
X-MEM X-Functions Module

(c) Ángel M. Martin Page 1 of 24 June 2022






Tools & Utilities for X-Memory

User’s Manual and QRG.

Written and programmed by Ángel M. Martin
June 10, 2022

X-MEM X-Functions Module

(c) Ángel M. Martin Page 2 of 24 June 2022

This compilation revision 1.1.2

Copyright © 2022 Ángel Martin

Published under the GNU software licence agreement.

Original authors retain all copyrights and should be mentioned in writing by any part utilizing this

material. No commercial usage of any kind is allowed.

Screen captures taken from V41, Windows-based emulator developed by Warren Furlow.
See www.hp41.org

Acknowledgments.- This manual and the described module would obviously not exist without the

wonderful functions and routines included in it. Thanks to the MCODE pioneers and grand masters
who published their work in PPC Journal and other sources, such as Ken Emery (and alter-ego

Skiwd), Clifford Stern, Doug Wilder, Håkan Thörngren, Frits Ferwerda and Nelson F. Crowle amongst
others for their powerful functions, real examples of solid MCODE programming.

Everlasting thanks to the original developers of the HEPAX and CCD Modules – real landmark and

seminal references for the serious MCODER and the 41 system overall. With their products they

pushed the design limits beyond the conventionally accepted, making many other contributions pale
by comparison.

http://www.hp41.org/

X-MEM X-Functions Module

(c) Ángel M. Martin Page 3 of 24 June 2022


X-Mem Tools & Utilities for the HP-41CX

1. Introduction.

This module holds a collection of functions dedicated to enhancing and expanding the Extended
Memory handling. Some of them address missing aspects of functionality not covered in the X-

Functions Modules, but others expand the potential of X-Memory into new areas, such as the LIFO
Utilities and the In-File record management functions.

The module is a “greatest hits” compilation of functions from several sources. You’ll recognize some

from the ZENROM, and Doug Wilder’s DISASM/BLDROM but mostly are MCODE jewels published on

the PPC Journals. It comes without saying that only a fraction of the functions are written by the
author – although I can say I’ve tweaked them all to take advantage of the Library#4 and to make

other general arrangements.

This manual is structured around the four sections in the module, as follows:

• XMEM XFNS Includes general-purpose RAM utils, RAM Editors and X-Mem extensions.

• DFL RECS In-File record management of the individual registers of a data File.

• LIFO UTILS Using X-Mem as a LIFO buffer to hold system date

• HP-IL XFNS Advanced functions for HP-IL

Page#4 Library (but not Bank-Switching.)

The module uses the Library#4 – but in a not bank-switched configuration. Using the Library#4
allowed for a substantial increase in the number and kind of functions compared with the standard

approach.

The last remark is regarding the CX dependency: the module is designed for the CX version of the 41
OS, as the code profusely uses subroutines from the CX OS code. This was a compromise to

maximize the functionality and the economy of ROM space – as it avoided having to replicate large

code streams already available on the CX. Do not use these modules on a 41C or CV machine, it’ll
have unexpected and unwanted results.

The modules check for the presence of their dependencies, i.e. the Library#4 and the CX.-- if the

Library#4 is missing or the machine is not a CX the errors will halt it to avoid likely problems. Note

also that these modules are not compatible with page#6 – avoid plugging them in that location.

Note: Make sure that revision “R” (or higher) of the Library#4 is installed.

X-MEM X-Functions Module

(c) Ángel M. Martin Page 4 of 24 June 2022

Function index at a glance.-

Here you have it, a decent collection of X-Memory functions that will no doubt enhance your HP-41

experience and open the door for new applications in your own programs.

XROM# Function Name Description Input Author

17,00 -XMEM XFNS Section Header Shows splash Lib#4 splash Nelson F. Crowle

17,01 A<>RG _ _ Swaps Alpha and Regs. Prompts for RG# Ángel Martin
17,02 A<>ST Swaps Alpha and Stack None Ángel Martin
17,03 ADVREC Advances File Pointer Pt. Increment in X Ángel Martin
14.,04 ARCLCHR ARCL Char File Name in Alpha Håkan Thörngren
17,05 ARCLIP _ _ ARCL Integer Part Decimal number in X Frits Ferwerda
17,06 CLMM Clear Main Memory needs OK in Alpha Zengrange
17,07 CLRAM Clears RAM needs OK in Alpha Ray del Tondo
17,08 CLXM Clear Extended Memory needs OK in Alpha Zengrange
17,09 FLCOPY Copy File (like-to-like) “Source,Destination” in Alpha Ángel Martin
17,10 FLHD File Header File Name in Alpha Ángel Martin
17,11 FLTYPE File Type File Name in Alpha Ángel Martin
17,12 GETBF Restores Buffer from EM File Name in Alpha Håkan Thörngren
17,13 GETKA Get Keys File Name in Alpha Håkan Thörngren
17,14 GETST Get Status Rgs File Name in Alpha Ángel Martin
17,15 MRGKA Merge Keys File Name in Alpha Håkan Thörngren
17,16 RAMED _ RAM Editor Address in M or PRGM pointer Zengrange
17,17 RAMEDIT _ RAM Editor Address in X or PRGM pointer Håkan Thörngren
17,18 REC- Backs pointer by one None Ángel Martin
17,19 REC+ Advances pointer by one None Ángel Martin
17,20 RENMLFL Rename File Old Name, New Name in Alpha Ángel Martin
17,21 RETPFL Re-type File Old, New types in X Ángel Martin
17,22 RSTCHK Reset Checksum Program File Name in Alpha Håkan Thörngren
17,23 SAVEBUF Saves Buffer in EM Id# in X, File Name in Alpha Håkan Thörngren
17,24 SAVEKA Save Keys File Name in Alpha Håkan Thörngren
17,25 SAVEST Save Status Registers File Name in Alpha Ángel Martin
17,26 SORTFL Sort Data File Data File Name in Alpha CCD Module
17,27 ST<>RG _ _ Swaps Stack and RG Prompts for RG# Ángel Martin
17,28 WORKFL Get Work File none Sebastian Toelg
17,29 XQXM Execute XM Program File Program File Name in Alpha Ross Wentworth

