
XMEM Twin Module Manual

© Ángel Martin – January 2023 Page 1

X-Register Management and Stack Swap Functions

With Block & Sorting Applications

Revision 3A

Written and programmed by Ángel Martin
January 9, 2023

XMEM Twin Module Manual

© Ángel Martin – January 2023 Page 2

This compilation revision 1.2.2

Copyright © 2022 Ángel Martin

Published under the GNU software license agreement.

Original authors retain all copyrights and should be mentioned in writing by any part utilizing this
material. No commercial usage of any kind is allowed.

Screen captures taken from V41, Windows-based emulator developed by Warren Furlow.
See www.hp41.org

Acknowledgments.- This module is a derivative of the “CL Expanded Registers” project. A 41-CL is

not required.

Everlasting thanks to the original developers of the HEPAX and CCD Modules – real landmarks and

seminal references for the serious MCODER and the 41 system overall. With their products they
pushed the design limits beyond the conventionally accepted, making many other contributions pale

by comparison.

http://www.hp41.org/

XMEM Twin Module Manual

© Ángel Martin – January 2023 Page 3

Module Main Function Table and Descriptions.

Function Description Dependency Type Author

0 -XMEM TWIN Lib#4 Check & Splash Lib#4 MCODE Nelson F. Crowle

1 YF$ _ Sub-function Launcher by Name Lib#4 MCODE Ángel Martin

2 YF# _ _ _ Sub-function Launcher by index Lib#4 MCODE Ángel Martin

3 A<>XRG _ _ _ Swap Alpha and X-Regs Lib#4 MCODE Ángel Martin

4 CLXRG Clear All Extended Regs Lib#4 MCODE Ángel Martin

5 CLXRGX Clear X-Regs by X Lib#4 MCODE Ángel Martin

6 CPYBNK _ "_:_ Copy Banked Block Lib#4 MCODE Ángel Martin

7 ST<>XRG _ _ _ Swap Stack and X-Regs Lib#4 MCODE Ángel Martin

8 STKSWP _ Stack Swap Launcher Lib#4 MCODE Ángel Martin

9 XFINDX Searches for value in X in X-Regs Lib#4 MCODE Ángel Martin

10 XRGMOV Move Expended Regs Blocs Lib#4 MCODE Ángel Martin

11 XRGSWP Swap Expanded Regs Blocks Lib#4 MCODE Ángel Martin

12 -X-REGS FNS Section Header n/a MCODE Ángel Martin

13 XARC _ _ _ X-Regs ARCL Lib#5 MCODE Ángel Martin

14 XAST _ _ _ X-Regs ASTO Lib#6 MCODE Ángel Martin

15 XDSE _ _ _ Expanded Reg DES Lib#4 MCODE Ángel Martin

16 XISG _ _ _ Expanded Reg ISG Lib#4 MCODE Ángel Martin

17 XRCL _ _ Extended Recall Lib#4 MCODE Ángel Martin

18 XRC+ _ _ _ XRCL Addition Lib#4 MCODE Ángel Martin

19 XRC- _ _ _ XRCL Subtract Lib#4 MCODE Ángel Martin

20 XRC* _ _ _ XRCL Multiply Lib#4 MCODE Ángel Martin

21 XRC/ _ _ _ XRCL Divide Lib#4 MCODE Ángel Martin

22 XSTO _ _ Extended Store Lib#4 MCODE Ángel Martin

23 XST+ _ _ _ XSTO Addition Lib#4 MCODE Ángel Martin

24 XST- _ _ _ XSTO Subtract Lib#4 MCODE Ángel Martin

25 XST* _ _ _ XSTO Multiply Lib#4 MCODE Ángel Martin

26 XST/ _ _ _ XSTO Divide Lib#4 MCODE Ángel Martin

27 XVEW _ _ _ Extended View Lib#4 MCODE Ángel Martin

28 XX<> _ _ Extended Exchange Lib#4 MCODE Ángel Martin

29 -X-REGS APPS Section Header n/a MCODE Ángel Martin

30 WORKFL Working File Name Lib#4 MCODE Sebastian Toelg

31 "XDUMP Dumps Standard Regs into X- None FOCAL Ángel Martin
32 "XINPT Inputs X-Regs AMC_OSX FOCAL Ángel Martin
33 "XOUT Outputs X-Regs AMC_OSX FOCAL Ángel Martin
34 "XRAN Enters Random values AMC_OSX FOCAL Ángel Martin
35 "XSHFT Selective Std, Reg copy none FOCAL Ángel Martin
36 "XSORT Sorts X-Regs none FOCAL JM Baillard

37 “XS1 PPC Stack Sort none FOCAL PPC Members

38 “XS2 PPC Small Set Sort none FOCAL PPC Members

39 “XS3 PPC Large Set Sort none FOCAL PPC Members

40 -FREGS FNX Section Header n/a MCODE n/a

41 FARC _ _ _ File-Regs ARCL Lib#5 MCODE Ángel Martin

42 FAST _ _ _ File-Regs ASTO Lib#6 MCODE Ángel Martin

43 FDSE _ _ _ File Reg DES Lib#4 MCODE Ángel Martin

44 FISG _ _ _ File Reg ISG Lib#4 MCODE Ángel Martin

45 FRCL _ _ File Reg Recall Lib#4 MCODE Ángel Martin

46 FRC+ _ _ _ FRCL Addition Lib#4 MCODE Ángel Martin

47 FRC- _ _ _ FRCL Subtract Lib#4 MCODE Ángel Martin

48 FRC* _ _ _ FRCL Multiply Lib#4 MCODE Ángel Martin

49 FRC/ _ _ _ FRCL Divide Lib#4 MCODE Ángel Martin

50 FSTO _ _ File Reg Store Lib#4 MCODE Ángel Martin

51 FST+ _ _ _ FSTO Addition Lib#4 MCODE Ángel Martin

52 FST- _ _ _ FSTO Subtract Lib#4 MCODE Ángel Martin

XMEM Twin Module Manual

© Ángel Martin – January 2023 Page 4

53 FST* _ _ _ FSTO Multiply Lib#4 MCODE Ángel Martin

54 FST/ _ _ _ FSTO Divide Lib#4 MCODE Ángel Martin

55 FVEW _ _ _ File Reg View Lib#4 MCODE Ángel Martin

56 FX<> _ _ File Reg Exchange Lib#4 MCODE Ángel Martin

57 -FREGS APPS Section Header n/a MCODE n/a

58 POSDF Position in Data File Lib#4 MCODE Ángel Martin

59 “DFED Data File Editor AMC_OSX FOCAL Ángel Martin

60 “FLRAN Randomizes Data File AMC_OSX FOCAL Ángel Martin

61 “FLSHFT Copies Data Regs to File none FOCAL Ángel Martin

62 “FLSORT Bubble-Sorts Data File none FOCAL Ángel Martin

63 “FLDUMP Dumps all Data Regs to File none FOCAL Ángel Martin

This module also includes a set of sub-functions arranged in an Auxiliary FAT, as follows:

0 -STK SWAPS Section Header Lib#4 MCODE Ángel Martin

1 a<> _ _ Swap a and register Lib#4 MCODE Ángel Martin

2 b<> _ _ Swap b and Register Lib#4 MCODE Ángel Martin

3 c<> _ _ Swap c and register Lib#4 MCODE Ángel Martin

4 d<> _ _ Swap d and Register Lib#4 MCODE Ángel Martin

5 e<> _ _ Swap e and register Lib#4 MCODE Ángel Martin

6 }<> _ _ Swap }- and Register Lib#4 MCODE Ángel Martin

7 L<> _ _ Swap L and register Lib#4 MCODE Ángel Martin

8 M<> _ _ Swap M and Register Lib#4 MCODE Ángel Martin

9 N<> _ _ Swap N and register Lib#4 MCODE Ángel Martin

10 O<> _ _ Swap O and Register Lib#4 MCODE Ángel Martin

11 P<> _ _ Swap P and register Lib#4 MCODE Ángel Martin

12 Q<> _ _ Swap Q and Register Lib#4 MCODE Ángel Martin

13 T<> _ _ Swap T and register Lib#4 MCODE Ángel Martin

14 Y<> _ _ Swap Y and Register Lib#4 MCODE Ángel Martin

15 Z<> _ _ Swap Z and register Lib#4 MCODE Ángel Martin

16 ANUMDL Gets number from ALPHA Lib#4 MCODE HP Co.

17 ASWP> Swaps ALPHA around '>" Lib#4 MCODE W&W GmbH

18 CLEM Clear X-Mem Lib#4 MCODE Hakan Thörngren

19 D>H Decimal to Hex Lib#4 MCODE William Graham

20 H>D Hex to Decimal Lib#4 MCODE William Graham

21 LKAOFF Suspend Local KA Lib#4 MCODE Ross Cooling

22 LKAON Reestablish Local KA Lib#4 MCODE HP Co.

23 RECADR Record Address Lib#4 MCODE Ángel Martin

24 STVIEW Stack Viewer Lib#4 MCODE Ángel Martin

25 ULAM Ulam’s Conjecture Lib#4 MCODE Ángel Martin
26 Y/N? Yes/No Prompt Lib#4 MCODE Ángel Martin

27 CAT+ Sub-function Catalog Lib#4 MCODE Ángel Martin

Optical isomer or Doppelgänger?

../../CL_UTILS/CL%20Expanded%20Mem/CL_XMEM_V6.xls#RANGE!D2668
../../CL_UTILS/CL%20Expanded%20Mem/CL_XMEM_V6.xls#RANGE!D2662
../../CL_UTILS/CL%20Expanded%20Mem/CL_XMEM_V6.xls#RANGE!D2656
../../CL_UTILS/CL%20Expanded%20Mem/CL_XMEM_V6.xls#RANGE!D2650
../../CL_UTILS/CL%20Expanded%20Mem/CL_XMEM_V6.xls#RANGE!D2644
../../CL_UTILS/CL%20Expanded%20Mem/CL_XMEM_V6.xls#RANGE!D2674
../../CL_UTILS/CL%20Expanded%20Mem/CL_XMEM_V6.xls#RANGE!D2710
../../CL_UTILS/CL%20Expanded%20Mem/CL_XMEM_V6.xls#RANGE!D2710
../../CL_UTILS/CL%20Expanded%20Mem/CL_XMEM_V6.xls#RANGE!D2710
../../CL_UTILS/CL%20Expanded%20Mem/CL_XMEM_V6.xls#RANGE!D2710
../../CL_UTILS/CL%20Expanded%20Mem/CL_XMEM_V6.xls#RANGE!D2710
../../CL_UTILS/CL%20Expanded%20Mem/CL_XMEM_V6.xls#RANGE!D2710

XMEM Twin Module Manual

© Ángel Martin – January 2023 Page 5

Introduction – Unleashing the Extended Registers

If you ever had questions about the hp-41 X-Mem design and implementation, perhaps wishing that

HP had done something *different* (and this is not implying that the actual model is a bad one), then

you may enjoy the chance to travel "the path not taken", playing around with this new module.

Meet the XMem-(e)TWIN module, where the "e" in this case stands for both electronic and evil - Why
evil, you ask? Because those void memory segments in-between X-Mem modules certainly deserve

such a moniker; a real struggle to manage in the MCODE and a waste of available space (what were

they thinking?) -- but let's not digress...

The XMEM_TWIN module provides a complete set of functions targeted to the X-Registers that make
the Extended memory area. Within X-Mem there are 606 X-Registers that can now be accessed

individually using X-versions of (A)RCL, (A)STO, X<>, ISG, DSE, VIEW, etc., fully supporting direct

and indirect addressing, for the three ranges of data sources: Stack Registers, "regular" Data
registers, and X-Registers.

Obviously once you get into this path there's no use for any of the "official" X-Mem functions, so this

is an either/or choice. But it's totally "reversible" (for the lack of a better word), simply use CLXM to
start over from a clean slate using the orthodox way. Remember: X-Mem files will not survive the use

of the X-Regs functions!

New in Version 3A

By popular demand, the module also includes a section that provides control of the individual

registers within an X-Mem Data File, in a manner fully compatible with the X-Mem contents: all file

headers and X-Mem control registers are respected, thus no risk of data loss. The “in-file” F-Regs
functions are only restricted by the data file size, which can be as large as 600 registers if this is the

only file in the directory.

A reasonable amount of testing has been done but this is never a guarantee for bug-free software

(remember those memory voids, always lurking in the dark?) - so be careful and DO NOT use it
without a data backup. Use it at your own risk, as they say. Hope you enjoy playing with this evil twin,

and as usual feedback is always welcome.

Module Dependencies.

The XMEM Twin is a Library4-aware module; therefore, it expects the Library#4 revision R4 to be

present on the system. The module will check for it upon the calculator ON event, showing an error
message if not found. This will abort the polling points sequence for all other modules plugged at

higher position in the bus. Do not attempt to run the programs or functions within the module
without the Library#4 plugged in.

The AMC_OS/X Module is also required to run some of the FOCAL programs from APPS sections. This
module provides advanced OS extensions and therefore it’s recommended to have it always plugged

in the machine – any real power user can’t live without it.

Note: The X-Registers module requires the Library#4 revision R4 or higher plugged in.

XMEM Twin Module Manual

© Ángel Martin – January 2023 Page 6

I. Managing the Global X-Mem Extended registers

This first section covers the individual access of the extended registers included in the three X-MEM

blocks. You’ll be able to store, recall, view, exchange, and perform ISG/DSE operations on 606 of
those registers as if they were standard data registers within main memory. Note the presence of the

arithmetic operations as well.

