HP-41 MAXX

HP-41 MAXX

© 2025 Systemyde International Corporation 1

HP-41 MAXX

Every effort has been made to ensure the accuracy of the information contained herein. If you find errors or
inconsistencies please bring them to our attention.

Copyright © 2023, 2024 Systemyde International Corporation. All rights reserved.

Notice:
“HP-41C”, “HP-41CV”, “HP-41CX” and “HP” are registered trademarks of Hewlett-Packard, Inc. All uses

of these terms in this document are to be construed as adjectives, whether or not the noun “calculator”, “CPU”
or “device” are actually present.

Acknowledgements:

Angel Martin provided the functions to use Expanded memory, the CPYBNK function and several figures
in this manual. He also reviewed multiple versions of this manual and did beta testing on the module.

Sylvain Cété provided several figures used in this manual and introduced the module to the world with a
presentation at HHC 2022. He also reviewed multiple versions of this manual and did beta testing on the

module.

Robert Prosperi reviewed early versions of this manual and suggested including the HP-IL Code Copy
functions.

Screenshots are taken from Warren Furlow's V41 program.

© 2025 Systemyde International Corporation 2

HP-41 MAXX

Table of Contents

1. READ THIS FIRST et 6
2. INTFOTUCTION .ot 7
3. HP-41 MAXX Configurationscccceiieiieriiiiiesiesisesee e 8

4, MAXX SOftware OVEIVIEWooviiieiiiie et eeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeeeennnneeneees 10

5. MAXX Status FUNCHIONScoiviiiiieiiiiisisie e 17
MXST? (MAXX Hardware StatuS?)cccocoeriiininininieeie e 17
QRST? (QROM Status?)ccoerereererierieieiisie ettt 18

6. Expanded Memory BIoCK FUNCLIONSccooviiiiiiiiiieieeee e 20
ST>YM (Move Status Block to Expanded Memory)ccccocevveveeiecnnenen. 22
ST<>YM (Exchange Status Block with Expanded Memory)c......... 23
YM>ST (Move Expanded Memory to Status BIOCK)cccceoerviiiinnnnnnn. 23
MM>YM (Move Main Memory to Expanded Memory)ccccceevvevveinenen. 23
MM<>YM (Exchange Main Memory with Expanded Memory) 23
YM>MM (Move Expanded Memory to Main Memory)ccccoevvvvvieeinennns 23
XM>YM (Move Extended Memory to Expanded Memory)cccccevueeneen. 24
XM<>YM (Exchange Extended Memory with Expanded Memory) 24
YM>XM (Move Expanded Memory to Extended Memory)c.ccocvvenene. 24
YM<>YM (Exchange Expanded Memory BIOCKS)ccccceviiviiiiiiiiiiinnne, 24
YMCLR (Clear Expanded MemOry)cccoceivevvereiienieesie e seese e 24

7. Expanded RegiSter FUNCLIONSccooiiiiiiiiiiiiesseeee e 25
YARC (Expanded Register Alpha Recall) ..o, 31
YAST (Expanded Register Alpha Store)ccccooveviiiiieiiin e 31
YDSE (Expanded Register Decrement, SKip If Equal)ccoovvvniinninnns 32
YISG (Expanded Register Increment, SKip If Greater)ccccoeevevveiveennen. 32
YRCL (Expanded Register Recall)ccooiiiiiiiiiiiiiieieiieien, 32
YRC+ (Expanded Register Recall and Add)ccociiviieiieiiecieceenn, 32

YRC- (Expanded Register Recall and Subtract)cccoviiiiiiiiinnnn. 32
YRC* (Expanded Register Recall and Multiply)coiiiiiiiiiinnn. 32
YRC/ (Expanded Register Recall and Divide)ccccccevvvvivereiiiciieersiinnnn 33

© 2025 Systemyde International Corporation 3

HP-41 MAXX

YSTO (Expanded Register Store) .. e 33
YST+ (Expanded Register Store w1th Add) PRSPPI X |
YST- (Expanded Register Store with Subtract) 33
YST* (Expanded Register Store with Multiply)c.ocooiniiiiiinnnn. 33

YST/ (Expanded Register Store with Divide)ccccccevvevininniniciiecee 33
YVEW (Expanded RegiSter VIBW)cccoveiieieiiiiiieieieeie e 34
YX<> (Expanded Register Exchange with X-register)cccccecvevvvivereennnnn, 34
8. Expanded Register BIOCK FUNCLIONSccccoeiiiiiiiiiieieee e 35
YRGMOV (Move Expanded Register BIOCK)cccoeiiiiiiiiiiiiiieee, 35
YRGSWP (Exchange Expanded Register BIOCKS)cccccoceviveveiiieiieennnnn, 35
CLYRG (Clear Expanded Register BIOCK)ccccoveviiieieeieiicve e, 35
CLYRGX (Clear Expanded Register Block by X-register)ccccceevrennene 36
A<>YRG (Exchange Alpha Register with Expanded Register Block) 36
ST<>YRG (Exchange Stack with Expanded Register Block) 36
9. QROM FUNCLIONS ...ooiiiiieieciie ettt sreesteeneesneenne e nnes 37
QRABY (QROM Set Address/Bank by Y-register)c.ccoceevveninivnnnennnns 38
QRCLR (QROM CIEAN) ...viviiiieiieiieieiesie ettt 39
QRINI (QROM INITIANZE) ..o 39
QRRE (QROM Read ENable) ..o 39
QRRO (QROM Read-Only)ccccovirieiriinieieeeie e 39
QRRP (QROM Read PrOtECL)ocverviiviiiieiieieiesie s 40
QRRWE (QROM Read and Write ENable)ccccvieieiiniiiniiceeecen 40
QRRWD (QROM Read and Write Disable)cccccooveviiiieveeieieeceee, 40
QRWE (QROM Write ENable)ccooviiiiiecc e, 40
QRWO (QROM WIIE-ONLY) ...eoouieiieieieiesiesieeiieeesee et 40
QRWP (QROM WIrite ProteCt)ccoveiieeiieiie et 41
10. Instruction Memory FUNCHIONSccooiiiiiiiiiiiie e 42
AH>XD (Hex Address/Data to Decimal Address/Data)c.cceeerereruene. 43
AHPEEK (Instruction Memory Read using Hex Address/Data) 43
AHPOKE (Instruction Memory Write using Hex Address/Data) 43
XD>AH (Decimal Address/Data to Hex Address/Data)cccccccveeruveennnee. 43
XDPEEK (Instruction Memory Read using Decimal Address/Data) 44
XDPOKE (Instruction Memory Write using Decimal Address/Data) 44
11. Code COoPY FUNCLIONSoviiiieiiiieciieeiee et 45
CPYBNK (Copy Bank)ccceiieiieiiiie et 45

© 2025 Systemyde International Corporation 4

HP-41 MAXX

12. HP-IL Code COPpY FUNCLIONSccviiiiiieiieiie e 46
RDEIL (Load ROM Page via HP-IL, ERAMCO format)cccccecevvennnne 48
RDHIL (Load ROM Page via HP-IL, HEPAX format)ccccocevivniennnne 48
WREIL (Store ROM Page via HP-IL, ERAMCO format)cccccevveennne 48
WRHIL (Store ROM Page via HP-IL, HEPAX format)c.cccocovviiiinnne 48
13, EFTOFr IMIESSAQES ..ottt 49
14. Function XROM NUMDEIS ..o 50
15. QROM Loading EXamPIeScccoiiiiiiiiieieeeieeete e 52
16. INterNal DELailSoeoioeieeeeeeeee et 54
Hardware Control REGISTENccviiiiiiiieiere e 55
QROM CoNtrol REQISTEISt 56
SCratCh X REGISTEIS ... 58
Translate INPUL REJISLENooveiiieie e 59
FIVE BYLES REJISIEN . .ecvviciicie ettt 59
FOUr WOIdS REQISIETeovieeiicieccie et 60
ALPHA-O-HEX REJISIENocviciiiiciie ettt 60
Binary-t0-BCD REQISIENcc.oiiiiiiieiiiieieie e 60
ROM CONtrol REGISTET ..o 61
Indirect Data REGISTENccviviiiiiiiiieeee s 61
Indirect Address REGISTENoii i 61
Expanded REGISIEr ACCESSviiiiiieieriese ettt 62
17. REVISION HISTOIY ..ottt saa s 63
18. Released Version HISTOIYcccooiiiiiiiiiic it 64

© 2025 Systemyde International Corporation 5

HP-41 MAXX

READ THIS FIRST

When First Inserting the HP-41 MAXX Module

The HP-41 MAXX module uses a Field-Programmable Gate Array (FPGA) to implement
all of the logic and memory in the module. An FPGA must be loaded with the logic and
memory contents at power-up, and until this process is complete the FPGA outputs are
undefined. This undefined state can sometimes cause the bus drivers in the MAXX module
to drive the HP-41 bus.

One particular bus signal (ISA) is used to wake up the HP-41 processor if driven while the
HP-41 is off. (This is how the button on Wand works and how the Time Module displays
the time continuously.) If this happens the HP-41 may wake up and then lock up when the
HP-41 MAXX module is inserted into the calculator.

To clear this condition, first try pressing ON several times. If this doesn't work remove the
batteries and then press ON several times before re-inserting the batteries. Insert the
batteries, wait a few seconds, and then turn on the calculator. It may take a few tries for
this to work, but once the calculator starts responding everything should be fine.

Neither QROM memory nor Expanded memory is initialized!

QROM blocks and Expanded memory are implemented using RAM, and are not initialized
at power-up. The random data in a QROM block will almost certainly crash the calculator
if the QROM block is enabled for reads prior to being initialized or loaded with actual data.
Similarly, the random data in Expanded memory will likely cause problems if transferred
to main memory. Here is the recommended initialization sequence to start up a calculator
after first inserting the HP-41 MAXX module:

« ON Force a Memory Clear condition, which will initialize Main memory.
QRINI Clear all of QROM.
YMCLR 1 Clear Expanded memory block 1.
YMCLR 2 Clear Expanded memory block 2.
YMCLR 3 Clear Expanded memory block 3.
Finally, initialize the Time module with the time and date.

All HP-41 MAXX memory is volatile!

All of the RAM in the HP-41 MAXX module is volatile and will lose its contents when
power is removed.

© 2025 Systemyde International Corporation 6

HP-41 MAXX

Introduction

The HP-41 MAXX module is designed to expand an HP-41C, CV or CX calculator to the
maximum capabilities envisioned for an HP-41 system. The HP-41 MAXX module
implements all of these 41C modules in a single physical module:

- Four Memory modules (82106A)

- X-Functions/Memory module (82180A)
- Two X-Memory modules (82181A)

- Time module (82182A)

This module automatically scans the system every time the calculator is turned on and only
activates those features not detected in the system. So for a bare-bones HP-41C all of these
features will be activated, while for a HP-41CX only the two X-Memory modules will be
activated. Any combination of features between these two extremes will be automatically
recognized by the HP-41 MAXX module.

But the HP-41 MAXX module goes even further, adding these advanced features that were
never part of the original HP-41 ecosystem:

- Three pages (each containing 1024 registers) of Expanded memory
- Twelve pages (each containing 4Kx10 bits) of RAM for instruction memory

Expanded memory (also referred to as Y-memory or Y-registers) was first introduced with
the 41CL and consists of three blocks containing 1024 registers each. All three blocks can
be used as a backup or alternate set of main 41C registers, with functions to easily move
groups of registers between blocks. One of these blocks can be used as 1024 individual Y-
registers, with a full complement of register functions.