17,30 -DFL REGS Section Header None n/a

17,31 “DFED Data File Editor Shows & Edits Records Ángel Martin
17,32 D>H Decimal to Hex Dec value in X Derek Amos
17,33 FLRCL _ _ Recall File Record to X Rec# in prompt Ángel Martin
17,34 FLSTO _ _ Stores X in file Record Rec# in prompt Ángel Martin
17,35 FLVEW _ _ View File Record Rec# in prompt Ángel Martin
17,36 FX<> _ _ Swaps X and File Record Rec# in prompt Ángel Martin
17,37 H>D Hex to Decimal Hex value in Alpha Derek Amos
17,38 PEEKR NNN Recall Absolute address in X Ken Emery
17,39 POKER NNN Store Absolute address in X Nelson F. Crowle

17,40 -LIFO UTILS Section Header n/a n/a

 LIFOINI Initializes INI buffer Data File Name in ALPHA Doug Wilder
17,42 PUSH PUSH Launcher Prompts for function Ángel Martin
17,43 ^A Saves Alpha to file LIFO File Name in ALPHA Doug Wilder
17,44 ^F Saves Flags to file LIFO File Name in ALPHA Doug Wilder
17,45 ^RTN Saves RTN in two recors LIFO File Name in ALPHA Doug Wilder
17,46 ^ST Saves Stack in 4 records LIFO File Name in ALPHA Doug Wilder
17,47 ^X Saves X in file record LIFO File Name in ALPHA Doug Wilder

 ^Z Saves X,Y Regs LIFO File Name in ALPHA Doug Wilder

X-MEM X-Functions Module

(c) Ángel M. Martin Page 5 of 24 June 2022

XROM# Function Name Description Input Author

17,49 POP POP Launcher Prompts for function Ángel Martin
17,50 POPA Restores ALPHA LIFO File Name in ALPHA Doug Wilder
17,51 POPF Restores System Flags LIFO File Name in ALPHA Doug Wilder
17,52 POPRTN Restores RTN Stack LIFO File Name in ALPHA Doug Wilder
17,53 POPST Restores XYZT Stack LIFO File Name in ALPHA Doug Wilder
17,54 POPX Restores X Register LIFO File Name in ALPHA Doug Wilder
17,55 POPZ Restores X,Y Registers LIFO File Name in ALPHA Doug Wilder

17,56 -HPIL XFNS Section Header n/a n/a

17,57 FLENG? Drive File Length File Name In ALPHA Unknown
17,58 READF Reads File from Drive File Name in ALPHA R. del Tondo
17,59 READPG Reads 4k-Page from drive File Name in ALPHA Skwid
17,60 READXM Reads EM from MassStg File Name in Alpha Skwid
17,61 WRTDF Write Data File to Drive File Name in ALPHA R. del Tondo
17,62 WRTPG Writes Page to Drive Page# in X Skwid
17,63 WRTXM Write EM to MassStg File Name in Alpha Skwid

A few functions like CLRAM and the memory editors RAMEDIT and RAMED go beyond X-Memory per

se, as they can be used to manually edit any area within the calculator’s memory. The same can be
said about general-purpose utilities like PEEKR and POKER, etc.

Some functions have the same name as equivalent ones in other modules, like the AMC_OS/X and

the RAMPAGE & TOOLBOX. This duplication is somehow inevitable to have self-contained modules, so

there’s no need to have them plugged simultaneously.

Note: Make sure that revision “R” (or higher) of the Library#4 is installed.

X-MEM X-Functions Module

(c) Ángel M. Martin Page 6 of 24 June 2022

.



Let’s open up the manual with an easy selection of RAM-related utilities, for register exchange and

convenient block data handling.

A<>RG _ _ Swap ALPHA and Registers Initial RG# in prompt Ken Emery
A<>ST Swaps Alpha and Stack No inputs needed Ángel Martin
ARCLIP _ _ Appends Integer part to Alpha RG# in prompt Ángel Martin
ST<> Stack swap with Stat Regs Uses current SREG setting Nelson F. Crowle
ST<>RG _ _ Stack swap with Data Regs. Initial RG# in prompt Angel Martin

• A<>ST and A<>RG are simple register exchange routines that swap the contents of the

Alpha registers (that is M, N, O, P) with the stack registers X, Y, Z, T o or with a register
block starting with the RG# input at the prompt respectively. This is nice to temporarily save

the stack in alpha for later reuse. Note however that register P is partially used by the OS as
scratch, so depending on what you do in between two executions of A<>ST the content of

the T register may have changed.

• ARCLIP appends to ALPHA the integer part of the number in register specified at the
prompt. Perfect to append indexes and counter values without having to change the display

settings (FIX 0, CF 29). This is similar to functions AINT, AIP, and ARCLI, except that these
operate on the X-register instead.

• ST<>RG and ST<> are also register block exchange routines, which swap the stack with

your choice of data registers (4 registers in total) or with the statistical registers respectively
(five registers, including LASTX as well).

The existence of the highest-number register is always checked, resulting in the “NONEXISTENT”

error message if not available. Should that occur, you need to change the SIZE settings or make

more data registers as needed.