Extended Regs Store Recall Other X-Blocks

X-Register
From 0 to 605.

XSTO _ _ _ XRCL _ _ _ XX<> _ _ _ CLXRG

XST+ _ _ _ XRC+ _ _ _ XVEW _ _ _ CLXRGX

XST- _ _ _ XRC- _ _ _ XDSE _ _ _ XRGMOV

XST* _ _ _ XRC* _ _ _ XISG _ _ _ XRGSWP

XST/ _ _ _ XRC/ _ _ _ XFINDX ST<>XRG _ _ _

ALPHA XAST _ _ _ XARC _ _ _ A<>XRG _ _ _

Besides the direct access, you also have the INDirect addressing capabilities implemented on the
expanded registers; the sixteen Stack registers (including synthetic regs {M-e}); and all the standard-

Registers - a hybrid mode, unique to this implementation.

Most of the functions will prompt for the parameters to use. The initial prompt is a three-field

underscore for the X-register indeed. Pressing [SHIFT] changes it to IND three-digit fields for another
X-register to be used as indirect. Pressing the [RADIX] key changes to the IND ST _ prompt, where

you’ll enter the register mnemonic, from T to e (all sixteen are available). Pressing the radix key again
changes to a IND RG_ _ prompt where you can enter a standard register number to use as indirect

address. Repeat pressings of the radix key act as a toggle between those two. There’s also provision

for direct stack and standard register arguments – even if those can be redundant in practice, being
exactly the same as the original ones.

Once you complete the entry adding the register number the action is performed in RUN mode, or

two program lines are entered in program mode – automatically selecting the appropriate parameter

depending on the direct or indirect types. This is automatically done so you needn’t (and shouldn’t)
edit the value entered in the program’s second line at all – which will be properly interpreted in a

running program.

You can move between the functions while the prompts are up; not only to select the math operation

but also to change the main function amongst the group. So for instance during the XRCL _ _ _ main

prompt pressing the SST key will trigger the XX<> function, or pressing STO will invoke the

XSTO function instead. Also you can revert to the original mainframe functions pressing the

corresponding key of the function in the prompt, for instance here pressing RCL will trigger the

original RCL _ _

XMEM Twin Module Manual

© Ángel Martin – January 2023 Page 7

The functions will not allow you to enter any value greater than 605 either as direct index or indirect
index – not even when entering them in a program line. Attempting to enter larger values will trigger

a “NONEXISTENT” error message. However, that check is not made for IND_RG combinations, as
there’s no telling at that point about how many standard registers will be available at the execution

stage.

The usage of standard stack and data registers is not only more convenient from the usability

standpoint, but also it enables the RCL math on these registers via the XRCL function:

Although possible, it is however not meant to be used in a program because of the obviously higher

byte count. That’s why when used in an editing program the direct stack and data register X-

functions revert automatically to the native STO/RCL functions instead, which has the additional
benefit of a clearer representation by the OS as merged lines.

Storing and Recalling ALPHA Data

The extended functions XAST and XARC provide the means to store and recall ALPHA data directly

in the expanded registers area. Like their numeric counterparts, they support direct, INDirect, stack

and standard registers indexes for a complete palette of options at your disposal. You can access

these directly from the XSTO/XRCL prompts by pressing the ALPHA key at any time.

Deleting Expanded Registers.

The function CLXRG will delete all the 606 expanded registers.

Additionally with CLXRGX you can selectively delete a defined block of extended registers as defined

by its control word (in X) “bbb.eeennn”, The bbb digits are the base address of the source expanded
register block, in the range R0 through R605. The eee digits are the base address destination

expanded register block, again in the range R0 through R605. nnn is the incremental step for the

registers to delete. If nnn is zero a value of one used.

Other Block Operations.

Think of the following functions as analogous to the X-Functions extensions on the original function

set of the calculator, only applied to the extended memory area instead.

• A<>XRG and ST<>XRG exchange a group of five extended registers with ALPHA (plus Q)

or the Stack (T-L) respectively. The start register is to be entered at the prompt in manual
mode, or expected to be in the X-Register when running a program. These functions do not

allow INDirect indexing.

• XRGMOV and XRGSWP can be used to move or exchange a block of extended registers at
once – either contiguous or in an increment pattern as provided by the control word sss.dddii

in the X-register. Much the same as the X-Functions RGMOVE and RGSWAP - in case you
wonder.

XMEM Twin Module Manual

© Ángel Martin – January 2023 Page 8

Moving around the Extended Registers Functions.

Figure 1.

Even if there isn’t a dedicated launcher for these functions, navigation amongst them is as easy as

intuitive. First off, assign one of the functions to its “natural” key, for instance XSTO to the STO key.

Then while the XSTO _ _ _ prompt is shown you can move about all the X-Reg functions by pressing

the key for the corresponding action, i.e.

• RCL will toggle to XRCL _ _ _

• SST (for X<>) will launch XX<> _ _ _

• R/S (for VIEW) will launch XVEW _ _ _

• CHS (for ISG) will launch XISG _ _ _

• ALPHA will trigger XAST _ _ _

• The math keys will launch the corresponding math function, ie. XST+ _ _ _

• EEX (for DSE)will launch XDSE _ _ _

• SHIFT will add the IND _ _ prompt

• RADIX will add the ST _ prompt. All 16 status regs are selectable.

• RADIX again to toggle between ST _ and RG _ _. Choose any standard reg up to 99.

• STO again to exit to the native STO function (no way back!)

• Note that the DIRECT Stack/REG prompt is not strictly needed – that’s the native function

already. However, the RCL Math functions are useful and are available using this approach.

All the options above are available from within any of the 16 functions – regardless of which one you

used to start the sequence. See the descriptions earlier in this manual for more details.

XMEM Twin Module Manual

© Ángel Martin – January 2023 Page 9

Mapping actual addresses to X-Registers.

The figure below depicts the memory arrangement of the three X-Mem modules and the
corresponding mapping with the X-Register indexes. Note that:

• There are three void memory segments (in light blue), without any memory structure

underneath.

• There are two reserved areas: The Status Registers and the Main RAM area, where all FOCAL
programs and regular data registers reside.

Obviously not the memory voids, nor the reserved areas should be accessed by the X-Regs functions,

if for different reasons, but specially not to mess with the current user programs and data registers in

the Main RAM zone and Status regs.

Finally, the summary table below correlates the register indexes to the actual memory addresses. You
can use other memory-peeking functions such as PEEKR and POKER to verify the operation, usually

with the decimal addresses as parameters.

X-Reg Index# Dec address HEX address

0 - 127 64 - 191 040 – 0BF

128 -366 513 - 751 201 – 2EF

367 - 605 769 – 1,007 301 – 3EF

XMEM Twin Module Manual

© Ángel Martin – January 2023 Page 10

Extra bonus: Finding the X-needle in the X-haystack.

For those times when you’d like to know if a certain value is stored in the X-data registers, the
function XFINDX is available to do a cursory comparison looking for a match with the value in the X-

register. All X-data registers are checked, starting with XR00 until XR605 – which could take a long
time depending on where the match exists.

The function returns the number of the first X-data register found that contains the same value as the

X-Register. If none is found, the function puts -1 in X to signify a no-match situation. The stack is

lifted so the sought for value will be pushed to stack register Y upon completion.

Below there is a FOCAL routine that checks up to XR605, as well as an equivalent routine for the
standard data registers - for comparison purposes. See the WARP_Corel manual for yet another

routine to tackle this “where is Waldo” problem using other advanced functions.

01 LBL “XFNDX”

02 .605

03 X<>Y
04 LBL 00

05 XRCL IND Y (3074)
06 X=Y?

07 GTO 02
08 RDN

09 ISG X
10 GTO 00

11 CLX

12 -1
13 RTN
14 LBL 02

15 X<> Z

16 INT
17 END

01 LBL “FINDX”

02 SIZE?

03 E
04 –

05 E3

06 /
07 X<>Y
08 LBL 00

09 RCL IND Y
10 X=Y?

11 GTO 02

12 RDN
13 ISG Y

14 GTO 00
15 CLX

16 -1

17 RTN
18 LBL 02

19 X<> Z

20 INT
21 END

The possibilities of having an additional set of 606 registers available to your own programs are wide

and deep. For starters you could permanently operate with a SIZE 000 and use all the 320 standard
registers in main memory for User Code programs, key assignments and I/O buffers; so a few more

bytes taken up by the parameter lines won’t be a problem.

XMEM Twin Module Manual

© Ángel Martin – June 2022 Page 11

Converting Standard Programs

Having a complete function set ensures you can convert programs very easily, simply by replacing the

standard functions with their expanded version. Even the ALPHA storage functions XAST and XARC
are included, which can also use the expanded register range.

Then you have the benefit of a much larger set of registers (606 vs. a maximum of 319 without any
program in RAM) available for your program, a sheer advantage to manage larger size cases of the

problem you’re trying to solve – from matrix operations to sorting data, to mention just a couple.

For example, with a few modifications the PPC ROM programs S2 and S3 can be used to sort more

than 600 registers in a very efficient way. – with random data populating those registers it took about
20 seconds to sort 606 registers on TURBO 50 mode!

See below two simple routines I used to populate the registers and to view them. They expect the

control word bbb.eee in X before you run them.

01 LBL "XVIEW"

02 LBL 00

03 "XR"

04 ARCLI
05 "|-: "

06 XRCL IND X (3075)

08 ARCLX
09 AVIEW

10 PSE
11 RDN

12 ISG X

13 GTO 00
14 END

01 LBL "XRAN"

02 RCL X
03 LBL 00

04 RNDM
05 XSTO IND Y (3074)

07 RDN

08 ISG X
09 GTO 00

10 RDN
11 END

Functions ARCLI and RNDM are available in the AMC_OX/X Module.

Note.- In case you’re interested, the parameter lines used by these functions as non-merged, second

line, correspond to the following:

1. The register index for direct access, from 0 to 605 [000 – 25D]

2. The indirect register index for IND from 1,024 to 1,629 [400 – 65D]
3. The hybrid standard register IND RG, from 2,048 to 2,367 [800 – 93F]

4. The direct standard registers, from 2560 to 2879 [A00 – B3F]

5. The indirect Stack register index, from 3,072 to 3,088 [C00 – C10]
6. The direct Stack registers index, from 3328 to 3343 [D00 – D10]

Obviously, there’s a few gaps of unused values, like between 2,368 and 2,559 – but you shouldn’t be

concerned with this at all; after all the parameters are entered automatically by the functions (totally
transparent to the user), and it takes the same number of bytes to use a 4-digit number, regardless

of its value.

Note that the status register Q(9) is used internally by the function’s MCODE, and therefore should
not be used in your FOCAL programs as synthetic register when the expanded registers functions are

also used.

XMEM Twin Module Manual

© Ángel Martin – June 2022 Page 12

A few Housekeeping Routines.

I’ve added a few more Input/output routines for convenience, including data movement between the

standard and expanded registers zones These few new routines are briefly described below:

• STVIEW does a sequential enumeration of the stack values, {X,Y,Z,T,L}

• RECADR returns the absolute address of the record number in X, for the file whose name is

in ALPHA. You can use the result with PEEKR/POKER to check your data.

• XDUMP copies all standard registers into the Y-Reg area, using the same indexes.

:ii

• XSHFT does a selective copy, using the control word bbb.eee:ii in X. Note that if this is

negative then the direction of the copy is reversed, i.e. will go from the X-Area to the
standard registers. In this case, make sure the SIZE is set so that there are enough standard

registers to receive the X-data!

• XINP and XOUT are input/output routines to enter or visualize the values respectively.

Require the control word bbb.eee in X.

• XRAN populates a block of X-Registers with random numbers, using RNDM from the OSX
module (which takes its initial seed from the Time Module). Useful to test the sorting

programs amongst other things.

• XSORT will do a descending data sort on the X-registers block defined by the control word

bbb.eee in X. Note that this is a very slow program; use the PPC versions XS2 and XS3 for
speed. Numeric values only!

