) defined as follows:

This type of determinants have an exact formula using the Harmonic function, H(N):

 D(N) = (N+1)! . H(N)

The sum of harmonic series is thus: H(N) = D(N-1) / N!
which surely would be one of the most inefficient ways to compute it ;-)

Using the CL_Y-Registers area, write a routine to compute D(N) – and verify the direct formula for the
values N=11, 13, 30, 40 and N=55 - which will use 3,025 Y-Registers.

The routines are listed below. Both expect the order N in the X-register:

01 LBL "DDN"
02 RCL X
03 E3
04 /
05 +
06 "Y" - matrix will start at RY-001
07 MATDIM
08 1
09 MCON
10 CLX
11 MSIJA
12 2
13 LBL 00
14 E
15 +
16 MSC+

17 SF 25
18 J+
19 FS?C 25
20 GTO 00
21 MDET
22 END

01 LBL "DN"
02 E
03 +
04 HARM
05 LASTX
06 FACT
07 *
08 END

And the table below shows the results from each approach:

N D(N) Time (@Turbo50) Formula

11 1,486,442,880.0 1.8 sec 1,486,442,880.0

13 2.834656472 E11 2.01 sec 2.834656474 E11

30 3.311538747 E34 11 sec 3.311538746 E34

40 1.439439902 E50 1 min 20 sec 1.439439902 E50

50 3.278748200 E75 2 min 30 sec 3.278748199 E75

Warning: Remember that the CL is required to store a matrix in the Y-Registers area. Otherwise you’ll
get the error message below:

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 30 of 148

UU

This section briefly defines the matrix functions besides the dimensioning, storing, and recalling
functions discussed above. Note that most of these functions are not meaningful for matrices
containing Alpha data and that many of these functions are not meaningful for complex matrices. In
any case. A complex matrix appears as a real matrix to all functions except CMEDIT. Refer to
“Working with Complex Matrices'” for more information on using these functions with complex
matrices.

2.3.1. Matrix Arithmetic

 Function Description Input

1 MAT+ Adds scalar or element to each element A,B,C, or X,B,C in Alpha

2 MAT- Subtracts scalar/element to each element A,B,C, or X,B,C in Alpha

3 MAT* Multiplies scalar/element to each element A,B,C, or X,B,C in Alpha

4 MAT/ Divides each element by scalar or element A,B,C, or X,B,C in Alpha

5 M*M Calculates the true matrix product A,B,C in Alpha

The matrix arithmetic functions provided are scalar addition, subtraction, multiplication, and division,
as well as true matrix multiplication. The scalar arithmetic functions can use two matrices as operands,
or one scalar and one matrix. When using two matrices, the matrices do not have to be of the same
dimension, but the total number of elements in each must be the same. This also applies to the result
matrix. (Note that the i-j notation below assumes that the dimensions of the matrices are the same. If
this is not the case, the i-j notation does not apply.)

Matrix multiplication, on the other hand, calculates each new element by summing the products of the
first matrix's row elements by the second's column elements. The number of columns in the first
matrix must equal the number of rows in the second matrix. The result matrix must have the same
number of rows as the first matrix and the same number of columns as the second matrix.

If there is a scalar operand, it must be in the X-register, and X must be specified in the Alpha register.

The input specifies matrix name A (or X), matrix name B (or X), result matrix C in Alpha register. The
outputs are respectively:

The true matrix multiplication calculates each new element i.j by multiplying the i-th. row in A by the j-
th. column in B. The input is the three matrix names in Alpha where C must be different from the two
operands A and B. The output is:

, where A has p columns and B has p rows.

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 31 of 148

2.3.2. Major Matrix Operations.

The major matrix operations are: inversion, finding the determinant, transposition, and solving a
system of linear equations.

 Function Description Input

1 MDET Finds the Determinant of a square matrix Matrix Name in Alpha

2 MINV Inverts and replaces the square matrix Matrix Name in Alpha

3 MSYS Solves a system of linear equations Matrix Name A. Name B in Alpha

4 MTRPS Transposes and replaces the real matrix Matrix name in Alpha

This is where the Advantage really took the original CCD implementation to its fulfillment, as the CCD
was sorely lacking the major operations - no doubt due to the size constrains in a module that already
had tons of other wonders and was packed bursting to its seams.

I recall the awe with which we used to run MINV and the other functions: just a single keystroke
doing the same as all those intricate FOCAL programs did using Gaussian algorithms, element pivoting
and row simplification... simply amazing back then. It was the ultimate Matrix function set, pretty
much surpassing the HP-15C implementation in this area. If you’re reading this now I suspect you
probably had a similar experience too; but enough reminiscing and let’s get on with the manual.

The output of these operations always replaces the original matrix with the result. Moreover, for
MDET and MSYS the result matrix is placed in its LU-decomposed form, which makes it not suitable
for some direct subsequent operations.

Note: You cannot transpose or change any element of a matrix A that has had its determinant found
or has had its solution matrix found because MDET and MSYS transform the input matrix A into its
LU-decomposed form. (Refer to '"LU-Decomposition” for more information.) However, you can retrieve
the original form of A from its decomposed form by inverting it twice (execute MINV twice). The LU-
decomposition does not interfere with the calculations for MINV, MSYS, or MDET.

Example 1.

Find the determinant of the inverse of the transpose of the matrix :
Storing it in Main Memory, starting in Register R0.

First make sure that the calculator SIZE is set at least to 10 to accommodate the elements plus the
header register, typing XEQ “SIZE” 010. Next we begin by creating the matrix in main memory, using
the name ‘R0” in Alpha and the dimension in X:

ALPHA, “R0”, ALPHA

3.003, XEQ “MATDIM”

Since the elements are all integer numbers, this is an ideal candidate for PMTM:

XEQ “PMTM” , -> at the prompt “R1: _” we type: 6, ENTER^, 3, ENTER^, CHS, 2, R/S

-> at the prompt “R2: _” we type: 1, ENTER^, 4, ENTER^, CHS, 3, R/S
-> at the prompt “R3: _” we type: 2, ENTER^, 3, ENTER^, CHS, 1, R/S

And now the festival begins - type:

XEQ “TRNPS”, R0 is transposed
XEQ “MINV”, R0 (which was transposed) is inverted
XEQ “MDET” -> 0.040 is the solution.

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 32 of 148

Note that if you had wanted to find the transpose of the original matrix after having found its
determinant, you would have needed to invert the matrix twice to change the LU-decomposed form
back to the original matrix.

LU-Decomposition

The lower-upper (LU) decomposition is an unrecognizably altered form of a matrix, often containing
Alpha data. This transformation properly occurs in the process of finding the:

• Solution to a system of equations (MSYS; [SE] in the MATRX program).
• Determinant (MDET; [DT] in MATRX program).
• Inverse (MINV; [I] in MATRX program).

The first two of these operations convert the input matrix to its LU-decomposed form and leave it
there, whereas inversion leaves the matrix in its inverted form. When you use functions that produce
an LU-decomposed form, there are several things that you need to be aware of:

• You cannot edit an LU-decomposed matrix unless you edit every element. Also care must be
exercised when viewing an LU-decomposed matrix. Certain operations can alter elements without
your knowledge (refer to "Editing and Viewing an LU-Decomposed Matrix” below for more details).

• You cannot perform any operation that will modify the matrix (other than MINV) because the LU
status of the matrix will be cleared and it will become unrecognizable. Operations that have this effect
are: R<>R, C<>C, MS, MSR+, MSR-, MSC+, MSC-, MMOVE (intramatrix), MSWAP, and
TRNPS.

• LU-decomposition destroys the original form of the matrix. So if you perform MSYS or MDET and
then try to look at your input matrix (A in the MATRX program), you will find only the altered,
decomposed form.

• You cannot calculate the transpose (TRNPS; [SHIFT][B] in MATRX program) of a matrix in LU-
decomposed form. LU-decomposition does not hinder the correct calculation of the inverse,
determinant, or solution matrix, since these operations require the LU-decomposition anyway.

Reversing the LU-Decomposition.- To restore a matrix to its original form from its decomposed
form, simply invert it twice (in effect: find the inverse and then re-invert to the original). Naturally, for
this to work the matrix must be invertible (non-singular). The result can differ slightly from the original
due to rounding-off during operations.

Editing and Viewing an LU-Decomposed Matrix.- LU-decomposed matrices are stored in a
different form than normal matrices:

• Certain elements contain alpha data. (or Non-normalized numbers to be precise)
• The matrix status register is modified to indicate that the matrix is in LU form.

Editing any element of the matrix will clear the LU-flag in the status register, which makes the matrix
unrecognizable to the program. Because of this, if you edit one element, you must edit them all if you
wish to use the matrix again. Note that the matrix will no longer be in LU-decomposed form after this
action. You can view the contents of an LU-decomposed matrix by doing one of the following:

• From the MATRX main menu press [SHIFT][A] to view individual elements without modifying
them.

• Set flag 08 before executing MEDIT or CMEDIT. This allows you to view the elements
without modifying them.

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 33 of 148

Header Register X-ray. { LU? }

The graphic below shows the different fields in the Matrix header register (14 bytes in total):

Note that a matrix file in X-mem has its type set to 4 (in leftmost byte), and that the matrix
dimensions can be derived from the information in the file size field (nybbles 0,1,2) and the number of
columns field (nybbles 6,7,8), whereby: Number of rows = File size / Number of Columns.

Lastly the pointer field stores the information on the current element as a counter starting from the
first element (1) to the last (nxm). Given the length of this field it follows that a maximum of 4,096
elements (FFF) can be tracked, equivalent to a square matrix of dimensions 64 x 64 or any equivalent
(m x n) combination.

You can use the function LU? to check whether a matrix is in its LU-decomposed form. It’ll return

YES/NO in Run mode, but in a program will halt the execution if true (i.e. it’s decomposed).

Working with Complex Matrices.

When working with complex matrices it is most important to remember that, in the calculator, a
complex matrix is simply a real matrix with four times as many elements. Only the MATRX program
and the complex-matrix editor (CMEDlT) “recognize” a matrix as complex and treat its elements
accordingly. All other functions treat the real and imaginary parts of the complex elements as separate
real elements.

How Complex Elements are represented

In its internal representation a complex matrix has twice as many columns and twice as many rows as
it "normally' would.

The complex number 100 + 200i is stored as

The 2 x 1 complex matrix

There is one important exception to this scheme: for the column matrix (a vector) in a system of
simultaneous equations.

Solving Complex Simultaneous Equations.- The easiest way to work with complex matrices is to
use the MATRX program. It automatically dimensions, input and output complex matrices. However,
MSYS can solve more complicated systems of equations than MATRX can.

In addition, a complex result-matrix from the MATRX program cannot be used for many complex-
matrix operations outside of MATRX. This is because MATRX will dimension a complex column matrix
differently than 2m x 2. Instead, it uses the dimensions 2m X 1, in which the real and imaginary parts
of a number become successive elements in a single column.

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 34 of 148

This form has the advantage of saving memory and speeding up operations. The complex-matrix
editor and MSYS can also use this 2m X 1 form, though they do not require it. This means you can
use MSYS on a matrix system from MATRX. You can convert an existing 2m x 2 complex column
matrix to the 2m X 1 form by transposing it, redimensioning it to 1 x 2m, then retransposing it. There
is no easy way back.

Accessing Complex Elements.- If you use the complex-matrix editor (CMEDIT or the editor in the
MATRX program), you can access complex elements as if they were actual complex numbers.
Otherwise (such as when you use pointer-setting functions), you must access complex elements as
real elements stored according to the 2m x 2n scheme given above.

Storage Space in Memory.- Since the dimensions required for a complex matrix are four times
greater than the actual number of complex elements (an m X n complex matrix being dimensioned as
2m x 2n), realize that the number of registers a complex matrix occupies in memory is correspondingly
four times greater than a real matrix with the same number of elements. In other words, think of a
complex matrix's storage size in terms of its MATDlM or DIM? dimensions, not its number of complex
elements.

Using Functions with Complex Matrices

Most matrix functions do not operate meaningfully on complex matrices: since they don't recognize
the different parts of a complex number as a single number, the results returned are not what you
would expect for complex entries.

Valid Complex Operations. Certain matrix functions work equally well with real and complex
functions. Both the input and result matrices must be complex. These functions are:

• MSYS Solving simultaneous equations
• MINV Matrix inverse
• MAT+ Matrix add
• MAT- Matrix subtract
• MAT* Matrix scalar multiply, but only by a real scalar in X-reg.
• M*M Matrix multiplication

Example 2.

Engineering student A.C. Dimmer wants to analyze the electrical circuit shown below. The impedances
of the components are indicated in complex form. Determine the complex representation of the
currents i1 and i2

The system can be represented by the complex matrix equation: AX = B, or

We’ll use the individual matrix functions instead of MATRX program, already covered in the previous
sections.

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 35 of 148

The main thing to sort out in this example is the dimension of the matrices involved. The coefficients
matrix A is a 2 x 2 complex matrix, thus as per the previous paragraphs we will need (4x4 +1) = 17
registers. The independent terms matrix B is a 2 x 1 complex matrix, thus will need (4x2 +1) = 9
registers.

This makes for a total of 26 registers needed for the example; therefore we adjust the SIZE
accordingly first typing: XEQ ‘SIZE” 026.

Next we create the two matrices in main memory, starting at R00 and R17 respectively. Note the
shortcut in the R0 name – dropped the zero.

ALPHA, “R”, ALPHA ALPHA, “R17”, ALPHA

4.004, XEQ “MATDIM” 4.002, XEQ “MATDIM”

The next step is entering the element values – using CMEDIT because that is the only editor capable
of editing complex matrices, as we know.

Finally it comes the time for the real work: using MSYS to solve the system, and MCEDIT again (in
view-only mode) to review the results:

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 36 of 148

The solution is:

As you can see this is an EE student’s dream for circuit
analysis – if this is in your area of interests you should check
out the macro-program written by Ted Wadman, Chris Coffin
and Robert Bloch as one of the proverbial three best
examples of utilization of the Advantage Module.

The program is documented in its dedicated Grapevine
booklet, available at:

http://www.hp41.org/LibView.cfm?Command=View&ItemID
=523

and for further convenience Jean-Francois Garnier put it in
ROM module format, available at:

http://www.hp41.org/LibView.cfm?Command=View&ItemID
=613

The module also contains the other two famous applications
of yore:

1. “Electrical Circuits for Students”,
2. “Statics for Students” , and
3. “Computer Science on your HP-41” (a.k.a. the HP-16C Emulator).

Anybody curious enough to see what could be done with the Advantage is encouraged to check those
out – you’ll be rewarded.

The last example asks you to solve a set of six simultaneous equations with six unknown variables.
This requires the use of MSYS, as the constant matrix B is not a column matrix.

Example 3.

Silas Farmer has the following record of sales of cabbage and broccoli for three different weeks. He
knows the total weight of produce sold each week, the total price received each week, and the price
per pound of each crop. The price of cabbage is $0.24/kg and the price of broccoli is $0.86/kg.
Determine the weights of cabbage and broccoli he sold each week.

 Week-1 Week-2 Week-3

Combined Weight (kg) 274 233 331

Combined Value $130.32 $112.96 $151.36

The following set of linear equations describes the two unknowns (the weights of cabbage and
broccoli) for all three weeks, where the first row of the constant matrix represents the weights of
cabbage for the three weeks and the second row represents the weights of broccoli. Since the
constant matrix is not a column matrix, you must use MSYS and not the SE function in the MATRX
program.

http://www.hp41.org/LibView.cfm?Command=View&ItemID=523
http://www.hp41.org/LibView.cfm?Command=View&ItemID=523
http://www.hp41.org/LibView.cfm?Command=View&ItemID=613
http://www.hp41.org/LibView.cfm?Command=View&ItemID=613

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 37 of 148

Where the subindices indicate the crop (1= broccoli, 2=cabbage), and the week (1,2,3), and the first
row describes the weight equations, and the second the prices relationship.

Calling “FACTORS” the coefficients matrix and “LINKS” the constant matrix, we first create them by
dimensioning in X-Memory as follows:

ALPHA, “FACTORS”, ALPHA, ALPHA, “LINKS”, ALPHA,

2.002, XEQ “MATDIM” 2.003, XEQ “MATDIM”

Next we’ll use PMTM to input all the element values. Note that even the “longest” row has 20
characters (including the separator blanks), which is below the limits of the ALPHA register length, of
24 characters max.

With “FACTORS” in Alpha we type:

XEQ ”‘PMTM” -> at the prompt “R1: _” we type: 1, ENTER^, 1, R/S

-> at the prompt “R2: _” we type: 0, [,], 2, 4, ENTER^, 0, [,], 8, 6, R/S

With “LINKS” in Alpha we type:

XEQ “PMTM” -> at the prompt “R1: _” we type: 2,7,4, ENTER^, 2,3,3, ENTER^, 3,3,3, R/S

-> at the prompt “R2: _ ” we type: 1,2,0,[,],3,2, ENTER^, 1,1,2,[,],9,6,
 ENTER^, 1,5,1,[,],3,6, R/S

All set up we simply execute MSYS to obtain the solutions sought for:

ALPHA, “FACTORS,LINKS”, ALPHA

XEQ “MSYS”

 Week-1 Week-2 Week-3

Cabbage Weight (kg) 186 141 215

Broccoli Weight (kg) 88 92 116

Note: using OMR (or OMC) to output the elements of the matrix B you can see how the results are all
integer values – which speaks of the accuracy of the internal operations, taking advantage of the 13-
digit math routines available in the OS for MCODE.

Note also that with these programs the integer results are shown without any zeros after the decimal
point, regardless of the current display settings (FIX or otherwise).

OMR and OMC are extension functions – pretty much like PMTM is - and will be described in detail
in chapter 3.

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 38 of 148

Appendix. Complex Matrix Determinants. { CMTRC , CMDET }

The programs below are a first-pass successful attempt at calculating Complex Matrix determinants up
to order 4. The Complex Matrix is to be stored using the SandMatrix convention - which is identical to
the HP-41 Advantage's. With this convention each complex number is represented by four elements in

the complex matrix - refer to the manuals for details.

 example for 3x3 case

The SandMatrix comes well-equipped with routines to calculate the trace and integer powers of a
matrix (MTRACE, M^2 and MPWR), therefore it lends itself rather nicely to the direct formulas using

those elements, as described at: https://en.wikipedia.org/wiki/Determinant

The complex matrix won't be altered in any way, as all operations are made on a scratch copy. It can
be stored in X-Mem, CL_Y-Mem, or standard data registers area. The easiest way to enter the matrix
is by using the CMEDIT routine - which expects the matrix name in ALPHA. It expects the matrix
already created, using 2n x 2n as dimension - with "n" being the order.

If you place it in the standard registers area, be aware that data registers R00, R01 are used by the
routine MPWR for scratch. Additionally, data register R02 is used to store the Matrix Name (thus it
can't exceed 6 characters).

As you can see there are numerous 41Z functions - used for the complex arithmetic using the Complex
Stack. This has the additional advantage that doesn't require additional data registers, be that
standard or CL Y-RAM.

Example.- Calculate the determinant of the 4x4 Complex Matrix:

 Solution: det = -62-8i

https://www.wolframalpha.com/input/?i=det(%7B%7B1%2Bi,+2%2B2i,+3%2B3i,+4%2B4i%7D,+%

7B0,+1,+-3-3i,+-4-4i%7D,+%7B-1%2Bi,+1-i,+1,+i%7D,+%7B-i,+-1%2Bi,+1,+0%7D%7D)

The program is slow in non-turbo settings- there are lots of moving pars behind the scene, despite the
straight-forward program listing. Using TURBO_50 the 4x4 determinant is obtained in 5 seconds
approx.

The accuracy for integer matrices holds up nicely, giving exact integer real and imaginary parts in the
solution.

https://en.wikipedia.org/wiki/Determinant
https://www.wolframalpha.com/input/?i=det(%7B%7B1%2Bi,+2%2B2i,+3%2B3i,+4%2B4i%7D,+%7B0,+1,+-3-3i,+-4-4i%7D,+%7B-1%2Bi,+1-i,+1,+i%7D,+%7B-i,+-1%2Bi,+1,+0%7D%7D)
https://www.wolframalpha.com/input/?i=det(%7B%7B1%2Bi,+2%2B2i,+3%2B3i,+4%2B4i%7D,+%7B0,+1,+-3-3i,+-4-4i%7D,+%7B-1%2Bi,+1-i,+1,+i%7D,+%7B-i,+-1%2Bi,+1,+0%7D%7D)

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 39 of 148

Program Listing.

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 40 of 148

Update: Complex (n x n) Matrix Determinants. { CDMET }

What follows is a more powerful approach to the calculation of the determinant without restriction of
the complex matrix dimension, other than the available memory of course. This new approach is not
only more powerful but it also has the advantages of less execution time and shorter program length,
a winner by all accounts.

The beauty of this approach is that we’ll put the characteristic polynomials coefficients to work bigtime
to obtain the matrix determinant (independent tern). So CMDET works uses an iterative method to
calculate the coeficients, given the fact that the determinant is the last coefficient of said characteristic
polynomial with an order-dependent changed sign:

 , and: ,

i.e. the coefficient of the independent term. The program will leave the original matrix unchanged and
its name in ALPHA upon completion.

It’s worth mentioning that the same iterative approach is also used by the CHRPOL routine to
calculate the Characteristic Polynomial and its roots (i.e. the Matrix Eigenvalues); although in the
CHRPOL implementation the coefficient of the independent term is obtained via MDET – which is
pretty sensible for the real matrix case of course.

Note: You can refer to the Complex Matrix ROM manual for an extended version of this routine that
exploits this method to its full extent to also calculates the inverse of a complex n x n matrix – along
with the complete complex characteristic polynomial of course.

Register, Flags, etc.

Data registers {R00 – R01} are used in main memory.

Only user flag 7 is used to signal when the routine is called from the main MATRX program..

Two auxiliary matrices are needed, each of the same size of the original one – therefore the maximum

complex matrix size is n= 7 in X-Memory, (for a total of 588 X-mem registers), and n= 15 in the CL Y-

Memory (for a total of 2,700 Y-registers). This limitation stems from the MCODE function M*M, which

cannot have the result matrix equal to any of the operands (i.e. it’s not an in-place multiplication). But

I’m not complaining, since it does support complex matrices as well as real ones!

Acknowledgment- Many thanks to Valentín Albillo for piquing my curiosity with his powerful and
elegant implementation of the same algorithms on the HP-71, described with numerous examples and
insights in the article posted here:

HP Article VA047 - Boldly Going -Eigenvalues and Friends

https://albillo.hpcalc.org/articles/HP%20Article%20VA047%20-%20Boldly%20Going%20-%20Eigenvalues%20and%20Friends.pdf

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 41 of 148

Program listing.

 01*LBL "CMDET"

 02 FC?C 07 ‘ called from MATRX?
 03 GTO 10 ‘ yes, divert
 04 "R,=" ‘no, uses data regs
 05 MAT=
 06 MNAME?
 07*LBL 10

 08 ASTO 01
 09 >",P" ‘ aux. matrix
 10 MAT= ‘make equal
 11 DIM?
 12 "#" ‘aux. matrix
 13 MATDIM
 14 FRC
 15 2
 16 /
 17 LASTX
 18 +
 19 STO 00
 20 CF 21
 21*LBL 00

 22 VIEW 00
 23 XEQ 01
 24 "#"
 25 MIDN
 26 "X,#,#"
 27 MAT*
 28 X<>Y
 29 "#"
 30 .
 31 XEQ 02
 32 "P,#,#"
 33 MAT+
 34 CLA
 35 ARCL 01
 36 >",#,P"
 37 M*M
 38 ISG 00
 39 GTO 00
 40 XEQ 01
 41 RCL 00
 42 ODD?
 43 GTO 04
 44 CLX
 45 - E

 46 ST* Z
 47 ST* Y
 48*LBL 04

 49 RDN
 50 "#"
 51 PURFL
 52 "P"
 53 PURFL
 54 V# ‘sub-routine?

 55 GTO 04 ‘yes, skip

 56 F#

 57 32

 58*LBL 04
 59 CLA
 60 ARCL 01
 61 RTN
 62*LBL 02

 63 2.002
 64 +
 65 SF 25
 66 MSIJA
 67 RDN
 68 FC?C 25
 69 RTN
 70 I-
 71 CHS
 72 MSC+
 73 J-
 74 CHS
 75 MSR+
 76 MRIJ
 77 GTO 02
 78 RTN
 79*LBL 01

 80 "P"
 81 CMTRC
 82 RCL 00
 83 INT
 84 E
 85 -
 86 CHS
 87 ST/ Z
 88 /
 89 END

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 42 of 148

Appendix. Complex Transposed Matrix. { CTRNP , ZTRNP }

Also missing from the original Advantage was a way to transpose a complex matrix; a fact that is duly
corrected here with the routines below. Two solutions are offered, one following an element-based
approach to illustrate the concept, and another using a block approach – faster and with fewer
progam steps / byte count.

For a complex element pointer (i,j) the relationship with the individual marix pointers holding the four
real and imaginary parts are as follows:

C(i,j) = [(2i-1, 2j-1) ; (2i-1, 2j)
 (2i, 2j-1) ; (2i, 2j)]

• The element-based approach will simply do a cursory scan of the matrix, swapping the
complex element with pointer (i.j) with its transposed one, (j,i), letting the real matrix pointers
be determined by the relationships above. It also includes two subroutines for complex
element recall and storage, CMR and CMS that can be used independently, entering with the
complex pointer in X and the matrix name in ALPHA.

• The block-based approach takes advantage of the MMOVE function, applied to the four-

element block as per the complex values storage convention. This requires just n x m
iterations, whereas the previous approach needs 2n x 2m repeats of the single-element
copying. Also no need to worry about the matrix pointers, MMOVE will take care of that for us.

• In either case one auxiliary matrix is required to perfrom the task, which will be purged on
completion - leaving the (now transposed) matrix name in ALPHA. Neither of the two
approaches requires data registers, but the first one uses flags 00 and 01.

Program listing – Block approach.

1 LBL "ZTRNP" FROM 21 MMOVE

2 "|-,#" FROM,TO 22 X<>Y 2i,2j

3 DIM? 23 MSIJA position element in from matrix

4 I<>J transpose dimension 24 R^ complex pointer (i,j)

5 ASWAP TO,FROM 25 J+ test the location for bounds

6 MATDIM 26 FS? 10 out of matrix?

7 ASWAP FROM,TO 27 GTO 02 yes, exit

8 1,001 complex pointer 28 FS? 09 out of rows?

9 LBL 01 prepare prameters 29 INT yes, integer

10 ENTER^ i,j 30 1.001 offset factor

11 ST+ X 2i,2j 31 FC? 09 within rows?

12 ENTER^ 32 FRC yes, fractional

13 I<>J 2j,2i 33 + update complex pointer

14 1,001 34 GTO 01 do next block

15 ST- Z (2i-1),(2j-1) in Z 35 LBL 02

16 - (2j-1),(2I-1) 36 ASWAP

17 X<>Y 37 MAT= copies result & redims matrix

18 R^ i,j 38 PURFL purges TO

19 ST+ X 2i,2j 39 MNAME? FROM

20 X<>Y 40 END 85 bytes

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 43 of 148

Program listing - Element-based approach

1 LBL "CTRNP" FROM 32 GTO 01 next complex element

2 "|-,#" FROM,TO 33 LBL "CMR" X holds (i,j)

3 DIM? 34 ENTER^ complex (i,j)

4 I<>J transpose dimension 35 ST+ X 2i,2j

5 ASWAP TO,FROM 36 MSIJA

6 MATDIM 37 RDN

7 ASWAP FROM,TO 38 MRR- Re(a i j)

8 1,001 complex pointer 39 MRR+ Im(a i j)

9 CF 00 40 X<>Y leaves pointer at (2i,2j)
10 LBL 01 41 RTN

11 CF 01 42 LBL "CMS" X holds (j,i)

12 XEQ "CMR" 43 ST+ X 2j,2i

13 J+ 44 MSIJA

14 FS? 09 45 RDN

15 SF 01 46 MS Re(aij)

16 FS? 10 47 J-

17 SF 00 48 I-

18 ASWAP FROM,TO 49 MSC+

19 RCL Z i,j 50 X<>Y Im(aij)

20 I<>J j,i 51 MSR+

21 XEQ "CMS" 52 CHS -Im(aij)

22 ASWAP TO,FROM 53 I-

23 FS? 00 54 MS
24 GTO 02 55 RTN

25 RCL Z 56 LBL 02

26 FS? 01 57 ASWAP TO,FROM

27 INT next complex row 58 MAT=

28 1,001 59 PURFL purges TO

29 FC? 01 ran out of columns? 60 MNAME? FROM

30 FRC next complex column 61 END 142 bytes

31 + update complex pointer

This method can be of further use if the Conjugate Transpose needs to be calculated. To that effect all
that would be needed are the instructions { X<>Y, CHS, X<>Y } right after step 20 to negate the
imagnary parts – with no impact to the CMR and CMS sub-routines.

Example.- Transpose the 3x3 complex matrix shown below and use CMEDIT to review the result.

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 44 of 148

Update: Storing and Recalling Complex Matrix Elements. { CMS , CMR }

Revision “5Y+” includes MCODE versions of the CMS and CMR routines to store and recall complex
matrix elements. This may sound like a fairly trivial feat given that all required STO/RCL components
are already implemented in MCODE, but because of the way the MCODE were originally written (a
direct inheritance from the CCD module) it wasn’t possible to chain them without running out of CPU
registers, including the RTN address stack.

So a couple of tricks were needed to pull this off, most notably stack register T was needed as scratch
– and therefore should not be used when CMS/CMR are used in upir programs or manual calculation.
This is not a very limiting restriction (usually T is normally overwritten by natural occurrences, such as
ENTERing new values in the stack) but you should bear it in mind for advanced cases.

Note that this limitation does not affect all other Matrix functions, such as MSIJ, MR, MS, J+, etc.
And that in manual more CMR will show the complex value on the display:

Stack usage for CMR and CMS

The table below summarizes the Input/Output assumptions for these functions. Note that contrary to
their real-matrix counterparts MR and MS, the complex versions require the complex pointer in the X-
Register. This pointer will be saved in LastX so you can retrieve it in case it’s needed for further
operations.

Register CMS CMR

Input Output Input Output

X Cpx. Pointer Re(z) Cpx. Pointer Re(z)

Y Re(z) Im(z) - Im(z)

Z Im(z) 0 - Y

T - 0 - Z

L - Cpx. Pointer - Cpx. Pointer

With this convention you can chain Recall/Storage actions easily, forr instance the sequence of
instructions below will copy complex element z(1,2) into z(2,1):

1,002, CMR, LASTX, I<>J, CMS

Finally, note that

• CMR and CMS have been promoted to the Main FAT in the upper page of the module. They
traded places with two little-used routines (MRND and PSCAL), which now reside in the
auxiliary FAT for subfunctions. Be aware of the XROM numbers displacement in your FOCAL
programs

• If there’s a data error condition (UNDEFined Array, END of Array, etc.) the register T will
contain a non-normalized number of the form: “F|000000ADDR|000”. You should disregard
this value.

• Upon successful execution, the complex pointer (i,j) will remain selected in the matrix on

completion of the action, which is the same as saying that the real pointer (2i,2j) will be
active.

