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HP-41 Module: 

Areas, Series & Sums. 
 

 

Overview 
 
This module includes a selection of functions and FOCAL routines mainly focused on Series and Sums field 

and other related subjects. For the most part the routines are taken from Jean-Marc Baillard extensive web 
site, although some others are taken from Poul Kaarup’s collection as well. A few are already available in the 

SandMath Module –even if this version is a more portable implementation that suits itself better for Clonix or 
NoVRAM owners.   

The initial section of the module covers the simple sums of integers and integer powers. This is followed by 
simple explicit sums for single, double, triple and multiple series; recursive term sums and Euler 

transformations. Examples are also provided in the FAT for quick familiarization. The second section includes 
a set of MCODE functions and FOCAL routines dealing with area calculations for several geometric figures, 
such as circles and triangles, as well as areas and diagonal lengths of cyclic and regular polygons. 

Without further ado, see below the list of functions included in the module: 

XROM  Function  Description Input Author 

18,00 -SERIES 1A Section header n/a Ángel Martin 

18,01 CHSYX Sign Change of Y by X:  Y*(-1)^X Value in Y, n in X Ángel Martin 

18,02 NCK Combinations of N in sets of K n in Y, k in X Ángel Martin 

18,03 NPK Permutations of N in sets of K n in Y, k in X  Ángel Martin 

18,04 0 Sum of mantissa digits argument, X Poul Kaarup 

18,05 1 Sum of first N integers argument, X Poul Kaarup 

18,06 1/N Harmonic Numbers argument, X Ángel Martin 

18,07 2 Sum of Squares of Numbers argument, X Poul Kaarup 

18,08 3 Sum of Cubes of Numbers argument, X Poul Kaarup 

18,09 N^X Generalized Faulhaber’s Sum N in Y, exponent In X Ángel Martin 

18,10 UM Single Series Sum (Explicit) arguments in X, Y, ALPHA  Ángel Martin 

18,11 UM Double Series Sum (Explicit) argument in X, ALPHA Ángel Martin 

18,12 UM Triple Series Sum (Explicit) arguments in Y,X, ALPHA Ángel Martin 

18,13 "UME Euler Transformation argument in X, Y, Z, ALPHA JM Baillard 

18,14 "UMR” Single Series Sum (Iterative) arguments in X, Y, ALPHA JM Baillard 

18,15 “NUM0” Multiple Series Sum (Explicit) bbb.eee in X, data in registers JM Baillard 

18,16 FNRM Finite Nested Radical order m m in Y, n in X  Ángel Martin 

18,17 INRM Infinite Nested Radical order m m in Y, n0 in X  Ángel Martin 

18,18 PRODX Infinite Product w. argument X in X, n0 in Y Ángel Martin 

18,19 XQRTN XQ Return to MCODE Auxiliary function Martin-McClure 

18,20 X#YR? Compares rounded X and Y YES/NO Skips if false  Ángel Martin 

18,21 "NS” Example for NUM0 n/a Martin-Baillard 

18,22 "S” Example for UM n/a Martin-Baillard 

18.23 "SE” Example for UME n/a Martin-Baillard 

18.24 "SR” Example for UMR n/a Martin-Baillard 
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18.25 "SS” Example for UM n/a Martin-Baillard 

18.26 "SSS” Example for UM n/a Martin-Baillard 

18.27 “SIG1 Single Series Sum (Explicit) n0 in X, name in ALPHA  JM Baillard 

18.28 “SIG2 Double Series Sum (Explicit) (n0, k0) in X,Y, name in ALPHA  JM Baillard 

18.29 “SIG3 Triple Series Sum (Explicit) (n0, k0, m0) in X,Y,Z;  ALPHA  JM Baillard 

18.30 STK>PT Stack to Pointers Decimal Data in Stack  Ángel Martin 

18.31 PT>STK Pointers to Stack Binary Pointers in R00 Ángel Martin 

18.32 -AREAS_1B Section Header n/a  Ángel Martin 

18.33 AINT ALPHA Integer Part X in X Fritz Ferwerda 

18.34 BRHM Brhamagupta formula 4 Sides in stack Ángel Martin 

18.35 CIRCLE Circle through three points Coordinates in R01-R06 Ángel Martin 

18.36 DIAG Diagonal formula Used in CPLD  JM Baillard 

18.37 HERON Heron formula Triangle sides in Z, Y, Z Ángel Martin 

18.38 RPG1 Regular Polygon from sides # sides in Y, length in X  Poul Kaarup 

18.39 RPG2 Regular polygon from circle # sides in Y, radius in X  Poul Kaarup 

18.40 "3PNTS” Driver for CIRCLE/Areas Prompts for coordinates  Ángel Martin 

18.41 "CCPA” Complex Cyclic Polygon Area Parameters in stack and R00  JM Baillard 

18.42 "CCPA+” Driver for CCPA Uses Newton Method  Ángel Martin 

18.43 "CPLA” Complex Cyclic Polygon Area With all Sides known  JM Baillard 

18.44 "CPLA+” Driver for CPLA Uses SOLVE  Ángel Martin 

18.45 "CPLD” Complex Cyclic Polyg. Diagonals bbb.eee in X, data in Registers  JM Baillard 