There are twelve pages of RAM dedicated to holding code, to allow module images to be
copied to RAM for editing or other purposes. Each page of this QROM (Quasi-ROM) can
be assigned to any available page address (4 or 6 through 15) and to any Bank within that
page. Historically, this functionality has also been referred to as MLDL memory, and this
RAM can also function as HEPAX memory. Each page can be write-protected using the
HEPAX write-protection mechanism.

© 2025 Systemyde International Corporation 7

HP-41 MAXX

HP-41 MAXX Configurations

The HP-41 MAXX module queries the system at each power-on and only enables those
features that do not conflict with the detected system. Even though a MAXX feature may
be disabled because of a change in system configuration, the contents of RAM are not lost
unless power is removed.

There are nine different possibilities for how a MAXX module might be combined with
other modules containing register memory in a system:

1 41C + MAXX
2 41C + MM + MAXX
3 41C + MM x2 + MAXX
4 41C + MM x3 + MAXX
5 41C + QM + MAXX
41CV + MAXX
41C + QM + XFN + MAXX
6 41CV + XFN + MAXX
41CX + MAXX
41C + QM + XFN + XM + MAXX
7 41CV + XFN + XM + MAXX
41CX + XM + MAXX
8 41C +XFN +XMx2 +MAXX
9 41CV +XFN +XMx2 +MAXX
41CX + XM x2 + MAXX

(MM is an 82106 A Memory Module, QM is an 82170A Quad Memory Module, XFN is
and 82180A X-Functions/Memory Module, and XM is an 82181A X-Memory Module)

Because the HP-41 MAXX requires one Port, the 41C configurations are limited to three
other modules. The HP-41CV includes the full compliment of regular memory, so there
are fewer possible configurations with an HP-41CV. The HP-41CX lacks only the X-
Memory, which limits the possible configurations even more.

Expanded memory is separate and is always enabled, which will never create a conflict

because only functions in this module are capable of accessing expanded memory. This
means the MAXX module is useful even in the HP-41CX case.

© 2025 Systemyde International Corporation 8

HP-41 MAXX

The figure below shows the HP-41 register memory organization graphically with the
different possibilities for how the MAXX module may auto-configure. The MAXX

contributions to the memory map are shown in blue.

1023 Ox3FF
empty
1008 0x3F0
1007 Ox3EF
769 0x301
768 0x300
empty
752 0x2FO
751 Ox2EF
513 0x201
512 empty 0x200
511 Ox1FF
448 0x1C0
447 Ox1BF
384 0x180
383 MAIN 0x17F
320 MEMORY | 0x140
319 Ox13F
256 0x100
255 OXOFF
192 0x0C0
191 OxOBF
64 0x040
63 0x03F
empty
16 0x010
15 OxO00F
0 0x000
DEC HP-41 HEX

© 2025 Systemyde International Corporation

HP-41 MAXX

Even though the MAXX module automatically compensates for other memory modules
present in the HP-41, it really only makes sense to use the MAXX module by itself to keep
as many ports as possible free for other uses

The HP-41 CPU employs a separate address space for instructions. This HP-41 Instruction
Address space is organized into sixteen 4k pages, as shown in the left-hand column below.
Three or four pages are used by the calculator itself and Page 5 is dedicated for use by the
Time module. In addition, Page 6 is reserved for a printer and Page 7 is reserved for the
HP-IL module. Page 4 was originally used only by the HP Service module, but recent
advances allow it to instead be used to hold library code. Pairs of pages are available in
each calculator port.

The columns in blue show the addresses that may be occupied by the HP-41 MAXX
module. If the Timer is enabled it will occupy Page 5, while the MAXX and X-Functions
software will occupy whichever Port is used to hold the module. The X-Functions code in
the MAXX module cannot use Page 3 because only the 41CX Operating System software
properly handles code in Page 3.

15 OxF
Port 4
14 OxE
13 0xD
Port 3
12 0xC
11 0xB
Port 2
10 OxA
9 0x9
Port 1
8 0x8
7 HP-IL 0x7
6 Printer 0x6
5 CX Timer 0x5
4 Special 0x4
3 CX X-func 0x3
2) 0x2
1 Operating Ox1
System
0 0x0
MAXX in MAXX in MAXX in MAXX in
dec HP-41 hex Port 1 Port 2 Port 3 Port 4

If the MAXX module is used in a 41CX the lower half of the Port where the module resides
will be available for other uses, but the MAXX software always resides in the upper page
of this Port.

© 2025 Systemyde International Corporation 10

HP-41 MAXX

The HP-41 Instruction memory map is actually more complicated than this, because many
pages have the option of up to four banks, switched under software control. Pages 4, 6 and
7 each have their own bank-control bits, and each port also has its own bank-control bits.

These bank-control bits are managed using the ENROMXx mcode instructions. The four
ENROMX instructions affect the bank-control bits that are linked to the address where the
instruction is executed. The figure below shows this memory organization, with the double
lines linking the various banks representing the bank-control bits.

The MAXX hardware decodes all four of the ENROMX instructions and implements all
seven sets of bank-control bits.

15 OxF
Port 4 — — —
14 OxE
13 0xD
Port 3 — || ||
12 0xC
11 0OxB
Port 2 — — —
10 OxA
9 0x9
Port 1 — — —
8 0x8
7 HP-IL 0x7 — | |
6 Printer 0x6 — — —
5 CX Timer 0x5
4 Special 0x4 — — —
3 CX X-Funs 0x3
p _ 0x2
1 Operating Ox1
System
0 0x0
dec HP-41 hex Bank 1 Bank 2 Bank 3 Bank 4

Not shown in the figure above is the special bank-switching employed by the HP-41CX.
In the HP-41CX pages 3 and 5 share a bank-control bit (only banks 1 and 2 are present) to
allow an expanded set of X-Functions. This bank-switching is completely independent of
the bank-switching in the MAXX module.

© 2025 Systemyde International Corporation 11

HP-41 MAXX

There are twelve blocks of QROM available, but each block can be programmed to occupy
any available page/bank combination. This flexibility is required to cover the various uses
cases, as will be shown shortly.

1> Port 4 OxF
14 OxE
13 Port 3 OxD
12 0xC
11 Port 2 0x8
10 OxA
2 Port 1 0x9
8 0x8
7 HP-IL 0x7
6 Printer 0x6
5 CX Timer 0x5
4 Special 0x4
3 CX X-Funs 0x3
2) 0x2
1 Operating Ox1
System
0 0x0
dec HP-41 hex Bank 1 Bank 2 Bank 3 Bank 4

Every time the calculator is turned on software checks for collisions between physical
modules and QROM, and disables any QROM blocks that would conflict with a hardware
module. This collision check is only done for QROM blocks that are assigned to Bank 1.
Collisions are not signaled in any way, because the user should be aware of what they
plugged into the calculator.

The collision check reads the first memory location in the page, and if this location contains
anything other than 0x000 the page is considered occupied. Note that when QROM s
initialized (via QRINI) or cleared (via QRCLR) a 0x000 is written to all page locations,
and this may confuse the collision check if QROM blocks are assigned to the same
page/bank combination. This is why there is also a hardware collision check between pages
of QROM. This hardware collision handling will be explained later in this section.

It is important to note that nearly all of the original software that uses Library-4, as well as
Library-4 itself, assumes the presence of the 41-CX version of the Operating System. This
means that these modules will only work when loaded into the HP-41 MAXX QROM if
the HP-41 MAXX itself is inserted into an HP-41CX. Special versions of these modules
that do not require the CX Operating System are also available.

© 2025 Systemyde International Corporation 12

HP-41 MAXX

The figure below shows a simple case for the distribution of QROM blocks. In this example
page 11 contains software that uses all four banks, and the fifth and sixth block of QROM
are assigned to page 4, to hold library code for the 4-bank image. This still leaves six more
blocks of QROM available.

15 OxF
Port 4 — — —
14 OxE
13 OxD
Port 3 — L ||
12 0xC
11 0xB QR1 QR2 QR3 QR4
Port 2 — - ||
10 OxA
9 0x9 MAXX
Port 1 — - ||
8 0x8 X-Funs
7 HP-IL 0x7 — —| |
6 Printer 0x6 — — —
5 CX Timer 0x5
4 Special 0x4 QR5 — QR6 [—
3 CX X-Funs 0x3
2) 0x2
1 Operating Ox1
System
0 0x0
dec HP-41 hex Bank 1 Bank 2 Bank 3 Bank 4

The QROM programming for the figure above is as follows:

1 P:B:M-11:1:R ; page 11, bank 1, read-only, active
2 P:B:M-11:2:R ; page 11, bank 2, read-only, active
3 P:B:M-11:3:R ; page 11, bank 3, read-only, active
4 P:B:M-11:4:R ; page 11, bank 4, read-only, active
5 P:B:M- 4:1:R ; page 4, bank 1, read-only, active
6 P:B:M- 4:2:R ; page 4, bank 1, read-only, active

© 2025 Systemyde International Corporation 13

HP-41 MAXX

The figure below shows a slightly more complex case, this time with QROM blocks
distributed across several different pages. Pages 11, 12, and 14 all contain code that uses
two banks. The code in page 10 is not banked, so it must be programmed to ignore the state
of the corresponding bank-control bits that are used by the image in page 11. The
arrangement shown in Port 2 is what is used for the HP-41 Advantage Pac.

15 OxF
Port 4

14 OxE

13 0xD
Port 3

12 0xC

11 0xB
Port 2

10 OxA

9 0x9
Port 1

8 0x8

7 HP-IL 0x7

6 Printer 0x6

5 CX Timer 0x5

4 Special 0x4

3 CX X-Funs 0x3

2) 0x2

1 Operating Ox1
System

0 0x0

dec HP-41 hex Bank 1 Bank 2 Bank 3 Bank 4

The QROM programming for the figure above is as follows:

©O© 0o JdJo Ul dWNBK
Wwowowgwytwowolowod
O Wwwwowwww

M- 4:
:M-10:
:M-11:
‘M-11:
:M-12:
:M-12:
:M-14:
:M-14:
M- 4:

MNNVRERNMNHENKREOHR
XX HOO®HP®HOHXD

; page 4, bank 1, read-only, active
; page 10, not banked, read-only, active
; page 11, bank 1, read-only, active
; page 11, bank 2, read-only, active
; page 12, bank 1, read-only, active
; page 12, bank 2, read-only, active
; page 14, bank 1, read-only, active
; page 14, bank 2, read-only, active
; page 4, bank 2, read-only, active

This example highlights the fact that QROM blocks are completely independent, with
QROM block 1 and QROM block 9 both assigned to page 4, but with different banks.

© 2025 Systemyde International Corporation 14

HP-41 MAXX

It is possible to assign QROM blocks to the same page and the same bank (as is the case
after power-on) but hardware in the MAXX module automatically prioritizes accesses in
these cases. This hardware priority requires some explanation, because it operates slightly
differently for reads and writes.

In the case of reads, QROM blocks are prioritized from lowest number to highest number,
with the lower number having the higher priority. This prioritization applies to QROM
blocks assigned to the same page and bank, but only if reads are enabled. The example
below shows several cases of this prioritization. In this example QROM block 2 will always
be accessed when page 10 is read, independent of bank. QROM 1 would normally be higher
priority, but it is not enabled for reads. QROMSs 9 through 12 will never be read in this
scenario because QROM 2 is programmed to be active for all banks in page 10.