Cpx(i,j) = [(2i-1, 2j-1) ; (2i-1, 2j)
 (2i, 2j-1) ; (2i, 2j)]

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 45 of 148

2.3.3.- Other Matrix Functions (“Utilities”)

The remaining matrix functions, also called utilities, are those for copying and exchanging parts of
matrices, and miscellaneous, extra arithmetic functions: finding sums, norms, maxima, and minima,
and matrix reduction.

Moving and Exchanging Matrix Sections.

 Function Description Input

1 C<>C Exchange columns k and l in a matrix Name in Alpha, kkk.lll in X-reg

2 R<>R Exchange Rows k and l in a matrix Name in Alpha, kkk.lll in X-reg

3 MMOVE Matrix Move Names in Alpha, Pointers in stack

4 MSWAP Matrix Swap Names in Alpha, Pointers in stack

MMOVE and MSWAP Copies or Exchanges the submatrix defined by pointers in the source matrix to
the area defined by one pointer in the target matrix. The inputs require both matrix names in Alpha
separated by a comma, plus the pointers in the stack as follows:

When executing MMOVE and MSWAP if A and B are the same matrix and the source submatrix
overlaps the target submatrix, the elements are processed in the following order: reverse column
order (last to first) and reverse element order (last to first) within each column.

When an input of the form iii.jjj is expected in the X-register, a zero value for either the i-part or the j-
part is interpreted as 1. (Zero alone equals 1.001.) This is true for the iii.ijj-values that MMOVE and
MSWAP expect in the X- and Z-registers, but not for the pointer value in the Y-register.

For the Y-register input, a zero value for the i-part is interpreted as m, the last row, while a zero value
for the j-part is interpreted as n, the last column. This convention facilitates easy copying (or
exchanging) of entire matrices because simply by clearing the stack (CLST) or entering three zeros
you specify the elements 1.001 (X) and mmm.nnn (Y) for the first matrix and element 1.001 (Z) for
the second matrix, thus defining two entire matrices.

For example, in a 4 x 5 matrix:

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 46 of 148

Miscellaneous Arithmetic Functions: Maxima and Minima

 Function Description Input / Output

5 MAX Finds the maximum element in matrix.
Sets element pointer to it.

Matrix Name in Alpha.
Outputs element value to X-reg

6 MIN Finds the minimum element in matrix.
Sets element pointer to it.

Matrix Name in Alpha
Outputs element value to X-reg

7 MAXAB Like MAX but in absolute value. Sets
element point to it.

Matrix Name in Alpha
Outputs element value to X-reg

8 CMAXAB Finds maximum absolute value in k-
th. column. Sets element pointer to it.

Matrix name in Alpha, kkk in X-reg.
Outputs element value to X-reg

9 RMAXAB Finds maximum absolute value in k-th.
row. Sets element pointer to it.

Matrix name in Alpha, kkk in X-reg.
Outputs element value to X-reg

Examples. Calculate the different maxima and minima for the following matrix:

Miscellaneous Arithmetic functions: Norms and Sums

 Function Description Input / Output

10 CNRM Column Norm. Finds the largest sum
of the absolute values of the elements
in each column of matrix.

Matrix name in Alpha.
Outputs column norm to X-reg.
Sets pointer to first element of column.

11 FNRM Frobenius Norm. Calculates the square
root of the sum of the squares of all
elements in matrix.

Matrix name in Alpha.
Outputs Frobenius norm into X-reg

12 RNRM Row Norm. Finds the largest sum of
the absolute values of the elements in
each row of matrix.

Matrix name in Alpha.
Outputs row norm to X-reg.
Sets pointer to first element of row.

13 SUM Sums all elements in matrix. Matrix name in Alpha.
Outputs the sum to X-reg

14 SUMAB Sums absolute values of all elements
in matrix.

Matrix name in Alpha
Outputs the sum to X-reg

15 CSUM Finds the sum of each column and
stores them in a result vector.

Matrix name , result matrix name
(Vector) in Alpha. (*)

16 RSUM Finds the sum of each row and stores
the sums in a result vector.

Matrix name , result matrix name
(Vector) in Alpha. (*)

(*) For CSUM and RSUM the number of elements in the result matrix (vector) must equal the
number of columns/rows in the input matrix.

Function Result Pointer Result value

MAX a14 12

MAXAB a44 36

CMAXAB a43 24

RMAXAB a24 12

MIN a44 -36

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 47 of 148

Examples. Calculate the Colum and Rows Sums for the matrix below, using the names “RSUM” and
“CSUM” for the result matrices.

The result matrices (vectors) are located at
the bottom and right of the original matrix.

Note that those must have been created
previously using MATDIM, or otherwise the
“UNDEF ARRAY” will be shown.

Miscellaneous Arithmetic functions: Matrix Reductions

 Function Description Input / Output

17 YC+C Multiplies each element in column k of
matrix by value in Y-ref. and adds it to
corresponding element in column l

Matrix name in Alpha, kkk.lll in X-reg,
y in Y-reg.
It changes the elements in column l

18 PIV Finds the pivot value in column k, that
is the maximum absolute value of an
element on or below the diagonal.

Matrix Name in Alpha, kkk in X-reg

19 R>R? Compares elements in rows k and l. If
(and only if) the first non-equal
element in k is greater than its
corresponding element in l, then the
comparison is positive for the “do if
true” rule of programming.

Matrix name in Alpha, kkk.lll in X-reg
Outputs “YES” if first non-equal
element in row k is greater than
element in row l. “NO” in all other case.

Examples.- Calculate the pivot element under the second column and compare the first and third rows
for the matrix below.

Both PIV and YC+C are vestigial from the CCD “-ARRAY FNS” group, and arguably not very useful
now that the major matrix operations are also available.

10

26

42

-72

15 6 -3 -12

Input Function Pointer Output

2 PIVOT a42 12

1,003 R>R? “NO”

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 48 of 148

The last two functions are not operating on a matrix, but are auxiliary for the FOCAL programs:

 Function Description Input / Output

20 AIP Appends the absolute value of the
integer part of the number in X to the
contents of the Alpha register.

Value in X.

21 MPT Appends a matrix prompt “rrr.ccc=” to
the contents of the Alpha register
(dropping leading zeros in each part)

rrr.ccc in X-reg

Note that AIP and AINT in the SandMath are very similar – but AINT won’t take the absolute value.
This fact is useful to append integer values to alpha without decimal numbers, but respecting the sign.

Note that MPT in the SandMatrix is an enhanced version written in MCODE – that replaces the mini-
FOCAL program used in the Advantage.

Example. Calculate the Row, Column and Frobenius norms for the matrix

The results are: Row Norm = 19

Column Norm = 15
Frobenius Norm = 14,38749457

The Frobenius norm will come very handy for some programs in Chapter-3 as convergence criteria,
and to determine whether two matrices are “equivalent” in reduction algorithms.

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 49 of 148

Appendix. Pascal and Random matrices. { PSCAL , MRND }

In mathematics, particularly matrix theory and combinatory, the Pascal matrix is an infinite matrix
containing the binomial coefficients as its elements. There are three ways to achieve this: as either an
upper-triangular matrix, a lower-triangular matrix, or a symmetric matrix. The 5×5 truncation of these
is shown below.

The elements of the symmetric Pascal matrix are the binomial coefficients, i.e.

in other words, see the relationships for the general term and the matrix trace below:

Random matrices are implemented in the SandMatrix using a time-based seed, applying a pseudo-
random algorithm on it and then summing the digits of the mantissa to come up with an integer
number. It is furthermore rounded to the current display settings, thus you can limit the values as
required. Functions SEEDT, RAND, and DGT in the SandMath, are used.

See the program listings below. For the Pascal matrix, function NCR in the SandMath calculates each
element value. Note how the subindices are tweaked to return ones in the first row and column – a
nice trick courtesy of JM Baillard.

1 LBL "PSCAL" MNAME in Alpha 1 LBL "MRND" MNAME in Alpha

2 0 2 0

3 MSIJA set pointer to 1:1 3 MSIJA set pointer to 1:1

4 LBL 00 3 SEEDT time-based seed

5 MRIJ recall pointer 4 LBL 00

6 INT i 6 RAND random number

7 MRIJ recall pointer 7 RND current settings

8 FRC 0,jjj 8  DGT sum of digits

9 I<>J j 9 MSR+ store element

10 + I+j 10 FC? 10 end of matrix?

11 2 11 GTO 00 no, loop back

12 - i+j-2 12 END yes, done

13 MRIJ recall pointer

14 INT i

15 E

16 - i-1

17 NCR C(i+j-2; i-1)

18 MSR+

19 FC?10 end of matrix?

20 GTO 00 no, loop back

21 END yes, done

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 50 of 148

Appendix.- Matrix Minors. { MINOR , CMINOR }

In linear algebra, a minor of a matrix A is the determinant of some smaller square matrix, cut down
from A by removing one or more of its rows or columns. Minors obtained by removing just one row
and one column from square matrices (first minors) are required for calculating matrix cofactors,
which in turn are useful for computing both the determinant and inverse of square matrices.

If A is a square matrix, then the minor of the entry in the i-th row and j-th column (also called the (i,j)
minor, or a first minor[1]) is the determinant of the submatrix formed by deleting the i-th row and j-th
column. This number is often denoted Mi,j. The (i,j) cofactor is obtained by multiplying the minor by
(-1)^{i+j}.

Two programs are included, one for Real matrices (not limited in order, courtesy of MDET) and
another for Complex Matrices – only up to degree 5, due to on the restriction imposed by CMDET.
The programs are a good example of utilization of the utility functions C<>C, R<>R, and MMOVE.

Program listing.- Real Matrix Minors

1 LBL "MINOR" 28 MNAME?

2 LBL 01 29 RTN

3 ASTO 01 MNAME 30 GTO 01

4 STO 00 i,j pointer 31 LBL 02

5 "|-,#1" 32 INT j

6 MAT= scratch copy 33 ENTER^
7 DIM? 34 DSE X j-1

8 1,001 35 X=0?

9 - one order less 36 RTN don’t bother if j=1

10 "#2" 37 X<>Y

11 MATDIM scratch sub-array 38 ENTER^
12 MZERO clear it 39 ENTER^

13 "#1" 40 I<>J 0,00(j-1)

14 RCL 00 41 E

15 I<>J i,j pointer 42 -

16 SF 00 43 + j,00(j-1)

17 XEQ 02 44 LBL 00

18 RCL 00 45 FS? 00

19 CF 00 46 C<>C bubble left column

20 XEQ 02 47 FC? 00

21 CLST 48 R<>R bubble up row

22 2,002 49 1.001 offset

23 "#1,#2" 50 - k,00(k-1)

24 MMOVE 51 DSE Y j=j-1

25 PURFL 52 GTO 00

26 CLA 53 END

27 MDET

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 51 of 148

Program listing: Complex Matrix Minors.

1 LBL "CMINOR" 33 ST+ X 2i,2j

2 LBL 01 34 STO 02

3 STO 00 35 XEQ 03

4 ASTO 01 36 RCL 02 2i,2j

5 "|-,#1" 37 1,001

6 MAT= scratch copy 38 - (2i-1),(2j-1)

7 DIM? 39 LBL 03

8 2,002 40 RCL 00 i,j

9 - one order less 41 FS? 00

10 "#2" 42 I<>J

11 MATDIM scratch sub-array 43 INT

12 MZERO clear it 44 DSE X discard first column

13 "#1" 45 X=0?

14 RCL 00 46 RTN don’t bother if j=1

15 CF 00 do the rows 47 X<>Y

16 XEQ 02 48 INT

17 RCL 00 49 ENTER^

18 I<>J i,j pointer 50 ENTER^

19 SF 00 do the columns 51 2

20 XEQ 02 52 -

21 CLST 53 I<>J

22 3,003 54 + k,00(k-2)

23 "#1,#2" 55 LBL 00

24 MMOVE 56 FS? 00

25 PURFL 57 C<>C bubble left column

26 CLA 58 FC? 00

27 XROM "CMDET" 59 R<>R bubble up row

28 CLA 60 2.002 offset

29 ARCL 01 61 - k,00(k-2)

30 RTN 62 DSE Y j=j-1

31 GTO 01 63 GTO 00

32 LBL 02 64 END

Example: Calculate all element minors for the example matrix used in the Complex Transposed
dexample:

You need to provide the matrix name in ALPHA and the complex pointer value in X - i.e. from 1,001
to 3,003 in this example. Also remember that the 41Z Module needs to be plugged for the complex
determinat calculation.

The solutions are:

 -28+J31 -44-J18 -29+J71
Minors: 5+J6 9+J49 38+J10

 -47-J9 -46-J2 -19+J51

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 52 of 148

3. Upper-Page Functions in detail

This chapter is all above and beyond the matrix functionality present in the Advantage Pac – a true
extension of its capabilities into new and often uncharted territories.



3.1. The Enhanced Matrix Editor(s)

Often the most tedious part of a matrix calculation becomes the data entry for the input matrices and
the review of the results. With this in mind the SandMatrix includes convenient alternatives to MEDIT,
the “standard” Matrix Editor from the Advantage, seen in the previous chapter. There are as follows:

 Function Description Input / Output

1 PMTM Prompt Matrix by Rows Matrix name in Alpha

2 IMR Input Matrix by Rows Matrix name in Alpha

3 IMC Input Matrix by Columns Matrix name in Alpha

4 OMR Output Matrix by Rows Matrix name in Alpha

5 OMC Output Matrix by Column Matrix name in Alpha

6 OXC Output Column k Matrix name in Alpha, kkk in X-reg

7 OXR Output Row k Matrix name in Alpha, kkk in X-reg

Of all these, the most remarkable one is of course PMTM – which expedites element data entry to the
maximum possible on the 41 platform, almost as if it were a full-fledge editor in a graphical screen.
The idea is to use the Alpha register as repository for all the elements, separating the individual values
by spaces (entered using the ENTER^ key). The data input is terminated by pressing R/S.

The back-arrow key is always active to correct a wrong entry, and will terminate the function if Alpha
is completely cleared. PMTM allows for negative and decimal numbers to be entered, thus the CHS
and RADIX keys are also active during the data entry prompt. Furthermore, the logic will only allow
one occurrence of these per each element within the prompt string.

PMTM knows how many rows should be input (it is part of the matrix dimension), thus the prompts
will continue to appear until the last row is completed. A row counter is added to the prompt to
indicate the current row being edited.

If you enter fewer elements in the prompt than existing columns, the remaining elements will be left
unchanged and the execution will end. Conversely, if you enter more elements in the prompt than
existing columns, those exceeding the quota (the extra ones) will simply be ignored.

The two limitations of PMTM are as follows:

• A maximum length of 24 characters is possible during the prompt. This includes the blank
separators, the comma (radix), and the negative signs if present.

• No support for the Exponential format is implemented (EEX). You need to use any of the other
editors if your element values require such types of data.

Obviously, this makes PMTM the ideal choice for matrices containing integer numbers as elements –
but not exclusively so as it can also be used for other values (real-numbers) as long as the two
conditions above are respected.

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 53 of 148

At the heart of PMTM there is the function ^MROW (“Enter Matrix Row”), responsible for the
presentation of the prompt in Alpha and accepting the keyboard inputs there to make up the string (or
list) with all values. It also provides the logic of actions for the control keys, like ENTER^, Back arrow,
R/S, etc.

^MROW is called in a loop as many times as rows exist in the matrix, while ANUMDL (in the
SandMath) is used every iteration (each time a row is being processed) to “extract” the individual
element data from the global string in the prompt.

Below is the program listing for PMTM, and as you can see it’s just a sweet & short driver for
^MROW that also takes advantage of the auxiliary functions in the SandMatrix.

1 LBL "PMTM"

2 0

3 MSIJA position pointer to 1.1

4 LBL 01

5 MRIJ recall pointer

6 INT row number

7 ^MROW prompts for string

8 CF 22 default reset

9 LBL 00 separate elements

10 ANUMDL

11 FC?C 22 last one reached?

12 GTO 02 yes, exit

13 MSR+ store element

14 FC? 09 end of row?
15 GTO 00 no, do next element

16 FC? 10 end of matrix?

17 GTO 01 no, do next row

18 LBL 02
19 MNAME? recall Mname

20 END done.

^MROW is available as a sub-function listed within the aux CATalog – and rightfully so. Note that
even if PMTM is not strictly an MCODE function, de-facto it is a hybrid one, and therefore it’s denoted
in blue color all throughout this manual. If PMTM is the beauty then ^MROW is the beast. If you’re
interested you can peruse the MCODE listings for it in appendix “M”.

Below are two examples of the lists being edited, for the first two rows of a given matrix:

 , and

The built-in logic allows for just one negative sign and one radix character per each value entry.

Note that ^MROW is also used by PMTP, the “Polynomial Input” function, which has a very parallel
structure to PMTM and is used to enter the coefficients of a polynomial into data registers. It will be
covered in the polynomial section later on.

The remaining routines in this section all deal with Input and Output of the matrix elements,
depending on whether it’s done following the Row or Column sequence, as well as OXR and OXC, two
sub-functions (i.e. they require F$ to launch) to only view one specific row or column.

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 54 of 148

They are very much equivalent to MEDIT in many aspects, although the symbol “a” is used in the
prompts. They are slightly faster and offer the added convenient feature: when the matrix is not LU
decomposed, for integer element values the zeros after the decimal point are not shown in the
prompt – regardless of the current display settings (FIX or otherwise). This makes for a clearer UI.

The program listing is shown below; note how the different entry points set the appropriate subset of
user flags, and that they all share the main section for the actual element input and review.

1 LBL "OMR" 35 FS? 04 LU decomposed?

2 0 clears F0-F7 36 GTO XX synthetic jump (!)

3 GTO 05 37 INT? integer?

4 LBL "OMC" 38 AINT yes, append IP

5 2 sets F1 39 FRC? fractional?

6 GTO 05 40 ARCL X yes, append all

7 LBL "IMR" 41 FC? 00 view only?

8 E sets F0 42 AVIEW yes, show it

9 GTO 05 43 FC? 00 view only?

10 LBL "IMC" 44 GTO 02 yes, skip editing

11 3 sets F0 & F1 45 "|-?" append "?"

12 LBL 05 46 PROMPT show current value

13 XEQ 06 check status 47 MS store new value

14 CLX 48 LBL 02

15 MSIJA resets pointer to 1:1 49 FC? 01 by column?

16 GTO 00 go to first element 50 J+ yes, next column

17 LBL "OXC" 51 FS? 01 by row?

18 E1 sets F1 & F3 52 I+ yes, increase row

19 GTO 04 53 E1 F10

20 LBL "OXR" 54 FS? 03 by row?

21 8 sets F3 55 DSE X yes, F9

22 LBL 04 56 FC? IND X end of matrix/row?

23 XEQ 06 check status 57 GTO 00 no, next element

24 RDN colum/row number 58 MNAME? yes, recall Mname

25 INT just in case 59 RTN done.

26 E3/E+ 1,00x 60 LBL 06

27 FC? 01 row? 61 X<>F set case lags

28 I<>J yes, transpose 62 SF 25 prepare test

29 MSIJA set pointer to row/col 63 LU? is LU decomposed?

30 LBL 00 64 NOP will clear F25 if so

31 "a" element symbol 65 FC?C 25 was it LU?

32 MRIJ recall index 66 SF 04 yes, flag this fact

33 MP prompt index= 67 END and return

34 MR recal value

Other pointer utilities included are listed in the table below; they are used in many of the FOCAL
programs described in the following sections.

 Function Description Input / Output

8 ^MROW Prompts the list and controls input

Element values as Alpha List

9 I<>J Swaps iii and jjj in X
(also does E3/ for integers)

iii.jjj in X-reg.
Index swapped to jjj.iii

10 I#J? Tests whether iii is different from jjj iii.jjj in X.
YES/NO, do if true.

11 SQR? Tests for Square Matrices MNAME in Alpha.
YES/NO, do if True..

12 MFIND Finds an element in a given matrix
and sets element pointer to it

Element value in X-reg
Outputs the pointer iii/jjj to X-reg

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 55 of 148

3.2. New Matrix Math functions.

3.3.1. Utility / housekeeping functions: rounding the capabilities.

This group comes very handy for the handling and management of intermediate steps required as part
of more complex algorithms. As a rule, the functions work for matrices stored either in main memory

or in X-memory. Only MATP and MAT= create new matrices; all other functions expect them to be

already dimensioned.

 Function Description Input / Output

1 MAT= Creates & Makes matrix B equal to A:
B = A

Matrix names in Alpha: “A,B”.
Matrix A must already exist.

2 MATP Driver for M*M operation
Prompts for element values

Under program control. Creates both
matrices on the fly.

3 MCON Matrix from a constant
Makes aij = x, i=1,2,..m; j=1,2,..n

Matrix name in Alpha, constant in X-reg
Makes all matrix elements equal to x

4 MFIND Finds an element within a matrix Matrix Name in Alpha, element in X-reg.
Returns pointer to X and set to element.

5 MIDN Makes identity Matrix
Makes aii =1 and aij=0 for i#j

Matrix name in Alpha. (must exist)

6 MRDIM Re-dimensions Matrix (properly)
It keeps existing elements in place.

Matrix name in Alpha, dimension in X.
Output is a new matrix (adds ‘ to name)

7 MSORT Sorts all elements within a matrix Matrix Name in Alpha. Reorders
elements in ascending order.

8 MSZE? Calculates the Matrix size
Size = m x n

Matrix name in Alpha.
Output is placed into X-reg.

9 MZERO Zeroes (clears) all elements in matrix
Makes aij = 0, i=1,2..m; j=1,2,..n

Matrix name in Alpha
All elements are set to zero.

10 MZDG Zeroes (clears) the diagonal elements
in matrix (makes aii = 0 , i= 1, 2..m)

Matrix name in Alpha: “A”.
The diagonal is zeroed.

A few remarks on each of these functions follow, as well as the program listings.

 MAT= copies an existing matrix into another, with names in Alpha. Prior to doing the bulk element

copy, it redimensions the target matrix to be the same as the source one. It is however not required
that the target matrix already exist – it will be created if not already there.

 MCON does a simple thing: converts the value in the X-Reg into a matrix with all elements equal to

this value. This is useful in some calculations and for matrix manipulations. See the simple program
listings for these routines below;

1 LBL "MAT=" "A,B" expected in Alpha 1 LBL "MCON" MNAME in Alpha

2 DIM? dimension 2 MZERO clear all elements

3 ASWAP swap Alpha 3 RDN get constant back to X

4 MATDIM re-dimension target 4 "X" prepare alpha string

5 ASWAP undo the swap 5 MAT+ add x to all elements

6 CLST prepare pointers 6 MNAME? recall MNAME to Alpha

7 MMOVE move all elements 7 END done

8 END done

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 56 of 148

 MZERO is the unsung hero behind other routines – as the proper way to clear a matrix file, since

CLFL cannot be used because it also clears the header register (it was meant for Data files). Use it
safely for matrices in main and x-memory. MZERO is implemente entirely in MCODE.

A related function is MZDG , which only deletes the diagonal elements. It can be used to construct

an anti-Identity matrix, applying it to a all-ones matrix - created using the three-step sequence:
{ 1, MCON, MZDG }. These matrices have the interesting (unproven) property that their
determinants obey the expression:
 Det [AI(nxn)] = (-1)^(n-1) . (n-1)

 MSORT uses an auxiliary matrix in main memory (“R0”) where RGSORT (from the SandMath) is

applied to; then data are copied back to the original matrix. It also checks for available registers,
adjusting the calculator SIZE if necessary. The contents of those (n x m +1) data registers will be lost.

1 LBL "MSORT" MName in Alpha 1 LBL "MZERO" MNAME in Alpha

2 SIZE? current SIZE 2 DIM? get dimension

3 MSZE? matrix size 3 SF 25

4 E 4 PURFL purge file

5 + plus one 5 FC?C 25 was in main mem

6 X>Y? is it larger? 6 GTO 01 jump over

7 PSIZE yes, adjust size 7 MATDIM re-create file

8 "|-,R" prepare Alpha string 8 RTN done

9 MAT= make matrix R0 equal 9 LBL 01

10 MSZE? its size again 10 ANUM get first reg from title

11 E3/E+ prepare control word 11 ENTER^ copy in Y-reg

12 RGSORT sort registers 12 MSZE? get matrix size

13 ASWAP swap alpha 13 + add to first reg

14 CLST prepare pointers 14 E3/3+ prepare index format

15 MMOVE move all elements 15 + add to first reg

16 MNAME? recall original name 16 CLRGX clear registers

17 END done 17 END done

 MSZE? has a new MCODE implementation in this revision – directly reading the matrix header

register. Its functionality is equivalent to FLSIZE for matrices stored in X-mem – and of course it also
does the equivalent for matrices stored in main memory. MSZE? is implemented entirely in MCODE.

1 MSZE? Header A616 0BF "?"

2 MSZE? Header A617 005 "E" Matrix Size?

3 MSZE? Header A618 01A "Z"

4 MSZE? Header A619 013 "S"
5 MSZE? Header A61A 00D "M" Ángel Martin

6 MSZE? MSZE? A61B 379 PORT DEP: Jumps to Bank_2

7 MSZE? A61C 03C XQ adds "4" to [XS]

8 A61D 1D9 ->A5D9 [LNCH0]
9 valid for main and X-mem A61E 388 <parameter> B788

10 the proper way to do it! A61F 00B JNC +01

11 A620 100 ENROM1 restore bank-1

12 MSZE? A621 0B0 C=N ALL header register

13 MSZE? A622 106 A=C S&X

14 MSZE? A623 17D ?NC GO [BIN-BCD] plus [RCL]
15 MSZE? A624 0C6 ->315F [ATOX20]

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 57 of 148

 MIDN is a good example of a sorely missing function: the majority of matrix algorithms involve

identity matrices, one way or another, so having a routine that does the job becomes rather
important. MIDN is implemented entirely in MCODE.

The code follows a single-element approach, storing ones in the main diagonal after zeroing the matrix
first. This is faster and more convenient that block-based methods, even if they don’t require scratch
matrices for intermediate calculations. See the example below courtesy of Thomas Klemm:

Of all these functions perhaps MRDIM needs further explanation. Contrary to MATDIM, a proper

re-dimensioning should respect the elements in the re-dimensioned matrix that held the same position

in the original one. MRDIM does this, deleting the discarded elements when the redimensioned sub-

matrix is smaller than the original, and completing the new one with zeroes when it is bigger (super-
matrix). It always starts with a11 (no random origin is possible).

1 LBL "MRDIM" MNAME in Alpha 16 X<>Y min(j1,j2)

2 DIM? get dimension 17 RCL Z

3 X<>Y new dimension to X 18 INT min (I)

4 ASTO T temporary safekeep 19 + min (I), min(j)

5 "|-' " add tilde 20 0

6 MATDIM create new matrix 21 STO Z prepare pointers

7 CLA 22 ASTO T temporary safekeep

8 ARCL T MNAME 23 "|-,"

9 X>Y? 24 ARCL T MNAME

10 X<>Y min(i1,i2) 25 "|-' " prepare Alpha string

11 STO Z keep in Z 26 MMOVE copy elements

12 FRC 27 PURFL purge original file

13 X<>Y 28 MNAME? recall name to Alpha

14 FRC 29 END done

15 X>Y?

A logical enhancement to this routine would be to change the matrix name back to its original one,
removing the tilde. This can be done in two ways:

1. creating a new matrix file and copying it over once again, or (preferable)
2. using RENMFL (in the AMC_OS/X module) to rename the X-mem file

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 58 of 148

Finding an element within a Matrix { MFIND } - plus an easy-driver for M*M

 MFIND will search a given matrix looking for an element that equals the value in the X-register. If it

is found it returns its location pointer to the X-reg (and leaves the pointer set to it). If it’s not found, it
returns -1 to X and the pointer is outside the matrix.

You can further use this result adding the conditional test function “X>=0?” (available in the
SandMath) right after MFIND - which in a program will skip a line if the element wasn’t found.

 MATP is nothing more than a user-friendly driver program to automate the complete matrix product

procedure, without any need to dimension the result matrix in advance. The routine will guide you
step-by-step thru the complete sequence, including the element data input and output.

Note that in MATP I have chosen PMTM to enter the element data values – therefore it’s somehow
limited by the same constraints described before, ie. total length in Alpha and no support for the EEX
key.

Below are the program listings for your perusal.

1 LBL "MFIND" MNAME in Alpha 1 LBL "MATP"
2 0 2 "DIM1=?" M1 dimension

3 MSIJA sets pointer to 1:1 3 PROMPT prompt for it
4 LBL 05 4 "M1" matrix name - M1

5 RDN target value to X-reg 5 MATDIM create matrix in X-mem

6 MR recall element 6 PMTM input elements

7 X=Y? equal? 7 "DIM2=?" M2 dimension
8 GTO 02 yes, exit 8 PROMPT prompt for it

9 J+ no, increase column 9 "M2" matrix name - M2

10 FC? 10 end of matrix? 10 MATDIM create matrix in X-mem

11 GTO 05 no, next element 11 PMTM input elements

12 RDN target value to X-reg 12 DIM?

13 CLX 13 FRC # of columns for M2

14 - 14 "M1"
15 E put -1 in X 15 DIM?

16 GTO 00 exit 16 INT # of rows for M1

17 LBL 02 17 + cresult matrix dimension

18 RDN 18 "M*" matrix name - M*

19 CLX 19 MATDIM create matrix in X-mem

20 MRIJA 20 "|-M1,M2," prepare Alpha string
21 LBL 00 21 2

22 END done 22 AROT

23 M*M matrix product

24 ASHF remove acratch

25 OMR output values

26 END done

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 59 of 148

3.2.2. New Math functions.- Completing the core function set.

The next group includes advanced application areas in “core” matrix math.

 Function Description Input / Output

9 M^1/X Brute-force Matrix X-th Root
A = exp(1/x * Ln[A])

Matrix name in Alpha, order in X
The result matrix replaces the input

10 M^2 Square power of a square Matrix
A = [A]^2 = [A].[A]

Matrix name in Alpha
The result matrix replaces the input

11 MDPS Matrix Diagonal Product Sum
MDPS = [aii*aii+1], i=1,2…n

Matrix name in Alpha.
Output is result in X-reg

12 MEXP Exponential of a Matrix
A = exp(A)

Matrix name in Alpha.
The result matrix replaces the input.

13 MLIE Matrix Lie Product
C = AB – BA

Matrix names in Alpha: “A,B,C”
Result matrix C must be different.

14 MLN Matrix Logarithm
A= Ln (A)

Matrix name in Alpha.
The result matrix replaces the input.

 MPOL Matrix Polynomial.
P(A) =  ak [A]^k

Matrix name in Alpha, control word in X
Output is matrix “P” in X-Mem

15 MPWR Matrix Power of integer order
A = A^x

Matrix name in Alpha, order in X-reg.
The result matrix replaces the input.

16 MSQRT Matrix Square Root
A = sqrt(A)

Matrix name in Alpha.
The result matrix replaces the input.

17 MTRACE Calculates the Trace of a Square
Matrix: Trace =  aii, i= 1, 2,..m

Matrix name in Alpha.
Output is put into W-reg.

18 R/aRR Row division by diagonal element
akj = akj / akk , j= 1,1,…n

Matrix name in Alpha, row kkk in X-reg
All row elements divided by akk

19 IJJI Sum of crossed-elements products
SCEP = [(aij * aji)]

Matrix name in Alpha
Output is put in X-reg.