See below the program listing for XRAN Abd XSORT

01 LBL “XSORT”

02 RUNNING
03 SIGN

04 LBL 01

05 LASTX

06 LASTX

07 XRCL IND ST L (3076)

08 LBL 02

09 XRCL IND ST Y (3074)
10 X>Y?

11 GTO 03
12 X<>Y

13 LASTX

14 +

15 LBL 03

16 RDN
17 ISG Y(2)

18 GTO 02

19 XX<> IND ST L (3076)
20 XSTO IND ST Z (3073)

21 ISG L(4)
22 GTO 01

23 CLD

24 RTN

25 LBL “XRAN”

26 RCL X(3)

27 LBL 00

28 RNDM
29 XSTO IND ST Y (3074)

30 RDN

31 ISG X(3)
32 GTO 00

33 RDN
34 END

XMEM Twin Module Manual

© Ángel Martin – June 2022 Page 13

XDUMP and XSHFT program listing is shown below:

01 LBL “XDUMP”

02 SIZE?

03 E

04 –
05 E3

06 /

07 LBL “XSHFT”

08 CF 00
09 X<0?

10 SF 00

11 ABS
12 RUNNING

13 LBL 00

14 FC? 00

15 GTO 01
16 XRCL IND ST X (3075)

17 STO IND Y(2)

18 GTO 02

19 LBL 01

20 RCL IND X(3)
21 XSTO IND ST Y (3074)

22 LBL 02

23 RDN

24 ISG X(3)

25 GTO 00
26 CLD

27 END

Finally, XINP and XOUT program listing is below:

01 LBL “XOUT”

02 LBL 00
03 “XR”
04 ARCLI
05 >”: “
06 XARC IND ST X (3075)

07 AVIEW
08 PSE

09 ISG X(3)

10 GTO 00
11 RTN

12 LBL “XINP”

13 “X”
14 ARCLI

15 >”=”
16 XARCL IND ST X (3075}
17 >”?”
18 RDN

19 CF 22
20 PROMPT

21 FC?C 22
22 GTO 03

23 XSTO IND Y (3074)

24 RDN

25 LBL 03

26 ISG X(3)
27 GTO 01

28 END

The companion modules XMPPC and XMMTRX contain a large7
selection of Matrix and Registers applications programs taken from the

PPC ROM collection. I have modified them to take advantage of the

extended registers, replacing all operation from the standard registers
– except the control parameters in the PPC routines, which are still

using those. Make sure you have the PPC Manual or QRG handy when
using these routines…

XMEM Twin Module Manual

© Ángel Martin – June 2022 Page 14

II. Managing the In-file X-Mem Extended registers

This first section covers the individual access of the extended registers included in a given Data File.

You’ll be able to store, recall, view, exchange, and perform ISG/DSE operations on those registers as
if they were standard data registers within main memory. Note the presence of the arithmetic

operations as well.

Extended Regs Store Recall Other file-Blocks

F-Register
From 0 to FileSize-1

FSTO _ _ _ FRCL _ _ _ FX<> _ _ _ CLFL

FST+ _ _ _ FRC+ _ _ _ FVEW _ _ _ GETR/X

FST- _ _ _ FRC- _ _ _ FDSE _ _ _ SAVER/X

FST* _ _ _ FRC* _ _ _ FISG _ _ _ “FSHFT

FST/ _ _ _ FRC/ _ _ _ POSDF “RDUMP

ALPHA FAST _ _ _ FARC _ _ _ _

Besides the direct access, you also have the INDirect addressing capabilities implemented on the
expanded registers; the sixteen Stack registers (including synthetic regs {M-e}); and all the standard-

Registers - a hybrid mode, unique to this implementation.

Most of the functions will prompt for the parameters to use. The initial prompt is a three-field

underscore for the F-register indeed. Pressing [SHIFT] changes it to IND three-digit fields for another
F-register to be used as indirect. Pressing the [RADIX] key changes to the IND ST _ prompt, where

you’ll enter the register mnemonic, from T to e (all sixteen are available). Pressing the radix key again
changes to a IND RG_ _ prompt where you can enter a standard register number to use as indirect

address. Repeat pressings of the radix key act as a toggle between those two. There’s also provision

for direct stack and standard register arguments – even if those can be redundant in practice, being
exactly the same as the original ones.

Once you complete the entry adding the register number the action is performed in RUN mode, or

two program lines are entered in program mode – automatically selecting the appropriate parameter

depending on the direct or indirect types. This is automatically done so you needn’t (and shouldn’t)
edit the value entered in the program’s second line at all – which will be properly interpreted in a

running program.

You can move between the functions while the prompts are up; not only to select the math operation

but also to change the main function amongst the group. So for instance during the FRCL _ _ _ main

prompt pressing the SST key will trigger the FX<> function, or pressing STO will invoke the

FSTO function instead. Also you can revert to the original mainframe functions pressing the

corresponding key of the function in the prompt, for instance here pressing RCL will trigger the

original RCL _ _

XMEM Twin Module Manual

© Ángel Martin – June 2022 Page 15

The functions will not allow you to enter values greater than the theoretical data file maximum size of
600, either as direct or indirect index. Attempting to enter larger values will trigger a “NONEXISTENT”

error message. At execution time the F-register value will be checked against the actual file size, as F-
Reg cannot be larger than FileSize-1. The same check is made for IND_RG combinations, as there’s

no telling at that point about how many standard registers will be available at the program editing

stage.

The usage of standard stack and data registers is not only more convenient from the usability
standpoint, but also it enables the RCL math on these registers via the FRCL function:

Although possible, it is however not meant to be used in a program because of the obviously higher

byte count. That’s why when used in an editing program the direct stack and data register F-functions
revert automatically to the native STO/RCL functions instead, which has the additional benefit of a

clearer representation by the OS as merged lines.

Storing and Recalling ALPHA Data

The extended functions FAST and FARC provide the means to store and recall ALPHA data directly in

the FILE registers area. Like their numeric counterparts, they support direct, INDirect, stack and
standard registers indexes for a complete palette of options at your disposal. You can access these

directly from the FSTO/FRCL prompts by pressing the ALPHA key at any time.

Note that these functions are somehow restricted because the ALPHA register needs to eiehter be
empty or hold the data file name, so effectively FAST can only save that name, whilst FARC will
always append the F-register value to it.

Searching for a value in a Data File.

POSDF will search the Data File whose name is in ALPHA (or the current one if empty) looking for a

value equal to the contents in the X-Register. X is saved in LastX. If the value is found the file record
number is returned to X. Otherwise the value -1 is left in X. It is therefore analogous to POSFL for

ASCII files.

Deleting Expanded Registers.

No additional MCODE functions are provided to clear blocks of F-registers. You can use the X-
Function CLFL and CLXM from the X-Functions and AMC_OS.X modules respectively.

Other Block Operations.

No additional MCODE functions are provided to manage blocks of F-registers. You can use the X-

Functions GETR, GETRX, SAVER and SAVERX from the X-functions module for these purposes.

XMEM Twin Module Manual

© Ángel Martin – June 2022 Page 16

Moving around the File Registers Functions.

Figure 2.

Even if there isn’t a dedicated launcher for these functions, navigation amongst them is as easy as

intuitive. First off, assign one of the functions to its “natural” key, for instance FSTO to the STO key.

Then while the FSTO _ _ _ prompt is shown you can move about all the X-Reg functions by pressing

the key for the corresponding action, i.e.

• RCL will toggle to FRCL _ _ _

• SST (for X<>) will launch FX<> _ _ _

• R/S (for VIEW) will launch FVEW _ _ _

• CHS (for ISG) will launch FISG _ _ _

• ALPHA will trigger FAST _ _ _

• The math keys will launch the corresponding math function, ie. FST+ _ _ _

• EEX (for DSE)will launch FDSE _ _ _

• SHIFT will add the IND _ _ prompt

• RADIX will add the ST _ prompt. All 16 status regs are selectable.

• RADIX again to toggle between ST _ and RG _ _. Choose any standard reg up to 99.

• STO again to exit to the native STO function (no way back!)

• Note that the DIRECT Stack/REG prompt is not strictly needed – that’s the native function

already. However, the RCL Math functions are useful and are available using this approach.

All the options above are available from within any of the 16 functions – regardless of which one you
used to start the sequence. See the descriptions earlier in this manual for more details.

XMEM Twin Module Manual

© Ángel Martin – June 2022 Page 17

A few (more) Housekeeping Routines.

I’ve added a few more Input/output routines for convenience, including data movement between the

standard and FILE registers zones. These few new routines are briefly described below:

• WORKFL appends the name of the current file to ALPHA. Very convenient for ease of
operation of the routines, avoids having to type the file name after ALPHA changes.

• RDUMP copies all standard registers into the F-Regs within a Data File. It assumes that the
data file is large enough to hold them, or “END OF FL” will occur.

• FSHFT does a selective copy of data registers to the data file whose name is in ALPHA; using

the control word bbb.eee:ii in X - also assuming the data file is large enough to hold the
selected number of data registers. Note that if negative then the direction of the copy is

reversed, i.e. will go from the File-Area to the standard registers. In this case, make sure the
SIZE is set so that there are enough standard registers to receive the File-data!

• DFED is a Data File editor routine to sequentially enter or visualize the values respectively.

Requires the file name in ALPHA. It employs F-Regs functions itself.

• FLRAN populates the data file whose name is in ALPHA with random numbers, using RNDM

from the OSX module (which takes its initial seed from the Time Module). Useful to test the
sorting programs amongst other things.

• FLSORT will do a descending bubble sort on the data file whose name is in ALPHA. User flag
10 can be set to visualize the indexes as the program runs. Note that this is a very slow
program; use the PPC versions FS2 and FS3 for speed. Numeric values only!

Below is the listing of the data movement routines. Note that FSHFT is more capable than SAVERX in

that you can provide an increment step in the control word in X.

01 LBL “RDUMP”

02 FLSIZE
03 SIZE?
04 X<Y?
05 GTO 03
06 “NO ROOM”
07 AVIEW
08 WORKFL
09 STOP

10 LBL 03

11 E
12 -
13 E3
14 /
15 SAVER ;
16 RTN

17 LBL “FSHFT” ; bbb.eee:ii

18 CF 00
19 X<0?

20 SF 00
21 ABS
22 RUNNING

23 LBL 00

24 FC? 00
25 GTO 01
26 FRCL IND ST X(3)
27 STO IND Y(2)
28 GTO 02

29 LBL 01

30 RCL IND X(3)
31 FSTO IND ST Y(2)

32 LBL 02

33 RDN
34 ISG X(3)
35 GTO 00
36 CLD
37 END

XMEM Twin Module Manual

© Ángel Martin – June 2022 Page 18

Program listing for FLRAN and FLSORT is shown below.

01 LBL “FLSORT”

02 FLSIZE
03 2
04 –
05 E3
06 /
07 STO 00

08 LBL 00

09 RCL 00
10 1.001
11 +
12 STO 01
13 FRCL IND RG 00

14 LBL 01

15 FS? 10
16 VIEW 01
17 FRCL IND RG 01
18 X>Y?
19 GTO 02
20 FSTO IND RG 00
21 X<>Y
22 FSTO IND RG 01

23 LBL 02

24 RDN
25 ISG 01
26 GTO 01
27 ISG 00
28 GTO 00
29 CLD
30 RTN

31 LBL “FLRAN”

32 FLSIZE
33 E
34 –
35 E3
36 /

37 LBL 03

38 RNDM
39 FSTO IND RG Y(2)
40 RDN
41 ISG X(3)
42 GTO 03
43 RDN
44 END

Program listing for DFED is shown below. Note that after each prompt the ALPHA register is reset
with the file name, thus you can leave the editing at any step – no need to complete the execution till

the end of file.

01 LBL “DFED”

02 FLSIZE
03 E
04 –
05 E3
06 /

07 LBL 00

08 FRCL IND ST X(3)
09 X<>Y
10 “D”
11 ARCLI
12 >”=”
13 ARCL Y(2)
14 >”?”
15 CF 22

16 XEQ 02 ; show & reset
17 STOP
18 FC?C 22 ; entered data?
19 GTO 01 ; no, skip over
20 FSTO IND ST Y(2)
21 RDN

22 LBL 01

23 ISG X(3)
24 GTO 00
25 “DONE”

26 LBL 02

27 AVIEW
28 CLA
29 WORKFL
30 END

XMEM Twin Module Manual

© Ángel Martin – June 2022 Page 19

III. Stack Registers Swaps. { STKSWP }

A set of 15 functions to perform stack and data register swaps is included in this module. They are

the logical extension of the native function X<>, but applied to all the other 15 stack registers –
including the ALPHA components {M,N,O,P} and the system-reserved {a,b,c,d,e, K, Q}.

This many functions won’t fit in the already-crowded FAT, therefore they have been implemented as

sub-functions on an auxiliary FAT. To access them you can use any of the two sub-function launchers,
either by their indexes (TF#) or their names (TF$). And in addition to this method, the header

function STKSWP also doubles as another launcher, dedicated to this set.

 ;

The table below lists all sub-functions for the STKSWP launcher, also including the sub-index number

when used as argument for TF#

 # Hotkey Sub-function # Hotkey Sub-function Hotkey Action

1 [A] a<> _ _ 9 [T] T<> _ _ [USER] Toggels to YMEM

2 [B] b<> _ _ 10 [L] L<> _ _ [PRGM] Calls TF#

3 [C] c<> _ _ 11 [M] M<> _ _ [ALPHA] Calls TF$

4 [D] d<> _ _ 12 [N] N<> _ _ [SHIFT] IND registers

5 [E] e<> _ _ 13 [O] O<> _ _ [RADIX] STACK registers

6 [K] }-<> _ _ 14 [P] P<> _ _ [EEX] Adds “1_ _” to field

7 [Y] Y<> _ _ 15 [Q] Q<> _ _ [+] Upwards rotation

8 [Z] Z<> _ _ - [X] Calls X<> _ _ [-] Downwards rotation

Individual Function arguments and hot-keys

Like the native X<>, all these functions offer full support of INDirect and STack registers as

arguments. They are also prompting (despite being sub-functions), and can be used in manual (RUN)
or program modes. In a program, the non-merged functions approach is extended to three program

steps, which include the launcher TF# plus its index, and then another number for the argument.

In addition to the numeric, STACK, and IND register arguments you can also use the hot-keys EEX ,

+ and - to lengthen the prompt field (so you can directly address register above 99); and to rotate

between all the 16 choices while their prompt is up in the LCD, regardless of which one you start off

with. The sequence ends on both ends with X<> (one before a<> and one after Q<>), as the “end
of the line”, so to speak.