1 P:B:M-10:0:W ; page 10, not banked, write-only, active
2 P:B:M-10:0:R ; page 10, not banked, read-only, active
3 P:B:M-11:1:R ; page 11, bank 1, read-only, active
4 P:B:M-11:2:R ; page 11, bank 2, read-only, active
5 P:B:M-12:1:R ; page 12, bank 1, read-only, active
6 P:B:M-12:2:R ; page 12, bank 2, read-only, active
7 P:B:M-14:1:R ; page 14, bank 1, read-only, active
8 P:B:M-14:2:R ; page 14, bank 2, read-only, active
9 P:B:M-10:1:B ; page 10, bank 1, read-write, not active
10 P:B:M-10:2:B ; page 10, bank 2, read-write, not active
11 P:B:M-10:3:B ; page 10, bank 3, read-write, not active
12 P:B:M-10:4:B ; page 10, bank 4, read-write, not active

Writes to QROM are prioritized slightly differently. The priority is still lowest number to
highest number, but is broken into three sections. QROM 1-4 are in one section, QROM
5-8 are in a second section and QROM 9-12 are in the third section. The prioritization is
done within each section in parallel. This was a conscious design decision, because it
allows the QROM initialization function to run three times faster, by allowing three
simultaneous initialization writes. This parallel write operation is only possible because
each set of four QROM pages uses a separate FPGA memory instance. In the example
above any write to page 10 will occur in QROM 1, with one of QROM 9-12 also being
written, depending on the current bank.

© 2025 Systemyde International Corporation 15

HP-41 MAXX

MAXX Software Overview

The MAXX software is located in the upper half of the Port where the MAXX module is
inserted into the HP-41 calculator. The X-Functions software (if enabled) will be located
in the lower half of this Port.

The MAXX software uses XROM 15, and this XROM number cannot be changed without
breaking how a number of the functions in this module work. This XROM number is used
by about twenty known modules, but nearly all of them are fairly obscure.

The MAXX software is divided into eight different groups, with most groups dedicated to
a specific set of hardware features.

The MAXX Status functions report the current state of the different hardware
blocks in the module, grouped so that the information will fit into the HP-41
display.

The Expanded Memory Block functions are useful when expanded memory is
being used for backups or temporary storage. These functions move blocks of data
between the four blocks of expanded memory.

The Expanded Register functions treat expanded memory Block 1 as a set of 1024
expanded memory registers, with a full complement of register-oriented functions.

The Expanded Register Block functions are analogous to similarly-named
functions available for X-memory. All of these functions operate on a block of
expanded registers.

The QROM functions control the operation of the twelve 4kx10 blocks of
read/write memory that are dedicated to supporting instruction memory. QROM
blocks can be assigned to page addresses between 6 and 15 or to page 4.

The Instruction Memory functions allow direct read and write of the entire
instruction address space. Only the areas of the instruction address space that
support write operations, and are enabled for writes, can actually be written.

The Code Copy function provides a way to fill QROM blocks with code from
another source, typically a physical module.

The HP-IL Code Copy functions support copying of a full page of the instruction
address space to or from HP-IL, using the HP-IL Module (82160A) connected to a
mass storage device. Two different algorithms for packing instruction words into
bytes for HP-IL transfer are available.

© 2025 Systemyde International Corporation 16

HP-41 MAXX

MAXX Status Functions

The MAXX Status functions report the current state of the various pieces of hardware
available in this module, grouped so that the information will fit into the HP-41 display.
All of these functions return the status information to the display (in Run mode) as well as
to the Alpha register.

MXST?

The MXST? (MAXX Status?) function returns the status of the different hardware blocks
that are automatically enabled or disabled when the calculator is turned on.

The figure below shows the formatting of the status returned in the Alpha register. The
eight status identifiers (S in the figure) will be either E (indicating that the feature is
enabled) or D (indicating that the feature is disabled.) Although this status requires sixteen
locations in the Alpha register the entire status fits in the display, as shown below, because
the colons do not require a separate digit in the display.

ALPHA Register
1615]1al3]|2{unlw|lols|7]6]ls]als]l2]1

T : X : M - S : S S S : S S S S
Digit 10 reports the status for the Time module portion of the MAXX hardware.

Digits 8, 7 and 6 report the status for X-memory in 2-1-0 order. X-memory 2 corresponds
to the second X-memory module in an HP-41. X-memory 1 corresponds to the first X-
memory module in an HP-41. X-memory O corresponds to the memory in the X-
Functions/Memory module.

Digits 4, 3, 2 and 1 report the status for main memory in 4-3-2-1 order. Each main memory
module is numbered according to the Port where a physical module would reside.

The figure below shows the formatting of the status returned in the display. This display
shows that all of the MAXX hardware blocks are disabled.

:'-i
>
ot 4
o
e
ko
-
o
o
ko
o

© 2025 Systemyde International Corporation 17

HP-41 MAXX

QRST? (Select in X-register)

The QRST? (QROM Status?) function returns the status of the selected block of QROM.
The select in the X-register can range from 0 through 12. A select value of 0 selects a CAT-
like operation that displays each block status one after the other.

The figure below shows the formatting of the status returned in the Alpha register. The
status identifier N is the number (1 through 12) of the QROM block being reported. The
status identifier PG is a decimal number (4 or 6 through 15) corresponding to the page
address where this block of QROM resides. The status identifier BNK is a number (0
through 4) that indicates the actual bank for this block of QROM. The status identifier S
can be either D (indicating that this block of QROM is disabled), W (indicating that this
block is enabled for writes only), R (indicating that this block is enabled for reads only),
or B (indicating that this block is enabled for both reads and writes.)

15|43 2|nnlwo|o]ls| 76|55]|a]3]2]1]

N P : B : M - PG : BNK : S
Digits 15 and 14 show which block of QROM this report is for, which is also the input for
this function. This number is right-justified in these two digit locations.

Digits 6 and 5 report the page address where this block of QROM has been assigned. This
status is right-justified in these two digit locations.

Digit 3 reports which bank this block of QROM occupies. There are only five possibilities,
as shown in the table below.

Digit Bank
0 Not Banked
1 Bank 1
2 Bank 2
3 Bank 3
4 Bank 4

Digit 1 reports the read/write status for this block of QROM.

© 2025 Systemyde International Corporation 18

HP-41 MAXX

The figure below shows the formatting of the status returned in the display. This display
shows the status for block 1 of QROM, which is assigned to page 15 with banking disabled,
and is disabled for both reads and writes. These are the defaults (for all twelve QROM

blocks) when the MAXX module is first inserted.

P FPCEM

T T
{ Soet.

During the catalog operation only the R/S and «= keys are available any other key will be
ignored. The R/S key will stop or resume the listing, and a quick double-press allows
single-stepping through the listing. Backward single-step is not available. The = key

terminates the catalog operation.

© 2025 Systemyde International Corporation

19

HP-41 MAXX

Expanded Memory Block Functions

The Expanded Memory Block functions are useful when Expanded memory is being used
for backups or temporary storage. The three Expanded memory blocks are numbered 1, 2
and 3, while the normal HP-41 Data memory is numbered O for these functions. These
functions operate properly on normal HP-41 Data memory independent of whether the
memory is internal or external to the HP-41 MAXX module.

The HP-41 Data memory is divided into three regions: Status (STATUS), Register memory
(REGISTER) and X-memory (XMEM), as shown below.

1023 OX3FF
empty
1008 0x3FO
1007 OX3EF
XMEM-2
769 0x301
768 0x300
empty
752 0X2FO
751 OX2EF
XMEM-1
513 0x201
512 empty | 0x200
511 OX1FF
REGISTER
192 0X0CO
191 OXOBF
XMEM-0 |
64 0x040
63 0x03F
empty
16 0x010
15 OX00F
STATUS X
0 0x000
Data
Memory

© 2025 Systemyde International Corporation 20

HP-41 MAXX

The Status region (orange) consists of data addresses 0x000-0x03F, and contains the user-
visible X, Y, Z, T and Last X registers along with the Alpha register and other registers
used by the operating system. Only the lower sixteen registers are present in an HP-41, but
all sixty-four registers are transferred by an ST Expanded Memory Block function.

The Register memory region (yellow) consists of the normal register and program memory
of the HP-41, consisting of data addresses in the range 0x0C0-0x1FF. The MM Expanded
Memory Block functions operate on this region, plus data addresses in the range 0x000-
Ox00F. These two blocks of register memory are the entire main memory of the HP-41.

1023
1008
1007

769
768
752
751

Ox3FF
0x3F0
Ox3EF

empty

0x301
0x300
0x2FO0
Ox2EF

513 0x201
512 empty 0x200
511 Ox1FF
REGISTER
192 0x0CO0
191 OxO0BF
64 0x040
63 0x03F
16 0x010
15 Ox00F
0 0x000
Main Mem
(Block 0)

MM MM MM
I MM I MM
Y-mem Y-mem Y-mem
Block 1 Block 2 Block 3

The X-memory region (green) consists of two disjoint sections of Data memory. The
section consisting of data addresses 0x040-0x0BF is the memory normally contained in an

© 2025 Systemyde International Corporation

21

HP-41 MAXX

Extended Functions/Memory module, while the section consisting of data addresses
0x200-0x3FF is the memory normally contained in a pair of X-Memory modules. The XM
Expanded Memory functions operate on this area of data memory.

All of the Expanded Memory Block functions that are programmable prompt for an
Expanded memory block number in Run mode and take this number from the X-register
in Program mode or when Single-Stepping. Note that because of a feature in the HP-41
operating system, these functions will also prompt for a block number when entered in a
program, but then discard this block number. When the program is run or single-stepped
the block number is taken from the X-register.

The one non-prompting function (YM<>YM) takes one block number from the X-register
and the other block number from the Y-register.

These functions take some amount of time to execute, as shown in the table below.

Region C_opy . Exc_hange_ C!ear .
Execution Time Execution Time Execution Time
ST 03S 045S n/a
MM 15S 2.2S n/a
XM 3.0S 44 S n/a
YM 48S 70S 1.2S

Several of the registers in the Status area are critical for HP-41 operation, and modifying
these registers can easily lead to a Memory Lost condition. To help protect against this,
those Expanded Memory functions that will affect the Status area require that an OK string
be present in the Alpha register before the function will execute.

The functions that require this safeguard are: ST<>YM, YM>ST, MM<>YM, and
YM>MM. In addition, the YM<>YM function also requires this safeguard if either the
source or destination memory block is Expanded Memory block 0.

Whenever a function is executed that requires this safeguard the Alpha register is
automatically cleared as an additional precaution against accidentally overwriting the
Status area in the future.

ST>YM (prompts for YM Block) OR (YM Block in X-register)

The ST>YM (Copy Status to Expanded Memory) function copies the Status section of the
41C Data memory (addresses 0x000-0x03F) to the corresponding locations in the selected
block of Expanded memory.

© 2025 Systemyde International Corporation 22

HP-41 MAXX

ST<>YM (prompts for YM Block) OR (YM Block in X-register)

The ST<>YM (Exchange Status with Expanded Memory) function exchanges the Status
section of the 41C Data memory (addresses 0x000-0x03F) with the corresponding
locations in the selected block of Expanded memory. This function requires the string OK
to be present in the Alpha register as a form of verification.

YM>ST (prompts for YM Block) OR (YM Block in X-register)

The YM>ST (Copy Expanded Memory to Status) function loads the Status section of the
41C Data memory (addresses 0x000-0x03F) from the corresponding locations in the
selected block of Expanded memory. This function requires the string OK to be present in
the Alpha register as a form of verification.