18.46 "CPLD+ Driver for CPLD Prompts for data entry  Ángel Martin 

18.47 “PGA Polygon Areas w/ Point Coordinates  Poul Kaarup 

18.48 "STLA” Star Polygon Area Parameters in Stack  JM Baillard 

18.49 "STLA+” Driver for STLA Prompts for data entry  Ángel Martin 

18.50 “#” Auxiliary for SOLVE Under program control  Ángel Martin 

18.51 “TRIA Driver for ABC Prompts for values  Ángel Martin 

18.51 “ABC Triangle Solver Three knowns in stack  JM Baillard 

18.53 “TRIH Driver for HABC Prompts for values  Ángel Martin 

18.54 “HABC Hyperbolic Triangles Three knowns in stack  JM Baillard 

18.55 “TRIS Driver for SABC Prompts for values  Ángel Martin 

18.56 “SABC Spherical Triangles Three knowns in stack  JM Baillard 

18.57 “OUT Output Registers Bbb.eee in X Ángel Martin 

18.58 SINH Hyperbolic Sine argument, X Ángel Martin 

18.59 COSH Hyperbolic Cosine argument, X Ángel Martin 

18.60 TANH Hyperbolic Tangent argument, X Ángel Martin 

18.61 ASINH Hyperbolic ASIN argument, X Ángel Martin 

18.62 ACOSH Hyperbolic ACOS argument, X Ángel Martin 

18.63 ATANH Hyperbolic ATAN argument, X Ángel Martin 
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1 –Sums and Series 

The first section includes several functions to calculate sums of integer powers, as well as simple methods to 
sum series given their general term in explicit or recurrent form. 

 

• 0   Is a small divertimento useful in pseudo-random numbers generation. It simply returns the 

sum of the mantissa digits of the argument – at light-blazing speed using just a few MCODE 

instructions. More about random numbers will be covered in the Probability/Stats section later on. 
 

Example: calculate the sum of all digits of the HP-41’s rendition of pi: 
 

  PI, XEQ “0”   =>  40.000000000 

 

• 1/N  Calculates the Harmonic number of the argument in X, that is the sum of the reciprocals of 

the natural numbers (which excludes zero) lower and equal to n. It will be used in the calculation of 

the Kelvin functions and the Bessel functions of the second kind, K(n,x) and Y(n,x).  

 

 

 
 

 Example: calculate H(5) and H(25).  
 

  5, XEQ “1/N”  =>  2.283333333 

  25, XEQ “1/N”  =>  3.815958178 

 
 

• 12 Are implemented to calculate the sum of integer powers directly based on the 

corresponding formulas. The number of terms to sum is expected to be in the X- register. Functions 
calculate the linear sum using the triangular formula; the sum of squares using the pyramidal 

formulas; and the sum of cubes also using the pyramidal formulas. 



 


 




Example: Calculate the sum of the first 10 natural numbers and their squares and cubes: 

 

10, 1 quickly returns: 55.00000000 

LASTX, 2”   => 385.0000000  

LASTX, 3  => 3,025.000000 

 
 

 

• N^X   Calculates a generalized value of the Faulhaber’s formula for integer values of x. – The 

few first integer values of x have explicit formulas for the result (which are used in the functions 

described above), but that’s not the case for a general value - which can also be non-integer. 

Obviously for x=-1 this function returns identical results than 1/N, albeit slower due to the 

additional complexity of the definition of the term. 
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Example: Check the triangular (x=1) and pyramidal (x=2) formulas for n=10 – which are particular 
cases of the Faulhaber’s Formula, involving Binomial coefficients and Bernoulli’s numbers. See the 

link below for details: http://en.wikipedia.org/wiki/Faulhaber%27s_formula 

 
10, ENTER^, 1, XEQ “N^X”  => 55.00000000 

10, ENTER^, 2, XEQ “N^X“  => 385.0000000 

 

And using the convention B(1) = 0.5 the formula is: 

 

  
 

Which could be programmed using a few of the SandMath functions, albeit it would be considerably 

slower due to the impact of the Zeta algorithms (part of Bernoulli’s) – kicking in for n>4. 

 
 

•  CHSYX  Is related to the same subject, and in general relevant to the summation of alternating 

series – It can be regarded as an extension of CHS but dependent of the number in X. Its 
expression is:CHS(y,x)= y*(-1)^x,  and thus changing the sign of Y when the number in X is odd. 

 
 

• NPK  calculates Permutations, defined as the number of possible different arrangements of N 

different items taken in quantities of K items at a time. No item occurs more than once in an 
arrangement, and different orders of the same R items in an arrangement are counted separately. 

The formula is in the left side below. 

 

•  NCK  calculates Combinations, defined as the number of possible sets or N different items taken in 
quantities or K items at a time. No item occurs more than once in a set, and different orders of the 

same R items is a set are not counted separately. The formula is in the right side below. 
 

 

    

 

 
 
 

UUThe general operation includes the following enhanced features: 

 

• Gets the integer part of the input values, forcing them to be positive. 