2.1.1. Using Non-Merged Functions in Programs.

Note that these prompting functions are programmable. When used in a program they take the

argument from the next program line, a technique known as “non-merged” program lines. This has
the obvious advantage of not using the X-register to hold the argument, which would defeat the

purpose of stack-related functions. If the second line is not a number, the function assumes zero for
argument.

For example, to swap the stack and data registers R00 to R03 in a program simply use ST<>RG
typing any numbers for the prompt. No second line is needed in this case because the first data

register is zero. To swap the Alpha {M,N,O,P} registers and data registers R05 to R08 you need two
program lines, as follows:

nn A<>RG

nn+1 5

This technique was first used on the HEPAX module, but this implementation is based on Doug

Wilder’s routines. Be aware that the preceding line cannot be a test function (YES/NO, skip if false)
for obvious reasons.

X-MEM X-Functions Module

(c) Ángel M. Martin Page 7 of 24 June 2022

1.1.2. Clearing Memory – selectively or wholesale

CLMM Clears Main Memory Clears Data RGS, KA, buffers Zengrange

CLRAM Clears ALL RAM Same as MEMORY LOST (!) R. del Tondo

CLXM Clears X-Memory Clears all X-Mem files Zengrange

Use these functions carefully – there’s no way back and what you erase cannot be recovered (no

UNDO button!). To avoid unintentional uses, these functions expect the string “OK” or “OKALL” in

ALPHA. If that confirmation string isn’t there the execution will abort showing the error message
below:

• CLMM erases the calculator Main memory, including Stack & Data Registers, Programs, and

I/O Area - Key assignments and buffers (Alarms included). It will however leave X-Memory
untouched. Note that CLMM stores nulls into every register, and in addition all status

registers and flags are restored to default states. The size of program memory will be 219 on
an HP-41CX. Executing it from a running program will cause the program to stop – even if

that program is synthetically made to run in Extended Memory, and as such is not erased)

because the program pointer will be reset to point to the .END., causing the program to halt.

 is generated when executed.

• CLXM erases all files in extended memory, all gone for good! Note that this function is very

similar to CLEM, available in the AMC_OS/X and PowerCL modules – the only subtle
difference is that CLXM overwrites the contents of all existing Extended Memory registers

with nulls, whereas CLEM only erases the main X-Mem control register but not the actual
contents, so at least in theory you could restore things if you’d made a backup of the header

register first (which in all practicality, nobody does of course).

 is generated when executed in RUN mode.

• CLRAM wipes off the complete calculator RAM, therefore like both above functions combined
together. This is similar to the MEMORY LOST condition indeed.

 is generated when executed in RUN mode

X-MEM X-Functions Module

(c) Ángel M. Martin Page 8 of 24 June 2022



RAMEDIT RAM Editor Uses GETKEY [KEYFNC] Håkan Thörngren

RAMED RAM Editor Uses [NEXT] ZENROM

RAM editors are no doubt amongst some the best examples ever written for the HP-41 system, and

as such not one but two are included in the module.

2.2.1. Editing RAM memory with RAMEDIT.

Written by MCODE master Håkan Thörngren, this powerful RAM editor is my preferred choice, as it
rivals with (and exceeds it in several aspects) the ZENROM implementation. It was first published in

PPCJ V13 N4 p26.-, you’re encouraged to check his original contribution for a complete description of

the functionality and usage.

The starting register address is taken from the X register in RUN mode either as a decimal value
between 0 and 999, or an a NNN with the address in the rightmost two bytes The latter form allows

for a direct entry to a byte value within the register. In PROGRAM mode it uses the current program

pointer instead.

The display shows two distinct fields, with the nybble & byte section shown on the left side and the
actual register content shown on the right – as a 7-digit scrollable field controlled by the USER and

PRGM keys – very much like the CX’s ASCII file editor ED.

Nybble D (the 13th within the register) is selected upon start-up, with the cursor centered in the

middle of the field and its value blinking on the display. At this point you can use the control
characters to move between both areas and within the fields, or the digit keys plus A-F to input the

nybble HEX values being edited.

Scrolling includes a tone to signal the wrap-around condition within the register, as the nybble being

edited is updated in the address field on the left. A real tour-de-force and a masterful implementation
without any doubt.

The screens below show a couple of examples, editing the leftmost nybble of the Y register (address:

D002) and the rightmost digit of the X register (address 0003). The screenshots don’t capture its
magic; you really need to use it to appreciate its simple and powerful functionality.

The control keys for RAMEDIT are as follows:

[USER]: moves down to the previous nybble or position within the field

[PRGM]: moves up to the next nybble or position within the field
[+]: moves up to the next register

[-]: moves down to the previous register

[.]: the Radix key moves between both fields, use it to change the register address

[1]-[9],[A]-[F] the nybble value being edited

[<-] back-arrow cancels out and exits the editing
[ON]: turns the calculator OFF

X-MEM X-Functions Module

(c) Ángel M. Martin Page 9 of 24 June 2022

A couple of remarks are in order:

• RAMEDIT is a very powerful tool: the contents of all memory can be edited, including the

Status Registers, I/O Buffers, KA registers, and of course X-Memory files (see memory maps
below). Be very careful not to alter the contents of those system registers inappropriately to

avoid MEMORY LOST or system crashes.

• RAMEDIT uses a key-detection technique more power demanding than the Partial Key
Sequence, thus will drain on the battery life if used extensively. Do not leave it run idle for a

prolonged time.

Exercise caution in manipulating status register contents: Altering the contents of registers “+” and

“a” though “e” can lead to a MEMORY LOST condition or to a system crash if the register contents are

improperly altered.

Alteration of the “cold start constant” 169 in register “c” will always result in MEMORY LOST. Before
experimenting with these registers, the user should be thoroughly familiar with the theory and

practical applications of synthetic programming.