MM>YM (prompts for YM Block) OR (YM Block in X-register)

The MM>YM (Copy Main Memory to Expanded Memory) function copies the Main
memory section of the 41C Data memory (addresses 0xOC0-0x1FF) to the corresponding
locations in the selected block of Expanded memory.

MM<>YM (prompts for YM Block) OR (YM Block in X-register)

The MM<>YM (Exchange Main Memory with Expanded Memory) function exchanges the
Main memory section of the 41C Data memory (addresses 0xOCO-Ox1FF) with the
corresponding locations in the selected block of Expanded memory. This function requires
the string OK to be present in the Alpha register as a form of verification.

YM>MM (prompts for YM Block) OR (YM Block in X-register)

The YM>MM (Copy Expanded Memory to Main Memory) function loads the Main memory
section of the 41C Data memory (addresses 0x0CO0-Ox1FF) from the corresponding
locations in the selected block of Expanded memory. This function requires the string OK
to be present in the Alpha register as a form of verification.

© 2025 Systemyde International Corporation 23

HP-41 MAXX

XM>YM (prompts for YM Block) OR (YM Block in X-register)

The XM>YM (Copy Extended Memory to Expanded Memory) function copies the X-
memory section of the 41C Data memory (addresses 0x040-0x0BF and 0x200-0x3FF) to
the corresponding locations in the selected block of Expanded memory.

XM<>YM (prompts for YM Block) OR (YM Block in X-register)

The XM<>YM (Exchange Extended Memory with Expanded Memory) function exchanges
the X-memory section of the 41C Data memory (addresses 0x040-0xOBF and 0x200-
0x3FF) with the corresponding locations in the selected block of Expanded memory. This
function requires the string OK to be present in the Alpha register as a form of verification.

YM>XM (prompts for YM Block) OR (YM Block in X-register)

The YM>XM (Copy Expanded Memory to Extended Memory) function loads the X-
memory section of the 41C Data memory (addresses 0x040-0x0BF and 0x200-0x3FF)
from the corresponding locations in the selected block of Expanded memory. This function
requires the string OK to be present in the Alpha register as a form of verification.

YM<>YM (SRC in X-register, DST in Y-register)

The YM<>YM (Exchange Expanded Memory with Expanded Memory) function exchanges
the entire contents of two Expanded memory blocks. If either the source or the destination
is Block 0, which corresponds to the normal HP-41 data memory, the function requires the
string OK to be present in the Alpha register as a form of verification.

YMCLR (prompts for YM Block) OR (YM Block in X-register)

The YMCLR (Clear Expanded Memory) function writes zero to every location in the
selected block of Expanded memory. For obvious reasons this function does not allow
Block 0 (HP-41 data memory) to be cleared.

© 2025 Systemyde International Corporation 24

HP-41 MAXX

Expanded Register Functions

The Expanded Register functions treat Expanded memory Block 1 as a set of 1024
Expanded memory registers, with a full complement of register-oriented functions. These
functions all prompt for a register number (000 to 1023) and also support indirect
addressing, via expanded memory registers, normal registers, or the stack. All of these
functions can be executed from the keyboard or entered in programs.

1023 Ox3FF
empty
1008 0x3FO0

1007 Ox3EF

769
768
752
751

0x301
0x300
0x2F0
Ox2EF

513 0x201
512 empty 0x200
511 Ox1FF
MAIN
192 0x0Co
191 OxOBF
64 0x040
63 Ox03F
empty
16 0x010
1 F
> | sratus | OX°
0 0x000
Main Mem Y-registers
(Block 0) (Block 1)

© 2025 Systemyde International Corporation 25

HP-41 MAXX

These function prompt for an expanded register number by displaying the function name,
a quotation mark to remind the user that the function is not referring to regular registers,
and three underscores as placeholders for the expanded register address. For example:

=<

STo"

For all but one of these functions (the YDSE case) while these three underscores are
displayed nearly the entire keyboard is available, allowing the user to move between
functions, select indirect addressing or enter the expanded register address. Only the
USER, PRGM, XEQ and ENTER keys are ignored in this case. The «= key terminates
keyboard input and cancels the function.

YDSE

YARC
YRC+

(RCL)

«— —> — > _(veEw) |
— YVEW (VIEW)

The top two rows of keys provide a shortcut way to access expanded registers 001 through
010. The Z+ key enters 001, the 1/x key enters 002, and so on up to the COS key entering
009 and the TAN key entering 010. By providing three digits, these keys terminate
keyboard entry and start the execution of the function.

The STO key changes the function to YSTO for most cases, even if indirect addressing

has been selected. However, if the current function selection is YSTO, then this key
switches to the regular STO function, and this transition is irreversible.

© 2025 Systemyde International Corporation 26

HP-41 MAXX

The RCL key changes the function to YRCL for most cases, even if indirect addressing
has been selected. However, if the current function selection is YRCL, then this key
switches to the regular RCL function, and this transition is irreversible.

The SST key changes the function to YX<> for most cases, even if indirect addressing has
been selected. However, if the current function selection is YX<>, then this key switches
to the regular X<> function, and this transition is irreversible. The SST key is used because
the normal X<>Y key is in the second keyboard row and is dedicated to the numeric
shortcut previously described.

The CHS key changes the function to YISG for most cases, even if indirect addressing has
been selected. However, if the current function selection is YISG or YDSE, then this key
switches to the regular ISG function, and this transition is irreversible. The fact that the
normal DSE function is not available on the keyboard is why the YDSE function is treated
slightly differently from all of the other expanded register functions as far as the keyboard
operation.

The R/S key changes the function to YVEW for most cases, even if indirect addressing has
been selected. However, if the current function selection is YVEW, then this key switches
to the regular VIEW function, and this transition is irreversible.

The ALPHA key is active for the various store and recall functions (but not YAST or
YARC) and is ignored in all other cases. Any store function will be changed to YAST and
any recall function will be changed to YARC, even if indirect addressing has been selected.

The EEX key is used to create a four-digit expanded register address by prepending a 1 to
the address field, as shown below. Once digit entry has begun only the numeric keys (and
the «= key) are active. There are only 1024 expanded registers, so the next digit must be a
0, but this is not checked until all four digits have been entered.

YSTO i _

The arithmetic keys (+, -, * and +) will change the operation to add the selected arithmetic
operation, for either store or recall. But the arithmetic keys are ignored for the YISG,
YDSE, YVEW and YX<> functions. In addition, these keys will cancel the indirect
addressing mode at the same time that the function is changed.

© 2025 Systemyde International Corporation 27

HP-41 MAXX

The gold SHIFT key changes the addressing for the function to indirect using an expanded
register, as shown below. In this case the full keyboard continues to be available, and works

as described here.

=2

L
-4
CJ
o
i
=
|

The radix key (.) can be used to modify the indirect addressing to use a stack register for
the indirect address, as shown below.

5

T
i

Flir T ki Ti ST
(] AL N

Note that the display does not have enough room to display the entire function name in this
case. The stack register is specified according to the Alpha key table below. Specifying
anything other than a normal stack register (X, Y, Z, T) is not recommended for the casual

user.

Key Stack register selection Address
A Synthetic "a" register Ox00F
B Synthetic "b" register Ox00E
C Synthetic "c" register 0x00D
D Synthetic "d" register 0x00C
E Synthetic "e" register 0x00B
K Synthetic "k" register O0x00A
L LASTX register 0x004
M Synthetic "M" register 0x005
N Synthetic "N" register 0x006
0 Synthetic "O" register 0x007
P Synthetic "P" register 0x008
Q Synthetic "Q" register 0x009
T T stack register 0x000
X X stack register 0x003
Y Y stack register 0x002
Z Z stack register 0x001

© 2025 Systemyde International Corporation

28

HP-41 MAXX

When Indirect addressing has been selected, pressing the radix key again changes the mode
to Indirect Register, as shown below. In this case a regular register address (0 to 99) is used
for the indirect address.

In either of these two cases the radix key will toggle between the two possibilities, while
the «= key will return to the basic YSTO or YRCL function.

The radix key is active even when the IND indicator is not present, and allows operations
on the entire range of stack registers.

As before, pressing the radix key again will toggle the function to select a regular 41C
register address, while the «= key will return to the basic YSTO or YRCL function.

© 2025 Systemyde International Corporation 29

HP-41 MAXX

The direct Stack and Data Register options are useful in Run mode but it doesn't make
sense to use them in programs because the equivalent native 41C function requires less
program space.

When entered in a Program these Expanded Register function cases will automatically be

converted to the native 41C functions, as highlighted in the table below.

Direct Indirect Data Register | Indirect Data Reg Stack Indirect Stack
YSTO nnn | YSTO IND nnn STOnn YSTO INDRG nn | STO ST (nn) | YSTO IND ST nn
YST+nnn | YST+ IND nnn ST+ nn YST+INDRGnNnn | ST+ST (hn) | YST+IND ST nn
YST-nnn | YST-IND nnn ST-nn YST-IND RG nn | ST-ST (nn) YST- IND ST nn
YST*nnn | YST* IND nnn ST*nn YST*INDRGnn | ST*ST (nn) | YST*IND ST nn
YST/nnn | YST/IND nnn ST/ nn YST/INDRGnn | ST/ST (nn) | YST/IND ST nn
YRCL nnn | YRCL IND nnn RCL nn YRCL IND RG nn | RCL ST (nn) | YRCL IND ST nn
YRC+nnn | YRC+ IND nnn| YRC+ RG nn | YRC+ IND RG nn | YRC+ ST nn | YRC+ IND ST nn
YRC-nnn | YRC-INDnnn | YRC-RGnn | YRC-INDRGnNnn | YRC-STnn | YRC-IND ST nn
YRC*nnn | YRC*IND nnn| YRC*RG nn | YRC*INDRGnn | YRC*ST nn | YRC*IND ST nn
YRC/nnn | YRC/IND nnn | YRC/RGnn | YRC/INDRGnn | YRC/STnn | YRC/IND ST nn
YDSE nnn | YDSE IND nnn DSE nn YDSE IND RG nn | DSE ST (nn) | YDSE IND ST nn
YISG nnn | YISG IND nnn ISG nn YISG IND RG nn | ISG ST (nn) | YISG IND ST nn
YX<>nnn | YX<>IND nnn X<>nn YX<>INDRGnn | X<>ST (nn) | YX<>IND ST nn
YVEW nnn [YVEW IND nnn| VIEW nn | YVEW IND RG nn |VIEW ST (nn)| YVEW IND ST nn
YARC nnn | YRCL IND nnn| ARCL nn YRCL IND RG nn |ARCL ST (nn)| YRCL IND ST nn
YAST nnn | YSTOIND nnn| ASTO nn YSTO IND RG nn JASTO ST (nn)] YSTO IND ST nn

© 2025 Systemyde International Corporation

30

HP-41 MAXX

In program mode the Expanded Register functions use two program lines, one for the
function code and one for the Y-register number. In the case of Indirect, Register, Indirect
Register, Stack and Indirect Stack, the register number is modified to indicate the special
type of addressing. These modifications are shown in the table below. The modifications
are managed automatically and these two program lines should not be modified by the user.