Remember that you’ll need to manually add 112 (70 hex) for stack register arguments; or 128 (80
hex) for Indirect registers; or 240 (F0 hex) for both the combined case, i.e. IND_ST arguments.

For example, to enter the function Z<> IND 05 in a program you’d use the following three steps,

which is equivalent in functionality and number of bytes to the standard-functions listed on the right:

01 TF#
02 8 (eighth-sub-function)

03 133 (five plus 128 for indirect)

01 X<> Z
02 X<> IND 05

03 X<> Z

XMEM Twin Module Manual

© Ángel Martin – June 2022 Page 20

Note that these control keys are consistently used in all modules that feature auxiliary FATs for the
same purposes, as follows:

• PRGM accesses the numeric launcher, TF# _ _ (prompts for index)

• ALPHA accesses the Alphanumeric Launcher, TF$ _” (prompts for name)

• RADIX accesses the LASTF feature to recall the last-executed sub-function

Sub-function Catalog.

CAT+ Sub-functions Catalog Ángel Martin Source: Library #4

XEQ ‘ Direct Execution

LASTF Last Function

The module includes an auxiliary FAT with a set of 22 sub-functions. Because these are not in the
main FAT the OS knows nothing about them, so they cannot be called using XEQ, nor can they be

assigned to keys using ASN. Therefore, a dedicate way to access them must exist. Two functions are
available to call sub-functions either alphabetically (by spelling their name in ALPHA) or numerically,

by entering their corresponding index# in the prompt:

 or:

Like all other modules with sub-functions, there is a way to enumerate them using FCAT – itself a
sub-function included in the auxiliary FAT. We already saw that FCAT can be triggered from the

FCAT prompt, pressing [ENTER^], spelling its name with TF$, or using index #000 with TF#.

A few hot-keys allow you to control and navigate the catalog during the enumeration:

• [R/S] stops and resumes the listing

• [SST] manually advances to the next sub-function

• [SHIFT] reverses the direction of the show

• [XEQ] will execute the sub-function shown if the enumeration is suspended.

• Back-arrow will exit the catalog

Note that [ENTER^] would move to the next section if there were any, but that’s not the case here.

When you execute a sub-function using the launchers or by means of the CAT+ shortcut, its index#

is saved in the LastFunction buffer automatically. This allows subsequent re-execution through the

LASTF facility, pressing CAT”1 followed by the [RADIX] key.

All sub-functions are programmable. When they’re entered into a program its name is briefly shown in
the display and two program steps are added by the launchers – one with the numeric launcher TF#

and another one following it with the corresponding index#. This is done automatically for you, no

need to enter it manually.

Be careful if a sub-function follows a branching test function, such as X=Y? – as obviously the non-
merged structure of sub-functions will not be compatible with the “skip if false” rule in this

circumstance. You need to work-around those cases using the negated logic and a static go-to. There
are no limitations in the other way around, i.e. a test function can follow a sub-function without any

issues.

CAT+ will print the sub-functions names if a printer is connected in NORM or TRACE modes.

The complete list of sub-functions is provided at the beginning of the manual.

XMEM Twin Module Manual

© Ángel Martin – June 2022 Page 21

X-Mem Modules: The Complete Picture..

The “X-Mem_TWIN” is the second extension module dedicated to management of X-Memory, above

and beyond HP’s original X-Functions/Memory Module (later included in the HP-41 CX). You’re
encouraged to also check the “X-Mem X-Functions” module that includes many advanced functions

and new uses for X-Memory.

The figure below shows the complete picture of modules and their interdependencies:

Comparative Function Summary: Data management

Functionaliry Mainframe / X-Fns X-Mem X-FNCS XM TWIN

Data File Read GETX, GETR, GETRX FLRCL, FLVEW FRCL, FRC- , FRC+,
FRC*, FRC/, FVEW

Data File Write SAVEX, SAVER,
SAVERX

FLSTO, FLX<> FSTO, FST-, FST+,
FST*, FST/, FX<>

Data Find POSA, POSFL POSDF, XFINDX

Data Regs
Management

CLX, CLRG, CLRGX,
REGMOVE, REGSWAP

CLXM, CLMM CLEM, XCLREG, CLRGX
XRGMOV, XRGSWP

Data Regs
Recall

RCL, ARCL ARCLIP XRCL, XRC-, XRC+,
 XRC*, XRC/, XARC

Data Regs
Storage

STO, ST-, ST+, ST*,
ST/, X<>, ASTO

 XSTO, XST-, XST-,
XST*, XST/, XAST

Sort, View &
Exchange

VIEW, X<>Y, X<> SORTFL, A<>RG,
A<>ST, ST<>RG

XVEW, XX<>,
A<>XRG, ST<>XRG

XMEM Twin Module Manual

© Ángel Martin – June 2022 Page 22

A few MCODE listings.

The following MCODE listings are for the simpler register manipulation functions CLXRG,
A<>XRG and ST<>XRG.

The first one deals with the three X-Mem blocks independently, so the main routine calls
the register clearing routine three times, providing the from/to parameters in A.X and B.X

The next listing shows how to deal with the exchange of a block of five X-Registers and
either the Stack or ALPHA. There we take advantage of the fact that both ALPHA and the
Stack have fixed addresses, which facilitates the task.

Also listed is the code for CLXRGX, more complicated as it needs to deal with the infamous
X-Mem gaps. This has been managed by using HP’s original code for CLRGX adding the two
subroutines [CHKBND] and [NOVOID], for bound-checking and void-avoidance respectively.
Slippery indeed, but it’ll get even more so with XRGMIV and XRGSWP the worst of all.

XMEM Twin Module Manual

© Ángel Martin – June 2022 Page 23

XMEM Twin Module Manual

© Ángel Martin – June 2022 Page 24

XMEM Twin Module Manual

© Ángel Martin – June 2022 Page 25

with the subroutines as follows:

[CHKBND] first checks that the X-Reg index is less that 605, bailing out with an error if not. Then it
calculates the memory address for the register, skipping the memory gaps appropriately to ensure we

won’t be writing into voids or (even worse) the main RAM area.

The [NOVOID] is also needed to check that the address used is not inside of a void or main RAM. This
is needed in addition to checking the bounds, because some routines modify the target addresses
using increments on the parameters supplied; so even if these are veted we must double check
those derived from them.

The good news is that with these two subroutines alone we’ll be able to complete the remaining,

more complex functions XRGMOV and XRGSWP, with no need for yet more additions to HP’s base

code.

XMEM Twin Module Manual

© Ángel Martin – June 2022 Page 26

See below the flowcharts showing graphically the adjustments made by these subroutines.

XMEM Twin Module Manual

© Ángel Martin – June 2022 Page 27

Final Bonus: Copying code from bank-switched ROMS.

Here’s a last-minute addition to the module – not related to the Extended memory subject but rather

interesting per-se.

There are almost no tools available to extract or copy code from a bank-switched ROM. When faced

with that challenge I typically used ad-hoc modifications of Warren Furlow’s routine CB, posted at:
http://www.hp41.org/LibView.cfm?Command=View&ItemID=317

That routine is specific for fixed source and destination pages, as well as only useful for the second

bank. Writing a more general-purpose function was always on my mind, and finally here it is at last.

CPYBNK is a prompting function. It has a customized prompt with three distinct sections that are
shown on the screen as the data entry progresses. The parameters entered are as follows:

- Bank number, an integer decimal from 1 to 4
- Source page, an hex value from 0 to F

- Destination page, same as above.

The function is smart enough to know the valid range of each prompted value, thus it’ll simply ignore

non-allowed values, presenting the same prompt again. You can use the back-arrow key to cancel at

any moment. Once the bank number is entered the prompt requests the “FROM:TO” pages, as
denoted by the underscore characters on both sides of the colon. The screens below show this at

different stages of the process:

The copy is always made into the main bank of the destination page (bank-1). This is typically a Q-
RAM page in an MLDL (or a RAM page on the CL) thus only supports one bank. Besides the practical

usage is intended to copy elusive, hard-to-reach code buried into secondary banks – therefore it

wouldn’t appear very sensible to copy it into equally obscure destinations.

The main bank is the first one; therefore you can use “1” to select it. In this case the function does
the same as CPYPGE in the PowerCL, or COPYROM in the HEPAX.

If the source ROM doesn’t have the chosen bank an error message is shown and the execution aborts.

More than just a convenient feature, this is vital to ensure that the execution doesn’t activate a non-

existing bank – which could create all kinds of havoc if the location of the missing bank is already
occupied in RAM or FLASH by other modules.

There is no restriction made to the choice of pages. The function will read whatever is in the source
(or zeroes if nothing) and will attempt to write it on the destination. Obviously to be successful the

destination must be a Q-RAM (MLDL or CL).

http://www.hp41.org/LibView.cfm?Command=View&ItemID=317

XMEM Twin Module Manual

© Ángel Martin – June 2022 Page 28

CPYBNK Source Code.

Here it is for your enjoyment, not a complex piece of code but tricky just the same. The only specific
details to keep in mind are the fixed locations within each page reserved for the bank-switch

instructions; as well as the convention followed in the page signature characters (the trailing text).
Both are used by the routine to make sure it’s ok to execute the switching command.

1 CPYBNK Header A878 08B "K"

2 CPYBNK Header A879 00E "N"

3 CPYBNK Header A87A 002 "B" bank# in prompt

4 CPYBNK Header A87B 019 "Y" From:TO in prompt

5 CPYBNK Header A87C 310 "P"

6 CPYBNK Header A87D 103 "C" Ángel Martin

7 CPYBNK CPYBNK A87E 000 NOP

8 CPYBNK A87F 346 ?A#0 S&X

9 CPYBNK A880 02B JNC +05

10 CPYBNK A881 130 LDI S&X ONLY 4 BANKS MAX

11 CPYBNK A882 005 CON: so 5 is the limit

12 CPYBNK A883 306 ?A<C S&X n<5?

13 CPYBNK A884 03F JC +07 yes, go on

14 CPYBNK A885 130 LDI S&X re-exec the function!

15 CPYBNK A886 31B function code A5:1B

16 CPYBNK A887 236 C=C+1 XS "41B"

17 CPYBNK A888 236 C=C+1 XS "51B"

18 CPYBNK A889 329 ?NC GO Check #0 and [RAK70]

19 CPYBNK A88A 132 ->4CCA [RAK704]

20 CPYBNK A88B 0A6 A<>C S&X get prompt input to C[S&X]

21 CPYBNK A88C 128 WRIT 4(L) store bank# in LastX

22 CPYBNK A88D 3D1 ?NC XQ Right Justify LCD - Enables LCD

23 CPYBNK A88E 118 ->46F4 [RIGHTJ]

24 CPYBNK A88F 130 LDI S&X

25 CPYBNK A890 022 " " " Double Quotes

26 CPYBNK A891 3E8 WRIT 15(e) write it in display (9-bit)

27 CPYBNK A892 130 LDI S&X

28 CPYBNK A893 09F " _:" Underscore w/colon

29 CPYBNK A894 3E8 WRIT 15(e) as new prompt

30 CPYBNK NOSHFT1 A894 329 ?NC XQ

Inputs Hex key - 0-F, SHIFT

31 CPYBNK A894 120 ->48CA [HEXKEY] - from B1 only

32 CPYBNK A894 2C6 ?B#0 S&X was it SHIFT?

33 CPYBNK A898 3EB JNC -03 yes, ignore and repeat

34 CPYBNK A899 3B8 READ 14(d) remove excess prompt

35 CPYBNK A89A 0C6 C=B S&X copy chr$ to C[S&X]

36 CPYBNK A89B 3D8 C<>ST XP

37 CPYBNK A89C 288 SETF 7 add colon

38 CPYBNK A89D 3D8 C<>ST XP

39 CPYBNK A89E 3E8 WRIT 15(e) write it in display (9-bit)

40 CPYBNK A89F 379 PORT DEP: Get pg# from Key in B{S&X}

41 CPYBNK A8A0 03C XQ returns pg# in A[S&X]

42 CPYBNK A8A1 0FE ->A8FE [KEYPG]

43 CPYBNK A8A2 149 ?NC XQ valid return

44 CPYBNK A8A3 024 ->0952 [ENCP00]

45 CPYBNK A8A4 04E C=0 ALL

46 CPYBNK A8A5 0A6 A<>C S&X

47 CPYBNK A8A6 13C RCR 8 move it to C<6>

48 CPYBNK A8A7 268 WRIT 9(Q) source page, pg#

HP-41CL_UTILSCL%20Expanded%20Mem%22%20l
HP-41CL_UTILSCL%20Expanded%20Mem%22%20l
HP-41CL_UTILSCL%20Expanded%20Mem%22%20l

