
 Areas, Sums & Series ROM

© 2017 ‘Angel Martin Page 1

HP-41 Module:

Areas, Series & Sums.

Overview

This module includes a selection of functions and FOCAL routines mainly focused on Series and Sums field

and other related subjects. For the most part the routines are taken from Jean-Marc Baillard extensive web
site, although some others are taken from Poul Kaarup’s collection as well. A few are already available in the

SandMath Module –even if this version is a more portable implementation that suits itself better for Clonix or
NoVRAM owners.

The initial section of the module covers the simple sums of integers and integer powers. This is followed by
simple explicit sums for single, double, triple and multiple series; recursive term sums and Euler

transformations. Examples are also provided in the FAT for quick familiarization. The second section includes
a set of MCODE functions and FOCAL routines dealing with area calculations for several geometric figures,
such as circles and triangles, as well as areas and diagonal lengths of cyclic and regular polygons.

Without further ado, see below the list of functions included in the module:

XROM Function Description Input Author

18,00 -SERIES 1A Section header n/a Ángel Martin

18,01 CHSYX Sign Change of Y by X: Y*(-1)^X Value in Y, n in X Ángel Martin

18,02 NCK Combinations of N in sets of K n in Y, k in X Ángel Martin

18,03 NPK Permutations of N in sets of K n in Y, k in X Ángel Martin

18,04 0 Sum of mantissa digits argument, X Poul Kaarup

18,05 1 Sum of first N integers argument, X Poul Kaarup

18,06 1/N Harmonic Numbers argument, X Ángel Martin

18,07 2 Sum of Squares of Numbers argument, X Poul Kaarup

18,08 3 Sum of Cubes of Numbers argument, X Poul Kaarup

18,09 N^X Generalized Faulhaber’s Sum N in Y, exponent In X Ángel Martin

18,10 UM Single Series Sum (Explicit) arguments in X, Y, ALPHA Ángel Martin

18,11 UM Double Series Sum (Explicit) argument in X, ALPHA Ángel Martin

18,12 UM Triple Series Sum (Explicit) arguments in Y,X, ALPHA Ángel Martin

18,13 "UME Euler Transformation argument in X, Y, Z, ALPHA JM Baillard

18,14 "UMR” Single Series Sum (Iterative) arguments in X, Y, ALPHA JM Baillard

18,15 “NUM0” Multiple Series Sum (Explicit) bbb.eee in X, data in registers JM Baillard

18,16 FNRM Finite Nested Radical order m m in Y, n in X Ángel Martin

18,17 INRM Infinite Nested Radical order m m in Y, n0 in X Ángel Martin

18,18 PRODX Infinite Product w. argument X in X, n0 in Y Ángel Martin

18,19 XQRTN XQ Return to MCODE Auxiliary function Martin-McClure

18,20 X#YR? Compares rounded X and Y YES/NO Skips if false Ángel Martin

18,21 "NS” Example for NUM0 n/a Martin-Baillard

18,22 "S” Example for UM n/a Martin-Baillard

18.23 "SE” Example for UME n/a Martin-Baillard

18.24 "SR” Example for UMR n/a Martin-Baillard

 Areas, Sums & Series ROM

© 2017 ‘Angel Martin Page 2

18.25 "SS” Example for UM n/a Martin-Baillard

18.26 "SSS” Example for UM n/a Martin-Baillard

18.27 “SIG1 Single Series Sum (Explicit) n0 in X, name in ALPHA JM Baillard

18.28 “SIG2 Double Series Sum (Explicit) (n0, k0) in X,Y, name in ALPHA JM Baillard

18.29 “SIG3 Triple Series Sum (Explicit) (n0, k0, m0) in X,Y,Z; ALPHA JM Baillard

18.30 STK>PT Stack to Pointers Decimal Data in Stack Ángel Martin

18.31 PT>STK Pointers to Stack Binary Pointers in R00 Ángel Martin

18.32 -AREAS_1B Section Header n/a Ángel Martin

18.33 AINT ALPHA Integer Part X in X Fritz Ferwerda

18.34 BRHM Brhamagupta formula 4 Sides in stack Ángel Martin

18.35 CIRCLE Circle through three points Coordinates in R01-R06 Ángel Martin

18.36 DIAG Diagonal formula Used in CPLD JM Baillard

18.37 HERON Heron formula Triangle sides in Z, Y, Z Ángel Martin

18.38 RPG1 Regular Polygon from sides # sides in Y, length in X Poul Kaarup

18.39 RPG2 Regular polygon from circle # sides in Y, radius in X Poul Kaarup

18.40 "3PNTS” Driver for CIRCLE/Areas Prompts for coordinates Ángel Martin

18.41 "CCPA” Complex Cyclic Polygon Area Parameters in stack and R00 JM Baillard

18.42 "CCPA+” Driver for CCPA Uses Newton Method Ángel Martin

18.43 "CPLA” Complex Cyclic Polygon Area With all Sides known JM Baillard

18.44 "CPLA+” Driver for CPLA Uses SOLVE Ángel Martin

18.45 "CPLD” Complex Cyclic Polyg. Diagonals bbb.eee in X, data in Registers JM Baillard