Some algorithms used impose some restrictions to the matrices. These are generally not checked by
the programs, thus in some instances there won’t converge to a solution. Suffice it to say that the
programs are not foolproof, and assume the user has a general understanding of the subjects – so
they won’t be used foolishly.

Matrix Exponential { MEXP }

In mathematics, the matrix exponential is a matrix function on square matrices analogous to the
ordinary exponential function. Let X be an n×n real or complex matrix. The exponential of X, denoted
by e^X or exp(X), is the n×n matrix given by the power series

where X^0 is the identity matrix, I. The above series always converges, so the exponential of X is
well-defined. Note that if X is a 1×1 matrix the matrix exponential of X is a 1×1 matrix consisting of
the ordinary exponential of the single element of X.

Finding reliable and accurate methods to compute the matrix exponential is difficult, and this is still a
topic of considerable current research in mathematics and numerical analysis. The SandMath uses a
direct approach, so no claims of discovering new algorithms.

 exp(A) = I + A + A2/2! + A3/3! + + Ak/k! +

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 60 of 148

The program adds new terms until their contribution is negligible, i.e. it results in the same matrix
after addng it. This by itself poses an interesting question: how to check whether two matrices are the
same? Obviously doing it element-to-element would be a long and impractical method. The
alternative is to use the matrix Frobenius norm as a surrogate criterion; assuming that for very similar
matrices, they’ll be equal when they have the same norm.

There’s no saying to the execution time or whether the calculator numeric range will be exceeded in
the attempt – so you can expect several iterations until it converges. The matrix norm will be
displayed after each iteration, so you’ll have an indication of the progress made comparing two
consecutive values.

Logarithm of a Matrix { MLN }

In mathematics, a logarithm of a matrix is another matrix such that the matrix exponential of the
latter matrix equals the original matrix. It is thus a generalization of the scalar logarithm and in some
sense an inverse function of the matrix exponential. Not all matrices have a logarithm and those
matrices that do have a logarithm may have more than one logarithm. Furthermore, many real
matrices only have complex logarithms – making it so even more challenging.

The SandMatrix uses the following algorithm:

If || A - I || < 1 , the logarithm of a n x n matrix A is defined by the series expansion:

 Ln(A) = (A - I) - (A - I)2/2 + (A - I)3/3 - (A - I)4/4 + where I is the identity matrix.

Example 1- Calculate the exponential of the matrix A given below, and then calculate its logarithm
to see how the result matrix compares to the original.

 [[1 2 3]
 A = [0 1 2]
 [1 3 2]]

The first part of the assignment is rather simple: Executing MEXP results in the following matrix:

 [[19.45828375 63.15030507 66.98787675]
 exp(A) = [8.534640269 32.26024414 33.27906416]
 [16.63953207 58.45323648 61.70173665]]

However trying to calculate the logarithm will not work, because exp(A) doesn’t satisfy the

requirement: Det[exp(A)-I] = -52,95249156; therefore trying MLN on it will eventually reach an

“OUT OF RANGE” condition.

Example 2.- Calculate the Logarithm of the following matrix:

 [[1.2 0.1 0.3]
 A = [0.1 0.8 0.1]
 [0.1 0.2 0.9]]

In this example, || A - I || = 0.5099... < 1 , thus the program will work.

The result matrix after executing MLN is as follows:

 [[0.167083396 0.069577923 0.287707999]
 Ln(A) = [0.097783005 -0.240971674 0.103424021]
 [0.086500972 0.235053124 -0.131906636]]

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 61 of 148

So we see that unfortunately the logarithm is not a trivial exercise. The programs are listed below,
note the combination of both exponential and logarithm into a single program, with flag 01 controlling
the case.

1 LBL "MLN" 44 LBL 02

2 SF 01 exp flag 45 VIEW 00

3 GTO 00 46 "#,"

4 LBL "MEXP" 47 ARCL 01

5 CF 01 LN flag 48 "|-,P"

6 LBL 00 49 M*M

7 SQR? square? 50 "P,#"

8 LU? yes but LU? 51 CLST

9 -ADV MATRX not square, show error 52 MMOVE

10 ASTO 01 53 RCL 02

11 "|-,^" 54 FC? 01 exp?

12 MAT= safekeeping copy 55 FACT to be used as divisor

13 DIM? get dimension 56 FC? 01 exp?

14 "P" 57 GTO 04

15 MATDIM auxiliary matrix 58 ENTER^

16 "#," 59 ENTER^

17 MATDIM auxiliary matrix 60 E to be used as divisor

18 MIDN 61 +

19 ARCL 01 62 CHSYX

20 FS? 01 LN? 63 LBL 04

21 ASWAP yes, swap names 64 "P,X"

22 "|-,^" 65 MAT/ divide by scalar

23 FS? 01 LN? 66 ABSP remove "X"

24 MAT- 67 " |-^,^" prepare new string

25 FC? 01 exp? 68 MAT= safekeeping copy

26 MAT+ 69 E

27 "^," 70 ST+ 02 increase term index

28 FNRM initial norm 71 "^,"

29 STO 00 store in R00 72 FNRM new frobenius norm

30 FC? 01 exp? 73 X<> 00 swao with old norm

31 CLA 74 RCL 00 recall new again

32 ARCL 01 75 X#Y? are the different?

33 FC? 01 exp? 76 GTO 02 yes, keep at it

34 GTO 04 77 ARCL 01 no, we're done

35 MAT= 78 MAT=

36 CLAC 79 PURFL purges "^"

37 ABSP 80 "P,#"

38 LBL 04 81 PURFL purges "P"

39 "|-,#" 82 ASWAP

40 CLST 83 PURFL purges "#"

41 MMOVE 84 MNAME? recalls name to Alpha

42 2 85 END

43 STO 02

Remarks.- The program is relatively short but hefty in data requirements: three auxiliary matrices
are created and used during the calculations, meaning that the total numbers of registers needed
(including the original matrix) is: 4 x dim (A)

Note also that the convergence is based on equal Frobenius norms of two consecutive iterations, and
that the comparison is made using the full 9 decimal digits (see instruction “X#Y?”in line 75). A
rounded comparison would result in shorter execution times, but it wouldn’t be as accurate.

As usual, these routines could result in “ALPHA DATA” if the matrix is in LU decomposed form.

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 62 of 148

Square root of a Matrix { MSQRT }

In mathematics, the square root of a matrix extends the notion of square root from numbers to
matrices. A matrix B is said to be a square root of A if the matrix product BB is equal to A.

Just as with the real numbers, a real matrix may fail to have a real square root, but have a square root
with complex-valued entries. In general, a matrix can have many square roots, however, a positive-
semidefinite matrix M (that satisfy that x * M x >=0 for all x in Rn) has precisely one positive-
semidefinite square root, which can be called its principal square root.

Computing the matrix square root in the SandMatrix uses a modification of the Denman-Beavers
iteration. Let Y0 = A and Z0 = I, where I is the n × n identity matrix. The iteration is defined by

Convergence is not guaranteed, even for matrices that do have square roots, but if the process
converges, the matrix Yk converges quadratically to a square root A1/2, while Zk converges to its
inverse, A−1/2

Contrary to the exponential and logarithm programs, the square root convergence is checked using
the rounded values of the norms for two consecutive iterations. You can set FIX 9 for maximum
accuracy (and longest run time – not a problem on V41 and on the 41CL of course).

Example 1. Find a square root of the 3rd. order Hilbert matrix:

 [[1 1/2 1/3]
 A = [1/2 1/3 1/4]
 [1/3 1/4 1/5]]

We’ll use IMR to input the element values (as PMTM is not really suitable for this example).

Previously we need to create the matrix, as follows:

ALPHA, “HILB3”, ALPHA

3.003, XEQ “MATDIM”

Once all elements are entered, we execute MSQRT , which shows the norms of the different

iterations. Let’s assume we set the calculator in FIX 9 for the maximum accuracy available; then the
result matrix is as follows:

Final Frobenius norm = 1,238278374

 [[0,917390290 0,345469265 0,197600714]
 Sqrt(A) = [0,345469265 0,374984280 0,270871020]
 [0,197600714 0,270871020 0,295943995]]

Squaring the result matrix again (you can use M^2 for that) we can check the accuracy:

 [[0,999999999 0,499999999 0,333333333]
 [Sqr(A)]^2 = [0,500000000 0,333333333 0,250000000]
 [0,333333333 0,249999999 0,200000000]]

which isn’t bad at all for a 33 years old calculator indeed…

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 63 of 148

Example 2.- Find a square root of the 4 x 4 matrix below, and check the accuracy by squaring it
back.

Using FIX 4 and PMTM for the data input (nice integer values), the result is as follows:

which is exact to 4 decimal places save a couple of ulps here and there.

The program listing is shown below. Note the relatively short program, but here too the data
requirements are equally hefty as three auxiliary matrices are required, for a total of 4 x dim(A)
registers needed either in main or X-memory (including the original matrix).

1 LBL "MSQRT" 30 X=YR? are they equal>

2 SQR? square? 31 SF 00 yes, flag this fact

3 LU? yes but LU? 32 X=YR? are they equal>

4 -ADV MATRX not square, show error 33 GTO 02 yes, jump over

5 CF 00 34 CLA no, keep at it

6 FNRM initial norm 35 ARCL 01

7 STO 00 store it in R00 36 "|-,#" prepare Alpha string

8 ASTO 01 matrix name to R01 37 MINV invert matrix
9 DIM? dimension to X-reg 38 MAT= copy in auxiliary

10 "P" 39 MINV undo the inversion

11 MATDIM auxiliary matrix P 40 "Q.#,Q"

12 "Q" 41 MINV invert auxiliary

13 MATDIM auxiliary matrix Q 42 MAT+ sum it to partial result

14 MIDN 43 "Q,X"

15 LBL 00 44 2

16 "Q,#" 45 MAT/ divide by scalar 2
17 MINV 46 LBL 02

18 MAT= auxiliary matrix # 47 "P,"

19 CLA 48 ARCL 01

20 ARCL 01 49 MAT=

21 "|-,#,P" 50 FC? 00 were norms equal?

22 MAT+ 51 GTO 00 no, next iteration

23 "P,X" 52 PURFL purge P
24 2 53 "Q"

25 MAT/ 54 PURFL purge Q

26 FNRM Frobenius norm 55 "#"

27 VIEW X show progress 56 PURFL purge #

28 X<> 00 swao with old norm 57 MNAME? matrix name to Alpha

29 RCL 00 recall new one again 58 END done

As usual, this routine will result in “ALPHA DATA” if the matrix is in LU decomposed form.

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 64 of 148

Appendix.- Square root of a 2x2 Matrix. { MSQ2 }

A square root of a 2x2 matrix M is another 2x2 matrix R such that M = R^2, where R^2 stands for
the matrix product of R with itself. In many cases, such a matrix R can be obtained by an explicit
formula. Let

where A, B, C, and D may be real or complex numbers. Furthermore, let τ = A + D be the trace of M,
and δ = (AD – BC) be its determinant. Let s be such that s^2 = δ, and t be such that t^2 = τ + 2s.
That is,

Then, if t ≠ 0, a square root of M is:

There it is, directly without doing any iterations or finding inverses. Your assignment now is to write a
short program to calculate the square root of a 2x2 matrix applying the formula above.- Go ahead and
try your hand at it … or cheat and look below.-

1 LBL "SQRT2" MNAME in Alpha 15 ARCL T recall MNAME

2 "|-,#" Prepare Alpha string 16 "|-," prepare string

3 MAT= create scratch 17 ARCL T "M,#,M,#"

4 ASWAP bring to hot spot 18 ST+ X 2s

5 MDET determinant 19 MTRACE tr

6 ABS asolute value 20 + tr + 2s

7 SQRT s 21 SQRT t
8 MIDN 22 MAT+ [A] = [A] + s[I]

9 R^ get s to X-reg 23 ",X,"

10 ASWAP "M,#" 24 MAT/ [A] = [A] / t

11 ASTO T save MNAME in T 25 "#"

12 "X,," 26 PURFL get rid of scratch

13 MAT* # = s # 27 MNAME? MNAME to Alpha
14 CLA 28 END done

Note,- Not as trivial as you may think because the LU decomposition performing the determinant will
conflict with other functions needed. Therefore, one scratch matrix should be used here as well.

Example: calculate one square root of the matrix given below and compare its square power to it.

or numerically: sqr(A) = [[2.944271912 -0.472135955]
 [[1.416407865 1.291796068]]

2

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 65 of 148

Matrix Integer Powers and Roots. { M^2 , MPWR , M^1/X }

This application will be dealt with using a relatively brute force approach, in that the powers will be
computed by successive application of the matrix multiplication; therefore the restriction to integer
powers.

 MPWR calculates the general case n, whilst M^2 is used to square a matrix (i.e. n=2). The first

requires the matrix name in Alpha and the exponent in the X-register, whereas for the second only the
matrix name in Alpha is needed.

The exponent may also be a negative integer. For that case the inverse matrix is calculated first, and
the positive integer power is used for it. Lastly, for n=0 the result is the identity matrix of course.

A feeble attempt is also made for the integer roots calculation: the sub-function M^1/X will attempt

to calculate the x-th. root of a matrix using the general expression:

[A]^1/x = exp[1/x . Ln(A], which is only valid when abs(||A-I||) < 1

Despite the inherent limitations of these programs they are interesting examples of extension of the
“native” matrix function set, and therefore their inclusion in the SandMatrix.

Example1. Calculate the 7-th. power of the matrix below:

 [[1 4 9]
 A = [3 5 7]

 [2 1 8]]

Type XEQ “MPWR”, and the result is:

[[7851276 8652584 31076204]
 A7 = [8911228 9823060 35267932]

 [5829472 6422156 23076808]]

Example 2. Calculate the 5th. root of matrix A below, then compare its 5th power to the original
matrix.

 [[1.2 0.1 0.3]
 A = [0.1 0.8 0.1]
 [0.1 0.2 0.9]]

The results are as follows:

 [[1,034632528 0,015156701 0,057916477]
 A1/5 = [0,019601835 0,953558110 0,020490861]
 [0,017823781 0,045426856 0,974937998]]

 [[1,199999994 0,100000000 0,300000000]
 [A1/5]5 = [0,100000000 0,800000000 0,100000000]
 [0,100000000 0,200000000 0,900000000]]

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 66 of 148

Program listing for MPWR , M^2 and M^1/X .

1 LBL "MPWR" MNAME in Alpha 1 LBL "M^2" MNAME in Alpha

2 SQR? square? 2 SQR? square?

3 LU? yes but LU? 3 LU? yes but LU?

4 -ADV MATRX not square, show error 4 -ADV MATRX not square, show error

5 -CCD MATRX no, show "RUNNING…" 5 -CCD MATRX no, show 'Running…"
6 X<>Y power index to X-reg 6 ASTO L

7 INT make integer 7 DIM? dimension to X-reg

8 X#0? is it zero? 8 "|-,"

9 GTO 01 no, skip over 9 ARCL L

10 MIDN yes, make identity 10 "|-,P" "M,M,P"

11 RTN done. 11 ASWAP "M,P,M""

12 LBL 01 12 ASWAP "P,M,M"

13 X<0? is it negative? 13 MATDIM auxiliary P

14 MINV yes, invert matrix 14 ASWAP "M,M,P"

15 ABS 15 M*M matrix product

16 E 16 CLAC "M,M,"

17 - n-1 17 CLAC "M,"
18 X=0? was n=1? 18 "|-P" "M,P"

19 RTN yes, we're done 19 ASWAP "P,M"
20 STO 00 store in R00 20 MAT= result to M

21 ASTO 01 store Mname in R01 21 PURFL purge P

22 "|-,#" 22 MNAME? MNAME to Alpha

23 MAT= copy to aux matrix # 23 END done

24 DIM? get dimansion

25 "P"

26 MATDIM auxiliary matrix P

27 LBL 00 prepare alpha string 1 LBL "M^1/X" MNAME in Alpha
28 "#," "#," 2 1/X

29 ARCL 01 "#,MNAME" 3 STO 05 store in R05

30 "|-,P" "#,MNAME,P" 4 MLN matrix logarithm

31 M*M matrix product 5 RCL 05
32 VIEW 00 show current index 6 "|-,X" prepare Alpha string

33 "P,#" 7 ASWAP swap string

34 CLST 8 MAT* scalar multiplication

35 MMOVE copy result to # 9 MNAME? recall MNAME

36 DSE 00 decrement index 10 MEXP exponential

37 GTO 00 loop back if not ready 11 END done

38 "#," "#,"
39 ARCL 01 "#,MNAME"

40 MAT= copy result to #

41 PURFL purge #
42 "P"

43 PURFL purge P

44 MNAME? recal MNAME to Alpha

45 END done.

Remarks:- Both MPWR and M^2 need one auxiliary matrix (P) to temporarily place the results of the
matrix product – Additionally; MPWR needs a second auxiliary matrix (#) as well.

An alternative listing for M^1/X that includes a convergency check is shown in next page. Note how
the calculations to check for the condition are a taxing step, in that it requires a scratch matrix to
calculate its norm. On the positive side though, it’ll spare us the wait for a non-convergent process
that would take much longer until it’s apparent so. So after some consideration the longer version is
now in the module.

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 67 of 148

1 LBL "M^1/X" MNAME in Alpha 19 E

2 1/X 1/n 20 X>Y? meets condition?

3 STO 05 save it in R05 21 GTO 00 yes, go on

4 SQR? square? 22 "#" no

5 LU? yes but LU? 23 PURFL get rid of scratch

6 -ADV MATRX not square, show error 24 "DIVRGNT"

7 -CCD MATRX show "RUNNING…" 25 PROMPT show error message

8 ASTO 01 save MNAME in R01 26 LBL 00

9 DIM? dimansion to X-reg 27 CLA

10 "#" scratch matrix 28 ARCL 01 MNAME to Alpha

11 MATDIM 29 MLN matrix logarithm

12 MIDN make it Identity 30 RCL 05 1/n

13 CLA 31 "|-,X" prepare string

14 ARCL 01 MNAME to Alpha 32 ASWAP

15 "|-,#,#" prepare string 33 MAT* element multiplication

16 MAT- intermediate result 34 MNAME? MNAME to Alpha

17 ASWAP 35 MEXP exponential matrix

18 FRNM get its norm 36 END done

The scratch matrix is removed in case there is divergence, or reused to calculate the logarithm if not –
thus at least it’s not all a waste of time. If there is no convergence (and you have nothing else to do)
you may still go ahead and hit R/S after the error message to see how the precision factor keeps
increasing until the “OUT OF RANGE” condition.

A general-purpose algorithm for the p-th. root { M^1/N }

The principal p-th root of a non-singular matrix A (det A # 0) may be computed by the algorithm:

 M0 = A ; Mk+1 = Mk .{ (2.I + (p-2) Mk) (I + (p-1) Mk)^(-1) }^p

 X0 = I ; Xk+1 = Xk (2.I + (p-2) Mk)^(-1) . (I + (p-1) Mk)

where I is the Identity matrix

 Mk tends to I as k tends to infinity
 Xk tends to A^1/p as k tends to infinity

The convergence is also quadratic if A has no negative real eigenvalue.

Implementing this algorithm requires *six* scratch matrices, mostly due to the fact that the matrix
product M*M requires the result matrix to be different from both factors. The total byte count is low
but the memory requirement is a hefty toll because of this.

[Z] = I + (p-1).Mk, and: [Y] = 2.I + (p-2).Mk

and using these the algorithm becomes:

Mk+1 = Mk. { [Y] . ([Z]^(-1) }^p
Xk+1 = Xk . Y^(-1) . [Z]

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 68 of 148

The listing below shows the program included in the module. Note that in addition to those six scratch
matrices, the function MPWR uses another two, which brings the total count to eight scratch matrices.
This makes this approach only valid for small order matrices, as the total memory requirement will be 8
times the size of the original matrix.

If the original matrix is in the data registers area, then the maximum order is 8x8 with the 8 auxiliary
matrices stored in the X-Mem section. - Admittedly a little crazy, but it’s better than nothing.

Note: The character “#” represents the standard HP-41 symbol denoting “not equal to”, ASCII value
29. It’s not the same one used in MPWR, which is the ASCII value 35, the “hash” or pound sign.

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 69 of 148

Lie Product of two Matrices. { MLIE }

The lie product is defined as the resulting matrix obtained from the difference between the right and
left multiplications of the matrices; or in equation form:

Lie(A,B) = - Lie(B,A) = AB – BA

Example.- Calculate the Lie product for matrices:

[[1 2 4] [[1 4 1]
 A = [3 5 7] and: B= [5 9 2]
 [7 9 8]] [6 5 3]

The results are:

ALPHA, “A,B,C”, ALPHA [[15 11 -23]

XEQ “MLIE” -> Lie(A,B) = [24 19 -65]
 [58 85 -34]]

ALPHA. “B,A,C”, ALPHA [[-15 -11 23]

XEQ “MLIE” -> Lie (B,A) = [-24 -19 65]
 [-58 -85 34]]

The program listing is shown on the left. Note the usage of the scratch matrix “#” to temporarily hold
the result of the two matrix products (always the same limitation imposed by M*M), and the extensive
usage of the alpha string management functions, like ASWAP – necessary to deal with the three
matrix names in the string.

In fact SWAP exchanges the contents of the Alpha register around the first comma character
encountered; which makes it so interesting in this case.

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 70 of 148

Matrix Trace and remaining functions. { MTRACE }

In linear algebra, the trace of an n-by-n square matrix A is defined to be the sum of the elements on
the main diagonal (the diagonal from the upper left to the lower right) of A, i.e.,

where aii represents the entry on the i-th row and i-th column of A. The trace of a matrix is the sum of
the (complex) eigenvalues, and it is invariant with respect to a change of basis. Note that the trace is
only defined for a square matrix (i.e., n ×n).

Some of the properties of the trace are quite interesting and useful for other calculations, like
eigenvalues and even determinants. In particular one could use the relationship that defines the trace
of a product of matrices:

If we use an identity matrix in place of Y on the equation above it’s clear that: tr(A) = SUM {[A] o [i]},
where the “o” symbol denotes the Hadamard or entry-wise product - as obtained by MAT*.

The program in the SandMath however uses a direct approach, summing the elements in the diagonal
– it’s faster and doesn’t require any auxiliary matrix to hold intermediate results.

Eigenvalues relationships.

The trace of a matrix is intricately related to its eigenvalues. In contrast with the determinant (which is
the product of its eigenvalues); if A is a square n-by-n matrix with real or complex entries and if
λ1,...,λn are the eigenvalues of A (listed according to their algebraic multiplicities), then

Another powerful property relates the trace to the determinant of the exponential of a matrix, as
follows: (Jacobi’s formula):

 MTRACE uses a single-element approach, basically adding all the elements in the principal diagonal.

For small to mid-size matrices this is faster than a block-approach, redimensioning and transposing the
matrix such as the one sketched below (courtesy of Thomas Klemm):

Note that as of revision “Y” MTRACE is an MCODE function. Here’s the sweet and short equivalent
FOCAL program listing, compared side-by-side to a block-approach alternative implementation – which
also requires a scratch matrix if one wishes to keep the original matrix unchanged, as well as some
additional steps for Alpha housekeeping.

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 71 of 148

Note how in the alternative approach function SUM is used, which removes the need to calculate the
last step of the sketch. Regardless, it’s bigger and takes longer execution time, even without the test
for square matrix condition.

1 LBL "MTRACE" MNAME in Alpha 1 LBL "TRACE2"

2 SQR? square? 2 "|-,#" prepare Alpha string

3 LU? yes but LU? 3 MAT= make scratch
4 -ADV MATRX not square, show error 4 ASWAP place in hot spot

5 0 initial sum value 5 DIM? gets its dimensions

6 MSIJA sets pointer to 1:1 6 E

7 LBL 05 7 I<>J 0,001

8 MRR+ recall element 8 +

9 + add to partial result 9 MATDIM add one more column

10 FC? 09 end of row 10 TRNPS transpose it

11 I+ no, next row 11 INT

12 FC? 10 end of matrix? 12 MATDIM make it a column matrix

13 GTO 05 no, next element 13 SUM summ all elements

14 END done 14 PURFL purge scratch

15 ASWAP bring focus to original

16 CLAC alpha housekeeping

17 ABSP to erase all tracks

18 END

Row Division by Diagonal element. (Diagonal Unitary) { R/aRR }

This function is used to modify the values of all elements, dividing each row by its diagonal element;

that is: aij = aij / aii, j=1,2,... n

In effect the result matrix has all its diagonal elements equal to 1 (i.e. diagonal is unitary). This type of
calculation is useful for row simplification steps in matrix reductions; more like a vestigial function from
when the major matrix operations were not available (i.e. the CCD days, pre-Advantage Pac).

1 LBL "R/aRR" MNAME in Alpha 19 RDN discard product

2 SQR? square? 20 FC? 09 end of row?

3 LU? yes but LU? 21 GTO 00 no, get next element
4 -ADV MATRX not square, show error 22 FS? 10 end of matrix?

5 0 23 GTO 02 yes, exit

6 MSIJA set pointer to 1:1 24 MRIJ recall pointer

7 LBL 01 25 ENTER^

8 MR recall diag element 26 INT

9 1/X inverse value 27 ENTER^

10 X<>Y pointer to X 28 I<>J does E3/ if integer

11 MSIJ set pointer 29 + j,00j

12 X<>Y value back to X-reg 30 MSIJ set pointer

13 ENTER^ 31 X<>Y

14 ENTER^ fill stack w/ value 32 GTO 01 next row

15 LBL 00 33 LBL 02
16 MR recall element 34 DIM? get dimansion

17 * multiply 35 END end

18 MSR+ store and increase column

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 72 of 148

Transposing elements with { MXIJ }

A new function is included to facilitate the elmenet transposition. MXIJ exchanges the row and column
of the selected element, returning the new selected element pointer to the X-Register. The matrix can
be non-square, but an error message will show if the “transposed” pointer does not exist. Note that
there’s no need to recall the current pointer first.

The function does the equivalent to the following FOCL snippet: { MRIJ, I<>J, MSIJ }, which is simple
enough but having it as a single function allows simplified FOCAL programs. See for example the
routines below to make a matrix symmetric (using the upper triangular part), and to swap the upper
and lower triangular parts of a square matrix.

MXIJ is now used in a re-written version of IJJI, featuring shorter code and faster execution:

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 73 of 148

Appendix: Moore-Penrose Matrix Pseudo-Inverse { MPINV }

In mathematics, and in particular linear algebra, a pseudoinverse A+ of a matrix A is a generalization of
the inverse matrix. The most widely known type of matrix pseudoinverse is the Moore–Penrose
pseudoinverse, which was independently described by E. H. Moore in 1920, Arne Bjerhammar in 1951
and Roger Penrose in 1955.

For A in {M}(m,n;K) , a pseudoinverse of A is defined as a matrix A+ in {M}(n,m;K) satisfying all of the
following four criteria:

 A A+A = A (AA+ need not be the general identity matrix,);

 A+A A+ = A+ (A+ is a weak inverse for the multiplicative semigroup);

 (AA+)* = AA+ (AA+ is Hermitian); and

 (A+A)* = A+A (A+A is also Hermitian).

The pseudoinverse exists and is unique: for any matrix A, there is precisely one matrix A+ that satisfies
the four properties of the definition. A matrix satisfying the first condition of the definition is known as
a generalized inverse. If the matrix also satisfies the second definition, it is called a generalized
reflexive inverse. Generalized inverses always exist but are not in general unique. Uniqueness is a
consequence of the last two conditions.

The SandMatrix uses the iterative method known as Ben-Israel & Cohen, defined by the following
recurrence expression:

This recursion produces a sequence converging quadratically to the pseudoinverse of A if it is started
with an appropriate A0 satisfying [A0][A] = (A0 A)*. The choice A0 =  A* (where 0 <  < 2/^2(A),

with (A) denoting the largest singular value of A) has been argued not to be competitive to other

methods (like Greville’s), because even for moderately ill-conditioned matrices it takes a long time
before Ai enters the region of quadratic convergence. However, if started with A0 already close to the
Moore–Penrose pseudoinverse and A0 A= (A0 A)*, for example A0:= [(A*A+  I)-1] A*, convergence is

fast (quadratic).

The SandMatrix uses the trace of the matrix product A.AT instead – which has shown stable

convergence, even if finicky. Like always, the use of the 41CL in turbo mode or a good PC emulator is
most recommended.

 A0 = µ AT where AT = transposed of A, and 0 < µ <= 2 / Trace(A.AT)

Example: verify that the pseudo inverse of the 3x4 matrix:

 [[1 1 4 2] [[-21 -85 43]

A = [[0 1 2 3] , is the 4x3 matrix : A+ = (1/112). [[7 23 -9]

 [[3 2 6 7]] [[49 1 -15]
 [[-35 29 13]]

The FOCAL program is listed below for your reference – you’ll be surprised to know that after some
lengthy conversion of FOCAL code into MCODE the necessary room was freed up in the main bank of
module to include it. With just 55 program steps the code is relatively short but it requires two auxiliary
matrices for the calculations, besides the result matrix.

As always, the most limiting step is the M*M instruction that requires the result matrix to be different
from both operands. Note how all the control strings in Alpha drive the operations, and that the default
conventions are mostly followed – with a couple of exceptions, like program line #30.

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 74 of 148

The auxiliary matrices [P] and [Q] are purged upon completion, but the result matrix [M+] does not
overwrite the initial one, so both will remain in memory.

The instruction RCL- (00) is from the SandMath module, and can be replaced by the pair: { RCL 00, - }

The convergence factor (in line 37) is chosen to be 1e-7 – feel free to change it to a more stringent or
a looser one depending on the matrix. The deltas between the matrix norms of the successive
iterations will be displayed until the final one is obtained.

The Pseudo-Inverse matrix name is left in Alpha, ready for OMR, OMC, or your favorite matrix editor
program. The final matrix name is formed by adding the plus sign “+” to the original matrix name.

Warning: The program will leave the pseudo-inverse matrix in X-Memory, regardless of where the
original matrix is stored. The reason being the naming convention, which makes the pseude-inverse
name not valid for the Standard or CL-registers areas.

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 75 of 148

Sum of Diagonal / Crossed Elements products. { MPDS , IJJI }

Other two functions directly related to the eigenvalues are MDPS and IJJI . They compute sums of

element pair multiplication, either for those in the diagonal (aii * akk); or for “crossed” (i.e. opposite)
ones, (aij * aji), with i#j – excluding the diagonal.

Armed with these functions the characteristic polynomial of a 3 x 3 matrix can be expressed very
succinctly – as we’ll see in Chapter 4 of the manual.

Example. Calculate the trace and the sums of diagonal and crossed elements for the matrix below:

Tr(A) = -2 + 1 – 1 = -2

MDPS = (-2*1) – (1*1) + (2*1) = -1

aij aji = -2 * 1 – 4 * 2 + 3* 0 = -10

Program listings – easy does it, element-wise.

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 76 of 148

Matrix Polynomial { MPOL }

MPOL was a last-minute addition to the ROM, which somehow combines both matrix and polynomial
algebra. Use it to calculate a matrix polynomial P(A) - not to be confused with a polynomial matrix -
based on an existing square matrix [A] and a polynomial P(x).