• Checks that neither one is Zero, and that n>r 

• Uses the minimum of {r, (n-r)} to expedite the calculation time 

• Checks the Out of Range condition at every multiplication, so if it occurs its determined as soon as 
possible 

• The chain of multiplication proceeds right-to-left, with the largest quotients first. 

• The algorithm works within the numeric range of the 41. Example: nCk(335,167) is calculated 

without problems. 

• It doesn't perform any rounding on the results. Partial divisions are done to calculate NCK, as 

opposed to calculating first NPK and dividing it by r! 
 

Provision is made for those cases where n=0 and k=0, returning zero and one as respective results. This 
avoids DATA ERROR situations in running programs, and is consistent with the functions definitions for those 

singularities. 

 
Note as well that there is no final rounding made to the result. This was the subject of heated debates in the 

HP Museum forum, with some good arguments for a final rounding to ensure that the result is an integer. 
This implementation however does not perform such final “conditioning”, as the algorithm used seems to 

always return an integer already. Pls. Report examples of non-conformance if you run into them. 

 
 

http://en.wikipedia.org/wiki/Faulhaber%27s_formula
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Square, Triangular and Tetrahedral Numbers. 
 
These functions can be used to calculate a few well-known numbers, either directly or indirectly but as very 

quick examples. For example, the triangular numbers are the direct result of function 1, whist the square 

numbers are the direct result of functions2 and 3 : 

 

 
 

 
The sum of the all triangular numbers up to the n-th triangular number is the n-th tetrahedral number. 

These have the following expressions as direct value or as binomial coefficients: 

 

,  and:   

 

Furthermore, the tetrahedral numbers can be derived from 2 using the relation:   

 

T(n) = 2(n). (n+2)/(2n+1) 

 

 
Finally, you can also take advantage of the combination function NCK using the binomial coefficient 

formulas for the triangular or tetrahedral numbers. In fact there are many more kinds of  “figurate” 

numbers,  as can be seen in the list below: 
 

https://en.wikipedia.org/wiki/Figurate_number 
 

 
 
 

 

 
 

 
 

 

  

https://en.wikipedia.org/wiki/Figurate_number
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Sums of Series using their General Terms 
 
The following programs allow you to obtain the value of simple, double and triple series for which the 

general term is known, either as explicit expression or as a recurrent form.  
 

Unlike other functions that utilize FOCAL programs as arguments (like SOLVE and INTEG in the Advantage 
Pac), these summing functions always use 9 decimal digits to determine the accuracy of the results – 

irrespective of the FIX settings on the calculator. Note however that this is not the case for the infinite 

product function, as described later on. 
 

 

Simple Series. 



UM is a MCODE function that calculates a single series sum or function of an argument x, that is: 

 

   S(x) =(uk + uk+1 +  uk+2 + uk+3 + ......... )  =   un(x)    for  n >= k 

 
defined by the general term un(x) = f(n, x)  where f is a known (i,e, explicit) function. 
 

A program which computes  Un = f(n, x)  is required as a subroutine. It is done assuming x is in X-register 
and n in the Y-register upon entry.If no argument x is required you need to enter any value in X, and ensure 

that the routine drops the stack before getting to work on the index n. 

 
For example, the module includes the routine “S” as example for this case, with Un=1/n^n 

 

ALPHA, “S”, ALPHA, 1, ENTER^,  XEQ “UM”  ->  X = 1.291285997  (in 5 seconds) 

 

If executed manually, these functions will prompt for the function name as an ALPHA string. When running 

in a program the function name is expected to be in the ALPHA registers. 
 
 

As another example let’s calculate the exponential function, given by the power series expression: 
 

 
 

 
 

We write the short routine shown below for the general term, and call the UM function with zero as initial 

index in Y and the argument in X.  The table summarizes a few results for your convenience.  Note that the 

execution time will depend on the argument’s value, and that because the code uses 13-digit sum routines 

the accuracy should be of 10 decimal digits (full range) with a FIX 9 setting.  
 

ALPHA, “EXP”, ALPHA, 0, ENTER^, x,  XEQ “UM” 

 
 

Argument (x) UM (0, x) exp(x) error 

0.5 1.648721271 1.648721271 0 

 1 2.718281828 2.718281828 0 

 5 148.4131591 148.4131591 0 

10 22,026.46579 22,026.46579 0 
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01  LBL “EXP” 

02  X<>Y 
03  Y^X 

04  LASTX 

05  FACT 
06  / 

07  RTN 
08  LBL “SINX” 

09  SF 03 

10  GTO 00 

11 LBL “COSX” 
12  CF 03 

13  LBL 00 

14  RCL Y 
15  ST+ X 

16  FS? 03 
17  ISG X 

18  NOP 

19  Y^X 

20  LASTX 
21  FACT 

22  / 

23  X<>y 
24  CHSYX 

25  END   

 
 

 
Here’s another example to calculate the Erdos-Borwein constant, using two different approaches: one as a 

single sum, and another as a double sum (obviously less efficient but interesting for example’s sake). 
 