18.46 "CPLD+ Driver for CPLD Prompts for data entry Ángel Martin

18.47 “PGA Polygon Areas w/ Point Coordinates Poul Kaarup

18.48 "STLA” Star Polygon Area Parameters in Stack JM Baillard

18.49 "STLA+” Driver for STLA Prompts for data entry Ángel Martin

18.50 “#” Auxiliary for SOLVE Under program control Ángel Martin

18.51 “TRIA Driver for ABC Prompts for values Ángel Martin

18.51 “ABC Triangle Solver Three knowns in stack JM Baillard

18.53 “TRIH Driver for HABC Prompts for values Ángel Martin

18.54 “HABC Hyperbolic Triangles Three knowns in stack JM Baillard

18.55 “TRIS Driver for SABC Prompts for values Ángel Martin

18.56 “SABC Spherical Triangles Three knowns in stack JM Baillard

18.57 “OUT Output Registers Bbb.eee in X Ángel Martin

18.58 SINH Hyperbolic Sine argument, X Ángel Martin

18.59 COSH Hyperbolic Cosine argument, X Ángel Martin

18.60 TANH Hyperbolic Tangent argument, X Ángel Martin

18.61 ASINH Hyperbolic ASIN argument, X Ángel Martin

18.62 ACOSH Hyperbolic ACOS argument, X Ángel Martin

18.63 ATANH Hyperbolic ATAN argument, X Ángel Martin

 Areas, Sums & Series ROM

© 2017 ‘Angel Martin Page 3

1 –Sums and Series

The first section includes several functions to calculate sums of integer powers, as well as simple methods to
sum series given their general term in explicit or recurrent form.

• 0 Is a small divertimento useful in pseudo-random numbers generation. It simply returns the

sum of the mantissa digits of the argument – at light-blazing speed using just a few MCODE

instructions. More about random numbers will be covered in the Probability/Stats section later on.

Example: calculate the sum of all digits of the HP-41’s rendition of pi:

 PI, XEQ “0” => 40.000000000

• 1/N Calculates the Harmonic number of the argument in X, that is the sum of the reciprocals of

the natural numbers (which excludes zero) lower and equal to n. It will be used in the calculation of

the Kelvin functions and the Bessel functions of the second kind, K(n,x) and Y(n,x).

 Example: calculate H(5) and H(25).

 5, XEQ “1/N” => 2.283333333

 25, XEQ “1/N” => 3.815958178

• 12 Are implemented to calculate the sum of integer powers directly based on the

corresponding formulas. The number of terms to sum is expected to be in the X- register. Functions
calculate the linear sum using the triangular formula; the sum of squares using the pyramidal

formulas; and the sum of cubes also using the pyramidal formulas. 








Example: Calculate the sum of the first 10 natural numbers and their squares and cubes:

10, 1 quickly returns: 55.00000000

LASTX, 2” => 385.0000000

LASTX, 3 => 3,025.000000

• N^X Calculates a generalized value of the Faulhaber’s formula for integer values of x. – The

few first integer values of x have explicit formulas for the result (which are used in the functions

described above), but that’s not the case for a general value - which can also be non-integer.

Obviously for x=-1 this function returns identical results than 1/N, albeit slower due to the

additional complexity of the definition of the term.

 Areas, Sums & Series ROM

© 2017 ‘Angel Martin Page 4

Example: Check the triangular (x=1) and pyramidal (x=2) formulas for n=10 – which are particular
cases of the Faulhaber’s Formula, involving Binomial coefficients and Bernoulli’s numbers. See the

link below for details: http://en.wikipedia.org/wiki/Faulhaber%27s_formula

10, ENTER^, 1, XEQ “N^X” => 55.00000000

10, ENTER^, 2, XEQ “N^X“ => 385.0000000

And using the convention B(1) = 0.5 the formula is:

Which could be programmed using a few of the SandMath functions, albeit it would be considerably

slower due to the impact of the Zeta algorithms (part of Bernoulli’s) – kicking in for n>4.

• CHSYX Is related to the same subject, and in general relevant to the summation of alternating

series – It can be regarded as an extension of CHS but dependent of the number in X. Its
expression is:CHS(y,x)= y*(-1)^x, and thus changing the sign of Y when the number in X is odd.

• NPK calculates Permutations, defined as the number of possible different arrangements of N

different items taken in quantities of K items at a time. No item occurs more than once in an
arrangement, and different orders of the same R items in an arrangement are counted separately.

The formula is in the left side below.