P(A) is the result matrix calculated replacing the real variable x with [A], using the polynomial
coefficients to multiply the different matrix powers as per the order of the polynomial terms. As it’s the
case all throughout polynomials, Honer’s method proves very useful to reduce all the matrix powers to
matrix multiplications – with considerable execution time reduction and simplification of the code.

Example.- Calculate P{A) for the following matrix and polynomial:

 P(x) = 2 x4 - x3 + 3 x2 - 4 x + 5 ; and:

 [[4 2 3]
 A = [3 2 5]
 [2 1 4]]

This is also a good example to become familiar with the editor and input routines available in the
SandMatrix. First we’ll create and populate the matrix using the Matrix Editor input functionality –
very recommended for integer elements, as follows:

ALPHA, “A”, ALPHA, 3,003, XEQ “MATDIM” creates the matrix in X-Mem, then:

XEQ “PMTM” -> at the prompt “R1: _” we type: 4, ENTER^, 2, ENTER^, 3, R/S

-> at the prompt “R2: _” we type: 3, ENTER^, 2, ENTER^, 5, R/S
-> at the prompt “R3: _” we type: 2, ENTER^, 1, ENTER^, 4, R/S

The Matrix has been completely input using “batches” (or lists) including all elements of each row
simultaneously – this is an advantageous way to handle them that results in faster and less error-prone
method, not based on a single-element prompt.

Note how pressing ENTER^ during this process results into a blank space in the display separating each
of the elements, and that the sequence is terminated pressing R/S. Upon completion the matrix
elements are stored in the Matrix file in extended memory.

The analogous function for the polynomial is PMTP, which requires the control word in x – a number of
the form bbb.eee, denoting the beginning and ending registers that contain the polynomial
coefficients. In this case:

2.006, XEQ “PMTP” -> at the prompt “R2: _” we type:

 2, ENTER^, CHS, 1, ENTER^, 3, ENTER^, CHS, 4, ENTER^, 5, R/S

Note how in this case the function knows there’s no more “rows” to add, and also that negative values
are easily input using the CHS key. Upon completion the coefficients are stored in registers R01 to R05.

The last step is executing MPOL itself. To do that we place the matrix name in Alpha and the
polynomial control word in X, then call MPOL. The resulting P(A) is stored in a new matrix named “P” -
also located in an XM file - therefore [A] is not overwritten. Note however that this will overwrite [P] if
it already exists. In this case we have:

 [[3548 1887 4705]
 P (A) = [3727 1987 4962]
 [2539 1351 3385]]

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 77 of 148

The result matrix name is placed in ALPHA when the execution ends, so you can directly use any matrix
editor routine (like OMR) to review its elements. Note how OMR will display integer values without any
zeros after the decimal point, regardless of the current FIX settings. Set flag 21 to stop the display of
each individual element.

In addition to the result matrix P(A), MPOL also requires an auxiliary matrix for intermediate
calculations. The matrix file “#” is temporarily created during the execution for this purpose, and
deleted upon completion of the program. While this is transparent to the user you may want to
remember this fact due to the extended memory needed to allow for it – with a total of 3 x (n^2 + 2)
registers used (including the file headers).

The last point to remember about MPOL is that it uses data registers R00 and R01 – which therefore
should not be used to store the polynomial coefficients.

• R00 has the polynomial control word and is used as counter for the loop execution
• R01 has the matrix name. It’s left unchanged.

Warning: if you use data registers to store the matrix (with “Rxxx”” name in ALPHA) make sure that the
register range does not overlap with the polynomial coefficients.

Below you can see the program listing for MPOL – not a long program, albeit not as short as a simple
polynomial evaluation for real variables. Note the use of function I#J? to check for square matrix, as
well as the “shortcut” -ADV MTRX that puts the error message “NOT SQUARE” in the display and
terminates the execution.

01 LBL "MPOL" Mname in Alpha 23 "P,"

02 SQR? is it square? 24 ARCL 01

03 LU? LU form? 25 "|-,#" "P,A,#"

04 -ADV MTRX no, prompt error 26 M*M

05 -CCD MTRX shows 'RUNNING…" 27 "#,P"

06 E-3 cnt'l word in X 28 CLST

07 - 29 MMOVE

08 STO 00 30 ISG 00 next index

09 ASTO 01 saves Mname in R01 31 GTO 00 loop back

10 DIM? dimensions 32 XEQ 02

11 "P" 33 PURFL purge auxiliary mat

12 MATDIM creates scratch 34 MNAME? bring result name

13 "#" 35 RTN

14 MATDIM creates scratch 36 LBL 02

15 "X," 37 "#"

16 ARCL 01 38 MIDN

17 ",P" "X,A,P" 39 "X,#,#"

18 RCL IND 00 40 RCL IND 00 next coeff

19 MAT* initial value 41 MAT*

20 ISG 00 next index 42 "#,P,P"
21 LBL 00 43 MAT+ add it to partial result

22 XEQ 02 44 END

The auxiliary matrix “#” is needed because unfortunately M*M does not allow the result product
matrix to be the same as any of the multiplication factors. Not ideal, but at least we double-use it for
other intermediate calculations as well (identity matrix products), killing two birds with the same stone.

This concludes the core matrix sections; it’s time now to embark into the fascinating journey of
characteristic polynomials and eigenvalues, as a prelude to the advanced polynomial chapter.

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 78 of 148

4. Polynomials and Linear Algebra



Linear algebra is the branch of mathematics concerning vector spaces, as well as linear mappings
between such spaces. Such an investigation is initially motivated by a system of linear equations in
several unknowns. Such equations are naturally represented using the formalism of matrices and
vectors.

4.1. Eigenvectors and Eigenvaules.

An eigenvector of a square matrix A is a non-zero vector v that, when the matrix is multiplied by v,

yields a constant multiple of v, the multiplier being commonly denoted by . That is:

The number  is called the eigenvalue of A corresponding to v.

In analytic geometry, for example, a three-element vector may
be seen as an arrow in three-dimensional space starting at the
origin. In that case, an eigenvector of a 3×3 matrix v is an
arrow whose direction is either preserved or exactly reversed
after multiplication by A.

The corresponding eigenvalue determines how the length of the
arrow is changed by the operation, and whether its direction is
reversed or not, determined by whether the eigenvalue is
negative or positive.

A vector with three elements may represent a point in three-dimensional space, relative to some
Cartesian coordinate system. It helps to think of such a vector as the tip of an arrow whose tail is at
the origin of the coordinate system. In this case, the condition "u is parallel to v" means that the two
arrows lie on the same straight line, and may differ only in length and direction along that line.

If we multiply any square matrix A with n rows and n columns by such a vector v, the result will be
another vector w = A v , also with n rows and one column. That is,

 Function Description Input / Output

1 CHRPOL Characteristic Polynomial Under prgm control

2 EIGEN Eigen Values by SOLVE Under prgm control

3 EV2X2 Eigen values 2x2 Subroutine mode

4 EV3X3 Eigen values 3x3 Prompts Matrix Elements

5 JACOBI Symmetrical Eigenvalues Under prgm control

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 79 of 148

where, for each index i,

In general, if v is not all zeros, the vectors v and A v will not be parallel. When they are parallel (that is,
when there is some real number  such that A v =  v) we say that v is an eigenvector of A. In that

case, the scale factor  is said to be the eigenvalue corresponding to that eigenvector.

In particular, multiplication by a 3×3 matrix [A] may change both the direction and the magnitude of
an arrow v in three-dimensional space. However, if v is an eigenvector of A with eigenvalue , the

operation may only change its length, and either keep its direction or flip it (make the arrow point in
the exact opposite direction). Specifically, the length of the arrow will increase if |  | > 1, remain the

same if |  | = 1, and decrease it if |  |< 1. Moreover, the direction will be precisely the same if  > 0,

and flipped if  < 0. If  = 0, then the length of the arrow becomes zero.

4.1.1. Eigenvalues and eigenvectors of matrices: Characteristic Polynomial.

The eigenvalue equation for a matrix A is:

which is equivalent to

where I is the n x n identity matrix. It is a fundamental result of linear algebra that an equation M v =
0 has a non-zero solution v if, and only if, the determinant det(M) of the matrix M is zero. It follows

that the eigenvalues of A are precisely the real numbers  that satisfy the equation

The left-hand side of this equation can be seen to be a polynomial function of the variable . The

degree of this polynomial is n, the order of the matrix. Its coefficients depend on the entries of A,

except that its term of degree n is always (-1)n n. This polynomial is called the characteristic

polynomial of A; and the above equation is called the characteristic equation (or, less often, the secular
equation) of A.

4.1.2. Additional properties of eigenvalues

The trace of A, tr{A}, defined as the sum of its diagonal elements, is also the sum of all eigenvalues,
and the determinant of A, det{A} is the product of all its eigenvalues:

 ;
These properties are all that’s needed to calculate the egenvalues of a 2x2 matrix, as the solutions of

the quadratic eqution: ^2 – .tr(A) + det(A) = 0. See the routine below for details:

01 LBL “EV2X2” ; Expects the Matrix name in ALPHA
02 E ; second degree coefficient
03 MTRACE ; matrix trace
04 CHS ; first degree coefficient
05 MDET ; this will leave the matrix in its LU form
06 QROOT ; quadratic equation roos (in the SandMath)
07 END ; done – it doesn’t get any simpler than that!

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 80 of 148

4.1.3 SOLVE-based Implementation. { EIGEN }

In addition to EV2X2 there are other three programs in the SandMatrix that calculate eigenvalues. The

first one is aptly named EIGEN , and is a brute-force approach using the direct definition of the

eigenvalue given above. What makes it interesting is the direct application of SOLVE (of FROOT in the
SandMath) plus the combination of matrix functions to calculate the secular equation to solve for.

 EIGEN can be used in manual mode (with guided prompts and data entry – or in a subroutine. In

manual mode it creates a matrix named “EV” in X-mem. and will prompt for the elements data. In
subroutine mode it’ll take the matrix name from Alpha.

The function is “aware” of whether it’s being run in RUN or PROGRAM mode, so that the data entry is
omitted during a program execution. There’s no need to remember to set user flags or clear it for
manual mode, saving one FAT entry for a subroutine as well.

The program checks that the matrix is square and not in LU-decomposed form – presenting error and
warning messages respectively. For LU-decomposed matrices you can double-invert them “on the spot”
(assuming they’re invertible) and keep going just pressing R/S.

The selection of the interval [a,b] plays an important role in finding the solution – obviously the closer
to the actual value the faster it’ll find it. Remember also that the accuracy is determined by the display
settings on the calculator, so FIX 9 will provide for both the most accurate and longest execution time.

Example. Find one eigenvalue for the matrix A below using the subroutine mode.

Keystrokes Display Result

ALPHA, “EV3”, ALPHA X-reg contents MNAME is in Alpha
3.003, XEQ”MATDIM”  Creates matrix in X-Mem
XEQ “PMTM” “” Prompts for the first row
3, ENTER^, 1, ENTER^, 5, R/S “” … second row
3, ENTER^, 3, ENTER^, 1, R/S “” … third row
4, ENTER^, 6, ENTER^, 4, R/S 

XEQ “EIGEN” “ press R/S to use the Matrix in ALPHA
R/S “” Prompts for lower bound
5, R/S “” Higher bound
15, R/S flying goose… FROOT is working on it
 “” ev found (in FIX 5).

Note that if you entered a value for the “ORDER?” question the program proceeds to create a new
matrix and prompt for all its elements. If you want to use the matrix in ALPHA just press “R/S”

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 81 of 148

The original matrix is not modified in any way but note that an auxiliary matrix is created for the
calculations. This scratch matrix “#” is not purged automatically from X-Mem, you’ll have to do that
after you’re done calculating as many eigenvalues as you need.

Below is the program listing for EIGEN . Note how the equation to solve already requires an auxiliary

FAT entry, #EV – since a global label is always needed by FROOT. (You can refer to the SandMath

manual if you need to refresh your understanding of FROOT and FINTG)

1 LBL "EIGEN" 23 "HI V'=?"

2 FS? 06 subroutine mode? 24 PROMPT prompt upper bound

3 GTO 01 yes, skip data entry 25 -CCD MATRX show "RUNNING…"

4 -SNDMATRX 4 prompts "ORDER=?" 26 "#EV"

5 STOP 27 FROOT Solve for Ev (!)

6 E 28 TONE 4 found!

7 E3/E+ 1,001 29 "EV="

8 * n,00n 30 ARCL X

9 "EV" hard-coded name 31 PROMPT display result

10 MATDIM create square matrix 32 GTO 00 next guess

11 IMR input elements 33 LBL "#EV" subroutine

12 LBL 01 34 "#"

13 ASTO 00 save MNAME in R00 35 MIDN make matrix identity

14 SQR? not square? 36 "X"

15 LU? LU decomposed? 37 MAT* multiply it by scalar guess

16 -ADV MATRX show error 38 "#,"

17 DIM? dimensions 39 ARCL 00 prepare Aplha string

18 "#" scratch matrix 40 "|-,#"

19 MATDIM as identity one 41 MAT- calculate the eigen matrix

20 LBL 00 42 MDET get its determinant

21 "LOW V'=?" 43 END return

22 PROMPT prompt lower bound

 EIGEN works for N-dimensional orders. In that regard its execution time (provided that a decent

initial guess is given) compares favorably to that of CHRPOL , the other program that calculates

eigenvalues. The difference of course is that CHRPOL obtains all the eigen values simultaneously,

whilst EIGEN does it one at a time.

When compared to other approaches, the program listed above is almost minimalistic – that’s its real
benefit and the reason that justifies its inclusion in the SandMatrix module. However relying on FROOT
is clearly not a robust approach to calculate eigenvalues - The calculation of the characteristic
polynomial using dedicated methods is a necessity.

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 82 of 148

4.1.4. 3-Dimensional case. { EV3X3 }

Let’s start with the particular case n = 3. In this scenario there are simple formulas to calculate the
characteristic polynomial, which make the calculations simpler and faster. The formulas are derived
from the properties of the characteristic polynomial. Let’s enumerate the most important ones.

The polynomial pA(x) is monic (its leading coefficient is 1) and its degree is n. The most important fact
about the characteristic polynomial was already mentioned in the motivational paragraph: the
eigenvalues of A are precisely the roots of pA(x). The coefficients of the characteristic polynomial are
all polynomial expressions in the entries of the matrix. In particular its constant coefficient pA(0) is
det(−A) = (−1)^n det(A), and the coefficient of x^(n−1) is tr(−A) = −tr(A), where tr(A) is the matrix
trace of A. For a 2×2 matrix A, the characteristic polynomial is therefore given by:

For a 3×3 matrix, the formula specifies the characteristic polynomial to be

where c2 is the sum of the principal minors of the matrix =

Given the above definitions it is clear now why functions MDPS and IJJI will be helpful to obtain

the coefficients of the characteristic polynomial for n=3. In effect, when using those functions the
formulas change as follows: c2 = (MDPS - IJJI)

For the manual mode (not as subroutine), two choices are offered: 1) to use the matrix in ALPHA or
create a new one, and 2) to see the coefficients of the polynomial before calculating its roots (i.e. the
eigenvalues). Note that these will only take [Y] / [N] as valid inputs.

 ,

Example 1. Calculate the eigenvalues for A, with aij = ij

Solution: pA(x) = 3.25E-8 x3 - 60 x2 -66 x + 1 =0

x1 = 66,897
x2 = -0,897
x3 = 2,24000E-9

Example 2. Calculate the eigenvalues for A, with aij = 1,2,3…9

Solution: pA(x) = 2.7426E-9 x3 -18 x2 -15 x = 0

x1= 16,1168
x2 = -1,1168
x3 = 2,89100E-9

It is therefore a relatively easy exercise to write a program to deal with this case, as shown in the
program listing in next page.

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 83 of 148

Program remarks.-

• Like EIGEN before, this function behaves differently in RUN and Program modes – skipping

the data entry part during a program execution. Note that in manual mode EV3X3 will create

a matrix named “EV” if you answer “Y” to the “NEW? Y/N” question, but that in program mode

it will work with any 3x3 matrix which name is in Alpha. This is compatible with EIGEN in its

subroutine mode as well.

• It’s also important to remark that the used matrix cannot be in LU form – otherwhise the
MDET function will return an error.

• The three roots are obtained using the SandMath function CROOT, an all-MCODE
implementation of the Cardano-Vieta formulas. Function QROUT is also used to display them.

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 84 of 148

4.1.5 General case: N-dimensional general matrix. { CHRPOL }

The original CHRPOL - as it appeared in previous versions of the SandMatrix - was written by

Eugenio Úbeda (as published in the UPLE), and later on adapted to the SandMatrix. Note however that
it didn’t make use of any advanced Matrix function. It was a user-friendly program; providing step-by-
step guidance for the data entry and didn’t require any set-up preparation (like creating matrices) prior
to the execution.

In this version CHRPOL has been re-written from the ground up, really taking advantage of the

powerful matrix function set. It is a much-improved solution, about twice as fast and with half the
(comparable) code - It however now requires you to first create the matrix and input its elements.

Algorithmically it still uses the same modification of the Leverrier-Faddeev method to determine the
coefficients of the characteristic equation of the n x n matrix; which roots are the eigenvalues of the
matrix. It also employs the matrix trace in the process. The coefficients are calculated using the
iterations:

b1 = -tr (B1) , with B1 = the original matrix, and

bk = - tr (Bk) / k, with Bk = A(Bk-1 + bk-1 I), k=2,… n

The program works for orders n between 3 and 14. The case n=2 has a trivial solution [given by b2=1,
b1= tr(A), and b0 = -det(A)] ; therefore doesn’t need to be included.

Example. Obtain the characteristic polynomial for the matrix A given below:

 [[1 -0.69 0.28]
 A = [-0.69 1 0.18]
 [0.28 0.18 1]]

Keystrokes Display Result

ALPHA , “AA”, ALPHA current X-reg Matrix name in Alpha

3.003 , XEQ “MATDIM”  Creates matrix in X-Mem
XEQ “IMR” “” Prompts for data, also
1, R/S “” showing current values
0.69, CHS, R/S “”
0.28, R/S “”
0.69, CHS, R/S “”
1, R/S “”
0.18, R/S “”
0.28, R/S “”
0.18, R/S “” Last element
1, R/S 
XEQ “CHRPOL” ““ scrolls in the display, then

 “(” Reminder of convention

(*) set F21 “” (round) Coefficient of x^3
if you want AVIEW “” (round) Coefficient of x^2
to stop each time “” Coefficient of x
 “” First coef (independent term).
 “´ Scrolls in the display, then
 “X” First eigenvalue
R/S “” Second eigenvalue
 “” Third and last.

See the program code below in its entire splendor –

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 85 of 148

Remarks: Two auxiliary matrices are used, but the original matrix is left unaltered. The first part of
the program (up to line 60) calculates the coefficients of the characteristic polynomial – and displays
them for informational purposes. It then transfers the execution to the root finder routines. Note that

for cases n=3 and n=4 we take advantage of the dedicated functions CROOT (in the SandMath) and

QUART , which results in a much faster execution than the general case using RTSN .

1 LBL "CHRPOL" MNAME in Alpha 55 STO 01 it's monic (!)

2 SQR? is it square? 55 E3/E+ 1.001

3 LU? yes, but LU form? 56 + 1.00(n+1) - cnt'l word

4 -ADV MATRX not square, show error 57 "#"

5 ASTO 01 MNAME 58 PURFL

6 -CCD MATRIX shows 'RUNNING…" 59 "P"

7 "|-,P" 60 PURFL

8 MAT= B = A 61 PVIEW for information

9 ASWAP 62 -CCD MATRIX shows 'RUNNING…"

10 DIM? n,00n 63 PDEG new destination

11 INT n 64 STO 00 as expected by RTSN

12 STO 00 65 4

13 E 66 X>=Y? n<=4?

14 + n+1 67 GTO 04 yes, particular case

15 MDET determinant 68 CLX no, general case

16 RCL 00 69 E

17 CHSYX independent term 70 + n+1

18 STO IND Y stored in Rn+1 71 E6

19 ASWAP 72 / 0,000|00(n+1)

20 MAT= avoids LU issues 73 3 build the "from,to"

21 DIM? 74 E3/E+ 1.003

22 "#" auxiliary array 75 + 1.003|00(n+1)

23 MATDIM 76 REGMOVE as expected by RTSN

24 FRC 0,00n 77 RTSN

25 2 78 GTO 00 go to EXIT

26 + 2,00n 79 LBL 04

27 STO 00 80 X#Y? n#4?

28 CF 21 not halting VIEW 81 GTO 03

29 LBL 00 82 RCL 02 a3

30 VIEW 00 shows index 83 RCL 03 a2

31 "#" 84 RCL 04 a1

32 MIDN [#] = [I] 85 RCL 05 a0

33 "P" 86 QUART

34 MTRACE tr (B) 87 GTO 00 go to EXIT

35 RCL 00 88 LBL 03

36 INT k+1 89 RCL 01 a3

37 E 90 RCL 02 a2

38 - k 91 RCL 03 a1

39 / 92 RCL 04 a0

40 CHS 93 CROOT

41 STO IND 00 pk = -tr (B) / k 94 "X="

42 "X,#,#" 95 ARCL Z

43 MAT* [#] = pk [I] 96 PROMPT real root

44 "P,#,#" 97 FC? 43 is RAD on?

45 MAT+ [#] = [B] + p[I] 98 GTO 01 yes, complex roots

46 CLA 99 X<> Z no, real roots

47 ARCL 01 100 CLX so we clear Z

48 "|-,#,P" 101 X<> Z

49 M*M B= A (B - p I) 102 LBL 01

50 ISG 00 103 QROUT output roots

51 GTO 00 104 LBL 00

52 DIM? n,00n 105 MNAME? bring MNAME back

53 FRC 0,00n 106 END done

54 E

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 86 of 148

Particular case: Symmetric Matrices { JACOBI } - Moved to Advntg_MATH Module

For symmetric matrices the Jacobi algorithm provides a faster method. JACOBI was written by
Valentín Albillo, and published in PPCTN, V1N3 (October 1980). I’ve only slightly adapted it to the
SandMatrix, but basically remains the same as originally written. The paragraphs below are directly
taken from the above reference to explain its workings.

This program computes all eigenvalues of a real symmetric matrix up to 22 x 22. It uses the Jacobi
method, which annihilates in turn selected off-diagonal elements of the given matrix A using
elementary orthogonal transformations in an iterative fashion, until all off-diagonal elements are zero
when rounded to a given number of decimal places. Then the diagonal values are the eigenvalues of
the final matrix.

The method explained. The Jacobi method does not attempt to solve the characteristic equation for
its roots. It is based in the fact that a n x n symmetric matrix has exactly n real eigenvalues. Given A,
another matrix S can be found so that: S A ST = D is a diagonal matrix, whose elements are the
eigenvalues of A.

The Jacobi method starts from the original matrix A and keeps on annihilating selected off-diagonal
elements, performing elementary rotations. Let’s single out an off-diagonal element, say apq,, and
annihilate it using an elementary rotation. The transformation R is defined as follows:

Rpp = cos z ; Rpq = sin z ; Rqp = -sin z ; Rqq = cos z

Rii = 1 ; Rpk = Riq = Rik = 0 ; for i#p,q and k#p,q

Let’s now denote: B = RT A R, which elements are as follows:

bip = aip cos z – aiq sin z

biq = aip sin z + aiq cos z

bik = aik ; where i,k # p,q

bpp = app cos2 z + aqq sin2 z – 2 apq sin z cos z

bqq = app sin2 z + aqq cos2 z + 2 apq sinz cos z

bpq = 0, and the remaining elements are symmetric.

where: sin z = w / sqrt(2(1+sqrt(1-w^2))), and cos z = sqrt (1-sin2 z)

with: L = - apq, M = (app-aqq) / 2 , and w = L sign(M) / sqrt (M2+L2)

This is iterated using a strategy for selecting each non-diagonal element in turn, until all non-diagonal
elements are zero when rounded to a specific number of decimal places.When this is so, the diagonal
contains the eigenvalues.

Program remarks. The accuracy and running times are display settings-dependent, however the
computed eigenvalues are very often more accurate that it’d appear; for instance, using FIX 5 it’s quite
possible to have eigenvalues accurate to 8 decimal digits. The program is written to be as fast as
possible and to occupy the minumim amount of program memory; the matrix is stored taking into
account its symmetry, so that all elements are stored only once (as aji = aij). For a nxn matrix
minimum size is [½ (n^2 + n) + 7].

 [[25 -41 10 -6]
Example. Find the eigenvalues for the 4x4 matrix: A = [-41 68 -17 10]
 [10 -17 5 -3]
 [-6 10 -3 2]]

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 87 of 148

Keystrokes Display Result

XEQ “JACOBI” “” Prompts for dimension
4, R/S “” Data entry starts
25, R/S “”
41, CHS, R/S “”
10, R/S “”
6, CHS, R/S “” Note how the symmetric
68, R/S “” elements are skipped
17, CHS, R/S “”
10, R/S “”
5, R/S “”
3, CHS, R/S “” input the last element
2, R/S “” Asks for precision
5, R/S “” Scrolling on the display
 “”
R/S “” After a while ~ 2.5m in normal 41
R/S “” the four ev’s are displayed.
R/S “”

Example. Repeat the same case but using CHRPOL , to obtain the polynomial and its roots.

Keystrokes Display Result

ALPHA , “AA”, ALPHA current X-reg Matrix name in Alpha

4.004, XEQ “MATDIM”  Creates mtrix in X-Mem
XEQ “PMTM” “” prompts for row-1
25, ENTER^, CHS, 41, ENTER^,
10, ENTER, CHS, 6, R/S “” prompte for row-2
CHS, 41, ENTER^, 68, ENTER^,
CHS 17, ENTER^, 10, R/S ““ prompts for row-3
10, ENTER^, CHS, 17, ENTER^,
 5, ENTER^, CHS, 3, R/S “_“ prompts for row-4
CHS, 6, ENTER^, 10, ENTER^,
CHS, 3, ENTER^, 2, R/S
XEQ “CHRPOL“ “” Scrolling on the display
R/S “” Reminder of convention

 “” Coefficient of x^4
 “” Coefficient of x^3
 “” Coefficient of x^2
 “” Coefficient of x
 “” First coef. (independent term)
 “” Scrolling on the display
 “” Frst root
R/S “” Second root
R/S “” Third root
R/S “” Fourth and last root.

The solution is: Chr(A) = x^4 -100 x^3 + 146 x^2 – 35 x +1
with roots shown in the text above.

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 88 of 148

4.2.- Managing Polynomials.

The remaing of this chapter is about polynomials. Let’s first cover those functions used to manage the
data entry and output for them, polynomial math and some handy utilities used in the other programs.

4.2.1. Defining and Storing Polynomials.

A polynomial is an expression of the form

where a(n)#0

Or, more concisely:

Polynomials can only be stored in main memory (ie. not as X-mem files), thus the way to handle them
will be by a control word of the form bbb.eee, which denotes the beginning and end registers that
hold the polynomial coefficients, a(i)

The coefficients are stored starting with the highest order term first (ie. x^n) in register bbb, and
ending with the zero-th term last, stored in register eee. It follows that the degree of a polynomial n
verifies: n = (eee –bbb).

For instance, the control word 1,007 represents a polynomial of degree 6, which coefficients are stored
as follows: a(6) in R01, a(5) in R02, a(4) in R03, a(3) in R04, a(2) in R05, a(1) in R06 and a(0) in R07.

The Polynomial Editor. There are three functions available in the SandMatrix to enter and review

polynomials in the calculator. The main one is PEDIT , which takes the input from the control word in

the X-register and sequentially prompts for each coefficient value. The first thing it does is present a
reminder of the convention used, relating the subindex to the power of the variable for each term:

A nice feature is that it’ll check for available data registers to complete all the storage, re-adjusting the

calculator SIZE if necessary. PEDIT does not use any data registers itself.

 Function Description Input / Output

7 DTC Deleting Tiny Coefficients Control word in X

8 P+P Polynomial Sum Driver for PSUM

9 P-P Polynomial Subtraction Driver for PSUM

10 P*P Product of Polynomials Driver for PPRD

11 P/P Division of Polynomials Driver for PDIV

12 PCPY Polynomial Copy Control word in X-reg, destination in Y

13 PDIV Euclidean Division Control words in Y- and X-regs

14 PEDIT Edits Polynomial Coefficients Control word in X-Reg

15 PMTP Prompts for Coeffs in Alpha List Control word in X-Reg

16 PPRD Polynomial Multiplication Control words in Y- and X-regs

17 PSUM Polynomial Addition & Subtraction Control words in Y- and X-regs

18 PVAL Polynomial Evaluation Control word in Y, argument in X

19 PVIEW Views Polynomial Coefficients Control word in X-Reg

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 89 of 148

Note that PEDIT includes in the prompts the current value held in the corresponding data register, so

you don’t need to type a new one if it’s already correct. Alternatively you can use PVIEW to review

the coefficients without any editing capabilities. In this mode the prompts don’t have the question mark
at the end, which indicates the value cannot be changed from the program.

 In edit mode In review mode.

You can control wether PVIEW stops after each prompt or does the complete listing without stopping
by setting or clearing the user flag 21. Note also that if the coefficient is an integer value it will not
display the zeroes after the decimal point – in both editi and review modes.

A faster alternative for data entry is PMPT – the polynomial prompt. This one does for polynomials

what PMTM did for matrices: the data entry is done as a list in Alpha, containing the values of all
coefficients at once.

This is obviously limited by the total length available in the Alpha register (24 characters), including the
blank spaces that separate each entry, and the minus signs for negative values. The two leftmost
characters in the prompt indicate the first data register used to sore the coefficients (not the row# as
in the Matrix case). These characters are not part of the final list, and therefore aren’t included in the
total count.

Another restriction of PMTP is that values cannot be expressed in exponential form (using EEX),

which key is ignored during the process. You can use negative and decimal values as the CHS and [,]
(radix) keys are active. Obviously the back arrow key is always active to correct wrong entries.

1 LBL "PEDIT" 27 "|-="

2 SF 08 flags mode 28 RCL IND Y append current value

3 ENTER^ copies cntl word to Y 29 FRC? has fractional part?

4 I<>J swaps bbb and eee 30 ARCL X yes, append as is

5 E 31 INT? integer

6 + 32 AINT yes, append IP only

7 SIZE? current size 33 FC? 00 editable?

8 X<>Y 34 AVIEW no, show already

9 X>Y? not enough? 35 FC? 08 editable?

10 PSIZE adjust size 36 GTO 02 no, next coeff

11 RDN 37 LBL 00

12 RDN cntl word to X-reg 38 "|-?" append "?"

13 GTO 00 skip over 39 CF 22 reset data entry flag

14 LBL "PVIEW" 40 PROMPT

15 CF 00 flags mode 41 FC? 22 value entered?

16 LBL 00 42 GTO 02 no, next coeff

17 -ADV POLYN shows convention 43 STO IND Z yes, store it

18 PSE 44 RDN discard entry

19 ENTER^ copies cntl word to Y 45 LBL 02
20 PDEG polyn degree 46 DSE X decrement counter

21 X<>Y cntl word to X-reg 47 NOP

22 STO L saves it in L 48 ISG Y increment register

23 X<>Y degree to X-reg 49 GTO 01 next register

24 LBL 01 50 LASTX get control word

25 "a" 51 END done

26 AIP append index

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 90 of 148

4.2.2. Polynomial Arithmetic { PSUM , PPRD , PDIV }

The arithmetic functions provide convenient functionality for the basic operations: addition, subtraction,
multiplication and eucliedean division. A distinction is made between the three base routines (PSUM,
PPRD, and PDIV written by JM Baillard), and the four user-friendly drivers that automate the element
data entry and work out all the details behind the scenes.