01 LBL “ERD2” 

02 RDN 
03 * 

04 2 
05 X<>Y 

06 Y^X 

07 1/X 
08 RTN 

09 LBL “ERD1” 

10 RDN 
11 2 

12 LN 
13 * 

14 E^X-1 

15 1/X 
16 END 

 
To calculate just type either one of the lines below 

 

a) 1, ENTER^, UM _ “ERD1”  ->1.606695151 

b) 1, ENTER^, ENTER^, UM_ “ERD2” ->1.606695150 

 

 

 
 

UM uses user flags 0 and 1, as well as data registers R00, to R04 - which therefore cannot be used by the 

user function to program the general term.  

 

 
Note. The partial results will be shown in the display during the execution of the function. This should show 

a converging process, with the numbers approaching the final result at each iteration. You can always stop 
the function using the R/S key if there is not a converging progression.  

 




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Finite and Infinite Products. 


PRODX is a MCODE function that calculates the result of either finite or infinite product expressions, starting 

at an initial index n1 and ending at  a final index n2. Use n2=0 for infinite products. These parameters are 

expected in the Y registers, in the form “n1,00(n2)”. An argument x is also expected in the X register – 
which should be void if not used by the user code multiplicand function.  It is the equivalent to a single 

series, but using multiplications instead of additions. 
 

P(x) = (uk . uk+1 .  uk+2 . uk+3 . ......... )  =   un(x)    for  n >= k 

 

For the infinite case, the final result is obtained when the contribution of the multiplicands is negligible, i.e. 
when the multiplicand is equal to one (or very close to it). Typically, the convergence is very slow, so this 

function will establish that condition on the values rounded to the current decimal digits, therefore the 
display settings is very important for PRODX. 

 
Let’s make it clear that this function is not meant to be used as a general technique, due to the extreme low 

convergence of the majority of the practical cases – even with small FIX settings the final result won’t have 

the displayed number of decimals accurate either! 
 

Example: Obtain the value of /2 using the Wallis’ product formula: 

 

 
 
Which we’ll program as follows:  (note that we’ll ignore the argument but it must be entered regardless). 

 

01 LBL “WPI” 
02  RDN 

03  ST+ X 
04  X^2 

05  RCL X 

06  E 
07  - 

08  / 
09  END 

 

And type the following:  1, ENTER, PRODX “WPI”  =>1.570242 ; 

 
 

As another example let’s attempt to calculate the Gamma function using the Schlömilch representation: 

 
 

The program used for PRODX and the final adjustment routine are listed below: 

 

01 LBL ”GAMX 
02  1 

03  X<>Y 
04  “GX” 

05  PRODX 
06  RCL 01 

07  GEU 
08  * 

09  E^X 
10  / 

10  RCL 01 
11  / 

12  RTN 
13  LBL “GX” 

14  X<>Y 
15  / 

16 E^X 
17 LASTX 

18 1 
19 + 

20 / 
21 END 

 
Using x =1, and setting 6 decimal places (FIX 6) we type: 
 

1, ENTER, XEQ “GAMX”  =>0.999501 ; quite a poor accuracy indeed. 

 
All in all, just an academic interest but not really a practical method to say the least. 
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Simple Series with Recursive General Term. 


UMR calculates a single series sum (without any argument x) when Un is given as a recurrence expression 

with an initial known value, that is: uk is given  and   un+1 =  f(un;n)   where f is a known function. 

 

A program which computes  un+1 = f(Un, n)  is required as a subroutine. It is done assuming Un is in X-

register and n is in Y-register upon entry. The module includes the routine “SR” as example for this case, 

with u1 = 1 and un+1 = un/(n+1) 
 

ALPHA, “SR”, ALPHA, 1, ENTER^, XEQ “UMR”  ->  X = 1.291285997= R01  (in 7 seconds) 

 
Note that on both cases the initial index can also be zero, assuming that’s compatible with the definition of 

Un, which adds more flexibility to the routine. In both cases the function needs to be programmed under a 

global label, and its name is expected to be in the ALPHA register when the routines are called. 
 

STACK INPUTS OUTPUTS  STACK INPUTS OUTPUTS 

Y n   Y n  

X x UM  X Un UMR 

ALPHA F.NAME F.NAME  ALPHA F.NAME F.NAME 

  
 

 
 
 
Simple Series with Euler Transformation. 


UME calculates the same sum making use of the Euler Transformation  to accelerate the convergence of 

alternating series: S = u0 - u1 +  u2 - u3 + ...... + (-1)n  un + ..... 

 

The sum is re-written in function of the binomial coefficients,  Cn
p =  n! / ( p! ( n-p )! ) as follows: 

 

S = a0/2 + (C1
1 a0 - C1

0 a1)/2
2 + (C2

2 a0 - C2
1 a1 + C2

0 a2)/2
3 + (C3

3 a0 - C3
2 a1 + C3

1 a2 - C3
0 a3)/2

4  + 

...... 
This may produce superb acceleration but it can also fail. 
 