Function Direct Indirect Da?ta Indirect Stack Indirect
Reqgister Data Reg Stack

YSTO nnn nnn + 1024 STO nn nn + 2048 STO ST (nn) nn + 3072
YST+ nnn nnn + 1024 ST+ nn nn + 2048 ST+ ST (nn) nn + 3072
YST- nnn nnn + 1024 ST-nn nn + 2048 ST- ST (nn) nn + 3072
YST* nnn nnn + 1024 ST*nn nn + 2048 ST* ST (nn) nn + 3072
YST/ nnn nnn + 1024 ST/ nn nn + 2048 ST/ ST (nn) nn + 3072
YRCL nnn nnn + 1024 RCL nn nn + 2048 RCL ST (nhn) nn + 3072
YRC+ nnn nnn + 1024 nn + 2560 nn + 2048 YRC+ ST nn nn + 3072
YRC- nnn nnn + 1024 nn + 2560 nn + 2048 YRC- ST nn nn + 3072
YRC* nnn nnn + 1024 nn + 2560 nn + 2048 YRC* ST nn nn + 3072
YRC/ nnn nnn + 1024 nn + 2560 nn + 2048 YRC/ ST nn nn + 3072
YDSE nnn nnn + 1024 DSE nn nn + 2048 DSE ST (nn) nn + 3072
YISG nnn nnn + 1024 ISG nn nn + 2048 ISG ST (nn) nn + 3072
Y X<> nnn nnn + 1024 X<>nn nn + 2048 X<> ST (nn) nn + 3072
YVEW nnn nnn + 1024 VIEW nn nn+ 2048 |VIEW ST (hn)| nn+ 3072
YARC nnn nnn + 1024 ARCL nn nn+ 2048 |ARCL ST (nn)|] nn+ 3072
YAST nnn nnn + 1024 ASTO nn nn+ 2048 |ASTO ST (hn)| nn+ 3072

The remainder of this section describes the details of each individual Expanded Register
function.

YARC (prompts for YM register)

The YARC (Expanded Register Alpha Recall) function appends the contents of the
selected expanded register to the Alpha register.

YAST (prompts for YM register)

The YAST (Expanded Register Alpha Store) function copies the first six characters in the
Alpha register to the selected expanded register. The Alpha register is unaffected.

© 2025 Systemyde International Corporation 31

HP-41 MAXX

YDSE (prompts for YM register)

The YDSE (Expanded Register Decrement and Skip if Equal) function operates identically
to the normal HP-41C DSE function, except that it uses an expanded register.

YISG (prompts for YM register)

The YISG (Expanded Register Increment and Skip if Greater) function operates identically
to the normal HP-41C ISG function, except that it uses an expanded register.

YRCL (prompts for YM register)

The YRCL (Expanded Register Recall) function copies the contents of the selected
expanded register to the X-register. The stack is lifted and the expanded register is not
affected.

YRC+ (prompts for YM register)

The YRC+ (Expanded Register Recall and Add) function adds the contents of the selected
expanded register to the contents of the X-register and places the result in the X-register.
The stack is not lifted and the expanded register is unaffected.

YRC- (prompts for YM register)

The YRC- (Expanded Register Recall and Subtract) function subtracts the contents of the
selected expanded register from the contents of the X-register and places the result in the
X-register. The stack is not lifted and the expanded register is unaffected.

YRC* (prompts for YM register)

The YRC* (Expanded Register Recall and Multiply) function multiplies the contents of the
selected expanded register with the contents of the X-register and places the result in the
X-register. The stack is not lifted and the expanded register is unaffected.

© 2025 Systemyde International Corporation 32

HP-41 MAXX

YRC/ (prompts for YM register)

The YRC/ (Expanded Register Recall and Divide) function divides the contents of the X-
register by the contents of the expanded register and places the result in the X-register. The
stack is not lifted and the expanded register is unaffected.

YSTO (prompts for YM register)

The YSTO (Expanded Register Store) function copies the contents of the X-register to the
selected expanded register. The X-register is not affected.

YST+ (prompts for YM register)

The YST+ (Expanded Register Add and Store) function adds the contents of the X-register
to the contents of the selected expanded register and stores the result in the expanded
register. The X-register is unaffected.

YST- (prompts for YM register)

The YST- (Expanded Register Subtract and Store) function subtracts the contents of the
X-register from the contents of the selected expanded register and places the result in the
expanded register. The X-register is unaffected.

YST* (prompts for YM register)

The YST* (Expanded Register Multiply and Store) function multiplies the contents of the
selected expanded register by the contents of the X-register and places the result in the
expanded register. The X-register is unaffected.

YST/ (prompts for YM register)

The YST/ (Expanded Register Divide and Store) function divides the contents of the
selected expanded register by the contents of the X-register and places the result in the
expanded register. The X-register is unaffected.

© 2025 Systemyde International Corporation 33

HP-41 MAXX

YVEW (prompts for YM register)

The YVEW (View Expanded Register) function recalls the contents of the selected
expanded register to the display, just like the normal VIEW function.

YX<> (prompts for YM register)

The YX<> (Expanded Register Exchange with X) function exchanges the contents of the
selected expanded register with the contents of the X-register.

© 2025 Systemyde International Corporation 34

HP-41 MAXX

Expanded Register Block Functions

The Expanded Register Block functions are analogous to similarly-named functions
available for X-memory. All of these functions operate on a block of expanded registers.

YRGMOV (control word in X-register)

The YRGMOV (Expanded Register Block Move) function moves the contents of one block
of expanded registers to another block of expanded registers as specified by the bbb.eeennn
control word in the X-register.

The bbb digits are the base address of the source expanded register block, in the range Ro
through Rego. The eee digits are the base address destination expanded register block, again
in the range Ro through Rege. The nnn digits are the number of registers to be copied. If nnn
is zero a value of one used.

These two blocks can be overlapping, but only if bbb is greater than eee. This is because
the transfers start at the highest address in the block and work downwards.

YRGSWP (control word in X-register)

The YRGSWP (Expanded Register Block Swap) function exchanges the contents of one
block of expanded registers with the contents of another block of expanded registers, as
specified by the bbb.eeennn control word in the X-register.

The bbb digits are the base address of the first block of expanded registers, in the range Ro
through Rege. The eee digits are the base address of the second block of expanded registers,
again in the range Ro through Rggg. Nnn is the number of registers to be exchanged. If nnn
is zero a value of one used.

These blocks can be overlapping, but only if bbb is greater than eee. This is because the
exchanges start at the highest address in the block and work downwards.

CLYRG

The CLYRG (Clear Expanded Register Block) function writes zero to the entire set of
expanded registers, Ro through Ruio2s.

© 2025 Systemyde International Corporation 35

HP-41 MAXX

CLYRGX (control word in X-register)

The CLYRGX (Clear Expanded Register Block by X) function writes zeros to all of the
expanded registers in the range Ry t0 Reee, inclusive. The bbb.eee control word is taken
from the X-register.

A<>YRG (prompts for base address) OR (base address in X-register)

The A<>YRG (Exchange Alpha Register with Expanded Registers) function exchanges
the contents of the Alpha register (plus the Temporary Alpha scratch register) with five
expanded registers starting at the base address.

In Run mode the function prompts for a three-digit expanded register address, with a
leading 1 is entered via the EEX key. In Program mode or Single-stepping the base address
is taken from the X-register. The base register can range from Rooo through Rioz10.

The table below shows the arrangement of the exchanged registers.

Y-register Exchanged register
A<>YRG ST<>YRG

Rnnn+4 Alpha register 7-1 T stack register
Rnnn+3 Alpha register 14-8 Z stack register
Rnnn+2 Alpha register 21-15 Y stack register
Rnnn+1 Alpha register 28-22 X stack register

Rnmn Temporary Alpha scratch L stack register

ST<>YRG (prompts for base address) OR (base address in X-register)

The ST<>YRG (Exchange Stack Registers with Expanded Registers) function exchanges
the contents of the stack registers with five expanded registers starting at the base address.

In Run mode the function prompts for a three-digit expanded register address, with a
leading 1 is entered via the EEX key. In Program mode or Single-stepping the base address
is taken from the X-register. The base register can range from Rooo through Rioz0.

The table under the A<>YRG function description shows the arrangement of the
exchanged registers.

© 2025 Systemyde International Corporation 36

HP-41 MAXX

QROM Functions

QROM consists of twelve 4kx10 blocks of read/write instruction memory. Each of these
twelve blocks can be assigned to a separate page address/bank combination. QROM can
be assigned to any page address between 6 and 15 or to page 4. Each QROM block can be
assigned to Bank 1, 2, 3 or 4, or banked operation can be disabled for the block. Each
QROM block can be enabled or disabled for reads and writes separately.

When the MAXX module is first inserted into the calculator all twelve QROM blocks
are assigned to Page 15, with banked operation disabled. There is no conflict with this
assignment, because all twelve QROM blocks are also disabled for both reads and
writes at the same time.

QROM is normally under control of the user, but every time the calculator is turned on the
physical Ports are checked for conflicts with the QROM page addresses. If a module is
present coincident with a QROM page address, and the QROM block is enabled for bank
1 or banked operation is disabled, the QROM block will be automatically disabled for
reads. QROM blocks are never automatically enabled for reads once the conflict is
removed, so the user will need to do this.

The Port conflict check is done using the MAXX software polling point. Because the
HP-41 checks for polling point code starting with Page 5 and working upward, this
means that anything plugged into the HP-41 at a page address lower than that of the
MAXX software will be accessed prior to the conflict check. As a result, users must
disable any QROM pages with a conflicting page address lower than the MAXX
module prior to plugging in a physical module. This applies mostly to the Printer and
HP-1L modules, because they contain polling point code that will definitely conflict
with a co-located QROM image.

When first enabling QROM pages for reads, it is important to enable the blocks in the
correct order. For Banked images this means that Bank 1 should be enabled last, so that the
other banks are present and ready for access when the main bank is enabled. For multi-
page images this means that the secondary pages should be enabled first and the primary
page enabled last, for the same reason.

A QROM block that is being relocated from one page address to another page address
should be disabled for reads before being moved. The page address modification operation
is atomic, meaning that will be completed before there is a chance that the new addressing
will be noticed by the calculator, but it is always better to be safe than sorry.

QROM blocks are implemented using RAM, and are not initialized at power-up. The

random data in a QROM block will almost certainly crash the calculator if the QROM
block is enabled for reads prior to being initialized or loaded with actual data.

© 2025 Systemyde International Corporation 37

HP-41 MAXX

The table below shows how the various functions affect the QROM control fields. Most of
the QROM functions take the block number, in the range 1-12, from the X-register to select
the QROM block to operate on. The X-register is not affected. This selection should not be
confused with the HP-41 page/bank address that the QROM block is assigned to.

Global operation can be selected with a value of "0" in the X-register. Global operation
applies the operation to all twelve QROM blocks at once.

. Write Read Global
FUREHEN | AREREES | (BT Enable | Enable |operation
QRABY Set Set - - no
QRCLR - - - - no
QRINI - - - - N/A
QRRE - - - Set no
QRRO - - Cleared Set no
QRRP - - - Cleared yes

QRRWE - - Set Set no

QRRWD - - Cleared | Cleared yes
QRWE - - Set - yes
QRWO - - Set Cleared yes
QRWP - - Cleared - yes

QRABY (Select in X-register; control word in Y-register)

The QRABY (QROM Set Address/Bank by Y-register) function programs the page/bank
address for the selected block of QROM, using the pp.b control word in the Y stack register.
Both the X-register and Y-register are unaffected.

The pp digits (or digit) are the page address for the selected block. QROM can be assigned
to page address 4 or any page 6 through 15. The b digit is the bank to be occupied by the
selected block and ranges from 0 to 4. The O case tells the control logic to ignore the bank
select bits for this block of QROM.

This function only programs the page address and bank, so read or write enables must be
programmed separately. This function does check whether or not the page address is
already occupied, but only if unbanked or Bank 1 is selected. An error message will be
generated in the case of an occupied page.