X-MEM X-Functions Module

(c) Ángel M. Martin Page 10 of 24 June 2022

2.2.2. Editing RAM memory with RAMED. (From the ZENROM)

The RAM Editor from the ZENROM provides an editor function, similar to that of the HP-41CX text file

editor ‘ED”, which permits review and replacement of any bytes, or optionally insertion of bytes in

program memory.

RAMED also redefines the HP-41 keyboard during execution to allow forward or backwards
movements through memory in byte or register increments by pressing the [USER] and [PRGM]

keys, (for bytes) and their shifted version for registers.

RAMED takes the start address from status (ALPHA) register M in RUN mode, or from the program

counter (status register b) in PRGM mode. If not in PRGM mode, it returns the last reviewed address
to M upon exit, or if in PRGM mode, exits at line where it entered (no change to the PC).

When used inside Program Memory area, pressing the [I] key toggles between replace and insert

mode – signified by the “1” annunciator being lit in the display. During entry of hexcode values, the

back arrow key will cancel the first digit input. By pressing and holding the second digit, the whole
hexcode entry is nullified – as it happens during normal HP-41 key-pressing. To exit from RAMED,

press the [ON] key.

A Quick Comparison.

The figure below compares the redefined keyboards for RAMEDIT (on the left) and RAMED (on the
right). Perhaps the most relevant differences are RAMED’s ability to insert bytes in program mode,

and the navigation controls - which in RAMEDIT’s case allow changing the register being edited on
the fly.

X-MEM X-Functions Module

(c) Ángel M. Martin Page 11 of 24 June 2022

Using RAMED Outside Program Memory

The following section is taken from the ZENROM Manual.

RAMED can prove very useful for examination of memory and system status register structures plus

provide the possibility to directly modify or replace their byte contents. For example, you can directly

modify the key-assignment information.

To use RAMED out of program mode, the starting address is taken from Alpha – more specifically
the rightmost four hex-digits of register M, which are the rightmost two characters as seen in the

display. By this you can specify the exact register and byte within that register at which you wish to

start editing.

This means that if you know the absolute address of the place in HP-41 memory that you want to edit
(see the memory map in previous page), then simply use the synthetic text entry feature provided by

functions CODE, HEXIN, or HEXKB (any of them will do) followed by STO M. Once the two
characters are in ALPHA you can execute RAMED, and you’ll be editing memory, starting at the

address specified.

As an example, let’s take a look at the key assignments registers, which have a format as follows:

Byte # 6 5 4 3 2 1 0

Bytes: F0 A7 20 34 04 61 83

Bytes Description
0 Keycode of key to which assignment is made

1 & 2 Assignment information
3 Keycode of key to which assignment is made

4 & 5 Assignment information

6 Register ID to specify a KA register (F0 hex)

Suppose you wish to edit the lowest key assignment register, which is at address 0C0, and you want

to go in at byte 6 of that register (that should contain F0). In standard RAMED notation this is

address “6:0C0” – where the “:” character separates the byte from the register address.

To do this, execute HEXIN (or HEXNTRY) and type “60C0”, followed by R/S, STO M. Then execute
RAMED. Assuming there are no key assignments, the display will now show:

You can now begin editing the assignment register. Remember that you will also need to set the key
bit-maps in register 10(+) for un-shifted keys, and 15(e) for shifted keys; depending on the

assignment.

Note: I don’t know you but I always felt a bit shortchanged with this example – which basically
doesn’t tell you how to edit the key bit-maps. Also the manual refers to another example where

there’s a circular reference to the status registers structure, so let’s include these in here as well.-

X-MEM X-Functions Module

(c) Ángel M. Martin Page 12 of 24 June 2022

Basically the trick consists of setting the appropriate
bits in status register 10 (“|-“) and 15 (“e”),

depending on whether it’s a un-shifted or shifted

assignment.

Each bit within those registers represents one key on
the keyboard, as per the following mapping – linking

the key bitmap on the left with the bit position.

So you’d need to work out which bit needs editing,

and come up with the equivalent nybble codes to
write on the appropriate status register, using

RAMED of course.

Far from an automated approach, to say the least,

but as they say “with power comes responsibility”,
and after all RAMED is not meant to be used unless

you know your way around the system.

Remarks:-

Exercise caution in manipulating status register contents: Altering the contents of registers “+” and
“a” though “e” can lead to a MEMORY LOST condition or to a system crash if the register contents are

improperly altered.

Alteration of the “cold start constant” 169 in register “c” will always result in MEMORY LOST. Before

experimenting with these registers the user should be thoroughly familiar with the theory and
practical applications of synthetic programming.

Even more interesting considerations apply to the utilization of status registers during program

execution. Remember that register “b” holds the current program pointer, i.e. it’s a powerful way to
jump to other programs, or even ROM space without any global label.

X-MEM X-Functions Module

(c) Ángel M. Martin Page 13 of 24 June 2022



This group includes functions related to the X-Memory control and enhanced functionality.