 

A program which computes  Un = |f(n)|is required as a subroutine, but without the alternating sign. It is 
done assuming n is in X-register upon entry. The module includes the routine “SE” as example for this case, 

with f(n) = (n+1)-1/2 

 

ALPHA, “SE”, ALPHA, XEQ “UME”  ->  X = 0.6048986431 = R01 
 

For this particular example the error is  -3 10-10 (!), and  only 28 terms are calculated (taking about 6.5 
minutes to converge). Without an acceleration method, more than 1,018 terms would be necessary to 

achieve the same accuracy... which execution time would be much greater than the age of the Universe.  

 

STACK INPUTS OUTPUTS 

X / UME 

ALPHA F.NAME F.NAME 
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Double and Triple Series. 



UM is a MCODE function that calculates a double series sum, or function of an argument x –  

that is: S(x) =  {un;m (x)};   for  n >= n0 ; m>= m0 

 

The two initial indices are expected to be in the stack and the label name must be in the ALPHA register as 

well. 

STACK INPUTS OUTPUTS 

Z m0  

Y n0  

X x 

ALPHA F.NAME F.NAME 

 
As with the single sum case before, the general term needs to be programmed under a separate subroutine 

using a global label. This assumes that the argument x is in the X register, “n” is in the Y-register and “m” in 
the Z-register upon entry. 

 
The program uses user flags 0, 1, and 2, as well as data registers R00 to R04 - which therefore should not 

be used in the definition of the general term.  

 

The module includes the routine “SS” as example for this case, with the expression: f(n;m)  =  1 / ( nn m! ) 

 
ALPHA, “SS”, ALPHA, 1, ENTER^, ENTER^, XEQ “UM”  ->  X = 2.218793264   (in 45” ) 

 
 



UM is a MCODE function that calculates a triple series sum, or function of an argument x –  

that is: S(x) =  {un;m;p (x)};   for  n >= n0 ; m >= m0; p >= p0 

 

This assumes the argument in the X-registers, and the three indexes (n, m, p) in the Y,Z,T stack registers 
upon entry.  

 

STACK INPUTS OUTPUTS 

T p0  

Z m0  

Y n0  

X x  

ALPHA F.NAME F.NAME 

 
As before, the general term needs to be programmed under a separate subroutine using a global label. The 

three initial indices are expected to be in the stack and the label name must be in the ALPHA register as 

well. The module includes the routine “SSS” as example for this case, with the expression: f(n;m;p) = 1 / ( 

nn m! (p!)2 ) 

 
ALPHA, “SSS”, ALPHA, 1, ENTER^, ENTER^, ENTER^, XEQ “UM”  ->X = 2.839135243  (3 min 15s) 

 

With an error =-7 E-9 
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Multiple Series 
 

NUM0 calculates a multiple series sum, with k internal summations that all start in zero - that is:  

 

S =  [ U(n1;n2; ..... ;nk) ]  with  n1>= 0 ;  n2>= 0 ; ........ ;  nk>= 0 

 
Obviously now the number of indices will be in the X register, and there are no initial indices – which are 
assumed to be zero. This may need you to re-write the expression of the general term to make it compatible 

with this condition. 
 

This is the most limiting requirement for this program, which is not suitable for cases that have mutual 
dependencies between the initial indexes. 

 

Here too, the general term needs to be programmed under a separate subroutine using a global label, which 
needs to be entered in ALPHA. This assumes on entry that“n1” is in the R01 register,“n2” in the R02 

register, “n3” in R03, and successively so until completing the number of variables. 

 

 STACK  INPUTS OUTPUTS 

X k 0 

ALPHA F.NAME / 

 
Only the synthetic registers {M,N,O} are used by the program. The module includes the routine “NT” as 

example for this case, with the expression used in the triple case: f(n;m;p) = 1 / ( nn m! (p!)2 ).   

 
We therefore need to change it to start at the zero indexes for the three variables, i.e. must make a change 

of arguments to reduce to the standard:   n >= 0 ; m >= 0 ; p >= 0   by replacing  n with (n+1) ; m with 

(m+1) ; p with (p+1):    f(n;m;p) = 1 / {( n+1)(n+1)(m+1)! [(p+1)!]2} 
 

ALPHA, “NT”, ALPHA, 3, XEQ “NUM0”  ->X = 2.839135243 = R04  (8 min 39 s) 
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Nested Radicals 
 
FNRM and INRM are MCODE functions to calculate finite and infinite Nested Radicals or root-order m. The 

definition of the radical is given in a user-provided function under a global label, to generate the n terms 

that contribute to the radical R(n). 
 

• For the finite case the calculation ends when all the terms are provided and used in the radical. 

• For the infinite case, a series of finite radicals of increasing sizes are computed until two of them are 

equal. This means R(n) = R(n+1), for a given n large enough.  
 

An initial size n0 needs to be provided by the user, which ideally is a balance between the radical size and 

the number of subsequent radicals to calculate: the larger the radical the longer calculation time, but the 
less number of radicals likely to calculate. 