• NCK calculates Combinations, defined as the number of possible sets or N different items taken in
quantities or K items at a time. No item occurs more than once in a set, and different orders of the

same R items is a set are not counted separately. The formula is in the right side below.

UUThe general operation includes the following enhanced features:

• Gets the integer part of the input values, forcing them to be positive.

• Checks that neither one is Zero, and that n>r

• Uses the minimum of {r, (n-r)} to expedite the calculation time

• Checks the Out of Range condition at every multiplication, so if it occurs its determined as soon as
possible

• The chain of multiplication proceeds right-to-left, with the largest quotients first.

• The algorithm works within the numeric range of the 41. Example: nCk(335,167) is calculated

without problems.

• It doesn't perform any rounding on the results. Partial divisions are done to calculate NCK, as

opposed to calculating first NPK and dividing it by r!

Provision is made for those cases where n=0 and k=0, returning zero and one as respective results. This
avoids DATA ERROR situations in running programs, and is consistent with the functions definitions for those

singularities.

Note as well that there is no final rounding made to the result. This was the subject of heated debates in the

HP Museum forum, with some good arguments for a final rounding to ensure that the result is an integer.
This implementation however does not perform such final “conditioning”, as the algorithm used seems to

always return an integer already. Pls. Report examples of non-conformance if you run into them.

http://en.wikipedia.org/wiki/Faulhaber%27s_formula

 Areas, Sums & Series ROM

© 2017 ‘Angel Martin Page 5

Square, Triangular and Tetrahedral Numbers.

These functions can be used to calculate a few well-known numbers, either directly or indirectly but as very

quick examples. For example, the triangular numbers are the direct result of function 1, whist the square

numbers are the direct result of functions2 and 3 :

The sum of the all triangular numbers up to the n-th triangular number is the n-th tetrahedral number.

These have the following expressions as direct value or as binomial coefficients:

, and:

Furthermore, the tetrahedral numbers can be derived from 2 using the relation:

T(n) = 2(n). (n+2)/(2n+1)

Finally, you can also take advantage of the combination function NCK using the binomial coefficient

formulas for the triangular or tetrahedral numbers. In fact there are many more kinds of “figurate”

numbers, as can be seen in the list below:

https://en.wikipedia.org/wiki/Figurate_number

https://en.wikipedia.org/wiki/Figurate_number

 Areas, Sums & Series ROM

© 2017 ‘Angel Martin Page 6

Sums of Series using their General Terms

The following programs allow you to obtain the value of simple, double and triple series for which the

general term is known, either as explicit expression or as a recurrent form.

Unlike other functions that utilize FOCAL programs as arguments (like SOLVE and INTEG in the Advantage
Pac), these summing functions always use 9 decimal digits to determine the accuracy of the results –

irrespective of the FIX settings on the calculator. Note however that this is not the case for the infinite

product function, as described later on.

Simple Series.



UM is a MCODE function that calculates a single series sum or function of an argument x, that is:

 S(x) =(uk + uk+1 + uk+2 + uk+3 +) =  un(x) for n >= k

defined by the general term un(x) = f(n, x) where f is a known (i,e, explicit) function.

A program which computes Un = f(n, x) is required as a subroutine. It is done assuming x is in X-register
and n in the Y-register upon entry.If no argument x is required you need to enter any value in X, and ensure

that the routine drops the stack before getting to work on the index n.

For example, the module includes the routine “S” as example for this case, with Un=1/n^n

ALPHA, “S”, ALPHA, 1, ENTER^, XEQ “UM” -> X = 1.291285997 (in 5 seconds)

If executed manually, these functions will prompt for the function name as an ALPHA string. When running

in a program the function name is expected to be in the ALPHA registers.

As another example let’s calculate the exponential function, given by the power series expression:

We write the short routine shown below for the general term, and call the UM function with zero as initial

index in Y and the argument in X. The table summarizes a few results for your convenience. Note that the

execution time will depend on the argument’s value, and that because the code uses 13-digit sum routines

the accuracy should be of 10 decimal digits (full range) with a FIX 9 setting.

ALPHA, “EXP”, ALPHA, 0, ENTER^, x, XEQ “UM”

Argument (x) UM (0, x) exp(x) error

0.5 1.648721271 1.648721271 0

 1 2.718281828 2.718281828 0

 5 148.4131591 148.4131591 0

10 22,026.46579 22,026.46579 0

 Areas, Sums & Series ROM

© 2017 ‘Angel Martin Page 7

01 LBL “EXP”

02 X<>Y
03 Y^X

04 LASTX

05 FACT
06 /

07 RTN
08 LBL “SINX”

09 SF 03

10 GTO 00

11 LBL “COSX”
12 CF 03

13 LBL 00

14 RCL Y
15 ST+ X

16 FS? 03
17 ISG X

18 NOP

19 Y^X

20 LASTX
21 FACT

22 /

23 X<>y
24 CHSYX

25 END

Here’s another example to calculate the Erdos-Borwein constant, using two different approaches: one as a

single sum, and another as a double sum (obviously less efficient but interesting for example’s sake).