A QROM block that is being relocated from one page to another should be disabled for
reads before being moved.

© 2025 Systemyde International Corporation 38

HP-41 MAXX

QRCLR (Select in X-register)

The QRCLR (QROM Clear) function initializes the selected block (1 - 12) of QROM to
all zeros, providing finer granularity than the QRINI function.

This function requires that the selected QROM block be enabled for writes, and set to either
unbanked or Bank 1.

QRINI

The QRINI (QROM Initialize) function fills all twelve blocks of QROM with all zeros.
This function should be executed when the HP-41 MAXX module is first inserted into the
calculator because the QROM blocks power up containing random data.

This function also sets all of the QROM control registers so that all QROM blocks are
assigned to page 15 with banking disabled, and are disabled for both reads and writes.
These are the defaults (for all twelve QROM blocks) when the MAXX module is first
inserted.

This function requires about seven seconds to complete and the display is blank during
execution.

QRRE (Select in X-register)

The QRRE (QROM Read Enable) function enables reads for the selected block of QROM,
which has the effect of inserting this block into the HP-41 address space. This function
returns an error message if the page is already occupied. The write enable for the QROM
block is not affected.

A QROM block must always be initialized in some way before reads of the block are

enabled to prevent locking up the machine. The page address and bank used by the QROM
block should also be initialized prior to enabling reads.

QRRO (Select in X-register)

The QRRO (QROM Read-Only) function enables reads and disables writes for the selected
block of QROM. With this combination the QROM acts like a normal read-only memory.
This function returns an error message if the page is already occupied.

© 2025 Systemyde International Corporation 39

HP-41 MAXX

QRRP (Select in X-register)

The QRRP (QROM Read Protect) function disables reads for the selected block of
QROM, which has the effect of removing the memory block from the HP-41 address space
as far as instruction execution is concerned. The write enable for the memory block is
unaffected, and the QROM block retains its contents. Reads are disabled by default.

QRRWE (Select in X-register)

The QRRWE (QROM Read and Write Enable) function enables both reads and writes for
the selected block of QROM. With this combination the QROM acts like a normal random-
access memory. This mode should be used when QROM blocks are being used as HEPAX
memory. This function returns an error message if the page is already occupied.

QRRWD (Select in X-register)

The QRRWD (QROM Read and Write Disable) function disables both reads and writes
for the selected block of QROM, which has the effect of completely removing the memory
block from the HP-41 address space. The QROM block retains its contents.

QRWE (Select in X-register)

The QRWE (QROM Write Enable) function enables writes for the selected block of
QROM. Since the QROM is part of the HP-41 instruction address space, writes are
normally rare. The read enable for the selected block of QROM is not affected.

QRWO (Select in X-register)

The QRWO (QROM Write-Only) function enables writes and disables reads for the
selected block of QROM. This combination is useful for when a page is being loaded with
an image from HP-IL.

© 2025 Systemyde International Corporation 40

HP-41 MAXX

QRWP (Select in X-register)

The QRWP (QROM Write Protect) function disables writes for the selected block of
QROM. Since QROM is part of the HP-41 instruction address space, writes would
normally be disabled. The read enable for the selected block of QROM is not affected.

© 2025 Systemyde International Corporation 41

HP-41 MAXX

Instruction Memory Functions

The Instruction Memory functions support direct read and write of the entire instruction
address space. Only the areas of the instruction address space that support write operations,
and are enabled for writes, will actually be written, but the entire instruction address space
can be read.

Two different methods for specifying the address and data are supported with these
functions: hexadecimal in the ALPHA register and decimal in the X-register.

To use hexadecimal address and data the address and data must be present in the ALPHA
register in a specific format. The figure below shows the formatting of the address and data
fields in the ALPHA register. All seven hexadecimal digits must be present.

ALPHA Register
8 |76 s]als3]2]1

A3 A2 Al A0 : D2 D1 DO

Digits 8, 7, 6 and 5 contain the address to be read or written. Leading zeros must be present.
Values can range from 0x0000 through OxFFFF, inclusive.

Digit 4 must be a colon, used as a field separator.
Digits 3, 2 and 1 contains the read or write data. In the case of a read the data in these digits
is ignored and replaced with the actual read data by the function. Leading zeros must be
present. Values can range from 0x000 through Ox3FF, inclusive. The limited range is
because instruction memory is only ten bits wide.

The figure below shows an example of address OXABCD and data 0x321.

HLPHA

To use a decimal address and data the X-register is employed. The address field is to the
left of the decimal point and the data field is to the right of the decimal point.

Leading zeros are not required for the address field, which can range from 0 through 65535,
inclusive.

Leading zeros are required for the data field to make it four digits. The data field can range

© 2025 Systemyde International Corporation 42

HP-41 MAXX

from 0 through 1023, inclusive. Trailing zero digits can be omitted.

The figure below shows the decimal equivalent of the hexadecimal address/data pair shown
above:

4398 888 !

Converting between the two representations is supported by two dedicated functions, and
manipulating the address or data is easy with the decimal representation.

AH>XD (Address and Data in ALPHA)

The AH>XD (Hex Address/Data to Decimal Address/Data) function takes the properly
formatted address and data in the ALPHA register and converts it to the equivalent decimal
address and data in the X-register. The stack is lifted prior to writing the X-register and the
ALPHA register is unaffected.

AHPEEK (Address and Data in ALPHA)

The AHPEEK (Instruction Memory Read using Hex Address/Data) function reads the
instruction memory specified by the address field in the ALPHA register and replaces the
data field in the ALPHA register with the actual read data.

AHPOKE (Address and Data in ALPHA)

The AHPOKE (Instruction Memory Write using Hex Address/Data) function writes the
instruction memory specified by the address field in the ALPHA register with the data field
in the ALPHA register. The ALPHA register is unaffected.

XD>AH (Address and Data in X-register)

The XD>AH (Decimal Address/Data to Hex Address/Data) function takes the properly
formatted address and data in the X-register and converts it to the equivalent hexadecimal
address and data in the ALPHA register. The X-register is unaffected.

© 2025 Systemyde International Corporation 43

HP-41 MAXX

XDPEEK (Address and Data in X-register)

The XDPEEK (Instruction Memory Read using Decimal Address/Data) function reads the
instruction memory specified by the address field in the X-register and replaces the data
field in the X-register with the actual read data.

XDPOKE (Address and Data in X-register)

The XDPOKE (Instruction Memory Write using Decimal Address/Data) function writes
the instruction memory specified by the address field in the X-register with the data field
in the X-register. The X-register is unaffected.

© 2025 Systemyde International Corporation 44

HP-41 MAXX

Code Copy Function

The Code Copy function provides a way to fill QROM pages with code from another
source, usually a physical module.

CPYBNK (prompts for Bank, SRC and DST)

The CPYBNK (Copy Code Bank) function copies an entire page of HP-41 Instruction
memory to another page of Instruction memory. Although the function allows any bank of
the source page to be specified, only transfers to Bank 1 of the destination page are
supported. So specifying Bank 1 for the source page is the same as an unbanked instruction
page copy. This function is not programmable because of the prompting required.

This function first prompts for the bank, as shown below:

CHPYANK

Once the bank is entered the display switches to allow entry of the source and destination
page (source first):

It is not possible to correct entries, and pressing the «= key at any point during parameter
entry will cancel the function.

When copying a banked image to QROM there is subtlety that users should be aware of.
The QROM uses the control-per-Port functionality that is used for most physical modules.
This means that if the source page address and the destination page address (for QROM)
are in the same Port address space the destination bank will match that of the source page
because both pages share the same Bank-control bits. In this specific instance the
destination bank will thus match the source bank.

© 2025 Systemyde International Corporation 45

HP-41 MAXX

HP-IL Code Copy Functions

The final four functions require that an HP-IL module (82160A) be present in the
calculator, along with a tape drive (82161A) or other mass storage device on the HP-IL
loop.

All of these functions may result in error messages from software in the HP-IL module,
and those error messages will not be addressed here. Refer to the 82160A manual for that
information.

The 4kx10 bits of ROM are stored in a file with a size of 640 registers, which corresponds
to 5120 bytes. The 10-bit instruction words are read and written as five bytes for each four
instruction words. Two different algorithms for the translation are available. The
translation algorithm cannot be reliably determined from the data in the file, so the user is
responsible for naming files appropriately if both translation algorithms are used on the
same mass storage medium.

The ERAMCO file format packs the two most-significant bits from each of the four ROM
words into a single byte and then the remaining four bytes are just the eight least-significant
bits of the four ROM words.

ROM HP-IL ERAMCO format
address 10-bit instructions order bytes
n a%a8a7ababadal3a?2alal m d9d8c9c8b9%p8a9%a8
n+1 b9b8b7b6b50b4b3b2b1b0 m+1 d7d6d5d4d3d2d1d0
n+2 c9c8c7cbcbcd4c3c2celcel m+2 c7c6c5cdc3c2clcl
n+3 d9d8d7d6d5d4d3d2d1d0 m+3 b7b6b5b4b3b2b1b0

m+4 a7ababada3a?alal

The HEPAX format merely samples the bit stream from the ROM into byte-wide pieces.

ROM HP-IL HEPAX format
address 10-bit instructions order bytes
n a%a8a7ababada3azalal m a%a8a’ababada3a2
n+1 bS%b8b7b6b5b4b3b2blb0 m+1 alaOb%b8b7b6b5b4
n+2 c9c8c7cbecbcd4c3c2clcel m+2 b3b2blb0c9c8c7c6
n+3 d9d8d7d6d5d4d3d2d1d0 m+3 c5c4c3c2clc0d9ds

m+4 d7d6d5d4d3d2d1d0

Neither format is better than the other. Software for going from ROM words to bytes is
easier for the HEPAX algorithm, but software for going from bytes to ROM words is easier
for the ERAMCO algorithm.

© 2025 Systemyde International Corporation 46

HP-41 MAXX

Storing ROM data in either format is not compatible with any of the recognized (PR, DA,
KE, ST or WA) HP-41 file types supported by the software in the HP-IL module. The
original HEPAX software used a DA file type (number 13) for ROM data, and the MAXX
module also uses that file type. The original Eramco software used a special file type
(number 7) that is not recognized by the HP-IL module software.

Executing the DIR function (located in the HP-IL module) will result in a listing with the
following format for ROM files:

Eramco: NAME ??,S 640
Hepax: NAME DA 640

The "2?, S" signifies an unknown file type and the fact that the file is secured. Securing
the file is automatic for unknown file types. The Hepax case shows the Data file type,
unsecured. In both cases the file is 640 registers in length.

The file name can be up to seven characters and is held in the ALPHA register. If the
ALPHA register contains more than seven characters only the first seven are used for the
file name. Each file name on the mass storage medium must be unique.

Only transfers to or from Bank 1 are supported, and the user is responsible for choosing
the proper source or destination page. Any page, from 0 to 15, is allowed by these functions.

No check that the selected page has been enabled for reads or writes is performed. The user
is responsible for guaranteeing that the specified page is appropriately enabled. For
transfers to the IL device this means that the source page must be enabled for reads. If the
source page is not enabled for reads a file containing all zeros will be written. For transfers
from the IL device the destination page must be enabled for writes. If this is not the case
all data read from the IL device will be ignored.

© 2025 Systemyde International Corporation 47

HP-41 MAXX

RDEIL (page in X-register, filename in ALPHA register)

The RDEIL (Read ERAMCO-format ROM Page from HP-IL) function copies an entire
page of HP-41 Instruction memory from a mass storage device using HP-IL. The file is
decoded using the ERAMCO algorithm.