For the first group, beside the element data entry, the control words for each operand polynomial and
the result are typically input in the X- , Y- and Z-registers of the stack. As follows:

Operation

Addition, Subtraction,
Multiplication

Euclidean Division Copy

Input

bbb.eee1 in Z
bbb.eee2 in Y

1st. Reg of result in X

bbb.eee of dividend in Y
bbb.eee of divisor in Y

bbb.eee of source in Y
bbb or destination in X

Output bbb.eee of result in X

bbb.eee of reminder in Y
bbb.eee of quotient in X

bbb.eee or result in X

Because registers R00 to R03 are used internally, they cannot be used to hold the polynomial
coefficients. (ie. all control words must start at bbb = 4 at least). Note also that none of the register
ranges should overlap. In addition, for the Euclidean Division the original polynomials are overwritten
with the results (quotient and reminder).

Let a(x) = a0.xn+a1.xn-1+ ... + an-1.x+an

and b(x) = b0.xm+b1.xm-1+ ... + bm-1.x+bm

then there are only 2 other polynomials q(x) and r(x) such that: a = b.q + r , with deg(r) < deg(b) .

Note that PDIV does not work if deg(a) < deg(b), but in this case q=0 and r=a.

Example 1.- Find the result of the polynomial product of a(x) * b(x), where:

a(x) = 2.x5 + 5.x4 - 21.x3 + 23.x2 + 3.x + 5 and b(x) = 2.x2 - 3.x + 1

We’ll use P*P for convenience. It’ll automatically store the coefficients of the operand polynomial in

registers {R04 to R09} and in registers {R10 to R12} respectively. The result polynomial will be stored
starting with register R20, leaving the operand polynomials untouched.

 The solution is: p(x) = 4.x7 + 4.x6 - 55.x5 + 114.x4 - 84.x3 + 24.x2 - 12.x + 5

Example 2.- Find the quotient and reminder for the polynomial division a(x) / b(x), where::

 a(x) = 2.x5 + 5.x4 - 21.x3 + 23.x2 + 3.x + 5 and b(x) = 2.x2 - 3.x + 1

We’ll use P/P for convenience. It’ll store the dividend coefficients in registers {R04 to R09} and the

divisor’s in registers {R10 to R12}. Note that in this case the coefficients are already there – as entered
in the previous example, so you just have to press R/S during the process.

The solutions are displayed sequentially, starting with the quotient first. The indices convention
message ” (aK*X^K)” is shown prior to the enumeration of each result polynomial. After completion,

the control word for the reminder is left in X, and the control word for the quatient is saved in R00.

 The solutions are: q(x) = x3 + 4.x 2 -5.x + 2 and r(x) = 14.x + 3

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 91 of 148

Example 3.- Calculate the addition and subtraction of the polynomials a(x) and b(x) below:

 a(x) = 2.x3 + 4.x2 + 5.x + 6 and b(x) = 2.x3 - 3.x2 + 7.x + 1

We’ll use P+P and P-P for convenience. It’ll automatically store the coefficients of the operand

polynomials in registers {R04 to R07} and in registers {R08 to R11} respectively. The result polynomial
will be stored starting with register R12, leaving the operand polynomials untouched. After completion,
the control word for the result is left in X

 The solutions are: a(x) + b(x) = 4.x3 + x2 + 12.x + 7

a(x) - b(x) = 7.x2 - 2.x + 5

Below you can see the program listing for the four arithmetic driver routines.

1 LBL "P*P" 32 LBL 10

2 CF 01 33 "N#1?" order P1

3 GTO 00 34 PROMPT n1

4 LBL "P/P" 35 4

5 SF 01 36 +
6 LBL 00 37 E3/E+ 1,00(n+4)

7 XEQ 10 combined data entry 38 3

8 FC? 01 product? 39 + 4,00(n+4)

9 GTO 00 yes, go there 40 STO 00

10 RND division 41 PEDIT

11 PDIV 42 XEQ 05 adjust index

12 X<>Y reminder cntl word 43 ENTER^ push stack

13 STO 00 store 44 "N#2?" order P2

14 X<>Y 45 PROMPT n2

15 PVIEW show quotient 46 + n2+eee1

16 X<> 00 47 I<>J 0,00(n2+eee1)

17 GTO 02 48 + (eee1+1),00(eee1+n2)

18 LBL 00 multiplication 49 PEDIT

19 PPRD 50 RCL 00 bbb.eee1

20 GTO 02 51 X<>Y bbb.eee2

21 LBL "P+P" 52 LBL 05

22 CF 01 53 ENTER^ bbb.eee2

23 GTO 01 54 I<>J eee.bbb2

24 LBL "P-P" 55 INT eee2

25 SF 01 56 E

26 LBL 01 57 + eee2+1

27 XEQ 10 combined data entry 58 END

28 PSUM

29 LBL 02

30 PVIEW show result (reminder)

31 RTN done

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 92 of 148

4.2.3. Deleting Coefficients and Moving Polynomials { DTC , PCPY , PSWP }

The functions in this section perform the following housekeeping chores:

• Copy a polynomial from a source to a destination location,
• Swap polynomial coeffiecients between two locations, and
• Delete small coefficients (below 1E-7), which typically appear due to rounding errors in the

intermediate operations. This has a cumulative effect that can alter the final result if not
corrected.

In revision “N” of the SandMatrix both PCPY and PSWP are implemented as MCODE functions – faster
and more flexible, as they allow overlapped ranges of data registers. PCPY is located in the main FAT
but PSWP is incuded in the secondary FAT, thus you must use one of the launchers to execute it.

These functions require the polynomial control word bbb.eee in Y, and the new 1st. register address in
X. The new control word is left in X upon completion. Only the control word in X is required as input for
DTC.

The three small routines below were written by JM Baillard. You can see the program listings for these;
always a beauty to behold JM’s mastery of the RPN stack.

1 LBL "PCPY" 1 LBL "PVAL" cnt'l word in X
2 RCL Y bbb.eee1 2 0

3 E3 3 LBL 14

4 * 4 RCL Y

5 INT 5 *

6 I<>J does E3/ for integers 6 RCL IND Z

7 SIGN puts bbb.eee in L 7 *
8 RDN 8 ISG Z

9 ENTER^ 9 GTO 14

10 ENTER^ 10 X<>Y

11 LBL 06 11 SIGN

12 CLX 12 RDN

13 RCL IND L 13 END

14 STO IND Y

15 ISG Y

16 CLX 1 LBL "DTC" cnt'l word in X

17 ISG L 2 LBL 05

18 GTO 06 3 RCL IND X

19 CLX 4 ABS
20 SIGN 5 E-7 threshold value

21 - 6 X<Y?

22 I<>J 7 GTO 06
23 + 8 X<> Z

24 X<>Y 9 ISG X

25 FRC 10 GTO 05

26 ISG X 11 E

27 INT 12 ST- Y drecrease Y

28 E5 13 0

29 / 14 STO IND Z overwrite w/ zero
30 + 15 LBL 06

31 END 16 X<> Z cnt'l word to X

17 END

When using the FOCAL program above be careful that the register ranges for both polynomials do not
overlap.

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 93 of 148

4.2.4. Polynomial Evaluation. 1st & 2nd derivatives. { PVAL , dPL , dPL2 }

Calculating derivatives and integrals of polynomial functions is particularly simple. For the polynomial
function P(x) on the left below the derivative with respect to x and the indefinite integral are shown in
the center and right formulas respectively:

 ; ;

The subject of Polynomial evaluation is as old as the HP calculators are – surely you remember
examples provided in the HP-25 manual and even earlier models. It’s no surprise then that it’s found its
way to the SandMatrix, with the added bonus of morphing into an all-MCODE implementation, which
has been extended to include the evaluation of the first and second derivatives as well.

The evaluation leaves the result value in X and the argument in LastX – but the control word is
maintained in the Y-register for convenience. Let’s see a few examples to clarify:

Example. Evaluate the Polynomial and the first two derivatives for P(x) below at points x=2 and x=-3

P(x) = 5 x^5 + 4 x^4 + 3 x^3 + 2 x^2 + x + 1

Using PMTP to enter the coefficients in { R01, R06 }, we type as follows:

1.006, XEQ “PMTP” => “ “
5, ENTER^, 4, ENTER^, 3, ENTER^, 2, ENTER^, 1, ENTER^, 1, R/S

The control word is left in X, therefore just type the point of evaluation and the required function
names as shown below:

2, XEQ “PVAL” => 259,0000000
RDN, 3, CHS, XEQ “PVAL” => -956,0000000

RDN, 2, V$ “DPL” => 573,0000000

RDN, 3, CHS, ML, [,] => 1.663,000000

RDN, 2, V$ “DPL2” => 1.032,000000

RDN, 3, CHS, ML, [,] => -2.318,000000

You can verify the obtained results using the analytical expressions for P’(x) and P”(x);

P’(x) = 25 x^4 + 16 x^3 + 9 x^2 + 4 x +1

P”(x) = 100 x^3 + 48 x^2 +18 x +4

simply enter their coefficients in memory and use PVAL and dPL as appropriate. For example,
evaluating P’(x) and its first derivative at x=2:

7.011, XEQ “PMTP”, {25, ENTER^, 16, ENTER^, 9, ENTER^, 4, ENTER^, 1}, R/S
2, XEQ “PVAL“ => 573,0000000
RDN, 2, V$ “DPL” => 1.032,000000

And finally, closing the circle of derivatives we enter P”(x) in memory:

12.015, XEQ “PMTP”, {100, ENTER^, 48, ENTER^, 18, ENTER^, 4 }, R/S
2, XEQ “PVAL” => 1.032,000000

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 94 of 148

Polynomial Integral and Evaluation { ITPL , PVAL }

But wait, there’s more: PVAL can also evaluate the primitive polynomial, i.e. calculating the integral

between zero and the evaluation point of the original polynomial. Simply change the sign of the control
word in Y so it’s negative to trigger this mode.

If you prefer a dedicated function, the entry ITPL , is also available for this purpose that uses the

control word in its standard form (i.e. positive value). You can choose which way to use as preferred.

Example 1: Calculate the integral of Q(x) = x^2 + 3x -7 in the interval [0, 2]

First we enter the coefficients in registers { R09 – R11 } using PMTP as usual, then we type:

9.011, CHS, 2, PVAL => -5,333333334 , or alternatively:

9,011, 2, V$ “ITPL” => -5,333333334

obtained in a blazing fast short time that sure beats the heck out of INTEG / FINTG approach.

Example 2: Calculate the integral between -1 and 2 for P(x) = 2.x^3 – 2.x^2 – 6.x + 10

First we introduce the coefficients in the data registers of choice using PMTM as before. Then we’ll
modify the integration limits to take advantage if ITPL, thus we can write:

ITG[-1, 2] = ITG[0, 2] – ITG[0, -1] = ITPL(2) – ITPL(-1) = 10,66666667 – (-11,83333333) =
 = 22,50000000

The figure on the left shows the polynomial in question, with an approximation done using trapezoidal
rule’s rectangles amounting to 22.48 in that example.

The figure on the right shows a book example of a cubic polynomial and its first & second derivatives
(parabola and straight line), and even the third derivative (constant line) – here all have real roots but
that’s clearly not always the case. Note how the roots of a function correspond to the points where the
derivative ot its primitive polynomial is zero, i.e. their local minimum/maximum – as we know well from
function theory.

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 95 of 148

Appendix.- Polynomial Real Roots

There’s much to be said about simple functions like these, that when implemented in MCODE provide
maximum speed and convenience. As an exercise, you’re encouraged to write a polynomial real root-
finder routine using Newton’s (left) or Halley’s (right) methods for the successive approximations to the
roots. Programming them for polynomials should become a near-trivial task using the functions
described above.

;

The program below is taken from JM Baillard’s web pages, a perfect example of the applicability of the
evaluation functions. It solves the equation p(x) = a0.x^n + a1.x^n-1 + ... + an-1.x + an = 0,
provided all roots are real.

The coefficients { a0 , a1 , , an-1 , an } are to be stored into contiguous registers Rbb thru Ree.
Starting with an initial guess x0 , the Newton's formula is applied until | p(xk)/p'(xk) | is smaller than
10-9 (line 24). Then, p is replaced by p/(x-r) (lines 32 to 39) and the root is stored into Ree.

The process is repeated until all roots are found (polynomial deflation). Finally, the roots are in
registers {Rbb+1 , , Ree}, (i.e. the original coefficients are overwritten) - and the control word is
left in X upon completion.

01 LBL "PLR"
02 STO 01
03 X<>Y
04 STO 00
05 STO 03
06 STO 04
07 ISG 04
08 LBL 01
09 VIEW 01
10 RCL 03

11 RCL 01
12 dPL
13 STO 02
14 X<> L
15 PVAL
16 RCL 02
17 /
18 ST- 01
19 RCL 01
20 X=0?

21 SIGN
22 /
23 ABS
24 E-9
25 X<Y?
26 GTO 01
27 E-3
28 ST- 03
29 RCL 03
30 STO 02

31 CLX
32 LBL 02
33 RCL 01
34 *
35 ST+ IND 02
36 RCL IND 02
37 ISG 02
38 GTO 02
39 RCL 01
40 STO IND 02

41 ISG 04
42 GTO 01
43 RCL 00
44 E
45 +
46 CLD
47 END

Example: Find all the roots of P(x) = 2.x^5 + 3.x^4 - 35.x^3 - 10.x^2 + 128.x - 74

For example storing the coefficients in {R05 – R10} and if we choose x0 = 1

 5.010 ENTER^, 1, XEQ "PLR" -> the successive approximations are displayed
 and finally: => 6.010

 the control number of the solutions in {R06 - R10}

 RCL 06 => -4.373739462

 RCL 07 => -2.455070118
 RCL 08 => 2.984066207
 RCL 09 => 1.641131729
 RCL 10 => 0.703611645

For more examples and other programs to cover non-real roots see Jean’Marc’s pages located at:
http://hp41programs.yolasite.com/polynomials.php

http://hp41programs.yolasite.com/polynomials.php

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 96 of 148

4.2.5. Polynomials over Integer field: Cohn’s irreducibility criterion.

If F is a field, a non-constant polynomial is irreducible over F if its coefficients belong to F and it cannot
be factored into the product of two non-constant polynomials with coefficients in F.

Arthur Cohn's irreducibility criterion is a sufficient condition for a polynomial to be irreducible in Z[x] —
that is, for it to be unfactorable into the product of lower-degree polynomials with integer coefficients.

The criterion is often stated as follows: If a prime number p is expressed in base 10 as

where 0<= ak < 9, then the polynomial formed with the same factors below is irreducible in Z[x]:

 ?IRR is a peculiar function, in that the irreducibility is tested by “brute force”, using a sequence of

integers looking for a prime number result. If found, the polynomial is irreducible, but if not found
within the range of the calculator then there’s no conclusive determination. So this is a glorified
example of the trial and errortechnique, so to speak.

Using functions from the SandMath makes
programming this criterium a simple affair, see
the program listing on the left with functions

RGMAX and PVAL doing all the heavy-lifting

for you, and of course function PRIME?

finally testing the results for primality.

A restriction of this method is that all coefficients
must be positive, and obviously the independent
term a0 not null.

Example1: p(x) = 2 x4 + 3 x2 + 5 x + 1 ,
 ?IRR returns n=6, which result p(6) = 2,731 is a prime

Example2: p(x) = 2 x6 + 3 x5 + 4 x3 + 5 x2 + 2 x + 1 ,
 ?IRR returns n=8, which result p(8) = 624,977 is a prime

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 97 of 148

4.3. Polynomial Root Finders.

Once upon a time there was a program called POLYN available in HP’s infamous MATH PAC. That
program was capable of calculating the roots of a polynomial up to degree *five*, which perhaps back
then when it first came out could be regarded as a remarkable affair – but by today standards certainly
isn’t much to write home about.

The SandMatrix picks up where the SandMath left things off, providing functions to calculate the roots
of the quadratic and cubic equations, ie. polynomials of degrees 2 and 3. The next step would then be
a Quartic equation, or polynomial of degree 4.

4.3.1. Quartic Equation solutions. { QUART }

 QUART solves the equation x4+a.x3+b.x2+c.x+d = 0

If you have a polynomial not in monic form (which leading coefficient is not 1), simply divide all the
equation by this coefficient. With this convention we can use the stack registers {T,Z,Y,X} to hold the
coefficients a, b, c, and d – which provides a convenient method for data input.

The method used can be summarized as follows:

First, the term in x3 is removed by a change of argument, leading to:

 x4+p.x2+q.x+r = 0 (E')

Then, the resolvant z3+p.z2/2+(p2-4r).z/16-q2/64 = 0 is solved by CROOT, and if we call z1 , z2 ,

and z3 the 3 roots of this equation, the zeros of (E') are:

x = z1
1/2 sign(-q) +/- (z2

1/2 + z3
1/2);

x = -(z1
1/2) sign(-q) +/- (z2

1/2 - z3
1/2)

Note that QUART uses the Alpha for data storage, but no data registers at all.

The program does the data output automatically, presenting the roots as either real or complex
conjugated. This is done using the status of flags 01 and 02 as appropriate – but the user needs not to
concern him or herself with the decoding rules. The output uses function ZOUT from the SandMath,
which shows “J” to denote the imaginary unit “ï”

Example 1: Solve x4 - 2.x3 - 35.x2 + 36.x + 180 = 0

-2 ENTER^ , -35 ENTER^ 36 ENTER^, 180 , XEQ "QUART" >>>>

X1=6,000, X2=3,000

X3=-2,000 X4=-5,000

 Function Description Input / Output

1 QUART Solution of Quartic Equation Polynomial coeffs in Memory

2 PROOT Polynomial Roots Prompts for all data

3 RTSN Subroutine mode of PROOT Polynomial coeffs in Memory

4 BRSTW Quadratic Factors - Bairstow method Cnt’l word in X-reg

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 98 of 148

Example 2: Solve x4 - 5.x3 + 11.x2 - 189.x + 522 = 0

-5, ENTER^, 11, ENTER^, -189, ENTER^, 522 , XEQ “QUART” >>>>

Z= -2 + J5,000

X3= 3,000, X4= 6,000

In this and next example, note how true integer values (up to the 9th. digit) don’t display zeros after
the decimal point, a much clearer display with added informational value.

Example 3: Solve x4 - 8.x3 + 26.x2 - 168.x + 1305 = 0

-8, ENTER^ , 26, ENTER^ , -168, ENTER^ , 1305 , XEQ “QUART” >>>>

Z= -2 + J5,000

Z= 6 + J3,000

Example 4: Calculate the roots of the polynomial: Q(x) = x^4 + 2 x^3 – 7x^2 – 8 x + 12

which plot is shown below.

2, ENTER^, 7, CHS, ENTER^, 8, CHS, ENTER^, 12, XEQ “QUART“ >>>>

X1= 2,000; x2= 1,000

X3= -2,000; x4= -3,000

Example 5: Solve x4 + x3 + x2 + x + 1 = 0

Simply type: 1, ENTER^, ENTER^, ENTER^, QUART , >>>

Z= 0.309 + J0.951 , R/S

Z= -0.809 + J0.588

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 99 of 148

4.3.2. General case: degree N. { PROOT , BAIRS }

This method is based on quadratic factorizations, that is finding Q(x) - one quotient polynomial of
degree two, plus R(x), a reminder polynomial of degree one - reducing the original degree by 2 and
thereby changing the expression as follows:

P(z) = P”(z) Q(z) + R(z); with P”(z) = [ bi z^n-i] , i=2,1...(n-2)

This will then be repeated until the reduced polynomial P”(x) reaches degree one or two/.

Let Q(x) = x^2 + p x + q; and

R(x) = r x + s

Then the reduced polynomial coefficients are given by

bi = a(i-2) – p b(i-1) – q b(i-2) ; i = 2, 3, ..., (n+2) (1)

and we have the following expressions for the coefficients of the reminder:

 r = b(n+1)
s = b(n+2) + p b(n+1) (2)

clearly with both r and s depending on the p,q values – formally expressed as: r=r(p,q) and s=s(p,q).

The problem is thus obtaining the coefficients p,q of such a quotient polynomial that would cancel
the reminder (i.e. that make r=0 and s=0. This is accomplished by using an iterative approach,
starting with some initial guesses for them (p0, q0), iterating until there is no change in two
consecutive values,

r’(p,q) + r = 0; or: r’(p,q) = -r
s’(p,q) + s = 0; or: s’(p,q) = -s

Expressing it using their partial derivarives it results:

dp (r/p) + dq (r/q) = -r

dq (s/p) + dq (s/q) = -s

Using the relationships (1) above, we can formally obtain the partial derivatives using the coefficients of
the original polynomial, ai. The problem will then be equivalent to solving a system of 2 linear
equations with two unknowns, dp and dq.

From equation (1) above it follows:

bi/p = ci = -b(i-1) – p c(i-1) – q c(i-2); i = 2,3...,(n+2)

bi/q = c(i-1)

Making use of equation (2) to apply it for i=n we have as final expression

c(n+1) dp + cn dq = -b(n+1)
-q cn dp + [c(n+1) + p cn] dq = -[b(n+2) +p b(n+1)] (3)

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 100 of 148

Starting with (p0=0,5; q0=0,5) as initial guesses we’ll obtain dp and dq for each pair of values (p,q).
With them we adjust the previous guess, so that the new corrected values for p and q are

p’ = p + dp
q’ = q + dq

This will be repeated until the precision factor “” is smaller than the convergence criteria; The

precision factor is calculated as follows:

 = [abs(dp) + abs(dq)] / [abs(p) + abs (q)]

The program dimensions and populates matrices [RS] and [CN] to hold the current values of p,q and
the coefficients Cn respectively:

• [RS] is the column matrix, of dimension (2x1).
• [CN] is the coefficients matrix, of dimension (2x2).

The linear system is solved as many times as iterations needed to establish the convergence. With
each factorization the program obtains two roots. This is repeated for, until all roots have been found.

Program Details.

In manual (RUN) mode PROOT prompts first for the order n (ie. the degree) and for each of the

coefficients sequentially. It then presents the option to store the roots into a matrix in X-Mem. To use it
you just have to press “Y” at the prompt below:

All roots are stored in matrix [ROOTS], of dimension (n x 2) - with the first column holding the real
parts and the second the imaginary parts of each root (assumed complex).

The global label PROOT is also meant to be used in subroutines for program execution. It expects

the degree stored in R00, and the coefficients stored in registers R03 until R(3+n). Registers R01 and
R02 are used internally and cannot be used for your data. In subroutine mode the roots will always be
stored in the matrix [ROOTS].

Example 1. Find the five roots of the polynomial below

P(x) = 2.x5 + 7.x4 + 20.x3 + 81.x2 + 190.x + 150

Keystrokes Display Result
XEQ “PROOT” “ Prompts for the degree
5, R/S “” Reminder of convention

 “” prompts for coeffs, showing current
2, R/S “”
7, R/S “
20, R/S “”
81, R/S “”
190, R/S “
150, R/S “” prompts for storage option
“Y” “”

At this point the different precision factors are shown, which shoud be decreasing as the iterations
converge towards the solutions – and this repeated as many times at quadratic factors are needed.

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 101 of 148

The solutions are shown below (in FIX 5):

Z=-2,00000+J1,00000 and its conjugate (not shown)
Z=1,00000+J3,00000 and its conjugate (not shown)
Z=-1,50000

And the matrix [ROOTS] is left in X-Mem, with 5 rows and two columns, as follows:

 [[-2 1]
 [-2 -1]

[ROOTS] = [1 3]
 [1 -3]

 [-1.5 0]]

To be sure it isn’t the fastest method in town (typically 5-6 iterations are needed, each iteration takes a
bout one full minute at normal speeds), but it’s applicable to any degree and stores the results in a
matrix – which makes it very useful as a general-purpose approach.

Program listing.-

 *LBL “PROOT” 1
 RAD 2
 F# ?RTN 3
 GTO 00 4
 SF 01 5
 SIZE? 6
 ?ORDER 7
 STOP 8
 INT 9
 ABS 10
 X=0? Zero? 11
 1/X` abort 12
 STO Z 13
 ST+ X 14
 9 15
 + 16
 X>Y? 17
 PSIZE 18
 RCL Z 19
 STO 00 20
 3 21
 + 22
 E3/E+ 23
 2 24
 + 25
 PEDIT 26
 CF 21 27
 "STO? Y/N" 28
 AVIEW 29
 F# 30
 94 Y/N? 31
 CLX 32
 X#0? 33
 GTO 00 34

 GTO 07 35
 *LBL “RTS” 36
 CF 01 37
*LBL 07 38
 RCL 00 39
 2 40
 I<>J 41
 + 42
 "ROOTS" 43
 MATDIM 44
 PURFL 45
 MATDIM 46
 , 47
 MSIJA 48
*LBL 00 49
 RUNNING 50
 "CN" 51
 E 52
 E3/E+ 53
 ST+ X 54
 MATDIM 55
 "RS" 56
 INT 57
 MATDIM 58
 *LBL 97 59
 2 60
 RCL 00 61
 X=Y? 62
 GTO 92 63
 X=1? 64
 GTO 91 65
 ,5 66
 STO 01 67
 STO 02 68

 *LBL 98 69
 RCL 00 70
 4 71
 + 72
 SIZE? 73
 E 74
 - 75
 I<>J 76
 + 77
 CLRGX 78
 INT 79
 RCL X 80
 RCL 00 81
 + 82
 I<>J 83
 + 84
 STO M 85
 3.1 86
 STO N 87
 *LBL 09 88
 RCL M 89
 RCL IND X 90
 RCL 02 91
 * 92
 ISG Y 93
 "" 94
 RCL IND Y 95
 RCL 01 96
 * 97
 + 98
 CHS 99
 RCL IND N 100
 + 101
 ISG Y 102

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 102 of 148

 "" 103
 STO IND Y 104
ISG N 105
ISG M 106
GTO 09 107
"RS" 108
. 109
MSIJA 110
RCL 00 111
ST+ X 112
6 113
+ 114
RCL IND X 115
CHS 116
DSE Y 117
RCL IND Y 118
CHS 119
MSC+ 120
RCL 01 121
* 122
+ 123
MSC+ 124
6 125
RCL 00 126
+ 127
LASTX 128
ST+ X 129
4 130
+ 131
I<>J 132
+ 133
STO M 134
RCL 00 135
ST+ X 136
7.1 137
+ 138
STO N 139
LBL 10 140
RCL N 141
RCL IND X 142
RCL 02 143
* 144
ISG Y 145
"" 146
RCL IND Y 147
STO IND N 148
RCL 01 149
* 150
+ 151
RCL IND M 152
+ 153
CHS 154
STO IND Y 155
ISG M 156
GTO 10 157
"CN" 158
, 159

MSIJA 160
RDN 161
 MSR+ 162
 DSE Y 163
 "" 164
 RCL IND Y 165
 MSR+ 166
 RCL 02 167
 CHS 168
 * 169
 MSR+ 170
 LASTX 171
 / 172
 RCL 01 173
 * 174
 + 175
 MSR+ 176
 >",RS" 177
 MSYS 178
 MNAME? 179
 , 180
 MSIJA 181
 MRR+ 182
 ST+ 01 183
 MRR+ 184
 ST+ 02 185
 SUMAB 186
 RCL 01 187
 ABS 188
 RCL 02 189
 ABS 190
 + 191
 / 192
 VIEW X 193
 RND 194
 X#0? 195
 GTO 98 196
 E 197
 RCL 01 198
 RCL 02 199
 TONE 2 200
 XEQ 02 201
 RCL 00 202
 5 203
 + 204
 3 205
 E3/E+ 206
 + 207
 RCL 00 208
 E 209
 - 210
 E6 211
 / 212
 + 213
 REGMOVE 214
 2 215
 ST- 00 216
 GTO 97 217

*LBL 92 218
 RCL 03 219
 RCL 04 220
 RCL 05 221
 XEQ 02 222
 FC?C 01 223
 RTN 224
 GTO J 225
*LBL 02 226
 QROOT 227
 FS? 01 228
 GTO 08 229
 QROUT 230
 STOP 231
 RTN 232
*LBL 08 233
 CF 02 234
 RCL Z 235
 X=0? 236
 SF 02 237
 RDN 238
 "ROOTS" 239
 MRIJA 240
 RDN 241
 MSC+ 242
 FS?C 02 243
 GTO 00 244
 X<>Y 245
 MSC+ 246
 RTN 247
*LBL 00 248
 MSR+ 249
 I- 250
 X<>Y 251
 MSC+ 252
 CHS 253
 MSR+ 254
 RTN 255
*LBL 91 256
 RCL 04 257
 RCL 03 258
 / 259
 CHS 260
 "ROOT=" 261
 FS? 01 262
 GTO 00 263
 ARCL X 264
 PROMPT 265
 RTN 266
*LBL 00 267

 V# 268
 25 ABSP 269
 >"S" 270
 MRIJA 271
 RDN 272
 MSC+ 273

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 103 of 148

*LBL J 274
 , 275
MSIJ 276
*LBL 01 277
. 278
278 MRR+ 279

MRR+ 280
CF 09 281
 X#0? 282
 I+ 283
 X<>Y 284
 QROUT 285
 STOP 286

 FS? 09 287
 RTN 288
 FC? 10 289
 GTO 01 290
 END 291

Bairstow Method.

A faster program is BAIRS , which also uses a factorization method but does not utilize any of the

matrix functions. Therefore the solutions are just prompted to the display but not saved into an X-Mem

file. BAIRS expects the coefficients already stored in main memory, and the polynomial control word

in X . Note that they will be overwritten during the execution of the program.

It uses registers R00 to R08 internally, thus cannot be used to store your data. The error message
“bbb<=8” is shown otherwise. For both programs the accuracy of the solutions (and therefore their run
times) depends on the display settings.

BAIRS factorizes the polynomial
 p(x) = a0.xn+a1.xn-1+ ... + an-1.x+an into quadratic factors and solves p(x) = 0 (n >1)

If deg(p) is odd, we have p(x) = (a0.x+b).(x2+u1.x+v1)........(x2+um.x+vm); with m = (n-1)/2
If deg(p) is even p(x) = (a0x2+u1.x+v1)(x2+u2.x+v2)......(x2+um.x+vm) ; with m = n/2

The coefficients u and v are found by the Newton method for solving 2 simultaneous equations. Then p
is divided by (x2+u.x+v) and u & v are stored into R(ee-1) & Ree respectively . The process is
repeated until all quadratic factors are found

Example 2. Solve x6 - 6.x5 + 8.x4 + 64.x3 - 345.x2 + 590.x - 312 = 0

Using PMTP to store the coefficients beginning in R09, thus the control word is 9,015

Keystrokes Display Result
9.015, XEQ “PMTP” “”
1, ENTER, CHS, 6, ENTER^,^8, ENTER^, 64, ENTER^, CHS, 345, ENTER^, 590, ENTER^, CHS, 312,
R/S 9,015
XEQ “BAIRS“ shows precisions factors...