XMEM Twin Module Manual

© Ángel Martin – June 2022 Page 29

49 CPYBNK A8A8 3D9 ?NC XQ Enable but not clear LCD

50 CPYBNK A8A9 01C ->07F6 [ENLCD]

51 CPYBNK NOSHFT2 A8AA 329 ?NC XQ

Inputs Hex key - 0-F, SHIFT

52 CPYBNK A8AB 120 ->48CA [HEXKEY] - from B1 only

53 CPYBNK A8AC 2C6 ?B#0 S&X was it SHIFT?

54 CPYBNK A8AD 3EB JNC -03 yes, ignore and repeat

55 CPYBNK A8AE 0C6 C=B S&X copy chr$ to C[S&X]

56 CPYBNK A8AF 3E8 WRIT 15(e) write it in display (9-bit)

57 CPYBNK A8B0 379 PORT DEP: Get pg# from Key in B{S&X}

58 CPYBNK A8B1 03C XQ returns pg# in A[S&X]

59 CPYBNK A8B2 0FE ->A8FE [KEYPG]

60 CPYBNK A8B3 0A6 A<>C S&X

61 CPYBNK A8B4 13C RCR 8 move it to C<6>

62 CPYBNK A8B5 070 N=C ALL destination pg#

63 CPYBNK A8B6 1D5 ?NC XQ LeftJ, Test, EnRAM & Reset SEQ

64 CPYBNK A8B7 118 ->4675 [CLNUP4]

65 CPYBNK CHKBSM A8B8 006 A=0 S&X reset field

66 CPYBNK A8B9 1A6 A=A-1 S&X "FFF"

67 CPYBNK A8BA 138 READ 4(L) bank#

68 A8BB 1C6 A=A-C S&X subtract it from 'FFF"

69 No need to check for bk1 A8BC 266 C=C-1 S&X bk#-1

70 A8BD 266 C=C-1 S&X bk#-2

71 CPYBNK A8BE 0C7 JC +24d

no need to switch

72 CPYBNK A8BF 278 READ 9(Q) get source pg# to C[S&X]

73 A8C0 03C RCR 3 move it to C<3>

74 first we check that the bank A8C1 0A6 A<>C S&X

75 is marked in the ROM signature A8C2 1BC RCR 11 put in [ADR] field

76 (as a pre-requisite) A8C3 330 FETCH S&X read marker

77 A8C4 2F6 ?C#0 XS bank marked?

78 CPYBNK A8C5 14B JNC +41d no, abort

79 CPYBNK BSWITCH A8C6 138 READ 4(L) bank#

80 CPYBNK A8C7 266 C=C-1 S&X bk#-3

81 A8C8 02B JNC +05

82 then we send the execution A8C9 379 PORT DEP: Check forCode 2 & Switch

83 to the proper switching point, A8CA 03C XQ in the source module

84 also checking the code! A8CB 107 ->A907 [CHKCD2]

85 A8CC 053 JNC +10 [DATA]

86 CPYBNK A8CD 266 C=C-1 S&X bk#-4

87 CPYBNK A8CE 02B JNC +05

88 CPYBNK A8CF 379 PORT DEP: Check forCode3 & Switch

89 CPYBNK A8D0 03C XQ in the source module

90 CPYBNK A8D1 110 ->A910 [CHKCD3]

91 CPYBNK A8D2 023 JNC +04 [DATA]

92 CPYBNK A8D3 379 PORT DEP: Check forCode4 & Switch

93 CPYBNK A8D4 03C XQ in the source module

94 CPYBNK A8D5 119 ->A919 [CHKCD4]

95 CPYBNK DATA A8D6 0B0 C=N ALL

96 CPYBNK A8D7 0EE C<>B ALL destination pg# in B<6>

97 CPYBNK A8D8 278 READ 9(Q) get source pg# to C[S&X]

98 CPYBNK A8D9 03C RCR 3 move it to C<3>

99 CPYBNK LOOP A8DA 1BC RCR 11 move it to C<6>

100 CPYBNK A8DB 330 FETCH S&X read word

101 CPYBNK A8DC 15C PT= 6

102 CPYBNK A8DD 0E2 C<>B @PT destination page

103 CPYBNK A8DE 040 WROM write it in destination

104 CPYBNK A8DF 0E2 C<>B @PT restore source pg#

HP-41CL_UTILSCL%20Expanded%20Mem%22%20l
HP-41CL_UTILSCL%20Expanded%20Mem%22%20l
HP-41CL_UTILSCL%20Expanded%20Mem%22%20l
HP-41CL_UTILSCL%20Expanded%20Mem%22%20l

XMEM Twin Module Manual

© Ángel Martin – June 2022 Page 30

105 CPYBNK A8E0 03C RCR 3 move to S&X field

106 CPYBNK A8E1 226 C=C+1 S&X next word

107 CPYBNK A8E2 3C3 JNC -08 loop back

108 CPYBNK A8E3 138 READ 4(L) bank#

109 CPYBNK A8E4 266 C=C-1 S&X bk#-1

110 CPYBNK A8E5 266 C=C-1 S&X was bk#=1?

111 CPYBNK A8E6 3C1 ?C GO yes, do a proper exit

112 CPYBNK A8E7 003 ->2BF7 [NFRPU]

113 CPYBNK BKSWCH1 A8E8 278 READ 9(Q) no, get SOURCE pg#

114 CPYBNK A8E9 09C PT= 5

115 CPYBNK A8EA 3D0 LD@PT- F location for BK1:

116 CPYBNK A8EB 310 LD@PT- C "pFC7"

117 CPYBNK A8EC 1D0 LD@PT- 7

118 CPYBNK A8ED 1E0 GOTO ADR switch back to bank-1

119 CPYBNK NOBANK A8EE 138 READ 4(L) bank#

120 CPYBNK A8EF 0EE C<>B ALL

121 CPYBNK A8F0 321 ?NC XQ Show "NO_" msg

122 CPYBNK A8F1 10C ->43C8 [NOMSG4]

123 CPYBNK A8F2 002 "B"

124 CPYBNK A8F3 001 "A" "NO BANK"

125 CPYBNK A8F4 00E "N"

126 CPYBNK A8F5 00B "K"

127 CPYBNK A8F6 220 " "

128 CPYBNK A8F7 06E A<>B ALL

129 CPYBNK A8F8 01E A=0 MS

130 CPYBNK A8F9 17E A=A+1 MS

131 CPYBNK A8FA 3A1 ?NC XQ Generate dec. number ->display!

132 CPYBNK A8FB 014 ->05E8 [GENNUM]

133 CPYBNK A8FC 1F1 ?NC GO LeftJ, Show and Halt

134 CPYBNK A8FD 0FE ->3F7C [APEREX]

135 CPYBNK KEYPG A8FE 066 A<>B S&X put page# in A[S&X]

136 CPYBNK A8FF 31C PT= 1 clean up parameter:

137 CPYBNK A900 342 ?A#0 @PT from chr# to page#

138 CPYBNK A901 027 JC +04

139 CPYBNK A902 130 LDI S&X A[S&X] goes from 1 to 6

140 CPYBNK A903 009 CON: need to add 9 to chr#

141 CPYBNK A904 146 A=A+C S&X it now ranges from A to F

142 CPYBNK A905 002 A=0 @PT clear the "3" digit!

143 CPYBNK A906 3E0 RTN

144 CPYBNK CHKCD2 A907 130 LDI S&X

145 CPYBNK A908 180 CON: ENBNK2 code

146 CPYBNK A909 106 A=C S&X save in A for compares

147 CPYBNK A90A 278 READ 9(Q) get SOURCE Pg#

148 CPYBNK A90B 09C PT= 5

149 CPYBNK A90C 3D0 LD@PT- F location for BK2:

150 CPYBNK A90D 310 LD@PT- C "pFC9"

151 CPYBNK A90E 250 LD@PT- 9

152 CPYBNK A90F 093 JNC +18d [READCD]

153 CPYBNK CHKCD3 A910 130 LDI S&X

154 CPYBNK A911 140 CON: ENBNK3 code

155 CPYBNK A912 106 A=C S&X save in A for compares

156 CPYBNK A913 278 READ 9(Q) get SOURCE Pg#

157 CPYBNK A914 09C PT= 5

158 CPYBNK A915 3D0 LD@PT- F location for BK3:

159 CPYBNK A916 310 LD@PT- C "pFC3"

160 CPYBNK A917 0D0 LD@PT- 3

HP-41CL_UTILSCL%20Expanded%20Mem%22%20l
HP-41CL_UTILSCL%20Expanded%20Mem%22%20l

XMEM Twin Module Manual

© Ángel Martin – June 2022 Page 31

161 CPYBNK A918 04B JNC +09 [READCD]

162 CPYBNK CHKCD4 A919 130 LDI S&X

163 CPYBNK A91A 1C0 CON: ENBNK4 code

164 CPYBNK A91B 106 A=C S&X save in A for compares

165 CPYBNK A91C 278 READ 9(Q) get SOURCE Pg#

166 CPYBNK A91D 09C PT= 5

167 CPYBNK A91E 3D0 LD@PT- F location for BK4:

168 CPYBNK A91F 310 LD@PT- C "pFC5"

169 CPYBNK A920 150 LD@PT- 5

170 CPYBNK READCD A921 330 FETCH S&X read word

171 CPYBNK A922 366 ?A#C S&X does it match code?

172 CPYBNK A923 25F JC -53d no, abort!

173 CPYBNK A924 1E0 GOTO ADR switch bank

Off topic: Ulam’s Conjecture

Completely off-topic subject but it sort of happened while preparing this manual – what an excuse, uh?
Reference: https://en.wikipedia.org/wiki/Collatz_conjecture

The ULAM sub-function does a complete path starting with the value in X, all the way until the end

when “1” is reached using the well-known Ulam’s (or Collatz’s) algorithm:

If odd, multiply by three and add one

If even, divide by two

The function will take the integer part of the absolute value of the number in X. Then all intermediate

values are briefly shown, and the total number of “nodes” is left in X upon completion. The starting
number is left in X.

Examples:

41, XEQ “T$” “ULAM” -> generates a sequence of 109 numbers

 22, ULAM -> generates a sequence of 15 numbers

The sequence for n = 27, listed below, takes 111 steps (41 steps through odd numbers),
climbing as high as 9232 before descending to 1.

27, 82, 41, 124, 62, 31, 94, 47, 142, 71, 214, 107, 322, 161, 484, 242, 121, 364, 182, 91, 274,
137, 412, 206, 103, 310, 155, 466, 233, 700, 350, 175, 526, 263, 790, 395, 1186, 593, 1780,
890, 445, 1336, 668, 334, 167, 502, 251, 754, 377, 1132, 566, 283, 850, 425, 1276, 638, 319,
958, 479, 1438, 719, 2158, 1079, 3238, 1619, 4858, 2429, 7288, 3644, 1822, 911, 2734, 1367,
4102, 2051, 6154, 3077, 9232, 4616, 2308, 1154, 577, 1732, 866, 433, 1300, 650, 325, 976,
488, 244, 122, 61, 184, 92, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1
(sequence A008884 in the OEIS)

https://en.wikipedia.org/wiki/Collatz_conjecture

XMEM Twin Module Manual

© Ángel Martin – June 2022 Page 32

ULAM Source Code

XMEM Twin Module Manual

© Ángel Martin – June 2022 Page 33

Appendix 1.- X-Memory File Headers.

Generally speaking, all X-Mem files have a NAME register and a HEADER register. The Name
register obviously holds the file name, which is used as parameter in ALPHA for diverse file
functions. The Header register is a control and status register that holds key information
relevant to the file type & size, address in memory, and other accessory parameters – like
the pointers in some file types.

The following figures show the header layout for the different file types.- Note how the file
type and size (in registers) fields are common to all of them, and that those are the only
fields for the “simpler” files (like Buffer, Kay Assignments, STATUS and Complex-Stack).

1. PROGRAM Files:

T - - - - - - - B Y T S Z E

13 12 11 10 9 8 7 6 5 4 3 2 1 0

2. DATA Files:

T A D R - - - - R E G S Z E

13 12 11 10 9 8 7 6 5 4 3 2 1 0

3. ASCII Files:

T A D R - C H R R E C S Z E

13 12 11 10 9 8 7 6 5 4 3 2 1 0

4. MATRIX Files:

T A D R L/U C O L i j # S Z E

13 12 11 10 9 8 7 6 5 4 3 2 1 0

5. Buffer, Key-Assignment, Status-Regs, and Complex-Stack Files:

T - - - - - - - - - - S Z E

13 12 11 10 9 8 7 6 5 4 3 2 1 0

For Data and ASCII files, the address field is initially blank – and only filled in when the
pointer is set, either manually using SEEKPT(A) or automatically using some dedicated
function (like GETRGX, or APPREC/CHR).

To the author’s knowledge the PROGRAM Files never get the address field filled in.

XMEM Twin Module Manual

© Ángel Martin – June 2022 Page 34

Appendix 2.- Extended Memory Structure.

Extended memory is comprised of up to three disjoint memory ‘blocks”, depending on
whether only the X-Mem/Funct. module is present, or if other Extended Memory modules
are also plugged into the calculator.

Each of these blocks has a “linking” registers at the bottom, holding the pointers to the
previous and next block, as well as its own starting location. They are located at the bottom
of each block, that is addresses 0x040, 0x201, and 0x301.

The structure of the information contained in the linking registers is shown in the figure
below:

- - C U R P R V N X T T O P

13 12 11 10 9 8 7 6 5 4 3 2 1 0

CUR: number of files; only used in bottom linking register at 0x040
PRV: address of linking register of PREVIOUS module (or zero if first block)
NXT: address of top register of NEXT module (or zero if last block)
TOP: address of top register within this module

The contents of the linking registers vary depending on the number of X-Mem modules
present and where they are plugged, so for instance for a full configuration (or the HP-41
CX) including 5 files in total they are as follows:

@ 0x301:

 2 0 1 0 0 0 3 E F

13 12 11 10 9 8 7 6 5 4 3 2 1 0

@ 0x201:

 0 4 0 3 E F 2 E F

13 12 11 10 9 8 7 6 5 4 3 2 1 0

@ 0x040:

 0 0 5 0 0 0 2 E F 0 B F

13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: Some of the boundary values appear to be hard-coded in the file management
routines, like EMDIR, EMROOM, and file search utilities. This makes it impossible to add
more blocks above - even if the memory is available (like is the case for the 41CL machine)
– as shown below. Also it’s unfortunately not possible to change their locations to other
pages in RAM, say 1kB higher (for a second set of XM).