RDHIL (page in X-register, filename in ALPHA register)

The RDHIL (Read HEPAX-format ROM Page from HP-IL) function copies an entire page
of HP-41 Instruction memory from a mass storage device using HP-1L. The file is decoded
using the HEPAX algorithm.

WREIL (page in X-register, filename in ALPHA register)

The WREIL (Write ERAMCO-format ROM Page to HP-IL) function copies an entire page
of HP-41 Instruction memory to a mass storage device using HP-IL. The file is encoded
using the ERAMCO algorithm.

WRHIL (page in X-register, filename in ALPHA register)

The WRHIL (Write HEPAX-format ROM Page to HP-IL) function copies an entire page
of HP-41 Instruction memory to a mass storage device using HP-IL. The file is encoded
using the HEPAX algorithm.

© 2025 Systemyde International Corporation 48

HP-41 MAXX

Error Messages

Error Message

Function

Meaning

Functions requiring numeric

ALPHA DATA data in the X-register X-register contains Alpha data
Instruction Memory functions Invalid hexadecimal
YM Block functions
DATA ERROR YM Register functions Range Error
QROM functions, Invalid page number
HP-IL Copy functions Pag
NO BANK CPYBNK No bank found
NO HPIL HP-IL Copy functions No 82160A detected
NO WR EN QRCLR Target is not write-enabled

NONEXISTENT

YM Block functions

Invalid Block address

NOT BNK 1 QRCLR Target is not Bank 1
Needs confirmation string OK
NOT OK YM Block functions in ALPHA register before
modifying YM Block 0
OCCUPIED QROM functions Page is currently occupied

OUT OF RANGE

Functions requiring a YM
register address

Nonexistent register

Instruction Memory functions

Address or data too large

TRANSMIT ERR

HP-IL Copy functions

Problem with HP-IL

© 2025 Systemyde International Corporation

49

HP-41 MAXX

Function XROM Numbers

References to functions are stored in HP-41 programs as XROM numbers. This technique
is not visible to the user as long as the module containing the function is present in the
calculator, because the HP-41 software automatically looks up the function name and
displays this name in a program line. If the module is removed the XROM numbers become
visible in program lines. The XROM numbers for the HP-41 MAXX module are listed
below.

Function XROM Note
-MAXX 4C 15,00 Not programmable
ST>YM 15,01
ST<>YM 15,02
YM>ST 15,03
MM>YM 15,04
MM<>YM 15,05
YM>MM 15,06
XM>YM 15,07
XM<>YM 15,08
YM>XM 15,09
YM<>YM 15,10
YMCLR 15,11
YARC 15,12
YAST 15,13
YDSE 15,14
YISG 15,15
YRCL 15,16
YRC+ 15,17
YRC- 15,18
YRC* 15,19
YRC/ 15,20
YSTO 15,21
YST+ 15,22
YST- 15,23
YST* 15,24
YST/ 15,25
YVEW 15,26
YX<> 15,27
YRGMOV 15,28
YRGSWP 15,29
CLYRG 15,30
CLYRGX 15,31
A<>YRG 15,32
ST<>YRG 15,33
ORINI 15,34
ORCLR 15,35
QORABY 15,36
ORRE 15,37
QORRO 15,38
QRRP 15,39
QRRWD 15,140

© 2025 Systemyde International Corporation 50

Function

AHPEEK
AHPOKE
XDPEEK
XDPOKE
AH>XD
XD>AH
CPYBNK
WREIL
WRHIL
RDEIL
RDHIL
MXST?
QRST?

Not programmable

© 2025 Systemyde International Corporation

HP-41 MAXX

51

HP-41 MAXX

QROM Loading Examples

Loading QROM with software might seem like a daunting task, but the examples below
should help to illustrate the required steps. All of these examples assume that the QROM
programming starts out in the default state of page 15, unbanked, and disabled for reads
and writes.

The "LDAXY" program loads a page from HP-IL. It assumes the IL file name in the
ALPHA register, the destination page.bank in the Y-register and the QROM block number
in the X-register.

01 LBL "LDAXY"™ ;assumes IL file name in ALPHA, page.bank in Y and block# in X

02 AVIEW ; display file name

03 QRWE ; enable the block for writes

04 QRABY ; set page and bank

05 X<>Y ; destination page to X

06 RDEIL ; read page (Eramco format)

07 X<>Y ; block number to X

08 QRRO ; enable page for read-only access
09 CLD

10 END

The "LDLIB" program loads Library-4 from HP-IL. It assumes the IL file names are
LIBX1 and LIBX2 and uses QROM blocks 1 and 2 to hold the images. It is always safer
to load secondary banks prior to loading Bank 1.

01 LBL"LDLIB" ;assumes IL file names LIBX1 and LIBX2
02 4.2 ; page 4, bank 2
03 ENTER?

04 2 ; QROM block #2
05 "LIBX2"

06 XEQ "LDAXY™"

07 4.1 ; page 4, bank 1
08 ENTERM

09 1 : QROM block #1
10 "LIBX1"

10 XEQ "LDAXY™

11 TONE7

11 END

© 2025 Systemyde International Corporation 52

HP-41 MAXX

The procedure below copies the contents of the HP-41 Advantage module (assumed to be
inserted in Port 4) into QROM, using blocks 10-12. The procedure cannot be programmed
because the CPYBNK function is not programmable. Copying the contents of a physical
module into QROM frees up a physical port and also allows editing the module contents.

Because of the way that bank-switching works, the QROM blocks cannot be located in the
same port as the physical module during the copy operation. This example will use Port 3
for the location of the QROM blocks.

The HP-41 Advantage module contains an unbanked 4K in the lower half of the Port and
two banks in the upper half of the Port. The CPYBNK function only copies images to Bank
1, so the QROM block holding the Bank 2 portion of the Advantage mode must be
relocated after the copy is complete.

13.1

ENTER”

12

QRABY ; Assign QROM block #12 to page 13, bank 1
QRWO ; and enable it for writes only

CPYBNK 2" F:D ; copy the Advantage upper page bank 2

13.2

ENTER”

12

QRABY ; Assign QROM block #12 to page 13, bank 2
13.1

ENTER”

11

QRABY ; Assign QROM block #11 to page 13, bank 1
QRWO ; and enable it for writes only

CPYBNK 1" F:D ; copy the Advantage upper page bank 1

12.0

ENTER”

10

QRABY ; Assign QROM block #10 to page 12, unbanked
QRWO ; and enable it for writes only

CPYBNK 1" E:C ; copy the Advantage lower page

Power off, remove the physical module. Power back on and execute the following to
activate the internal copy of the Advantage module.

12

QRRO ; enable bank 2 first

11

QRRO ; then the upper page

10

QRRO ; and finally, the main page

© 2025 Systemyde International Corporation 53

HP-41 MAXX

Internal Detalls

The MAXX Module appears to the MCODE programmer as a set of peripheral registers
that can be accessed once the correct peripheral address of OxF3 is selected.

It is possible to use the AHPEEK and AHPOKE functions to directly access these internal
I/O registers. If you think that you need to use this feature please contact Systemyde for
instructions on how to do it.

The table below shows the peripheral registers in page 0xF3 in the MAXX Module that are
visible to the MCODE programmer.

Register Usage Read/Write comments
0 Hardware Control yes digits 7:0
1 QROM Control A yes digits 11:0
2 QROM Control B yes digits 11:0
3 QROM Control C yes digits 11:0
4 Scratch 0 yes
5 Scratch 1 yes
6 Scratch 2 yes
7 Scratch 3 yes
8 Translate Input yes
9 Five Bytes read-only digits 9:0
10 Four Words read-only digits 11:0
11 ROM Control yes digits 2:0
12 ALPHA-to-Hex read-only digits 13, 7:0
13 Binary-to-BCD read-only digits 7:3
14 Indirect Data yes
15 Indirect Pointer yes digit 0

The bit assignments in the control registers have been optimized for use with HP-41 mcode.
For example, writing a "0" to a nibble in a control register has no effect. This allows only
selected nibbles to be affected by a write, reducing the need to save and restore these
registers in software. Scratch registers will simplify saving control register contents.

Registers 9, 10, 13 and 14 are read-only translated versions the Translate Input register.

Register 11 provides read/write control for the three blocks of memory that are used as
ROM in the module.

Registers 14 and 15 implement indirect access for registers 0-11. The register address is

loaded to the Indirect Pointer and then the addressed register can be read or written using
the Indirect Data address. This simplifies software in some cases.

© 2025 Systemyde International Corporation 54

HP-41 MAXX

Hardware Control Register

Register 0 is the Hardware Control register. Only digits 7-0 are used.

13 112 | 11 | 10 | 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 tmr xma2 xml | xmO | mm3 | mm2 | mml | mmO

Nibbles 7 through 0 enable and disable certain hardware features in the MAXX module.
These nibbles also report the status of these hardware features when read. The tables below
show the valid bit combinations for these nibbles. No other bit patterns will ever be returned
when reading this register.

bit pattern | Write Meaning bit pattern Read Meaning
XX0X No Change 0000 Disabled
xx10 Disable 1111 Enabled
xx11 Enable

Nibble 7 (tmr) controls the Time module portion of the MAXX module, both the timer
hardware and the Time module software.

Nibble 6 (xm2) controls the second Extended Memory module portion of the MAXX
module, which corresponds to register addresses 0x300 through Ox3FF.

Nibble 5 (xm1) controls the first Extended Memory module portion of the MAXX module,
which corresponds to register addresses 0x200 through Ox2FF.

Nibble 4 (xmO0) controls the Extended Functions/Memory module portion of the MAXX
module, both the software and the memory. The software occupies the lower half of the
Port where the MAXX module is inserted, while the Extended memory corresponds to
register addresses 0x040 through 0xOBF.

Nibbles 3-0 (mm3-mm0) control the regular Memory module portion of the MAXX
module according to the table below.

nibble Register address range
mma3 0x1CO0-0x1FF
mm?2 0x180-0x1BF
mm1 0x140-0x17F
mmO 0x100-0x13F

© 2025 Systemyde International Corporation 55

HP-41 MAXX

QROM Control Registers

Registers 1 through 3 are the QROM Control registers, with one control register for each
four pages of QROM memory. The three groups of QROM are labelled A, B and C. Within
each QROM group the individual blocks are numbered 1 through 4 as far as the control
fields are concerned, but this numbering should not be confused with the operating mode
for each block. Block 1 is controlled by nibbles 0, 4 and 8, block 2 is controlled by nibbles
1,5and 9, and so on.

13 | 12 | 11 | 10 9 8 7 6 5 4 3 2 1 0

0 0 g4pg | 93pg | 92pg | dlpg | q4b g3b g2b glb | g4m | g3m | g2m | glm

Nibbles 11-8 (gxpg) select the address where each block of QROM will reside. QROM
blocks can only be assigned to pages 4 or 6 through 15.