The solutions are: “Z=-4,000” and “Z=2,000”
 “Z=2,000+J3,000” and conjugate (not shown)
 “Z=1,000” and “Z=3,000”

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 104 of 148

Program listing.-

01 *LBL “BAIRS”

 02 RAD
 03 CF 21
 04*LBL 00

 05 9
 06 X<>Y
 07 X>Y?
 08 GTO 00
 09 "bbb<=8"
 10 PROMPT
 11 GTO 00
 12*LBL 00

 13 STO 04
 14 STO 08
 15 2
 16 STO 06
 17 PI
 18 STO 07
 19*LBL 01

 20 CLX
 21 STO 00
 22 STO 01
 23 STO 02
 24 STO 03
 25 RCL 04
 26 STO 05
 27*LBL 02

 28 RCL IND 05
 29 RCL 00
 30 RCL 07
 31 *
 32 -
 33 RCL 01
 34 RCL 06
 35 *
 36 -
 37 X<> 01
 38 STO 00
 39 RCL 02
 40 RCL 07
 41 *
 42 -
 43 RCL 03
 44 RCL 06
 45 *
 46 -
 47 X<> 03
 48 X<> 02

 49 ISG 05
 50 GTO 02
 51 STO 05
 52 RCL 01
 53 *
 54 RCL 00
 55 RCL 02
 56 ST* 01
 57 *
 58 -
 59 RCL 03
 60 RCL 05
 61 *
 62 RCL 02
 63 X^2
 64 -
 65 STO 05
 66 /
 67 ST+ 06
 68 RCL 00
 69 RCL 03
 70 *
 71 RCL 01
 72 -
 73 RCL 05
 74 /
 75 ST+ 07
 76 R-P
 77 RND
 78 VIEW 06
 79 X#0?
 80 GTO 01
 81 SIGN
 82 STO 05
 83 RCL 04
 84 7
 85 I<>J
 86 5
 87 +
 88 PDIV
 89 STO 04
 90 RCL 06
 91 STO IND Z
 92 ISG Z
 93 RCL 07
 94 STO IND T
 95 RCL 04
 96 2
 97 +

 98 ISG X
 99 GTO 01
100 CLD
101 RCL 08

102*LBL E

103 RCL 08
104 STO 04

105 F#
106 93
107 ODD?
108 GTO 03
109 RCL IND 04
110 ISG 04
111 GTO 05
112*LBL 03

113 .
114 RCL IND 04
115 ISG 04
116 RCL IND 04
117 X<>Y
118 /
119 CHS
120 TONE 9

121 F#
122 32
123 STOP
124 ISG 04
125*LBL 04

126 E
127*LBL 05

128 RCL IND 04
129 ISG 04
130 RCL IND 04
131 QROOT
132 ISG 04
133 FS? 30
134 GTO 06
135 TONE 9
136 QROUT
137 STOP
138 GTO 04
139*LBL 06

140 BEEP
141 QROUT
142 STOP
143 END

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 105 of 148

4.4. Extended Polynomial Applications.

A few related topics - in that polynomials are involved - even if some programs don’t make direct
utilization of matrix functions. Here too the SandMatrix complements the functionallity included in the
SadnMath. The table below summarizes them:

4.4.1. Displaying the Equations for Curve Fitting Programs { EQT }

As there was plenty of available space in the module, I decided to include this routine to complement

the Curve Fitting program in the SandMath (CURVE). The routine EQT will write in Alpha the actual

equation which reference number is in register R00, ranging from 0 to 15 as per the table below:

0. Linear
1. Reciprocal
2. Hyperbola
3. Reciprocal Hyperbola
4. Power
5. Modified Power
6. Root
7. Exponential
8. Logarithmic
9. Linear Hyperbolic
10. 2nd. Order Hyperbolic
11. Parabola
12. Linear Exponential
13. Normal
14. Log Normal
15 Cauchy

Note that EQT does not perform any

calculations, thus it’s just an embellishing
addition to CURVE.

The original FOCAL program listing was
originally published in the AECROM
manual, and it’s reproduced here
practically unaltered.

The implementation in the SandMatrix is done in MCODE, much longer in size (about 350 bytes in total)
but possible to tuck away in a second bank – where the space for it was available.

 Function Description Input / Output

0 EQT Curve Equation Display Equation number in X (0 to 15)

1 POLINT Polynomial interpolation Under program control

2 PRMF Prime Factors decomposition Argument in X-reg

3 PF>X From prime factors to argument Prime factors in matrix [PRMF]

4 TOTNT Euler’s Totient function Argument in X-reg

5 POLFIT Polynomial Fitting Under program control

6 POLZER From Poles to Zeroes Under program control

7 PFE Partial Fractions Expansion Under program control

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 106 of 148

4.4.2. Polynomial interpolation. { POLINT }

The program POLINT follows the Aitken’s interpolation method. It’s an elegant simple

implementation and a nice example of utilization of the capabilities of the platform. It was written by
Ulrich K. Deiters, and it is posted at: http://www.hp41.org/LibView.cfm?Command=View&ItemID=600

The program performs polynomial interpolations of variable order on (xi, yi) data sets, with the order
determined by the number of data pairs. It is applied as follows:

- You have a set of (xi, yi) data pairs. The xi are all different, and they need not be equidistant.

- You need to know the y value at the location x, which is not one of the xi.

- You start the program XEQ "POLINT"
 and enter x at the prompt. x, R/S

- Then you enter the first data pair, x0, R/S
 preferably one which has an x_i close to x. y0, R/S
 The program returns y0.

- You enter another data pair. R/S
 The program returns the results of a linear x1, R/S
 interpolation. y1, R/S

- You enter another data pair. R/S
 The program returns the results of a x2, R/S
 quadratic interpolation. y2, R/S

- You enter another data pair. R/S
 The program returns the results of a cubic x3, R/S
 interpolation. y3, R/S

- ... and so on, until you exceed the SIZE of your calculator.

Going beyond the cubic interpolation is seldomly useful. High-order interpolations become increasingly
sensitive to round-off errors and inaccuracies of the input data.

The number of data registers used depends on the order of the interpolation. An nth order interpolation
(which uses n+1 pairs of data) occupies the registers R00 to R(2n+4), e.g., a cubic interpolation needs
all registers up to R10.

If a printer is connected, the interpolation results are printed out, and the "empty" R/S entries are not
required.

Example. Given the table below with a set of vapor pressure data for superheated water, what is the
vapor pressure at 200 °C (= 473.15 K)?

T/K 380 400 450 480 500 530 560

p/MPa 0.12885 0.24577 0.93220 1.7905 2.6392 4.4569 7.1062

Here’s the sequence followed to resolve it.

http://www.hp41.org/LibView.cfm?Command=View&ItemID=600

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 107 of 148

input display Comment
XEQ "INTPOL" 
473.15, R/S 
480 , R/S 
1.7905 , R/S 

R/S 
450 ,R/S 
0.9322, R/S  linear interpolation
R/S 
500, R/S 

2.6392, R/S  quadratic interpolation
R/S 

400 ,R/S 

0.24577, R/S  cubic interpolation
R/S 
530, R/S 
4.4569, R/S  4th order

From this we conclude that 1.55 MPa is a reasonably good estimate; and that the linear interpolation
was certainly not sufficient. Incidentally, the true value is 1.554950 MPa..

The program listing is shown below.

1 LBL "POLINT" 33 X<>Y

2 FC? 55 34 AIP

3 SF 21 35 X<>Y

4 "X=?" 36 "|-=?"
5 PROMPT x va lue of point 37 PROMPT prompts for Yk

6 STO 00 38 DSE 02
7 3,05 39 GTO 02

8 STO 01 40 LBL 03

9 LBL 01 41 RCL IND 02

10 RCL 01 42 *
11 INT k 43 LASTX

12 E 44 RCL Z

13 - k-1 45 -

14 E3/E+ 1,00(k-1) 46 ISG 02

15 3 47 RCL IND 02

16 + 4,00(k-1) 48 LASTX

17 STO 02 49 *

18 RCL 01 50 ST- Z

19 INT k 51 LASTX

20 3 52 RDN

21 - k-3 53 RDN

22 2 54 /

23 / 55 LBL 02

24 "X" 56 STO IND 01

25 AIP 57 ISG 02

26 "|-=?" 58 GTO 03

27 PROMPT prompts for Xk 59 "Y="
28 RCL 00 60 ARCL X

29 - 61 AVIEW
30 STO IND 01 62 ISG 01

31 ISG 01 63 GTO 01 next order
32 "Y" 64 END done

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 108 of 148

4.4.3. Prime Factors Decomposition { PRMF , PF>X , TOTNT }

This section describes the three functions provided in the SandMatrix related to Prime factorization.

 The first one PRMF extends the basic prime factorization capability in the SandMath, PFCT. The

difference is that whereas PFCT only uses the Alpha register to output the result (as Alpha string),
here the prime factors and their multiplicities are also stored in a matrix in X-Mem - named [PRFM].
This ensures that no information will be lost (scrolled off the display if the length exceeds 24 char), and
also provides a permanent storage of the results.

You can use PF>X to check the result: it re-builds the original argument from the values in the

[PRMF] matrix, using the obvious relationship:

X =  PF(i) ^m(i) ; for i = 1, 2… primes

Euler’s Totient function.

In number theory, Euler's totient or phi function, φ(n) is an arithmetic function that counts the totatives
of n, that is, the positive integers less than or equal to n that are relatively prime to n. The graphic
below shows (well, sort of) the first thousand values of φ(n)

Examples. Calculate the prime factors and the totient for the following numbers:

n PF phi
1,477 7*211 1,260
819,735 3*5*7*37*211 362,880
123,456 2^6*3*643 41.088,000

 Function Description Input / Output

1 PRMF Prime Factors (Matrix Form) Argument in X-reg

2 PF>X From Factors to Number Prime factors in Matrix file

3 TOTNT Euler’s Totient function Argument in X-reg

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 109 of 148

The programs are listed below. There’s no fancy algorithm for TOTNT , it just counts the number of

prime factors after doing the decomposition as a preliminary step.

1 LBL "TOTNT" Euler's Totient Function 55 GTO 03 skip i f yes

2 SF 04 flag case 56 ST/ L divide number by PF

3 XEQ 10 get all Prime Factors 57 LASTX Reduced number

4 0 58 GTO 00 loop back

5 MSIJ sets pointer to 1:1 59 LBL 03 Store Exponent

6 X<>Y argument to x 60 RCL 00 recover PF

7 LBL 07 61 MSR+ store in matrix

8 MRC+ get element 62 GTO 01 next factor

9 1/X invert it 63 LBL 02 New PF found

10 CHS sign change 64 STO 01 Store for comparisons

11 E 65 RCL 00 previous exponent

12 + add 1 66 MSR+ Store Old PF Exponent

13 * multiply 67 RDN

14 FC? 09 end of row? 68 ST/ L divide number by PF

15 GTO 07 loop back 69 LASTX Reduced number

16 CLD refesh display 70 DIM?

17 RTN done. 71 X<> Z Bring the new PF back

18 LBL "PRMF" Prime Factors 72 MSR+ store new PF

19 CF 04 flag case 73 FS?C 00 Was it Prime?

20 LBL 10 74 GTO 01 Bail Out, we're done

21 "PRMF" 75 X<>Y Bring the number back

22 2 76 GTO 05 Start Over

23 E3/E+ 1,002 77 LBL "PF>X" Rebuild number

24 MATDIM Create Matrix 78 SF 04 flag case

25 CLX 79 "PRMF" matrix name

26 MSIJA sets pointer to 1:1 80 SF 10 fake condition

27 RDN argument to x 81 LBL 01 PF Completed

28 CF 00 default: not prime 82 E 1

29 INT condition x 83 FC? 10 end of matrix?

30 ABS to avoid errors 84 MSR+ store it as last exp.

31 PRIME? is it prime? 85 STO 00 ini tia l va lue

32 SF 00 FIRST PF found 86 MSIJA sets pointer to 1:1

33 MSR+ Store this PF 87 CLA Clean Slate

34 X=1? is PF =1? 88 LBL 06 Rebuild the number

35 GTO 01 yes, leave the boat 89 MRR+ get prime factor

36 FS?C 00 Was it Prime? 90 FC? 04 if not totient case

37 GTO 01 if Prime, we're done 91 AIP add it to Alpha

38 STO 01 Store PF for comparisons 92 MRR+ get multiplicity

39 ST/ L divide number by PF 93 FC? 04 if not totient and/

40 LASTX Reduced number 94 X=1? or if it is one

41 LBL 05 95 GTO 04 skip adding to Alpha

42 E reset counter 96 "|-^" otherwise put symbol

43 STO 00 97 AIP and add it to the string

44 RDN 98 LBL 04

45 LBL 00 99 Y^X PF^Exp

46 RCL 01 reca l l PF 100 ST* 00 Rebuilding the number

47 X<>Y Reduced number 101 FS?10 End of Array?

48 PRIME? i s i t prime? 102 GTO 04 yes, leave the boat

49 SF 00 PF found 103 FC? 04 if not totient case

50 X#Y? Compare this and old PF's 104 "|-*" append symbol

51 GTO 02 skip over if different 105 GTO 06 next PF

52 ISG 00 Same One 106 LBL 04

53 NOP Increase counter 107 RCL 00 final result

54 FS?C 00 Was it Prime? 108 FC? 04 if not totient case

109 AVIEW Show the construct

110 END done.

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 110 of 148

4.4.4. Polynomial Fitting { POLFIT }

The next program is taken from Valent’in Albillo article “Long Live the Advantage ROM” - showcasing
the matrix functions included in it. As one can expect from that reference, it’s an excellent example and
therefore more that worth including in the SadnMatrix.

The original article is partially reproduced below – it is so well described that I could not resist adding it
practically verbatim.

 POLFIT is a small, user-friendly, fully prompting 62-line program (124 bytes) written specifically to

demonstrate the excellent matrix capabilities of the Advantage ROM. POLFIT can find the coefficients

of a polynomial of degree N which exactly fits a given set of N+1 arbitrary data points (not necessarily
equally spaced), where N is limited only by available memory.

Among the many functions we could fit to data, polynomials are by far the easiest to evaluate and
manipulate numerically or symbolically, so our problem is:

Given a set of n+1 data points (x1, y1), …, (xn+1, yn+1), find an Nth-degree polynomial

y = P(x) = a1 + a2 x + a3 x2 + a4 x3 + ... + an+1 xn

which includes the (n+1) data points (x1, y1), (x2, y2), ..., (xn+1, yn+1). The coefficients (a1, ...,
an+1) can be determined solving a system of (n+1) equations:

Program listing

01 LBL "POLFIT" to use, simply XEQ "POLFIT"

02 "N=?" prompts for the degree N of the polynomial
03 PROMPT .. and waits for the user to enter N
04 1 add 1 to get the number of data points
05 + N+1
06 1.001 the required multiplier
07 * forms the matrix dimensions [N+1].00[N+1]
08 "MX" specifies matrix MX to be created in X-Mem
09 MATDIM creates and dimensions matrix MX in X-MEM
10 0 specifies first row, first column and ..
11 MSIJ .. resets the row/column indexes

12 LBL 00 loop to ask for data & compute MX elements

13 MRIJ recalls the current value of the indexes
14 "X" forms the prompt to ask the user to enter xi
15 AIP appends the index to the prompt
16 "|-=?" appends “=?” to the prompt
17 PROMPT prompts to enter xi and resume execution
18 ENTER^ fills the stack with the value of xi ..
19 ENTER^ in order to compute all powers of xi ..
20 ENTER^ from 1 to xi^n and store them in MX
21 1 initializes the value of xi^0 [i.e.: 1]
22 MSR+ stores it in MX and updates the indexes

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 111 of 148

23 LBL 01 loop to compute the powers of xi

24 * computes xi^j
25 MSR+ stores it in MX and updates the indexes
26 FC? 09 are we done with this row ?
27 GTO 01 not yet, go back for the next xi power
28 FC? 10 row done. Are we done with all rows?
29 GTO 00 not yet, go back to ask for the next xi
30 CLA all rows done, MX complete. Make it current
31 DIM? get its dimensions: [N+1].00[N+1]
32 INT get N+1 (avoid using a register)
33 "MY" specify vector MY to be created in X-MEM
34 MATDIM creates and dimensions vector MY in X-MEM

35 LBL B ask for yi data and store them in MY

36 0 specifies 1st element of the vector and ...
37 MSIJ .. resets the index to the 1st element

38 LBL 02 loop for next data and store them in MY

39 MRIJ recalls the current value of the index
40 "Y" forms the prompt to ask for yi
41 AIP .. appends the index to the prompt
42 "|-=?" appends “=?” to the prompt
43 PROMPT prompts the user to enter yi
44 MSR+ stores it in MY and updates the index
45 FC? 10 are we done with all elements?
46 GTO 02 not yet, go back to ask for the next yi
47 "MX,MY" all yi stored. Specify MX,MY for the system
48 MSYS solves the system for the coefficients

49 LBL C retrieve and display each coeff.

50 0 specifies 1st element of the coeffs. vector
51 MSIJ resets the index to the 1st coefficient

52 LBL 03 loop to retrieve the next coefficient

53 MRIJ recalls the current value of the index
54 "A" forms the prompt to display each coeff.
55 AIP .. appends the index to the prompt
56 "|-=" appends “=” to the prompt
57 MRR+ retrieves the value of the current coeff.
58 ARCL X appends the value to the prompt
59 PROMPT shows the value to the user
60 FC? 10 are we done outputting all the coeffs?
61 GTO 03 not yet, go back for the next coefficient
62 END all done. End of execution.

Notes

• As the Advantage ROM can work with matrices directly in X-Mem, POLFIT doesn't use any

main RAM registers and so it will run even at SIZE 000. This has the added advantage (pun
intended) of avoiding any register conflicts with other programs.

• POLFIT creates two matrices in X-Mem, namely [MX] and [MY], which aren't destroyed upon
termination. Retaining [MX] allows the user to compute the coefficients of another polynomial
using the same x data but different y data. In that case, the x data need not be entered again,
only the new y data must be entered. Further, as the MX matrix is left in LU-decomposed form
after the first fit, the second fit willproceed much faster. Retaining [MY] allows the user to
employ the polynomial for interpolating purposes, root finding, numeric integration or
differentiation, etc.

• Lines 2-11 prompt the user for the degree of the polynomial, then allocate the system matrix in
Extended Memory (MATDIM) and reset the indexes (MSIJ).

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 112 of 148

• Lines 12-22 set up a loop that will fill up the rows of [MX]. Notice the use of the miscellaneous
function AIP to build the prompt, and MSR+ to store the value and automatically advance the
indexes to point to the next element.

• Lines 23-27 form a tight loop that computes each power of xi and uses MSR+ to store it and

advance the indexes. Flag 9 logs if we’re done with the column in which case we would
proceed to the next row. If so, Flag 10 is then checked to see if we’re done with all the rows.

• Once the system matrix has been populated, lines 30-45 do likewise dimension, and populate

the MY matrix, prompting the user for the required yi values. Then, once all the data have
been input and both matrices are allocated and populated, lines 46-47 solve the system for the
coefficients of the polynomial using MSYS.

• Finally, lines 48-59 establish a loop that labels and outputs all the coefficients.

Example

Rumor has it that the seemingly trigonometric function y = cos(5 arccos x) is actually a 5th-degree
polynomial in disguise. Attempt to retrieve its true form.

If it is indeed a 5th-degree polynomial, we can retrieve its true form by fitting a 5th-degree polynomial
to a set of 6 arbitrary data points (x,y). Any set with different x values (-1.0 <= x <= +1.0) will do, but
for simplicity’s sake we’ll use x=0, 0.2, 0.4, 0.6, 0.8, and 1. Proceed like this:

- set Rad mode, 4 decimals: XEQ “RAD”, FIX 4
- start the program: XEQ “POLFIT” “”
- specify degree 5: 5 R/S “”
- enter 1st x value: 0 R/S “”
- enter 2nd x value: 0.2 R/S “”
- enter 3rd x value: 0.4 R/S “”
- enter 4th x value: 0.6 R/S “”
- enter 5th x value: 0.8 R/S “”
- enter 6th x value: 1 R/S “”
- enter 1st y value: 0, ACOS, 5, *, COS, R/S “”
- enter 2nd y value: 0.2, ACOS, 5, *, COS, R/S “”
- enter 3rd y value: 0.4, ACOS, 5, *, COS, R/S “”
- enter 4th y value: 0.6, ACOS, 5, *, COS, R/S “”
- enter 5th y value: 0.8, ACOS, 5, *, COS, R/S “”
- enter 6th y value: 1, ACOS, 5, *, COS, R/S “”

R/S “”
R/S “”
R/S “”
R/S “”
R/S “”

So, disregarding the very small coefficients due to rounding errors, the undisguised polynomial is:

P(x) = cos(5 arccos x) = 5 x – 20 x^3 + 16 x^5

You might want to execute now CAT”4 (or EMDIR), to see that the matrices used are still available so
that you can redisplay the coefficients, solve for a new set of y values, or use the polynomial for
interpolation, etc.

CAT”4 “” [the system matrix is 6x6 = 36 elements]
“” [the coeff. matrix is 6x1 = 6 elementss]
 [EM Room left - this value varies with your configuration]

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 113 of 148

4.4.5. Orthogonal Polynomials.

Hermite Polynomials. { HMT }

The Hermite Polynomials were defined by Laplace (1.810) though in scarcely recognizable form, and
studied in detail by Chebyshev (1.859). Chebyshev's work was overlooked and they were named later
after Charles Hermite who wrote on the polynomials in 1.864 describing them as new.

There are two different ways of standardizing the Hermite polynomials; The "probabilists' [He(n)] and
the “physicists’ [H(n)] Hermite polynomials" given by the following expressions:

These two definitions are not exactly identical; each one is a rescaling of the other,

The figure below shows the first six Hermite polynomials Hn, which are those implemented in the
SandMatrix using the recurrence expression:

They are written as fully MCODE functions, thus the execution time is optimized – wich is especially
relevant given the recurrent nature of the method employed.

Examples. Calculate H7(3.14) and H3(-2.5)

we type: 7, ENTER^, 3.14, V$ “HMT” => 73,726.24325

and: 3, ENTER^, 2.5, CHS, ML, [,] => -95.00000000

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 114 of 148

Legendre Polynomials { LEG }

In mathematics, Legendre functions are solutions to Legendre's differential equation shown below.
They are named after Adrien-Marie Legendre. This ordinary differential equation is frequently
encountered in physics and other technical fields. In particular, it occurs when solving Laplace's
equation (and related partial differential equations) in spherical coordinates.

These solutions for n = 0, 1, 2, ... (with the normalization Pn(1) = 1) form a polynomial sequence of
orthogonal polynomials called the Legendre polynomials. Each Legendre polynomial Pn(x) is an nth-
degree polynomial.

The figure below shows the first six Legendre polynomials, with their explicit expressions on the left:

Like in the Hermite’s case, the SandMatrix implementation (also written in MCODE for better
performance and accuracy) uses a recursive approach to calculate them, described by the Bonnet’s
formula below:

Examples: Calculate L7(4.9), and L3(-2.5)

we type: 7, ENTER^, 4.9, V$ “LEG” => 1,698,444.018

and: 3, ENTER^, 2.5, CHS, ML, [,] => -35.31250000

Note: Remember that the SandMatrix includes functions CHB1 and CHB2 to calculate the Chebyshev
polynomials; you can refer to the SandMatrix Manual for details. The implementation there is also done
in MCODE, thus as fast and convenient as possible.

Note that despite being sub-functions from the SandMath, both CHB1 and CHB2 are available from the
ML “P: _” launcher as well. – and as such they’ll be logged in its own LASTF buffer when used.

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 115 of 148

Laguerre and Associated Laguerre Polynomials. { LAG , LANX }

In mathematics, the Laguerre polynomials, named after Edmond Laguerre (1834 - 1886), are solutions
of Laguerre's equation - which is a second-order linear differential equation. This equation has
nonsingular solutions only if n is a non-negative integer.

The Associated Laguerre polynomials (alternatively, but rarely, named Sonin polynomials after their
inventor, Nikolay Yakovlevich Sonin) are solutions of

One can also define the Laguerre polynomials recursively, defining the first two polynomials as shown
below (where =0 for the standard type), and then using the following recurrence relation, for any

term k ≥ 1:

Examples: Calculate L7(3.14) and L7(1.4, 3.14)

The input parameters are entered similarly in the stack for both case, with “a” in the Z- register for the
generalized case, and “n” and “x” in the Y- and X-registers in both instances.

7, ENTER^, 3.14, V$ “LAG” => -0.978658720

and:
1.4, ENTER^, 7, ENTER^, 3.14, V$ “LANX” => 1.692567095

As a reminder, the SandMath module includes LAYX, another generalization of the Laguerre
polynomias for non-integer orders. It is a direct application of the Kumer M function; refer to the
SandMath manual for details.

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 116 of 148

4.4.6. Orthogonal polynomial Fit. { OPFIT } - Moved to Curve_Fitting Module

Orthogonal polynomials are a very advantageous method for polynomial regression. Not only it allows
for a more progressive approach, but also the accuracy of the values so obtained is typically better.
This program employs this method; even if it doesn’t calculate any orthogonal polynomials explicitely.

Given m value pairs (xi, yi) and a maximum degree to explore (n), this program calculates the
n(n+3)//2 polynomial coefficients of the corresponding n polynomials of degrees 1, 2, 3,… n that best
fit the given data (therefore equivalent to the least squares method). It also obtains the determination
coefficients and typical errors for each degree,

The method followed uses the construct Y(x) = d0 P0(x) + d1 P1(x) + … dn Pn(x) ; where p0,
p1, … pn are the orthogonal polynomials corresponding to the entered data that satisfy the expression

 Pi Pj = 0, for every i#j

The advantage of this approach is a better accuracy, as it avoids the resolution of the usual n linear
systems, frequently ill-conditioned, that arise in the least squares method.

Example.- To check the program we took the following 11 value pairs from the polynomial

P(x) = x^4 – 2x^3 + 3x^2 –4 x +5

Xi -3 -2 -1 0 1 2 3 4 5 6 7560

Yi 179 57 15 5 3 9 47 165 435 953 1839

Using the data above explore up to degree n=4, showing the correlation coefficients, the D-factors and
the errors for each of the alternatives.

The results are all provided in the table below:

Degree (n) Corrlt. (r^2) Errors (e^2) Determ. (d^2) Coefficients

n = 1 R1=4,482218E-1
E0=3,295160E5
E1=1,818197E5

D0=3,370000E2
D1=1,228000E2

a0=9,140000E1
a1=1,228000E2

n =2 R2=9,000134E-1 E2=3,294720E4 D2=4,000000E1
a0=-1,486000E2
a1=-3,720000E1
a2=4,000000E1

n = 3 R3=9,821452E-1 E3=5,883429E3 D3=6,000000E0

a0=1,700000E1
a1=-7,200000E1
a2=4,000000E0
a3=6,000000E0

n = 4 R4=1,000000E0 E4=0,000000E0 D4=1,000000E0

a0=5,000000E0
a1=-4,000000E0
a2=3,000000E0
a3=-2,000000E0
a4=1,000000E0

Credits: The original version (labeled “APOLO”) was written by Eugenio Úbeda, and published in the
UPLE. The version in the SandMatrix only had minimal changes made to it. It was by far the longest
program in the module, and unfortunately had to be removed to make room for the Vector Functions.

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 117 of 148

4.4.6. From Poles to Zeros.. and back. { POLZR , POLZR , PFE }

These programs complete the applications section. The first two calculate the coefficients and zeros of
a polynomial expressed as a partial expansion of factors, as would typically be the case when working
with transfer functions in control theory. The third program does the reverse, i.e. it builds the partial
fraction expansion for a polynomial given it its “standard” (or natural) form.

(*) POLZER ha been - Moved to Advntg_MATH Module

These programs calculate the polynomial coefficients and roots of expressions such as:

P(x) =  [1 / (x-pi)] ; i= 1,2,… n

Which will be transformed into:

P(x) =  ai x^i ; i= 0,1,… (n-1)

The coefficients are obtained using the following formulae:

a(n-1) = n

a(n-2) = (n-1)  pi

a(n-3) = (n-2)   pi pj

a(n-4) = (n-3)    pi pj pk

a(n-5) = (n-4)     pi pj pk pl

a(n-6) = (n-5)      pi pj pk pl pm

in general the n-th. coefficient would require the calculation of n-dimensional product sums. However

the program POLZER is limited to expressions up to 7 poles max (resulting in 6 zeroes), whereas

POLZR is not. The caveat is that POLZR will only calculate the coefficients of the natural

polynomial, but not its roorts. You can of course use PROOT or BAIRS manually for that purpose.

Example.- To study the stability of the transfer function below, calculate its roots.

G(s) = 1/s + 1/(s-1) + 1/(s-2) + 1/(s-3) + 1/(s-4)

Keystrokes Display
XEQ “POLZER” 
5, R/S 
0, R/S 
1, R/S 
2, R/S 
3, R/S 

4. R/S “       “

 “”
“Y” 
R/S 
R/S 
R/S 
R/S 

 Function Description Input / Output

1 POLZER Zeros of transfer functions Under program control

2 POLZR Coefficients of “Natural” Polyn Under program control

2 PFE Partial Fraction Expansion Under program control

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 118 of 148

Therefore the “natural” polynomial form is as follows:

G(s) = 5 s^4 – 40 s^3 + 105 s^2 – 100 s + 24

This is where POLZR lets thing go, leaving the polynomial control word bbb.eee in the X-Register.

For POLZER’s case however, the execution is next transferred to PROOT (or to QUART if #p=5)

which calculates the roots following the iterative process explained in section 4.3.1. Remember that the
accuracy is dictated by the number of decimals places set .

R/S “ ”
 

R/S 
R/S 
R/S 

 POLZER is also a rather long program – and dates back to the days the author attended EE School

many moons ago, so I’m somehow attached to it.

4.4.7. Partial Fraction Decomposition { PFE }

In algebra, the partial fraction decomposition or partial fraction expansion of a rational fraction (that is
a fraction such that the numerator and the denominator are both polynomials) is the operation that
consists in expressing the fraction as a sum of a polynomial (possibly zero) and one or several fractions
with a simpler denominator.

In symbols, one can use partial fraction expansion (where ƒ and g are polynomials) to change

expression forms as shown below

 >>>

where gj(x) are polynomials that are factors of g(x), and are in general of lower degree. Thus, the
partial fraction decomposition may be seen as the inverse procedure of the more elementary operation
of addition of rational fractions, which produces a single rational fraction with a numerator and
denominator usually of high degree. The full decomposition pushes the reduction as far as it will go: in
other words, the factorization of g is used as much as possible. Thus, the outcome of a full partial
fraction expansion expresses that fraction as a sum of fractions, where:

the denominator of each term is a power of an irreducible (not factorable) polynomial and the
numerator is a polynomial of smaller degree than that irreducible polynomial. To decrease the degree
of the numerator directly, the Euclidean division can be used, but in fact if ƒ already has lower degree
than g this isn't helpful.