 

 STACK  INPUTS OUTPUTS 

Y k 
 

X no NR 

ALPHA F.NAME / 

 
FNRM and INRM use data registers {R00 – R05} as well as user flags UF 001 and UF 01. Refrain from 

using these resources in the definition of your functions. Note that both the root order m and the term n are 

available for your user function to use – even if normally only n is used. This allows for more elaborate 
expressions in the definitions. 

 
For example, let’s calculate the value of an infinite nested radical with f(n) = n, as per the expression below: 

 

 
 
For the case n=1 this happens to be the golden ratio  = ½ (1+sqr(5) 

 

A trivial user program like this: {LBL PH, 1, RTN}, say we set FIX 9 and then we type: 
 

2, ENTER^ 4, XEQ “INRM”_ PH” =>  1.618033989 
 

Using cubic roots instead we’ll obtain the “Plastic” Constant: 

 
3, ENTER^, 4, XEQ “INRM”_”PH =>  1.324717957 

 
 

Example 2.Calculate the cubic and quartic root nested radicals for the function F(n) = n^4 
 

Using n0=4 and the trivial user function {LBL “NR4”, X^2, X^2, END} we get: 

 
4, ENTER^, 4, XEQ “INRM”_”NR4” =>1.325706774  quartic case 

3, ENTER^, 4, XEQ “INRM”_”NR4” =>1.551416993  cubic case 
 

 

Example 3. Calculate the square nested radical for the function F(n) = n  {LBL “NR1”, RTN”} 
 

 2, ENTER^, 4, 4, XEQ “INRM”_”NR1” =>1.757932757 
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2 –Areas of Polygons 

The second section of the module includes several MCODE functions for triangles, cyclic quadrilaterals and 
even non-regular polygons.  

•  CIRCL  calculates the radius of a circle passing thru three data points, using the point x,y 

coordinates. The values are expected to be stored in R01-R07.  Besides that, it’ll also return in the 
Y-register the area of the circumscribed triangle defined by the three points.  

 

Example: Calculate the radius of the circle passing thru P(5,1), Q(6,2), and R(5,3) 
 

The results are:  
 

XEQ “CIRCL” => r=1,000000000, 

X<>Y   => A=1,000000000 
 

 
The input sequence starts with the abscissa of P1 in R01. 

 
 

Note that you can use the routines IN and INPUT 

available in the SandMath to populate the registers 
automatically. 

 
 

 

•  HERON  calculates the area of a triangle knowing its three sides, using Heron’s formula. Just enter 

the sides values in the stack, and execute the function. The result is stored in X, with the original 

side saved in LastX. The rest of the stack is unchanged. 

 
Let the triangle ABC with 3 known sides { a , b , c } and  s = (a+b+c)/2  the semi-perimeter  

 

Heron's formula is:     Area = [ s(s-a)(s-b)(s-c) ]1/2     
 

U Example: U     a = 2,   b = 3,   c = 4  

Type:   2,  ENTER^,  3,  ENTER^,  4,   XEQ “HERON"   =>   Area = 2.904737510  
 

 Note: the function CIRCL described above makes use of the HERON formula internally after it  
 first calculates the triangle sides from the point coordinates. 

 
 
 

•  BRHM  is related to it, but the calculation for the area of the cyclic quadrilateral - using 

Brhamagupta’s formula. Just enter the four values in the stack and execute the function. The result 
is stored in X, with the original side saved in LastX. The rest of the stack is unchanged. 

 
Let  a, b, c, and d be its sides lengths, and the semi-perimeter  

s = ( a + b + c + d )/2 .The area A of the cyclic quadrilaterals: 
 

A = [(s-a).(s-b).(s-c).(s-d).]1/2    
 

U Example:U    a = 4 , b = 5 , c = 6 , d = 7  
 

 Type:  4,  ENTER^,  5,  ENTER^,  6,  ENTER^,  7,   
XEQ "BRHM"  =>  Area = 28.98275349  
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• PG1  Calculates the area of a regular polygon when its side length is known. Input parameters are 

the number of sides in Y, and the side length in X. The result is left in the X register. 

 
Example: calculate the area of a triangle with side length a=5 m 

 
3, ENTER^, 5, XEQ “PG1”  -> 10.83 m^2 
 

 
 

•  PG2  Performs the same calculation but using the radius of the circumscribed circle instead of the 

side length. Same order of parameters for input, with the number of sides in Y. 

 
Example: calculate the area of a triangle circumscribed in a circle with radius r=5 m 

 

3, ENTER^, 5, XEQ “PG2”  ->  32.48 m^2 
 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 
• Finally, the Routine “3PNTS” is a FOCAL driver for functions CIRCLE. You can use it to enter the 

coordinates of the three points into data registers R01-R06, presented as three screens with the 
prompts: 

 

 …  …  
 

Once this is accomplished the program offers you a choice for the value to calculate next, either the 
triangle area or the circle radius. You can Also press [E] to start over with a new set of three 

points. 
 

 
 

If used on the example listed above, it returns the following results: 

 

 and  
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Convex Cyclic Polygons. 
 
And what about non-regular polygons, you may wonder? Well, those are the subject of the following set of 

FOCAL routines about to be described. 