The QROM page addresses should be set before enabling the blocks for reads. These
nibbles also report the status of the QROM blocks when the control register is read. The
tables below show the valid bit combinations for these nibbles. No other bit patterns will
ever be returned when reading this register.

bi t%)g?[?ern Write Meaning bitcgl))g?[gern Read Meaning

00xx No effect 0100 Page 4
0100 Page 4 0110 Page 6
0101 No effect 0111 Page 7
0110 Page 6 1000 Page 8
0111 Page 7 1001 Page 9
1000 Page 8 1010 Page 10
1001 Page 9 1011 Page 11
1010 Page 10 1100 Page 12
1011 Page 11 1101 Page 13
1100 Page 12 1110 Page 14
1101 Page 13 1111 Page 15
1110 Page 14

1111 Page 15

© 2025 Systemyde International Corporation 56

HP-41 MAXX

Nibbles 7-4 (gxb) control the banking operation of the QROM blocks. These nibbles also
report the status of the QROM blocks when read. The tables below show the valid bit
combinations for these nibbles. No other bit patterns will ever be returned when reading
this register.

bit S;(tbtern Write Meaning bit g;gern Read Meaning
00xx No effect 0100 Bank 1
0100 Bank 1 0101 Bank 3
0101 Bank 3 0110 Bank 2
0110 Bank 2 0111 Bank 4
0111 Bank 4 1000 Not banked
10xx Not Banked
11xx No effect

The odd encoding for the bank select is carried over from the ENROMX instructions that
control bank switching. It is easier if everything uses the same encoding. This field also
allows the block to be programmed to ignore the bank control bits.

Nibbles 3-0 (gxm) control the read and write operation of the QROM blocks. These nibbles
also report the status of the blocks when read. The tables below show the valid bit
combinations for this nibble. No other bit patterns will ever be returned when reading this
register.

bit cp]));[?ern Write Meaning bit g);[[rt]ern Read Meaning
XX0x No Read Change 0000 Read & Write Disabled
xx10 Read Disable 0011 Only Read Enabled
xx11 Read Enable 1100 Only Write Enabled
OXXX No Write Change 1111 Read & Write Enabled
10xx Write Disable
11xx Write Enable

© 2025 Systemyde International Corporation 57

Scratch x Register

HP-41 MAXX

Registers 4-7 are the Scratch 0-3 registers. These registers are available for any software
use, but are used in the MAXX functions for saving and restoring the state of the control

registers to reduce software overhead.

13 12 11 10 9 8 7 6 5 4 3 2 1 0
s13 sl12 sl1 s10 s9 s8 s7 S6 s5 s4 s3 S2 sl sO
58

© 2025 Systemyde International Corporation

HP-41 MAXX

Translate Input Register

Register 8 is the Translate Input register. This read-write register is the source for the
packing/unpacking operation required for the byte-oriented HP-IL functions, as well as the
Alpha-to-Hex and Binary-to-BCD functions. Doing these translations in hardware saves a
significant amount of code space.

1312]11]10] 9| 8] 7|65] 4]3]2]1]0
m 0 0 0 byte 4 byte 3 byte 2 byte 1 byte 0
m 0 word 0 ‘ word 1 word 2 ‘ word 3

alpha 6 alpha 5 alpha 4 alpha 3 alpha 2 alpha 1 alpha 0
o | o o | o o | o o | o o | o hex word

Nibble 13 (m) controls the algorithm selection for the pack/unpack operation. A 0 in this
nibble selects the ERAMCO algorithm, while a 1 selects the HEPAX algorithm.

When unpacking, nibbles 9-0 (byte x) is the data to be unpacked. Order is important. The
first received HP-IL byte is byte 0 and the last received HP-IL byte is byte 4.

When packing, nibbles 11-0 (word Xx) is the data to be packed. Order is important. The
lowest ROM address word is word 0 and the highest ROM address word is word 3.

When translating from Alpha to Hex the byte order is preserved. If any of the Alpha bytes
are not valid Hex characters (0-9, A-F) then an error is reported in the most-significant
digit of the translated value.

When translating from Binary to BCD the translation only accommodates 16-bit binary.
In all cases the translation output is not valid for one instruction time after the input data is

written to the Translate Input register. This means a NOP or other instruction between the
Translate Input register write and the read of the selected output register.

Five Bytes Register

Register 9 is the Five Bytes register. This read-only register returns the contents of the
Translate Input register, packed using either the ERAMCO or HEPAX algorithm. Only
digits 9-0 are used. Pay attention to input order and output order.

13]12]12]10] 9| 8] 765 4]3]2]1]0

0 0 0 0 byte 4 byte 3 byte 2 byte 1 byte 0

© 2025 Systemyde International Corporation 59

HP-41 MAXX

Four Words Register

Register 10 is the Four Words register. This read-only register returns the contents of the
Translate Input register, unpacked using either the ERAMCO or HEPAX algorithm. Only
digits 11-0 are used. Pay attention to input order and output order.

131211100 98] 7][6]5]4]3]2]1]0

0 0 0 0 byte 4 byte 3 byte 2 byte 1 byte 0

Alpha-to-Hex Register

Register 12 is the Alpha-to-Hex register. This read-only register returns the contents of the
Translate Input register (assumed to be seven Alpha characters), converted to hexadecimal.
If the input data is valid nibble 13 is set to zero, but if any input byte is not a valid Alpha
version of a hexadecimal number (0-9, A-F) then nibble 13 will be set to one.

13 | 12 | 11 | 10 9 8 7 6 5 4 3 2 1 0

e 0 0 0 0 0 0 ab a5 a4 a3 a2 al a0

Binary-to-BCD Register

Register 13 is the Binary-to-BCD register. This read-only register returns the contents of
the Translate Input register, translated from an unsigned 16-bit binary number (0xO-
OXFFFF) into a 5-digit BCD number (0-65535).

13 | 12 | 11 | 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 bcd4 | bcd3 | bcd2 | bedl | bed0 0 0 0

© 2025 Systemyde International Corporation 60

HP-41 MAXX

ROM Control Register

Register 11 is the ROM Control register, which provides write enables for the blocks of
instruction memory that contain the MAXX, Timer and X-functions software. Only digits
2-0 are used.

13 | 12 | 11 | 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 Xwe | twe | rwe

Nibble 2 (xwe) controls write operations for the X-functions ROM. This nibble also reports
the status of this ROM when read. A bit combination of OxF enables writes, and any other
bit combination disables writes.

Nibble 1 (twe) controls write operations for the Time Module ROM. This nibble also
reports the status of this ROM when read. A bit combination of OXF enables writes, and
any other bit combination disables writes.

Nibble 0 (rwe) controls write operations for the MAXX ROM. This nibble also reports the
status of this ROM when read. A bit combination of OXF enables writes, and any other bit
combination disables writes.

Indirect Data Register

Register 14 allows software to indirectly address any of the other MAXX registers. The
register address is written to the Indirect Address register and then the selected register can
be read and written via this register.

13 | 12 | 11 | 10 9 8 7 6 5 4 3 2 1 0

di3 | di12 | di11 | d10 d9 ds d7 dé ds d4 d3 d2 di do

Indirect Address Register

Register 15 contains the register address for the register to be accessed.

13 | 12 | 11 | 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 ia

Nibble 0 (ia) is the address of the register to be accessed indirectly via the Indirect Data
register. This addressing uses the same register addressing that was shown earlier.
Obviously, accessing the Indirect Data register itself does not make sense, and all zeros
will be read and writes will be ignored in this case.

© 2025 Systemyde International Corporation 61

HP-41 MAXX

Expanded Register Access

The processor used in the 41C series has native support for 4096 registers, via a twelve bit
register address. This register address is loaded into memory devices using the DADD=C
instruction. However, the memory devices used in the calculator only latch and decode ten
bits of this register address. This means that a different mechanism is required to access
registers beyond this ten-bit address limit to avoid any conflict with memory devices
already present in the 41C.

Borrowing from the technique used for peripheral registers, with the PFAD=C instruction,
the MAXX hardware decodes a new instruction called EADD=C. This Extended Address
load instruction loads all twelve bits of the register address for use by the MAXX hardware.
Since the 41C CPU and memory devices do not recognize this instruction there will be no
decoding conflict as long as the regular DADD=C instruction has previously stored an
unimplemeted register address. This is exactly how decoding conflicts with peripheral
registers are avoided in the 41C.

The EADD=C instruction uses the bit pattern 0x0CO0, and a typical expanded register access
will involve the following instruction sequence:

LDI 010 ; empty 41C register address
DADD=C ; select nonexistent 41C register
LDI 200

C=C+C X ; expanded register 400

EADD=C ; load expanded register address

As in the case of the PFAD=C instruction, any subsequent DADD=C instruction will clear
the address latched by the EADD=C instruction, returning the MAXX hardware to normal
41C operation, making the expanded register access completely transparent to the existing
41C hardware and software.

Shown below is an actual code snippet from the MAXX functions. In this code the register
address, which may be in either data memory or Expanded memory, is held in A.X. The
type of address (O=data, 1=Expanded) is held in A.S and the data to be written is held in
the N register. This code writes the data after first setting the register address appropriately.

(DST?) LDI 010 ; C = xxxxxxxxxxx010
DADD=C ; disable ram 0
C=A X ; C = xxxxxxxxxxxddd
?A#0 S ; dst loc?
GONC (DST_WO)
#0CO ; EADD=C enable ram x
GONC (DST_WR)
(DST_WO0) DADD=C ; enable ram 0
(DST_WR) C=N ; C = d-data-ddddddd
DATA=C ; write dst data

© 2025 Systemyde International Corporation 62

05/04/2022
06/06/2022
07/23/2022
08/19/2022
09/26/2022
10/24/2022
10/29/2022
11/19/2022
11/21/2022
12/06/2022
12/15/2022
02/09/2023

02/23/2023

03/10/2023

03/31/2023
06/30/2023
09/01/2023
09/04/2023
11/26.2023
12/03/2023

12/27/2023
01/08/2024
01/03/2025
05/24/2025
11/10/2025

HP-41 MAXX

Revision History

Preliminary release.

Miscellaneous edits, added Error Messages and Internal Details.
Miscellaneous edits, added YRFNDX function

More figures, Split mode for Banked memory

Changes all over the place, for version -1B

Fixed a formatting problem; clarified collision checking.

Figures on pages 13 and 14 were reversed.

Changes all over the place, for version -2A and Instruction RAM
Instruction RAM control register details

Change "Instruction RAM" name to "QROM"

Add explanation about hardware read and write prioritization

Changes for revision -3A. Modifications to QROM functions, as well as
HP-IL Code Copy functions and Internal Details.

Various edits. Changed QROFF to QRRWD and QRON to QRRWE.
Added QROM Loading Examples section.

Changes for -3B. Changed HP-IL Copy function names to free up a few
bytes of code space. HP-IL file format change to Hepax case for
interoperability.

Changes for -4B, plus edits based on reviewer feedback.

Changes for -4C: clarification for QROM initialization, Auto-configure.
Added "READ THIS FIRST" section, plus various edits throughout.
Added "Function XROM Numbers" section, plus various edits.

Added to "READ THIS FIRST" section

Fixed a problem with the example in Expanded Memory Access. Thank
you, Meindert!

Added write-enable digits for Time ROM and X-functions ROM.

Changes for -5A: Added Alpha-to-Hex and Binary-to-BCD registers.
Changes for -5B: QRINI and QRCLR modified.

Changed header to "5B & 5C"

Added "Released Version History" section and removed all other version
references.

© 2025 Systemyde International Corporation 63

HP-41 MAXX

Released Version History

Listed below are the versions of the MAXX software that were released publicly, along
with the errors discovered in each version. All of these errors were pre-existing, but were
not discovered until the listed version. Any error listed for one version was corrected in the
subsequent version.

MAXX-5A The QRCLR and QRINI functions corrupt the QROM programming.

MAXX-5B Certain locations in Main Memory and Extended Memory are corrupted
every time the machine is turned on.

MAXX-5C A number of the Expanded Register functions do not work properly when
the BAT annunciator is on.

MAXX-5D Not released yet.

© 2025 Systemyde International Corporation 64