@ 0x401:

 3 0 1 0 0 0 4 E F

13 12 11 10 9 8 7 6 5 4 3 2 1 0

@ 0x301:

 2 0 1 4 E F 3 E F

13 12 11 10 9 8 7 6 5 4 3 2 1 0

XMEM Twin Module Manual

© Ángel Martin – June 2022 Page 35

X-Mem TWIN Application ROMS

There are two application ROMS based on the X-Mem_TWIN module:

• The X-PPC APPS includes all Block and Matrix routines from the PPC ROM, plus a few

application programs published in the PPC ROM Manuals. There are independent sets of
routines using the global X-Mem registers and the In-File Records. You should refer to the

PPC User’s Manual for user instructions and description of the routines included in the X-PPC

APPS ROM.

• The X-MTRX APPS includes a comprehensive set of Matrix programs from Jean-Marc Baillard
collection, see:

http://hp41programs.yolasite.com/matrixop.php,

http://hp41programs.yolasite.com/eigen.php, and
http://hp41programs.yolasite.com/determinant.php

The X-Mem_TWIN is the second extension module dedicated to management of X-Memory, above
and beyond HP’s original X-Functions/Memory Module (later included in the HP-41 CX). You’re

encouraged to also check the X-Mem X-Functions module that includes many advanced functions and
new uses for X-Memory.

The figure below shows the complete picture of modules and their interdependencies:

http://hp41programs.yolasite.com/matrixop.php
http://hp41programs.yolasite.com/eigen.php
http://hp41programs.yolasite.com/determinant.php

XMEM Twin Module Manual

© Ángel Martin – June 2022 Page 36

X- PPC Routines. (adapted from PPC ROM).

Below are the routines included in the X-PPC APPS ROM - a collection based on the block & Matrix
programs from the PPC ROM adapted to the X-Mem framework, and thus using the functions form

the XMem-TWIN Module.

Function Description Dependency Type Author

0 -XPPC ALPHA Section Header n/a MCODE n/a

1 “ACMP Alphabetizer XMTWIN FOCAL

2 “AORD Alpha Order XMTWIN FOCAL

3 “XAL Alphabetize X & Y XMTWIN FOCAL

4 “XAM Alpha to X-Mem XMTWIN FOCAL

5 “XMA X-Mem to Alpha XMTWIN FOCAL

6 “NC N-th. Character XMTWIN FOCAL

7 “SU Substitute Character XMTWIN FOCAL

8 -XPPC MTRX Section Header n/a MCODE n/a

9 “QR Quotient Remainder XMTWIN FOCAL

10 “XMIO X-Matrix Input/Output XMTWIN FOCAL

11 “XRRM Row Reduction X-Matrix XMTWIN FOCAL

12 “XM1 Interchange Two Rows XMTWIN FOCAL

13 “XM2 Multiply row by constant XMTWIN FOCAL

14 “XM3 Add multiple of row to another XMTWIN FOCAL

15 “XM4 X-Register addr to (I, j) XMTWIN FOCAL

16 “XM5 (I, j) to X-Register address XMTWIN FOCAL

17 “XS1 Stack Sort XMTWIN FOCAL

18 “XS2 Small X-Size Sort (n<33) XMTWIN FOCAL

19 “XS3 Large X-Size Sort (n>32) XMTWIN FOCAL

20 -XPPC BLOCK Section Header n/a MCODE n/a

21 “XBC X-Block Clear XMTWIN FOCAL

22 “XBE X-Block Exchange XMTWIN FOCAL

23 “XBI X-Block Increment XMTWIN FOCAL

24 “XBM X-Block Move XMTWIN FOCAL

25 “XBR X-Block Rotate XMTWIN FOCAL

26 “XBS X-Block Statistics XMTWIN FOCAL

27 “XBV X-Block View XMTWIN FOCAL

28 “XBX X-Block Extrema XMTWIN FOCAL

29 “XDR Delete X-Record XMTWIN FOCAL

30 “XIR Insert X-Record XMTWIN FOCAL

31 “XMS X-Memory to Stack XMTWIN FOCAL
32 “XPR Pack X-Registers XMTWIN FOCAL

33 “XSM Stack to X-Memory XMTWIN FOCAL

34 “XUR Unpack X-Registers XMTWIN FOCAL

35 -FPPC MTRX Section Header n/a MCODE n/a

36 “FMIO F-Matrix Input/Output XMTWIN FOCAL
37 “FRRM Row Reduction F-Matrix XMTWIN FOCAL

38 “FM1 Interchange Two Rows XMTWIN FOCAL

39 “FM2 Multiply row by constant XMTWIN FOCAL

40 “FM3 Add multiple of row to another XMTWIN FOCAL
41 “FM4 F-Register addr to (I, j) XMTWIN FOCAL

42 “FM5 (I, j) to F-Register address XMTWIN FOCAL

43 “FS1 Stack Sort XMTWIN FOCAL
44 “FS2 Small F-Size Sort (n<33) XMTWIN FOCAL

45 “FS3 Large F-Size Sort (n>32) XMTWIN FOCAL

46 -FPPC BLOCK Section header n/a MCODE n/a

47 “FBC X-Block Clear XMTWIN FOCAL

48 “FBE F-Block Exchange XMTWIN FOCAL

XMEM Twin Module Manual

© Ángel Martin – June 2022 Page 37

49 “FBI F-Block Increment XMTWIN FOCAL
50 “FBM F-Block Move XMTWIN FOCAL

51 “FBR F-Block Rotate XMTWIN FOCAL

52 “FBS F-Block Statistics XMTWIN FOCAL

53 “FBV F-Block View XMTWIN FOCAL
54 “FBX F-Block Extrema XMTWIN FOCAL

55 “FDR Delete F-Record XMTWIN FOCAL

56 “FIR Insert F-Record XMTWIN FOCAL

57 “FMS F-Records to Stack XMTWIN FOCAL
58 “PFR Pack F-Records XMTWIN FOCAL

59 “FSM Stack to F-Records XMTWIN FOCAL

60 “FUR Unpack F-Registers XMTWIN FOCAL
61 “FAM F-Records to Alpha XMTWIN FOCAL

62 “FMA Alpha to F-Records XMTWIN FOCAL

63

As you can see the module has parallel sections on global X-Memory Registers and In-File Records.
The function naming for functions on those sets is only different in the first character: X for global

and F for “ïn-file” – which should make it easier to remember and identify.

You’re encouraged to refer to the PPC User’s Manual for descriptions and user instructions for the

routines.

XMEM Twin Module Manual

© Ángel Martin – June 2022 Page 38

X- Matrix Routines. (adapted from Jean-Marc Baillard programs).

Below are the routines included in the XMATRIX APPS ROM - a collection based on Jean-Marc
Baillard’s Matrix programs adapted to the X-Mem framework, and thus using the functions form the

XMen-TWIN Module.

Function Description Dependency Type Author

0 -JMB XMATRX Lib#4 Check & Splash Lib#4 MCODE Nelson F. Crowle

1 ?XMSQ Tests if matrix is Square Lib#4 MCODE Ángel Martin

2 M*M X-Matrix Product Lib#4 MCODE JM Baillard

3 MNORM X-Matrix Norm Lib#4 MCODE JM Baillard

4 MTRACE X-Matrix Trace Lib#4 MCODE JM Baillard

5 “CRXMAT Create X-Matrix XMTWIN FOCAL JM Baillard

6 “XDET X-Matrix Determinant XMTWIN FOCAL JM Baillard

7 “XDFL Eigenvalues by Deflation XMTWIN FOCAL JM Baillard

8 “XLS3 _ Linear Systems XMTWIN FOCAL JM Baillard

9 “XM- Element Subtraction XMTWIN FOCAL JM Baillard

10 “XM+ Element Addition XMTWIN FOCAL JM Baillard

11 “XM* Element Product XMTWIN FOCAL JM Baillard

12 “XM/ Element Division XMTWIN FOCAL JM Baillard

13 “XM= Copies X-Matrix XMTWIN FOCAL Ángel Martin

14 “XM^2 X-Matrix Squared XMTWIN FOCAL Ángel Martin

15 XMCO Matrix Copy XMTWIN FOCAL JM Baillard

16 “XMINV X-Matrix Inversion XMTWIN FOCAL JM Baillard

17 “XMEXP X-Matrix Exponential XMTWIN FOCAL JM Baillard

18 “XMLN X-Matrix Logarithm XMTWIN FOCAL JM Baillard

19 “XMCHP X-Mat. Characteristic Polyn XMTWIN FOCAL JM Baillard

20 “XMP X-Matrix Product XMTWIN FOCAL JM Baillard

21 “XMPL X-Matrix Polynomial XMTWIN FOCAL JM Baillard

22 “XMPOW X-Metrix n-th. Power XMTWIN FOCAL JM Baillard

23 “XMRAN Random X-Matrix XMTWIN FOCAL JM Baillard

24 “XMRCL X-Matrix Recall XMTWIN FOCAL Ángel Martin

25 “XMSTO X-Matrix Store XMTWIN FOCAL Ángel Martin

26 “XMROOT X-matrix p-th. Root XMTWIN FOCAL JM Baillard

27 “XMSQRT X-Matrix Square Root XMTWIN FOCAL JM Baillard

28 “XMTRN X-Matrix Transpose XMTWIN FOCAL JM Baillard

29 “XMZRO Clears All Elements XMTWIN FOCAL Ángel Martin

30 “XPMIN Minimum Polynomial XMTWIN FOCAL JM Baillard

31 “XRANM Makes a Random Mtrx XMTWIN FOCAL JM Baillard
32 “XRNSYM Symmetric Random Mtrx XMTWIN FOCAL JM Baillard
33 “XONE Makes all-ones X-Matrix XMTWIN FOCAL Ángel Martin
34 “XIDN Makes Identity X-Matrix XMTWIN FOCAL Ángel Martin
35 “XZDG Zeroes X-Matrx Diagonal XMTWIN FOCAL Ángel Martin

What follows is the description and usage instructions for the programs.
You can also refer to Jean-Marc’s website for more details; see:

http://hp41programs.yolasite.com/matrixop.php,

http://hp41programs.yolasite.com/eigen.php, and

http://hp41programs.yolasite.com/determinant.php

http://hp41programs.yolasite.com/matrixop.php
http://hp41programs.yolasite.com/eigen.php
http://hp41programs.yolasite.com/determinant.php

XMEM Twin Module Manual

© Ángel Martin – June 2022 Page 39

Storing and recalling an X-Matrix.

The next programs are for the storage and review of the matrix. The input required is the control

word, and the element enumeration will proceed in column order as mentioned before.

These routines use the standard registers {R00 - R03} as auxiliary for control – contrary to the

Advantage-style matrices there’s no header containing index information, thus that needs to be done
using standard registers.

As you can see the control word is returned to X upon completion of the data input/review. This is

your handle to the matrix, thus the importance to have it available for the subsequent operation. It is

also stored in R02 in case you need it.

1 LBL "YMSTO" 36 STO 00 1.0rr

2 SF 01 37 LBL 00

3 GTO 01 38 RCL 00 k.00rr

4 LBL "YMRCL" 39 LBL 02

5 CF 01 40 "a"

6 LBL 01 41 ARCLI "ak"

7 STO 02 bbb.eee.rr 42 "|-," "ak,"

8 FRC 0.eeerr 43 RCL 01 p,0cc

9 E3 44 ARCLI "ak,p"

10 * eee.rr 45 "|-=" "ak,p="

11 INT eee 46 RDN

12 RCL 02 bbb.eee.rr 47 YARC IND RG_06

13 INT 48 2051

14 STO 03 bbb 49 FS? 01

15 - eee-bbb 50 "|-?" "ak,p= xxxxxxx?"

16 E 51 AVIEW

17 + eee-bbb+1 52 FC? 01

18 RCL 02 bbb.eee.rr 53 GTO 01

19 E3 54 CF 22

20 * bbbeee.rr 55 STOP

21 FRC 0.rr 56 FC?C 22

22 E2 57 GTO 01

23 * 58 YSTO IND RG_06

24 STO 00 rr 59 2051

25 / cc = (eee-bbb+1)/rr 60 LBL 01

26 E3 61 FC? 01

27 / 0.0cc 62 PSE

28 E 63 ISG 03 next Y-register

29 + 64 NOP

30 STO 01 1.0cc 65 ISG X next row

31 RCL 00 rr 66 GTO 02

32 E3 67 ISG 01 next column

33 / 68 GTO 00

34 E 69 RCL 02 control word

35 + 70 END all done.

XMEM Twin Module Manual

© Ángel Martin – June 2022 Page 40

Matrix Element Arithmetic

The four routines below operate on the individual matrix elements, using them to populate a new result matrix
where each element is the result of the arithmetic operation on the elements of the source matrices.