 
Programs “CCPA” and “CPLA” compute the area A and the circumradius R of a convex cyclic polygon 

assuming all the sides lengths are known. Moreover, we also assume that the center of the circumcircle is 
inside the polygon. 

If{a1 , a2 , ......... , an}  are the sides lengths and  { µ1 , µ2 , ......... , µn }are the corresponding central 

angles, we have to solve the system of (n+1) equations:  

     2.R sin µ1/2 = a1 

     2.R sin µ2/2 = a2 

     ……………. 

     2.R sin µn/2 = an 

    µ1 + µ2 + ... + µn = 360°  

Performing a few substitutions lead to an expression with the radius as single unknown, to be resolved 
iteratively using any root-finding method: 
 

             asin (a1/2R) + asin (a2/2R ) + ..................... + asin (an/2R)  =  180°        

After finding R, the Area is given by : A = (R2/2) (Sin a1 + Sin a2 + ........... + Sin an)  
 

 

There are two versions included in the module – “CPLA” uses the SOLVE function in the Advantage and 
“CCPA” uses a built-in root finder based on Newton’s method. Each one has advantages and shortcomings, 

as usual. 

 
 

Drivers for Data Entry. 
 

The routines expect the sides of the polynomial already stored in contiguous data registers, and the control 
word “bbb.eee” in the X register before you call the routine. For your convenience, a driver routine is also 

included that prompts for the side values and does the storing for you, Using “CPLA+” or “CCPA+”, all you 

need to do is enter the values at each prompt, and once completed it’ll direct the execution to the 
corresponding data engine downstream. 

 
 

Example.  Find the area of a convex cyclic polygon with sides: 4 , 5 , 6 , 7 , 8 , 9 , 10 

 
XEQ “CPLA+”  “N=?” 
7,  R/S   “d1=?” 

4,  R/S   “d2=?” 
5,  R/S   “d3=?” 

6,  R/S   “d4=?” 
7,  R/S   “d5=?” 

8,  R/S   “d6=?” 

9,  R/S   “d7=?” 
10, R/S   ->  174.6757940  the area, and 

X<>Y   ->  8.143816980  the radius 
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Diagonal Lengths. 

 
CPLD calculates the diagonal lengths of a convex cyclic polygon with its side lengths known. The method 
used involves solving a linear system of (n-3) equations with (n-3) unknowns, which is solved by successive 

approximations. The convergence is linear only – which results in relative longer execution times. 
 

The iteration starts with all diagonals lengths = 0, which is very simplistic. The successive sums of the 
differences between 2 consecutive approximations (in absolute values) are displayed. They should tend to 

zero, however, the termination criterion may lead to an infinite loop. Since there are 319 registers at most, 

"CPLD" can find the diagonals lengths of a 159-gon – but the execution time will not be small without an 
emulator. 

 
CPLD expects the number of sides in R00, and the sides of the polynomial already stored in contiguous data 

registers starting with R01 until Rn+1. Then you must provide the control words “bbb.eee” indicating the 

location of the data registers that store the side lengths. 
 

STACK INPUT OUTPUTS 

X / bbb.eee 

 

 
For your convenience, a driver routine is also included that prompts for the side values and does the storing 

for you, Using “CPLD+” all you need to do is enter the values at each prompt, and once completed it’ll 

direct the execution to CPLD downstream. 
 

 
Example:  Find the diagonals lengths of a convex cyclic hexagon with sides:  4 , 5 , 6 , 7 , 8 , 9 

 

XEQ “CPLD+”  “N=?” 
6, R/S   “a1=?” 

4, R/S   “a2=?” 
5, R/S   “a3=?” 

6, R/S   “a4=?” 
7, R/S   “a5=?”  

8, R/S   “a6=?” 

9, R/S   shows estimations… -> convergence 
   d8=8.46278437 

R/S   d9=12.12358502 
R/S   d10=12.97690535 

 

There are in fact  n(n-3)/2  diagonals whose lengths may be obtained by "rotating" the sides lengths in 
registers R01 to R06 and we have similarly: n(n-3)/2 = 9  if  n = 6 

     d4 =  9.998827970                    d7 = 11.30861231  

     d5 = 13.01214483                     d8 = 13.06010803                    

     d6 = 11.49035918                     d9 = 12.32872367  

 
 

Finally, the MCODE function DIAG is used internally by CPLD to speed-up the calculations. It computes the 
following expression, assuming  x , y , z , t  are  in  registers  X , Y , Z , T  upon entry 

 

SQRT [ { x.y ( z2 + t2 ) + z.t ( x2 + y2 ) } / ( x.y + z.t ) ]      
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Regular Star Polygons 

 
A star polygon {n/k}, with n,k positive integers, is a figure formed by connecting with straight lines every “k-

th” point out of n regularly spaced points lying on a circumference. The number k is called the polygon 

density of the star polygon. Without loss of generality, take k<n/2. The star polygons were first 
systematically studied by Thomas Bradwardine. 