ARCLCHR ARCL Char from ASCII file Appends character to ALPHA Håkan Thörngren

FLHD File Header Returns address to X Ángel Martin

FLCOPY File Copy ‘Source,Destination” in ALPHA Ángel Martin

FLTYPE File Type Gets file type to X Ángel Martin

GETBF Get Buffer from file Buf id# in X, File Name in Alpha Håkan Thörngren

GETKA Get KA from file File Name in ALPHA Håkan Thörngren

GETST Get Status Registers from File Status File Name in Alpha Ángel Martin

MRGKA Merge Assignments File Name in ALPHA Håkan Thörngren

RENMFL Rename X-Mem File “Old,New” Names in ALPHA Ángel Martin

RETPFL Retype X-Mem File New type in X, File Name in Alpha Ángel Martin

RSTCHK Reset Checksum Program File Name in Alpha Håkan Thörngren

SAVEBF Saves Buffer Buf id# in X, File Name in Alpha Håkan Thörngren

SAVEKA Saves Key Assignments File Name in ALPHA Håkan Thörngren

SAVEST Saves Status Registers File Name in ALPHA Ángel Martin

SORTFL Sort Data File In ascending order CCD Module

WORKFL Gets Work FileName Appends name to ALPHA Sebastian Toelg

XQXM Executes a Program File Program File Name in ALPHA Ross Wentworth

The appendix-2 has a detailed description of the different X-Mem file header structures, which

should help to better understand the functionality provided by these functions. The following short
descriptions summarize the most important points for each of them:

• ARCLCHR appends the character at the current pointer position of the current ASCII file.
The file Pointer is advanced one position, ready to retrieve the next character if needed.

Originally published in PPCJ V13 N7 p19

• FLHD will return the absolute address (in decimal) for the Header register of the file named
in Alpha (or the current file if blank). This is useful as input for PEEKR and POKER, RAMED

and other memory editing functions.

• FLTYPE returns the type of the file which name is given in Alpha. Valid file types are shown

in the table below, note the five custom extensions supported by the AMC_OS/X module:

File PRGM DATA ASCII Matrix Buffer Keys “T” “Z” “Y” “X” LIFO

Type 1 2 3 4 5 6 7 8 9 10 15

• RENMFL is a handy utility that renames an X-Mem file. The syntax is the same used by

RENAME for the HPIL Disks, that is the string “OLDNAME,NEWNAME” must be in alpha. The

function will check that the OLDNAME file exists (“FL NOT FOUND” condition otherwise), and

that there isn’t any other filed named NEWNAME already (“DUP FL” error message).

• RETPFL is a bit of a hacker trick: it modifies the file type information for the file named in
Alpha, changing it to the value in X. This is actually useful in a number of circumstances, like

sorting a Matrix file using SORTFL (which only works for DATA files): just change the type to
“2”, sort its contents with SORTFL, and change it back to “4”. You can use any value from 1

to 14 in X, other values will cause “FL TYPE ERR” conditions

X-MEM X-Functions Module

(c) Ángel M. Martin Page 14 of 24 June 2022

• RSTCHK is a rescue function that restores the checksum value for a PROGRAM file. Use it if

this byte gets corrupt or when you alter the program file manually (hacker beware!), so the
file will recover its “valid” status. See original article on PPCJ V13 N2 p14

• XQXM is a PROGRAM File Execute - direct execution of the program. Note that all GOTO’s

must be pre-compiled, and no calls to other programs may exist within the file.

• WORKFL will append the name of the current file (a.k.a the workfile) to ALPHA. Easy does
it! This becomes very useful when working with MATRIX files, see the SandMatrix Module if

interested.

• FLCOPY is a handy utility that allows copying complete like-to-like files of any type. Requires

both file names in Alpha, separated by a comma: “from,to” (or “NAME ERR” will occur).
Both files must exist in X-Memory (or “FL NOT FOUND” will occur), be of the same type (or

“FL TYPE ERR” will occur), and have the same size (or “FL SIZE ERR” will occur). The
contents of the source file will be copied to the destination. The File Names and Headers will

not change.

• SORTFL is a very fast data file sorting function that performs the sorting in ascending order.

It is taken from the CCD Module (not easy to extricate its code from the CCD framework).
Much faster than equivalent FOCAL routines using GETX/SAVEX or FLRCL/FLSTO.

• SAVEST and GETST are special in a couple of ways. For starters because their subject is the

complete Status Registers, i.e. the “Chip0” of the system RAM. Use SAVEST to make
backups of the entire status registers area to XMEM, including the stack, flags, Alpha, and the

other control registers. Use GETST to restore the status registers back to the same state.
For obvious reasons the file size will always be 16. They’re also special because they use a

file type 7, which is properly recognized as type “T” by the CAT’4 implementation in the
AMC_OS/X module:

A couple of observations are in order:

o The X-Mem file name is expected in ALPHA, thus this imposes a small limitation on

things. You can however add a comma to the File Name and write additional text

after it – which will be ignored by the functions.

o Register 12(b) stores the program counter (PC). Executing GETST in a program will
overwrite the current PC, and the program execution will be “lost” – going to the

same place it was at when the status registers were saved. There are more tricky
issues using these in PRGM mode, like the question of the subroutine stack and the

program line. Suffice it to say it’s not really advisable – yet I resisted the idea to

make it non-programmable, but users beware!

o Saving and restoring the Key Assignments involves two separate actions. GETST only
restores the key mappings in registers 10(|-) and 15(e), but it doesn’t have anything

to do with the actual KA registers in the I/O area. Make sure you use SAVEKA and

GETKA instead for this need, or the key assignments will be scrambled. See the KA
utilities below.

X-MEM X-Functions Module

(c) Ángel M. Martin Page 15 of 24 June 2022

• Saving and getting KA in/from Extended Memory with SAVEKA, GETKA and MRGKA also

expect the File Name in Alpha. GETKA will completely replace the existing key assignments
with those contained in the file, whilst MRGKA will merge them – respecting the unused keys

so only the overlapping ones will be replaced. Same error handing is active to avoid file
duplication or overwrites. Like their Buffer counterparts they will check for available memory,

showing “NO ROOM” when there isn’t enough for the retrieval.

• SAVEBF and GETBF are used for saving and Getting buffers in/from Extended memory.

They follow the same convention used for other file types, with the buffer id# in X and the

File Name in Alpha. Error handling includes checking for duplicate buffer (“DUP BF”), buffer
existence (“NO BUF”), as well as previous File existence (“DUP FL”).