01 LBL “ERD2”

02 RDN
03 *

04 2
05 X<>Y

06 Y^X

07 1/X
08 RTN

09 LBL “ERD1”

10 RDN
11 2

12 LN
13 *

14 E^X-1

15 1/X
16 END

To calculate just type either one of the lines below

a) 1, ENTER^, UM _ “ERD1” ->1.606695151

b) 1, ENTER^, ENTER^, UM_ “ERD2” ->1.606695150

UM uses user flags 0 and 1, as well as data registers R00, to R04 - which therefore cannot be used by the

user function to program the general term.

Note. The partial results will be shown in the display during the execution of the function. This should show

a converging process, with the numbers approaching the final result at each iteration. You can always stop
the function using the R/S key if there is not a converging progression.





 Areas, Sums & Series ROM

© 2017 ‘Angel Martin Page 8

Finite and Infinite Products.


PRODX is a MCODE function that calculates the result of either finite or infinite product expressions, starting

at an initial index n1 and ending at a final index n2. Use n2=0 for infinite products. These parameters are

expected in the Y registers, in the form “n1,00(n2)”. An argument x is also expected in the X register –
which should be void if not used by the user code multiplicand function. It is the equivalent to a single

series, but using multiplications instead of additions.

P(x) = (uk . uk+1 . uk+2 . uk+3) =  un(x) for n >= k

For the infinite case, the final result is obtained when the contribution of the multiplicands is negligible, i.e.
when the multiplicand is equal to one (or very close to it). Typically, the convergence is very slow, so this

function will establish that condition on the values rounded to the current decimal digits, therefore the
display settings is very important for PRODX.

Let’s make it clear that this function is not meant to be used as a general technique, due to the extreme low

convergence of the majority of the practical cases – even with small FIX settings the final result won’t have

the displayed number of decimals accurate either!

Example: Obtain the value of /2 using the Wallis’ product formula:

Which we’ll program as follows: (note that we’ll ignore the argument but it must be entered regardless).

01 LBL “WPI”
02 RDN

03 ST+ X
04 X^2

05 RCL X

06 E
07 -

08 /
09 END

And type the following: 1, ENTER, PRODX “WPI” =>1.570242 ;

As another example let’s attempt to calculate the Gamma function using the Schlömilch representation:

The program used for PRODX and the final adjustment routine are listed below:

01 LBL ”GAMX
02 1

03 X<>Y
04 “GX”

05 PRODX
06 RCL 01

07 GEU
08 *

09 E^X
10 /

10 RCL 01
11 /

12 RTN
13 LBL “GX”

14 X<>Y
15 /

16 E^X
17 LASTX

18 1
19 +

20 /
21 END

Using x =1, and setting 6 decimal places (FIX 6) we type:

1, ENTER, XEQ “GAMX” =>0.999501 ; quite a poor accuracy indeed.

All in all, just an academic interest but not really a practical method to say the least.

 Areas, Sums & Series ROM

© 2017 ‘Angel Martin Page 9

Simple Series with Recursive General Term.


UMR calculates a single series sum (without any argument x) when Un is given as a recurrence expression

with an initial known value, that is: uk is given and un+1 = f(un;n) where f is a known function.

A program which computes un+1 = f(Un, n) is required as a subroutine. It is done assuming Un is in X-

register and n is in Y-register upon entry. The module includes the routine “SR” as example for this case,

with u1 = 1 and un+1 = un/(n+1)

ALPHA, “SR”, ALPHA, 1, ENTER^, XEQ “UMR” -> X = 1.291285997= R01 (in 7 seconds)

Note that on both cases the initial index can also be zero, assuming that’s compatible with the definition of

Un, which adds more flexibility to the routine. In both cases the function needs to be programmed under a

global label, and its name is expected to be in the ALPHA register when the routines are called.

STACK INPUTS OUTPUTS STACK INPUTS OUTPUTS

Y n  Y n 

X x UM X Un UMR

ALPHA F.NAME F.NAME ALPHA F.NAME F.NAME

Simple Series with Euler Transformation.


UME calculates the same sum making use of the Euler Transformation to accelerate the convergence of

alternating series: S = u0 - u1 + u2 - u3 + + (-1)n un +

The sum is re-written in function of the binomial coefficients, Cn
p = n! / (p! (n-p)!) as follows:

S = a0/2 + (C1
1 a0 - C1

0 a1)/2
2 + (C2

2 a0 - C2
1 a1 + C2

0 a2)/2
3 + (C3

3 a0 - C3
2 a1 + C3

1 a2 - C3
0 a3)/2

4 +

......
This may produce superb acceleration but it can also fail.