 

 
 

If k=1, a regular polygon {n} is obtained. Special cases of {n/k} include {5/2} (the pentagram), {6/2} (the 
hexagram, or star of David), {8/2} (the star of Lakshmi), {8/3} (the octagram), {10/3} (the decagram), and 

{12/5} (the dodecagram). 
 

"STLA" computes the area A, the perimeter P, the in-radius r and the circumradius R of a regular 

star polygon { n / k }  from its edge length a  

Formulae: 

    A = n R2 Sin (180°/n) Cos (180° k/n) / Cos [180°(k-1)/n]  

    a  = 2.R  Sin (180° k/n)  

    r  =   R   Cos (180° k/n)  

    P  = 2.A / r  

The table on the left shows the input and output 

Required by the program – easy does it! 

 
 

 

STACK INPUTS OUTPUTS 

T / R 

Z a r 

Y n P 

X k < n/2 A 
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Examples: 

  •  a = 1 , n = 5 , k = 2  
   1   ENTER^, 5   ENTER^, 2   XEQ "STLA"-> A = 0.310270701  

                                  RDN  P = 3.819660113  
                                  RDN      r  = 0.162459848  
                                  RDN     R = 0.525731112  

  •  a = 1 , n = 10 , k = 3  

      1   ENTER^, 10  ENTER^, 3,  R/S -> A = 0.857567126  

                         RDN   P = 4.721359547  

                         RDN   r  = 0.363271264  
                         RDN  R =  0.618033989  

  •  a =  , n = 41 , k = 13 
  PI   ENTER^, 41, ENTER^, 13, R/S ->  A = 9.855571194  
                        RDN      P = 19.37713086  

                        RDN      r  = 1.017237409  
                      RDN    R =  1.871409374  

This program works in all angular modes, however, DEG mode should be preferable.  
 

If k = 1, we get the convex regular n-gon. For instance, with  a = 1 , n = 5 , k = 1, "STLA" returns what 
corresponds to the regular pentagon.  

A = 1.720477401  

P =  5  
r  =  0.688190960  
R  =  0.850650808  

 

Driver Program. 

Here too you have a convenient driver program to guide you thru the data entry process: program “STLA+” 
will prompt for the input values and will present the results sequentially after the calculations are done. 

,  ,   

 

, , etc… 
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1 –Triangle Solutions 

The core routines to solve plane, hyperbolic and spherical triangles were written by JM Baillard, and are 

grouped here under three “driver” programs for convenience. The three drivers (TRIA, TRIH, and TRIH) 
basically provide menu-based selection choices for the specific case, depending on which elements of the 
triangle are known (sides or angles). 

They work in all angular modes but angles must be entered as decimals. The standard triangle notation is 
employed (lower-case for sides, upper case for angles; A opposite a ... etc.) 

Rectangular Triangles.       

TRIA offers the following 4 choices: 

- One Side, two adjacent angles (with other sides) 

- Two sides and included angle between them 
- Three sides 
- Two sides, and opposite angle 

These are accessible pressing the top keys [A] to [D]. Additionally, pressing R/S at this point or [E] at any 
moment will bring back the same options menu again. 

Once the case is selected using the top keys, the program presents a prompt to enter the known elements: 

, or: , or: , etc. 

Formulas for plane triangles: a/sinA = b/sinB = c/sinC  ;    

a2 = b2 + c2 - 2 b.c.cosA  and 2 similar relations  ;   
Area = b.c.(sinA)/2  

Hyperbolic and Spherical Triangles. 

 ;  

TRIH and TRIS add to the cases shown before two more combinations of known elements, as follows: 

- Three angles 
- One side, the opposite angle and another angle 

These are accessible pressing the top keys: either [A]/[B] for the first and [C]/[D] for the second. Also 
pressing R/S at this prompt or [E] at any time will bring the main menu back for the selection. 

Formulas for Hyperbolic triangles:   

sinh a / sin A = sinh b / sin B = sinh c / sin C 

cosh a = cosh b . cosh c - sinh b . sinh c . cos A  
cos A = - cos B . cos C + sin B . sin C . cosh a  
  c     = arctanh ( cos A tanh b ) + arctanh ( cos B tanh a )  
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                           A  

                            *  
                          *    *      b  

                 c    *            *                                we must have  A + B + C < 180°  

                   *                      *  
          B  *    *    *    *    *    *    *  C  
                               a 

Formulas for Spherical Triangles: 

     sin a / sin A = sin b / sin B = sin c / sin C  

     cos a = cos b . cos c + sin b . sin c . cos A  

     cos A = -cos B . cos C + sin B . sin C . cos a  
     c = arctan (cos A . tan b) + arctan (cos B. tan a)    ( modulo 180° )  

This last formula is used in cases n°5 and n°6.  

Other formulae can be used, for example:  

         tan c/2 = ( tan (a-b)/2 ).( sin (A+B)/2 ) / ( sin (A-B)/2 )              ( F1 )  
         tan c/2 = ( tan (a+b)/2 ).( cos (A+B)/2 ) / ( cos (A-B)/2 )           ( F2 )  

 but (F1) cannot be applied if  a = b & A = B and  (F2) doesn't work if  a + b = A + B = 180° 

 

Examples. 