Sorting Times Comparison.

As an example of utilization, the FOCAL routine below does a bubble-sort using the In-File X-Mem
Record functions described later in the manual – same job although in a much slower way than

SORTFL as seen in the following comparison table:

File Size FOCAL routine SORTFL Speed Factor

10 29.73” 0.43” 69.14x

25 3’ 02.19” 1.03” 491.34x

50 12’ 03.93” 2.47 “ 814.14x

100 50’ 45.34” 5.85” 1,446.03x

300 Life is too sort 36.61” way, way faster

600 Never mind 1’ 19.51” Out of Range ;-)

As you can see including SORTFL in the collection was well worth the effort!

01 LBL “FLSORT”

02 FLSIZE
03 2
04 –
05 E3
06 /
07 STO 00

08 LBL 00

09 RCL 00
10 1.001
11 +
12 STO 01
13 FLRCL IND 00

14 LBL 01

15 FS? 10

16 VIEW 01
17 FLRCL IND 01
18 X>Y?
19 GTO 02
20 FLSTO IND 00
21 X<>Y
22 FLSTO IND 01

23 LBL 02

24 RDN
25 ISG 01
26 GTO 01
27 ISG 00
28 GTO 00
29 CLD
30 END

X-MEM X-Functions Module

(c) Ángel M. Martin Page 16 of 24 June 2022



FLRCL _ _ Recall file record to X Rec# in prompt / next prgm line Ángel Martin

FLSTO _ _ Store X in File Record Rec# in prompt / next prgm line Ángel Martin

FLVEW _ _ View File Record Rec# in prompt / next prgm line Ángel Martin

FLX<> _ _ Swap X and File Record Rec# in prompt / next prgm line Ángel Martin

PEEKR Absolute address RCL Absolute address in X-reg Ken Emery

POKER Absolute address STO Abs. adr in Y, content in X Ángel Martin

“DFED Data File Editor Data File in ALPHA Ángel Martin

Starting with the classic ones:

• PEEKR can be compared to the RCL function, however it is possible to read the contents of
any register without normalization into the X register. The register to be read is entered as

absolute address into X. The stack is lifted. PEEKR works for every existing register address
from zero to 1,023. If we want to use relative data register numbers with PEEKR, the

absolute address of the data registers must be first obtained – using function CTRN?

• POKER writes over the register whose absolute address is specified in the Y register, with

the NNN contents of the X register. POKER works for the entire existing register range of the
calculator. The stack registers remain unchanged, as long as they are not specified by the

absolute address in Y. Since POKER can change any register, this function should only be
employed if the calculator structure is well understood. Otherwise, it may result in unwanted

changes in programs, data registers, status registers, etc. or even a MEMORY LOST condition.

The new functions treat the data file records as standard individual registers for store, recall,
exchange, and view actions. They are prompting functions: the record number is entered at the

function prompt in manual more or taken from the next program line in a running program (non-

merged functions again). Obviously, the register number can’t be larger than the data file size minus
one (zero-base numbering).

For large data files (more than 99 records) you can use the INDirect addressing described below, or

alternatively use the Prompt_Lengthener functionality in the AMC_OS/X module to extend the prompt

field to three digits:

For space reasons the prompting implementation is limited in this module. First, stack addresses and

IND stack addresses are not supported. Second, the functions support a hybrid INDirect addressing
mode, where the standard data registers are used to hold the file record number – but it’s important

to realize there’s no support for INDirect addressing using the actual file records to hold the pointer
to the final data file record.

A complete implementation supporting all types of direct and indirect addressing is available in the
XM-TWIN module – refer to its manual for details if you’re interested in this functionality.

X-MEM X-Functions Module

(c) Ángel M. Martin Page 17 of 24 June 2022

Data File Editor

The module includes a quick & dirty data file editor – also sorely missing in the standard toolkit.

Nothing fancy but a sequential review of the data file records, with the possibility of editing the
shown values at each prompt. Press R/S if the shown value doesn’t need changing; otherwise input

the new value to replace that one shown, and then R/S.

 , , …

The program listing for DFED is shown below. Note that after each prompt the ALPHA register is
reset with the file name, thus you can leave the editing at any step – no need to complete the

execution till the end of file – very convenient for long files of course.

01 LBL “DFED”

02 FLSIZE
03 E
04 –
05 E3
06 /

07 LBL 00

08 SEEKPT
09 GETX
10 X<>Y
11 “D”
12 ARCLI
13 >”=”
14 X<>Y
15 ARCL X(3)
16 >”?”
17 CF 22
18 XEQ 02 ; show & reset
19 STOP

20 FC?C 22 ; entered data?
21 GTO 01 ; no, skip over
22 X<>Y
23 RDN
24 X<>Y
25 SEEKPT
26 X<>Y
27 SAVEX

28 LBL 01

29 X<>Y
30 ISG X(3)
31 GTO 00
32 “DONE”

33 LBL 02

34 AVIEW
35 CLA
36 WORKFL

37 END

Decimal <> Hex Conversions

The module includes two functions for the Dec<->Hex conversions, a classic subject that shouldn’t be

missing from any utility collection like this one.

D>H and H>D perform a quick & dirty conversion between decimal and (unsigned) hex values

using the real X-register and ALPHA. Use then when you want to check results independently from
the selected base on the emulator.

The maximum number allowed is H: 2540BE3FF or d: 9,999,999,999 in decimal.
Both functions are mutually reversed, and H>D does stack lift as well.

These functions were written by William Graham and published in PPCJ V12N6 p19, enhancing in turn

the initial versions first published by Derek Amos in PPCCJ V12N1 p3.