A program which computes Un = |f(n)|is required as a subroutine, but without the alternating sign. It is
done assuming n is in X-register upon entry. The module includes the routine “SE” as example for this case,

with f(n) = (n+1)-1/2

ALPHA, “SE”, ALPHA, XEQ “UME” -> X = 0.6048986431 = R01

For this particular example the error is -3 10-10 (!), and only 28 terms are calculated (taking about 6.5
minutes to converge). Without an acceleration method, more than 1,018 terms would be necessary to

achieve the same accuracy... which execution time would be much greater than the age of the Universe.

STACK INPUTS OUTPUTS

X / UME

ALPHA F.NAME F.NAME

 Areas, Sums & Series ROM

© 2017 ‘Angel Martin Page 10

Double and Triple Series.



UM is a MCODE function that calculates a double series sum, or function of an argument x –

that is: S(x) =  {un;m (x)}; for n >= n0 ; m>= m0

The two initial indices are expected to be in the stack and the label name must be in the ALPHA register as

well.

STACK INPUTS OUTPUTS

Z m0 

Y n0 

X x 

ALPHA F.NAME F.NAME

As with the single sum case before, the general term needs to be programmed under a separate subroutine

using a global label. This assumes that the argument x is in the X register, “n” is in the Y-register and “m” in
the Z-register upon entry.

The program uses user flags 0, 1, and 2, as well as data registers R00 to R04 - which therefore should not

be used in the definition of the general term.

The module includes the routine “SS” as example for this case, with the expression: f(n;m) = 1 / (nn m!)

ALPHA, “SS”, ALPHA, 1, ENTER^, ENTER^, XEQ “UM” -> X = 2.218793264 (in 45”)



UM is a MCODE function that calculates a triple series sum, or function of an argument x –

that is: S(x) =  {un;m;p (x)}; for n >= n0 ; m >= m0; p >= p0

This assumes the argument in the X-registers, and the three indexes (n, m, p) in the Y,Z,T stack registers
upon entry.

STACK INPUTS OUTPUTS

T p0 

Z m0 

Y n0 

X x 

ALPHA F.NAME F.NAME

As before, the general term needs to be programmed under a separate subroutine using a global label. The

three initial indices are expected to be in the stack and the label name must be in the ALPHA register as

well. The module includes the routine “SSS” as example for this case, with the expression: f(n;m;p) = 1 / (

nn m! (p!)2)

ALPHA, “SSS”, ALPHA, 1, ENTER^, ENTER^, ENTER^, XEQ “UM” ->X = 2.839135243 (3 min 15s)

With an error =-7 E-9

 Areas, Sums & Series ROM

© 2017 ‘Angel Martin Page 11

Multiple Series

NUM0 calculates a multiple series sum, with k internal summations that all start in zero - that is:

S =  [U(n1;n2; ;nk)] with n1>= 0 ; n2>= 0 ; ; nk>= 0

Obviously now the number of indices will be in the X register, and there are no initial indices – which are
assumed to be zero. This may need you to re-write the expression of the general term to make it compatible

with this condition.

This is the most limiting requirement for this program, which is not suitable for cases that have mutual
dependencies between the initial indexes.

Here too, the general term needs to be programmed under a separate subroutine using a global label, which
needs to be entered in ALPHA. This assumes on entry that“n1” is in the R01 register,“n2” in the R02

register, “n3” in R03, and successively so until completing the number of variables.

 STACK INPUTS OUTPUTS

X k 0

ALPHA F.NAME /

Only the synthetic registers {M,N,O} are used by the program. The module includes the routine “NT” as

example for this case, with the expression used in the triple case: f(n;m;p) = 1 / (nn m! (p!)2).

We therefore need to change it to start at the zero indexes for the three variables, i.e. must make a change

of arguments to reduce to the standard: n >= 0 ; m >= 0 ; p >= 0 by replacing n with (n+1) ; m with

(m+1) ; p with (p+1): f(n;m;p) = 1 / {(n+1)(n+1)(m+1)! [(p+1)!]2}

ALPHA, “NT”, ALPHA, 3, XEQ “NUM0” ->X = 2.839135243 = R04 (8 min 39 s)

 Areas, Sums & Series ROM

© 2017 ‘Angel Martin Page 12

Nested Radicals

FNRM and INRM are MCODE functions to calculate finite and infinite Nested Radicals or root-order m. The

definition of the radical is given in a user-provided function under a global label, to generate the n terms

that contribute to the radical R(n).

• For the finite case the calculation ends when all the terms are provided and used in the radical.

• For the infinite case, a series of finite radicals of increasing sizes are computed until two of them are

equal. This means R(n) = R(n+1), for a given n large enough.

An initial size n0 needs to be provided by the user, which ideally is a balance between the radical size and

the number of subsequent radicals to calculate: the larger the radical the longer calculation time, but the
less number of radicals likely to calculate.