Implementation

POLZER may be an old program but PFE is a much more modern event, written by JM Baillard and

published at: http://hp41programs.yolasite.com/part-frac-expan.php

Given a rational function R(x) = P(x) / Q(x) with Q(x) = [q1(x)]µ1 [qn(x)]µn and
gcd(qi , qj) = 1 for all i # j , this program returns the partial fraction expansion:

http://hp41programs.yolasite.com/part-frac-expan.php

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 119 of 148

 R(x) = E(x) + p1,1(x) / [q1(x)]µ1 + p1,2(x) / [q1(x)]µ1-1 + + p1,µ1(x) / q1(x)
 + ..
 + pn,1(x) / [qn(x)]µn + pn,2(x) / [qn(x)]µn-1 + + pn,µn(x) / qn(x)

where deg pi,k < deg qi , and E(x) is the quotient in the Euclidean division P(x) = E(x) Q(x) + p(x)
and p(x) is the remainder.

Data entry is a complicated affair but it has been automated – just follow the process carefully.

It makes extensive use of the polynomial arithmetic routines PPRD and PDIV . Also the polynomial

entry routine PEDIT is called several times...

The program prompts for the number of factors in the denominator, as well as for their degrees and
multiplicities. It also prompts for the coefficients of the numerator polynomial and of each factor
polynomial in the denominator; so you don’t need to store those values manually prior to executing
PFE.

Data output is not automated; therefore you’d need to interpret the control words returned in stack
registers. Some guidelines will follow in the examples.

Example1. Calculate the partial fraction decomposition for R(x) below.

 R(x) = P(x)/Q(x) = (6 x5 - 19 x4 +20 x3 - 7 x2 + 7 x + 10) / [(2 x2 + x + 1).(x - 2)2]

Keystrokes Display Result
XEQ “PFE” “” Input number of factors
2, R/S “” inputs degree of numerator
5, R/S “” Reminder of convention

 “” coefficients data entry
6, R/S “”
19, CHS, R/S “”
20, R/S “
7, CHS, R/S “”
7, R/S “”
10, R/S “” Input degree of Q1 in den.
2, R/S “” Reminder of convention

 “”
2, R/S “”
1, R/S “”
1, R/S “”
1, R/S “” Reminder of convention

 “”
1, R/S “
2, CHS, R/S “” time to enter the multiplicities now

 “” exponent of first factor
1, R/S “” exponent of second factor
2, R/S flying goose… beep sounds
 “” informs that E(x) follws
 “” Reminder of convention

 “”
R/S “” end of data output.

There are three control words placed registers R05, R06, and R15 upon completion, as follows:

1. The cnt’l word stored in R15 is for the Quotient polynomial, E(x)

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 120 of 148

2. The cnt’l word in R05 gives the entire register range for the coefficients of all the pi(x)
polynomials – the numerators of the expanded fractions. It needs to be interpreted depending
on the denominators qi(x) are polynomials of degree 1 or polynomials pf degree 2 with
negative discriminant.

3. The contents of these registers are to be read
• by groups of 1 number if deg qj = 1 the numerators are constants
• by groups of 2 numbers if deg qj = 2 the numerators are polynomials of degree 1
• by groups of 3 numbers if deg qj = 3 the numerators are polynomials of degree 2 , and

so on

4. The third in R06 is for an alternative solution using a new reminder p(x)

Thus in this case registers R16 and R17 contain the coefficients for E(x) = 3x + 1 ;

And registers R33 – R36 for the denominator polynomials: (which must be three of them!)

p1,1(x) = 2x + 3 ; p2,1(x) = 4 ; p2,2(x) = 5

Thus the final result is as follows:

R(x) = E(x) + p1,1(x) /(2x^2 + x +1) + p2,1(x) / (x-2)^2 + p2,2(x) / (x-2)

Or alternatively using the data in registers R18 – R21 (cnt’l word in Z):

p(x) = 12 x^3 – 12x^2 – 5x +6 ; and thefore:

R(x) = E(x) + p(x) /Q(x)

Example 2.- Calculate the partial fraction decomposition for R(x) below.

R(x) = P(x)/Q(x) = x^5 /(3 x^2 + 1)2

The three control words returned are:

R06: 18.021 with: R18=-2/3, R19= 0, R10 =-1/9, R21 =0
R05: 28.031 with R29=1/9, R29=0, | R30=-2/9, and R31=0
R15: 16,017 with: R16 = 1/9 and R17 = 0

The range in R05 must be split as: p1,2 = x/9 x + 0; and p2,2 = -2x/9 + 0

Therefore:

R(x) = E(x) + p1,2(x)/(3x^2 + 1)^2 + p2,2(x)/(3x^2 + 1)

All in all a powerful program, which flexibility requires some careful attention to the details involved.

Note:- you can check another Partial Fraction expansion program (by Narmwon Kim) available at the
HP-41 archive site, which features a simpler user interaction and data entry/output, but at the expense
of more limited functionality. It is also less general-purpose, and more geared towards control system
applications.

http://www.hp41.org/LibView.cfm?Command=View&ItemID=776

http://www.hp41.org/LibView.cfm?Command=View&ItemID=776

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 121 of 148

Other Polynomial Launchers – Roots and Utils.

For convenience purposes several root finding and other polynomial utilities functions are grouped in an
independent launcher – combining functions from both the SandMath and the SandMatrix, under
common themes.

This launcher is accessed as an alternate “personality” of the DST (*) function (no more FAT entries

were available), pressing the XEQ key to invoke it. In fact, XEQ toggles between both “personalities”,
as shown in the picture below:

 <----->

Like DST, the polynomial launcher itself also has two “screens”, toggled with the SHIFT key:

 <----->

The following tables show which functions are available under each of the two screens. Note that some
are from the SandMath module, in a logical grouping of the roots theme.

Function Description Input

1 STLINE Straight Line equation { y1, x1, y2, x2 } in stack

2 QROOT Quadratic Equation { a, b, c } in stack

3 CROOT Cubic Equation { a, b, c, d } in stack

4 QUART Quartic Equation (monic) { b, c, d, e } in stack (a=1)

N PROOT Polynomial Roots Follow program instructions

B BAIRS Bairstow Method Follow program instructions

F FROOT Roots of f(x) FNAME in ALPHA, a, b in Y- / X-reg

P POLZER From Poles to Zeros Prompts for poles

Function Description Input

C PCPY Polynomial Copy From / to control words in stack

D DTC Deletion of Tiny coeffs Control word in X

E PEDIT Polynomial Editor Control word in X

V PVIEW Polynomial View Control word in X

L PVAL Polynomial Evaluation Control word in Y, point in X

F POLFIT Polynomial Fitting Follow program instructions

I POLINT Polynomial interpolation Follow program instructions

H CHRPOL Characteristic polynomial MNAME in ALPHA

Notes:-

• The back arrow key cancels the action and returns to the main ML launcher (“M:_”prompt).

• The USER and ALPHA keys are also active to invoke the sub-function launchers V# and F$.

• You can refer to the appropriate section within this manual or the SandMath manual for specific
details of all these functions.

• The SandMath functions executed from here will also be registerer in the SandMatrix’s “Last
Function” facility.

(*) DST will be described in the next section of the manual.

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 122 of 148

The “Last Function” functionality.

Like the SandMath and other advanced modules, the SandMatrix include support for the “LASTF”
functionality. This is a handy choice for repeat executions of the same function (i.e. to re-execute the
last-executed function), without having to type its name or navigate the different launchers to access it.

The implementation is not universal – it only covers functions invoked using the dedicated launchers,
but not those called using the mainframe XEQ function. It does however support two scenarios:

• functions in the main FATs, from any plugged-in module; as well as
• those sub-functions from the auxiliary FATs.

Because the latter group cannot be assigned to a key in the user keyboard, the LASTF solution is
especially useful in this case. The following table summarizes the launchers that have this feature:

Module Launchers LASTF Method

SandMatrix 4 ML, DST Captures sub/fnc id#

revision “M” V$ _ Captures sub/fnc NAME

 V# _ _ _ Captures sub/fnc id#

Revision “N” CAT+ (XEQ’) Captures sub/fnc id#

Note that the Alphabetical launcher V$ will switch to ALPHA mode automatically. Spelling the function

name is terminated pressing ALPHA, which will either execute the function (in RUN mode) or enter it
using two program steps in PRGM mode by means of the V# function plus the corresponding index

(using the so-called non-merged approach). This conversion happens entirely automatically.

With revision “N”, the LASTF operation is also supported when excuting a sub-function from within the
CAT+ enumeration, using the [XEQ] hot-key - very handy for those fncs with elusive spelling.

Another new enhancement is the display of the sub-function names when using the index-based
launcher V# - which provides visual feedback that the chosen function is the intended one (or not).

This feature is active in RUN mode, when entering it into a program, and when single-stepping a
program execution - but obviously not so during the standard program runs.

LASTF Operating Instructions

No separate function exists. - The Last Function feature is triggered by pressing the radix key (decimal
point - the same key used by LastX) while the launcher prompts are up. This is consistently
implemented across all launchers supporting the functionality in the three modules (SandMath,
SandMatrix and PowerCL) – they all work the same way.

When this feature is invoked, it first briefly shows “LASTF” in the display, quickly followed by the last-
function name. Keeping the key depressed for a while shows “NULL” and cancels the action. In RUN
mode the function is executed, and in PRGM mode it’s added as a program step if programmable, or
directly executed if not programmable.

The functionality is a two-step process: a first one to capture the function id#, and a second that
retrieves it, shows the function name, and finally parses it. All launchers have been enhanced to store
the appropriate function information (either index codes or full names) in registers within a dedicated
buffer (with id# = 9). The buffer is maintained automatically by the modules (created if not present
when the calculator is ‘switched ON), and its contents are preserved while it is turned off (during “deep
sleep”). No user interaction is required.

If no last-function information yet exists, the error message “NO LASTF” is shown. If the buffer #9 is
not present, the error message is “NO BUF” instead.

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 123 of 148

5. Vectors and Geometry



This section was first inspired by the Advantage Pac FOCAL programs VC and TR - which have now
been re-written using the new MCODE functions for enhanced performance and accuracy.

Where the SandMatrix implementation adds significant value is in the convenience and usability
aspects. The vector calculator for instance is a launcher-based scheme that extends the Advantage
menu-driven concept a few notches, providing more functionality and wider range – as will be
described later on. Data registers are also handled in a vector-oriented fashion, operating on 3-
registers blocks at once – and supporting INDirect addressing; all fully programmable using the so-
called “non-merged functions” technique.

Accessing the Vector sub-Functions.

Multi-Functions V# and V$ provide access to the entire set of vector sub-functions, grouped in two

sections. The sub-functions can be invoked either by its index within the group, using V#, or its direct

name, using V$. This is implemented in such a way that they are also programmable, and can be

entered into a program line using a technique called “non-merged functions”.

This approach is identical to the one used in the SandMath module – and derives from the original
implementation in the HEPAX module.

A sub-function catalog CAT+ is also available, listing the functions included within the groups. Direct
execution (or programming if in PRGM mode) is possible just by stopping the catalog at a certain entry
and pressing the XEQ key. The CAT+ catalog behaves very much live the native ones in the machine:
you can stop it using R/S, SST/BST them, press ENTER^ to move to the next “sub-section”, cancel or
resume the listing at any time.

As additional bonus, the sub-function launcher V$ will also search the main FAT if the sub-function

name is not found within the multi-function group – so the user needn’t remember where a specific
function sought for was located. In fact, V$ will also find a function from any plugged-in module in

the system, even outside of the SandMatrix module.

 A comprehensive Vector Function Launcher prompt.

The Vector launcher is one of the three modes of the main module launcher, ML, by pressing the [A]

key at the initial “M:_” prompt – which changes it into the “V:_” prompt.

As it occurs with theme modules, there are a large number of functions that work together and ideally
should all be available in a USER keyboard for optimal utilization. And as it’s become customary (see
the 41Z and SandMath manuals) – a dedicated launch pad is the best solution to solve this need.

With this approach it’s not necessary to make multiple key assignments to quickly access all of the
functions – saving memory and allowing for other USER key mappings. The “V:” prefix indicates a
prompting for the function keys, which are logically mapped to the same real-functions on the standard
41C keyboard. Prompting functions are also included in this implementation.

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 124 of 148

The picture below shows the Vector Keyboard, as invoked by the V: launcher:

Note that with exception of the conditional tests, all mapped keys are direct, no need to use [SHIFT]
unless for INDirect addressing. Note as well that the prompts also support using keys from the two top
rows for quick argument entry 1-10

 ; ;

 ;

Vector Conditionals.

Other useful functions are those used to test whether vectors in V1 and V2 levels are equal/different, or
whether the V1 level contains a zero-vector: V=0?, V#0?, V=A?, and V#A? They return YES/NO in
RUN mode, and skip the next line if false when used in a program.

Note: There is a cosmetic limitation in the subfunction names: even if it’s not displayed correctly, the
“#” character is [SHIFT] [H] in the Alpha keyboard.

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 125 of 148

A word on Vector Stack implementation.

Before you ask: no; there isn’t a memory buffer or any similar fancy trick implemented in the Vectors
ROM for a full-fledged vector stack. Because there isn’t a dedicated memory area for it, it follows that
the implementation must use the standard means for all purposes – meaning the (real) stack and Alpha
registers. Even with this limitation it’s possible to implement a poor-man’s version of a vector-RPN
stack with just two levels, plus also featuring “Last-Vector” functionality for the most important cases.
The following paragraphs describe the details of such an implementation.

1. Two stack levels (V1 and V2) using the stack and Alpha.

Logically the three components of the first vector level (V1) will occupy the X,Y and Z registers
in the stack. Monadic functions should return the result in the X register, placing the x-
coordinate in LastX for easy retrieval, should the original vector is to be recalled. Dual
functions will operate on both the stack and the Alpha registers M, N, and O – which hold the
second vector operand (V2). In addition to the Vector Recall, Storage and Exchange a few
other functions are included for convenient handling of the levels: VENTER^, V<>A, and
LASTV (see below). With all these the 2-level vector stack becomes useful and suitable for the
majority of usual scenarios.

2. Fully Programmable VRCL, VSTO, V<>, VVIEW.

Using the non-merged functions technique, the numeric argument is taken from the next line in
a program. Zero is not explicitly required and INDirect is done by adding 128 to the address
(80 Hex). They operate on 3-register blocks, and their indexes are logical and not related to
the actual underlying data registers.

3. Compatibility with Alpha messages:- Scratch.

The choice of Alpha for the second vector level (V2) requires some work-around when the use
of Alpha prompting or displaying is also needed – in a FOCAL program, like VC or TR. This has
been accomplished with EXSCR, a simple register swapping function to be called both before
and after the PROMPT or AVIEW actions – effectively preserving V2 in a scratch area: registers
L,T, and “a“ during the process. This requires that no more than 2 pending subroutine returns
are used before calling “VC” - not perfect but clever enough to work in practicality.

4. LASTV functionality:- Level “0” in a dynamic scheme.

The natural choices for a temporary storage of the LastV (V0) components are the still-unused
registers L,T, and P. Using L is a given, since it already works like a LastX in the real case. T
is a safe choice but P becomes unusable in all practical cases due to the OS demand for it as
data-entry scratch. We chose register Q instead, as a better fit despite also being very volatile.
In reality both P and Q are used to hold the third coordinate in sequence: it is first stored in P
when the function execution commences, where it remains during the calculations – which
allows free usage of Q for the 13-digit math routines. Then it is transferred from P to Q upon
exiting the function, where it stays for LASTV to pickup (until/unless Q is used by the OS in
other action).

5. Viewing the vector components.

Functions VIEWV and VVIEW provide a sequential displaying of the three vector components
for V1 or any vector stored in memory. The display is used and not Alpha (so level-2 is not
disturbed), and each component value is tagged with its own label - X:, Y:, or Z: These
functions are also fully programmable. The time lapsed in between components display is fixed,
but the displaying will be halted while any key is kept depressed.

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 126 of 148

New versions of the classic Advantage Programs.

The SandMatrix contains new versions of the popular Vector programs from the Advantage Pac: “VC”,
and “TR” /“CT”. Their usage is completely compatible, even if they use all new functions instead of
the original FOCAL programs. Obvious advantages are faster execution, shorter program listings, and
more accuracy due to the 13-digit math routines employed within the new functions. Also fewer data
registers are needed since level-2 is in Alpha’s {M,N,O} – and not in {R01, R02, R03} as in the
Advantage’s case.

Vector operations.

The “VC” program simulates a "Vector Calculator" superimposed on your normal calculator. It redefines
the functions in the top two rows of keys to these vector operations: addition, subtraction, distance,
dot product, cross product, angle between vectors, norm, and unit vector. This pac also offers these
operations to you as regular functions (without the Vector Calculator) that you can execute like any
other Hp-41 (nonkeyboard) function. Their Alpha names are given under "Summary of Vector
Operations*.

The vector operations operate on three-dimensional vectors described in rectangular coordinates. That
is, every vector has three components, Vx, Vy, and Vz. For a two-dimensional vector, Vz must be equal
to zero.

A complement to VC is the Coordinate Transformations program, TR. This means you can carry out
vector operations and transformations on the same data, since you can access either program from the
other one. The use of coordinate transformations is covered in the next section, "Coordinate
Transformations".

Method.

The Vector Calculator (program VC) creates a vector stack that works in concert with the regular RPN
stack (X-, Y-, Z-, and T-registers). When you enter the three components of a vector in the order Vz,
Vy, Vx, they occupy the regular stack like so:

How do the two stacks relate to each other? Basically, the
"bottom" level of the vector stack (V2) is stored in registers X,
Y, and Z of the stack, while the "upper" level of the vector
stack (V1) is stored in ALPHA registers M, N, and O. You can
imagine the registers shared in a three-dimensional stack like
so:

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 127 of 148

The Vector stack is two vector-level high, so it accommodates two vectors. Note, however, that each
level contaris three components, the x-, y-, z-components far each vector.

The diagram below shows you what happens in vector entry and vector stack movement from the
point-of-view of the vector stack and from the point-of-view of the RPN and vector stacks together:

When you enter two vectors (as you would prior to executing a typical vector operation), the first one
you key in becomes V1 and the second one you key in becomes V2. A “vector entry" (the function
VENTER^, or pressing R/S in the Vector Calculator) copies the bottom vector (V2) into the top Vector
(V1) . Then, when you key in the next vector, it overwrites the copy in the bottom vector (V2), leaving
the first vector in V1 and the second vector in V2.

Instructions.

• Starting VC (invoking the vector calculator) does not clear the vector stack, so you can still
work with previously stored vectors.

• Be sure to give each vector three dimensions. If it has only two dimensions, then enter a zero
for Vz.

• Enter the vector's dimensions as rectangular coordinates. If you have polar coordinates
(magnitude and angle) for a two-dimensional vector, convert them using the function P-R
(polar to rectangular).

• For those operations involving angles, the units will match the current angular mode setting
(Degrees, Radians, or Grads).

• The view function ([][E]) is very useful for reviewing the components of V2 in the stack.

• V1 refers to the "top” vector; the one in {M, N, and O} Alpha registers. V2 refers to the
"bottom" vector; the one in {X, Y, and Z} stack registers

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 128 of 148

This menu will show you which key corresponds to which function in VC. Press [J] to recall this menu
to the display at any time.

To clear the menu at any time, press  ; This

shows you the contents of the X-register, but does
not end the program. You can perform calculations,
then recall the menu by pressing [J]. (However, you
do not need to clear the program’s display before
performing calculations.)

The Vector Calculator provides two methods for
entering a vector into the vector stack. The vector-
enter function (VENTER^) is analogous to the
ENTER^ key. A shortcut method of vector entry is

the R/S key. Whenever you enter the vector

components from the keyboard when the menu was
the last thing displayed before keying in the three
components. Pressing R/S will perform the same
function as VENTER^.

The following table shows the keystrokes to execute vector operations on the Vector Calculator
(program VC). For a definition of each operation, refer to the “Summary of Vector Operations" following
the Instruction Table.

Instructions Key in: Display

Start the program for the Vector Calculator VC

XEQ “VC” DP CP <) M UV

Enter the three components of your first vector (V1).
Separate two vectors with a vector enter after the first
set of coordinates: execute VENTER^ or – if the menu
was the last thing displayed before you entered the first
component – press R/S.

z1, ENTER^
y1, ENTER^
x1, R/S
– or VENTER^

z1
y1
DP CP <) M UV

Key in the second vector (V2). Do not press R/S z2, ENTER^
y2, ENTER^
x2

z2
y2
x2

Display the main menu (optional)

[J] DP CP <) M UV

Execute a vector operation:
Dot Product: V1 * V2

Cross Product: V1 x V2

Angle between V1 and V2

Norm (magnitude) of V2

Unit Vector of V2

Vector Add V1+V2

[A] (DP)

[B] (CP)

[C] (<)

[D] (M)

[E] (UV)

[] [A]

DOT = result

X= x result
Y= y result
Z= z result

<) result

M= result

X= x result
Y= y result
Z= z result

X= x result
Y= y result
Z= z result

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 129 of 148

Vector Subtract V1-V2

Coordinate Transformations – refer to the next section
for instructions.

Distance between V1 and V2

[] [B]

[][C]

USER [][C]

[][D]

X= x result
Y= y result
Z= z result

Z0,Y0,X0 ?
DP CP <) M UV

d= result

Restore the main menu after or between operations
(optional)

[J] DP CP <) M UV

To view the components of V2, the vector in the stack: [][E] X= x result
Y= y result
Z= z result

To exchange V1 and V2 (the vector components in
{M,N,O} and {X,Y,Z}

[F] DP CP <) M UV

To store V2.s components as vector-register “n” in
R3n+1, R3n+2, R3n+3:

n, [H] DP CP <) M UV

To recall the conents of vector-register n into V2 (X,Y,Z),
pushing V2 into V1:

n, [I] X= x result
Y= y result
Z= z result

Remarks

You can eliminate the displaying of results on the Vector Calculator by setting flag 04. This lets you
perform successive calculations more quickly by not having to step through the display of the results.
You can still view the results when you want by pressing [][E].

This program uses local Alpha labels (as explained in the owner's manual for the HP-41) assigned to
keys [A]-[F], [H]-[J], and [][A]-[][E]. These local assignments are overridden by any User-key
assignments you might have made to these same keys, thereby defeating this program. Therefore be
sure to clear any existing User-key assignments of these keys before using this program, and avoid
redefining these keys in the future.

Summary of Vector Operations

The vector operations are accessible in two different ways:

• By using the Vector Calculator and its redefined keys, as explained above.

• By directly executing a vector function using its Alpha name, like any other HP-41 nonkeyboard
function.

• V1 refers to the first (or “top”) vector: the one in M, N and O. V2 refers to the second (or
"bottom”) vector: the one in X, Y, and Z.

The operations perform the same calculations regardless of how they are executed. These
characteristics are given in the table below, along with their Alpha names and descriptions.- You can
also execute these operations by Alpha name from inside the Vector Calculator, though it is usually
more convenient to use the Vector Calculator's redefined keys .

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 130 of 148

Table of Vector Functions. This table shows all functions implemented in the module. Note that the
convention followed indicates V1 level in {X,Y,Z} and V2 level in {M,N,O} – that is reversed from the
Advantage’s.

Function Effect
A+V Adds vectors V1 and V2. Result vector (v2+v2) is placed in V1, with v1 saved

in LastV (V0). V2 is left unchanged.

A-V Subtracts vectors V1 and V2. Result vector (v2-v1) is placed in V1, with v1
saved in LastV (V0). V2 is left unchanged.

A*V Calculates the DOT product of V1 and v2. Result is left in X-reg. X-component
of v1 is saved in LastX, all other registers are unchanged.

AXV Calculates the CROSS product of V1 and V2. Result vector (v2 x v1) is placed
in V1, with v1 saved in LastV. V2 is left unchanged.

A/V

Calculates V2 x (1/V1). Same result and LastV conventions apply.

EXSCR

Exchanges Vector in Alpha v2 with registers {L,T,a}

LASTV

Recalls last vector to level-1 and pushes V1 into V2

X*V Scales the vector with components in {T,Z,Y} by the factor in X. Result is left
in level V1

V<> _ _ Exchanges vector in V1 with the vector-register nn. Supports INDirect
addressing.

V<>A

Exchanges vectors in levels V1 and V2

VADST Calculates the distance between V1 and V2. Result is left in X-reg, with X-
component of v1 saved in LastX.

VANG Calculates the angle between V1 and V2. Result is left in X-reg, with X-
component of v1 saved in LastX.

VCHS

Changes sign of all components of v1. Original v1 is saved in LastV (V0).

VENTER^

Pushes v1 (in X,Y,Z-regs) into the V2 level (M,N,O-regs).

VIEWV

Sequentially shows the three components of vector v1

VINV

Replaces v1 with the inverse of its components. Original v1 is saved in V0.

VMOD Calculates the modulus of v1 = SQRT(Vx^2+Vy^2+Vz^2). Result is placed in
X-reg, with the x component saved in LastX.

VNORM Calculates the norm of v1 = (Vx^2+Vy^2+Vz^2). Result is placed in X-reg,
with the x component saved in LastX.

VRCL _ _ Recalls vector-register nn to V1 level, pushes v1 into V2 – and v2 is lost.
Supports INDirect addressing.

VSTO _ _

Stores v1 into vector-register nn. Supports INDirect addressing.

VUNIT Replaces v1 with its unitary vector, that is v = v1 / |v1|. Original v1 is placed
in LastV. V2 is unchanged.

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 131 of 148

VVIEW _ _ Sequentially views the components of vector-register nn. Supports INDirect
addressing.

V=0? Conditional test on the three components of v1 being zero. Returns YES/NO,
skips line in a program if FALSE.

V#0? Conditional test on at least one component of v1 not zero. Returns YES/NO,
skips line in a program if FALSE.

V=A? Conditional test on v1 being equal to v2. Returns YES/NO, skips line in a
program if FALSE.

V#A? Conditional test on v1 not equal to v2. Returns YES/NO, skips line in a program
if FALSE

Remember that of all these, only the prompting functions (with underscores next to the name) are
located in the main FAT – and the rest are sub-functions in the secondary FAT, therefore you need to
use V$ or V$ to execute them.

Example 1.-

Find the area of the triangle determined by the vectors v1 = (- 3, - 2, 2) and v2 = (- 2, 2, 3). Recall
that the area of the parallelogram determined by v1 and v2 equals the magnitude of v1 x v2.

The solution is half the magnitude of the cross product. Using the Vector functions:

Type Result
3, ENTER^, 2, ENTER^, 2, CHS, VENTER^ (-2, 2, 3)
2, ENTER^, 2, CHS, ENTER^, 3, CHS, AXV (10, -5, 10)
VMOD 15,000
2, / 7,500

Example 2.-

Resolve the following three loads along a 175-degree line. Use the dot product on the sum of the three
loads to do so. You will first need to convert the polar coordinates to rectangular coordinates.
Remember to set z=0.

Save the results for the polar coordinates of L3 and the 175°-line so that you can re-use them to find
the resolution (dot product) when L3 is doubled. This example stores those results in vector-registers 1
and 2.

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 132 of 148

The solution is the dot product of the resulting vector and the unit vector in the desired direction. Each
vector must be converted to rectangular coordinates, so here are the keystrokes:

Keystrokes Action Result
XEQ “DEG” Sets angular mode
0, ENTER^, 143, ENTER^, 170 L1 in polar coordinates
P-R rectangular (-135.768, 102.309, 0)
VENTER^ pushes it to V2
0, ENTER^, 62, ENTER^, 185 L2 in polar coordinates
P-R rectangular (86.852, 163.345, 0)
A+V, adds L1+L2 (-48.916, 265.654, 0)
VENTER^ pushes it to V2
0, ENTER^, 261, ENTER^, 100 L3 in polar coordinates
P-R rectangular (-15.643, -98.769, 0)
VSTO 01 saves L3
A+V, adds L1+L2+L3 (-64.559, 166,885, 0)
VENTER^ pushes it to V2
0, ENTER^, 175, ENTER^, 1 line polar coordinates
P-R rectangular (-0.996, 0.087, 0)
VSTO 02 saves unit vector
A*V calculates projection 78.859

Note that you need to execute VENTER^ at the end of each intermediate vector calculation, so the
result is placed in the V2 level (in registers M,N,O) and doesn’t get overwritten by the new vector
components being entered.

When the load L3 is doubled, since the sum [L1+L2+L3] is still in the level-2, we type:

Keys Action Result
V<>A brings L1+L2+L3 back to level-1
VRCL 01 pushes V1 into V2 and recalls L3 to V1
A+V adds L3 to the previous sum
VRCL 02 pushes V1 into V2 and recalls the line unit vector
A*V calculates the projection 85,834

There’s nothing surprising about the utilization of the vector functions, which use the same logic to
separate vector arguments as the complex numbers in the 41Z module (using ZENTER^); that you may
already be familiar with.

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 133 of 148

Coordinate transformations

The TR program performs three-dimensional translation of coordinates, with or without rotation. This
program uses parts of the VC program for vector operations. You can access TR either directly or from
VC.

The program prompts you for the coordinates of the origin of the new system (x0, y0, z0), the angle of
rotation of this system relative to the original system, and the axis about which the rotation is
performed. You can then enter points in the original system (x, y, z) that you want transformed to the
new system (x', y', z'), or enter points in the new system (x',y',z') that you want transformed to the
original system (x, y, z). For a two-dimensional case, enter z0 as zero.

A Two-Dimensional Rotation about the Axis (0, 0, 1)

After specifying the new origin (x, y, z), you specify the rotation angle. For a three-dimensional system
with a non-Zero angle of rotation, you also specify its rotation vector (a, b, c). The rotation vector
defines the axis about which the rotation is to be done; it can have any non-zero magnitude. Two-
dimensional transformations are handled as a special case of three-dimensional transformations with
(a, b, c) set to (0, 0, 1).

Equations

where:

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 134 of 148

Instructions

You can start TR either directly (XEQ “TR”) or from the Vector Calculator ([][C]) in VC. The Vector
Calculator is covered in the “Vector Operations” chapter.

Enter coordinates as rectangular coordinates and specify angles according to the current setting
(Degrees, Radians, or Grads mode).

• For two dimensions, input zero for the z-value.

• For pure translation, input zero for the rotation angle.

• For pure rotation, input zeros for x0, Y0, and z0

• The sign of the rotation angle is determined by the right-hand rule and the direction of the
rotation vector. For two dimensions, counter-clockwise rotation is considered positive.

• You can switch into and out of the Vector Calculator by pressing . ([][C] (“C” for Calculator
and Coordinate transformations). You can then perform vector operations upon vector
coordinates in the stack and in storage registers. (Refer to "Remarks' for the storage locations
of the vector coordinates.)

• The view function ([][E]) is very useful for reviewing the coordinates of the point in the
stack.

Once you have entered your variables, this menu shows you which key corresponds to which function
in TR. To restore this menu to the display at any time, press [J] if the USER annunciator is On. (If it is

not on, press USER to turn it on.) Or, if the calculator is displaying results, you can press R/S until the

menu appears. This will not disturb the program in any way.

To clear the menu at any time, press  . This shows you the contents of the X-register, but does not

end the program. You can perform calculations, and then continue the program by pressing [J].
(However, you do not need to clear the program's display before performing calculations.)

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 135 of 148

Instruction Table for TR

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 136 of 148

Remarks

This program uses local Alpha labels (as explained in the owner's manual for the HP-41) assigned to
keys [A], [B], [E], [][C]], and [J]. These local assignments are overridden by any User-key
assignments you might have made to these same keys, thereby defeating this program. Therefore be
sure to clear any existing User-key assignments of these keys before using this program, and avoid
redefining these keys in the future.