X-MEM X-Functions Module

(c) Ángel M. Martin Page 18 of 24 June 2022



Original LIFO functions were written by Doug Wilder and originally published in the BUILD Module.

LIFOINI Initializes the LIFO Stack

^A ALPHA Registers POPA

^F_ _ System Flags POPF

^RTN RTN Stack Registers POPRTN

^ST XYZT Stack POPST

^X X-Register POPX

^Z X,Y Registers POPZ

The LIFO (Last In First Out) functions require extended functions memory to operate. The LIFO is

located only in the first file in extended memory and must have a minimum size of one register and a
maximum size of 120 registers. This structure allows maximum transfer speed, even faster than main

memory, and does not require register numbers.

LIFO initialization: Create a first file in extended memory (recommended size is 16 to 32 registers) or

if the first file currently in extended memory is of a suitable size, it may be used for the LIFO. Use a
sequence similar to: "BUFFER" 28 CRFLD (the name is arbitrary). The function LIFOINI converts the

first file in extended memory to the LIFO file type, any data in the file is unrecoverable.

The LIFO file type is 15. If you’re using the AMC_OS/X Module (always highly recommended), this is
shown in a CAT#4 listing with an “L” character in the file type, i.e.:

LIFOINI:

Converts the first file in extended memory to LIFO structure and initialize pointers.

After LIFOINI has been successfully executed without error, the stack is ready for use. LIFOINI may

be executed again to reset the pointers. Ideally, LIFOINI would be only executed from the keyboard,
however it may also be used in a main program, the uppermost or top driver program.

LIFO functions:

Z: is X and Y (complex data) , T: is Stack (XYZT), F: is Flags, A: is ALPHA, and R: is the RTN stack

If the stack lift is disabled, POPX and POPZ do not cause a lift, eg, CLX, POPZ does not modify the Z

and T registers. For multi-register push and pop functions, a “LIFO LIMIT” error leaves the stack in an
unknown state and the LIFO pointer is left in an unknown state.

X-MEM X-Functions Module

(c) Ángel M. Martin Page 19 of 24 June 2022

For POPA or POPF, if a “DATA ERROR” occurs the Alpha/Flag register has not been modified yet the

LIFO pointer is left in an unknown state.

Alpha data and Flag data are typed data, that is: one cannot pop numeric or Flag data into Alpha.

Stack data is not typed: any type of data may be poped into the XYZT stack.

With a LIFO it is possible to write user code subroutines which simulate monadic functions, for
example; do a push stack at entry, put the result in LASTX, then POPST and X<>L RTN.

It is also possible to write interrupting alarms which actually do something, they can push the
stack/LASTX/Alpha/Flags at entry and recover them at exit. Thank’s to HP for the forthought to not

interrupt a running program when the stack lift is disabled.
POP of data into the stack is very fast unless a printer is attached, in which case the POP can be

greatly slowed due to printer interface. For example a POPST in trace mode will do a full stack
printout which can consume up to two seconds. In a running program, clearing F55 will greatly speed

things up although trace capability will be lost.

These functions will report “NO XFM LIFO” if a lifo file does not exist. In that case you’ll need to

create it first and then try again.

Finally, one must remember the basic rule for LIFO stack usage: whatever gets pushed MUST be

poped and in reverse order! Otherwise we get what is known as a "memory leak" and eventual LIFO
LIMIT error.

Launcher implementation

Besides the individual functions from the summary table, this functionality is also implemented in two

LIFO launchers, POP and PUSH. Each action is invoking the corresponding POP or PUSH function.

You can use the [SHIFT] key to toggle between them in run mode.

 -→

Function I A F X Z T R

PUSH* LIFOINI PUSHA PUSHF PUSHX PUSHZ PUSHST PUSHRTN

POP* LIFOINI POPA POPF POPF POPZ POPST POPRTN

Notice that the option “R” stands for the POPRTN and ^RTN functions, an extension to the original
implementation to include the RTN Stack to this scheme.

You can also use the launchers in a program, although the individual functions are a more effective
way to operate. In a program each of the options in the launcher prompt needs to be manually added

as a second program line, following the launcher function program steps. For instance, the code
snippet below saves the contents of the ALPHA register using PUSHA:

nn PUSH

nn+1 2

X-MEM X-Functions Module

(c) Ángel M. Martin Page 20 of 24 June 2022



If you haven’t noticed, HP-IL related functions are far and in-between but here’s a few ones that are

frequently needed and sorely missing in the standard ROMS. For example, the Extended Functions
module gave us GETAS and SAVEAS to write and read ASCII files to HP-IL Mass Storage devices, but

nothing about DATA files. This gap is now closed by the functions described below.

FSIZE? HPIL Media File Size FileName in ALPHA R. del Tondo
READF Read Data File IL FName, XM FName R.del Tondo
WRTDF Write Data File XM FName, IL FName R. del Tondo

READPG Reads page from HP-IL Page# and FileName Skwid

WRTPG Writes page to HP-IL Page# and FileName Skwid

READXM Overwrites all XM from IL File FileName in ALPHA Skwid

WRTXM Writes all XM to IL File FileName in ALPHA Skwid

• FSIZE? Returns to X the length in registers of the (primary) mass storage file which name is

specified in Alpha. If no HP-IL is present on the system, the error message “NO HPIL” will be
shown.

• READF and WRTDF are used to read and write individual DATA files between the IL Drive
and XMEM. To use them properly you need to first create the destination files (like GETAS

and SAVEAS do for ASCII file types).