 STACK INPUTS OUTPUTS

Y k

X no NR

ALPHA F.NAME /

FNRM and INRM use data registers {R00 – R05} as well as user flags UF 001 and UF 01. Refrain from

using these resources in the definition of your functions. Note that both the root order m and the term n are

available for your user function to use – even if normally only n is used. This allows for more elaborate
expressions in the definitions.

For example, let’s calculate the value of an infinite nested radical with f(n) = n, as per the expression below:

For the case n=1 this happens to be the golden ratio  = ½ (1+sqr(5)

A trivial user program like this: {LBL PH, 1, RTN}, say we set FIX 9 and then we type:

2, ENTER^ 4, XEQ “INRM”_ PH” => 1.618033989

Using cubic roots instead we’ll obtain the “Plastic” Constant:

3, ENTER^, 4, XEQ “INRM”_”PH => 1.324717957

Example 2.Calculate the cubic and quartic root nested radicals for the function F(n) = n^4

Using n0=4 and the trivial user function {LBL “NR4”, X^2, X^2, END} we get:

4, ENTER^, 4, XEQ “INRM”_”NR4” =>1.325706774 quartic case

3, ENTER^, 4, XEQ “INRM”_”NR4” =>1.551416993 cubic case

Example 3. Calculate the square nested radical for the function F(n) = n {LBL “NR1”, RTN”}

 2, ENTER^, 4, 4, XEQ “INRM”_”NR1” =>1.757932757

 Areas, Sums & Series ROM

© 2017 ‘Angel Martin Page 13

2 –Areas of Polygons

The second section of the module includes several MCODE functions for triangles, cyclic quadrilaterals and
even non-regular polygons.

• CIRCL calculates the radius of a circle passing thru three data points, using the point x,y

coordinates. The values are expected to be stored in R01-R07. Besides that, it’ll also return in the
Y-register the area of the circumscribed triangle defined by the three points.

Example: Calculate the radius of the circle passing thru P(5,1), Q(6,2), and R(5,3)

The results are:

XEQ “CIRCL” => r=1,000000000,

X<>Y => A=1,000000000

The input sequence starts with the abscissa of P1 in R01.

Note that you can use the routines IN and INPUT

available in the SandMath to populate the registers
automatically.

• HERON calculates the area of a triangle knowing its three sides, using Heron’s formula. Just enter

the sides values in the stack, and execute the function. The result is stored in X, with the original

side saved in LastX. The rest of the stack is unchanged.

Let the triangle ABC with 3 known sides { a , b , c } and s = (a+b+c)/2 the semi-perimeter

Heron's formula is: Area = [s(s-a)(s-b)(s-c)]1/2

U Example: U a = 2, b = 3, c = 4

Type: 2, ENTER^, 3, ENTER^, 4, XEQ “HERON" => Area = 2.904737510

 Note: the function CIRCL described above makes use of the HERON formula internally after it
 first calculates the triangle sides from the point coordinates.

• BRHM is related to it, but the calculation for the area of the cyclic quadrilateral - using

Brhamagupta’s formula. Just enter the four values in the stack and execute the function. The result
is stored in X, with the original side saved in LastX. The rest of the stack is unchanged.

Let a, b, c, and d be its sides lengths, and the semi-perimeter

s = (a + b + c + d)/2 .The area A of the cyclic quadrilaterals:

A = [(s-a).(s-b).(s-c).(s-d).]1/2

U Example:U a = 4 , b = 5 , c = 6 , d = 7

 Type: 4, ENTER^, 5, ENTER^, 6, ENTER^, 7,
XEQ "BRHM" => Area = 28.98275349

 Areas, Sums & Series ROM

© 2017 ‘Angel Martin Page 14

• PG1 Calculates the area of a regular polygon when its side length is known. Input parameters are

the number of sides in Y, and the side length in X. The result is left in the X register.

Example: calculate the area of a triangle with side length a=5 m

3, ENTER^, 5, XEQ “PG1” -> 10.83 m^2

• PG2 Performs the same calculation but using the radius of the circumscribed circle instead of the

side length. Same order of parameters for input, with the number of sides in Y.

Example: calculate the area of a triangle circumscribed in a circle with radius r=5 m

3, ENTER^, 5, XEQ “PG2” -> 32.48 m^2

• Finally, the Routine “3PNTS” is a FOCAL driver for functions CIRCLE. You can use it to enter the

coordinates of the three points into data registers R01-R06, presented as three screens with the
prompts:

 … …

Once this is accomplished the program offers you a choice for the value to calculate next, either the
triangle area or the circle radius. You can Also press [E] to start over with a new set of three

points.

If used on the example listed above, it returns the following results:

 and

 Areas, Sums & Series ROM

© 2017 ‘Angel Martin Page 15

Convex Cyclic Polygons.