However, these local Alpha labels are active only while the USER annunciator is on. This allows you to
use the arithmetic functions in the top two rows while the USER annunciator is off. (As long as USER is
on, the keys mentioned above are redefined and will not execute their Normal functions.)

Data Storage. The vector or point you want to transform is stored in R00, R01, R02, which is vector-
storage register 0 (initially from the X-, Y-, and Z-registers). The rotation vector is stored in R03, R04,
R05, which is vector-storage register 1. The origin of the new system is stored in R06, R07, R08, which
is vector-storage register 2. The rotation angle is stored in R13, while R09 , R10, and R11 are used for
scratch.

If you will be using vector storage operations (VSTO, VRCL, and the Vector Calculator) along with TR,
keep in mind that TR uses R0-R13 when it is initialized (XEQ “TR”). This means you should not store
vectors in vector registers 1 through 4 (if you plan to use TR in your vector calculations).

Flags. Flag 01 is used to indicate whether the transformation is to be made to the new system or to
the original system. When flag 1 is set, the transformation is to the new system. Flag 05 is set when
the system is rotated.

Example 1.-

The coordinate systems (x, y) and (x', y') are shown below. Convert the points P1,' P2, and P3 to
equivalent coordinates in the (x', y') system. Convert the point P’4 to equivalent coordinates in the (x,
y) system.

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 137 of 148

Keystrokes Display Action
FIX 4 sets the display format used here.
XEQ “ TR” “” prompts for new origin
0, ENTER^, 4, CHS, ENTER^, 7 7.0000 components in stack
R/S “” prompts for angle of rotation
27, R/S “c,b,a ?” prompts for the rotation vector
R/S (2-dimensional) “” ready for P1
0, ENTER^, 7, ENTER, 9, CHS, -9.0000 components in stack
[A] (^N)  shows new components
  (in automated sequence)
 
R/S (optional) “” ready for P2
0, ENTER^, 4, CHS, ENTER^, 5, CHS -5.0000 components in stack
[A] (^N)  shows new components
  (in automated sequence)
    
R/S (optional) ““ ready for P3
0, ENTER^, 3.6, CHS, ENTER^, 2.7 2.7000 components in stack
[B] (^O)  shows old components
  (in automated sequence)
 

Example 2.-

A three-dimensional coordinate system is translated to (2.45, 4.00, 4.25). After the translation, a 62.5
degree rotation occurs about the (0, - 1, - 1) axis. In the original system, a point had the coordinates
(3.9, 2.1, 7.0). What are the coordinates of the point in the translated, rotated sytem?

Keystrokes Display Action
[J] “ retrieves menu (if USER is on)
[E] (NEW) “” prompts for new origin
4.25, ENTER^, 4, ENTER, 2.45 2.4500 components in stack
R/S “” prompts for angle of rotation
62.5, R/S “” prompts for the rotation vector
1, CHS, ENTER^, ENTER^, 0 0.0000 components in stack
R/S ““ ready for P
7, ENTER^, 2.1, ENTER^, 3.9 3.90000 components in stack
[A] (^N)  shows old components
  (in automated sequence)
 

Programming Information

The subroutine CT can be used in your own programs. It performs coordinate transformations
(rotations and translations) in three dimensions. It takes the x- , y-, and z-values from the stack
(X-, Y-, and Z-registers) and transforms them to another system, or from the new system to
the original system.

Comments. To use CT, load the translation vector (T), the unit rotation vector (N), and the
rotation angle, set flag 01 to go to the new system or clear flag 01 to go to the original
system. Set flag 05 to rotate the vector’s coordinates (P). The result is returned to the X-, Y-, and Z-
registers and in R1, R02 and R03.

Note that CT is located in the secondary FAT, thus it requires V$ (or V#) to run.

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 138 of 148

Program listings

As you can see by comparing it to the original programs the code length is drastically reduced – and
the program clarity is also much improved, with a very intuitive structure behind all functionality.

01 LBL "3VC" 34 LBL a

02 CF 04 35 A+V

03 LBL J 36 GTO 05

04 CF 21 37 LBL b

05 SF 27 38 A-V

06 EXSCR 39 LBL 05

07 "DP CP a M UV" 40 FS? 04

08 AVIEW 41 GTO J

09 EXSCR 42 LBL e

10 STOP 43 VIEWV
11 VENTER^ 44 STOP

12 GTO J 45 GTO J

13 LBL d 46 LBL B

14 VADST 47 AXV

15 EXSCR 48 GTO 05

16 "|V-A|" 49 LBL H
17 LBL 02 50 VSTO

18 "=" 51 GTO J

19 ARCL X 52 LBL I

20 AVIEW 53 VRCL
21 EXSCR 54 GTO 05

22 STOP 55 LBL A

23 GTO J 56 A*V

24 LBL c 57 EXSCR

25 XROM "TR" 58 "V*A"

26 LBL C 59 GTO 02

27 VANG 60 LBL E

28 EXSCR 61 VUNIT

29 "VA<)" 62 GTO 05

30 GTO 02 63 LBL D

31 LBL F 64 VMOD

32 V<>A 65 EXSCR

33 GTO J 66 "|V|"

67 GTO 02

68 END

01 LBL "TR" 48 LBL "CT"

02 SIZE? 49 FC? 01

03 14 50 GTO 02

04 X>Y? 51 VRCL

05 PSIZE 52 2

06 LBL E 53 A-V

07 CF 27 54 FC? 05

08 "Z0,Y0,X0 ?" 55 RTN

09 PROMPT 56 LBL 02

10 VSTO 57 FC? 05

11 2 58 GTO 01

12 CLX 59 VSTO

13 "ROT<)?" 60 VRCL

14 PROMPT 61 1

15 CF 05 62 AXV

16 X=0? 63 RCL 13

17 GTO 00 64 FC? 01

18 SF 05 65 CHS

19 STO 13 66 SIN

20 CLST 67 X*V

21 E 68 E

22 X<> Z 69 STO 12

23 "c,b,a ?" 70 RDN

24 PROMPT 71 VRCL

25 VUNIT 72 RCL 13

26 VSTO 73 COS

27 1 74 ST- 12
28 LBL J 75 X*V

29 LBL 00 76 A+V

30 SF 27 77 VSTO

31 SF 21 78 3

32 CF 01 79 VRCL

33 "^N ^O NEW" 80 1

34 PROMPT 81 VRCL
35 GTO 00 82 A*V

36 LBL c 83 ST* 12

37 XROM "3VC" 84 V<>A

38 LBL A 85 RCL 12

39 SF 01 86 X*V

40 GTO 03 87 VRCL
41 LBL B 88 3

42 CF 01 89 A+V

43 LBL 03 90 FS? 01

44 XROM "CT" 91 RTN

45 LBL e 92 LBL 01

46 VIEWV 93 VRCL

47 GTO 00 94 2
95 A+V

96 END

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 139 of 148

Calculating 2D and 3D Distances: The DST Launcher

A few example programs in the module illustrate the convenience of using an abstraction layer to
handle vector expressions – without having to worry about their individual components. The net result
is shorter, neater programs with higher-level structure, devoid of all those multiple STOnn / RCLnn
statements so common otherwise – and therefore much easier to understand and debug.

The functions included in this group are as follows:

Elements 3D 2D N-Dim

Point-Point VADST PP2 DOTN

Point-Line “PL3” PL2 -

Point-Plane “PPL3” - -

Line-Line “LL3” - -

For further convenience these functions are grouped together in its own launcher, DST – which is

accessed either by pressing XEQ at the “V:” or “P:” prompts; or by pressing USER at any of the

three prompts. Once invoked, you can toggle the 2D and 3D cases with the [SHIFT] key, whereby
changing the displayed choices accordingly. Note also the usage of the user flags annunciators 2/3 to
denote the corresponding case (where the Shifted screen is for the 2D case).

 < --- >

Note that VCT and TR are shortcuts for the Advantage’s Vector Calculator and Coordinate
Transformation programs described before. The formulas used are as follows.-

2D Point-to-Point distance:

Where the points are given by P(p1,p2) and Q(q1,q2).
Enter q2, q1, p2, p1 in the stack; then execute PP2. The result is left in the X-register.

Example: The distance between points M(1,2) and N(3,4) is:

4, ENTER^, 3, ENTER^, 2, ENTER^, 1, V$ “PP2” ->  

2D Point-to-Line distance:

where the line is given by the equation Y= mx+k, and the point is P(x1,y1).

Enter m,p,y1,x1 in the stack; then execute PL2. The result is left in the X-register.

Example: The distance from the point M(2,5) and the line y= 3x + 4 is:

3, ENTER^, 4, ENTER^, 5, ENTER^, 2, V$ “PL2” --> 

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 140 of 148

3D Point-to-Point distance.

Where the points components are P(p1, p2, p3) and Q(q1, q2 ,q3).
Use VENTER^ to separate v1 and v2 in the vector stack; then use VADST.

Example: verify that the distance between points P(1,2,3) and Q(-1,-2,-3) is the double of the
magnitude of any of them.

3, ENTER^, 2, ENTER^, 1, VENTER^, VCHS, VADST --> 
3, ENTER^, 2, ENTER^, 1, VMOD, 2, * --> 

3D point-to-line distance: d = || UxAM || / || U ||

Where the point is M(x,y,z) and the line is determined by its anchor point A(a,b,c) and unit vector
U(u,v,w). The program PL3 will prompt for the components of A, M, and U.

Example: L: is defined by the point A(2,3,4) & the vector U(1,4,9) and M(2,5,3)

XEQ “ PL3” “”
3, ENTER^, 5, ENTER^, 2, R/S “”
4, ENTER^, 3, ENTER^, 2, R/S “”
9, ENTER^, 4, ENTER^, 1, R/S 

3D Point-to-Plane distance. For a plane given by (ax + by + cz + d) = 0, and a point (x1, y1, z1)
not necessarily lying on the plane, the shortest distance from to the plane is:

The program PPL3 will prompt for the components,
leaving the result in the X-register.

Example: P: 2x + 3y + 5z = 9 and M(4,6,1)

XEQ “PPL3” “”
9, ENTER^, 5, ENTER^, 3, ENTER^, 2, R/S ““
1, ENTER^, 6, ENTER^, 4, R/S 

3D Line-to-Line distance. d = | (UxU').AA' | / || UxU' ||

For a line L determined by one point A(a,b,c) and one direction vector U(u,v,w) , and another line L'
determined by its anchor point A'(a',b',c') and one direction vector U'(u',v',w'). The program LL3 will
prompt for the different components, leaving the result in the X-register.

Example: (L) is defined by A(2,3,4) & U(1,4,7), and (L') is defined by A'(2,1,6) & U'(2,9,5)

XEQ “LL3” “ ”
6, ENTER^, 1, ENTER^, 2, R/S “”
4, ENTER^, 3, ENTER^, 2, R/S “ ”
5, ENTER^, 9, ENTER^, 2, R/S “”
7, ENTER^, 4, ENTER^, 1, R/S 

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 141 of 148

The programs are shown below – really simple when the right functions are used.

01 LBL "PL3" 30 XEQ 02

02 "^M=?" 31 AXV

03 XEQ 01 32 VUNIT

04 XEQ 02 33 VRCL (00)

05 VUNIT 34 A*V
06 AXV 35 GTO 05

07 VMOD 36 LBL "PPL3"

08 GTO 05 37 "^PL=?"

09 LBL 01 38 PROMPT

10 PROMPT 39 R^

11 VENTER^ 40 STO 00
12 EXSCR 41 RDN

13 "^A=?" 42 VENTER^

14 PROMPT 43 EXSCR

15 EXSCR 44 "^M=?"
16 A-V 45 PROMPT

17 RTN 46 EXSCR

18 LBL 02 47 A*V
19 VENTER^ 48 ST- 00

20 EXSCR 49 V<>A

21 "U^=?" 50 VMOD

22 PROMPT 51 ST/ 00
23 EXSCR 52 X<> 00

24 RTN 53 LBL 05

25 LBL "LL3" 54 ABS

26 XEQ 01 55 "d="
27 VSTO (00) 56 ARCL X

28 "^U'=?" 57 AVIEW

29 PROMPT 58 END

Coordinate Conversions – SandMath Module.

Functions R-S and its inverse S-R will convert rectangular to spherical coordinates and back. The

convention used is shown in the figure below, with the azimuth angle (theta) measured in the XY plane
between the X-axis and the projection of the vector S -, and the Zenith angle (phi) measured from the
Z-axis to the vector the radius P. The calculations are made using the internal [TOPOL] and [TOREC]
OS routines, same ones used for the native P-R and R-P functions.

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 142 of 148

N-dimensional Vector Operations { DOTN , V*VN }

DOTN is an all-MCODE implementation of a n-dimensional vector dot (scalar) product, the norms of
each operand and the angle between them. Originally written by JM Baillard, the input parameters are
the control words for each vector in registers X and Y (more about this later), and the result values are
placed in the stack.

Obviously the vector components must be input in the appropriate registers, which you can do using
any of the available input programs available in the SandMatrix – will be seen with detail in the
polynomial section later in the manual. Incidentally the code for DOTN is located in the second bank of
the lower page – taking advantage of the available room after the removal of the digital functions.

Example. Calculate the scalar product of vectors U(2,3,7,1) and V(3,1,4,6), storing their components
in registers {R01 - R04} for U, and {R06 - R09} for V.

For the data input we have several choices; here we’ll Use the PMTP function seen before, just
pretending the vector components are analogous to polynomial coefficients (which is irrelevant to the
actual inner workings of PMTP).

1.004, XEQ “PMTP” -> “R1: _”, we type: 2, ENTER^, 3, ENTER^, 7, ENTER^, 1, R/S
6.009, XEQ “PMTP” -> “R6: _”, we type: 3, ENTER^, 1, ENTER^, 4, ENTER^, 6, R/S

Re-entering the control codes in X, and Y (if not already there) we execute the function, which returns:

V$ “DOTN” -> 43, see table below for all the available data.

STACK INPUTS OUTPUTS Results

T / µ 46.52626239°

Z / || U || 7.874007874

Y bbb.eee(U) || V || 7.937253933

X bbb.eee(V) U.V 43,000000

L / cos µ

This is a good example of Jean-Marc’s very complete and economical programming. Needless to say it
executes at blazing light speed, as you would expect from an MCODE routine like this.

Note: The SandMath module includes functions IN and OUT in the auxiliary FAT (therefore you’d need
to use F$ to execute them) that can be used for data entry in the n-dimensional case, as follows:

IN / OUT, sequentially enter data or review a block of registers:

• Enter the initial register index for IN, then proceed with all required entries and terminate
with a “blank” R/S to end the sequence.

• Input the control word in X in the form bbb.eee, and OUT will display all registers
sequentially. Use flag 21 to control the display prompt (set) or not (clear).

Initially keeping track of the different sub-function launchers can be a bit challenging , but easy enough
to remember that it’s just two of them: F$ in the SandMath and V$ in the SandMatrix (or their

corresponding index-based counterparts F# and V#)

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 143 of 148

The alternative – Vectors as Matrices.

V*VN performs the same tasks (n-dimensional vector dot product) but using a different approach:
treating the vectors as column matrices it simply uses M*M to calculate the result, multiplying the first
operand vector by the transpose of the second operand vector. All data input/output are driven under
program control. The execution time is longer than DOTN, trading so convenience for speed.

To appreciate the workings of V*VN you need to consider that it transposes V2 before doing the
multiplication, and that it calculates the Frobenius norms of each matrix on the fly to obtain the angle.
The dot product is placed in a 1x1 matrix named “V*V” in X-Mem.

Here’s the listing of the program that clearly shows all the housekeeping chores required to prepare the
strings needed in ALPHA for the matrix functions as input. Even if it’s somehow slower and less
efficient, it’s a good “academic example” of utilization of the standard matrix functions.

01 LBL "V*V" 31 FNRM

02 FS? 06 subroutine use? 32 /

03 GTO 00 yes, skip data entry 33 "V2"

04 -SNDMTRX 4 prompts "ORDER=?" 34 FNRM

05 STOP 35 /
06 INT 36 ACOS

07 "V1" 37 X<>Y

08 MATDIM 38 "V<)="
09 XEQ 05 V1 data input 39 ARCL Y

10 DIM? 40 PROMPT show angle

11 "V2" 41 RTN

12 MATDIM 42 LBL 05

13 XEQ 05 V2 data input 43 3

14 LBL 00 44 X<>F

15 "V*V" 45 0
16 CLX 46 MSIJA position pointer

17 MATDIM 47 LBL 04

18 "V1" 48 "c"
19 TRNPS 49 MRIJ

20 "|-,V2,V*V" 50 MP

21 M*M 51 MR

22 ASHF 52 ARCLX

23 0 53 "|-?"

24 MSIJA position pointer 54 PROMPT
25 MR recall element 55 MS

26 ENTER^ 56 I+

27 "|-=" 57 FC? 10 reached the end?

28 ARCL X 58 GTO 04 no, loop back
29 PROMPT show result 59 MNAME?

30 "V1" 60 END

The usage of user flag 06 determines whether the program is used as a subroutine – in which case the
data entry is skipped. This is more or less consistently done throughout the SandMatrix module, and
has the benefit of saving one entry in the FAT – which would be needed for the subroutine label.

Line 4 uses the header function “-SNDMTRX 4”, which in program mode adds the text “ORDER=?” to
the display (not ALPHA). This saves bytes and keeps the contents of ALPHA unchanged.

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 144 of 148

Note: - Functions EV3 and PF>X are handy companions to the main programs EV3X3 and PRMF
respectively. They’ve been placed in this section of the auxiliary FAT purely on a convenience basis, to
make room in the main FAT for other more relevant functions – so they’re available using the sub-
function launchers VL$ or VL#. Refer to the corresponding sections in the manual for usage

instructions and details.

Remember to always check Jean-Marc Baillard’s pages on these and related subjects, really a treasure
trove of solid programs you can use. In particular, the Euclidean distances and the Vector products:

http://hp41programs.yolasite.com/distance.php
http://hp41programs.yolasite.com/dotcross.php

Appendices.

Note: Make sure that revision “R” (or higher) of the Library#4 module is installed.

http://hp41programs.yolasite.com/distance.php
http://hp41programs.yolasite.com/dotcross.php

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 145 of 148

Appendix M.- MCODE listings for LU? And ^MROW .

There are a few new M-Code functions in the SandMatrix that make direct usage of the module’s
subroutines. A representative example is given below, showing the very short routine LU? – that checks
whether the matris is in its decomposed form – simply by reading the appropriate digit in the matrix
header register.

1 LU? Header A5FA 0BF "?"

2 LU? Header A5FB 015 "U"

3 LU? Header A5FC 00C "L"

4 LU? LU? A5FD 379 PORT DEP: Jumps to Bank_2

5 LU? A5FE 03C XQ adds "4" to [XS]

6 LU? A5FF 1D9 ->A5D9 [LNCH0]

7 LU? A600 388 <parameter> B788

8 LU? A601 00B JNC +01

9 LU? A602 100 ENROM1 restore bank-1

10 LU? A603 0B0 C=N ALL header register

11 LU? A604 25C PT= 9 LU digit

12 LU? A605 2E2 ?C#0 @PT

13 LU? A606 0B9 ?NC GO False

14 LU? A607 05A ->162E [SKP]

15 LU? A608 065 ?NC GO True

16 LU? A609 05A ->1619 [NOSKP]

Lastly, and just in case you though that functions PMTM and PMTP are actually not a big deal (which
would be the logical conclusion if you only look at their FOCAL program listing) – here is in all its gory
detail the listing for its MCODE-heart, function ^MROW.

I’ll spare you the more onerous details, but suffice it to say that it was an involved assignment. And
don’t forget that another function is also used to support the matrix prompt mode: ANUMDL – although
in this case I just had to copy HP’s code from the HP-IL Development Module (thanks HP! :-)

1 ^MROW Header B658 097 "W"

2 ^MROW Header B659 00F "O"

3 ^MROW Header B65A 012 "R" Input Matrix Row

4 ^MROW Header B65B 00D "M"

5 ^MROW Header B65C 01E "^" Ángel Martin

6 ^MROW ^MROW B65D 0C4 CLRF 10 start anew: no CHS yet

7 ^MROW B65E 184 CLRF 11 start anew: no commas yet

8 ^MROW B65F 344 CLRF 12 start anew: no digits yet

9 ^MROW B660 0F8 READ 3(X)

10 ^MROW B661 070 N=C ALL

11 ^MROW B662 345 ?NC XQ Clears Alpha
12 ^MROW B663 040 ->10D1 [CLA]

13 ^MROW B664 215 ?NC XQ Build Msg - all cases

14 ^MROW B665 0FC ->3F85 [APRMSG2]

15 ^MROW B666 212 "R"

16 ^MROW B667 0B0 C=N ALL row number in BCD format
17 ^MROW B668 37C RCR 12 move the MSB to C{0)

18 ^MROW B669 21C PT= 2

19 ^MROW B66A 010 LD@PT- 0
20 ^MROW B66B 2D0 LD@PT- B add colon to digit

21 ^MROW B66C 3E8 WRIT 15(e) write it in display (9-bit)

22 ^MROW B66D 355 ?NC XQ blank space to LCD
23 ^MROW B66E 03C ->0FD5 DSPL20

24 ^MROW B66F 33D ?NC GO Input List in Alpha
25 ^MROW B670 112 ->44CF [ALIST]

Not such a big deal, you keep saying? Well, let’s have a look at the remaining part in the Libary#4

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 146 of 148

1 ALIST BCKARW 44CD 055 ?NC GO Delete char plus logic

2 ALIST 44CE 116 ->4515 [DELCHR]

3 ALIST ALIST 44CF 115 ?NC XQ Partial Data Entry!

4 ALIST 44D0 038 ->0E45 [NEXT1]

5 ALIST 44D1 3E3 JNC -04 [BCKARW]

6 ALIST 44D2 00C ?FSET 3 numeric input?

7 ALIST 44D3 093 JNC +18d NO, KEEP LOOKING

8 ALIST 44D4 0BE A<>C MS recall LS digit from A[13]

9 ALIST 44D5 130 LDI S&X

10 ALIST 44D6 003 CON: pre-load the numeric mask

11 ALIST 44D7 2FC RCR 13 move it to C[S&X]

12 ALIST 44D8 3E8 WRIT 15(e) write it in display (9-bit)

13 ALIST 44D9 348 SETF 12 enable SPACE

14 ALIST TOALPH 44DA 39C PT= 0

15 ALIST 44DB 058 G=C @PT,+

16 ALIST 44DC 149 ?NC XQ Disable PER, enable RAM

17 ALIST 44DD 024 ->0952 [ENCP00]

18 ALIST 44DE 051 ?NC XQ

19 ALIST 44DF 0B4 ->2D14 [APNDNW]

20 ALIST GOBACK 44E0 042 C=0 @PT

21 ALIST 44E1 058 G=C @PT,+ reset PTEMP bits

22 ALIST 44E2 3D9 ?NC XQ Enable Display (not cleared)

23 ALIST 44E3 01C ->07F6 [ENLCD]

24 ALIST ANCHOR1 44E4 35B JNC -21d ONE PROMPT

25 ALIST 44E5 28C ?FSET 7 decimal key pressed?

26 ALIST 44E6 03B JNC +07 NO, KEEP LOOKING

27 ALIST 44E7 18C ?FSET 11 been used already?

28 ALIST 44E8 3E7 JC -04 ONE PROMPT

29 ALIST 44E9 188 SETF 11 no more radix (unless deletion)

30 ALIST 44EA 10D ?NC XQ adds proper radix sign

31 ALIST 44EB 114 ->4543 [RADIX4]

32 ALIST ANCHOR2 44EC 373 JNC -18d [TOALPH]

33 ALIST 44ED 0B0 C=N ALL PRESSED KEY CODE

34 ALIST 44EE 106 A=C S&X

35 ALIST 44EF 130 LDI S&X

36 ALIST 44F0 030 CON: ENTER^ keycode [030]

37 ALIST 44F1 366 ?A#C S&X

38 ALIST 44F2 04F JC +09

39 ALIST 44F3 34C ?FSET 12 digits input already?

40 ALIST ANCHOR1 44F4 383 JNC -16d ONE PROMPT

41 ALIST 44F5 0C4 CLRF 10 clear CHS flag

42 ALIST 44F6 184 CLRF 11 al low RADIX

43 ALIST 44F7 344 CLRF 12 set SPACE flag

44 ALIST 44F8 355 ?NC XQ add space to LCD

45 ALIST 44F9 03C ->0FD5 [DSPL20]

46 ALIST 44FA 393 JNC -14d add to Alpha

47 ALIST 44FB 130 LDI S&X

48 ALIST 44FC 370 CON: R/S keycode [370]

49 ALIST 44FD 366 ?A#C S&X terminate digit entry

50 ALIST 44FE 07B JNC +15d [WAYOUT]

51 ALIST 44FF 130 LDI S&X

52 ALIST 4500 230 CON: CHS keycode [230]

53 ALIST 4501 366 ?A#C S&X

54 ALIST 4502 023 JNC +04

55 ALIST 4503 265 ?NC XQ Blink Display - pass #2

56 ALIST 4504 020 ->0899 [BLINK1]

57 ALIST 4505 37B JNC -17d ONE PROMPT

58 ALIST 4506 0CC ?FSET 10 been used already?

59 ALIST 4507 3F7 JC -02 ONE PROMPT

60 ALIST 4508 0C8 SETF 10 first time

61 ALIST 4509 130 LDI S&X

62 ALIST 450A 02D "-" appends "-"

63 ALIST 450B 3E8 WRIT 15(e) 9-bit LCD write

64 ALIST 450C 303 JNC -32d [TOALPH]

65 ALIST WAYOUT 450D 3DD ?NC XQ Left-justify LCD

66 ALIST 450E 0AC ->2BF7 [LEFTJ]

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 147 of 148

67 ALIST 450F 161 ?NC XQ Clear LCD and reset things

68 ALIST 4510 124 ->4958 [EXIT3]

69 ALIST 4511 175 ?NC XQ Adjust F10 Status

70 ALIST 4512 114 ->455D [ADJF10]

71 ALIST 4513 31D ?NC GO Normal Function ReturnKB

72 ALIST 4514 002 ->00C7 [NFRKB]

73 ALIST DELCHR 4515 3B8 READ 14(d) to delete rightmost chr

74 ALIST 4516 158 M=C ALL save it for later

75 ALIST 4517 149 ?NC XQ Disable PER, enable RAM

76 ALIST 4518 024 ->0952 [ENCP00]

77 ALIST 4519 178 READ 5(M)

78 ALIST 451A 2EE ?C#0 ALL anything in Alpha?

79 ALIST 451B 037 JC +06 yes, go on

80 ALIST 451C 104 CLRF 8 no, abort if empty

81 ALIST 451D 1B1 ?NC XQ Mainframe Message

82 ALIST 451E 070 ->1C6C [MSGA]

83 ALIST 451F 03C "NULL" from table

84 ALIST fixed bug 4520 37B JNC -17d Reset everything and leave

85 ALIST 4521 2E5 ?NC XQ remove last Alpha char

86 ALIST 4522 110 ->44B9 [ABSP4]

87 ALIST 4523 198 C=M ALL recall deleted char value

88 ALIST 4524 106 A=C S&X store in A for comparisons

89 ALIST 4525 130 LDI S&X check for SPACE

90 ALIST 4526 020 "space" <space>

91 ALIST 4527 0AD ?NC XQ complete the logic

92 ALIST 4528 114 ->452B [CHUNK4]

93 ALIST 4529 381 ?NC GO repeat the prompt

94 ALIST 452A 112 ->44E0 [GOBACK]

95 ALIST CHUNK4 452B 366 ?A#C S&X carry if different

96 ALIST 452C 01F JC + 03

97 ALIST 452D 348 SETF 12 allow new space entry

98 ALIST 452E 0A3 JNC +20d BAIL OUT

99 ALIST 452F 130 LDI S&X check for "-" chr

100 ALIST 4530 02D "-" "-" char value

101 4531 366 ?A#C S&X carry if not "-"

102 Executed within [DELCHR] 4532 02F JC + 05

103 an opportunistic routine 4533 34C ?FSET 12 is there SPACE chr?

104 just grouping common code 4534 017 JC +02

105 4535 0C4 CLRF 10 allow new "-" entry

106 ALIST 4536 063 JNC +12d BAIL OUT

107 ALIST 4537 198 C=M ALL recall deleted char value

108 ALIST 4538 3D8 C<>ST XP Got a radix? If so, we neet to

109 ALIST 4539 14C ?FSET 6 replace it without comma

110 ALIST 453A 043 JNC +08

111 ALIST 453B 3D9 ?NC XQ Enable Display (not cleared)

112 ALIST 453C 01C ->07F6 [ENLCD]

113 ALIST 453D 144 CLRF 6 remove the radix value

114 ALIST 453E 284 CLRF 7 (both if need be)

115 ALIST 453F 3D8 C<>ST XP recall deleted char value

116 ALIST 4540 3E8 WRIT 15(e) write i t in display

117 ALIST 4541 184 CLRF 11 Re-allow comma writing

118 ALIST 4542 3E0 RTN

119 ALIST RADIX4 4543 149 ?NC XQ Disable PER, enable RAM

120 ALIST 4544 024 ->0952 [ENCP00]

121 ALIST 4545 3B8 READ 14(d) put F28 to F9

122 4546 2BC RCR 7

123 transfer staus of UF28 to F9, 4547 248 SETF 9

124 adds the converted crh code 4548 1EE C=C+C ALL comma or period ?

125 to the LCD and prepares ALPHA 4549 013 JNC +02 overflows if COMMA (cf28)

126 454A 244 CLRF 9 comma = CF 28

127 ALIST 454B 3D9 ?NC XQ Enable Display (not cleared)

128 ALIST 454C 01C ->07F6 [ENLCD]

129 ALIST 454D 3B8 READ 14(d) read right

130 ALIST 454E 3D8 C<>ST XP

131 ALIST 454F 148 SETF 6

132 ALIST 4550 24C ?FSET 9 comma or period ?

133 ALIST 4551 013 JNC +02

134 ALIST 4552 288 SETF 7 should replace the last chr

135 ALIST 4553 3D8 C<>ST XP with the same one w/ radix

136 ALIST 4554 3E8 WRIT 15(e) 9-bit LCD write

137 ALIST 4555 130 LDI S&X

138 ALIST 4556 02C "," appends "," [02C]

139 ALIST 4557 24C ?FSET 9

140 ALIST 4558 360 ?C RTN no need, return

141 ALIST 4559 226 C=C+1 S&X

142 ALIST 455A 226 C=C+1 S&X appends "." [02E]

143 ALIST 455B 3E0 RTN

SandMatrix_4 Manual - Revision “5Y+”

(c) Ángel M. Martin January 2021 Page 148 of 148

The End.

This concludes the SandMatrix Manual – Hope you have found it useful and interesting enough to keep
as a reference. Better yet, go ahead and write a few more functions on your own. A few suggestions
are:

- Program to calculate Eigenvectors from Eigenvalues
- General-purpose p-th. root of a matrix
- General-purpose Logarithm of a matrix
- Extended-memory support for Polynomial files
- Anything else you feel like going for!

Note: Make sure that revision “R” (or higher) of the Library#4 module is installed.