XM- -> cij = aij – bij ; XM+ -> cij = aij + bij

XM* -> cij = aij * bij ; XM/ -> cij = aij / bij

If the source matrices don’t have the same dimension only the “common” sub-matrices will be used for the
calculation of the result matrix.

The routines require the control words of the source matrices in Z and Y, plus the first resister of the destination
matrix in the X-register.

 STACK INPUTS OUTPUT

 Z bbb.eeerr1 /
 Y bbb.eeerr2 /

 X bbb3 bbb.eeerr3

 3 1 4 R01 R03 R05 2 7 1 R07 R09 R11

Example: A = 1 5 9 = R02 R04 R06 and B = 8 2 8 = R08 R10 R12 respectively

The control number of A is 1.00602

The control number of B is 7.01202 if, for instance, you choose to store A+B in registers R15

 1.00602 ENTER^, 7.01202 ENTER^, 15 XEQ "M-" =>> 15.02002 and

 1 -6 3 R15 R17 R19
 A-B = -7 3 1 = R16 R18 R20 respectively

Note that the destination block of registers may be the same as the one of matrix A or B – but be
careful do not use a straddle block between them that can alter the source values as the results are

being calculated and stored.

01 *LBL "XM*"

 02 CF 01

 03 GTO 01

 04 *LBL "XM/"

 05 SF 01

 06 *LBL 01

 07 SF 00

 08 GTO 01

 09 *LBL "XM+"

 10 CF 02
 11 GTO 00

 12 *LBL "XM-"

 13 SF 02

 14 *LBL 00

 15 CF 00

 16 *LBL 01

 17 STO M

 18 STO N
 19 CLX

 20 E3

 21 *
 22 INT

 23 E3
 24 ST/ Y

 25 *LBL 02

 26 CLX
 27 XRCL IND Z (3073)

 28 XRCL IND Y (3074)
 29 FC? 00

 30 GTO 01
 31 FS? 00

 32 1/X

 33 *
 34 GTO 02

 35 *LBL 01

 36 FS? 02

 37 CHS

 38 +

 39 *LBL 02

 40 XSTO IND M (3077)
 41 CLX

 42 SIGN
 43 ST+ M

 44 ST+ Z
 45 ISG Y

 46 GTO 02

 47 RCL M
 48 X<>Y

 49 -
 50 R^

 51 E3
 52 *

 53 FRC

 54 +
 55 E3

 56 /
 57 RCL N

 58 +

 59 CLA
 60 END

XMEM Twin Module Manual

© Ángel Martin – June 2022 Page 41

Transpose of a Matrix

The transpose of a nxm matrix A = [aij] is the mxn matrix tA = [bi j] defined by bij = aji

"XTRN" stores the transpose of a matrix in a different block of registers.

The 2 blocks cannot overlap.

 STACK INPUTS OUTPUTS
 Y bbb.eeerr1 rr1+bbb.eeerr1

 X bbb2 bbb.eeerr2

Example:
 2 7 1 3 R01 R04 R07 R10

 A = 1 9 4 2 = R02 R05 R08 R11

 4 6 2 1 R03 R06 R09 R12

and you want to store tA in registers R21 ...etc...

 1.01203 ENTER^, 21 XEQ "XMTRN" =>> 21.03204 and

 2 1 4 R21 R25 R29

 tA = 7 9 6 = R22 R26 R30

 1 4 2 R23 R27 R31

 3 2 1 R24 R28 R32

XMTRN Program listing.-

01 *LBL "XMTRN"

02 STO O
03 RCL Y

04 STO T

05 FRC
06 ISG X

07 INT
08 STO M

09 STO N
10 RDN

11 LBL 01

12 XRCL IND Y (3074)
13 XSTO IND Y (3074)

14 CLX

15 SIGN

16 +
17 ISG Y

18 GTO 01

19 RDN
20 SIGN

21 +
22 ENTER^

23 R^
24 DSE N

25 GTO 01

26 STO Y
27 RCL O

28 -

29 RCL M

30 /
31 DSE Y

32 E2

33 /
34 +

35 E3
36 /

37 RCL O
38 +

39 CLA

40 END

XMEM Twin Module Manual

© Ángel Martin – June 2022 Page 42

Random Matrices and Register Sorting.

"XMRAN" stores pseudo-random integers (between 1 and N) into registers Rbb , , Ree

No other register is used.

 STACK INPUT OUTPUT

 Y bbb.eeerr /
 X N /

 where bbb.eeerr is the control number of the array

Example: Store random integers between 1 and 12 into registers R01 , R02 , , R07

 1.007 ENTER^, 12 XEQ "RANM" gave:

 R01 = 10 R02 = 5 R03 = 8 R04 = 6 R05 = 6 R06 = 8 R07 = 10 ...

Since the current date & time are used to initialize the random number generator, you will probably

get different values.

01 LBL “XMRAN”

02 DATE
03 TIME

04 +

05 LBL 01

06 R-D

07 FRC

08 RCL X

09 X<> Z
10 ST* Z

11 X<> Z

12 INT
13 ISG X

14 CLX

15 XSTO IND T (3072)

16 RDN
17 ISG Z

18 GTO 01

19 END

Note that also included in the module is “XRAN”. This one follows a different approach, using the RNG function
RNDM from the AMC_OS/X module. The input parameter is an X-registers control word bbb.eee, and therefore
it’s a very useful way to test the sorting routine XSORT

Program listing.-

01 *LBL "XSORT"

 02 RUNNING

 03 SIGN

 04 *LBL 01

 05 LASTX

 06 LASTX
 07 XRCL IND L (3076)

 08 *LBL 02

 09 XRCL IND Y (3074)

 10 X>Y?

 11 GTO 03
 12 X<>Y

 13 LASTX
 14 +

 15 *LBL 03

 16 RDN

 17 ISG Y

 18 GTO 02
 19 XX<> IND L (3076)

 20 XSTO IND Z (3073)
 21 ISG L

 22 GTO 01

 23 CLD
 24 RTN

 25 *LBL "XRAN"

 26 RCL X

 27 *LBL 00

 28 RNDM

 29 XSTO IND Y (3074)

 30 RDN
 31 ISG X

 32 GTO 00
 33 RDN

 34 END

XMEM Twin Module Manual

© Ángel Martin – June 2022 Page 43

Inverse of a Matrix

 "MINV" can invert up to a 24 x 24 matrix using the Gauss-Jordan elimination - also called the
"exchange method".

Here, the first element of the matrix must be stored into XR06.
Standard Data registers R01 thru R05 are used for control numbers of different rows and columns.

You put the order of the matrix into X-register and XEQ "MINV".

The determinant is left in X-register and in R00 and the inverse matrix has replaced the original one

(in registers XR06 ... etc.)

If flag F01 is clear, Gaussian elimination with partial pivoting is used.
If flag F01 is set, the pivots are the successive elements of the diagonal.

 STACK INPUT OUTPUT

 X n det A

where n is the order of the matrix A

Example: Let's take the 5x5 Pascal's matrix – 6.03005, XEQ “XMSTO”

 1 1 1 1 1 R06 R11 R16 R21 R26

 1 2 3 4 5 R07 R12 R17 R22 R27

 1 3 6 10 15 => R08 R13 R18 R23 R28 respectively

 1 4 10 20 35 R09 R14 R19 R24 R29

 1 5 15 35 70 R10 R15 R20 R25 R30

 5 XEQ "MINV" the determinant (1 in this example) will be in X-register and in R00 and the
inverse matrix:

 5 -10 10 -5 1 R06 R11 R16 R21 R26

 -10 30 -35 19 -4 R07 R12 R17 R22 R27

 10 -35 46 -27 6 => R08 R13 R18 R23 R28 respectively

 -5 19 -27 17 -4 R09 R14 R19 R24 R29

 1 -4 6 -4 1 R10 R15 R20 R25 R30

Program Listing.-

 01 *LBL "XMINV"

 02 RUNNING

 03 STO 01

 04 0,1
 05 %

 06 ST+ 01
 07 STO 02

 08 X<>Y

 09 ST* Y
 10 E-5

 11 STO T
 12 *

 13 X<>Y
 14 6.005

 15 ST+ 02

 16 +

 17 STO 05
 18 +

 19 STO 03

 20 +
 21 STO 04

 22 SIGN
 23 STO 00

 24 CLA

 25 *LBL 14

 26 FS? 01

 27 GTO 01
 28 CLST

 29 RCL 04
 30 INT

 31 RCL 02

 32 FRC

 33 +
 34 RDN

 35 +

 36 *LBL 00

 37 CLX

 38 XRCL IND Z (3073)
 39 ABS

 40 X<=Y?

 41 GTO 00
 42 X<>Y

 43 ENTER^
 44 +

 45 *LBL 00

 46 ISG Z

 47 GTO 00

 48 R^

XMEM Twin Module Manual

© Ángel Martin – June 2022 Page 44

 49 INT
 50 RCL 04

 51 INT
 52 -

 53 RCL 03

 54 STO Z
 55 +

 56 XTOA
 57 X=Y?

 58 GTO 01

 59 *LBL 09

 60 XRCL IND X (3075)

 61 XX<> IND Z (3073)
 62 XSTO IND Y (3074)

 63 ISG Y
 64 RDN

 65 ISG Y

 66 GTO 09
 67 RCL 00

 68 CHS
 60 STO 00

 70 *LBL 01

 71 RCL 02

 72 INT

 73 RCL 05
 74 INT

 75 X=Y?
 76 GTO 03

 77 RCL 03

 78 INT
 79 X=Y?

 80 GTO 02
 81 XRCL IND X (3075)

 82 XRC* IND T (3072)

 83 XRC/ IND R4 (2052)
 84 XST- IND Z (3073)

 85 *LBL 02

 86 ISG 02

 87 GTO 04
 88 RCL 01

 89 INT

 90 ST- 02
 91 ST+ 03

 92 GTO 04

93 *LBL 03

94 RCL 01

95 INT
96 ST+ 03

97 ST+ 05

98 DSE 05

99 *LBL 04

100 ISG 05
101 GTO 01

102 *LBL 05

103 RCL 02

104 INT

105 RCL 04
106 INT

107 X=Y?
108 GTO 06

109 XRCL IND X (3075)

110 XST/ IND Z (3073)

111 *LBL 06

112 ISG 02
113 GTO 05

114 RCL 01
115 INT

116 X^2

117 ST- 03

118 *LBL 07

119 RCL 03
120 INT

121 RCL 04

122 INT
123 X=Y?

124 GTO 08
125 XRCL IND X (3075)

126 CHS

127 XST/ IND Z (3073)

128 *LBL 08

129 ISG 03
130 GTO 07

131 XRCL IND R4 (2052)
132 ST* 00

133 1/X

134 XSTO IND R4 (2052)
135 RCL 01

136 FRC

137 ST+ 02
138 LASTX

139 INT
140 X^2

141 ST- 03

142 ST- 05
143 SIGN

144 ST+ 03
145 ISG 04

146 GTO 14
147 FS? 01

148 GTO 11

149 RCL 01
150 INT

151 STO 04
152 STO 05

153 *LBL 10

154 RCL 05
155 E

156 -
157 AROT

158 ATOX
159 6

160 -

161 RCL 04
162 ST* Z

163 *
164 6

165 ST+ Z

166 +
167 RCL 01

168 FRC
169 +

170 E3

171 /
172 +

173 XRGSWP
174 DSE 05

175 GTO 10

176 *LBL 11

177 RCL 00

178 CLD
179 END

XMEM Twin Module Manual

© Ángel Martin – June 2022 Page 45

Euclidean Norm of a Matrix

 MNORM computes || A || = (i,j ai,j^2)/2

 STACK INPUT OUTPUT
 X bbb.eeerr || A ||

Example:

 2 7 1 3 R01 R04 R07 R10
 A = 1 9 4 2 => R02 R05 R08 R11
 4 6 2 1 R03 R06 R09 R12

 1.01203 XEQ "NORM" =>> || A || = 14.8996643

Trace of a Square Matrix

The trace of a square matrix equals the sum of its diagonal elements.