And what about non-regular polygons, you may wonder? Well, those are the subject of the following set of

FOCAL routines about to be described.

Programs “CCPA” and “CPLA” compute the area A and the circumradius R of a convex cyclic polygon

assuming all the sides lengths are known. Moreover, we also assume that the center of the circumcircle is
inside the polygon.

If{a1 , a2 , , an} are the sides lengths and { µ1 , µ2 , , µn }are the corresponding central

angles, we have to solve the system of (n+1) equations:

 2.R sin µ1/2 = a1

 2.R sin µ2/2 = a2

 …………….

 2.R sin µn/2 = an

 µ1 + µ2 + ... + µn = 360°

Performing a few substitutions lead to an expression with the radius as single unknown, to be resolved
iteratively using any root-finding method:

 asin (a1/2R) + asin (a2/2R) + + asin (an/2R) = 180°

After finding R, the Area is given by : A = (R2/2) (Sin a1 + Sin a2 + + Sin an)

There are two versions included in the module – “CPLA” uses the SOLVE function in the Advantage and
“CCPA” uses a built-in root finder based on Newton’s method. Each one has advantages and shortcomings,

as usual.

Drivers for Data Entry.

The routines expect the sides of the polynomial already stored in contiguous data registers, and the control
word “bbb.eee” in the X register before you call the routine. For your convenience, a driver routine is also

included that prompts for the side values and does the storing for you, Using “CPLA+” or “CCPA+”, all you

need to do is enter the values at each prompt, and once completed it’ll direct the execution to the
corresponding data engine downstream.

Example. Find the area of a convex cyclic polygon with sides: 4 , 5 , 6 , 7 , 8 , 9 , 10

XEQ “CPLA+” “N=?”
7, R/S “d1=?”

4, R/S “d2=?”
5, R/S “d3=?”

6, R/S “d4=?”
7, R/S “d5=?”

8, R/S “d6=?”

9, R/S “d7=?”
10, R/S -> 174.6757940 the area, and

X<>Y -> 8.143816980 the radius

 Areas, Sums & Series ROM

© 2017 ‘Angel Martin Page 16

Diagonal Lengths.

CPLD calculates the diagonal lengths of a convex cyclic polygon with its side lengths known. The method
used involves solving a linear system of (n-3) equations with (n-3) unknowns, which is solved by successive

approximations. The convergence is linear only – which results in relative longer execution times.

The iteration starts with all diagonals lengths = 0, which is very simplistic. The successive sums of the
differences between 2 consecutive approximations (in absolute values) are displayed. They should tend to

zero, however, the termination criterion may lead to an infinite loop. Since there are 319 registers at most,

"CPLD" can find the diagonals lengths of a 159-gon – but the execution time will not be small without an
emulator.

CPLD expects the number of sides in R00, and the sides of the polynomial already stored in contiguous data

registers starting with R01 until Rn+1. Then you must provide the control words “bbb.eee” indicating the

location of the data registers that store the side lengths.

STACK INPUT OUTPUTS

X / bbb.eee

For your convenience, a driver routine is also included that prompts for the side values and does the storing

for you, Using “CPLD+” all you need to do is enter the values at each prompt, and once completed it’ll

direct the execution to CPLD downstream.

Example: Find the diagonals lengths of a convex cyclic hexagon with sides: 4 , 5 , 6 , 7 , 8 , 9

XEQ “CPLD+” “N=?”
6, R/S “a1=?”

4, R/S “a2=?”
5, R/S “a3=?”

6, R/S “a4=?”
7, R/S “a5=?”

8, R/S “a6=?”

9, R/S shows estimations… -> convergence
 d8=8.46278437

R/S d9=12.12358502
R/S d10=12.97690535

There are in fact n(n-3)/2 diagonals whose lengths may be obtained by "rotating" the sides lengths in
registers R01 to R06 and we have similarly: n(n-3)/2 = 9 if n = 6

 d4 = 9.998827970 d7 = 11.30861231

 d5 = 13.01214483 d8 = 13.06010803

 d6 = 11.49035918 d9 = 12.32872367

Finally, the MCODE function DIAG is used internally by CPLD to speed-up the calculations. It computes the
following expression, assuming x , y , z , t are in registers X , Y , Z , T upon entry

SQRT [{ x.y (z2 + t2) + z.t (x2 + y2) } / (x.y + z.t)]

 Areas, Sums & Series ROM

© 2017 ‘Angel Martin Page 17

Regular Star Polygons

A star polygon {n/k}, with n,k positive integers, is a figure formed by connecting with straight lines every “k-

th” point out of n regularly spaced points lying on a circumference. The number k is called the polygon

density of the star polygon. Without loss of generality, take k<n/2. The star polygons were first
systematically studied by Thomas Bradwardine.