Fortunately, you can use FSIZE? And FLSZE to find out that required piece of information,

and then create the file appropriately either in X-Mem or in the Mass Storage device. The
FOCAL programs below would do that automatically – just type the source and destination file

names in ALPHA separated by a comma:

01 LBL “GETDF” 08 LBL “SAVEDF”

02 FSIZE? 09 FLSIZE
03 ASWAP 10 ASWAP

04 CRFLD 11 CREATE
05 ASWAP 12 ASWAP

06 READF 13 WRTDF
07 RTN 14 END

(*) The function ASWAP is available in the AMC_OS/X Module, The ALPHA_ROM, and the
PowerCL Module amongst other sources.

• WRTXM and READXM are used to write/read the complete contents of the X-Memory

to/from a disk drive over HPIL. These functions exercise the full capability of the system, and

provide a nice permanent backup for your XMEM files. Note that only the non-zero content
will be copied, thus the resulting disk file size will not be larger than required - in other

words, it won’t always copy all XMEM even if zero, like other FOCAL implementations of the
same functionality can only do. These functions are taken from the Extended-IL ROM, written

by Ken Emery’s alter ego Skwid.

X-MEM X-Functions Module

(c) Ángel M. Martin Page 21 of 24 June 2022

• READPG and WRTPG are the mandatory read/write entire blocks (a.k.a. pages) to the HP-IL

disk drive. Very much equivalent to the HEPAX’ READROM and WRTROM, where the
destination page is expected to be in X. It works on any page, RAM or ROM, and OS

included. Note: for bank-switched modules only the first bank is copied!

Their code is entirely contained in the Library#4, so this is another example of the “free-

riders” only needing the FAT entry and the calling stub footprint. They are taken from the
CCD OS/X, thus I attributed authorship to R. del Tondo – which to this date is unconfirmed.

Note that the file formats on disk will be compatible with the HEPAX functions that perform
the same tasks, but not so with equivalent functions from the ML ROM, Eramco MLDL or other

EPROMS from the Dutch PPC Chapters. There are thus two “standards” that cannot be
intermixed.

X-MEM X-Functions Module

(c) Ángel M. Martin Page 22 of 24 June 2022

Appendix 1.- X-Memory File Headers.

Generally speaking, all X-Mem files have a NAME register and a HEADER register. The Name
register obviously holds the file name, which is used as parameter in ALPHA for diverse file
functions. The Header register is a control and status register that holds key information
relevant to the file type & size, address in memory, and other accessory parameters – like
the pointers in some file types.

The following figures show the header layout for the different file types.- Note how the file
type and size (in registers) fields are common to all of them, and that those are the only
fields for the “simpler” files (like Buffer, Kay Assignments, STATUS and Complex-Stack).

1. PROGRAM Files:

T - - - - - - - B Y T S Z E

13 12 11 10 9 8 7 6 5 4 3 2 1 0

2. DATA Files:

T A D R - - - - R E G S Z E

13 12 11 10 9 8 7 6 5 4 3 2 1 0

3. ASCII Files:

T A D R - C H R R E C S Z E

13 12 11 10 9 8 7 6 5 4 3 2 1 0

4. MATRIX Files:

T A D R L/U C O L i j # S Z E

13 12 11 10 9 8 7 6 5 4 3 2 1 0

5. Buffer, Key-Assignment, Status-Regs, and Complex-Stack Files:

T - - - - - - - - - - S Z E

13 12 11 10 9 8 7 6 5 4 3 2 1 0

For Data and ASCII files, the address field is initially blank – and only filled in when the
pointer is set, either manually using SEEKPT(A) or automatically using some dedicated
function (like GETRGX, or APPREC/CHR).

To the author’s knowledge the PROGRAM Files never get the address field filled in.

X-MEM X-Functions Module

(c) Ángel M. Martin Page 23 of 24 June 2022

Appendix 2.- Extended Memory Structure.

Extended memory is comprised of up to three disjoint memory ‘blocks”, depending on
whether only the X-Mem/Funct. module is present, or if other Extended Memory modules are
also plugged into the calculator.

Each of these blocks has a “linking” registers at the bottom, holding the pointers to the
previous and next block, as well as its own starting location. They are located at the bottom
of each block, that is addresses 0x040, 0x201, and 0x301.

The structure of the information contained in the linking registers is shown in the figure
below:

- - C U R P R V N X T T O P

13 12 11 10 9 8 7 6 5 4 3 2 1 0

CUR: number of files; only used in bottom linking register at 0x040
PRV: address of linking register of PREVIOUS module (or zero if first block)
NXT: address of top register of NEXT module (or zero if last block)
TOP: address of top register within this module

The contents of the linking registers vary depending on the number of X-Mem modules
present and where they are plugged, so for instance for a full configuration (or the HP-41
CX) including 5 files in total they are as follows:

@ 0x301:

 2 0 1 0 0 0 3 E F

13 12 11 10 9 8 7 6 5 4 3 2 1 0

@ 0x201:

 0 4 0 3 E F 2 E F

13 12 11 10 9 8 7 6 5 4 3 2 1 0

@ 0x040:

 0 0 5 0 0 0 2 E F 0 B F

13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: Some of the boundary values appear to be hard-coded in the file management
routines, like EMDIR, EMROOM, and file search utilities. This makes it impossible to add
more blocks above - even if the memory is available (like is the case for the 41CL machine) –
as shown below. it’s unfortunately also not possible to change their locations to other pages
in RAM, say 1kB higher (for a second set of XM).

@ 0x401:

 3 0 1 0 0 0 4 E F

13 12 11 10 9 8 7 6 5 4 3 2 1 0

@ 0x301:

 2 0 1 4 E F 3 E F

13 12 11 10 9 8 7 6 5 4 3 2 1 0

X-MEM X-Functions Module

(c) Ángel M. Martin Page 24 of 24 June 2022

Appendix 0.- HP-41 Byte Table