 STACK INPUT OUTPUT
 X bbb.eeerr Tr(A)

Example:

 1 2 4 R03 R06 R09
 A = 3 5 7 = R04 R07 R10
 7 9 8 R05 R08 R11

 3.01103 XEQ "TRACE" =>> Tr(A) = 14

Both MNORM and MTRACE are written in MCODE; here you can see an equivalent FOCAL routines:

01 LBL "MNORM"

02 E3

03 *

04 INT
05 E3

06 /
07 0

08 LBL 01

09 XRCL IND Y
10 X^2

11 +
12 ISG Y

13 GTO 01

14 SQRT
15 END

01 LBL "TRACE"

02 E-5

03 +
04 0

05 LBL 01

06 XRCL IND Y
07 +

08 ISG Y
09 GTO 01

10 END

XMEM Twin Module Manual

© Ángel Martin – June 2022 Page 46

Multiplication of two Matrices

 M*M calculates the product of 2 matrices A & B and returns the control number o

f A*B/ The number of columns of the first matrix must equal the number of rows of the second

matrix:
 STACK INPUT OUTPUT

 Z bbb.eeerr1 rr1 = rr3
 Y bbb.eeerr2 rr1 = rr3

 X bbb3 bbb.eeerr3

Example: Calculate C = A.B where
 3 1

 2 7 1 3 4 2

 A = 1 9 4 2 B = 7 5

 4 6 2 1 2 6

assuming that: A is stored in registers R01 thru R12

 B is stored in registers R15 thru R22

 and choosing R26 as the first register of C

In other words,

 R01 R04 R07 R10 2 7 1 3 R15 R19 3 1

 R02 R05 R08 R11 = 1 9 4 2 and R16 R20 = 4 2

 R03 R06 R09 R12 4 6 2 1 R17 R21 7 5

 R18 R22 2 6

Key in: 1.01203 ENTER^, 15.02204 ENTER^, 26 XEQ "M*M" =>> 26.03103

the control number of the matrix C and the result is:

 47 39 R26 R29

 C = 71 51 = R27 R30

 52 32 R28 R31

M*M is also written in MCODE, here you can see an equivalent FOCAL routine:

01 LBL "M*M"

02 STO O
03 STO P

04 RDN
05 STO N

06 X<>Y

07 STO M
08 FRC

09 ISG X
10 INT

11 STO Q

12 LBL 01

13 CLX

14 STO IND P
15 RCL M

16 RCL N

17 LBL 02

18 XRCL IND Y

19 XRCL IND Y
20 *

21 XST+ IND P
22 CLX

23 SIGN

24 +
25 ISG Y

26 GTO 02
27 LASTX

28 ST+ M
29 ST+ P

30 DSE Q

31 GTO 01
32 RCL M

33 FRC
34 ISG X

35 INT

36 STO Q

37 ST- M
38 ISG N

39 GTO 01
40 ENTER^

41 SIGN

42 %
43 RCL P

44 LASTX
45 -

46 +
47 E3

48 /

49 RCL O
50 +

51 CLA
52 END

XMEM Twin Module Manual

© Ángel Martin – June 2022 Page 47

Copying a Matrix and Matrix Square Power.

“XM=" does a copy of the matrix with control word in the X-register. It uses the registers following

immediately after the source one, without any gaps. The routine leaves the initial control word in X.

For example:

1.02505 , XEQ”XM=” => makes a copy into registers { R36 – R50 }

This is a nice and simple example because most of what the routine does is prepare the argument for
the final XRGMOV instruction.

Matrix Square power.

“XM^2" is a simple application of M*M and uses the Matrix Copy routine above to make a copy of

itself. This imposes a maximum dimension of 14x14 for the matrix to square. The routine expects the

matrix to be square, so there’s an initial check using function XMSQ? To verify this assumption.

Program listing.-

1 LBL "XM=" ; sss.ddd:rr

2 ENTER^ ; sss.ddd:rr

3 INT ; sss
4 LASTX ; sss.ddd:rr

5 FRC ; 0,ddd:rr
6 E3

7 * ; ddd.rr

8 INT ; ddd
9 E

10 + ; ddd+1
11 X<>Y ; sss

12 - ; nn=(ddd-sss)+1
13 E5

14 / ; 0,000nn

15 X<>Y ; sss.ddd:rr
16 FIX 3

17 RND ; sss.ddd
18 FIX 5

19 E-3

20 +
21 + ; sss,(ddd+1):nn

22 XRGMOV
23 X<>Y

24 RTN

25 LBL "XM^2" sss.ddd:rr

26 XMSQ?

27 GTO 00
28 “NOT SQUARE”
29 PROMPT
30 RTN

31 LBL 00

32 XROM "XM=" ; make a copy
33 ENTER^ ; sss.ddd:rr

34 ENTER^
35 FRC ; 0,ddd:rr

36 FIX 3
37 RND ; 0,ddd

38 FIX 5

39 + ; sss,(2*ddd):rr
40 E

41 + ; (ddd+1),(2*ddd): rr
42 ENTER^

43 FRC ; 0,(2*ddd): rr

44 E3
45 * ; (2*ddd),rr

46 INT ; 2*ddd
47 E

48 + ; 1+2*ddd

49 M*M
50 END

XMEM Twin Module Manual

© Ángel Martin – June 2022 Page 48

Linear Systems.

“XLS3" allows you to solve linear systems, including overdetermined and underdetermined systems.

You can also invert up to a 12x12 matrix. Its objective is to reduce the matrix on the upper left to a
diagonal form with only ones in the diagonal.

The determinant of this matrix is also computed and stored in register R00.
(if there are more rows than columns, R00 is not always equal to the determinant of the upper left

matrix because of row exchanges)

• If flag F01 is clear, Gaussian elimination with partial pivoting is used.

• If flag F01 is set, the pivots are the successive elements of the diagonal. This can sometimes

be useful for matrices like Pascal matrices of high order. They are extremely troublesome and

many roundoff errors can occur. But if you set flag F01, all the coefficients will be computed
with no roundoff error at all, because all the pivots will be ones!

One advantage of this program is that you can choose the beginning data register - except R00 - (this

feature is used to solve non-linear systems too):

1. You store the first coefficient into Rbb , ... , up to the last one into Ree (column by column)

(with bb > 00)
2. Then you key in bbb.eeerr ENTER^, n, ENTER^, m , XEQ "XLS3" and the system will be

solved. (bbb.eeerr ends up in L-register)

where r is the number of rows of the matrix and m, n are the number of rows and columns of the

combined matrix including the independent terms in the FIRST column.

In this variant, the matrix is the right-part of the array so that, when the program stops the solution

(x1 , x2 , , xn) is in registers R01 R02 Rnn

Here, the attempt to diagonalization starts by the lower right corner of the matrix.

Flags F00 & F01 play the same role as above.

(SIZE n.m+1)

 STACK INPUT OUTPUT

 T / n.nnn
 Z / /

 Y n /
 X m det A

 n = number of rows
 m = number of columns

 T-output is useful to retrieve n

Don't interrupt "XLS3" because registers P and Q are used (there is no risk of crash, but their
contents could be altered)

XMEM Twin Module Manual

© Ángel Martin – June 2022 Page 49

Example:

 2x + 3y + 5z + 4t = 39 39 = 2x + 3y + 5z + 4t
 -4x + 2y + z + 3t = 15 is re-written 15 = -4x + 2y + z + 3t

 3x - y + 2z + 3t = 19 19 = 3x - y + 2z + 3t

 5x + 7y - 3z + 2t = 18 18 = 5x + 7y - 3z + 2t

and we store these 20 numbers:

 39 2 3 5 4 R01 R05 R09 R13 R17

 15 -4 2 1 3 in R02 R06 R10 R14 R18 respectively

 19 3 -1 2 3 R03 R07 R11 R15 R19
 18 5 7 -3 2 R04 R08 R12 R16 R20

There are 4 rows and 5 columns,

 CF 00 CF 01
 4 ENTER^

 5 XEQ "LS3" >>>> Det A = 840 = R00

Registers R05 thru R16 now contain the unit matrix and registers R01 thru R04 contain the solution x
= 1 , y = 2 , z = 3 , t = 4

Thus, the array has been changed into:

 1 1 0 0 0
 2 0 1 0 0 the solution is the first column
 3 0 0 1 0 of the new matrix.
 4 0 0 0 1

-When the program stops, R00 = det A

-If you have to invert a matrix, the inverse will be in registers R01 thru Rn2 at the end

XMEM Twin Module Manual

© Ángel Martin – June 2022 Page 50

Determinant of order n

 "XDET" simply uses "LS3" to compute the determinant of a square matrix of order n.

Flags: CF 00 = a pivot p is regarded as zero if | p | < 10-7 ; CF 01 = partial pivoting

 SF 00 = a pivot p is regarded as zero if p = 0 ; SF 01 = no pivoting

 STACK INPUT OUTPUT
 X n Determinant

 where n is the order of the square matrix.

Example: Calculate

 | 4 9 2 | R01 R04 R07

 D = | 3 5 7 | into R02 R05 R08 respectively

 | 8 1 6 | R03 R06 R09

 3 XEQ "DET" =>> Det = 360

Example. Calculate the determinant of anti-Identity matrix of orders 10, 20 and 24.

Let’s define an anti-Identity matrix as that with all elements equal to one, except the diagonal which

has zeroes. For example, the 900-element, 30x30 matrix below is said to be anti-Identity:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

1 0 1

2 1 0 1

3 1 1 0 1

4 1 1 1 0 1

5 1 1 1 1 0 1

6 1 1 1 1 1 0 1

7 1 1 1 1 1 1 0 1

8 1 1 1 1 1 1 1 0 1

9 1 1 1 1 1 1 1 1 0 1

10 1 1 1 1 1 1 1 1 1 0 1

11 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

12 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

13 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

14 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1

19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1

20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1

21 0 1 1 1 1 1 1 1 1 1

22 1 0 1 1 1 1 1 1 1 1

23 1 0 1 1 1 1 1 1 1

24 1 0 1 1 1 1 1 1

25 1 0 1 1 1 1 1

26 1 0 1 1 1 1

27 1 0 1 1 1

28 1 0 1 1

29 1 0 1

30 1 0

The first step to this assignment is to create the matrices. Obviously entering the elements by hand is

not a sensible choice (up to 900 elements by hand!), so we’ll first write a couple of short routines for
this kind of data entering.

XMEM Twin Module Manual

© Ángel Martin – June 2022 Page 51

YONE creates an all-ones square matrix. Input bbb.eeerr in X

YZDG creates a zero-diagonal matrix. Input bbb.eeerr in X
YIDN creates an identity matrix, Input bbb.nnnrr in X

Equipped with these tools it’s a trivial matter to create the matrices for the example:

1,10010, XEQ “XONE” => a 10x10 matrix with all elements equal to “1”

RCL Z, XEQ “XZDG” => an anti-diagonal 10x10 matrix
CF 00, 10, XEQ “XDET” => final result

The results and execution times (at TURBOx50) are given below. Note how the accuracy holds even
for very large systems – although the execution time is somewhat longer than ideal.

N Input Det Time

10 1,10010 -9.000000002 35”

20 1,40020 -19.00000000 ~2 min 30”

30 1,90030 -29.99999977 ~11 min

Routines Listing.

01 LBL “XONE”

02 ENTER^
03 FIX 3

04 RND
05 E

06 XEQ 00
07 RTN

08 RCL Z

09 LBL “XZDG”

10 E-5

11 +
12 0

13 XEQ 00

14 RTN

15 LBL “XIDN”

16 ENTER^
17 FIX 3

18 RND
19 CLXRGX

20 X<>Y
21 E-5

22 +

23 E
24 LBL 00

25 XSTO IND Y (3074)

26 ISG Y
27 GTO 00

28 FIX 6

29 END

Note that XIDN is not required for the example, but it’s a symmetrical application of the same
technique – whilst also showing a neat trick with the CLYRGX function.

Quite clearly the success of this operation is to be attributed to the YDET program – a straight-

forward adaptation of the DET routine written by JM Baillard. The program is listed in next page, but
you should refer to the original documentation available at the URL below:

http://hp41programs.yolasite.com/determinant.php

http://hp41programs.yolasite.com/determinant.php

CL XMEM Module Manual

© Ángel Martin – May 2022 Page 52

Program listing.-

 01 *LBL "XDET"

 02 ENTER^

 03 *LBL "XLS3"

 04 RUNNING
 05 X<>Y
 06 0.1
 07 %
 08 +
 09 STO N
 10 ST* Y
 11 FRC
 12 -
 13 STO O
 14 E
 15 STO 00
 16 LASTX
 17 %
 18 RCL Z
 19 INT
 20 +

 21 *LBL 01

 22 STO M
 23 FS? 01
 24 GTO 04
 25 INT
 26 RCL O
 27 FRC
 28 +
 29 ENTER^
 30 ENTER^
 31 CLX

 32 *LBL 02

 33 XRCL IND Z (3073}
 34 ABS
 35 X>Y?
 36 STO Z
 37 X>Y?
 38 +
 39 RDN
 40 DSE Z

 41 GTO 02
 42 RCL M
 43 ENTER^
 44 FRC
 45 R^
 46 INT
 47 +
 48 X=Y?
 49 GTO 04

 50 *LBL 03

 51 XRCL IND X (3075)
 52 XX<> IND Z (3073)
 53 XSTO IND Y (3074)
 54 DSE Y
 55 RDN
 56 DSE Y
 57 GTO 03
 58 RCL 00
 59 CHS
 60 STO 00

 61 *LBL 04

 62 CLX
 63 FC? 00
 64 E-7
 65 XRCL IND M (3077)
 66 ST* 00
 67 ABS
 68 X<=Y?
 69 CLX
 70 X=0?
 71 STO 00
 72 X=0?
 73 GTO 09
 74 RCL M
 75 LASTX

 76 *LBL 05

 77 XST/ IND Y (3074)
 78 DSE Y
 79 GTO 05
 80 RCL O
 81 STO P

 82 *LBL 06

 83 RCL M
 84 ENTER^
 85 FRC
 86 RCL P
 87 INT
 88 +
 89 X=Y?
 90 GTO 08
 91 XRCL IND X (3075)
 92 SIGN
 93 RDN

 94 *LBL 07

 95 XRCL IND Y (3074)
 96 LASTX
 97 *
 98 XST- IND Y (3074)
 99 DSE Y
100 RDN
101 DSE Y
102 GTO 07

103 *LBL 08

104 DSE P
105 GTO 06

106 *LBL 09

107 RCL N
108 ST- O
109 RCL O
110 RCL M
111 E
112 -
113 X<=Y?
114 CLX
115 DSE X
116 GTO 01
117 RCL 00
118 CLD
119 CLA
120 END