If k=1, a regular polygon {n} is obtained. Special cases of {n/k} include {5/2} (the pentagram), {6/2} (the
hexagram, or star of David), {8/2} (the star of Lakshmi), {8/3} (the octagram), {10/3} (the decagram), and

{12/5} (the dodecagram).

"STLA" computes the area A, the perimeter P, the in-radius r and the circumradius R of a regular

star polygon { n / k } from its edge length a

Formulae:

 A = n R2 Sin (180°/n) Cos (180° k/n) / Cos [180°(k-1)/n]

 a = 2.R Sin (180° k/n)

 r = R Cos (180° k/n)

 P = 2.A / r

The table on the left shows the input and output

Required by the program – easy does it!

STACK INPUTS OUTPUTS

T / R

Z a r

Y n P

X k < n/2 A

 Areas, Sums & Series ROM

© 2017 ‘Angel Martin Page 18

Examples:

 • a = 1 , n = 5 , k = 2
 1 ENTER^, 5 ENTER^, 2 XEQ "STLA"-> A = 0.310270701

 RDN P = 3.819660113
 RDN r = 0.162459848
 RDN R = 0.525731112

 • a = 1 , n = 10 , k = 3

 1 ENTER^, 10 ENTER^, 3, R/S -> A = 0.857567126

 RDN P = 4.721359547

 RDN r = 0.363271264
 RDN R = 0.618033989

 • a =  , n = 41 , k = 13
 PI ENTER^, 41, ENTER^, 13, R/S -> A = 9.855571194
 RDN P = 19.37713086

 RDN r = 1.017237409
 RDN R = 1.871409374

This program works in all angular modes, however, DEG mode should be preferable.

If k = 1, we get the convex regular n-gon. For instance, with a = 1 , n = 5 , k = 1, "STLA" returns what
corresponds to the regular pentagon.

A = 1.720477401

P = 5
r = 0.688190960
R = 0.850650808

Driver Program.

Here too you have a convenient driver program to guide you thru the data entry process: program “STLA+”
will prompt for the input values and will present the results sequentially after the calculations are done.

, ,

, , etc…

 Areas, Sums & Series ROM

© 2017 ‘Angel Martin Page 19

1 –Triangle Solutions

The core routines to solve plane, hyperbolic and spherical triangles were written by JM Baillard, and are

grouped here under three “driver” programs for convenience. The three drivers (TRIA, TRIH, and TRIH)
basically provide menu-based selection choices for the specific case, depending on which elements of the
triangle are known (sides or angles).

They work in all angular modes but angles must be entered as decimals. The standard triangle notation is
employed (lower-case for sides, upper case for angles; A opposite a ... etc.)

Rectangular Triangles.

TRIA offers the following 4 choices:

- One Side, two adjacent angles (with other sides)

- Two sides and included angle between them
- Three sides
- Two sides, and opposite angle

These are accessible pressing the top keys [A] to [D]. Additionally, pressing R/S at this point or [E] at any
moment will bring back the same options menu again.

Once the case is selected using the top keys, the program presents a prompt to enter the known elements:

, or: , or: , etc.

Formulas for plane triangles: a/sinA = b/sinB = c/sinC ;

a2 = b2 + c2 - 2 b.c.cosA and 2 similar relations ;
Area = b.c.(sinA)/2

Hyperbolic and Spherical Triangles.

 ;

TRIH and TRIS add to the cases shown before two more combinations of known elements, as follows:

- Three angles
- One side, the opposite angle and another angle

These are accessible pressing the top keys: either [A]/[B] for the first and [C]/[D] for the second. Also
pressing R/S at this prompt or [E] at any time will bring the main menu back for the selection.

Formulas for Hyperbolic triangles:

sinh a / sin A = sinh b / sin B = sinh c / sin C

cosh a = cosh b . cosh c - sinh b . sinh c . cos A
cos A = - cos B . cos C + sin B . sin C . cosh a
 c = arctanh (cos A tanh b) + arctanh (cos B tanh a)

 Areas, Sums & Series ROM

© 2017 ‘Angel Martin Page 20

 A

 *
 * * b

 c * * we must have A + B + C < 180°

 * *
 B * * * * * * * C
 a

Formulas for Spherical Triangles:

 sin a / sin A = sin b / sin B = sin c / sin C

 cos a = cos b . cos c + sin b . sin c . cos A

 cos A = -cos B . cos C + sin B . sin C . cos a
 c = arctan (cos A . tan b) + arctan (cos B. tan a) (modulo 180°)

This last formula is used in cases n°5 and n°6.

Other formulae can be used, for example:

 tan c/2 = (tan (a-b)/2).(sin (A+B)/2) / (sin (A-B)/2) (F1)
 tan c/2 = (tan (a+b)/2).(cos (A+B)/2) / (cos (A-B)/2) (F2)

 but (F1) cannot be applied if a = b & A = B and (F2) doesn't work if a + b = A + B = 180°

Examples.

